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Abstract

Shared-memory symmetric multiprocessors (SMP's) based on conventional microprocessors are by far
the most common parallel architecture today, and will continue to be so for the forseeable future. This
thesis describes techniques to compile and schedule Id-S, a dialect of the implicitly parallel language
Id, for execution on SMP's.

We show that previous implementations of Id for conventional microprocessors incurred an overhead
of at least 40-300% over an efficient sequential implementation of Id-S. We break down this overhead
into various presence-tag checking and scheduling overheads. Given this overhead, we conclude that
a fine-grained, element-wise synchronizing implementation of Id is not suitable for use on small-scale
SMP's.

We then describe a parallelization technique for Id-S that discovers both DAG and loop parallelism.
Our parallelization exploits Id-S's single-assignment semantics for data structures. We show that for
many programs, our technique can discover ample parallelism, without need for Id's traditional non-
strict, fine-grained, producer-consumer semantics. Because our parallelization eliminates the need for
presence-tag checking and creates coarser-grained units of work, the parallelized codes only incur a
small overhead versus sequential execution.

Finally, we describe code-generation and scheduling techniques which produce efficient parallel exe-
cutables which we run on a Sun Ultra HPC 5000 SMP. We compare speedups of parallelized Id-S codes
using two different schedulers: an SPMD scheduler, and a more general multithreaded scheduler. We
describe the advantages and disadvantages of each scheduler, and quantify the limitations in speedups
for each scheduler which are due to parallelization, code generation, and scheduling.
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Chapter 1

Introduction

After decades of research and years of turmoil in industry, parallel computers have finally entered the

mainstream in the form of relatively cheap, small-scale, shared-memory Symmetric Multiprocessors

(SMP's). Every major computer manufacturer is now making and selling SMP's, but despite this pro-

liferation of hardware, users cannot easily exploit this parallelism except for a subset of well-structured

"scientific" applications and relatively coarse-grained throughput applications such as database servers

and Web servers.

In this thesis, we describe an approach to exploiting parallelism on SMP's which has several advan-

tages over previous approaches to parallel computing:

* It runs on stock hardware using a stock operating system.

* The programmer writes in a sequential style, leaving parallelization, work partitioning, synchro-
nization, communication and scheduling to the compiler and run-time system.

* It handles both structured and unstructured parallelism, which requires solving problems at two
different levels:

1. Discovering both structured and unstructured parallelism in sequential programs.

2. Scheduling possibly unstructured work on the processors with good load balance and low
overhead.

This work bridges the gap between two very different approaches to parallel computing: Id90 on

Monsoon and Fortran on SMP's. The Id90/Monsoon approach [62] [43] exposes implicit parallelism

at the language level while requiring extensive hardware support for fine-grained synchronization and

communication. Every level of parallelism is exploited, including instruction, procedure, loop, and



Our Approach

Id90 on Id-S on Fortran on
Monsoon SMP SMP

Hardware-intensive Language-intensive
Language-intensive Compiler-intensive Compiler-intensive
structured, unstructured structured, unstructured structured parallelism:
parallelism: instruction, parallelism: loop and balanced loops and
loop,procedure, and procedure parallelism flat data structures,
producer-consumer affine references
parallelism

Figure 1.1: Our approach straddles two previous approaches to parallel computing: Id on Monsoon and
Fortran on SMP's, attempting to take advantage of the strengths of each.

producer-consumer parallelism. The Id90/Monsoon approach can support both structured and unstruc-

tured parallelism at a significant cost in hardware and re-coding of applications. However, to the first

degree, the programmer does not need to concern himself with explicit parallelization, work partition-

ing, synchronization, communication or scheduling.

The Fortran/SMP approach, exemplified by the SUIF [6] compiler, can take advantage of stock

hardware and OS's for parallelizing many existing Fortran codes without programmer intervention.

This approach exploits coarse-grained loop parallelism, where data structure accesses within the loop

are affine functions over the iteration space and work is relatively well-balanced across the loop itera-

tions. We call such parallelism structured parallelism. The Fortran/SMP approach emphasizes compiler

analysis and transformations to parallelize codes and discover coarse-grained parallelism, while taking

a semi-static approach to work scheduling and distribution.

Our approach, as shown in Figure 1.1, attempts to exploit structured and unstructured parallelism

on stock hardware. We compile Id-S, a variant of the Id90 language, and perform interprocedural data

dependence analysis to determine when we can exploit procedure parallelism and loop parallelism. Our

analysis is greatly aided by the Id-S semantics, which require that each data structure element be written

to at most once, thereby eliminating anti- and output- dependences at the source level. We then generate

code which is scheduled dynamically on the SMP processors. A combination of compiler and run-time

system support allows us to obtain a coarse-grain of parallelism at run-time. We have been able to

compile almost all Id90 programs with minor changes, showing speedups on most codes.



1.1 Parallelism and efficiency

Our work builds on previous efforts to compile Id90 for conventional microprocessors, including TAM

[25] [32] [72], P-RISC [56], and pHluid [18]. Our approach differs from those previous efforts in

that we have changed the Id language semantics and opted to forgo fine-grained producer-consumer

synchronization in order to improve the efficiency of the language implementation. In effect, we are

trading off parallelism for efficiency - this tradeoff is necessary because we do not have hardware

support for producer-consumer synchronization and we are targeting small machines.

1.1.1 Overheads in previous Id implementations

The only published parallel speedup data for an Id implementation targeted for "conventional" (i.e. non-

dataflow) architectures are for TAM [72] running on the CM-5. These data include a linear speedup of

16 on 64 processors for the Simple benchmark. The linear speedup indicates that there was enough

parallelism exposed to execute on 64 processors.

A further examination of the data from [72] reveals that the speedup numbers are relative to the

same parallel executable running on 1 processor of the CM-5. However, this parallel executable is more

than twice as slow as the same program compiled under the same TAM compiler for single-processor

execution (as opposed to a 1-processor execution of a parallel-ready code), because of overheads intro-

duced for real parallel execution - these overheads include support for remote memory references and

parallel work distribution. In Chapter 3, we show that even the single-processor TAM implementation

is twice as slow as it might be because of its support for fine-grained synchronization and scheduling.

In all, the linear speedup of 16 on 64 processors is actually a linear speedup of less than 4 when

compared to an efficient sequential implementation. In effect, the program is slowed down by a

factor of 16, and then run on 64 processors to get a factor of 4 overall speedup.

This is an extreme case, but the parallelism/efficiency tradeoff is a serious issue when considering

implementation alternatives. Running on a relatively small SMP, we certainly cannot afford a factor of

16 overhead, even if it promises us abundant parallelism, but as the simple analysis in the next section

shows, we probably cannot afford even a more realistic overhead of 2.5, except when there is relatively

little parallelism to be exposed.
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Figure 1.2: Assuming P is the fraction of a code which can be parallelized, and Overhead is the ratio of
run-time versus sequential execution, these graphs show the speedups under two scenarios assuming the
parallel part of the code speeds up perfectly. In general, efficiency is more important than parallelism
for small numbers of processors, except when parallelism is low.

1.1.2 Analysis of parallelism/efficiency tradeoff

With a small number of processors and high synchronization overheads, additional parallelism may not

make up for a loss in efficiency. Figure 1.2 shows speedups under a very simple analytical model. Let

us assume that a code runs in time T in an efficient sequential implementation. In order to enable the

code to run in parallel, assume there is an overhead factor OV such that a parallelized code running on

one processor takes time T x OV. Assume that the code consists of a perfectly parallelizable fraction

P and a sequential fraction (1 - P). The total run-time of a code running on n processors is then

T x OV x ((1 - P) + P/n), and the speedup on n processors is:

1
Speedup = OV x ((1 - P) + P/n)

We then plug in values of OV and P to compare the speedups of a more efficient (OV = 1.25, P =

.5, .95, .995) and a more parallel (OV = 2.5, P = .95, .995, .9995) version, where the more parallel

version has a sequential section which is 10 times smaller than the more efficient version (i.e. has 10

times more parallelism). The factor of 2.5 overhead is a very conservative estimate of the fine-grained

overhead introduced by a TAM-style Id implementation - this is analyzed in greater depth in Chapter 3.

The graphs show that for a small number of processors (< 10), the additional parallelism of the high

overhead scenario does not make up for the additional overhead, except in the case of low parallelism,

and then, only for more than 4 processors.

) 4 6 8 10

_ , __ , _ ,, ,

1

i

-



Exposing Parallelism Codegen and Scheduling

Language Compiler Compiler Run-Time Executable
Language Executable

Middle-End Back-End System

Figure 1.3: In exploiting structured and unstructured parallelism, there are two main, somewhat decou-

pled components: (1) exposing parallelism and (2) code generation and scheduling. We attack the first

with a combination of language support and compiler analysis, and we handle the second with methods

for efficient code generation and scheduling.

Of course, the tradeoffs depend significantly on the actual overhead parameters, and the difference

in exploitable parallelism. In some cases the difference in overhead may be greater or smaller, and

the difference in parallelism may be greater or smaller, but Figure 1.2 gives an intuitive feeling for the

tradeoffs we are considering.

The overhead parameters we chose fit closely with the analysis in Chapter 3 comparing the more par-

allel Id90 with the more efficient Id-S. The parallelism regime in which we operate (i.e. low, medium

or high) depends upon the effectiveness of our parallelization analysis and the characteristics of the

codes we are considering. If the parallelization yields enough exploitable parallelism that we are oper-

ating in the medium or high range, then any additional parallelism we could have exploited with a more

fine-grained approach would not be not necessary.

1.2 Structured versus unstructured parallelism

In our system, we would like to exploit structured as well as unstructured parallelism. Structured par-

allelism is loop parallelism where data structure accesses are affine functions of the iteration space, and

where work is relatively well balanced across the loop iterations. Unstructured parallelism is all other

parallelism, including procedure parallelism, and whole loop parallelism (e.g. two separate loops exe-

cuting in parallel) - in unstructured parallelism, work may be unbalanced and the granularity of work

may be unknown at compile time, or even by the programmer. We are not concerned with instruction-

level parallelism, and leave that to the individual superscalar microprocessors in the SMP.

Exploiting parallelism requires solving two separate problems: (1) exposing parallelism and (2)

code generation and scheduling. As shown in Figure 1.3, we address the first problem with the language



and compiler middle-end and the second problem with the compiler back-end and run-time system. The

two problems are decoupled to the extent that different strategies for attacking them can be mixed and

matched.

1.2.1 Exposing parallelism

Traditional Fortran loop parallelizing compilers expose parallelism using a combination of ad hoc nested

loop data dependence analyses [48] [86] and interprocedural "region-based" and linear-inequality driven

analyses and transformations [13] [65] [6] [38]. These approaches can work well for very structured

Fortran programs where most of the work lies in nested loops, and where accesses to large, flat, static

data structures in the loops are affine functions of the iteration space.

