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Abstract

The transition to multicore and heterogeneous architectures has shaped the High

Performance Computing (HPC) landscape over the past decades. With the increase

in scale, complexity, and heterogeneity of modern HPC platforms, one of the grim

challenges for traditional programming models is to sustain the expected performance

at scale. By contrast, dataflow programming models have been growing in popularity

as a means to deliver a good balance between performance and portability in

the post-petascale era. This work introduces dataflow programming models for

computational chemistry methods, and compares different dataflow executions in

terms of programmability, resource utilization, and scalability.

This effort is driven by computational chemistry applications, considering that

they comprise one of the driving forces of HPC. In particular, many-body methods,

such as Coupled Cluster methods (CC), which are the “gold standard” to compute

energies in quantum chemistry, are of particular interest for the applied chemistry

community. On that account, the latest development for CC methods is used as

the primary vehicle for this research, but our effort is not limited to CC and can be

applied across other application domains.

Two programming paradigms for expressing CC methods into a dataflow form,

in order to make them capable of utilizing task scheduling systems, are presented.

Explicit dataflow, is the programming model where the dataflow is explicitly specified

by the developer, is contrasted with implicit dataflow, where a task scheduling runtime

derives the dataflow. An abstract model is derived to explore the limits of the different

dataflow programming paradigms.
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Chapter 1

Introduction

To this day, Coarse Grained Parallelism (CGP) remains the most popular program-

ming model for large scale scientific applications, where the software is commonly

structured as serial code, and parallelism is achieved by injecting carefully imple-

mented send and receive calls to the communication layer, and executing multiple

parallel instances of the code. The execution of such applications on today’s largest

High Performance Computing (HPC) systems shows that the CGP models already

struggle to efficiently harness the parallelism available on systems with multiple

cores, accelerators, and multiple NUMA hierarchies. As we move toward Exascale

computing, with increasing parallelism, one of the challenges for the mainstream

programming models is to sustain the expected performance scalability. Further

challenges emerge from the increasing complexity and heterogeneity of hardware

architectures, where coarse grained parallelism and fork-join expressions of parallelism

limit performance portability of applications, and thereby sacrifice the productivity

of scientific application developers.

1.1 Motivation

The main objective is to move away from the concepts of (a) programming at

the communication layer and (b) developing scientific applications for specific

1



architectures or platforms ; and instead, use dataflow programming paradigms to

express and manage extreme-scale parallelism, while maintaining the performance

portability of the code and increase scientific productivity.

The “scientific application vehicle” in this dissertation is quantum chemistry

methods, but the insights gained from this research are much more broadly applicable

across other application domains. The field of computational chemistry, aiming to

simulate non-trivial physical systems, is chosen as the vehicle in this work because it

imposes such high demands on the performance of the software and hardware, that

it comprises one of the driving forces of High Performance Computing. In particular,

computational methods—as they are present in quantum chemistry codes such as

GAMESS [58, 29] and NWChem [62]—are extremely compute intensive and consume

significant computer resources at national supercomputer centers [7].

These codes are used to address topics important to sustainability like renewable

energy sources (e.g., solar and biorenewables), efficient batteries, and chemical

catalysis. These applications require highly accurate electronic methods such as the

Coupled Cluster methods (CC) [4], described in this work.

The price for this accuracy, however, is steep scaling of the cost with system

size, which, even with access to powerful supercomputers, renders these methods

inapplicable to many problems of interest [60]. Also the complexity of these software

packages—with diverse code hierarchies, and millions of lines of code in a variety

of programming languages—represents a central obstacle for long-term sustainability

in the rapidly changing landscape of HPC. As a result, most of the computational

methods are unable to take full advantage of today’s supercomputers, and will fall

even further behind on tomorrow’s Exascale systems.

“NWChem is an extensive application (with approx. 4 million lines

of code (3 million generated by the Tensor Contraction Engine (TCE))

that will shortly celebrate its 20th anniversary. Some of the challenges

are (1) Reliance on hand rewriting of code for new hardware, (2) Lack
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of adaptability and portability to the hardware environment. (3) Limited

approaches to dynamically balance the workload.”

— Theresa L. Windus

Exascale Computing Project, 1st Annual Meeting, 2017

In spite of the importance of the CC methods, many of these algorithms

have traditionally been thought of in a fairly sequential fashion. Particularly, it

is not uncommon to fully form a matrix before allowing any of its elements to

be used in a subsequent calculation. As a result, these applications have been

predominantly parallelized and programmed using Coarse Grained Parallelism with

explicit message passing. Meaning, in regard to the ratio of “computation” to the

“amount of communication”, data is communicated infrequently after a large amount

of computation takes place on the processors. The main motives of this trend have

been the relative simplicity of the CGP programming effort, the high performance

that such implementations can achieve, as well as the ubiquity and longevity of the

tools that are necessary for developing and executing such applications.

In the race for post-petascale computing, several research groups—including

our own—have been increasingly concerned with the feasibility of developing large

scale applications that can utilize a satisfactory fraction of the computing power of

future machines, and do so while preserving their portability and maintainability

characteristics.

Dataflow-based execution on top of task scheduling runtimes has started emerging

as an alternative programming paradigm to CGP models. Several success stories,

which, as of today, are limited to the area of dense linear algebra [2, 10, 24, 26, 40],

have encouraged the pursuit of this dissertation to research the applicability and

efficiency of dataflow programming models for production strength, large scale,

scientific applications, such as NWChem Coupled Cluster methods.
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1.2 Goals and Original Contributions

This project “Dataflow Programming Paradigms for Computational Chem-

istry Methods” is a multi-disciplinary effort to convert computational chemistry

algorithms into a dataflow-based form to make them compatible with next generation

task scheduling systems, such as PaRSEC [11] and StarPU [1]. This work is not

limited to the field of computational chemistry but the results from this research can

be directly applied across other application domains.

This research investigates the following key objectives to attack the challenges

associated with programmer productivity and portable performance of advanced com-

putational chemistry applications on massively-parallel, hybrid, many-core systems:

1. Breaking down the computation into fine-grained tasks with explicitly defined

data dependencies, so that the serialization imposed by the traditional,

linear algorithms can be transformed into parallelism, allowing the overall

computation to scale to much larger computational resources.

2. Using the flexibility afforded by the additional parallelism to enable greater

utilization of compute resources by maximizing computation-communication

overlap, and therefore using the hardware in more efficient ways.

3. Providing a robust and scalable directed acyclic graph (DAG) execution model

for CC methods that is capable of utilizing different dataflow paradigms.

4. Comparing different dataflow paradigms for CC methods in terms of scalability,

resource utilization, programmability. Specifically, this work contrasts “explicit

dataflow”, where the developer has to explicitly specify the dataflow, with

“implicit dataflow”, where a task scheduling runtime derives the dataflow.

5. Deriving an abstract model to explore the limits of the different dataflow

paradigms.
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In this work, all experiments and statistical studies use beta-carotene (C40H56) as

the input molecule. Although, a large set of experiments has been performed with

a variety of molecules, the beta-carotene molecule serves as a strongly representative

test case of large molecular complexes with a relatively small basis set. This is a

fairly common use case for researchers. Thus, in that context, the computational

resource requirements for beta-carotene, both from the memory and computational

power perspective, represent a classic use-case scenario with large implications.

1.3 Outline of the Dissertation

This work is organized as follows.

• Chapter 2 provides an overview of the current state of the art techniques for

programming models and theoretical quantum chemistry software. This chapter

also presents the challenges this work seeks to overcome.

• Chapter 3 introduces task-based dataflow models and the associated pro-

gramming paradigms. It discusses how different dataflow models have been

introduced to the computational chemistry package NWChem, and summarizes

the impact on CC methods.

• Chapter 4 presents the explicit dataflow version of NWChem CC methods.

Various design decisions and their associated levels of parallelism, optimizations,

and impacts on the performance are discussed.

• Chapter 5 presents various implicit dataflow versions of NWChem CC and

compares the performance for different runtimes. This chapter also analyzes

implicit and explicit dataflow in terms of programmability and performance

scalability.

• Chapter 6 derives a theoretical model that investigates the limits of the different

dataflow paradigms.
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• Chapter 7 provides a brief overview of the related work.

• Finally, Chapter 8 summarizes the findings and research results, and concludes

the dissertation with an outline of future research opportunities identified during

this effort.

6



Chapter 2

Background and Significance

To provide context for the research effort presented in this work, the discussion starts

with relevant prior work, emphasizing the enabling technical accomplishments and

software; challenges this work seeks to overcome; and a brief description of the state

of the art in the targeted scientific domains.

Portions of this chapter are drawn from the following publications:

• Jagode, H., Danalis, A., Bosilca G., Dongarra, J. “Accelerating NWChem

Coupled Cluster through dataflow-based Execution,” Parallel Process-

ing and Applied Mathematics: 11th International Conference, Krakow, Poland,

September 6-9, 2015, Springer International Publishing, R. Wyrzykowski et al.

(Eds.): PPAM 2015, Part I, LNCS 9573, pp. 366-376, 2016.

• Danalis, A., Jagode, H., Bosilca G., Dongarra, J. “PaRSEC in Practice:

Optimizing a legacy Chemistry application through distributed task-

based execution,” 2015 IEEE International Conference on Cluster Comput-

ing, Chicago, Illinois, USA, IEEE, pp. 304-313, September 8-11, 2015.

• Jagode-McCraw, H., Danalis, A., Herault, T., Bosilca G., Dongarra, J.,

Kowalski, K., Windus, T.L. “Utilizing Dataflow-based Execution for

7



Coupled Cluster Methods,” 2014 IEEE International Conference on Cluster

Computing, Madrid, Spain, IEEE, pp. 296-297, September 22-26, 2014.

I was responsible for the design and implementation of the CC dataflow versions

corresponding to each of these publications. In addition, I served as the primary

author.

2.1 Dataflow versus Coarse-Grained Parallelism

Despite the radical changes of the hardware landscape over the past decades—

featuring systems that combine multi-core CPUs and accelerators, shared and

distributed memory, PCI-express and other interconnects—the most popular pro-

gramming paradigm of choice for large scientific applications has remained coarse-

grained parallelism (CGP). The most common communication layer used to write such

programs is MPI [28], or some abstraction layer built on top of MPI such as Global

Arrays (GA) [50]. Before diving into a more detailed discussion about “explicit”

and “implicit” dataflow paradigms, the following section discusses the main benefits

of dataflow programming models over CGP and how they relate to NWChem CC

methods.

The control flow limits the flexibility of CGP applications. Parallelism in the

current NWChem CC MPI code comes from the fact that different MPI ranks

run on different CPUs in parallel. However, each rank is effectively a serial

program since different CC subroutines execute in the order dictated by the

control flow, even if they do not depend on one another. In this work, the

latest state-of-the-art CC implementations [39] is used to develop different

dataflow representations of the CC tensor contractions. The task-based runtime

systems will deal with the specific hardware characteristics and orchestrates the

execution based on resources and work availability.
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Noise in the execution environment of large scale CGP applications—such as

those written with MPI—has been shown to have significant effects on

performance [48, 27, 34]. Dataflow-based task runtime systems, such as

PaRSEC, are less affected by such noise since it does not follow static coarse

grain execution patterns, but rather decides dynamically the scheduling of tasks.

Idle time, due to the coarse grain nature of NWChem, is almost unavoidable. In the

current programming model CC subroutines are organized in levels, and explicit

barriers are used between levels to guarantee correctness. As a consequence,

all compute units have to remain idle, waiting for the completion of the last

subroutine at each level. However, the actual data dependencies between the

subroutines do not require such a fork-join behavior. Expressing the application

in a dataflow model will expose the minimum necessary dependencies and enable

a finer grain composition of subroutines, reducing idle time.

Communication-computation overlap is a desirable feature that most modern

networks and communication libraries support. However, for an application

to take advantage of overlap it must issue communication initiation requests

before it needs to use the data and allow other (independent) work to take

place while the data is being transferred. In the coarse grain programming

model this is not a trivial task, as the developer needs to explicitly manage the

communication. A testament to this complexity is the fact that the CC code

(as currently generated by NWChem) issues the data transfers right before the

data is needed, thus missing the opportunity to achieve overlap.

In dataflow runtime systems like PaRSEC, on the other hand, communication

is implicit. The runtime derives the need for a data transfer based on the

dependencies between tasks and the runtime’s knowledge of the affinity of tasks

to nodes. When all predecessors of a task have finished, the runtime initiates the

(asynchronous) transfer of the data while executing other tasks. Consequently,

data transfers are overlapped with computation.
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Heterogeneity is a challenge that parallel application developers have to address

in order to modernize their applications given the pervasiveness of accelerators

and co-processors in HPC. In the dataflow models that have been adopted for

NWChem in this research effort, work is naturally decomposed in tasks and

therefore it can be divided between heterogeneous resources more readily than

in the coarse grain parallelism model.

2.2 The Dataflow Runtime PaRSEC

The Parallel Runtime Scheduling and Execution Control (PaRSEC) framework [11]

is a task-based dataflow-driven runtime designed to achieve high performance com-

puting at scale. PaRSEC enables task-based applications to execute on distributed

memory heterogeneous machines, and provides sophisticated communication and task

scheduling engines that hide the hardware complexity of supercomputers from the

application developer, while not hindering the achievable performance.

In this work, PaRSEC has been chosen as one of the runtime systems because

of the execution model it offers—which is based on a symbolic Parameterized Task

Graph (PTG) [16, 18, 19]. The PTG abstraction is the main difference between

PaRSEC and other task engines (e.g. StarPU [1]), differentiating the way tasks, and

their data dependencies, are represented. The PTG enables PaRSEC to employ a

unique, symbolic way of discovering and processing the graph of tasks, which can

deliver unparalleled performance in the era of many-core, highly heterogeneous,

extreme scale platforms. Previous research [26, 41, 24, 2, 10] in the area of dense

linear algebra has convincingly shown that this is the case, and based on the fact

that tensor contractions consist mainly of linear algebra operations, we assert that

those previous results are of direct relevance to computational chemistry and to tensor

algebra in particular.

PaRSEC’s PTG programming paradigm proposes a complete departure from

the way we have been designing and developing applications. However, as has be
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demonstrates in Chapter 4, the conversion from CGP to dataflow-based execution

can happen gradually. Performance critical parts of an application can be selectively

ported to execute over PaRSEC and then be re-integrated seamlessly into the larger

application which is oblivious to this transformation.

2.3 Computational Chemistry

2.3.1 Electronic Structure Theory

Electronic structure theory, commonly referred to as theoretical quantum chemistry,

is at the core of the more general field of computational chemistry. It investigates

e.g. the ground state of individual atoms and molecules, the excited states, and the

transition states that occur during chemical reactions. Practically, all experimental

properties can be computed from first principles quantum chemistry methods.

The formal scaling of different first principles quantum chemistry methods—where

N is a measure of the molecular system size—ranges from N4 (Hartree-Fock, Density-

Functional Theory) to N5 (second order perturbation theory MP2) to N7 (Coupled

Cluster) to exponential Multi-Reference methods. In order to apply accurate quantum

chemistry methods to real problems, it is a topmost interest of the computational

chemistry community to improve the scaling of these methods, by the development

of novel theoretical approaches, the development of novel algorithms, and by taking

optimal advantage of new computer architectures. Therefore, this work is the tip of

an iceberg of bring electronic structure codes into the realm of exascale computations.

While the focus in this effort is on Coupled Cluster methods—as they are

referenced as the “gold standard” to compute highly accurate energies in quantum

chemistry [60, 56, 46]—the insights gained from this research will be much more

broadly applicable.
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2.3.2 NWChem Coupled Cluster Methods

NWChem [62] is a molecular modeling software developed to take full advantage

of the advanced computing systems available. NWChem provides many methods

to compute the properties of molecular and periodic systems by using standard

quantum-mechanical descriptions of the electronic wave function or density. The

Coupled Cluster (CC) theory [4, 5, 15, 63] is considered by many to be the best

and most reliable method, particularly, for accurate quantum-mechanical description

of ground and excited states of chemical systems. Its accuracy, however, comes at

a significant computational cost. Given the steep computational cost of the CC

methods, the scalability of NWChem in this context is extremely important for

real science. Many chemical problems related to combustion, energy conversion and

storage, catalysis, and molecular spectroscopy are untenable without CC methods on

supercomputers [37]. One of the goals for this project is to strengthen the NWChem

Coupled Cluster methods by enabling more powerful computations through dataflow

programming and execution, much better resource management, and a robust path to

exploit hybrid computer architectures.

Especially important in the hierarchy of the CC formalism is the iterative CC

model with Single and Double excitations (CCSD) [54], which is the base for many

accurate perturbative CC formalisms, including the ubiquitous CCSD(T) (Triple)

approach [55]. Given the size N of the molecular system, CCSD has a computational

cost of O(N6) and storage cost of O(N4). The starting point for this research is the

CCSD version that takes advantage of the alternative task scheduling, and the details

of these implementations have been described in [39].

TCE

An important role in designing the optimum “memory versus computational cost”

strategies in CC implementations is played by the program synthesis system,

Tensor Contraction Engine (TCE) [33]. The TCE abstracts and automates the
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time-consuming and error-prone processes of deriving the working equations of

second-quantized many-electron theories and synthesizing parallel computer programs

on the basis of these equations. Current development is mostly focused on

CC implementations which can utilize any type of single-determinantal reference

function including restricted, restricted open-shell, and unrestricted Hartree-Fock

determinants (RHF, ROHF, and UHF, respectively) in describing closed- and open-

shell molecular systems. All TCE CC implementations are parallelized with the use of

Global Arrays (GA), which provides a shared memory style programming environment

in the context of distributed array data structures [50]. Global Arrays is an extension

to the message-passing interface and requires MPI to work. In general, NWChem

contains approx. 4 million lines of code, of which 3 million are generated by the

TCE.

Structure of the CC Approach

The iterative CC code is generated through the TCE∗ into many sub-kernels that are

divided into so-called “T1” and “T2” subroutines for equations determining t1 and

t2 amplitude matrices. These amplitude matrices embody the number of excitations

in the wave function, where t1 represents all single excitations and t2 all double

excitations.

