155 research outputs found

    Out-of-Order Retirement of Instructions in Superscalar, Multithreaded, and Multicore Processors

    Full text link
    Los procesadores superescalares actuales utilizan un reorder buffer (ROB) para contabilizar las instrucciones en vuelo. El ROB se implementa como una cola FIFO first in first out en la que las instrucciones se insertan en orden de programa después de ser decodificadas, y de la que se extraen también en orden de programa en la etapa commit. El uso de esta estructura proporciona un soporte simple para la especulación, las excepciones precisas y la reclamación de registros. Sin embargo, el hecho de retirar instrucciones en orden puede degradar las prestaciones si una operación de alta latencia está bloqueando la cabecera del ROB. Varias propuestas se han publicado atacando este problema. La mayoría utiliza retirada de instrucciones fuera de orden de forma especulativa, requiriendo almacenar puntos de recuperación (checkpoints) para restaurar un estado válido del procesador ante un fallo de especulación. Normalmente, los checkpoints necesitan implementarse con estructuras hardware costosas, y además requieren un crecimiento de otras estructuras del procesador, lo cual a su vez puede impactar en el tiempo de ciclo de reloj. Este problema afecta a muchos tipos de procesadores actuales, independientemente del número de hilos hardware (threads) y del número de núcleos de cómputo (cores) que incluyan. Esta tesis abarca el estudio de la retirada no especulativa de instrucciones fuera de orden en procesadores superescalares, multithread y multicore.Ubal Tena, R. (2010). Out-of-Order Retirement of Instructions in Superscalar, Multithreaded, and Multicore Processors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8535Palanci

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Compiling for parallel multithreaded computation on symmetric multiprocessors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 145-149).by Andrew Shaw.Ph.D

    Synchronization-Point Driven Resource Management in Chip Multiprocessors.

    Get PDF
    With the proliferation of Chip Multiprocessors (CMPs), shared memory multi-threaded programs are expanding fast in every application domain. These programs exhibit execution characteristics that go beyond those observed in single-threaded programs, mainly due to data sharing and synchronization. To ensure that next generation CMPs will perform well on such anticipated workloads, it is vital to understand how these programs and architectures interact, and exploit the unique opportunities presented. This thesis examines the time-varying execution characteristics of the shared memory workloads in conjunction to the synchronization points that exist in the programs. The main hypothesis is that the type, the position, and the repetitive execution of synchronization constructs can be exploited to unfold important execution phases and enable new optimization opportunities. The research provides a simple application-driven approach for predicting the program behavior and effectively driving dynamic performance optimization and resource management actions in future CMPs. In the first part of this thesis, I show how synchronization points relate to various program-wide periodic behaviors. Based on the observations, I develop a framework where user-level synchronization primitives are exposed to the hardware and monitored to detect program phases and guide dynamic adaptation. Through workload-driven evaluation, I demonstrate the effectiveness of the framework in improving the performance/power in on-chip interconnects. The second part of the thesis explores in depth the inter-thread communication behaviors. I show that although synchronization points under the shared memory model do not expose any communication details, they indicate well the points where coherence communication patterns change or repeat. By leveraging this property, I design a synchronization-point-based coherence predictor that uncovers communication patterns with high accuracy, while consuming significantly less hardware resources compared to existing predictors. In the last part, I investigate the underlying reasons causing threads to wait in synchronization points, wasting resources. I show that these reasons can vary even across different programs phases, and existing critical-path predictors can render ineffective under certain conditions. I then present a new scheme that improves predictability by incorporating history information from previous points. The new design is robust and can amortize the run-time imbalances to improve the system's performance and/or energy

    Jigsaw: Scalable software-defined caches

    Get PDF
    Shared last-level caches, widely used in chip-multi-processors (CMPs), face two fundamental limitations. First, the latency and energy of shared caches degrade as the system scales up. Second, when multiple workloads share the CMP, they suffer from interference in shared cache accesses. Unfortunately, prior research addressing one issue either ignores or worsens the other: NUCA techniques reduce access latency but are prone to hotspots and interference, and cache partitioning techniques only provide isolation but do not reduce access latency.United States. Defense Advanced Research Projects Agency (DARPA PERFECT contract HR0011-13-2-0005)Quanta Computer (Firm