However, these Fortran techniques do not work as well for programs which have less structured

accesses to data structures - for example, where most work does not lie in loops, or where accesses are

not affine, or where nested data structures such as lists, trees and other non-array structures are used.

Most of the research in unstructured parallelization has focused on pointer analysis in the context of C

programs [84], but this work has had only limited success, largely due to the difficulty of handling C's

very low-level semantics.

We take the approach of requiring some language support by having the user to program in a

style which gives the compiler more information about data dependences. Because Id-S is a single-

assignment language (i.e. each data structure element can only be written once), the compiler does not

need to check for anti- or output- dependences, which can obscure some parallelism. Furthermore, the

single-assignment semantics forces the user to use dynamic heap allocation, which allows the compiler

to further distinguish between structure accesses, exposing more parallelism.

The net result is that we can use a very simple interprocedural data dependence analysis to find

both loop and procedure parallelism. Fortran techniques would still be useful for a few loops that our

approach cannot analyze, but our simple technique finds most of the loops Fortran techniques would

find, and can also handle some loops with non-affine accesses or accesses to nested data structures,

which Fortran techniques typically cannot handle. In general, our simple analysis is good enough that

we have not bothered to implement the Fortran techniques.

The middle-end of the compiler is also responsible for giving a rough determination of when par-

allelism is worth exposing, and passing along this information to the back-end code generation phases.



We describe some simple, effective techniques to avoid exposing too much fine-grained parallelism. The

work-estimation phase is not as important as it would be in other systems because we have taken great

care in the code generation and run-time system to minimize synchronization and parallel bookkeeping

overheads, and to increase work granularity at run-time.

1.2.2 Parallel execution model: SPMD vs. multithreading

Although traditional Fortran parallelizing loop compilers originally targeted vector supercomputers,

more recent Fortran compilers [6] have targeted non-vector SMP's. These Fortran compilers generate

mostly sequential code with parallelized outer loop iterations scheduled evenly across the processors.

In this thesis, we call this execution model the Single Program Multiple Data (SPMD) execution model.

SPMD works well for structured programs because work resides mostly in loops, and is well-balanced

across loop iterations. Additionally, compiler-driven loop and data transformations can improve the

locality of data references under SPMD execution [85].

The SPMD model has several drawbacks - it cannot effectively handle unbalanced loops, procedural

parallelism, or nested parallel loops because loop iterations are distributed evenly across the processors,

and only one level of loop parallelism is exploited. In contrast, the multithreaded execution model

allows different processors to execute different procedure or loop activations, dynamically spawning,

scheduling and synchronizing work. The multithreaded model is more general than the SPMD model,

but may incur more overhead due to dynamic scheduling and synchronization, and poorer memory

locality.

We use the terms "SPMD" and "multithreaded" very loosely - both terms can be used to describe a

wide variety of execution models. Furthermore, we show that SPMD and multithreaded execution are

two points on a continuum of execution models. We compile Id-S for both SPMD and multithreaded

parallel execution, and compare their performance. For some highly structured applications, a more

static, SPMD approach yields better performance, whereas for other, less structured, less loop-dominant

applications, a more dynamic, multithreaded approach yields better performance.

In this thesis, we show how to structure multithreaded execution so that it can be performed effi-

ciently, while being competitive with SPMD execution for many codes. Implementing multithreading

efficiently requires efficient code generation techniques and adaptive, lightweight scheduling mecha-

nisms.



1.3 Thesis contributions

In this thesis, we focus on implementing a parallel software system to exploit symmetric multipro-

cessors. Almost all parallel computers today are SMP's, and SMP's are becoming cheaper and more

common on the low-end, and larger and more powerful on the high-end. SMP's provide shared mem-

ory support directly in hardware, easing the burden on the programmer and compiler. However, SMP's

do not provide any hardware support for fine-grained synchronization or scheduling. Synchronization

is usually performed through relatively heavyweight locks to shared memory locations, and schedul-

ing must be done completely in software. Consequently, the granularity of parallelism must be coarse

enough to overcome the overheads incurred for synchronization and scheduling.

The organization of the software is the key to exploiting parallelism effectively on SMP's. We

describe an approach which includes language, compiler and run-time system working in concert to

expose and exploit parallelism efficiently.

1.3.1 New language semantics

We introduce a variant of the Id90 language, which we call Id-S. Id-S has a sequential evaluation order

like C or Fortran and single-assignment semantics like Id90. Id-S is not functional: data structures

can be allocated, and reads and writes can be performed on the structures as in imperative languages,

except that each structure element can only be written once. Id-S's sequential semantics do not preclude

an implementation which exploits producer-consumer parallelism, and all legal Id-S programs are also

legal Id90 programs which will execute, terminate and provide the same results if implemented on

previous Id90 systems, including Monsoon.

We changed the Id semantics to provide a sequential evaluation order because the fine-grained,

implicitly parallel dataflow semantics of Id90 are difficult to implement efficiently on non-dataflow

hardware, and as we discussed in Section 1.1, the parallelism exposed by Id90 would not make up

for the overhead incurred. The sequential semantics also give more information to the compiler about

dependences caused by reads and writes.

We chose to compile Id-S rather than C or Fortran because the single-assignment semantics allowed

us to both simplify parallelization analysis for structured loops, and also handle unstructured codes

which would be difficult or impossible to parallelize under imperative semantics.



Performance comparison (seconds on SparcStation 10)
Input Size strict TAM Id90 Id-S C/FORTRAN

Gamteb 40,000 169.5 88.3
MMT 500 61.0 22.2 19.8
Paraffins 19 2.2 1.6
Quicksort 10,000 1.5 0.8 0.6
Simple 11 100 2.7 1.1 1.0
Speech 10240 30 0.6 0.16 0.12

Figure 1.4: Id-S is the fastest implementation of Id to date, and comparable in performance to C or
Fortran.

Surprisingly, we found that almost all existing Id90 programs could be converted to Id-S programs,

simply by reordering bindings within blocks. Almost all of the Id90 programs we found which we could

not convert to Id-S were toy programs designed explicitly to exploit Id90's non-strict, implicitly parallel

dataflow semantics.

1.3.2 New compiler parallelization and code-generation

The core of our research is built around a new Id compiler can work with varying language semantics,

exploiting different levels of parallelization, and using different code-generation strategies.

Id-S's sequential evaluation order allows us to generate more efficient code for conventional micro-

processors than for Id90, while the single-assignment semantics allows us to perform more paralleliza-

tion than for Fortran or C. Our sequential implementation of Id-S is the fastest implementation of Id

to date, with performance competitive with sequential Fortran or C. Figure 1.4 shows our performance

relative to strict TAM Id90 and C or Fortran - the TAM performance numbers are from [72]. Identical

Id programs were compiled for TAM and Id-S, and similar (or more efficient) algorithms were used

for the C and Fortran programs. No C or Fortran programs using the same algorithms were available

for Gamteb or paraffins. More details about the input sizes and structure of the programs are given in

Sections 3.1 and 4.5.

1.3.3 Parallelism and efficiency tradeoff

Using our sequential Id-S implementation as a baseline, we perform a detailed evaluation of the over-

heads in the state-of-the-art implementations of 1d90 for conventional microprocessors. Our results



show where improvements could be made in implementations with element-wise data structure syn-

chronization, but also lead us to conclude that such an implementation would have overheads which are

too high to overcome any benefits from additional parallelism.

1.3.4 Parallelizing Id-S

We give an algorithm for parallelizing Id-S which is based on existing interprocedural data dependence

analyses. These analyses yield more results for Id-S than they do for imperative languages because of

Id-S's single-assignment semantics and frequent heap allocations.

We instrument our compiled code to provide us with ideal parallelism numbers to give us an idea

of how effective our parallelization is, and where it is weak. The ideal parallelism numbers allow us to

separate the effectiveness of the parallelization from the details of the code generation and scheduling.

By disabling or modifying certain parallelization analyses, we also show the separate effects of

procedure and loop parallelism, and how much parallelism we could discover if we do not assume

single-assignment semantics.

1.3.5 Parallel code generation and run-time system

We describe our code generation schemas which are tightly linked with the run-time system. We show

some control-flow style optimizations performed to make hooks into the run-time system cheaper.

We describe the structure of the run-time system, which increases work granularity at run-time

using lazy work-stealing techniques. Our run-time system also handles loop and procedure parallelism

uniformly, thereby simplifying our run-time system entry-points. Some simple compile-time work-

estimation is performed to eliminate fine-grained parallelism which cannot be profitably exploited.

1.3.6 Parallel performance

Finally, we give performance numbers on an 8-processor Sun Microsystems Ultra HPC 5000 SMP, and

analyze sources of lost performance on benchmarks which do not achieve perfect speedup. The potential

sources of overhead we examine include:

* Parallel overheads due to code generation - although we attempt to keep overheads due to code
generation down as much as possible, we still have some overhead compared to sequential execu-
tion.



* Insufficient parallelism - some codes do not parallelize well, because of limitations of the com-
piler. Some codes simply do not have much parallelism to exploit.

* Run-time system overheads - run-time system overheads include time to distribute work and syn-

chronize on returning work. Run-time system overheads typically show up for codes which have
a small work granularity and/or low parallelism. SPMD scheduling typically has less overhead
than multithreaded scheduling, although for many codes, the difference is insignificant.

* Load balance - for some codes, a simple SPMD scheduling leads to load imbalance, whereas
multithreading scheduling can handle more

* Memory system limitations - certain codes are fundamentally limited by the main memory band-
width of the SMP. Some codes will not show good speedup unless heap memory is reclaimed
because of poor cache behavior and memory bandwidth limitations.

We show some speedups for almost every code we ran, validating our approach.1 Performance

could be improved on the compiler side by improving code generation and parallelization. On the

run-time system side, it could be improved by better (more robust) scheduling policies and a tighter

implementation.

1.3.7 Issues not addressed in this thesis

Many issues remain unaddressed in this thesis because of a lack of time and resources. In a produc-

tion Id system, garbage collection or some other form of automatic memory management [44] would

be necessary to avoid running out of heap memory. Our system currently places this burden on the

programmer, which is both tedious and error-prone. The effect of garbage collection on parallelism and

performance might be somewhat different from our results.

Fortran techniques would be useful both for parallelizing loops which cannot be handled by our

system, and for restructuring to improve usage of the memory hierarchy. Currently, we perform no

locality optimizations in the compiler or run-time system. Many locality transformations are orthogonal

to scheduling, and could provide improvements for multithreaded execution as well as SPMD execution.

Our compiler depends upon interprocedural analysis for parallelization. Currently, this is imple-

mented by compiling the entire program at once, but interprocedural analysis can also be performed

with separate compilation by maintaining some file information in a database, or by pushing some of

the compilation to the linking phase.

'The Id-S benchmarks that we used to evaluate the language, compiler and run-time system can be retrieved at

http://www.csg.1cs.mit.edu/-shaw/shaw-phd-id.tar.gz.