The underlying equations of these theories are all expressed as tensor contractions

which are implemented as series of matrix-matrix multiplications (GEMMs). There

are typically many thousands of such terms in any one problem, but their regularity

makes it relatively straightforward to translate them into FORTRAN code—

parallelized with the use of Global Arrays—through the TCE. Figure 2.1 shows the

pseudo FORTRAN code for one of the generated T1 and T2 subroutines, highlighting

that most work is in deep loop nests. These loop nests consist of three types of code:

• Local memory management (i.e., MA_PUSH_GET(), MA_POP_STACK()),

∗TCE-generated code in NWChem 6.6
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1 my_next_task = SharedCounter()

2 DO h7b = 1,noab

3 DO p3b = noab+1,noab+nvab

4 IF (int_mb(k_spin+h7b).eq.int_mb(...)) THEN

5 ...

6 call MA_PUSH_GET(f(p3b,h7b),...,k_c)

7 call DFILL(..., dbl_mb(k_c),...)

8 ...

9 DO p5b = noab+1,noab+nvab

10 DO h6b = 1,noab

11 call GET_HASH_BLOCK(dbl_mb(k_b)...f(p3b,p5b,h7b,h6b)

12 call TCE_SORT_4(dbl_mb(k_b),...,f(p3b,p5b,h7b,h6b))

13 ...

14 call DGEMM(...,f(p3b,p5b,h7b,h6b))

15 END DO

16 END DO

17 ...

18 call ADD_HASH_BLOCK(dbl_mb(k_c),...)

19 call MA_POP_STACK(k_c)

20

21 my_next_task = SharedCounter()

22 END IF

23 END DO

24 END DO

Figure 2.1: Pseudocode of one CC subroutine as generated by the TCE.

• Calls to functions (i.e., GET_HASH_BLOCK(), ADD_HASH_BLOCK()) that transfer

data over the network via the GA layer,

• Calls to the subroutines that perform the actual computation on the data

DGEMM() and TCE_SORT_*() (which performs an O(n) remapping of the data,

rather than an O(n ∗ log(n)) sorting).

The control flow of the loops is parameterized, but static. That is, the induction

variable of a loop with a header such as “DO p3b = noab+1,noab+nvab” (i.e., p3b)

may take different values between different executions of the code, but during a

single execution of CC the values of the parameters noab and nvab will not vary;

therefore every time this loop executes it will perform the same number of steps,
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and the induction variable p3b will take the same set of values. This enables us to

restructure the body of the inner loop into tasks that can be executed by PaRSEC.

Specifically, tasks with an execution space that is parameterized (by noab, nvab, etc.),

but constant during execution.

Parallelization of CC

Parallelism of the TCE-generated CC code follows a coarse task-stealing model. The

work inside each T1 and T2 subroutine is grouped into chains of multiple matrix-

multiply kernels (GEMM). The GEMM operations within each chain are executed serially,

but different chains are executed in a parallel fashion. However, the work is divided

into levels. More precisely, the 19 T1 subroutines are divided into three different

levels and the execution of the 41 T2 subroutines is divided into four different levels.

The task-stealing model applies only within each level, and there is an explicit

synchronization step between the levels. Therefore the number of chains that are

available for parallel execution at any time is a subset of the total number of chains.

Load balancing within each of the seven levels of subroutines is achieved through

shared variables (exemplified in Figure 2.1 through SharedCounter()) that are

atomically updated (read-modify-write) using GA operations. This is an excellent

case where additional parallelism can be obtained by examining the data dependencies

in the memory blocks of each matrix. For example, elements of the so-called T1

amplitude matrices can be used for further computation before all of the elements are

computed. However, the current implementation of CC features a significant amount

of synchronizations that prevent introducing additional levels of parallelism, which

consequently limits the overall scaling on much larger computational resources.

Additionally, the use of shared variables, that are atomically updated—which is

currently at the heart of the task-stealing and load balancing solution—is bound to

become inefficient at large scale, becoming a bottleneck and causing major overhead.

Also, the notion of task in the current CC implementation of NWChem and the

notion of task in PaRSEC are not identical. As discussed before, in NWChem, a
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task is a whole chain of GEMMs, executed serially, one after the other. In our PaRSEC

implementation of CC, each individual GEMM kernel is a task on its own, and the

choice between executing them as a chain, or as a reduction tree, is almost as simple

as flipping a switch.

There is clearly a need to improve the NWChem CC workflow to withstand the

expected vast increase in intra-node parallelism and deeper memory hierarchies at

Exascale. Unfortunately, there are difficult challenges to both performance and

productivity in the development of computational modeling programs. However, the

manual development of accurate quantum chemistry models can typically take an

expert months to years of tedious effort to develop and debug a high-performance

implementation [32].

The main tasks, with the most significant impact, are (1) the elimination of

synchronization points by describing the data dependencies between the matrix

blocks—creating a true dataflow programming model and execution, and (2) dividing

the current tasks into finer grained tasks to allow for the exploitation of more

parallelism. Once a dataflow execution of CC exists, the choice between executing

individual tasks as a chain, or as a reduction tree, is almost as simple as flipping a

switch.

This effort to research dataflow programming and execution of CC, in order to take

take advantage of DAG execution models capable of utilizing task scheduling systems,

is important as it can successfully address heterogeneous computing resources with

different capabilities, such as accelerators and co-processors, and hence alleviates the

burden on application developers.

2.3.3 Coupled Cluster Methods over Dataflow

PaRSEC provides a front-end compiler for converting canonical serial codes into the

PTG representation. However, due to computability limits, this tool is limited to

polyhedral codes, i.e., if a code is not affine then a static analysis is not possible
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at compile time. Affine codes can only contain loop headers (bounds and steps)

and array indices with expressions that are limited to addition and subtraction of

the induction variables, constants, and numeric literals (as well as multiplication

by numeric literals) and branches (if-then-else) that contain only similar arithmetic

expressions and comparison operators. These affine codes (e.g., dense linear algebra

is largely affine codes) can be fully analyzed using polyhedral analysis and a compact

representation of the DAG—the PTG—can be generated. A critical characteristic

about the PTG is it can be used by the runtime to evaluate any part of the DAG

without having to store the entire DAG in memory. This is one of the important

features that differentiate PaRSEC from any other task-scheduling system.

The problem with affine codes, though, is they are a very small subset of the real

world applications. The CC code generated by TCE is neither organized in pure tasks

(i.e., functions with no side-effects to any memory other than arguments passed to

the function itself) nor is the control flow affine (e.g. loop execution space has holes

in it; branches are statically undecidable since their outcome depends on program

data, and thus it cannot be resolved at compile time) [37].

While the CC code seems polyhedral, it is not quite so. The code generated by

TCE includes branches that perform array lookups into program data. For example,

branches such as “IF(int_mb(k_spin+h7b-1)...)” (see Figure 2.1) are very common.

Such branches make the code not only non-affine, but statically undecidable since

their outcome depends on program data, and thus it cannot be resolved at compile

time.

However, while the behavior of the CC code depends on program data, this data is

constant during a given execution of the code. Therefore, the code can be expressed

as a parameterized DAG, by using lookups into the program data, either directly

or indirectly. In the explicit dataflow implementation, described in Chapter 4, the

program data is accessed indirectly by building meta-data structures in a preliminary

step. The details of this “first step” are explained in Section 4.1.
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Figure 2.2: DAG of the 41 T2 subroutines and its data dependencies.

In this work, different dataflow versions have been implemented for all functions of

the CC computation that are associated with calculating parts of the T2 amplitudes,

particularly the ones that perform a GEMM operation (the most time consuming parts).

More precisely, a total of 29† of the 41 T2 subroutines have been converted, which

will be referred to under the unified moniker of “Orig:T2” for the original version,

and “Dataflow:T2” for the dataflow versions of the subroutines.

†All subroutines with prefix “icsd t2 ” and suffices: 2 2 2 2(), 2 2 3(), 2 4 2(), 2 5 2(), 2 6(),
lt2 3x(), 4 2 2(), 4 3(), 4 4(), 5 2(), 5 3(), 6 2 2(), 6 3(), 7 2(), 7 3(), vt1ic 1 2(), 8(), 2 2 2(), 2 4(),
2 5(), 4 2(), 5(), 6 2(), vt1ic 1, 7(), 2 2(), 4(), 6(), 2()
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Figure 2.2 illustrates the dataflow of the original 41 T2 subroutines. It shows how

the work is divided into four distinct levels. The solid edges of this DAG represent

the dataflow where output data (matrix C) is added to output data in another level

(C->C); and the dotted edges show where output data (matrix C) is used as input

data (matrix B) for different subroutines (C->B).

From this DAG it becomes very apparent that not every subroutine in the upper

levels has to wait for the completion of all subroutines in the lower levels. For example,

t2_2_2 in Level 3 only depends on the data coming out of t2_2_4, t2_2_5, and

t2_2_2_2 in Level 2; while these three only depend on 10 (of the 29) subroutines in

Level 1.

As mentioned above, the task-stealing model applies only within each level, and

there is an explicit synchronization step between the four levels. As for the different

dataflow versions of this code, the dataflow implementations of the 29 “Dataflow:T2”

subroutines are displayed in black; and the remaining 12 of the 41 T2 subroutines

are displayed in light-gray. They are the subroutines that do not perform a GEMM

operation; and are, due to insignificance in terms of execution time, not yet converted

into a dataflow form but executed as in the original code.

The chosen 29 subroutines comprise approx. 91% of the execution time of all 41 T2

subroutines when computing the CC correlation energy of the beta-carotene molecule

(C40H56). (not including the 19 T1 subroutines and additional execution steps that

set up the iterative CC computation). More details are discussed in Section 4.4.1 and

illustrated in Figure 4.19.
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Chapter 3

Dataflow Programming Models

Pursuing novel programming paradigms for high performance computing is becoming

an increasingly popular trend as more and more people in the field are coming to

realize that Coarse Grain Parallelism with explicit message-passing by using MPI

and other similar explicit communication paradigms is unlikely to satisfy the needs

of computing at exascale and beyond.

In particular, task-based dataflow programming has gained a lot of attention as is

evident by the increasing number of task execution runtimes [53, 1, 64, 14] that are

being pursued by research groups all around the globe. At the time of this writing,

PaRSEC stands unique among them in its use of the PTG representation of parallel

programs. Constructing a purely algebraic PTG to describe a parallel program poses

some challenges, but once this is achieved, PaRSEC can utilize the PTG to deliver

unparalleled performance on large scale distributed memory executions. The multiple

reasons that make this true can be easily demonstrated in theory. For example,

unlike runtime systems where the whole DAG is traversed and stored in memory:

(a) the PTG is not problem size dependent, (b) all tasks can be examined at any

time during execution (i.e., there is no “window” of visible future tasks), and (c)

there is no redundant part of the DAG that needs to be traversed at every node due

to tasks that some other node will execute. In addition to the theoretical evidence
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about the positive effects of the PTG, the performance of the DPLASMA [10] library,

which is built on top of PaRSEC, offers a concrete experimental demonstration of

the performance scalability that the PTG approach offers.

In this work, different dataflow-based representations of the CC methods have

been developed:

1. An “explicit” dataflow-based representation via the Parameterized Task Graph

(PTG).

2. A Task-based representation where the dataflow will be “implicitly” derived by

various runtimes.

One of the goals is to allow for the execution of the “implicit” dataflow representations

over any runtime with “Insert Task” interface support (starting with—but without

being limited to—PaRSEC, StarPU), instead of relying solely on the outdated

FORTRAN 77 with Global Arrays form that the TCE currently generates.

A completely modular design is presented with the main goal to add DAG

execution models as a new module that will be tightly coupled with the basic

components of the quantum chemistry software package. This approach enables

NWChem to continue having a transformative impact in the field of computational

chemistry in the post-petascale era.

This work is a multi-disciplinary approach with research and development

challenges for both the computational science and computer science, driven by shared

objectives in chemistry/physics and a desire to advance computational science as a

whole. The key challenges for the domain sciences consist of abstracting the relevant

algorithms to a higher level, and providing as much of the implementation as possible

through the support of the dataflow runtime layer. The goal is to replace existing

code that interlaces algorithm, data model, and performance optimization in legacy

implementations that, in most cases, were begun as serial algorithmic expressions. For

the Coupled Cluster theory, the computation to be done consists of the calculation

of arrays of integrals, and the contraction of these with amplitude tensors to form
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intermediate quantities, which themselves are inputs for further contractions. The

new implementations separate each of these tasks, and present them to the dataflow

runtime layer that allows a compact specification of the algorithm that is close to the

underlying theory.

On the computer science side, the dataflow runtimes orchestrates the execution

of the tasks on the available hardware. Choices regarding the execution of the tasks

are based on information provided by the user regarding the tasks that comprise the

computational kernel, and the dataflow between those tasks. This information is

provided through the algebraic specification of the DAG, which is only instantiated

as needed. The runtime combines the information contained in the DAG with

supplementary information provided by the user—such as the distribution of data

onto nodes, or hints about the relative importance of different tasks—in order to make

efficient scheduling decisions. A major research goal of this work is to incorporate the

dataflow runtimes into NWChem through the process of the automatic generation

of the symbolic representation of the tasks and their data dependencies, without

diminishing the efficiency and expressivity of the dataflow runtimes, e.g., through the

hierarchical specification of the DAG, abstract specification of place, incorporation of

prioritized tasks, and enhanced serialization and migration of tasks.

3.1 Dataflow Extensions to NWChem

One of the key goals of this work is to extend NWChem with a modular and

production-quality software framework. Figure 3.1 depicts a schematic representation

of the framework, where it shows the input is a list of intermediates and tensor

contractions that the TCE provides (and currently uses to synthesize FORTRAN

code) to evaluate the sequence of tensor contractions. Both of the new extensions—

depicted in Figure 3.1 as “Insert Task” (left) and the PTG generator (right)—are

tightly coupled with the basic NWChem CC components. The role of the extensions

is to identify the tasks and level of tasks to be performed, and generate an explicit
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Figure 3.1: Dataflow extensions for NWChem: Insert Task (left) and PTG (right).

and implicit dataflow representations. The extension shown on the right generates the

PTG that defines the task-based execution for PaRSEC, and interacts with the meta-

data structures. The PTG extension is described in Chapter 4. The extension shown

on the left generates serial C code that any runtime that supports the “Insert Task”

interface may use to submit tasks and generate the DAG of execution. The Insert-

Task extension is described in Chapter 5. An abstract model that compares both

execution and quantifies the differences between “explicit” and “implicit” dataflow

models is presented in Chapter 6.

3.2 The Task Insertion Interface

Figure 3.2 shows how the two new dataflow modules (task-insertion approach and

PTG approach) for CC can be plugged into PaRSEC or any other runtime. The

development of distributed CC algorithms based on the serial task-insertion API
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Figure 3.2: Bridge between PaRSEC and other Task Scheduling Runtimes

(Figure 3.1 - left) is particularly crucial as it allows for distributed task scheduling

and data dependency management by any runtime that supports a task-insertion API

(e.g., StarPU, OmpSS, Open Community Runtime (OCR)). It is crucial to such a

degree that: (a) it offers flexibility and choice of runtime to a broad group of scientific

application users that depend on CC methods; (b) it makes the dataflow version of

CC broadly accessible to both the development and applications communities; (c) it

provides interoperability and sustainability for the foreseeable future.

Methodology

A simplified task-insertion example is presented in Figure 3.3. The call to the function

Insert_Task() adds a new task CORE_zgemm to the scheduler of the runtime, as well

as providing the data pointers, sizes, and dependency information. Note, a, b, c and

ub are input parameters to the kernel.
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1 int zgemm(TYPE a, TYPE b, TYPE c, int N_sz, int ub )

2 {

3 ...

4 for (t2=0; t2<=ub; t2++) {

5 for (t3=0; t3<=ub; t3++) {

6 for (t4=0; t4<=ub; t4++) {

7 Insert_Task( CORE_zgemm,

8 a[t2][t4], INPUT,

9 b[t4][t3], INPUT,

10 c[t2][t3], INOUT,

11 t2, VALUE,

12 t3, VALUE,

13 t4, VALUE,

14 N_sz, VALUE);

15 }

16 }

17 }

18 ...

19 }

Figure 3.3: Task insertion interface example.

Runtimes with Insert Task Support The user submits tasks into the system

using a task-insertion API (similar to what is depicted in Figure 3.3). After each task

is inserted into the runtime, the arguments for the task are used to make a dependency

structure, where reads and writes on data are queued. These queues of data requests

are checked for data dependencies and the ordering of these dependencies forms an

explicit DAG for the tasks. The runtime system schedules the tasks that are not

waiting for dependencies, and execution threads pick up and execute the tasks. After

a task completes execution, for each data parameter, the status of the DAG is updated

to reflect the completed task. Then the runtime schedules any released tasks that do

not have to wait for any more dependencies.

Data Dependencies In order for the runtime to be able to determine dependencies

between the tasks, it needs to know how each task is using its arguments. Constant

arguments are marked as VALUE, which means that they are not dependencies, but

25



values like constants or loop indices; these values are just stored with the task. Actual

dependencies can be INPUT, OUTPUT, or INOUT (standing for input/output). They

allow one to specify, for each task in the program, what data a task is waiting for

and indicates its readiness. Each time a new task is created, its INPUT and OUTPUT

dependencies are matched against the dependencies of existing tasks.

The implicit dataflow version of CC offers any runtime—that accepts tasks via

a task insertion process—the ability to determine the task and data dependencies

dynamically based on the data usage patterns.

3.3 Support for Heterogeneity

The different dataflow versions of NWChem’s CC kernels—which are generated as

a result of this work—enable much finer grained parallelism than the original CC

implementation. Also, since the unnecessary synchronization points that currently

exist in CC—due to the coarse grain design—can be eliminated, the resulting tasks

can be composed in more elaborate ways than the current fork join pattern. In

particular, groups of interdependent tasks can be treated as individual entities,

or aggregated into a single super-task when coarser grain execution is required.

The explicit and implicit dataflow strategies have many advantages since these

finer grained parallel tasks, or coarser super-tasks, could run on different parts of

heterogeneous platforms, utilizing the components (e.g., CPU or coprocessor) that

perform best for the type of task under consideration.