    Automatic Parallelization With Statistical Accuracy Bounds

    Get PDF
    Traditional parallelizing compilers are designed to generate parallel programs that produce identical outputs as the original sequential program. The difficulty of performing the program analysis required to satisfy this goal and the restricted space of possible target parallel programs have both posed significant obstacles to the development of effective parallelizing compilers. The QuickStep compiler is instead designed to generate parallel programs that satisfy statistical accuracy guarantees. The freedom to generate parallel programs whose output may differ (within statistical accuracy bounds) from the output of the sequential program enables a dramatic simplification of the compiler and a significant expansion in the range of parallel programs that it can legally generate. QuickStep exploits this flexibility to take a fundamentally different approach from traditional parallelizing compilers. It applies a collection of transformations (loop parallelization, loop scheduling, synchronization introduction, and replication introduction) to generate a search space of parallel versions of the original sequential program. It then searches this space (prioritizing the parallelization of the most time-consuming loops in the application) to find a final parallelization that exhibits good parallel performance and satisfies the statistical accuracy guarantee. At each step in the search it performs a sequence of trial runs on representative inputs to examine the performance, accuracy, and memory accessing characteristics of the current generated parallel program. An analysis of these characteristics guides the steps the compiler takes as it explores the search space of parallel programs. Results from our benchmark set of applications show that QuickStep can automatically generate parallel programs with good performance and statistically accurate outputs. For two of the applications, the parallelization introduces noise into the output, but the noise remains within acceptable statistical bounds. The simplicity of the compilation strategy and the performance and statistical acceptability of the generated parallel programs demonstrate the advantages of the QuickStep approach

    Improving the SLLC Efficiency by exploiting reuse locality and adjusting prefetch