Year System Researchers and References

1987 Id / TTDA Arvind, Nikhil, Iannucci, Traub, etc. [9] [10]
1989 Id / Monsoon Papadopoulos and Culler [62], Hicks, Chiou, Ang, Arvind [43]

1988-1995 Id partitioning Traub [81] [82], Schauser [72], Coorg [22]
1991 Id / TAM Culler, Goldstein, Schauser, von Eiken [25] [32]
1992 Id / P-RISC Nikhil [56]
1992 EM-C / EM-4 Sato, Sakai, etc. [66] [68]
1993 Id / StarT-88110MP Carnevali, Shaw [55]
1994 Cilk / CM-5 Zhou, Halbherr, Joerg, etc. [37]
1994 Id / pHluid Chiou, Nikhil [18]
1997 Id97 / SMP's This Work

Figure 1.5: The Id97 system has dataflow roots but has moved towards implementation on more con-
ventional architectures.

We only show performance results for relatively small (5 8 processor) systems - for larger systems,

locality, synchronization and communication become more of a concern, and the techniques we use may

have to be modified or augmented.

1.4 Related work

The direct roots to the approach in this thesis have a long history, dating back to dataflow architec-

tures and implicitly parallel functional programming languages. The general direction of this work has

been from functional languages and heavy architectural support towards more conventional languages

running on standard commercial hardware.

1.4.1 Direct ancestors to this research

Figure 1.5 shows some of the systems which are direct ancestors to the Id97 system. The original

implementation of Id was on the Tagged-Token Dataflow Architecture (TTDA) [9] [10] [80], which

was a simulated dataflow architecture. Each TTDA instruction synchronized on the arrival of its input

values, and direct support for element-wise data structure synchronization existed in the form of I-

structure boards.

Monsoon [62] was the direct successor of TTDA, and was realized in hardware. Monsoon had

a explicit token matching store, and introduced the notion of activation frames as a synchronization

namespace and temporary storage. Monsoon also had direct support for I-structures.



Ken Traub [81] developed the early theory of compiling the non-strict Id language into sequential

threads to be executed on more conventional von Neumann architectures. The TAM compiler [25] [32]

actually implemented some simple partitioning algorithms, and compiled Id for conventional micro-

processors. Over the course of a few years, partitioning algorithms for non-strict Id improved with

contributions from Traub [82], Klaus Schauser [72] and Satyan Coorg [22]

The P-RISC effort [56] was a combination of partitioning compiling technology and a few machine

instructions to create a "Parallel RISC" instruction set. This eventually led to the StarT-88110MP ma-

chine, which was to be based on a modified Motorola 88110 processor. Derek Chiou and Rishiyur

Nikhil continued on a P-RISC implementation of Id with the pHluid compiler [18], which was targeted

towards sequential workstations and clusters of workstations.

I spent a year in Japan working on the EM-4 [66] project at the Electrotechnical Laboratory. EM-4

was a hybrid dataflow / von Neumann architecture, programmed using EM-C [68], a dialect of C with

support for explicit threading and synchronization. This work bridged some of the gap for me between

dataflow and von Neumann machines.

In 1994, Yuli Zhou developed a C pre-processor which he used to write explicitly parallel C pro-

grams for the CM-5 in a system which eventually became Cilk [37]. He and Michael Halbherr rediscov-

ered the fact that much of the overhead of multithreading was actually in run-time scheduling, and that

lazy task stealing could significantly lower communications and synchronization overhead, even for the

CM-5 which had very expensive communication and no explicit support for fine-grained synchroniza-

tion. Lazy work stealing was originally exploited in the Multilisp system [40] and a similar idea was

exploited in lazy task creation [52] on Alewife [2].

The work in this thesis grew out of my frustrations with explicitly parallel languages, and the suc-

cess of lazy work stealing in Cilk to reduce multithreading overheads. Although EM-C and Cilk were

efficient, they were very difficult to use because parallelization and synchronization were left to the

programmer. Id gave a much nicer programming model to the user, and had shown ample parallelism

for a variety of applications, but seemed to incur too much overhead on conventional microprocessors.

I had written the first SMP implementation of Cilk, and I knew work stealing could eliminate some of

the overheads in scheduling Id programs. I began work to find the the overheads of implementing Id on

SMP's which resulted in this thesis.



1.4.2 Related hardware

The underlying multithreaded execution model we implement in software has its roots in multithreaded

hardware, including dataflow machines such as Monsoon [62], EM-4 [66], Sigma-1 [45] and the Manch-

ester Machine [36]. Very similar in spirit to the dataflow machines are the HEP [76] and Tera [4].

Alewife [2] and the J-Machine [58] also provide support for multithreaded execution, although these

machines are closer to conventional sequential machines.

1.4.3 Related languages

Sisal is a strict functional language [17] which has been compiled for parallel execution on a number

of platforms, including sequential workstations, vector supercomputers, and SMP's [67]. Id97 differs

from Sisal in that Id97 is not functional - empty objects can be allocated and reads and writes can occur

to those objects. Cilk [16], EM-C [68], and Cid [57] are explicitly parallel dialects of C which have a

multithreaded implementation.

1.4.4 Related compilers

The data dependence analysis for the Id97 compiler is inspired by Fortran loop parallelization techniques

[48] [86] [13] [65]. Recent work by the SUIF project has extended this loop parallelization to including

loops containing function calls, and loop restructuring for memory locality [6] [38]. The interprocedural

analysis necessary for parallelizing Id97 is based on Banning's interprocedural alias analysis [15], and

Cooper and Kennedy's advances [19] [20] on Banning's original algorithms.

1.4.5 Related multithreading run-time systems

The thread representation and scheduling work is a direct descendant of TAM [25], P-RISC [56] [18],

and Cilk [37] [16] [46]. It is also closely related to Lazy Task Creation [52] and Lazy Threads [35] [34].

Lightweight thread representations and scheduling techniques have also been implemented in C-style

thread libraries such as Filaments [29] [30] and other threads packages [47] [53] [21].



1.5 Outline of thesis

Chapter 2 provides an overview of our system, including the language, the compiler and the run-time

system. Chapter 3 is a study of the overhead of element-wise data synchronization on conventional

microprocessors. Readers may choose to skip Chapter 3 without loss of continuity, as the issues it

addresses are orthogonal to the rest of the thesis. Chapter 4 describes the simple parallelization algorithm

we use for Id-S, and its effectiveness. Chapter 5 explains how we generate multithreaded code, and a

few optimizations we can perform which are unique to a multithreaded target. Chapter 6 describes the

light-weight run-time system. We conclude with Chapter 7 summarizing the work, and providing some

direction for future research.





Chapter 2

System Overview

In this chapter, we give an overview of our system and our study, because it involves many components

which interact very closely and are difficult to understand individually without some understanding of

the whole. Some of these components include the execution models, the compilers and the different

languages they compile, and the basic structure of the run-time system. We conclude with some notes

about implementation strategies we have have taken which have helped us to develop our system quickly.

2.1 Multithreaded execution model

Figure 2.1 shows a high-level view of the multithreaded execution model we are targeting - procedure

activations and parallel loop activations are associated with frames, and those procedure and loop acti-

vations may refer to global heap objects. Procedure activations, such as f, may fork off other procedure

activations, such as g and h. Procedures may also fork off loops which may execute in parallel, while

forking off other parallel loops or procedure activations. All of the procedure and loop activations refer

to objects residing in a global shared heap.

At this level of abstraction, the execution model is the same for Id90 executing on Monsoon, the

TAM implementation of Id90 executing on conventional microprocessors, or for our parallelized Id-S

implementation for SMP's. The parallelized Id-S implementation differs from the Monsoon and TAM

implementations in that Id-S accesses to the heap objects are not synchronizing. In Monsoon and TAM,

loopl may be writing to elements of the array which are being read by loop2, and both loops can

execute in parallel with the knowledge that if loop2 tries to reference an element before it is written, the

loop2 access suspends until that element is written by loopl. In compiling Id-S, we want to avoid the
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Figure 2.1: In the multithreaded execution model, procedure activations may execute in parallel, as
may loop activations. Activation frames are analogous to stack frames, and all the procedure and loop
activations may reference global heap objects.

overhead of run-time heap synchronizations, so the compiler analyzes the code and takes care to only

fork off parallel work which will not require run-time heap synchronizations. This limits the amount

of procedure and loop parallelism we can exploit relative to Monsoon and TAM, but it also reduces our

heap synchronization overhead.

In Monsoon and TAM, every procedure and every loop can potentially execute in parallel, although

more typically, the user specifies which loops he wishes to execute in parallel in order to control over-

head from parallelism. In parallelized Id-S, we only execute procedures and loops in parallel which we

can determine definitely do not have a dependence through a data structure element. Relating this to

Figure 2.1, the activation frame tree for the same program implemented on Monsoon and TAM is likely

to be much bushier and wide compared to the same activation frame tree for Id-S.

In the Monsoon, TAM and Id-S systems, activation frames are associated with processors, and work

is distributed by distributing activation frames. Figure 2.1 shows the logical parallelism of a program

at a moment during the execution - this logical parallelism is mapped to a physical machine by the

run-time system. In the Monsoon and TAM implementations, frames are assigned to random processors

to spread work randomly so that very likely, all the function activations and loop activations could be



on different processors. In Id-S, we use a work-stealing strategy where work is scheduled by default

on the local processor unless another processor steals it - work-stealing gives much better locality and

allows us to perform forking, returning, and synchronizations between parent and child frames cheaply

without locking or message-passing. In practice, work-stealing also tends to provide very good load

balance [16].

The multithreaded execution model is much more general than the SPMD-style execution used

in the data-parallel or parallelized Fortran loop models. Multithreaded execution can take advantage

of procedure or loop parallelism with an unstructured logical shape, but may require some additional

overhead. We show a variety of methods in the compiler and run-time system which minimize this

overhead, and also produce good speedup.

2.2 Id language and compilers

We use three main Id compilers in this study - their basic structure is shown in Figure 2.2. The three

compilers share the front-end of the original Id compiler [80], which was used for the TTDA [10] and

Monsoon [62] architecture. This front-end parses and desugars Id into a hierarchical dataflow graph

intermediate representation, and many standard optimizations such as constant-folding, loop constant

hoisting, common subexpression elimination, inlining (as directed by the programmer), strength reduc-

tion, algebraic simplification, etc. The front-end dumps a textual representation of the dataflow graph

into a file, and each of the three back-ends begins work with identical program representations.

The three compilers have the following characteristics:

1. The fine-grained compiler is the equivalent of the TAM or pHluid Id compilers. It compiles Id
assuming strict function calls, conditionals and loops, but with synchronizing heap accesses.

2. The sequential compiler is the equivalent of a sequential C or Fortran compiler. It compiles Id
assuming sequential semantics in exactly the way a C or Fortran compiler works.