An advantage of this effort, in comparison to independent efforts to bring

heterogeneous computing capabilities to software packages such as NWChem, comes

from the ability of task-based runtimes to hide the complexity of heterogenous

resources from the application layer. For instance, PaRSEC allows the same algorithm

(as defined by the data dependencies between tasks) to seamlessly execute on CPUs,

accelerators, and co-processors, as long as the application provides appropriate kernels
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for the corresponding devices. A few of these kernels are available in NWChem,

but additional ones can be identified for development and used in the runtime

environment. The scheduling and management of data transfers to and from the

devices can then be handled internally by the runtime.

3.4 DAG Tuning

When developing the DAG for the CC subroutines, multiple design choices were

investigated in several stages of the development. In some cases the best choice

seemed intuitively obvious, but in others it was not clear which choice is the best

and whether the same choice remains optimal when the problem size or execution

environment changes. However, implementing multiple versions of the code by hand

for several subroutines in order to compare them and choose the optimal solution was

not practical, so for several choices educated guesses were made.

Part of this work is the careful design of the dataflow generations in a way that

multiple options can be selected by the developer leading to the creation of different

DAGs. This way, the generated code is flexible and tunable for different inputs and

different execution environments. As an example, a set of tensor contractions can

be executed as a serial chain, or fully in parallel followed by a reduction tree, or

as a small set of smaller parallel chains followed by a reduction. Choosing between

these options is not trivial since a serial chain optimizes the memory locality, and the

fully parallel execution maximizes available parallelism and load balancing, whereas

the set of smaller chains aims to balance both. Furthermore, it is not expected that

any such choice will be optimal across all problem sizes and execution environments.

Therefore, the DAG generation stage has been designed so that different choices can

be made in a per case basis.
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Chapter 4

Explicit Dataflow Execution of

Coupled Cluster Methods

This chapter describes various design decisions of the explicit dataflow version of CC

and the associated levels of parallelism and optimizations that have been studied for

the PTG-enabled CC implementation.

Portions of this chapter are drawn from the following publications:

• Jagode, H., Danalis, A., Dongarra, J. “Accelerating NWChem Coupled

Cluster through dataflow-based Execution,” International Journal of

High Performance Computing Applications (IJHPCA), SAGE Publications, pp.

1-13, http://dx.doi.org/10.1177/1094342016672543, January 2017.

• Danalis, A., Jagode, H., Bosilca G., Dongarra, J. “PaRSEC in Practice:

Optimizing a legacy Chemistry application through distributed task-

based execution,” 2015 IEEE International Conference on Cluster Comput-

ing, Chicago, Illinois, USA, IEEE, pp. 304-313, September 8-11, 2015.

I was responsible for the design and implementation of the CC dataflow versions

corresponding to each of these publications. In addition, I served as the primary

author.
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In an effort to evaluate the suitability of task scheduling runtimes, such as

PaRSEC, for executing CC methods, a part of NWChem’s CC was transformed into

a dataflow form on which this study is performed. The rest of the NWChem code is

oblivious to this change and the execution of the PaRSEC-enabled CC subroutines

is handled as seamless as a call to an external library procedure. Figure 4.1 provides

a high-level overview of how the transformed subroutines, which run over PaRSEC,

are integrated into the original structure of NWChem.

Figure 4.1: High level view of PaRSEC code in NWChem.
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1 !

2 DO i

3 DO j

4 ! Validation of loop index values

5 IF (int_mb(k_spin+i) .eq. int_mb(k_spin+j))

6 IF (int_mb(k_sym+j) ...

7 DFILL(C)

8 DO k

9 DO l

10 ! Validation of loop index values

11 IF (int_mb(k_spin+k) .eq. ...

12 GET_HASH_BLOCK_MA(GA,A)

13 SORT(A)

14 GET_HASH_BLOCK(GA,B)

15 SORT(B)

16 DGEMM()

17 END IF

18 END DO

19 END DO

20 SORT(C)

21 ADD_HASH_BLOCK(GA,C)

22

23 END IF

24 END DO

25 END DO

L1_idx = 1

DO i

DO j

! Validation of loop index values

IF (int_mb(k_spin+i) .eq. int_mb(k_spin+j))

IF (int_mb(k_sym+j) ...

DFILL(C)

DO k

DO m

! Validation of loop index values

IF (int_mb(k_spin+k) .eq. ...

task_meta_data(1,L2_idx,L1_idx)=i

task_meta_data(2,L2_idx,L1_idx)=j

task_meta_data(3,L2_idx,L1_idx)=k

task_meta_data(4,L2_idx,L1_idx)=m

L2_idx = L2_idx + 1

END IF

END DO

END DO

L2_cnt = L2_idx - 1

inner_task_count(L1_idx) = L2_cnt

L1_idx = L1_idx + 1

END IF

END DO

END DO

Figure 4.2: (a) NWChem CC; (b) Populate Meta Data for PaRSEC version.

4.1 Design Decisions

The original code of our chosen subroutines consists of deep loop nests that contain

the memory access routines as well as the main computation, namely SORT and GEMM.

In addition to the loops, the code contains several IF statements, such as the one

mentioned above. When CC executes, the code goes through the entire execution

space of the loop nests, and only executes the actual computation kernels (SORT and

GEMM) if the multiple IF branches evaluate to true. As shown in Figure 4.1, to create

the PaRSEC-enabled version, we decomposed the code into two steps:
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Step 1: The Discovery Phase

The first step is the discovery phase that bridges the original legacy code with

PaRSEC. It traverses the execution space and evaluates all IF statements, without

executing the actual computation kernels (SORT and GEMM). This step uncovers sparsity

information by examining the program data (i.e., int_mb(k_spin+i)) that is involved

in the IF branches (lines 4-6 and 10-11 in Figure 4.2), and stores the results in custom

meta-data vectors that we defined. In addition, this step probes the GA library to

discover the physical location of the program data on which the GEMMs will operate

on, and stores these addresses into the meta-data structures as well. Since the data of

NWChem that affects the control flow is immutable at run time, this first step only

needs to be performed once per execution and not for each iteration.

The code that performs this discovery is derived from the original code of each

subroutine. Figure 4.2 (a) shows the TCE-generated pseudo-code for one CC sub-

kernel, while the pseudo-code shown in (b) is manually derived from the original TCE

code, in order to populate all the meta-data that PaRSEC will use to dynamically

derive the data dependencies between the real tasks. Specifically, in the version

depicted in Figure 4.2 (b), we create a slice of the original code that contains all

the control flow statements—i.e., DO loops and IF-THEN-ELSE branches—but none of

the subroutine calls—i.e., GEMM(), SORT(), GET HASH BLOCK(), MA PUSH GET(), etc.

Instead, in the place of the original subroutine calls, we insert operations that store

the status of the execution into custom meta-data arrays that we have introduced.

The custom meta-data vectors merely hold information regarding the actual loop

iterations that will execute the computational kernels at run time, i.e., iterations

where all the IF statements evaluate to true. This step significantly reduces the

execution space of the loop nests by eliminating all entries that would not have

executed. After the first step is finished, the meta-data arrays contain all the

information necessary for PaRSEC to determine which GEMM tasks are connected into
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a chain, the length of each chain, the number of chains, the node that holds the data

needed for each GEMM task, and the actual pointers to these data.

Below is a list of steps that have been applied for the meta data population:

1. Determine what the tasks are: For the CC code, the tasks are

DFILL() Initialization of an array

SORT_2(), SORT_4() Sorting of an array

DGEMM() double precision matrix-matrix multiplication

2. Dimensions of meta data: The number of dimensions of meta data is defined by

(“number of loop levels in which we have tasks”+1). For instance, in t1_2_2_2

the number of dimensions is 2+1 because DIFLL and DGEMM are in different

levels.

3. Task meta data:

C: task_meta_data[L1_size][L2_size][loop_depth]

FORTRAN: task_meta_data(loop_depth,L2_size,L1_size)

For each dimension - except for the loop_depth - we have a counter that is

incremented at the corresponding level. For example, at the DFILL level we

increment L1 and at the GEMM level we increment L2.

The existence of conditionals in the code results in “holes” in the execution space.

I.e., not all possible tasks will actually execute, as a matter of fact, only a small subset

of tasks are truly executed.

Since not the entire execution space results in “real tasks”, the population of meta

data gives us the real tasks only, excluding all the remaining tasks. For the H2O input

data set, task_meta_data() results in the following output:

Size of L1: L1 = 2

Size of L2: L2 = 4

Loop depth: loop_depth = 4

Inner task count for L1: inner_task_count(1) = 4; inner_task_count(2) = 4
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This code generates a total of ten tasks for the H2O test case. Table 4.1 shows

the complete list of tasks that has been generated by task_meta_data(). This list

matches the “real tasks” that are shown in the VAMPIR trace file from the original

code, see Figure 4.3.

Table 4.1: Result of task meta data( loop-depth, L2-size, L1-size ) for H2O input.

DFILL 1 (1,1,1) = 1 (2,1,1) = 7

GEMM 1-1 (1,1,1) = 1 (2,1,1) = 7 (3,1,1) = 7 (4,1,1) = 1

GEMM 1-2 (1,2,1) = 1 (2,2,1) = 7 (3,2,1) = 8 (4,2,1) = 2

GEMM 1-3 (1,3,1) = 1 (2,3,1) = 7 (3,3,1) = 9 (4,3,1) = 4

GEMM 1-4 (1,4,1) = 1 (2,4,1) = 7 (3,4,1) = 10 (4,4,1) = 5

DFILL 2 (1,1,2) = 2 (2,1,2) = 8

GEMM 2-1 (1,1,2) = 2 (2,1,2) = 8 (3,1,2) = 7 (4,1,2) = 1

GEMM 2-2 (1,2,2) = 2 (2,2,2) = 8 (3,2,2) = 8 (4,2,2) = 2

GEMM 2-3 (1,3,2) = 2 (2,3,2) = 8 (3,3,2) = 9 (4,3,2) = 4

GEMM 2-4 (1,4,2) = 2 (2,4,2) = 8 (3,4,2) = 10 (4,4,2) = 5

Step 2: The Parameterized Task Graph

The second step is the execution of the Parameterized Task Graph representation

of the subroutines, which can be understood as a compressed representation of the

DAG that describes the execution of a task-based application. Since the control

flow depends on the program data, the PTG examines the custom meta-data vectors

populated by the first step; this allows the execution space of the modified subroutines

over PaRSEC to match the original execution space of these subroutines. Also, using

the meta-data structures, PaRSEC accesses the program data directly from memory,

without using GA.

The example in Figure 4.4 will be used to outline some important aspects of the

PTG representation. This code snippet defines tasks as a chain of GEMMs. These

tasks are parameterized using the parameters L1 and L2. In fact, this PTG mimics

the original CC code which has the GEMM operations organized in multiple parallel

chains, with each chain containing multiple GEMMs that execute sequentially. In this
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One iteration of t1 2 2 2: showing entire execution space.

One current task: four GEMMs computed sequentially for H2O.

Color Legend.

Figure 4.3: Minimal Vampir performance trace of CC t1 2 2 2 kernel for H2O.
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1 GEMM(L1, L2)

2 L1 = 0..(mtdata->size_L1-1)

3 L2 = 0..(mtdata->size_L2-1)

4

5 A_reader = find_last_segment_owner(mtdata, 0, L2, L1)

6 B_reader = find_last_segment_owner(mtdata, 1, L2, L1)

7

8 : descRR(L1)

9

10 READ A <- A input_A(A_reader, L2, L1)

11 READ B <- B input_B(B_reader, L2, L1)

12

13 RW C <- (L2 == 0) ? C DFILL(L1)

14 <- (L2 != 0) ? C GEMM(L1, L2-1)

15 -> (L2 < (mtdata->size_L2-1)) ? C GEMM(L1, L2+1)

16 -> (L2 == (mtdata->size_L2-1)) ? C SORT(L1)

17

18 ; mtdata->size_L1-L1 + P

19 BODY {

20 dgemm(’T’, ’N’, ...

21 }

Figure 4.4: PTG for GEMM tasks organized in a chain.

PTG, L1 corresponds to the chain number and L2 corresponds to the position of a

GEMM inside the chain to which it belongs. As can be seen in Figure 4.4, the number of

chains and the length of each chain do not have to be known a priori. PaRSEC will

dynamically look them up from the meta-data vectors that have been filled by the

discovery phase during the first step. Also, the PTG allows for calls to arbitrary C

functions for dynamically discovering information such as the nodes from which the

input data must be received.

By looking at the dataflow information of matrix C (lines 13-16), one can see the

chain structure. The first GEMM task (L2==0) receives matrix C from the task DFILL

(which initializes matrix C), all other GEMM tasks receive the C matrix from the previous

GEMM task in the chain (GEMM(L1, L2-1)) and send it to the next GEMM task in the
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chain (GEMM(L1, L2+1)), except for the last GEMM which sends the C matrix to the

SORT task.

This representation of the algorithm does not resemble the form of familiar coarse

grain parallel programs, but the learning curve that must be climbed comes with

rewards for those who climb it. In order to change the the organization of the GEMMs

from a serial chain to a parallel execution followed by a reduction, the four lines

(13-16), which define the dataflow of matrix C, would have to be replaced by the

following single line depicted in Figure 4.5.

1 WRITE C -> A REDUCTION(L1, L2)

Figure 4.5: PTG snippet for parallel GEMM tasks.

Due to the PTG representation, all communication becomes implicit and is

handled automatically by the runtime without user intervention. In an MPI program,

for instance, the developer has to explicitly insert in the source code a call to a function

that performs each data transfer, and when non-blocking communication is used the

developer has to manage large numbers of outstanding messages and duplicate buffers

which quickly becomes a logistical overhead. Even if abstraction layers are used over

the communication library, as is the case in NWChem, the developer still has to

explicitly insert in the source code calls such as GET_HASH_BLOCK() (see Figure 4.2(a)).

4.1.1 Parallelization and Optimization

One of the main reasons we are porting CC over PaRSEC is the ability of the latter to

express tasks and their dependencies at a finer granularity, as well as the decoupling of

work tasks and communication operations that enables us to experiment with more

advanced communication patterns than serial chains. A GEMM kernel performs the

operation:

C ← α× A×B + β × C

36



where A,B, and C are matrices and α and β are scalar constants. In the chain of

GEMMs performed by the original code, the result of each matrix multiply is added to

the result of the previous matrix multiply (since β = 1). Since matrix addition is an

associative and commutative operation, the order in which the GEMMs are performed

does not bear great significance ∗, as long as the results are atomically added. This

enables us to perform all GEMM operations in parallel and sum the results using a

binary reduction tree. Figure 4.6 shows the DAG of eight GEMM operations utilizing a

binary tree reduction (as supposed to a serial “chain” of GEMMs). Clearly, in this

implementation there are significantly fewer sequential steps than in the original

chain [45]. For the sake of completeness, Figure 4.7 depicts such a chain where eight

GEMM operations are computed sequentially.

In addition, the sequential steps are matrix additions, not GEMM operations, so they

are significantly faster, especially for larger matrices. Reductions only apply to GEMM

operations that execute on the same node, thus avoiding additional communication.

Furthermore, since the depth of the binary reduction trees grows with the logarithm

of the total count of GEMM operations, as the problem size gets bigger, the difference

in number of sequential steps performed by the chain and the binary tree grows fast.

It is important to note, the original version of the code performs an atomic

accumulate-write operation (via calls to ADD_HASH_BLOCK()) at the end of each

chain. Since our dataflow version of the code computes the GEMMs for each chain

in parallel, we eliminate the global atomic GA functionality and perform direct

memory access instead, using local atomic locks within each node to prevent race

conditions. The choice of our implementation, discussed in this chapter, is based

on earlier investigations presented in [21, 36], where we compare the performance of

different variants of the modified code and explain the different behaviors that lead

to the differences in performance.

∗ Changing the ordering of GEMM operations leads to results that are not bitwise equal to the
original, but this level of accuracy is very rarely required, and is lost anyway when transitioning to
different compilers and/or math libraries.
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Figure 4.6: Parallel GEMM operations followed by
reduction.

Figure 4.7: Chain of
GEMM operations com-
puted sequentially.
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The original CC implementation treats the entire chain of GEMM operations as one

“task” and therefore assigns it to one node, our new implementation over PaRSEC

distributes the work onto different hardware resources leading to better load balancing

and the ability to utilize additional resources, if available. That is, the PaRSEC

version is by design able to achieve better strong scaling (constant problem size,

increasing hardware resources) than the original code [37].

4.1.2 Additional Levels of Parallelism

It is important to note that our work of converting the entire NWChem CC

“FORTRAN plus Global Arrays” implementation into a dataflow form has been of

incremental nature in order to preserve the original behavior of the code. This allowed

us to initially focus only on the most time-consuming and most significant subroutines

(the 29 heavy GEMM routines), and more importantly, execute them over PaRSEC

without having to convert the entire CC module. The successful conversion of these

29 kernels has proven to be very beneficial, resulting in a performance improvement of

more than a factor of two in the execution of the entire CC component of NWChem.

This result justifies our conclusion that the utilization of dataflow-based execution of

CC methods enabled more efficient and scalable computation.

After completion of the dataflow implementation within each of the four levels,

the next increment of work that we are currently pursuing focuses on implementing

dataflow between the levels. From the DAG in Figure 2.2 it becomes very apparent

that not every subroutine in the upper levels has to wait for the completion of all

subroutines in the lower levels. For instance, t2_2_2() in Level 3 only depends on

the data coming out of t2_2_4(), t2_2_5(), and t2_2_2_2() in Level 2; while these

three only depend on 10 † (of the 29) subroutines in Level 1. Instead of putting the

execution of the tasks that comprise t2_2_2() on hold until all subroutines in Level

1 and Level 2 are completed, the output of the tasks that flow into t2_2_2() can

†t2 2 1(), t2 2 6(), t2 2 4 1(), t2 2 4 2(), t2 2 5 1(), t2 2 5 2(), t2 2 2 1(), t2 2 2 3(),
t2 2 2 2 1(), t2 2 2 2 2()
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be passed as soon as it becomes available. The return of enabling dataflow between

levels is twofold. First, it increases the level of parallelism even more; and second,

it enabled the freedom to choose a certain placement of tasks. For example, tasks

of subroutine t2_2_2() in Level 3 can be computed where the Level 2 subroutines,

whose output flows into t2_2_2(), store their data.