    Get PDF
    Desde los teléfonos móviles inteligentes hasta nuestro ordenador portátil los sistemas electrónicos que incluyen chips multiprocesador (CMP) están presentes en nuestra vida cotidiana de una manera abrumadora. Los CMPs contienen varios núcleos o CPUs que tienen que ser alimentados con datos provenientes de la memoria. Pero la velocidad a la que los núcleos que forman el CMP necesitan los datos es mucho mayor que la velocidad a la que la memoria es capaz de proporcionar dichos datos. De hecho, esta diferencia ha ido aumentando desde prácticamente el día en el que ambos dispositivos fueron concebidos. Esta diferencia en el rendimiento de ambos dispositivos se ha venido a llamar "the memory gap". Al mismo tiempo que dicha diferencia aumentaba, los lenguajes de programación proporcionaban a los programadores modelos de memoria que podían acceder a un espacio prácticamente infinito y al que, además, se accedía de manera instantánea. Pero el tamaño de cualquier estructura hardware está íntimamente relacionado con su tiempo de acceso y éste será mayor cuanto mayor sea el tamaño la estructura hardware a acceder. Con el ánimo de deshacer esta aparente contradicción, los arquitectos de computadores incluyeron memorias intermedias entre las CPUs y la grande, aunque al mismo tiempo lenta, memoria principal. Estas memorias intermedias se denominan memorias cache o simplemente caches. Debido a la gran diferencia que existe entre la velocidad del procesador y la de la memoria principal. Los CMPs en la actualidad están provistos de una jerarquía de memorias cache que tiene dos o tres niveles. Las caches que están cerca del procesador sólo contienen unos pocos kilobytes (entre 4 y 64) accesibles en uno o pocos ciclos de reloj, mientras que las que se encuentran más alejadas del procesador pueden llegar a contener varios megabytes y tener un tiempo de acceso de varias decenas de ciclos. Los programas al ser ejecutados muestran una propiedad llamada localidad que se expresa en los ejes espacial y temporal. La localidad temporal es la propiedad que dice que el programa volverá a usar datos que usó recientemente, cuanto más recientemente los usó, más probable es que vuelva a hacerlo. Mientras que la localidad espacial es la propiedad que dice que el programa tenderá a usar datos que están próximos en el espacio de memoria a datos que usó recientemente. Las memorias cache han sido diseñadas tradicionalmente para explotar la localidad. En concreto, la localidad temporal se explotaba mediante una adecuada política de reemplazo, mientras que la localidad espacial se explota al contener cada bloque de cache varios datos o palabras. Un modo adicional de conseguir explotar una mayor cantidad de localidad espacial es mediante el uso de la técnica llamada prebúsqueda. La política de reemplazo influye de manera crítica en la tasa de aciertos de la memoria cache. En un CMP provisto de una jerarquía de memorias cache, la localidad temporal se explota en aquellos niveles más cercanos a los núcleos. Así que muchos de los bloques insertados en la SLLC son de un solo uso, es decir, estos bloques no experimentarán ningún acierto más durante todo el tiempo que permanezcan en la SLLC. Sin embargo, aquellos bloques que lleguen a experimentar un acierto en la SLLC, normalmente experimentarán muchos más aciertos. Por lo tanto, que la política de reemplazo base sus decisiones en la posible explotación de la localidad temporal, es una asunción inválida cuando hablamos de la SLLC. Por el contrario, Este comportamiento indica que dicha política de reemplazo de la SLLC debería estar basada en el reúso1 en lugar de en la localidad temporal. La prebúsqueda hardware tiene por objetivo cargar en la cache datos antes de que sea el procesador quien los pida. La validez de esta técnica a la hora de reducir la latencia media de acceso a memoria ha sido ampliamente demostrada. La prebúsqueda funciona especialmente bien en las jerarquías de memoria de sistemas monoprocesador, donde solamente hay un flujo de datos entre el procesador y la memoria. Sin embargo, cuando la prebúsqueda se usa en un sistema multiprocesador donde diferentes aplicaciones se están ejecutando al mismo tiempo, las prebúsquedas asociadas a un núcleo podrían interferir con los datos cargados en la cache por otro núcleo, provocando la eliminación de los contenidos de otra aplicación y dañando su rendimiento. Es necesario por tanto un mecanismo para regular la prebúsqueda asociada a cada uno de los núcleos. Este mecanismo debería tener por objetivo el mejorar el rendimiento general del sistema. 1 Aunque el DRAE no contenga su definición, usaremos aquí el verbo reusar (así como sus formas derivadas) como sinónimo de volver a utilizar. Cada fallo en la SLLC provoca un acceso a la memoria principal que se encuentra fuera del chip. Además la memoria principal está hecha de chips de DRAM. Ambos factores incrementan su latencia de acceso, latencia que se suma a cada uno de los accesos que falla en la SLLC, penalizando a la vez la latencia media de acceso a memoria. Por lo tanto, la tasa de aciertos de la SLLC es un factor crítico para lograr una latencia media de acceso a memoria óptima. Esta tesis fija su atención en la eficiencia de los dos aspectos comentados con anterioridad: la eficiencia de la prebúsqueda y la eficiencia de la política de reemplazo. Las contribuciones principales de esta tesis son las siguientes: 1) Enunciamos una propiedad llamada localidad de reúso que dice que i) los bloques de cache que hayan sido usados más de una vez tienen una alta probabilidad de ser usados muchas veces en el futuro. ii) Los bloques de cache recientemente reusados son más útiles que otros reúsados previamente. Defendemos en esta tesis que el patrón de acceso a la SLLC muestra localidad de reúso. 2) En esta tesis se proponen dos algoritmos de reemplazo capaces de explotar la localidad de reúso, Least-recently reused (LRR) y Not-recently reused (NRR). Estos dos nuevos algoritmos son modificaciones de otros dos muy bien conocidos: Least-recently used (LRU) y Not-recently used (NRU). Dichos algoritmos fueron diseñados para explotar la localidad temporal, mientras que los nuestros explotan la local- idad de reúso. Las modificaciones propuestas no suponen ninguna sobrecarga hardware respecto a los algoritmos base. Durante esta tesis se muestra que nuestros algoritmos mejoran consistentemente el rendimiento de los originales. 3) Proponemos un novedoso diseño para la SLLC llamado Reuse Cache. En este diseño los arrays de etiquetas y datos de la cache están desacoplados. Solamente se almacenan en el array de datos aquellos bloques que hayan mostrado reúso. El array de etiquetas se usa para detectar reúso y mantener la coherencia. Esta estructura permite reducir el tamaño del array de datos de manera drástica. Como ejemplo, una Reuse Cache con un array de etiquetas equivalente al de una cache convencional de 4MB y un array de datos de 1MB, tiene el mismo rendimiento medio que una cache convencional de 8MB, pero con un ahorro de almacenamiento de en torno al 84%. 4) Un controlador de bajo coste llamado ABS capaz de ajustar la agresividad de la prebúsqueda asociada a cada uno de los núcleos de un CMP pero con el ánimo de mejorar el rendimiento general del sistema. El controlador funciona de manera aislada en cada uno de los bancos de la SLLC y recoge métricas locales. Para optimizar el rendimiento global del sistema busca la combinación óptima de valores de la agresividad de prebúsqueda. Para inferir cuál es esa combinación óptima usa una estrategia de búsqueda hill-climbing

    Holistic System Design for Deterministic Replay.