3. The parallelizing compiler performs procedure and loop parallelization assuming Id with sequen-

tial semantics.

To the extent possible, all three compilers generate C with identical schemas. The generated C

uses some gcc extensions, and is compiled with the gcc compiler. The object files are then linked

along with the respective run-time system to create a UNIX executable. The fine-grained and sequential
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Figure 2.2: The three Id compilers: fine-grained, sequential and parallel.

executables run on one processor, and parallel executables can run on a variable number of processors

which can be determined at run-time in an environment variable.

All three Id compilers generate very efficient code, given the assumptions they are working under.

The fine-grained compiler generates code comparable in performance to that of the TAM compiler [72].

The sequential compiler generates code competitive with C and Fortran (as we showed in Figure 1.4),

and significantly faster than the fine-grained compiler because it has no synchronization or multithread-

ing overheads. The parallel compiler generates code with some small overhead relative to the sequential

compiler, with varying speedup depending upon the characteristics of the codes.

The three Id compilers compile and run the largest set of Id programs ever assembled. Within

each class (fine-grained, sequential, parallel), each compiler generates more efficient code (measured in

machine instructions executed per program) than any previous implementation. The programs also run

on faster hardware than any previous implementation, making these by some measures, the fastest Id

implementations ever.

fine-grai
RTS



2.2.1 Performance impact of Id language features

In evaluating our results, it is important to understand what Id's performance is like relative to con-

ventional imperative languages. If we assume a sequential semantics for Id, the primary performance-

impacting language feature is Id's single-assignment restriction, which requires us to re-structure codes

and algorithms to be single-assignment.

Aside from single-assignment, the two main languages features which impact Id's performance are

the following:

* Polymorphic data structures - all structures and arrays have slots which are 64-bits wide, even
for 32-bit elements such as integers, where we waste half of the memory. This is to handle Id's
polymorphic type system, where polymorphic functions may access arrays of arbitrary type.

* Dynamic array extents - unlike C, Id arrays have extents which are defined when they are created.
Furthermore, indices into the array may have an arbitrary base defined at creation-time. For
example, a two-dimensional array may have an (i, j) base index pair which is (-1, 3), rather than
(0, 0) which is the case in C. Address computation is therefore more complicated and expensive
in general than for C.

Neither of these overheads is fundamental, and both are orthogonal to Id's suitability for parallel ex-

ecution. Additional compiler analysis regarding usage of polymorphism could save data structure space

- this analysis is used in other polymorphic languages implementations, including ML. The overhead

from dynamic array extents can be largely optimized out in loops with loop constant hoisting.

Id contains many other interesting language features, most of which do not impact on performance,

including pattern matching for function calls, case statements and bindings, array and list comprehen-

sions, algebraic types, and a simple module system. Id also has support for curried and higher-order

function applications, but we do not address applications which make heavy use of curried or higher-

order function applications because their control flow is difficult to analyze - attempts to analyze the

control flow of higher-order include work by Shivers [75] and Harrison [41].

2.2.2 Sequential Id compiler as baseline

We use the sequential Id implementation as a baseline to compare our other two Id implementations.

The sequential implementation compiles Id as if it were a C or Fortran program with an Id syntax - it

uses standard C calling conventions, and obtains similar performance to C or Fortran.



The sequential implementation of Id is made possible by creating a new dialect of Id, Id-S, which

has a sequential evaluation order. Almost every Id program we found could run correctly with some

minor modifications. These modifications were typically re-ordering of bindings within a block, or

reordering of procedure calls. Only two non-trivial Id90 programs we found could not be modified in

this way, and both were LUD linear system solvers which required parallel, fine-grained execution to

terminate correctly.

The sequential Id compilation is a straightforward syntax-directed translation to equivalent C - Id

function calls become C function calls, Id conditionals become C conditionals, and Id loops become C

loops.

2.2.3 Compiler generated threaded code

The two compilers which generate multithreaded code are slightly more unusual, and we describe them

in more detail in later chapters. Our scheme is quite similar to the TAM [25] and P-RISC [56] schemes

- Goldstein [32] provides a particularly detailed description of the TAM implementation. Here, we

provide an overview of the threaded code compilation process, and its relationship to the run-time

system.

The Id compiler initially parses the program and creates a dataflow graph intermediate representation

for each procedure in the program. The dataflow graph representation is similar to other compiler inter-

mediate representations. The compiler then performs some optimizations and analysis, and eventually

partitions the graph such that every graph node is a member of a partition. The partitioning algorithm is

dependent upon the language semantics - for fine-grained execution, the partitions are likely to be much

smaller, and for parallelized Id-S, the partitions are likely to be larger.

Given a partitioned graph, the compiler computes what state flows between partitions - this state is

carried by the arcs which connect different partitions. Each partition must save the state that its children

require into the activation frame, and child partitions are not enabled until all of their parent partitions

have executed. In effect, after partitioning, we have a coarser-grained dataflow graph where multiple

values may flow between the nodes, and multiple instructions are executed within each node.

For each partition, the compiler generates code to read incoming state from the activation frame.

The partition executes the instructions within the partition, and then stores away state that its children

need. Finally, the partition must perform some join-counter synchronizations to determine whether any



Figure 2.3: Run-time system structure.

of its children are ready to execute. Any ready work is then enqueued onto a work queue, and finally,

the partition dequeues a piece of work from the work queue and executes it. Procedure calls and parallel

loops are also enqueued on the work queue.

At the end of each partition, either a direct or conditional jump is made to another partition, or else

a piece of work is dequeued from a work queue and executed. In general, we would prefer to execute a

direct jump when we can, a conditional jump if possible, and only when we cannot resolve anything at

compile time do we perform the general case of dequeuing work from the work queue.

The fine-grained compiler also inlines synchronization checks for heap accesses, and those synchro-

nization checks may involve manipulating the work queues. In Chapter 3, we will examine the various

overheads incurred by the fine-grained implementation including the synchronization check, the saving

and restoring of thread state, thread synchronization, and thread scheduling overheads.

2.3 Run-time system

The run-time systems for Id perform a variety of tasks, including activation frame management, heap

allocation, message-passing and scheduling. The run-time systems are written in C with some gcc

extensions, and linked as a library with the object files generated by the Id compiler.

The run-time system has a logical view of the system as shown in Figure 2.3. There is a global

shared memory which is accessible from all of the processors - the run-time system manages memory

allocation for the shared memory. The processors communicate with each other through a message-



passing layer, which is written in an Active Message style [83]. By structuring communication as

message-passing, the system can be easily ported to a parallel computer with support for both shared-

memory and message-passing, such as Start-Voyager [8], Alewife [2], Flash [49], or to a cluster of

workstations with a software distributed shared memory. In addition, message-passing simplified many

of the protocols used for synchronization and work-distribution.

Activation frames reside in local memory, and are managed by the run-time system. Finally, local

work queues for each processor reside in local memory. Physically, all of these structures are mapped

onto an SMP - local memory is simply the main memory partitioned among the processors, and the

message passing layer is implemented on top of shared memory.

Local work queues reduce contention and synchronization. Anderson, et.al. [7] provide a comparison

of thread scheduling strategies for shared memory multiprocessors. The same approach was taken in the

Multilisp [40] system, and for Cilk [16] - the parallel run-time system is a modification of the original

SMP version of Cilk which we implemenited.

The work queues are implemented as either LIFO or double-ended queues (deques), and each pro-

cessor has several local work queues. Work which is ready to execute is enqueued on one of the work

queues. If a processor runs out of work in its work queues, it sends a message to a random processor,

requesting work. If that processor has some extra work it can share, it bundles up a descriptor of the

work in a message, and sends the message. When the work is completed, the result is packaged up and

sent back via another message.

Ready work can be represented simply as an instruction pointer, if the activation frame is implicit, or

else as a continuation, consisting of an instruction pointer and a frame pointer. The compiler generates

code which can handle both representations, depending upon the situation. The compiler also explicitly

generates polling into the executable so that it can ensure that accesses to local memory are atomic.

As in purely message-passing, distributed-memory machines, other processors may modify the local

memory only through messages which are handled only when the local processor performs polling.

Enqueuing and dequeuing work using this representation simply becomes Enqueuing and dequeu-

ing instruction pointers or pairs of instruction and frame pointers. Thread synchronization can be done

without locking because of the message passing layer. The work-stealing policy tends to schedule large

chunks of work for each processor, which do not require interprocessor synchronization or communi-

cation, and which do not have much overhead versus sequential execution because of the lightweight

mechanisms for scheduling and synchronizing work.



2.4 Development hacks that made this study possible

The process of bringing up a system which is interesting enough to write about is usually a painful pro-

cess, and most systems papers do not describe the non-research issues which came up in the development

of their systems. Here, we describe some tools and strategies we used which made the development of

this system possible by one person in about a year and a half.

2.4.1 Reusing code

By reusing the original Id front-end, we did not have to write and debug a front-end and scalar optimiza-

tion phases. We estimate that there were about 250,000 lines in the original Id compiler, and we wrote

about 100,000 lines for our new parallelization phases, back-ends, and run-time systems. There were

plenty of bugs to catch in the new code, so it was a relief to have a front-end which was time-tested and

stable. All of the Id compilers we used in this paper were written in Lisp, and we echo the recommen-

dation of John Ellis in his PhD thesis [28] that if you don't know Lisp, learning Lisp is probably more

useful than reading this thesis! 100,000 lines of Lisp is probably 200,000 lines of C or more.

2.4.2 Rapid prototyping

We originally generated Lisp rather than C or assembly - since we ran the compiler itself in a Lisp

environment, the generated code could also be loaded directly into the Lisp interpreter, shortening the

compile-debug-edit cycle. The Lisp interpreter retained enough source information that we could easily

track down bugs in the partitioning or code-generation phases.

The performance of the interpreted Lisp we generated was not very good, but more than sufficient

for prototyping, and fast enough to run all of our programs with small data sets. Once we decided that

the compiler was stable enough to generate C, the process of generating C took only a few days. Most

of the bugs in the various stages of the compiler were caught by the prototype compiler generating Lisp.

The "extra" time spent in prototyping the compiler by generating Lisp probably saved months compared

to directly generating and debugging C or assembly.



2.4.3 Test suites and automatic regression testing

Anytime we added a new feature or optimization, it would inevitably break the compiler. Tracking down

these bugs on a large application code would be very difficult, but we had a test suite of small codes

which we could send through the compiler. The tests were ordered by simplest to most complicated, with

tests exercising increasingly complicated features grouped together. Typically, running the compiler

through all of the test suites caught most of the bugs. Whenever we found a bug we didn't catch with

the test suite, we added a new test which exercised the bug. Since we had hundreds of test programs,

automatic testing was important because it would have been very tedious to run the compiler and check

the results manually.