Another advantage of enabling dataflow between the levels—in addition to the

benefits resulting from increased levels of parallelism—is that part of the afore-

mentioned work that is necessary in the current version of the code, will become

unnecessary as soon as the complete CC code has been converted to PaRSEC.

Specifically, data will not need to be pulled and pushed into the GA at the beginning

and end of each subroutine if all subroutines execute over PaRSEC. Instead, the

different PaRSEC tasks that comprise a subroutine will pass their output to the

tasks that comprise another subroutine using the internal communication engine of

PaRSEC. This will be done implicitly, without user involvement, since PaRSEC

handles communication internally.

4.2 Algorithmic Variations

When we designed the PaRSEC implementation of CC it became apparent that

several operations can be ordered in multiple ways and still preserve the semantics

of the original algorithm. This is the case because these operations – i.e., matrix

addition, data remapping and updating of data in memory – are associative and

commutative. This section presents several variations of our algorithm, each using

a different ordering of tasks, and we discuss the impact of these variations on

performance. For this investigation, we focus our discussion on one of the CC

subroutines, icsd t2 7(). We note that the final result (correlation energy) computed

by the different variations matched up to the 14th digit.

The choice with the highest impact on performance relates to the parallelism of

the GEMM operations. As mentioned earlier, the original CC code has the GEMM
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operations organized in chains. Different chains execute in parallel, independently

of one another, while the GEMMs within a chain execute in serial order and they

all use the same output, C. However, none of the input matrices (A,B) of any

GEMM operation ever overlaps with the output of any other GEMM of any chain

in the subroutine. In other words, all input matrices are read-only within the the

scope of a subroutine. Matrix multiplication itself is noncommutative (i.e., A×B 6=

B × A), however the GEMM kernel does not perform only a multiplication, but

also an addition, C ← A × B + C. The matrix addition, is both commutative and

associative. Therefore, if we segment the single chain of GEMMs into a number of

shorter chains that each works on private memory and then we accumulate these

partial results through a reduction tree, the semantics of the original code will be

preserved. This variation of the algorithm, shown graphically in Figure 4.6, increases

available parallelism, but decreases locality, since different chains work on different

private C matrices.

The height of the shorter chains can vary from one (for maximum parallelism) to

the height of the original chain (for maximum locality). In this section we consider

the two extreme cases. Another side-effect of segmenting the chains is an increased

readiness of work. In the single chain approach of the original code the input matrices

A and B of the first GEMM in the chain must be fetched for any work to start. In the

modified version useful work can start as soon as the input matrices of any GEMM

become available.

The significance of this difference can be appreciated if we consider that all

matrices are stored and managed by the Global Arrays library that distributes data

among nodes in an application insensitive manner. For example, when the input

molecule is large (as is the case with the beta-carotene we use here) it is often the

case that the data that constitutes matrix A, or B is segmented and distributed

on more than one nodes. Therefore, waiting for the data of a particular operation

GEMMk – the one dictated by the ordering imposed by the chain – is guaranteed to

be slower than waiting for the data of any GEMM i (for 0 < i <chain length) when
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the input matrices, Ak and Bk, of GEMMk are distributed between nodes and there

is at least one i for which the input matrices Ai and Bi are stored on one node only

(and ideally the node that performs that GEMM i operation).

As a result of the increased readiness of work, the variations of the algorithm where

the GEMM operations are performed in parallel have a lower starting overhead—an

expectation that is confirmed by our experiments, discussed in Section 4.2.4.

In Figure 4.6 we depict the work needed to write the output of a set of GEMMs

back into the Global Array as a single box named WRITE_RESULT_TO_GA. We employed

this abstraction to focus on the parallelism of the GEMMs. Nonetheless, the writing

of the results back to the Global Array is a non trivial operation that can also lead to

several variations of the algorithm. In the original code of subroutine icsd_t2_7(),

after the last GEMM in a chain, there are four IF branches each containing a call to

a subroutine called SORT_4(). This subroutine – which we will refer to as “SORT”

hereafter – takes as input the output of the chain of GEMMs, C, and outputs

a modified version of it that we will call Csorted. In the interest of accuracy, we

should mention that despite its name, the SORT operation does not perform actual

sorting of the data, but rather a remapping of the C matrix where the elements of

the input matrix are shuffled to different locations in the output matrix regardless

of the value they hold. Each of the four SORT operations is followed by a call

to ADD_HASH_BLOCK() that adds the data into the Global Array (i.e, performs the

operation Corig += Csorted where Corig is the data that is stored in the Global Array

before the call to ADD_HASH_BLOCK(). Hereafter, we will refer to this operation

as WRITE. Interestingly, the predicates of the four IF branches are not mutually

exclusive. One can easily see in the code below – which contains snippets of the

IF statements of subroutine icsd_t2_7() – that when the variables that are being

compared are equal, then multiple of these IF statements will evaluate to true.

IF ((p3b .le. p4b) .and. (h1b .le. h2b)) ...

IF ((p3b .le. p4b) .and. (h2b .le. h1b)) ...

IF ((p4b .le. p3b) .and. (h1b .le. h2b)) ...
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IF ((p4b .le. p3b) .and. (h2b .le. h1b)) ...

As a result, depending on the value of these variables, the original code will

perform one, two, or four SORT operations – each followed by a WRITE – and

will do so in a serial way. In our code, we implemented different variations of the

WRITE_RESULT_TO_GA work, with each one having a different level of parallelism in

performing the sorting and writing of the data.

Figure 4.8: Serialized sort and single write.

The simplest variation, which is depicted in Figure 4.8, executes all operations

in serial, but in a different order than the original CC code. Namely, the output of

the GEMMs, C, is passed to a task – called SORT – that contains four consecutive

calls to the SORT_4() kernel, each one guarded by the corresponding IF statement.

Each call, i, uses a different temporary matrix, Ctmp
i as output. After each call, Ctmp

i

is accumulated into a master matrix Csorted – which was initialized to zero before

the first call to SORT_4(). When the SORT task is done, the resulting matrix Csorted
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is passed to the task WRITE C. This task reads the data that is currently stored in

the target memory location Corig and updates it by performing the addition: Corig

+= Csorted. To prevent race conditions between different threads the WRITE C task

performs the reading, adding, and storing into memory atomically by protecting all

this code with pthread mutexes. Clearly, changing the order of operations and adding

all the temporary matrices to one another before adding them to the memory does not

alter the semantics of the original code since addition is commutative and associative.

In this variation of WRITE_RESULTS_TO_GA, the work exhibits the lowest amount

of parallelism, and the highest level of data locality, since matrices C and Csorted are

read and written multiple times in quick succession by the same task (SORT) and thus

the same operating system thread, since in PaRSEC tasks do not migrate between

threads after they have started executing.

Figure 4.9: Parallelized sort and single write.
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The next variation involves parallelization of the SORT task. Namely, as shown

in Figure 4.9, the code now implements four different tasks, SORT 0, SORT 1, SORT 2,

and SORT 3. The execution of each task is guarded by the same predicate as the

corresponding IF branch in the original code. Each SORT i task receives the same

C matrix as input and stores the output of the SORT_4() subroutine into a private

Csorted
i matrix. Then, it forwards this private matrix to the WRITE C task. The

latter receives one, two, or four input sorted matrices (depending on the values of the

predicates), and uses them to update the data in memory: Corig += Csorted
i ∀i = 0..3.

This variation has increased parallelism in comparison to the previous scenario, since

the SORT operations now happen in parallel, but it has reduced data locality and

additional memory requirements, since each SORT i task needs to allocate a Csorted
i

matrix. Furthermore, this variation can lead to more idle time since it has a longer

atomic operation. This is the case because the work performed by the WRITE C task

is treated as a critical region that is protected by mutexes in order to run atomically,

and this variation of the code assigns more work to the WRITE C task than the previous

case.

In order to address the last concern regarding the length of the critical region,

and increase parallelism even further, we created another variation that we show

in Figure 4.10. In this variation, there are multiple WRITE C i tasks, in addition to

the multiple SORT i tasks. Each SORT j task (that executes) sends its output matrix to

the corresponding WRITE C j task, which updates the data in memory using only this

matrix: Corig += Csorted
j . This variation has the least amount of data locality, but

exhibits maximum parallelism without increasing the length of the critical regions.

4.2.1 Exporting PaRSEC data to Global Arrays

In the discussion above we analyzed the high level organization of the tasks that

sort and write the data into the memory, but we abstracted away the details of

how PaRSEC actually accesses the memory addresses that correspond to the Global
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Figure 4.10: Parallelized sort and write

Array data, which in the general case can be distributed between multiple nodes. For

simplicity, we will explain the process using the algorithmic variation where there is

only one SORT and one WRITE C task type, shown in Figure 4.8, but the same logic

applies to all variations.

A GA matrix Corig can potentially be split between the memories of different

nodes participating in the execution of the program. In Figure 4.11 we depict a

matrix as being split between the memory of nodes nodei, nodei+1, and nodei+2.

As a result, although there is only one class of WRITE C tasks, in this example

there need to be three instances of this task class, each running on one of the three

nodes that contains data in order to access and modify this data. In the figure we

depict this with WRITE C(i), WRITE C(i+1) and WRITE C(i+2). Consequently, the

transmission of data between the SORT task and the different WRITE C task instances
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Figure 4.11: Exporting data to GA.

is implemented such that each task instance only receives the data that is relevant to

the node on which the task instance executes.

Achieving all this data management is possible because PaRSEC abstracts away

a lot of the details. During the inspection phase (i.e., before any tasks start running)

we query the Global Arrays library regarding the actual location of the program data

using calls such as ga_distributed() and ga_access(). The information that we

acquire from these calls is passed to PaRSEC along with a unique ID for each matrix.

As a result, the PTG is Global Array agnostic and only uses these unique IDs to refer

to data relying on PaRSEC for the management of the ID-to-node and ID-to-pointer

mapping.
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4.2.2 Using task priorities in PaRSEC

PaRSEC includes multiple task scheduling algorithms, each designed to maximize

a different objective function, i.e., cache reuse, load balancing, etc. The default

scheduling algorithm, which is what we used for the performance experiments in this

paper, tries to achieve a balance between several objective functions and also takes

task priorities into consideration, if such have been defined by the developer. Task

priorities are taken into account by the scheduler when a set of available tasks are

considered for execution, and they only have a relative meaning. That is, between

two available tasks, the one with a higher priority will execute first.

In this paper we explicitly set task priorities for all the variants of our algorithm,

except for one, in order to study the effect of priorities on the behavior of the program.

To set task priorities in PaRSEC the developer has to explicitly add a line in the PTG

representation of each task class. This line starts with a semicolon and is followed

by an expression that can be as simple as a numeric literal, or as complex as an

arbitrary function of any variable that is available to the task class (i.e., global and

local variables, as well as the parameters of the task class). In the implementation

presented in this paper, we assigned to all task classes priority expressions that are

decreasing functions of the chain number‡. To differentiate the priority of different

task classes within a single chain, we use constant offsets. We assign a higher priority

to the tasks that read the input data (matrices A and B) from the Global Array, by

giving them the highest offset (+5), then follow the tasks that perform the GEMM

operation with offset +1, and all other tasks classes do not have an offset. The general

expression used in the task priorities is:

max_L1 - L1 + offset*P

‡As we mentioned previously, during the inspection phase we record which chain (of the original
code) each GEMM corresponds to. In our code the chain number is one of the parameters of each
task and it has no effect on the parallelism between those tasks. It serves only as a means to
differentiate between tasks that are working toward the computation of the same final C matrix, or
different ones.
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Where max_L1 is the total number of chains, L1 is the chain number of each chain,

and P is the number of nodes participating in the execution. This scheme has the

following consequences:

• All tasks of a given task class (i.e., GEMM) that participate in the same chain

will have the same priority.

• All tasks of a given task class that belong to chain i will have higher priority

than any task of the same task class that belongs to chain j where j > i.

• Since we assign an offset of +5 to the tasks that read the input data, and an

offset of +1 to the GEMM tasks, there will always be at least 5∗P reader tasks

that executed before each GEMM task. Therefore, there is a data prefetching

pipeline of depth 5 ∗ P .

4.2.3 Load Balancing

The original NWChem code aims to achieve load balancing through a work stealing

scheme that is often referred to as NXTVAL [52]. This approach relies on the updating

of a global atomic variable provided by the Global Arrays library for ensuring that

each MPI rank will atomically acquire a single unit of work each time. The unit

of work in the original NWChem code (a whole chain) is much coarser than in our

PaRSEC enabled version. Nevertheless, requiring that every MPI rank has to update

a single global atomic variable for every unit of work is not a scalable approach.

In the PaRSEC enabled code presented in this paper we took the opposite

approach. We performed a static, round-robin work distribution between nodes and

allowed PaRSEC to perform dynamic work stealing within each node. This approach

may lead to higher load imbalance than the work stealing approach between nodes,

but incurs zero overhead in the critical path. Our performance results validate our

choice.
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4.2.4 Performance Evaluation for Algorithmic Variations

In this section we will discuss performance results that we obtained by executing the

original NWChem code as well as five variants of our PaRSEC implementation, as

discussed in Section 4.2. In particular we timed the following five variants of the

algorithm:

v1. GEMMs are organized in a serial chain, but SORTs and WRITEs are parallel.

Priorities are a decreasing function of the chain number.

v2. GEMMs and SORTs are parallel, but there is one WRITE. No priority is set

for any task.

v3. GEMMs, SORTs, and WRITEs are all parallel. Priorities are a decreasing

function of the chain number.

v4. GEMMs and SORTs are parallel, but there is one WRITE. Priorities are a

decreasing function of the chain number.

v5. GEMMs are parallel, but there is one SORT and one WRITE. Priorities are a

decreasing function of the chain number.

Figure 4.12 shows the execution time of the original code and the different

algorithmic variants discussed above. All experiments used beta-carotene as the input

molecule, in 6-31G basis set composed of 472 basis set functions, and run on a 32

node partition of the Cascade cluster at the Pacific Northwest National Laboratory.

To improve readability we show the execution time of the PaRSEC variants only for

1, 3, 7, and 15 cores per node in the form of boxes with different shades (and different

border style), stacked next to one another. In contrast, the execution time of the

original version is shown for every number of cores/node and is shown as a (green)

line with circular points. In the following text we discuss observations that can be

made by studying this graph.
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Figure 4.12: Comparison of algorithm variations and original code.

The original code scales fairly well up to three cores/node (achieving a speedup of

2.35x over the one core/node run) but tapers off after that, achieving little additional

improvement until the best performance at seven cores/node – which achieves a

speedup of 2.69x over the one core/node case. After this point the performance

deteriorates, although not significantly. In contrast, the PaRSEC code scales much

better with all variants, except v1, improving their performance all the way up to 15

cores/node.

PaRSEC outperforms the original code as soon as three cores per node are used,

and shows a significant performance improvement. Namely, at 15 cores/node the best

PaRSEC variant (v5) achieves a speedup of 2.1x over the fastest run of the original

code at seven cores/node.

The different variants of the PaRSEC code show little difference when few cores

per node are used, but diverge significantly when the machine reaches saturation.
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Namely, at 15 cores/node, the fastest PaRSEC variant is 1.73x faster than the slowest

variant.

The slowest PaRSEC variant, v1, is the one where the GEMMs are organized

in a serial chain (mimicking the behavior of the original code). This indicates that

parallelism between GEMMs is more significant than locality for the performance of

this program, despite the parallelism that already exists between different chains.

The fastest PaRSEC variant, v5, is the one where the GEMMs are parallel but

the SORT operation and the critical section that writes back to the memory are

serialized. This is not an obvious outcome, mainly because the critical region of the

WRITE is protected by a mutex that is shared by all threads in the node and used by

all WRITE operations on the node. As a consequence, one could expect that smaller

critical regions would lead to better interleaving of different threads and thus better

performance. However, variant v3, which implements the WRITE in parallel, delivers

worse performance than v5 for all core counts and especially when 15 cores/node are

used. We attribute this behavior to two factors. First, the better data locality of

v5 – which is especially important for an operation such as WRITE that does nearly

no work and is memory bound. Second, while the serialized version has a longer

critical region, each write C task locks and unlocks the mutex only once per chain,

as opposed to the parallel writing scheme of v3 where there are up to four write C i

tasks per chain increasing the number of the system wide operations required to lock

and unlock the mutex that protects the critical region.

Comparing variants v2 and v4, which only differ in the task priorities, we can

see the importance of task priorities with respect to performance. Furthermore, by

comparing v2 against all other variants, we can deduce that priorities are the single

most important design decision after the parallelism of the GEMM operations, since

the v2 variant performs worse than all other variants except for v1. To substantiate

this point further, we present the execution trace of variants v4 and v2 in Figure 4.13

and Figure 4.14, respectively. These traces were generated using PaRSEC’s native

performance instrumentation module.
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Figure 4.13: Trace of v4 (priority decreasing with chain number).

Figure 4.14: Trace of v2 (no task priorities).
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In these traces, each row represents a thread (out of 7 threads per node) and each

group of seven adjacent rows represents a node. The horizontal axis represents time

and the two figures are not at the same scale. Instead, each trace shows all the events

that occurred from the beginning to the end of the program’s execution, regardless

of the length of the execution. Different colors represent different task classes and

the colors are consistent between the two figures. Red represents GEMM operations,

blue represents the reading of input matrix A, purple represents the reading of B,

yellow represents the reductions and light green represents the writing back to the

global array. Finally, grey represents idle time.

The traces make it abundantly clear that variant v2 – which lacks task priorities

– has too much idle time in the beginning. The reason relates to the way PaRSEC

handles communication. In PaRSEC, tasks do not explicitly perform communication,

rather they express their communication needs to the runtime system by specifying

their dependencies to other tasks. The actual data transfer calls are issued by the

runtime system (and in the case of the code discussed in this paper, data transfer

calls are issued by a specialized communication thread that runs on a dedicated core).