    Full text link
    Deterministic replay systems record and reproduce the execution of a hardware or software system. While it is well known how to replay uniprocessor systems, it is much harder to provide deterministic replay of shared memory multithreaded programs on multiprocessors because shared memory accesses add a high-frequency source of non-determinism. This thesis proposes efficient multiprocessor replay systems: Respec, Chimera, and Rosa. Respec is an operating-system-based replay system. Respec is based on the observation that most program executions are data-race-free and for programs with no data races it is sufficient to record program input and the happens-before order of synchronization operations for replay. Respec speculates that a program is data-race-free and supports rollback and recovery from misspeculation. For racy programs, Respec employs a cheap runtime check that compares system call outputs and memory/register states of recorded and replayed processes at a semi-regular interval. Chimera uses a sound static data race detector to find all potential data races and instrument pairs of potentially racing instructions to transform an arbitrary program to make it data-race-free. Then, Chimera records only the non-deterministic inputs and the order of synchronization operations for replay. However, existing static data race detectors generate excessive false warnings, leading to high recording overhead. Chimera resolves this problem by employing a combination of profiling, symbolic analysis, and dynamic checks that target the sources of imprecision in the static data race detector. Rosa is a processor-based ultra-low overhead (less than one percent) replay solution that requires very little hardware support as it essentially only needs a log of cache misses to reproduce a multiprocessor execution. Unlike previous hardware-assisted systems, Rosa does not record shared memory dependencies at all. Instead, it infers them offline using a Satisfiability Modulo Theories (SMT) solver. Our offline analysis is capable of inferring interleavings that are legal under the Sequentially Consistency (SC) and Total Store Order (TSO) memory models.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102374/1/dongyoon_1.pd

    Dataflow Programming Paradigms for Computational Chemistry Methods

    Get PDF
    The transition to multicore and heterogeneous architectures has shaped the High Performance Computing (HPC) landscape over the past decades. With the increase in scale, complexity, and heterogeneity of modern HPC platforms, one of the grim challenges for traditional programming models is to sustain the expected performance at scale. By contrast, dataflow programming models have been growing in popularity as a means to deliver a good balance between performance and portability in the post-petascale era. This work introduces dataflow programming models for computational chemistry methods, and compares different dataflow executions in terms of programmability, resource utilization, and scalability. This effort is driven by computational chemistry applications, considering that they comprise one of the driving forces of HPC. In particular, many-body methods, such as Coupled Cluster methods (CC), which are the gold standard to compute energies in quantum chemistry, are of particular interest for the applied chemistry community. On that account, the latest development for CC methods is used as the primary vehicle for this research, but our effort is not limited to CC and can be applied across other application domains. Two programming paradigms for expressing CC methods into a dataflow form, in order to make them capable of utilizing task scheduling systems, are presented. Explicit dataflow, is the programming model where the dataflow is explicitly specified by the developer, is contrasted with implicit dataflow, where a task scheduling runtime derives the dataflow. An abstract model is derived to explore the limits of the different dataflow programming paradigms

    Dynamic Task Execution on Shared and Distributed Memory Architectures

    Get PDF
    Multicore architectures with high core counts have come to dominate the world of high performance computing, from shared memory machines to the largest distributed memory clusters. The multicore route to increased performance has a simpler design and better power efficiency than the traditional approach of increasing processor frequencies. But, standard programming techniques are not well adapted to this change in computer architecture design. In this work, we study the use of dynamic runtime environments executing data driven applications as a solution to programming multicore architectures. The goals of our runtime environments are productivity, scalability and performance. We demonstrate productivity by defining a simple programming interface to express code. Our runtime environments are experimentally shown to be scalable and give competitive performance on large multicore and distributed memory machines. This work is driven by linear algebra algorithms, where state-of-the-art libraries (e.g., LAPACK and ScaLAPACK) using a fork-join or block-synchronous execution style do not use the available resources in the most efficient manner. Research work in linear algebra has reformulated these algorithms as tasks acting on tiles of data, with data dependency relationships between the tasks. This results in a task-based DAG for the reformulated algorithms, which can be executed via asynchronous data-driven execution paths analogous to dataflow execution. We study an API and runtime environment for shared memory architectures that efficiently executes serially presented tile based algorithms. This runtime is used to enable linear algebra applications and is shown to deliver performance competitive with state-of- the-art commercial and research libraries. We develop a runtime environment for distributed memory multicore architectures extended from our shared memory implementation. The runtime takes serially presented algorithms designed for the shared memory environment, and schedules and executes them on distributed memory architectures in a scalable and high performance manner. We design a distributed data coherency protocol and a distributed task scheduling mechanism which avoid global coordination. Experimental results with linear algebra applications show the scalability and performance of our runtime environment
    • …
    corecore