2.4.4 Generating C and gcc extensions

We generate non-standard C targeted at the gcc compiler [78]. The features we use are described in

great detail in the paper about the implementation of the Mercury language [42]. Some of the extremely

useful gcc extensions we used were pointers to labels, inlined assembly language, inlined functions, and

the ability to assign global variables to specific registers. The ubiquity of the gcc compiler made our

decision easier - we believe that generating C with gcc extensions is an ideal target for academic and

prototype language and compiler projects.

There were some low-level optimizations we couldn't perform because we generated C, but the gc c

compiler also performed some optimizations we did not have to do in our compiler. More importantly,

generating C also allowed us to directly use some of the C infrastructure, such as the gdb debugger and

the gprof profiler. Without a good debugger and profiler, implementing a new compiler would have

been much more difficult.

Readers who are implementing parallel languages should note that the gdb documentation describes

a technique for debugging multiple processes, which is incredibly useful when one of your child pro-

cesses accesses an illegal memory location, a fairly common occurrence in developing a parallel lan-

guage and compiler, and one which can be extremely difficult to track down without a debugger.

2.4.5 Graph viewer

To aid in compiler development, we wrote a program graph viewer with a window interface. This was

quickly assembled with the dot graph layout tool, and the Tk [61] interface to it called graphviz



[27].

Some compiler bugs can easily be found by examining the compiler output, but others are more

subtle, and require understanding entire procedures and how the compiler decided to compile them. Ini-

tially, we attempted to find these bugs by doing textual dumps of program graphs, but this was extremely

time-consuming and error-prone. This was especially the case for debugging the partitioning phase of

the compiler, where the graphs were well-formed, and the compiler was making errors in assigning

nodes to partitions.

The program graph viewer allowed us to understand large program graphs in minutes, which would

have otherwise take hours to track down from a text dump. The graph viewer is structured as a compiler

phase which can be inserted at different points in the compiler. By using the Tk windowing interface,

graphs which are larger than the screen can be displayed and scrolled, and multiple subgraphs can be

displayed simultaneously. More detailed information about the graph, subgraphs and nodes can be

annotated to the visual display.

2.4.6 Linker implemented in Perl

The Id linker must perform a little more work than the C linker because top-level constants must be

initialized before we begin execution of the main procedure. To handle this, the Id linker generates a

constant initialization procedure from the information it extracts from the Id object files which are being

linked, compiles the constant initialization procedure and links it with the rest of the object files. The

linker itself is written in Perl, which has good text processing and system integration support, allowing

us to implement the linker in less than 150 lines of code, while giving us flexibility in easily adding

functionality to the linker.





Chapter 3

Fine Grained Id Overheads

This chapter examines the overheads of a TAM-style [25] fine-grained implementation of Id on con-

ventional microprocessors, and concludes that the overhead incurred is too high to make a fine-grained

approach with element-wise heap synchronization useful for small-scale SMP's.

Element-wise heap synchronization in combination with Id90's non-strict semantics also provide a

measure of expressiveness over sequential Id-S, but our experience indicates that programmers rarely

use this additional expressiveness. Almost every non-contrived Id program we found ran correctly under

sequential evaluation order, with minor changes in ordering of variable bindings, as we explained in Sec-

tion 2.4 - this result concurs with Schauser and Goldstein's study of expressiveness and non-strictness

[70]. Non-strictness (including function call non-strictness, conditional and loop non-strictness, as well

as data structure non-strictness) is primarily useful as an implementation strategy to expose fine-grained

parallelism, and is less useful in providing expressive power to the programmer.

3.1 Methodology

To determine the overheads of a fine-grained approach to compiling Id, we implemented a compiler very

similar to the TAM compiler, using a similar partitioning algorithm [72] and code-generation schemas

[32]. We make the optimistic assumption that strictness analysis of the type described by Schauser [72]

and Coorg [22] can determine that every procedure call, conditional and loop can be executed strictly -

this assumption minimizes the overhead of conditionals and parameter passing, which would otherwise

require multiple entry-points for each procedure call and conditional, more partitions, and additional

synchronization and threading overhead.
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Figure 3.1: Normalized run-time of fine-grain and sequential Id-S compilers compared to the strict TAM
compiler running on a Sparc 10.

Figure 3.2: Program input sizes

3.1.1 Performance compared to strict TAM

To compare our times against those published by Schauser [72], we ran our test codes on one processor

of an unloaded Sparcstation 10. Figure 3.1 shows the performance of our compiler relative to the strict

TAM compiler, which is the best previous implementation of Id to our knowledge. Figure 3.2 shows the

input sizes used for the programs.

Paraffins enumerates the structures of unsaturated hydrocarbons, and is a very unstructured code

which uses many lists and other small data structures; the program generates all paraffins whose radius is

less than or equal to the input size. Quicksort is an integer quicksort on a list of the input size. Gamteb is

a photon-transport simulation which tracks photons moving through a cylinder and records a histogram

of their behaviors; the input size is the number of photons. Simple-kt is a structured two-dimensional

hydrodynamics simulation on a square grid; the input size describes the number of time steps taken, and

Program Input Size
paraffins 19
quicksort 10,000
gamteb 40,000
simple-kt 11100
mm-blocked 500
speech-proc 10240 30
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the lower and upper bounds of the square grid. MM-blocked is a 4 x 4 blocked double-precision matrix

multiply on square matrices where the input size is the length of a side of the matrix. Speech-proc is a

front-end code for a speech recognition system which has several very structured inner loops; the input

size describes the number of samples and the size of a digital filter applied to the samples.

Not surprisingly, our implementation is comparable in speed to the strict TAM implementation, with

performance within 20% of the strict TAM implementation. The sequential implementation, however,

is a factor of 1.3 to 4 faster than the strict TAM implementation. For more symbolic, unstructured codes

such as quicksort and paraffins, the penalty is less, but for more structured, scientific codes such as

mm-blocked and speech, the sequential implementation is significantly faster.

This chapter focuses on determining the sources of overhead which cause the difference in perfor-

mance between our fine-grained implementation and our sequential implementation of the same appli-

cations.

3.1.2 SimICS Sparc simulator

To determine the details of the fine-grained overheads, we use SimICS [50], an instruction-level Sparc

simulator which can execute ordinary uninstrumented Sparc binaries. SimICS can provide instruction

counts with both opcode and operand data, so that for example, we can determine how many loads or

stores were performed using a given register and offset.

In addition to instruction counts, SimICS performs a first-level cache simulation of the SuperSparc

(not UltraSparc) architecture with the following assumptions:

* 16 KB data cache (32-byte lines, 4-way set associative)

* 20 KB instruction cache (64-byte lines, 5-way set associative)

Because SimICS only provides instruction counts and miss ratios for the first-level cache, we cannot

determine the effects of superscalar execution, second-level cache, TLB or paging, all of which may all

have some impact on real observed performance.

3.1.3 Relationship between run-time and instruction counts

Figure 3.3 shows a comparison of the execution time ratios between the fine-grained and sequential

versions, and the ratio of the instruction counts. The execution time ratios vary from about 1.5 to over 4.
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Figure 3.3: Execution time ratios compared to instruction count ratios. Much of the additional execution
time for the strict versions is accounted for by additional instructions executed, although some of the
additional instructions are masked by poor cache locality.

Figure 3.4: Although the ratio of instructions between the fine-grained and sequential versions is be-
tween 2 and 5, the total difference in data cache misses between the versions is not as great - for codes
with have a naturally high cache miss rate, a big reduction in instructions will not have as big a reduction
in time because much of the time is spent handling cache misses.

However, many more instructions are executed for the fine-grained versions than could be determined

from execution time alone, and the difference is much more notable for the less structured codes than

for the structured codes.

One possible explanation is that caching effects mask some of the additional instructions executed

in the fine-grained version, and that the worse cache hit ratio for the less structured codes mask the extra

instructions even more than for the more structured codes. Figure 3.4 bears this out - in the codes with

a naturally high data cache miss rate (paraffins, quicksort, and mm-blocked), the additional instructions

added by the multithreaded version do not cause a lot more cache misses.

Figures 3.3 and 3.4 show that instruction counts, to the first degree, give a reasonable view of the

Fine-Grain Sequential
Benchmark # instructions # dcache misses # instructions # dcache misses
paraffins 4.7e + 07 1.0e + 06 1.5e + 07 7.4e + 05
quicksort 3.4e + 07 4.2e + 05 9.8e + 06 3.5e + 05
gamteb 4.1e + 09 1.2e + 07 2.3e + 09 1.8e + 07
simple-kt 7.7e + 07 9.3e + 05 2.9e + 07 3.5e + 05
mm-blocked 2.6e + 09 2.6e + 07 7.5e + 08 1.3e + 07
speech-proc 4.3e + 07 4.4e + 04 9.3e + 06 1.6e + 04

|I



Presence-checking read of A[i] Presence-checking write of A[i]
if (((char *) A)[-i-11] == EMPTY) if (((char *) A)[-i-l] != EMPTY)

error("Read from empty location"); error("Write to non-empty location");

else else {

dest = A[i]; ((char *) A)[-i-l] = FULL;
A[i] = value;

}

Figure 3.5: The presence tags for a structure reside at negative offsets from the structure base, and are
initialized to be empty. Each tag is a byte wide, to make reading and writing the tags cheaper.

eventual execution time, once cache effects are taken into account.

In the following sections, we examine the source of the additional instructions executed for the

fine-grained version compared to the sequential version. We examine two sources of overhead in the

fine-grained version: (1) presence tag checking and (2) threading overheads.

3.2 Presence tag checking overhead

To determine the overhead of presence tag checking in isolation from other threading overheads, we

modified the sequential compiler to insert presence tag checking code used in the strict compiler for

every memory reference. This checking, of course, is not necessary for the correct execution of the

code, but it gives us a feeling for the overheads introduced by tag checking. This version of the compiler

can also be used in development to check that the programmer is adhering to the single-assignment

restriction.

3.2.1 Presence tag checking scheme

Figure 3.5 shows the code which is executed for a presence check during a read or a write. The presence

tags reside at a negative offset from the structure base, and are initialized to be empty. On a read, an

empty presence tag is an error for a sequential evaluation order, and on a write, a non-empty presence

tag is an error. A write to a location updates the corresponding presence tag to be full. This presence

tag scheme is very simple, and has the advantage of a small footprint for the presence tags and simple

addressing.

Note that this presence checking scheme will only work for a single processor For parallel execution,

we must include some support for atomicity in referencing the presence tags, which will incur significant
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Figure 3.6: Presence tag overhead, classified into three main sources - instructions used in the presence
check, instructions coming from register spilling, and instructions introduced by poor code generation
by gcc.

additional overhead. In parallel versions of TAM, this overhead manifests itself indirectly through

message-passing overheads - in parallel TAM codes for the CM-5, the single processor execution times

are twice as long as those shown in Figure 3.1 because of message-passing overheads.