When variant v2 starts running, PaRSEC discovers that all the tasks that read the

input matrices A and B are ready for execution, since they do not depend on any

previous tasks. The lack of priorities allows PaRSEC to execute all these tasks which

enqueue their communication requests for the communication thread to fulfill, and

return immediately. As a result, the network is flooded with communication requests

between all nodes that participate in the execution, and there is no computation with

which to overlap this communication. In contrast, variant v4 defines priorities that

decrease with the chain number. This means that the GEMMs of the early chains

have a higher priority than the read tasks of all but the first few chains. However, no

GEMMs can execute before their input data has been transferred. Therefore, while

the early communication is ongoing, PaRSEC will keep executing read tasks, but as

soon as data starts arriving at a node, the priorities of the different tasks will guide

PaRSEC to schedule work (GEMMs) interleaved with communication (reading of A
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and B). This way, the idle time at the beginning is smaller (as is evident in the trace)

and a significant part of the communication is overlapped with computation, leading

to a faster overall execution.

Figure 4.15: Trace of original NWChem code.

Figure 4.15 shows the trace of the original NWChem code. Once again, the

horizontal axis is not at the same scale as the other traces, red represents GEMMs and

blue represents communication, although in this case it is the cost of the subroutine

GET_HASH_BLOCK(). Although this trace depicts the performance of the original code,

it was also generated using PaRSEC’s performance instrumentation functionality.

This is possible because PaRSEC exports this functionality as an API that can be

used to instrument arbitrary code.

This trace tells a very different story from the previous ones. Here, communication

is interleaved with computation, however it is not overlapped. This is an artifact of the

way the original NWChem code is structured. Namely, the calls to the communication
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subroutine GET_HASH_BLOCK() that fetches the input data (A and B) from the Global

Array into a local buffer are issued immediately preceding the call to the GEMM

kernel. Therefore, regardless of the underlying communication library, or network

conduit, the communication is not overlapped with the computation, because it is

not given a chance to do so. There is no computation in the code between the point

where the data transfer starts and the point where the data is needed.

Figure 4.16: Zoomed in on execution trace of original NWChem code.

In Figure 4.16 we show a part from the bottom middle of the previous trace zoomed

in so that individual tasks can be discerned. In this figure the lack of communication

computation overlapping is evident by the length of the blue, purple and light green

rectangles in comparison to the length of the red triangles.

In summary, porting the icsd_t2_7() subroutine of NWChem over PaRSEC

enabled us to modify the behavior of the code and explore the trade-offs between

locality and parallelism in the execution of the GEMM, SORT and WRITE

56



operations. It also enabled us to trace the execution of the code, so that we can

understand the different sources of overhead. As a result, we managed to produce

multiple variants of the code that outperform the original code with our best variant

achieving a speedup of 2.69x on 32 nodes.

4.3 Dataflow as a programming paradigm for CC

In this section we will discuss the reasons why the PaRSEC implementation of

CC is faster than the original code by contrasting the corresponding programming

paradigms.

4.3.1 Communication computation overlapping

The original code is written in FORTRAN§ and makes calls to the Global Arrays

(GA) toolkit for communication and synchronization purposes. Global Arrays enables

applications to adopt the Partitioned Global Address Space (PGAS) programming

model and provides primitives for one-sided communication and atomic operations.

However, the structure of the CC code that makes the communication calls does not

take advantage of these more advanced concepts and rather follows a more traditional

Corse Grain Parallelism (CGP) programming paradigm. Let us consider again the

pseudocode shown in Figure 2.1. This figure abstracts away many of the details

of the actual code but captures the structure very accurately. Namely, the work is

organized in subroutines (that are further organized in logical steps) and inside each

subroutine there are multiple nested loops with the call to the most computationally

intensive functions (i.e., DGEMM and TCE_SORT_*) contained in the innermost loop.

Interestingly, the calls to the functions that fetch the data to be processed by these

calls (i.e., GET_HASH_BLOCK) are also in the innermost loop, immediately preceding

the computation. In other words, the program contains no additional work that is

§NWChem uses a mixture of FORTRAN dialects, including 77 and more modern ones.
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available between the call to the data transfer function and the call to the computation

function that uses the data. This means no matter how sophisticated and efficient

the communication library and the network hardware is, this data exchange will

not be overlapped with computation. This behavior leads to a major waste of

efficiency, since at almost any given point in the program there is additional work

(in other subroutines) that is not semantically dependent on the work currently

being performed. However, the coarse grain structure of the program—with work

and communication contained in deep loop nests inside subroutines—does not allow

for different units of work, that are independent to one another, to be utilized for

communication-computation overlapping.

This missed opportunity for overlapping can be witnessed in the execution trace

shown in Figure 4.16. The figure shows a zoomed-in segment of the execution trace

to improve readability. The shown segment is representative of the whole execution

and does not exhibit a unique behavior. In this trace, the different colors represent

different operations (i.e., GEMM, SORT, data transfer), the X-axis represents time (i.e.,

longer boxes signify operations that took longer to finish), and each row corresponds

to one MPI rank (i.e., one instance of the parallel application) out of the total 224 used

for this run. The red color represents the execution of a matrix multiply (GEMM), which

is the most computationally expensive operation in this code. The blue and purple

colors represent data transfers (matrices A and B needed to perform the C+ = A∗B

operation that a GEMM performs). As can be easily seen by the prominence of the blue

color in the trace, the communication imposes an unacceptably high overhead in the

execution of the original code.

This behavior is in stark contrast with the dataflow-based execution model that

the PaRSEC-enabled version of the code follows. In the latter, computation load

is organized in tasks (not loops, or subroutines), and tasks declare to the runtime

their dependencies to other tasks. When a task completes, the runtime can initiate

the asynchronous transfer of its output data while scheduling for execution the

next task whose dependencies have been satisfied. This opportunistic execution,
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typical of dataflow-based systems, allows for maximum communication computation

overlapping. This is true because at any given time during the life of the program, if

there is available computation, it will be performed without unnecessary waiting for

some predetermined order of loops or subroutines to be satisfied.

Figure 4.17: Zoomed in on execution trace of dataflow-based NWChem code.

The opportunistic execution of the dataflow-based code is demonstrated in the

trace shown in Figure 4.17. As can be seen in this figure—which is a zoomed-in

view of the beginning of the execution—many of the tasks, responsible for reading

input data (blue and purple boxes) and sending it to the tasks that will perform

the computation (red boxes), are scheduled for execution early on. However, as

soon as some data transfers complete, computation tasks become ready and, from

that point on, communication and computation are overlapped. It is worth noting

that, in contrast with the trace of the original code ( Figure 4.16), the length of the

blue and purple boxes in Figure 4.17 do not represent the communication cost of

the data transfers, since tasks in PaRSEC do not perform explicit communication.
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Rather, these boxes represent the tasks that merely express their communication

needs to the runtime by specifying their dependencies to other tasks. The actual

data transfers are scheduled and managed by the runtime and are fully overlapped

with the computation. As a result, they do not appear in the trace, but they are

responsible for the light gray gaps ( Figure 4.17), which are periods of time where no

work can be executed because the corresponding data has not been transferred yet

(a phenomenon that only happens at the beginning of the execution). To summarize,

by comparing the two traces we can clearly see that the original NWChem code faces

significant communication delays which can be largely addressed through the use of

communication-computation overlapping.

One could argue that the original FORTRAN code can be modified to allow for

more communication-computation overlapping without resorting to dataflow-based

programming. A developer could reorganize the loop nests into a form of a pipeline,

so that each iteration “prefetches” the data needed for the computation of a future

iteration. This can be achieved if every iteration initialized an asynchronous transfer

for data needed by future iterations and then proceeded to execute work whose data

was prefetched by a previous iteration. This would probably increase communication-

computation overlapping and decrease waiting time, however, it would not be

sufficient to achieve the performance improvements gained in the dataflow-based

execution. The reason can be seen in the trace. In each row (i.e., for every MPI rank)

there are time periods where communication (blue) takes a small amount of time in

comparison to useful work (red). However, in each row there are also time periods

where a few communication operations take significantly longer than the following

computation. As a result, pipelining work and data transfer would only remove a

small part of the communication overhead, unless a very deep pipeline is used, which

would lead to significant temporary storage overhead (because all the incoming data

that correspond to future iterations have to be stored in temporary buffers). In the

case of our dataflow-based version of CC, the runtime does not merely pipeline loop

iterations, but overlaps communication with completely independent computation.
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Work that in the original code resides in completely different subroutines and can not

be utilized for overlapping, unless a major restructuring of the code is performed.

4.3.2 Freedom from control-flow

As we mentioned earlier, the original code executes all GEMM operations in serial chains

and only allows for parallelism between different chains. This structure defines both

the order in which operations (that are semantically independent) will execute and

the granularity of parallelism. Changing either while preserving the straight forward

structure of the original code is not a trivial exercise. The dataflow-based PaRSEC

form of the code that we have created departs from the simplicity of the original code,

but it is not subject to either limitation mentioned above. Namely, as we discussed

earlier, in PaRSEC we execute all GEMM operations in parallel and perform a reduction

on the output data of all GEMM operations that belonged to a chain in the original

code. This way, we preserve the semantics of the code, but liberate the execution

from the unnecessary limitations on the granularity of parallelism and strict ordering

that were not dictated by the semantics of the algorithm, but rather by inherent

limitations of control-flow based programs and coarse grain parallelism.

4.3.3 Multi-threading and accelerators

Another artifact of the way the original code is structured is that taking advantage

of multi-threading to utilize multiple cores on each node is not easy to implement

efficiently. As a result, the NWChem application does not use threads and rather

relies on multiple MPI ranks per node in order to utilize multiple cores. In PaRSEC,

multi-threading comes at no additional cost for the developer. Once the developer

has defined the tasks and the dataflow between them, PaRSEC will automatically use

threads to accomplish the work, utilizing multiple hardware resources. Furthermore,

PaRSEC uses a combination of thread local queues and global queues to store

available tasks during the execution. When a task Ti completes, the tasks Tj that
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were waiting for the output of Ti will be placed in the thread local queue of the

thread that executed Ti. As a result, work that should naturally execute as a chain

(because the output of one task is the input of another) has a high probability of

executing as a chain in PaRSEC taking advantage of cache locality and increasing

execution efficiency. At the same time, the existence of global queues and work

stealing guarantees that PaRSEC will also exhibit good load balance.

While outside the scope of this paper, PaRSEC also enables use of accelerators

without too much complexity overhead for the developer. If the developer provides a

kernel that can execute on an accelerator, and specifies the availability in the PTG

representation of the code, then PaRSEC will execute this kernel on the accelerator.

In the work we are current pursuing, we are experimenting with the execution of some

of the GEMM operations on an Intel Xeon Phi aiming to maximize performance, given

the tradeoffs between using that additional computing power of the accelerator and

paying the overhead of transferring the necessary data to it.

4.4 Performance Evaluation for entire CC

This section presents the performance of the entire CC code using the PTG version

“Dataflow:T2” of the 29 CC subroutines and contrasts it with the performance of the

original code “Orig:T2”. Note, the unique monikers “Orig:T2” and “Dataflow:T2”

are introduced in Section 2.3.3, and refer to the set of CC subroutines targeted in

this research.

Figure 4.18 depicts a high level view of the integration of the PaRSEC-enabled

code in NWChem’s CC component. The code region timed (see start and end

timers in Figure 4.18) includes all 19 T1 and 41 T2 subroutines as well as additional

execution steps that set up the iterative CC computation. The only difference between

the original NWChem runs and the modified version is the replacement of the 29

original T2 subroutines “Orig:T2” with their dataflow version “Dataflow:T2” and the

prerequisites discussed earlier. In a nutshell, these prerequisites include: meta-data
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Figure 4.18: High level view of PaRSEC code in NWChem.

vector population, initialization, and finalization of PaRSEC. Also, the experiments

allow for all iterations of the iterative CC code to reach completion.

4.4.1 Methodology

The input data is the beta-carotene molecule (C40H56) in the 6-31G basis set,

composed of 472 basis set functions. In these tests, all core electrons are kept frozen,

and 296 electrons are correlated. Figure 4.19 shows the relative workload of different

subroutines (omitting those that fell under 0.1%). To calculate this load, the sum is

computed of the number of floating point operations of each GEMM that a subroutine

performs (given the sizes of the input matrices).

Table 4.2 lists additional statistics for the 10 computationally most expensive CC

subroutines, such as the size and shape of individual GEMM operations, the amount of

floating-point operations (FLOPs) per GEMM, as well as the total number of such GEMM

operations. This data lays out that, for the beta-carotene molecule in particular, the
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Figure 4.19: Relative load of top 10 heaviest CC subroutines.

Table 4.2: GEMM size and shape, and total number of GEMMs for the top 10 heaviest
CC subroutines when running beta-carotene with tilesize=45.

CC subroutines M N K GEMM FLOP count Total # of GEMMs

t2_7_3 1107 1107 1107 2,713,144,086 327,680
t2_7 1107 1107 1107 2,713,144,086 327,680
t2_2_5 1107 729 1107 1,786,704,642 327,680
t2_2_6 729 1107 1681 2,713,144,086 92,160
t2_8 729 1681 1681 4,119,959,538 50,688
t2_6_3 729 729 1681 1,786,704,642 50,688
t2_6 1681 729 729 1,786,704,642 50,688
t2_2_2_3 729 729 1681 1,786,704,642 50,688
t2_7_2 27 45,387 41 100,486,818 49,152
vt1ic_1_2 27 29,889 41 66,174,246 49,152
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Figure 4.20: Distribution of Chain length for top five subroutines.

resulting matrix size and shape ranges from squared (M = N) to roughly squared

(M ≈ N) all the way to short-fat (M � N). While the relative workload among

the various subroutines—as shown in Figure 4.19—will be similar for different input

molecules and basis sets, the exact GEMM statistics as shown in Table 4.2, however,

will differ.

Additionally, Figure 4.20 shows the distribution of chain lengths for the five

subroutines with the highest workload in the case of beta-carotene. The different

colors in this figure are for readability only. As can be seen from these statistics, the

subroutines targeted for the dataflow conversion effort comprise approx. 91% of the

execution time of all 41 T2 subroutines in the original NWChem TCE CC execution.

The performance tests for the original TCE-generated code and the dataflow

version of Dataflow:T2 were performed on the Cascade computer system at EM-

SL/PNNL. Each node has 128 GB of main memory and is a dual-socket Intel Xeon

E5-2670 (Sandy Bridge EP) system with a total of 16 cores running at 2.6 GHz. A
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number of different scalability tests are performed, utilizing 1, 2, 4, 8, and 16 cores

per node. NWChem v6.6 was compiled with the Intel 14.0.0 compiler, using the

optimized BLAS library MKL 11.0, provided on Cascade.

4.4.2 Discussion

Figure 4.21, and Figure 4.22 show the execution time of the entire CC kernel when the

implementation found in the original NWChem code is used, and when the PaRSEC-

based dataflow implementation is used for the (earlier mentioned) 29 Dataflow:T2

subroutines. Each of the experiments were run three times; the variance between the

runs, however, is so small that it is not visible in the figures. Also, the correctness

of the final computed energies have been verified for each run, and differences occur

only in the last digit or two (meaning, the energies match for up to the 14th decimal

place). The graph depicts the behavior of the original code using the dark (green)

dashed line and the behavior of the PaRSEC implementation using the light (orange)

solid lines. Once again, the execution time of the PaRSEC runs does not exclude any

steps performed by the modified code.

On a 32 node partition, the PaRSEC version of the CC code performs best for 16

cores/node while the original code performs best for 8 cores/node. Comparing the

two, the PaRSEC execution runs more than twice as fast—to be precise, it executes

in 48% of the best time of the original. If the PaRSEC run on 16 cores/node is

ignored—in an effort to compare performance when both versions use 8 cores/node

and thus have similar power consumption—then the finding is that PaRSEC still runs

44% faster than the original.

The results are similar on a 64 node partition: the PaRSEC version of CC is fastest

(for 16 cores/node) with a 43% run time improvement compared to the original code

(which on 64 nodes performs best for 4 cores/node). It is also interesting to point out

that for 64 nodes, while PaRSEC manages to use an increasing number of cores—

all the way up to 64 × 16 = 1024 cores—to improve performance, the original code
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exhibits a slowdown beyond 4 cores/node. This behavior is not surprising since (1)

the unit of parallelism of the original code (chain of GEMMs) is much coarser than that

of PaRSEC (single GEMM), and (2) the original code uses a global atomic variable

for load balancing while PaRSEC distributes the work in a round robin fashion and

avoids any kind of global agreement in the critical path.

4.5 Summary

This chapter presents the effort to utilize the explicit dataflow model (PTG) through

the task-based execution system PaRSEC to optimize part of NWChem, a legacy

Quantum Chemistry application written using FORTRAN 77 and Global Arrays. A

discussion on how PaRSEC is used from within NWChem, followed by a detailed

analysis of the different algorithmic choices of the algorithm as well as their impact

on performance is given. The lessons learned from this analysis guide us in the effort

to port a larger part of the application to run over PaRSEC, but can also provide

useful insight to other groups aiming to modernize legacy applications by converting

them to a task-based form.

This work successfully demonstrates the feasibility of converting TCE-generated

CC code into a form that can execute in a dataflow-based task scheduling envi-

ronment, such as PaRSEC. Finally, this effort substantiates that utilizing dataflow-

based execution for CC enables more efficient and scalable computation—as our

performance evaluation reveals a performance boost of more than 2x for the entire

CC kernel—compared to the employment of the antiquated CGP programming model

that, to this day, remains the prevalent model for developing scientific applications.

With this new dataflow version of the CC kernel, promoting much finer grained

parallelism, most of the traditional synchronization points throughout each cycle of

its iterative process can be eliminated. This strategy with PaRSEC offers many

advantages since communication becomes implicit (and can be overlapped with

computation), finer grained tasks can be executed in more efficient orderings than
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sequential chains (i.e., binary trees) and each of these finer grained parallel tasks

are able to run on different cores of multicore systems, or even different parts of

heterogeneous platforms. This will enable computation at extreme scale in the

era of many-core, highly heterogeneous platforms, utilizing the components (e.g.,

CPU, GPU, Xeon Phi processors) that perform best for the type of task under

consideration.
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Chapter 5

Implicit Dataflow Execution of

Coupled Cluster Methods

This chapter describes the design decisions of the implicit dataflow version of CC and

the associated levels of parallelism and optimizations that have been studied for the

Insert_Task()-enabled CC implementation. While the explicit dataflow model with

its PTG-enabled CC implementations, as covered in Chapter 4, are only supported

by the PaRSEC runtime, the implicit dataflow model can be used by any runtime

a user chooses to use. That is, any runtime that supports the serial task-insertion

interface can be use to submit tasks, and generate the DAG of the execution.