Our performance numbers are optimistic in two ways. First, we take advantage of operating sys-

tem support to initialize the presence tags to zero (we allocate all presence tags from an mmap from

/dev/ zero). In a production system, the presence tags must be initialized to zero by the storage man-

ager, although they can be done either 4 at a time (a 32-bit write) or 8 at a time (a 64-bit write). The

second way in which these numbers are optimistic is that we do not account for atomicity overheads

which are necessary in a real parallel environment - the presence tags operations must perform a read,

modify, and write atomically. This can be done by locking every presence tag, or through some clever

use of a load with reservation, store conditional instruction, which is not available on every micropro-

cessor - it is not available on the Sparc, for instance.

3.2.2 Presence check performance results

Figure 3.6 shows the makeup of the additional instruction count overhead caused by tag checking. We

categorized the instructions by determining the additional instructions executed by the presence tag

checking version as compared to the regular sequential version. For example, instructions needed for

the presence check are a subtraction (sub) to obtain the negative offset from the object bases, either a
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byte load (ldsb) or store (stb), a comparison to a constant tag (subcc), and a branch (be). Instructions

dedicated to register spilling include the various forms of loads (ld, Idd, lddf) and stores (st, std, stdf) -

spilling is introduced when large basic blocks are chopped into multiple smaller basic blocks because

of the additional branches introduced by presence checking for every heap memory reference.

In examining the assembly output from the gcc compiler, we also determined that gcc was not able

to determine that constant offsets from object bases could be constant folded to yield a single load or

store to access the presence tag. This arises more in codes which use small structures (such as list cons

cells and algebraic types) rather than arrays. In these cases, the gcc compiler created a small literal,

added it to 1 (add), and then performed the presence tag load/store. It used the same literal, now in

a register, shifted it (sll) and performed the data load/store. Finally, the gcc compiler was not able to

correctly insert the right instruction into the delay slot - instead of inserting an instruction from the

branch taken destination, it inserted an instruction from the branch not taken destination, which is never

taken. All of these overheads due to gcc could be eliminated by a native code generator, or some more

trickery to fool gcc into performing constant folding and correct filling of the delay slot.

Depending on the application, the direct overhead from presence checking ranged from 20% to 65%.

Register spilling was more of a significant problem in the structured scientific codes which had fairly

large basic blocks which were benefitting from good register allocation. The overhead from gcc code

generation could be eliminated by a marginally smarter compiler.

3.3 Threading overheads

It is a little bit more difficult to determine the overheads of multithreading, because the structure of

the multithreaded code is quite different from the sequential and tag-checking sequential code. When

we compared the sequential and tag-checking sequential code in Section 3.2, we made the assumption

that most of the instructions generated by the compiler would be the same, except for the additional

instructions inserted for presence tag checking. This assumption is probably well-founded, although

we discovered that some extra instructions were being executed for register spilling and poor code

generation by gcc.

To determine the sources of threading overhead, we make the assumption that most of the instruc-

tions executed in the tag-checking sequential versions are also executed in the fine-grained multithreaded

version. We then subtract out the instructions executed by the tag-checking sequential version from the



fine-grained multithreaded version, and we attempt to classify those additional instructions.

3.3.1 Bookkeeping for threading overheads

Because we reserve a few Sparc registers for special purposes, we can account for instructions which

use those registers. For instance, register % 10 is the activation frame base - byte-wide loads and stores

(ldub, stb) relative to this register are join counter loads and stores, because join counters are byte-wide

slots in the activation frame. Other loads and stores relative to % 10 are used for loading and storing

thread state to the frame for thread switching. Likewise, registers % 11 and % 12 are reserved for work

queue pointers, and references to those registers are used to push and pop work from the work queues

- we can also find the add instructions which are used to increment and decrement the work queue

pointers.

After we count the instructions we know are used for a specific purpose, we adjust the counts by

adding instructions we know must be executed in addition to the classified instructions. For instance, if

we count an instruction which is used to load from a join counter, we know that a subtract, a compare

and a branch were also executed. Stores to the local queue are accompanied by two instructions, an

"or", and a "sethi" in order to set a register to be a destination thread instruction pointer.

The categorizations of the different threading overheads were determined as follows:
* Thread state save/restore

- All non-byte-sized loads from % 10 offset

- All non-byte-sized stores from % 10 offset

* Join synchronization

- All byte-sized loads from % 10 offset, and an additional 3 instructions for each load
(subtract, compare, branch)

- All byte-sized stores from % 10 offset

* Thread scheduling

- All loads from % 11 and % 12 offsets

- All stores to % 11 offset, and an additional 2 instructions (or, sethi) for each store.

- All stores to % 12 offset

- All adds and subtracts to % 11 and % 12 registers

- Indirect jumps through register % o 0

* Unclassified instructions

- All remaining instructions
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Figure 3.7: Threading overhead of strict version, relative to (non-tag-checking) sequential version.

Some of the unclassified instructions are performing tasks in one of the three classifications (thread

state save and restore, join synchronization, thread scheduling) but we could not determine how to

classify these instructions.

3.3.2 Threading overhead performance results

Figure 3.7 shows the results of the simulations and overhead bookkeeping. The sources of overhead are

fairly evenly split between thread state save/restore, thread join synchronization and thread scheduling.

The overheads are very significant, adding from 50% to almost 250% to the raw sequential instruction

count, with unclassified instructions adding even more overhead for some applications.

To some extent, these overheads might be reduced by better compiler optimizations, but in general,

we believe that the results indicate that the fine-grain multithreaded approach requires some hardware

support, such as that provided in Monsoon [62], EM-4 [66] or Tera [4]. This support includes multiple

contexts, hardware thread scheduling and support for thread synchronization.

These results, however, only apply to very fine-grained multithreading where synchronization is

necessary on every memory reference. In the next section, we show that a coarser grain of multithreading

without synchronization on memory references can be almost as efficient as sequential execution.
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Figure 3.8: Run-time on a Sparc 10 performance of sequential, sequential with checking, fine-grained
multithreading and parallel multithreading without element-wise synchronization.

3.4 Overhead summary and coarser-grained multithreading

To bring our performance evaluation back to real run-times, Figure 3.8 shows the normalized run-time

performance of the sequential, sequential with checking, and the fine-grained multithreaded version.

There is also a coarse-grained multithreaded version which we will discuss in more detail below.

About half of the overhead in time is accounted for by the tag-checking. The remaining overhead is

accounted for by various multithreading overheads. As was shown in Figures 3.3 and 3.4, the run-time

overhead is not directly proportional to the instruction-count overhead, especially in codes which have

high cache miss rates.

Although these overheads are significant, they are due to the fine-grained synchronization associ-

ated with each memory reference. The last bar in Figure 3.8 shows the performance of our parallel

implementation, to be discussed in greater detail in the following chapters, which only attempts to take

advantage of parallelism at the function call and loop level, and which does not perform synchronization

at every memory reference. Every function call in the parallel implementation is potentially parallel,

and many of the loops are also potentially parallel.

In some cases, such as in quicksort, mm-blocked, and speech, the performance of the parallel version

running on one processor is actually faster than the sequential version. This is because these codes have

many recursive function calls, and in the sequential implementation, we use the standard C calling
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convention on the Sparc, which uses register windows. Register windows incur significant overhead

when they overflow, as the state of each window must be backed up to the stack. (This problem is

especially serious in the SuperSparc processor used in the Sparc 10.) The calling convention in the

parallel version does not use register windows, so it avoids these problems.

The run-time system for the fine-grained multithreaded and the parallel implementation are almost

identical. Furthermore, many of the compiler modules, including the partitioning and code-generation

modules, are the same. The primary difference is that the parallel implementation uses several additional

modules to eliminate the need for element-wise presence-tag checking, and consequently, also produces

much larger threads.

The timing results in Figure 3.8 will also look somewhat different from the graphs in the following

chapters, because we ran these codes on a Sparc 10 which uses a SuperSparc processor, whereas in later

chapters, we are using an UltraSparc server which has much higher performance. The problem sizes we

are using for the runs in this chapter are also taken from previous studies, and are too small to produce

accurate timing results on the UltraSparc, so we will be using larger problem sizes when running on the

UltraSparc.

3.5 Related work

3.5.1 Software based fine-grain synchronization

Yeung and Agarwal performed a study of preconditioned conjugate gradient [87] to determine the im-

portance of fine-grain synchronization. They concluded that fine-grained synchronization was important

in exposing parallelism, but that the particular implementation of the fine-grained synchronization was

less important, and that a software implementation could be almost as effective as a hardware imple-

mentation.

The application they chose required fine-grained synchronization to expose parallelism, and they

chose a particularly small problem size (16 x 16 x 16) which could not be parallelized effectively

in a coarse grained fashion. Their study assumed some hardware support for scheduling and thread

synchronization, and although they varied the cost of heap memory synchronization, they did not take

into account factors such as register spilling in a software based heap synchronization.



3.5.2 TAM

The work most closely related to our study of software-based fine-grained multithreading is the TAM

compiler, which has been studied extensively [24] [25] [77] [32] [72].

Most of the performance studies of the TAM compiler are done on instruction mixes of the abstract

TAM machine. However, the relationship of abstract machine instructions and actual native machine

instructions is not one-to-one; for simple arithmetic or logical instructions, one TAM instruction may

be compiled to one machine instruction, but for scheduling and communications instructions, often one

TAM instruction compiles to several, or even tens of machine instructions. The TAM approach hides

some effects such as that of register spilling shown in Figure 3.6, because the TAM compiler is not

aware of register spilling introduced by the C back-end and cannot instrument the code to include those

instructions.

The TAM performance studies are also not calibrated to an efficient sequential implementation, ex-

cept in the case where they compared to C or Fortran implementations of the same code. Cross-language

performance comparisons are difficult to perform because often, even slight changes in the algorithm

can cause major differences in performance, and different languages encourage different programming

styles. Because we are compiling the same source file and using much of the same code-generation and

run-time system support, we can factor out the overheads which are due to the original code, the lan-

guage semantics, and the run-time system (such as variable array-sizes, implementation of higher-order

function calls, and the heap allocator).

3.5.3 Software distributed shared memory systems

The presence tag-checking approach we describe is similar to those used in software based distributed

shared memory (software DSM) systems such as Shasta [69]. In the Shasta system, the compiler has

the responsibility of reducing tag checking, which it can do because of the differing requirements of

software DSM and synchronization. With aggressive compiler optimizations and clever tag represen-

tations and tag checking schema, the Shasta system has managed to maintain very low overhead over

sequential execution.

However, our approach differs from the software DSM systems, because they can typically use a sin-

gle tag for a cache line of many words, whereas we must typically require a tag for each memory word,

unless the compiler can determine when multiple adjoining words are written together and then match



those writes with the consumers of those locations. This is an extremely difficult compiler problem, and

not one that we expect to be solved in the near future.