In the context of the present work, this means that, computational chemists are

not forced to use the PaRSEC runtime. Instead, this effort offers flexibility in terms

of what dataflow paradigm to use—explicit or implicit—and it also offers users the

choice between runtimes.

For this study, the Insert_Task()-enabled CC implementations have been

executed with three runtimes: PaRSEC, StarPU, and OpenMP. The performance

results of these experiments are compared against the performance results from the

original NWChem CC SD code and the PTG-enabled PaRSEC implementation.
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5.1 Design Decisions

The development of an implicit dataflow version of CC is less “painful” on the

application developer, in the sense that it is easier accessible with the natural control

flow of the original CC implementation.

The implicit programming model expresses parallelism by submitting tasks in

the sequential flow of the program. The task-based runtime schedules the tasks

asynchronously at run-time, derives the data dependencies between tasks, builds the

DAG of the tasks in memory, and executes the graph of tasks. Such programming

model, based on sequential task submission, is particularly attractive for application

scientists because they can use the long established features from the original control

flow of the program without diverging too much into a very different representation

of the algorithm, like it is, for example, the case for the PTG representation.

In terms of programmability, the implicit dataflow enables domain scientists to

take an extensive, multi-million line application, like NWChem—which has a user

base of more than 150,000—and express additional parallelism by simply submitting

tasks in the sequential flow of the program. This is not possible for explicit dataflow.

For instance, the PTG-enabled version requires an initial “Discovery Phase” because

the original CC code is not organized in pure tasks—i.e., functions with no side-

effects to any memory other than arguments passed to the function itself—nor is the

control flow affine (e.g. loop execution space has holes in it; branches are statically

undecidable since their outcome depends on program data, and thus it cannot be

resolved at compile time) [37]. However, even though the CC code is neither affine,

nor statically decidable, all the program data that affects the behavior of CC is

constant during a given execution of the code [37]. Therefore, it is technically feasible

to expressed the CC code as a PTG, that is, by using lookups into the data of

the program, either directly or indirectly. The PTG-enabled CC version, described

in Chapter 4, accesses the program data indirectly by building meta-data structures
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in a preliminary discovery step. The technical details of this discovery phase are

explained in Section 4.1.

5.1.1 Insert Task() Version

The implicit dataflow version of CC that is based on the serial task-insertion API does

not require a discovery phase. Instead, Insert_Task() calls can be placed directly in

the appropriate place in the original CC FORTRAN code. Figure 5.1 shows the code

snippet of one original CC subroutine (left), and compares it against the modified

version (right).

1 my_next_task = SharedCounter()

2 DO i

3 DO j

4 ! Validation of loop index values

5 IF ...

6 DFILL(dimc, dbl mb(k c) ,...)

7 DO k

8 DO l

9 ! Validation of loop index values

10 IF ...

11 GET_HASH_BLOCK(GA,A)

12 GET_HASH_BLOCK(GA,B)

13 call DGEMM(’T’,’N’,..., 1.0d0 ,

dbl mb(k c) ,...)↪→

14 END IF

15 END DO

16 END DO

17

18 ADD_HASH_BLOCK( dbl mb(k c) ,...)

19 my_next_task = SharedCounter()

20 END IF

21 END DO

22 END DO

my_next_task = SharedCounter()

DO i

DO j

! Validation of loop index values

IF ...

DFILL(dimc, dbl mb(k c) ,...)

DO k

DO l

! Validation of loop index values

IF ...

GET_HASH_BLOCK(GA,A)

GET_HASH_BLOCK(GA,B)

call INSERT_TASK_CORE(..., 0.0d0 ,

k c ,...)↪→

END IF

END DO

END DO

call INSERT_TASK_WAIT()

ADD_HASH_BLOCK( dbl mb(k c) ,...)

my_next_task = SharedCounter()

END IF

END DO

END DO

Figure 5.1: Original CC subroutine code (left), compared to the Insert Task()
version (right).
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The new version replaces the original call to GEMM (line 13) with a call to an

Insert_task_core() subroutine (the body of which is shown in Figure 5.2) that has

as input values the GEMM parameters. Note, the parameter change for the scalar beta

(highlighted in orange in line 13) from 1.0d0 in the original code to 0.0d0 for the

Insert_Task() version. In the original code, each output from a GEMM in a chain is

added to the previous C ← alpha×A×B+ beta×C, which requires the C matrix to

be set on input. However, since there is no other data dependency between GEMMs that

belong to the same chain, they can be computed independently from each other. For

the implicit dataflow version, each Insert_task_core() submits an individual GEMM

task with its own C and the runtime can schedule and execute these tasks in parallel.

The code snippet of the Insert_task_core() subroutine is shown in Figure 5.2.

1 recursive SUBROUTINE insert_task_core(...)

2 ...

3 double precision, dimension(:), pointer :: c_tmp

4 allocate(c_tmp(dimc))

5 call DGEMM(’T’,’N’,..., c tmp , ...)

6 call lock_mutex()

7 DO i = 0, dimc-1

8 dbl mb(k c+i) = dbl mb(k c+i) + c tmp(1+i)

9 END DO

10 call unlock_mutex()

11 deallocate( c_tmp )

12 RETURN

13 END

Figure 5.2: Insert task core() subroutine that is submitted to the runtime.

Once the GEMM operation is completed, each task adds its computed c_tmp array

to the dlb_mb(k_c) array (lines 6-10) that belongs to the main thread. This addition

uses mutual exclusion (a mutex) to protect simultaneous access to the dlb_mb(k_c)

array when multiple threads try to add their local c_tmp array to it.
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The dlb_mb(k_c) array (which is highlighted in green in the code snippets) is

created and initialized by the main thread at the beginning of each chain of GEMMs (line

6 in Figure 5.1). Once all GEMMs (that belong to the same chain in the original code)

are submitted, there is a barrier placed at the end of each chain (line 17 in Figure 5.1).

Even though the runtime can schedule and execute all GEMMs in parallel, because of

the ADD_HASH_BLOCK() operation (in line 18 in Figure 5.1), all GEMM tasks need to be

completed so that the final dlb_mb(k_c) array can to be added to the Global Array.

At this point, it is important to point out that a significant amount of time was

spent on an attempt to move the GET_HASH_BLOCK() calls, which transfer the matrix

A and B data over the network (line 11-12 in Figure 5.1), into the task together

with the GEMM operation. This would result in a more efficient execution. First, it

would put less burden on the main thread since in the current implementation it is

the main thread’s sole responsibility to fetch data from the Global Arrays into local

memory. Second, it would add additional overlap of communication and computation

as individual tasks do not depend on GA data from other tasks that belong to the

same chain. Hence fetching data from GA for each GEMM task could (in theory) be

performed in parallel. However, it is currently not possible to implement this design

decision since Global Arrays is currently not thread-safe. We have been in contact

with the Global Arrays developers and they are just now starting to work on multi-

threading support for the GA library.

5.1.2 Design Variations for OpenMP Version

The OpenMP specification [17] is a well known standard for developing parallel

shared-memory applications. The OpenMP version 3.0 [3] introduced a feature called

tasking, which adds some support for task level parallelism. The main difficulty for

users, however, is to ensure that there are no data dependencies between PARALLEL

regions. That makes it difficult to express a complex DAG of tasks and their data

dependencies to one another using OpenMP.
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Three different design variations for the OpenMP task version of the CC code

have been implemented and compared. Before describing the differences of these

alternative versions, the code blocks that they all have in common will be described.

In OpenMP, an explicit task is a unit of work that may be executed at some

point in time, either immediately or later. The decision when a task runs is

taken by the OpenMP runtime. A task is composed of three parts: The code to

be executed, the data environment associated with the task, and internal control

variables. Additionally, an OpenMP task is specified using the task construct with

its associated clauses (shared, private, firstprivate). For tasks, the default data-

sharing attribute is firstprivate (but the shared attribute is lexically inherited).

This is different from other OpenMP constructs, like, e.g., parallel or single. In the

majority of cases, the default data-sharing attribute is shared. The firstprivate

clause captures the values of the variable at the creation time of a task. This is

particular important for tasks because the OpenMP runtime may choose to run a

task at a later point in time. However, the values that are captured when the task is

created are actually the values that we want for the execution of the task, regardless

of when the task executes.

Figure 5.3 compares the pseudocode for two of the three OpenMP CC versions.

The task construct can be placed anywhere in the program; and whenever a thread

encounters a task construct, a new task is generated. In the OpenMP task version

of CC, the call to a GEMM is wrapped with the !OMP TASK and !OMP END TASK, which

specifies a single GEMM operation as one task (lines 15-24 in Figure 5.3).

However, the task directive by itself does not enable the parallel execution of

tasks. Instead, a parallel region needs to be created first, which creates a team

of threads (line 7). Additionally, the single construct is used (line 8) to guarantee

that only one thread of the team creates the tasks that are then added to the task

pool. Any thread from the team can then execute tasks, and with multiple threads,

these tasks are computed in parallel. Having the parallel region outside each chain
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1 my_next_task = SharedCounter()

2 DO i

3 DO j

4 ! Validation of loop index values

5 IF ...

6 DFILL(dimc, dbl mb(k c) ,...)

7 !OMP PARALLEL PRIVATE(...)

8 !OMP SINGLE

9 DO k

10 DO l

11 ! Validation of loop index values

12 IF ...

13 GET_HASH_BLOCK(GA,A)

14 GET_HASH_BLOCK(GA,B)

15 !OMP TASK PRIVATE(c_tmp,h)

16 allocate(c_tmp(dimc))

17 call DGEMM(’T’,’N’,.., 0.0d0 , c tmp ,...)

18 DO h=0,dimc-1

19 !OMP ATOMIC

20 dbl mb(k c+h)=dbl mb(k c+h)+c tmp(h+1)

21 END DO

22

23 deallocate(c_tmp)

24 !OMP END TASK

25 END IF

26 END DO

27 END DO

28 !OMP END SINGLE

29 !OMP END PARALLEL

30 ADD_HASH_BLOCK( dbl mb(k c) ,...)

31 my_next_task = SharedCounter()

32 END IF

33 END DO

34 END DO

my_next_task = SharedCounter()

DO i

DO j

! Validation of loop index values

IF ...

DFILL(dimc, dbl mb(k c) ,...)

!OMP PARALLEL PRIVATE(...)

!OMP SINGLE

DO k

DO l

! Validation of loop index values

IF ...

GET_HASH_BLOCK(GA,A)

GET_HASH_BLOCK(GA,B)

!OMP TASK PRIVATE(c_tmp,h)

allocate(c_tmp(dimc))

call DGEMM(’T’,’N’,.., 0.0d0 , c tmp ,...)

!OMP CRITICAL

DO h=0,dimc-1

dbl mb(k c+h)=dbl mb(k c+h)+c tmp(h+1)

END DO

!OMP END CRITICAL

deallocate(c_tmp)

!OMP END TASK

END IF

END DO

END DO

!OMP END SINGLE

!OMP END PARALLEL

ADD_HASH_BLOCK( dbl mb(k c) ,...)

my_next_task = SharedCounter()

END IF

END DO

END DO

Figure 5.3: Pseudocode of OpenMP atomic (left); and critical (right) versions.
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of GEMMs (but inside the DO loops that execute over multiple chains), means that the

thread that enters the single region generates work while others might execute tasks

from the task pool.

Once all GEMM tasks for a chain are generated, the code exits the single and

parallel region (lines 28-29) in order to move on to the next chain of GEMMs.

The end of a single, and also the end of a parallel region, features an implicit

barrier. This is the heaviest form of synchronization which waits for all threads

to be completed before moving on. This implicit barrier—which is equivalent to

the INSERT_TASK_WAIT() calls in Figure 5.1—is necessary for the same reason as

mentioned in the previous section. All GEMM tasks, belonging to the same chain, need

to be completed so that the final dlb_mb(k_c) array can to be added to the Global

Array via the ADD_HASH_BLOCK() operation (line 30 in Figure 5.3).

The three different design variations that have been implemented and studied for

the OpenMP task version of the CC code are shown in Figure 5.3 and Figure 5.4.

The difference between these alternative versions is in the way the C arrays from the

GEMM computations are added to the dlb_mb(k_c) array that belongs to the main

thread. Like in the Insert_Task version, this operation needs to be protected from

simultaneous access to the dlb_mb(k_c) array by multiple threads. This can be

accomplished in different ways with the same effect on dlb_mb(k_c) but different

results on the performance.

Atomic: The version in Figure 5.3 (left) uses an OpenMP ATOMIC operation (lines

19-20), which protects only the single assignment that immediately follows

it. An atomic provides mutual exclusion but only applies to the load/update

of a memory location. More precisely, atomic only protects the update of

dbl_mb(k_c). This is a lightweight, special form of a critical region, which

suggests a lower overhead for atomic operations compare to critical regions.

Critical: The version in Figure 5.3 (right) uses an OpenMP CRITICAL region, which

surrounds the entire DO loop that adds the c_tmps array to dlb_mb(k_c)
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1 my_next_task = SharedCounter()

2 DO i

3 DO j

4 ! Validation of loop index values

5 IF ...

6 DFILL(dimc, dbl mb(k c) ,...)

7 allocate(c_tmps(dimc,my_omp_nthreads))

8 c_tmps(:,:)=0.0d0

9 !OMP PARALLEL PRIVATE(...)

10 !OMP SINGLE

11 DO k

12 DO l

13 ! Validation of loop index values

14 IF ...

15 GET_HASH_BLOCK(GA,A)

16 GET_HASH_BLOCK(GA,B)

17 !OMP TASK PRIVATE(my_omp_tid)

18 call DGEMM(’T’,’N’,..., 1.0d0 , c tmps(1,my omp tid+1) , ...)

19 !OMP END TASK

20 END IF

21 END DO

22 END DO

23 !OMP END SINGLE

24 !OMP END PARALLEL

25 DO h = 1, my_omp_nthreads

26 dbl mb(k c:k c+dimc-1) = dbl mb(k c:k c+dimc-1) + c tmps(:,h)

27 END DO

28 deallocate(c_tmps)

29 ADD_HASH_BLOCK( dbl mb(k c) ,...)

30 my_next_task = SharedCounter()

31 END IF

32 END DO

33 END DO

Figure 5.4: Pseudocode of buffered OpenMP Task implementation.
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(lines 18-22). In OpenMP, all the unnamed critical regions are mutually

exclusive. Because a critical region can surround any arbitrary block of

code, this generality “typically” comes with a higher price tag, by incurring

a significant overhead every time a thread enters and exits the critical section.

Therefore, it is surprising that the critical region implementation in CC results

in the best performance (see Section 5.2).

Buffered: The version in Figure 5.4 creates a temporary C array for each OpenMP

thread. This means, there are “number_of_omp_threads” temporary C arrays,

and all are initialized to zero (lines 7-8). Each thread adds the result from

different GEMM tasks (that it picks from the task pool) to its local C array

(note that β = 1 for the GEMM in line 18). After the parallel region, the main

thread adds all the temporary C arrays to dlb_mb(k_c) (lines 25-27). It also

deallocates the temporary C arrays that were created for each thread (line 28).

With this version, an OpenMP task (line 17-19) is a pure GEMM operation without

any atomic operation or critical region in the task block itself.

For all three OpenMP task variations, the tasks are tied to threads, which is the

default unless the UNTIED clause is specified. This prevents tasks being switched from

one thread to another, which, for the two implementations, would be a formula for

disaster due to the use of thread-id and critical regions in the current tasks.

Even though tasks are tied to threads in the aforementioned implementations,

threads can be bound to CPU cores for performance reasons. Forcing threads to run

on a specific processor core (or subset of processors) may be beneficial in order to take

advantage of local process states. The OMP_PROC_BIND environment variable provides

some control over thread binding. Table 5.1 summarizes its different settings.

All three implementations have been run and compared against each of the four

OMP_PROC_BIND options.
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Table 5.1: Thread binding options with OMP PROC BIND environment variable.

OMP_PROC_BIND Description

TRUE

The execution environment should not move OpenMP threads
between processor cores. Threads are bound in a linear way, that
is: thread 0 to CPU 0, thread 1 to CPU 1, etc.
(unless GOMP_CPU_AFFINITY is set).

FALSE

The execution environment may move OpenMP threads between
processor cores. This is also the case if OMP_PROC_BIND is not
set (default bahavior).

CLOSE Binds threads as close to the main thread as possible.

SPREAD
Binds threads as evenly distributed as possible among the
processing cores.

5.2 Performance Evaluation for entire CC

This section analyzes the performance of the entire CC code using the various

implementations of the “implicit” dataflow version of the CC subroutines and contrast

it with the performance of (a) the original code, and (b) the “explicit” datalow version

that has been covered in Chapter 4.

5.2.1 Methodology

The input data is the beta-carotene molecule (C40H56) in the 6-31G basis set,

composed of 472 basis set functions. In these tests, all core electrons are kept frozen,

and 296 electrons are correlated.

The subroutines targeted for the “implicit” dataflow effort are the same 29 T2

subroutines—in this text referred to as Orig:T2 and Dataflow:T2—that comprise

approx. 91% of the execution time of all 41 T2 subroutines. Note, the unique monikers

“Orig:T2” and “Dataflow:T2” are introduced in Section 2.3.3, and details about

the specific set of CC subroutines are covered there. In a nutshell, this is the set

of subroutines that has been identified in the statistics in Figure 4.19, Figure 4.20
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and Table 4.2 as the computationally most expensive work when computing the CC

correlation energy.

The performance tests were performed on the Cascade computer system at

EMSL/PNNL. Each node has 128 GB of main memory and is a dual-socket Intel

Xeon E5-2670 (Sandy Bridge EP) system with a total of 16 cores running at 2.6 GHz.