3.6 Conclusion: fine-grain parallelism too expensive in software

In this chapter, we compared the performance of a state-of-the-art fine-grained multithreaded imple-

mentation of Id with an efficient sequential implementation of Id. The performance results indicate that

a fine-grained implementation requires a factor of 2 to 4 times as many instructions as the sequential

implementation. The additional instructions do not directly translate into additional run-time because

of caching effects, but a fine-grained multithreaded implementation requires between 1.5 to 4 times as

much wall clock time as a sequential implementation. Approximately half of the additional run-time can

be attributed to presence tag checking and the other half can be attributed to other threading overheads.

Some of the presence tag overhead could be reduced by better code generation, as we discuss in

Section 3.2. Compiler-directed data dependence analysis might also eliminate some redundant or un-

necessary presence tag checks. In a local context, this analysis is similar to fetch-elimination, which

obviates the need for this optimization. In a more global context, producer-consumer analysis is only

plausible for codes which are amenable to Fortran-style index analysis, and for an Id with sequential

semantics. Fully non-strict Id does not yield itself easily to data dependence analysis, and codes which

are amenable to Fortran-style index analysis can probably be parallelized quite effectively without fine-

grained I-structure style synchronization.

Aside from tag-checking, threading overheads are about equally divided into three sources: thread

state save and restore, join synchronization and thread scheduling overheads. As shown by Figure 3.8,

these overheads are not inherent to multithreaded execution - only to multithreaded execution at such a

fine granularity.

We believe that given enough effort, many of the overheads due to fine-grain multithreaded ex-

ecution could be lowered, but even optimistically assuming that half of the total overhead could be

eliminated (not including atomicity overheads) the fine-grained version would still be about 1.25 to 2.5

times slower than the sequential implementation. For small-scale machines, this overhead is difficult to

win back, as we showed in the simple analytical model in Section 1.1. This overhead is also unnecessary

in medium or high-parallelism scenarios, where our compiler-directed parallelization can detect suffi-

cient parallelism to keep the machine fairly busy. In many cases, fine-grained multithreading is simply



not necessary to attain good parallel performance on a small-scale machine.

A fine-grained multithreaded approach may require hardware support to be effective - this hard-

ware support may include presence tags in memory, special read and write instructions which perform

tag-checking, multiple hardware thread contexts, join synchronization support, and hardware thread

scheduling. These features have been implemented in some experimental machines [62] [45] [66], but

are unlikely to be included in commercial hardware in the near future. As such, we will describe an

approach in the chapters which (1) parallelizes Id-S so that presence-tag checking is unnecessary and

(2) generates thread lengths that are sufficiently long to amortize threading costs.



Chapter 4

Parallelizing Id-S

In this chapter, we describe a very simple approach to parallelizing Id-S which discovers both procedure-

call DAG parallelism, as well as loop parallelism. Compiler-directed parallelization eliminates the need

for the fine-grained synchronization checks used in traditional Id implementations. We then evaluate the

effectiveness of the compiler parallelization, giving both a quantitative description of the idealized par-

allelism discovered, as well as a qualitative description of the strengths and weaknesses of this approach

to parallelization.

Our approach to parallelization works because of Id-S's single-assignment semantics for data struc-

tures - each element of a data structure may be written only once, but may be read many times. Single-

assignment semantics eliminate output-dependences and anti-dependences, so that parallel evaluation

is only restricted by true data dependences. As in functional languages, Id-S's lack of true side-effects

forces the user to frequently perform heap allocation, which disambiguates some data dependences for

the compiler.

The effect of Id-S's single-assignment semantics apply to scalar variables as well as to data structures

- scalar variables in Id may only be "assigned" once, and "updates" to scalar variables are handled by

creating a new variable.

We begin with a motivating example, describing our approach in the context of discovering DAG

parallelism. Discovering loop parallelism is a simple extension to handling DAG parallelism.



def foo A B C i j k =

C[k] = A[i] + B[j] + 1;

def bar A B C 1 m n =

{
B[l] = A[m];

C[n] = A[n];

def baz A B C i j k 1 m n

A = i_array(1,10);
B = i_array(1,10);

C = i_array(1,10);

# some intervening code ...

= foo A B C i j k;

= bar A B C 1 m n;

Figure 4.1: In this code fragment, the calls to foo and bar within baz can occur in parallel, because
there is no data dependency between the calls to foo and bar.

4.1 Simple parallelization example

Figure 4.1 shows an example of sequential Id-S code. Can the procedure calls to foo and bar in the

procedure baz be executed in parallel? This is the question at the heart of our parallelization - if we can

answer this question, we can discover other places where we can perform procedure calls in parallel,

and a simple extension allows us to determine when we can execute loop iterations in parallel.

Arrays A, B, and C are allocated in function baz, and they are referenced in the calls to foo and

bar. This code fragment shows how Id-S is different from functional languages such as Haskell or Sisal,

where object elements may only be defined when the object is created - in Id-S, objects may be created,

then updated, but each element of the object may only be updated once. Functional constructs in Id-S

such as array and list comprehensions, functional conses, functional tuples and functional structures are

de-sugared into a heap allocation and then fill-in.

Because of the array references in the program, we cannot determine whether the two procedure

calls can be executed in parallel without interprocedural analysis which determines which objects can

be aliased (either via procedure arguments or return values) and what side-effects are performed to

which objects in each procedure call.



By inspection, we can determine that there is no aliasing due to procedure argument passing or return

values in the above program fragment. An interprocedural side-effect analysis indicates the following:

* procedure foo reads A, B ; writes C

* procedure bar reads A ; writes B, C

* procedure baz reads A, B, etc. ; writes B, C, etc.

If we don't know the values of the array indices (i, j, k, 1, m, n) are related to each other, we must

conservatively assume that they may overlap. Is there a dependence due to the side effects to the arrays

in the calls to foo and bar?

If we examine the references, A is read by both foo and bar, but that does not cause a dependence.

B is read by foo and written by bar, but because of the sequential single-assignment semantics, we

know that they must be referencing different slots of B because the call to foo occurs sequentially

before the call to bar, so any elements referenced by foo must have already been defined before foo

was called. Furthermore, if those elements had been defined, they may not be re-defined, because of

the single-assignment semantics. For imperative languages, the references to B by foo and bar would

cause an "anti-dependence", because bar might over-write a location referenced by foo. Id-S does not

have anti-dependences because of its single-assignment semantics.

Finally, C is written by both foo and bar. Again, because of the single-assignment semantics,

we can infer that they must be writing to different elements of C - otherwise, the program would be

incorrect. Because they are writing to different elements of C, there is no dependency. For imperative

languages, these references would cause an "output-dependence" because the writes to C from bar

might overwrite the writes to C by foo, and later code might reference those over-written elements.

Id-S does not have output-dependences because of its single-assignment semantics.

Because there are no dependences due to direct scalar dependences between foo and bar (for

example, if bar used a value returned by foo) and there are no dependences through data structures

between the two function calls, they may be executed safely in parallel.

4.2 Commentary on parallelization

From the example in the previous section, several characteristics of our parallelization were introduced

or hinted at, which we briefly discuss here before we go into more detail about how the parallelization



analysis is performed.

4.2.1 Role of single-assignment semantics

Id-S's single-assignment semantics allows our analysis to ignore output-dependences or anti-dependences,

because they are not legal. If the program in Figure 4.1 were written in an imperative language such

as C or Fortran, the compiler would either give up when it discovered an output-dependence or anti-

dependence, or else attempt to disambiguate the reads and writes which caused the output-dependence

and anti-dependence, to show that they do not overlap.

Traditionally, this further disambiguation of read and writes is done with index analysis, although it

could also be done with other techniques such as strong typing or run-time checks.

4.2.2 No index analysis

In the example code, index analysis may be very difficult or impossible to do because the values of the

indices are passed through procedure calls, and may be calculated at run-time. Index analysis is most

powerful when used for nested loops where the indices are affine functions. The compiler can then

perform some automated proofs that the indices will not overlap, usually by constructing and solving

sets of linear inequalities.

Our approach does not do any index analysis, at all. The analysis traces potential reads and writes

to structures, without bothering to keep track of the indices of those reads and writes. As we discuss

later, we could discover more parallelism with index analysis, but we have found a significant amount

of parallelism, even without index analysis.

4.2.3 Whole program analysis

Although not strictly necessary, our approach works best when we can examine the entire program. This

should be clear from the example, because if we did not have access to the functions foo or bar, we

could not determine whether we could parallelize the two calls to them in baz. On the other hand, we

could determine that those calls could be executed in parallel, even without looking at the code between

the structure allocations and the two function calls in baz. In this thesis, all of our results are with

whole program analysis.



We do not handle higher-order function calls, because in general, it is difficult or impossible to

determine the possible flow of control with higher-order functions, making it difficult or impossible to

determine the side-effects caused by individual function calls. This is not a fundamental limitation -

any control-flow analysis which works in the context of higher-order functions [41] [75] would be easily

incorporated into our parallelization framework.

We handle closures by using the machinery in the Id compiler front end which converts all closures

into lambda-lifted top-level procedures, with closure variables explicitly passed in through procedure

variables.

In effect, the language we are parallelizing is a sequential, single-assignment, first-order language,

and all of our results assume that we have access to the entire program.

4.2.4 Extension to loop parallelization

There is nothing fundamentally different about the discovery of loop as opposed to DAG parallelism -

our analysis is essentially the same as we sketched out in the previous section. In parallelizing loops,

consider each loop body as a separate procedure, and the iterations of the loop as separate calls to the

loop body.

If the separate calls to the loop body do not have any potential true data dependences, then we

parallelize the loop, just as we parallelize the two procedure calls when we find DAG parallelism.

4.2.5 Parallelization is decoupled from scheduling

As in other compiler-driven parallelization approaches, the parallelization analysis is somewhat de-

coupled from the run-time scheduling and also code generation. Unlike compiling Id90 for sequential

processors, when we parallelize Id-S, we can choose whether or not to generate parallel code for in-

stances where we find that we can legally execute loops or procedure calls in parallel. Our choice of

whether or not to generate parallel code may be driven by the run-time system we choose, or guesses as

to whether the code is worthwhile executing in parallel or not.

The run-time scheduling is decoupled from the parallelization to a degree, in that the parallelization

does not determine which processors procedure calls or loop iterations are run on, or whether a lazy or

eager approach to forking parallel work is taken. Parallelization only determines the legality of parallel

execution.



Compiler Parallelization Stages
1 Find procedure local mod and ref sets 417 lines
2 Find interprocedural mod and ref sets 345 lines
3 Find procedure argument aliases 268 lines
4 Find procedure return value aliases 247 lines
5 Incorporate interprocedural mod, ref & alias information locally 162 lines
6 Add data structure dependence arcs 383 lines
7 Classify loop induction variables 254 lines
8 Mark parallel loops 100 lines

Total Line Count 2,176 lines

Figure 4.2: Compiler parallelization stages and line counts of each stage, including comments and
debugging code. The compiler was written in Lisp, increasing code density, but the compiler stages are
still extremely short and simple.