Various scalability tests have been performed, utilizing 1, 2, 4, 8, and 16 cores per

node. At the time of the execution of these experiments, a newer version of the Intel

compiler and MKL library were available on cascade compared to the tests described

in Section 4.4.1. NWChem v6.6 was compiled with the Intel 15.0.0 compiler, using

the optimized BLAS library MKL 14.0, provided on Cascade.

5.2.2 Discussion

For the performance evaluation, all graphs discussed in this section show the execution

time of the entire CC when the implementation found in the original NWChem code

is used, and when the dataflow implementations is used for the (earlier mentioned) 29

Dataflow:T2 subroutines. Each of the experiments were run three times; the variance

between the runs, however, is so small that it is not visible in the figures. Also,

the correctness of the final computed energies have been verified for each run, and

differences occur only in the last digit or two (meaning, the energies match for up to

the 14th decimal place). The graphs depict the behavior of the original code using

the back line and the behavior of the dataflow implementations using bars. Once

again, the execution time of the dataflow runs does not exclude any steps performed

by the modified code.

OpenMP Tasks

All three CC implementations with OpenMP Tasks have been run and compared

against each of the four OMP_PROC_BIND options. The results are shown in Fig-

ure 5.5, Figure 5.6, Figure 5.7 for the “atomic”, “criticlal”, and “buffered” version,
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respectively. For all three cases, the CC execution for runs on 32 nodes performs best

when the OpenMP threads are bound to processing cores and as evenly distributed

as possible among the cores (OMP_PROC_BIND = SPREAD).

Consecutively, for the analysis of the three different versions, shown in Figure 5.8,

the performance of the three OpenMP versions with OMP_PROC_BIND = SPREAD is

compared.

The implementation that uses a CRITICAL region (to protect the addition of c_tmp

to the dbl_mb(k_c)) performs best over the other two versions. Intuitively, one would

expect a CRITICAL region to be outperformed by an ATOMIC operation. However,

it clearly depends on how the compiler/OpenMP-runtime implements the ATOMIC

directive. If it is able to generate atomic assembly instructions for the update, then

one might expect the atomic version to be faster, as it will allow different elements of

the array to be updated concurrently by different threads. On the other hand, if the

compiler is not able to generate these instructions, then it will most likely fall back

to using a mutex lock to protect the updates, in which case it will be very similar to

having a critical region inside the loop. This, however, will have more overhead than

the “critical” version because the lock has to be acquired and released many times

(from inside the DO loop). Instead, for the “critical” implementation, a lock needs to

be acquired and released only once because the critical is outside the DO loop.

In the third version, referred to as “buffered”, each OpenMP task accumulates

results into a per-thread copy of (part of) dbl_mb, and once all tasks are completed,

the main thread accumulates these per-thread results together. This implementation

performs even worse and is outperformed by the “critical” and the “atomic” version

of the CC code. This is most likely due to the size of the arrays. From the statistics

in Table 4.2 one can derive that a typical value of dimc ranges from 1,225,449 to

807,003, resulting in fairly big c_tmps arrays. In that case, it is probably worth

parallelizing both the initialization and reduction of the per-thread copies. This may

not vectorize well due to the non-unit stride on c_tmps, depending on how smart the
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Figure 5.5: Comparison of CC execution time with OpenMP Tasks with “ATOMIC
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compiler is, but since dimc is so big, one could try blocking this loop nest. These

further optimizations for the “buffered” version will be left for future work.

Insert Task()

For the Insert_Task() version of the implicit dataflow implementation of NWChem

CC, two different runtimes, StarPU and PaRSEC, which both support the serial

task-insertion interface, have been used. Specific details about how these runtimes

differ is beyond the investigations in this work. However, because both runtimes

use a different scheduler “by default”, the performance of three schedulers has been

evaluated, and the scheduler delivering the best performance has been chosen for

subsequent performance tests. Figure 5.9 shows the differences in CC execution time

for runs on 32 nodes when StarPU is configured with different schedulers:

lws: The Locality Work Stealing (lws) scheduler uses a queue per worker, and

schedules a task on the worker which released it by default. When a worker

becomes idle, it steals a task from neighbor workers.

ws: The Work Stealing (ws) scheduler is similar to lws but steals a task from the

most loaded worker.

eager: The eager scheduler uses a central task queue, from which all workers draw

tasks to work on concurrently.

Let us recall that the implicit dataflow implementations take advantage of the

original control flow of CC, where all GEMMs that belong to a chain are computed

serially. In the implicit dataflow versions, these GEMM tasks are processed in a parallel

fashion on a node. The number of parallel tasks per node at any given time is equal

to the size of the chain executing at that time. The Figure 4.20 confirms that chain

sizes are less than or equal to 16. That means, on a machine with a maximum of 16

cores per node, there will be on average less tasks than cores. Therefore, one may

assume that, with the eager scheduler, threads are constantly hitting the global task
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Figure 5.9: Comparison of CC run-time with StarPU using different schedulers.

queue that requires a lock to be acquired and released each time, causing an overhead

that is avoided with the other schedulers, which do not use a global queue.

Figure 5.9 confirms that the eager scheduler results in the most expensive exe-

cution of CC, while the lws scheduler performs best. Thus, both runtimes, StarPU

and PaRSEC, have been configured to use lws for all subsequent experiments.

Results

Performance studies have been performed on 32, 64 and 128 nodes, and results are

shown in Figure 5.10, Figure 5.11, Figure 5.12, respectively. Each of these graphs

depicts the results of the three best-performing implicit dataflow versions, the explicit

dataflow version, and the original CC code. Both dataflow versions outperform the

original code on all three node partitions. While the speedup of the explicit over

original decreases, the speedup of implicit over original increases as the number of

nodes grows from 32 to 128. Table 5.2 lists the exact speedups for each node partition.
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Table 5.2: Speedup for dataflow versions over original CC.

Number of Nodes Speedup =
Torig
Texpl

Speedup =
Torig
Timpl

32 2.6 1.2

64 2.2 1.3

128 1.8 1.5

While the performance of the three implicit dataflow versions is on par, which is

expected since the runtimes operate similarly, there is a significant difference between

the performance of explicit versus implicit. The implicit version performs always best

for 8 cores per node, while explicit manages to use an increasing number of cores—all

the way up to 16 cores per node—to improve the performance. This behavior is not

surprising for a number of reasons:

1. As mentioned earlier, for the implicit dataflow versions, the number of parallel

tasks per node at any given time is equal to the size of the chain that executes at

that time. The statistics in Figure 4.20 show that chain sizes are either 8 or 16

for the most expensive subroutines, and smaller (e.g., 4, 6, 8) for less expensive

subroutines. Therefore, one of the limiting factors of why the implicit versions

stagnate after 8 cores per node is due to the average chain size being ≈ 11.

2. The implicit code inherits the limitations from the original code that uses

a global atomic variable for load balancing. The explicit version, however,

distributes the work in a round robin fashion and avoids any kind of global

agreement in the critical path.

3. Furthermore, the implicit code inherits the control flow of the original code

which calls functions that transfer data over the network via the Global Arrays

layer. This communication is blocking and leaves no room for communication

and computation to overlap within the same thread of the execution. The

explicit dataflow model uses non-blocking communication and allows for

communication-computation overlap.
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Figure 5.11: CC Execution time comparison using 64 nodes (using up to 1,024
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Figure 5.12: CC Execution time comparison using 128 nodes (using up to 2,048
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When moving from 32 to 64 to 128 nodes, both dataflow versions continue to show

speedups, but the implicit datalfow version converges closer to the performance of the

explicit dataflow version: On the 32 node partition, explicit outperforms implicit by

a factor of two, while the speedup of explicit over implicit drops to 1.7 on 64 nodes,

and 1.2 on 128 nodes.
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Chapter 6

An Abstract Model for Dataflow

Comparison

Dataflow programming paradigms are an alternative approach with significant

potential to the Coarse Grain Parallelism programming model. This chapter compares

“explicit” dataflow—and its Parameterized Task Graph (PTG) abstraction as it is

used in the dataflow task-based runtime system, PaRSEC—with “implicit” dataflow

models of runtimes that support the serial task-insertion interface. It presents

an abstract model that quantifies the differences between “explicit” and “implicit”

dataflow models.

6.1 Affine Programs

Suppose there is a program that is affine. For instance, dense linear algebra results

in largely affine implementations. Such affine codes have the following restrictions:

• Loops that have fixed bounds and step that may not change during execution

(but could change from one execution to the next). If, for instance, the bounds

or steps are changed in the loop body, then a static analysis is not possible at

compile time.
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• Array indices with expressions that are limited to addition and subtraction of

the loop induction variables, constants, numeric literals (as well as multiplica-

tion by numeric literals) and branches (if-then-else) that contain only similar

arithmetic expressions and comparison operators.

Such an affine program can be fully analyzed using polyhedral analysis, and the

explicit dataflow representation can be automatically generated as a parameterized

task graph (PTG). The PTG is the compact representation of a DAG where

everything can be described algebraically, and can be generated without any overhead.

Meaning, no additional work needs to be performed that grows with the number of

nodes P . Furthermore, the space requirements to store a parameterized task graph

(PTG) does not grow as the number of tasks grows but remains constant: memory

requirement is O(1).

Given the PTG representation of a program, let Tp be the execution time it takes

to compute all tasks assigned to a node p. Then:

Tp =

Np∑
ti=0

T ti
compute + T ti

comm − T
ti
overlap

where:

• Np is the total number of tasks assigned to a node p,

• T ti
compute is the execution time it takes to compute a task ti,

• T ti
comm is the communication time it takes to transfer data from another node

that is required for a task ti (note, this time is negligible if the data is on the

same node), and

• T ti
overlap is the time of the data transfer that is overlapped with computation.

Note, that 0 ≤ T ti
overlap ≤ T ti

comm and that T ti
overlap = T ti

comm when the data is

on the same node or when communication is completely overlapped with computation.
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Furthermore, T ti
wait = T ti

comm − T ti
overlap corresponds to the time a task waits for

data to arrive.

Since the communication is performed by a node p, the above equations can be

simplified and provided by “node” rather than by “tasks assigned to a node”. Thus,

one can denote T p
compute =

∑Np

t=0 T
ti
compute and T p

wait =
∑Np

t=0 T
ti
wait then the time

required to complete all tasks on a node derives as:

Tp = T p
compute + T p

wait (6.1)

T p
wait = 0 if there is a complete overlap between communication and computa-

tion, and where T p
wait = T p

comm if there is no overlap at all and the data transfer

between nodes happens in a sequential fashion with the computation. Also, in the

case where the time for data transfer is larger than the time for computation (e.g., for

very fine grained tasks or for communication bound algorithms) T p
wait can be expressed

as the remaining portion of time that has not been overlapped.

For simplicity, it will be denoted that all tasks are similar and require similar

amount of time, say Tw, to be computed. Also, we can assumed that the workload is

equally balanced over the P nodes. Furthermore, the DAG exhibits a lot of parallelism

with low dependencies on communicated data; and since communication is non-

blocking, it can be perfectly overlapped with computation. As for communication,

let B be the total data in bytes that is transferred at the maximum throughput of

the network, which has a peak bandwidth of BWpeak bytes per second.

In terms of time requirements for the explicit dataflow, Equation 6.1 can then be

rewritten as:

T expl
p = max

(
Tw ·N
P · C

,
B

P ·BWpeak

)
(6.2)

where N defines the total number of tasks in a DAG, P is the number of nodes, and

C is the number of cores per node. Since communication and computation are fully

overlapped, T expl
p will be the maximum of the two.
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For the implicit dataflow representation, where tasks are sequentially inserted in

a queue by the runtime, the DAG connecting individual tasks for a given execution is

not known a priori. In order for the runtime to make scheduling decisions for the tasks

in the queue and to detect data dependencies between tasks, it needs to discover the

DAG of the execution, which needs to be stored in memory and traversed at run-time.

This “discovery of the DAG” adds an overhead T
(1)
O of O(N) for implicit dataflow

models, which is not the case for the explicit dataflow version.

For the explicit dataflow, DAGs are represented in a compact, problem-size

independent, format (a PTG) that is evaluated on demand to discover data

dependencies. The PTG allows for the evaluation of any part of the DAG without

having to store the DAG. For the implicit dataflow, the space requirements to store

the DAG grows as the number of tasks grow, resulting in a memory requirement of

O(N).

Once the DAG is discovered for implicit dataflow, the sole time requirements

for the completion of all tasks in a DAG is identical to Equation 6.2. Note, for both

models, the communication is non-blocking and performs at the maximum throughput

of the network. In terms of total time per node for the implicit dataflow, this results

in the following:

T impl
p = max

(
Tw ·N
P · C

,
B

P ·BWpeak

)
+ T

(1)
O (6.3)

Suppose problem sizes are sufficiently large and both dataflow models can

completely hide the cost of non-blocking communication. For strong scaling, where

the total problem size remains fixed and the number of compute nodes grows, implicit

datalfow becomes even more expensive because the relative cost of the overhead T
(1)
O

grows as the work per node shrinks with an increasing number of P .
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Thus, on a machine with P nodes and C cores per node, the PTG version of an

affine code will execute with a speedup of O(P ·C):

Speedup =
T impl
p

T expl
p

=

Tw ·N
P · C

+ T
(1)
O

Tw ·N
P · C

= 1 +
T

(1)
O

Tw ·N
· P · C (6.4)

This demonstrates that the implicit dataflow model—even if sufficient memory is

available to store the entire DAG—will have a constant overhead due to the sequential

task-insertion at the beginning of the execution. In contrast, the explicit dataflow

model always discovers the same amount of parallelism but without the overhead of

traversing the entire execution space in order to build the DAG, and without the

heavy memory requirements [20].

6.2 Non-affine Programs

On the other end of the spectrum waits the reality that affine codes are a very

small subset of the real world scientific applications. It would be desirable to be

able to automatically generate PTGs by comilers for arbitrary programs, not just

affine ones. However, compiler analyses stumble on several obstacles, from technical

implementation details to theoretical decidability limitations and thus far have failed

to deliver a general purpose solution.

Nevertheless, it is still possible to generate PTGs for highly dynamic applications,

like NWChem, that are not algebraic, and that have meta-data the execution depends

on. In such cases, the program data needs to be inspected and stored in meta-data

structures in a preliminary step before a PTG can be generated. This program

data can then be accessed in the PTG. Unlike a fully algebraic PTG of an affine

code that has no overhead, a more dynamic PTG that spends some time traversing

meta-data structures in memory will add an overhead T
(2)
O to the explicit dataflow

model for non-affine programs. In that case, a skeleton program needs to run at
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the beginning of the execution which populates the meta-data structures (details are

described in Section 4.1). After paying this additional overhead of T
(2)
O , the runtime

now has a PTG, so the communication of the explicit version of NWChem CC can

now perform at the maximum throughput of the network.

The time T expl
p it takes per node p to complete the computation of all tasks in the

PTG for CC is then:

T expl
p = max

(
Tw ·N
P · C

,
B

P ·BWpeak

)
+ T

(2)
O (6.5)

The current implicit dataflow version of NWChem CC comes with much higher

overhead than the PTG version of NWChem CC. Insert_task() calls are placed

directly in the control flow of the original CC code and replace the calls to the GEMM

functions. This implies that the overheads of the original code are inherited by the

implicit dataflow version. These overheads, which will be referred to in the text as

T
(3)
O , can be classified as follows:

• Calls to functions (e.g., GET_HASH_BLOCK(), ADD_HASH_BLOCK()) that transfer

data over the network via the Global Arrays layer. This communication is

blocking and there is no opportunity for communication and computation to

overlap within the same thread of execution.

• The overhead of the original shared counter: Load balancing within each of the

seven levels of the CC subroutines is achieved through variables that are shared

across the entire distributed memory program, and are atomically updated

(read-modify-write) using GA operations. The use of shared variables, that

are atomically updated—which is currently at the heart of the task-stealing and

load balancing solution—is bound to become inefficient at large scale, becoming

a bottleneck and causing major overhead.

Because of the heavy inherited overhead of the original code, it can be asserted

that T
(3)
O > T

(2)
O .
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In the implicit dataflow implementation of CC, all original sequential chains of

GEMMs have been parallelized by the insertion of parallel tasks. That implies, the fixed-

size window of tasks that is stored in memory at any given time is
N

Nchain

, where N

is the total number of tasks in a DAG, and Nchain is the total number of chains.

In this implementation, the runtime can never exploit more parallelism than

the fixed-size window of tasks, which is the maximum number of tasks in a chain.

Therefore, one must replace (P · C) with:

min

(
N

Nchain

, C

)
· P

Therefore, the time T impl
p it takes per node p to complete the computation of all

tasks in the implicit version of CC is then:

T impl
p = max

 Tw ·N

min

(
N

Nchain

, C

)
· P

,
B

BWpeak · P

+ T
(3)
O (6.6)

One can see that for communication-bound algorithms, the second term of

Equation 6.6 will define the execution time, otherwise the time to completion will

equal the total amount of work, divided by the maximum available parallelism. For an

NWChem CC problem with very large chain sizes, the maximum available parallelism

will be the number of cores C per node, otherwise, for problems with moderate chain

sizes, the parallelism is limited by the chain size, which is
N

Nchain

. In the beta-barotene

case study, the chain sizes are always less than or equal to the number of cores per

node. More specifically, the statistics in Figure 4.20 confirm that the chain size is

either 8 or 16 for the most expensive subroutines, and smaller chain sizes (4, 6, 8) for

less expensive subroutines.

Thus, the equation can be simplified to:

T impl
p = max

(
Tw ·Nchain

P
,

B

BWpeak · P

)
+ T

(3)
O (6.7)
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This means, the implicit dataflow CC allows for maximal 16 and on average

11 parallel workers per node. This in in agreement with the performance graphs

in Figure 5.10 and Figure 5.11 that show that the scalability of all three implicit

dataflow implementations (PaRSEC, StarPU, OpenMP) stagnates after 8 cores per

node.

Combining Equation 6.5 and Equation 6.7, we see that the explicit dataflow

version of NWChem CC will execute with a speedup of:

Speedup =
T impl
p

T expl
p

=

Tw ·Nchain

P
+ T

(3)
O

Tw ·N
P · C

+ T
(2)
O

(6.8)

over the implicit dataflow version. This demonstrates the following:

1. For an increasing number of nodes P and a fixed number of cores C per

node, the speedup of the explicit over the implicit CC code will converge to a

constant ∝ T
(3)
O

T
(2)
O

. This can also be observed in the experiment when comparing

the performance change when moving from 32 to 64 to 128 nodes. With an

increasing size of P , while both dataflow versions continue to show a speedup:

32 to 64 nodes: Speedupexpl = 1.5 and Speedupimpl = 1.8

64 to 128 nodes: Speedupexpl = 1.3 and Speedupimpl = 1.8

the performance of the implicit datalfow version converges closer to the

performance of the explicit dataflow version:

SpeedupP=32 =
T impl
p

T expl
p

= 2

versus

SpeedupP=64 =
T impl
p

T expl
p

= 1.7

versus

SpeedupP=128 =
T impl
p

T expl
p

= 1.2
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2. For a fixed number of nodes P and increasing number of cores C per node, the

speedup of the explicit dataflow over the implicit dataflow version for NWChem

CC will be proportional to:

T impl
p

T expl
p

≈

(
Nchain

N
+
T

(3)
O · P
Tw ·N

)
· C (6.9)

Since for real-world problems the total number of tasks N is much greater than

T
(3)
O · P
Tw

, Equation 6.9 can be further simplified because the second summand

becomes negligible. Note, this does not apply for the first summand where

numerator and denominator are both functions of N , thus, the fraction remains

large for big N . Hence, the ratio of
T impl
p

T expl
p

will become proportional to C:

T impl
p

T expl
p

≈ Nchain

N
· C

Note, this relationship is only accurate if in Equation 6.8 the following holds

true for the denominator
Tw ·N
P · C

� T
(2)
O , which implies:

C � Tw ·N
P · T (2)

O

In the beta-carotene case study,
Tw ·N
P · T (2)

O

≈ 1, 000, which is indeed much greater

than C for most modern machines. It can be observed in the performance

graphs for 32 ( Figure 5.10), 64 ( Figure 5.11), and 128 nodes ( Figure 5.12),

that, as the number of cores per node increases for a fixed P , the ratio of the

implicit over the explicit dataflow version continues to grow with the number

of cores used per node.

This serves as a theoretical demonstration that for the implicit dataflow version

of NWChem CC, which allows for the utilization of the original control flow of CC

and adds the sequential task-insertions to it, some parallelism will remain hidden
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when only tasks are inserted for the GEMMs in a chain. Because CC puts already a

significant burden on the memory requirements, with a storage cost of O(M4), where

M is the size of the molecular system, there will be significant limitations for the

implicit dataflow version when it stores the DAG of the execution in memory.

In contrast, the explicit dataflow version of NWChem CC discovers the same

amount of parallelism as the implicit dataflow version that would store the entire

DAG in memory, but without the heavy memory requirements, and without the high

overhead of the sequential skeleton program (T
(1)
O > T

(2)
O ).

This abstract model is not limited to NWChem CC and can be applied to any non-

affine applications that exhibit a comparable control flow, or uses similar techniques

and code structures.
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An alternate approach for achieving better load balancing in the CC code is the

Inspector-Executor methods [52]. This method applies performance model based

cost estimation techniques for the computations to assign tasks to processors. The

Inspector phase loops through the subroutines and creates an informative list of tasks

as it uncovers sparsity information. The Executor phase loops through this list of

tasks and aggregates the computations into a single task. Prior to the Executor phase,

performance model based cost estimation techniques for the computations are applied

to assign the aggregated tasks to processors. This technique focuses on balancing the

computational cost without taking data locality into consideration, and without using

a task-execution runtime.

ACES III [43] is another method that has been used effectively to parallelize

CC codes. In this work, the CC algorithms are designed in a domain specific

language called the Super Instruction Assembly Language (SIAL) [23]. This serves

a similar function as the Tensor Contraction Engine (TCE) [6, 33], but with an

even higher level of abstraction to the equations. The SIAL program, in turn, is

run by a Multiple Program Multiple Data (MPMD) parallel virtual machine, the

Super Instruction Processor (SIP) [44]. SIP has components that coordinate the

work by tasks, communicate information between tasks for retrieving data, and then

for execution. SIP is an MPI based program that uses multiple POSIX threads for

communication.

The Dynamic Load-balanced Tensor Contractions framework [42] has been

designed with the goal to provide dynamic task partitioning for tensor contraction

expressions. Each contraction is decomposed into fine-grained units of tasks. Units

from independent contractions can be executed in parallel. As in TCE, the tensors

are distributed among all processes via global address space. However, since Global

Arrays (GA) [50] does not explicitly manage data redistribution, the communication

pattern resulting from one-sided accesses is often irregular [59]. All of these solutions

offer efforts to improve load balancing and scalability of tensor contractions, and are

orthogonal approaches to the TCE altogether.
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In an effort to offer alternative programming paradigms to the Bulk Synchronous

Parallel model (offered by MPI) there has been a significant body of work on

languages, or language extensions, such as the PGAS languages [12, 13, 25, 51, 65],

where the compiler is expected to perform the parallelization of the input program.

Habanero [31] combines a compiler and a runtime to achieve parallelism and schedule

tasks, and relies on language extensions that a human developer must place into his

or her application to guide task creation and synchronization. Bamboo [49] is another

compiler tool that utilizes the prototype runtime system Tarragon [14] for scheduling

tasks extracted from annotated MPI code. Bamboo’s execution model is a form of

fork-join parallelism, since it preserves the execution order of overlap regions, which

run sequentially, one after the other. Also, the more mature Charm++ solution

offers a combination of a programming language and a task scheduling backend. All

of these solutions offer new languages, or extensions to existing languages that require

specialized compilers and expect the developer to adopt them as the programming

paradigm of choice. In the work presented here, we do not require the developers of

NWChem to change the programming language they use, but rather adapted their

FORTRAN 77 code to use our task scheduling runtime.

In terms of dataflow environments, several groups have studied parallel execution

models since the early 1990′s that (a) allowed the same code to run on shared memory

and distributed memory systems, and (b) provided load balancing features for

irregular applications [30, 38, 57]. Unfortunately, most of these systems are impossible

to use and evaluate today. Newer approaches, such as PM2 [47], SMARTS [61],

Uintah [22], and Mentat [30] exist, but do not satisfy the requirement for decentralized

execution of medium grain tasks (≈ 10µs−1ms) in distributed-memory environments.

In terms of task scheduling systems, there are several approaches that employ

“Dynamic Task Discovery (DTD)”, or in other words building the entire DAG

of execution in memory using skeleton programs. Several projects are embracing

this principle on shared memory (SMPSs [53], Cilk [9], Thread Building Blocks

(TBB) [Intel]), or accelerator based systems (StarPU [1], CellSs, GPUSs [8]). Some
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have support for medium size distributed memory machines, but with the introduction

of synchronization at both endpoints. In this work we use PaRSEC as our runtime

system and take advantage of the Parameterized Task Graph (PTG) representation,

in order to avoid the unnecessary overheads associated with DTD.
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Chapter 8

Conclusions and Future Directions

The most popular programming model for current large scale computing is Coarse

Grained Parallelism (CGP) with explicit message passing, where every exchange of

data has to be implemented with carefully hand-crafted send and receive calls to

the communication layer. With the profound changes in the hardware landscape,

featuring increasing complexity and heterogeneity of today’s and projected future high

performance computers, one of the challenges for the mainstream programming model

is to sustain the expected performance scalability on these systems. For instance, most

of the computational chemistry methods are unable to take full advantage of current

computer resources at national supercomputer centers, and are doomed to drop back

even more on post-petascale systems.

This dissertation substantiates the hypothesis that dataflow programming models

are well suited for computational chemistry applications, and provide a viable way

to achieve and maintain computation at scale, especially on distributed, many-core,

heterogeneous architectures. With the present discrepancy between the vast advances

in hardware and without a corresponding match at the software level, there is little

room left to dynamically manage diverse levels of parallelism and deliver performance

portability across different systems. The movement toward more powerful and flexible

programming models, away from traditional programming concepts, will enable easier

transitions to emerging novel architectural designs, and more portable applications.
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While the focus in this work is on Coupled Cluster methods (CC), the insights

gained from this research are much more broadly applicable. The DAG execution

models for Coupled Cluster algorithms, developed in this dissertation, will allow

for broader and more flexible availability to more software levels of computational

chemistry codes. The modernized codes are applicable to several key science drivers,

such as studies of aerosol particles, soil chemistry, bio-systems, hormone-cofactor

functionality in proteins, ionic liquids in cells, spectroscopies, new materials, light

harvesting systems, and large-scale reaction mechanisms. We expect that the

availability of dataflow-based CC implementations will transform the landscape of

highly-accurate simulations; will provide an important example for employment with

the multiple domain-specific, tensor-based methods; and will enable users to achieve

an unprecedented level of accuracy in molecular modeling.

8.1 Conclusions

The main goal is to move away from the concept of developing scientific applications

for specific architectures or platforms, and instead, use dataflow programming models

to represent the algorithms in a way that allows capturing the essential properties

of the algorithms (like the data dependencies). A task-scheduling runtime will then

map the algorithms from the DAG representations to the hardware platforms. It

is the responsibility of the runtime to manage architecture-aware scheduling of the

tasks on a broad range of computing platforms, which, ultimately, lifts the burden

of traditional programming models—namely, “programming at the communication

layer”—from the domain scientists and allows them to focus on the efficiency of the

numerical algorithms (and not individual implementations of the algorithms).

Chapter 3 introduced “implicit” and “explicit” dataflow programming models,

and displayed the benefits of adopting dataflow-based executions over CGP in terms

of: (a) communication-computation overlap, which is achieved automatically with

explicit dataflow as communication is implicit; (b) support for heterogeneity of

105



compute resources, which is handled by the dataflow runtime as it dynamically

schedules tasks based on the workload and available compute resources; and (c)

freedom from control flow based limitations of CGP, which are often a result of the

application being structured as a sequential code.

This work adopts dataflow programming models to the current state-of-the-art

NWChem Coupled Cluster methods and evaluates different dataflow executions in

terms of scalability, resource utilization, programmability. Chapter 4 presented

the explicit dataflow extensions of CC with the PaRSEC framework, while the

implicit dataflow extensions over different task-scheduling runtimes were discussed

in Chapter 5.

In terms of programmability, the implicit dataflow model expresses parallelism

by submitting tasks in the sequential flow of the original program. This gives

domain scientists the advantage to take an extensive, multi-million line application,

like NWChem, and express additional parallelism by purely submitting tasks in the

original control flow. It also allows for the utilization of long established features from

the original implementation, without diverging too much into an entirely different

representation, like it is the case for the explicit dataflow model.

The implicit dataflow versions are executed with 3 runtimes: OpenMP for

task-level parallelism in shared memory, and PaRSEC and StarPU for task-level

parallelism in distributed memory. The performance of implicit dataflow CC is on

par for all three runtimes and exhibits a speedup over the original CC of a factor of

1.5 when running on 128 nodes. This effort substantiates that even implicit dataflow-

based execution at the node level reveals notable performance benefits and enables

more efficient and scalable computation of CC. The OpenMP implementation has

limits, though, for the reason that no additional parallelism can be afforded with the

shared memory programming model. Consequently, the main difficulty is to ensure

that there are no data dependencies between PARALLEL regions. In contrast, the

implicit dataflow versions over PaRSEC and StarPU come with several advantages

as (1) there is no limitation to shared memory, and (2) programmability is more
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transparent and less error-prone than OpenMP tasks (which depend on explicit

attribute declarations for variables in the PARALLEL, SINGLE, TASK regions, etc.).

On the other hand, the explicit dataflow model demands a much bigger engineering

job compared to the implicit dataflow models. The PTG programming paradigm

proposes a completely different path from the way parallel applications have been

designed and developed up to the present. The PTG decouples the expression of

parallelism in the algorithm from the control flow ordering, data distribution, and

load balance [20]. However, as demonstrated in Chapter 4, even though the explicit

dataflow model departs entirely from the original control flow of CC, the conversion

from a CGP to PTG execution can happen gradually. In this work, the performance

critical parts of CC have been selectively ported to execute over PaRSEC and are

then integrated back into the original NWChem framework to run seamlessly until

completion.

Despite the lower startup overhead, in terms of software engineering, of implicit

dataflow paradigms (by purely submitting tasks in the sequential flow of the original

code), the significance of the increased implementation effort of the PTG becomes

visible when comparing the superior performance of the explicit dataflow version of

CC with the implicit dataflow and traditional CC computation. The PTG version

of CC outperforms the original CC version by a significant margin—to be precise,

by a factor of 2.6 on 32 nodes—even with only half of the CC kernels running

over PaRSEC while the remaining kernels are unchanged. Additionally, the explicit

dataflow version manages to use an increasing number of cores to improve the

performance—all the way up to 2,048 cores when running on 128 nodes (with 16

cores/node)—demonstrating not only a significant performance boost but also better

scaling and greater utilization of compute resources due to the ability to fully overlap

computation with communication. On the contrary, the original and the implicit

dataflow CC code perform best on 8 cores/node and are not able to take full advantage

of the 16 available cores/node because both versions are tied to the limitations of

the original control flow, such as blocking communication, shared variables that are
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atomically updated, which is at the heart of the original load balancing solution, and

a significant amount of synchronizations that limits the overall scaling on much larger

computational resources. In contrast, the PTG CC version with PaRSEC distributes

the work in a round-robin fashion and avoids any kind of global agreement in the

critical path of the DAG execution.

Chapter 6 presented a theoretical model that quantifies the differences and

limitations of implicit and explicit dataflow models for affine and non-affine codes.

The model demonstrates that explicit dataflow for affine codes will execute with a

speedup proportional to the total number of compute cores on a machine. For implicit

dataflow, where tasks are sequentially inserted, the DAG for a given execution is not

known a priori. And so, the runtime needs to build the (entire or partial) DAG of

the tasks in memory, which results in a constant overhead at the beginning of the

execution.

For non-affine codes, such as NWChem CC, the explicit dataflow adds an overhead,

which does not exist for affine codes, due to a more dynamic PTG that spends

time traversing meta-data structures, etc. However, after paying that overhead the

runtime has a PTG and communication is perform at the maximum throughput of

the network. On the other hand, the current implicit dataflow version of CC comes

with a much higher overhead because it inherits the overheads of the original control

flow. Therefore, with an increasing number of nodes on a machine, the speedup of

explicit over implicit dataflow CC will be proportional to a constant that depends on

the two overheads
Overheadimpl

Overheadexpl
.

The abstract model in Chapter 6 is not limited to NWChem CC but is much more

widely applicable to any non-affine applications with similar control flow and patterns.

8.2 Future Directions

This dissertation is a stepping stone toward more portable performance across a

broad range of diverse computing platforms. Heterogeneity is a challenge that parallel
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application scientists have to address in order to modernize their applications given

the pervasiveness of accelerators and co-processors in HPC. In the CC dataflow

models, presented in this work, work is naturally decomposed in tasks and therefore it

can be divided between heterogeneous resources more readily than in the CGP model.

A natural next step for the CC investigations would be to use the flexibility afforded

by the additional parallelism to enable facile exploitation of new and interesting

computing architectures (such as the Intel Xeon Phi processor, GPU accelerators)

that perform best for the type of task under consideration.

In the explicit dataflow version of CC, tasks are currently scheduling in a round-

robin fashion without taking data locality into consideration. Different scheduling

methodologies could be investigated by considering the trade-offs between locality

and work stealing. Also prioritizing tasks with specific characteristics can result in

significant performance differences if, for instance, data movement in the critical path

can be avoided with carefully assigned priorities and scheduling of these tasks.

With the emergence of power efficiency as a primary design constraint of

anticipated compute systems, and reduced data movement as a primary programming

goal, the need for energy efficient algorithms is inevitable. With the DAG model,

groups of independent tasks can be treated as individuals entities, or aggregated into

a single super-task. The judicious grouping of tasks with particular characteristics

into such a super-task can be investigated to obtain the fastest execution time under

a given power bound.
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[47] Namyst, R. and Méhaut, J.-F. (1996). PM2: Parallel multithreaded machine. A

computing environment for distributed architectures. In D’Hollander, E., Joubert,

G. R., Peters, F. J., and Trystram, D., editors, Parallel Computing: State-of-the-

Art and Perspectives, Proceedings of the Conference ParCo’95, 19-22 September

1995, Ghent, Belgium, volume 11 of Advances in Parallel Computing, pages 279–

285, Amsterdam. Elsevier, North-Holland. 102

[48] Nataraj, A., Morris, A., Malony, A. D., Sottile, M., and Beckman, P. (2007).

The ghost in the machine: Observing the effects of kernel operation on parallel

application performance. In Proceedings of the 2007 ACM/IEEE Conference on

Supercomputing, SC ’07, pages 29:1–29:12, New York, NY, USA. ACM. 9

[49] Nguyen, T., Cicotti, P., Bylaska, E., Quinlan, D., and Baden, S. B. (2012).

Bamboo: translating mpi applications to a latency-tolerant, data-driven form.

In Proceedings of the International Conference on High Performance Computing,

117



Networking, Storage and Analysis, SC ’12, pages 39:1–39:11, Los Alamitos, CA,

USA. IEEE Computer Society Press. 102

[50] Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and

Apra, E. (2006). Advances, Applications and Performance of the Global Arrays

Shared Memory Programming Toolkit. International Journal of High Performance

Computing Applications, 20(2):203–231. 8, 13, 101

[51] Numrich, R. W. and Reid, J. K. (1998). Co-Array Fortran for parallel

programming. ACM Fortran Forum 17, 2, 1-31. 102

[52] Ozog, D., Shende, S., Malony, A., Hammond, J. R., Dinan, J., and Balaji,

P. (2013). Inspector/executor load balancing algorithms for block-sparse tensor

contractions. In Proceedings of the 27th International ACM Conference on

International Conference on Supercomputing, ICS ’13, pages 483–484. ACM. 49,

101
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