4.3 Approach to parallelization

From the example in Section 4.1, it is clear that interprocedural side-effect analysis can tell us when we

can safely execute two procedure calls in parallel. Interprocedural side-effect analysis is a fundamental

and well-studied problem, and is used in sequential compilers for many optimizations, including code

motion, common subexpression elimination, and loop constant hoisting. A simple treatment of this

analysis is given in Aho, Sethi and Ullman's introductory compiler text [3]. Our approach to interpro-

cedural side-effect analysis is not significantly different, except in our treatment of heap-allocated data

structures, and the way that we use the side-effect information.

Figure 4.2 shows the parallelization analysis stages in the compiler, and their line counts including

comments and debugging code. The parallelization stages are a small fraction of the Id-S compiler, and

these analysis phases already exist in most optimizing compilers for conventional languages. Note that

by comparison, just the integer programming core of the Omega test [65], a popular Fortran-style index

analysis algorithm, requires over 4,000 lines of C - not including the data dependence analysis required

to set up the integer programming problems. The DAG and loop parallelization analysis for Id-S is

considerably simpler than the loop parallelization analysis for Fortran.

Stages 1-5 perform the interprocedural side-effect analysis, which computes the data structures each

program graph node potentially references (reads or writes). The set of data structures potentially read

by a node is called the ref set, and the set of data structures potentially written by a node is called the

mod set. This analysis must trace objects through function calls, conditionals and loops, and resolve



aliasing which could arise from either parameter passing or return values. Our interprocedural side-

effect analysis is based on Cooper and Kennedy's [19] [20] refinement of Banning's original solution

[15] to finding interprocedural side-effects.

Stage 6 uses the mod/ref information to insert new data dependence arcs into the program graph.

After this stage, any two nodes which do not have a dependence between them in the program graph

may be executed in parallel. All of the DAG parallelism is exposed after this step.

Stages 7 and 8 expose loop parallelism using the side-effect information. Each loop is analyzed to

see if it can be parallelized, and each loop which can be parallelized is marked for special treatment

in later compiler phases. Not every loop which can be parallelized is parallelized - some loops do not

perform enough work to warrant parallelization.

The following sections describe the compiler stages in more detail. Readers who are familiar with

interprocedural side-effect analysis may choose to skip Sections 4.3.2 to 4.3.6.

4.3.1 Parallelization example 2

Figure 4.3 shows an Id-S program which calculates E'i fib(n) where fib(n) is the nth fibonacci num-

ber, using a very indirect algorithm. The main function creates an array of size n, and fills the i'th

element with a binary "fibonacci" tree, where each node of the binary tree either is a leaf node contain-

ing a value of 'O' or '1', or else an internal node containing two fibonacci subtrees. Finally, the sum of

the leaves of the fibonacci trees is taken in sum_f ib_array.

The "type f ibtree" declaration at the top of the program is a declaration of a new algebraic

type, which is a tagged union and struct. The sumtree function uses pattern matching to conditionally

branch on the tag of the algebraic type. This gets desugared by the Id front-end into code which looks

more like Figure 4.4. Figure 4.4 has more explicit information about the sequential ordering of the

procedure calls and data structure reads and writes - Figure 4.4 is not a legal Id source program because

it is not type correct, but it is a good representation of what the compiler sees when it performs the

parallelization analysis.

We will use the version of the program in Figure 4.4 to explain most of the stages of the paralleliza-

tion shown in Figure 4.2.



type fibtree = fibleaf I I fibnode fibtree fibtree;

def makefibtree n =
if (n < 2) then
fibleaf n

else
fibnode (make_fibtree (n-1)) (make fibtree (n-2));

def sumtree (fibleaf value) = value
sumtree (fibnode 1 r) = (sumtree 1) + (sumtree r);

def fill_fibarray_slot a i =
{ a[i] = make_fibtree i; };

def evenp n =
(logand n 1) == 1;

def fill_fib_array_even a n =
{ for i <- 1 to n do

if (evenp i) then
fill_fib_array_slot a i;);

def fill_fib_arrayodd a n =
{ for i <- 1 to n do

if (not (evenp i)) then
fillfibarray_slot a i; };

def sum_fib_array a n =
{ sum = 0;
in

{ for i <- 1 to n do
next sum = sum + sumtree a[i];
finally sum));

def main n =
{ a = iarray (l,n);

= fill_fib_array_odd a n;
= fillfib_array_even a n;

sum = sum_fib_array a n;
in

sum);

Figure 4.3: Example program to calculate E' f ib(n), where f ib(n) is the nth fibonacci number.

4.3.2 Stage 1: find local mod and ref sets

Within each procedure, we first determine the mod and ref sets for each program graph node. This is

a straightforward data flow problem - for each node which potentially accesses an object, we follow

arcs until we find the definition point of the object. Nodes which may potentially access objects include

heap reads and writes, and procedure calls. At conditional or loop boundaries, we conservatively take

the union of the sets from the two paths, because we are doing a flow insensitive analysis. We also

conservatively assume that each static occurrence of an object definition may refer to the same object

dynamically, which is not always the case - for example, and object allocated within a loop body has

only one static occurrence within the intermediate form, but dynamically has one for each loop iteration.

An object definition point is one of the following nodes:

* An object allocation



1: def make-fibtree n =
2: if (n < 2) then

3: { leaf = i_structure (0,1);
4: leaf[0] = leaf_tag;
5: leaf[l] = n;
6: in
7: leaf)
8: else
9: { node = i_structure (0,2);

10: left_tree = (make_fibtree (n-l));
11: right_tree = (make_fibtree (n-2));
12: node[O] = node_tag;
13: node[l] = left_tree;
14: node[2] = right_tree;
15: in
16: node};
17:
18: def sumtree fibtree =
19: if (fibtree[0] == leaftag) then
20: fibtree[l];
21: else
22: { left_tree = fibtree[l];
23: leftsum = sumtree left_tree;
24: right_tree = fibtree[2];
25: right_sum = sumtree right_tree;
26: sum = left_sum + right_sum;
27: in
28: sum};
29:
30: def fill_fib_array_slot al i =
31: { fibi = make_fibtree i;
32: al[i] = fibi; 1;
33:
34: def evenp n =
35: { lowbit = (logand n 1);
36: pred = (lowbit == 1);
37: in
38: pred );
39:
40: def fill_fib_arrayeven a2 nl =
41: { for il <- 1 to nl do
42: if (evenp il) then
43: fill_fibarray_slot a2 il;};
44:
45: def fill_fib_array_odd a3 n2 =
46: { for i2 <- 1 to n2 do
47: if (not (evenp i2)) then
48: fill_fib_arrayslot a3 i2;);
49:
50: def sum_fib_array a4 n3 =
51: { sum = 0;
52: in
53: (for i3 <- 1 to n3 do

54: next sum = sum + sumtree a4[i3];

55: finally sum});
56:
57: def main n4 =
58: ( a5 = i_array (1,n4);
59: _ = fill_fib_arrayodd a5 n4;
60: _ = fill_fib_array_even a5 n4;

61: sum = sum_fib_array a5 n4;
62: in
63: sum};

Figure 4.4: Desugaring of make_fibtree and sumtree providing a unique variable name to each

object.
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Figure 4.5: After Stage 1, all of the reads,
objects which they reference. Each object is

writes and procedure calls are labelled with the object or
labelled with its source.

* One of the current procedure's arguments

* A return value from a procedure call

* A reference from an object (e.g. the cdr of a cons cell). This could be sharpened with type
information, but we do not bother to do so.

* A global constant

References traced to new object allocations, procedure arguments, or procedure return values are

included in the mod and ref sets. These mod and ref sets may be later augmented with alias information

- for example, procedure arguments may be aliased to each other if the current procedure is called with

two arguments being the same object, and return values from procedure calls could potentially be aliased

to any other object (T).

References to objects which are traced back to references to other objects are assigned to T, meaning

that they are potentially aliased to any other object. This happens for nested objects, such as trees, lists

or tuples of objects. In some cases, references to T can severely limit parallelism we can detect -

we will give some examples of this in Section 4.4. However, single-assignment semantics allow us to

parallelize some codes even when there are references to T because we are only concerned with real

data dependences, not output- or anti- dependences. Additionally, T is sometimes too conservative an

Procedure Reference (line no.) Variable Object Source (line no.)
makefibtree write (4) leaf object alloc (3)

write (5) leaf object alloc (3)
write (12) node object alloc (9)
write (13) node object alloc (9)
write (14) node object alloc (9)

sumtree read (19) fibtree argument (18)
read (20) fibtree argument (18)
read (22) fibtree argument (18)
call (23) left_tree object reference (22)
read (24) fibtree argument (18)
call (25) right_tree object reference (24)

fillfibarrayslot write (32) al procedure argument (30)
fill_fibarray_even call (43) a2 procedure argument (40)
fill_fib_array_odd call (48) a3 procedure argument (45)
sumfib_array call (53) a4 procedure argument (50)
main call (59) a5 object alloc (58)

call (60) a5 object alloc (58)
call (61) a5 object alloc (58)



estimate, and we also show some simple ways to back off from this conservative estimate to obtain more

precise information about objects which are read and written.

We have chosen to ignore global constant objects in our parallelization - we evaluate all constants

in a sequential initialization phase, and assume that they are immutable thereafter, so there are no de-

pendencies arising from references through global constant objects. Our parallelization can be modified

to handle data dependences through global constant objects, but for the applications we have studied,

assuming global constants are initialized sequentially and immutable thereafter does not seriously affect

either performance or expressiveness.

After this first stage is completed, each read, write or procedure call in the procedure is labelled

with the object or objects which it references. Figure 4.5 shows this analysis for the fibtree program.

Note that each reference in our example references a single object, but that in general, the reference may

be to a set of objects. This occurs for references of objects which are the result of conditionals. For

instance, in the following procedure, the read in line 4 refers to both of the objects a and b, which are

both arguments of the procedure foo.

def foo n a b =
{ c = if (n > 0) then a else b;
in

c[01 );

While we compute the objects which are referenced by each read, write and procedure call, we also

calculate the direct mod and ref sets of each procedure as a whole. The direct mod and ref sets are the

set of objects which are externally visible to the procedure which may be read or written within the

procedure. Note that objects which are externally visible do not include objects which are allocated

within the current procedure, because those objects are only visible externally once the procedure has

executed, and by that point, all of the reads and writes are complete. As we note above, we also ignore

reads and writes to global constants, so the only references which are externally visible are to T, one of

the procedure arguments, or to a return value from another procedure call.

Figure 4.6 shows the direct mod and ref sets of the fibtree example. The only direct write in the

program is to the al argument of fillfib_arrayslot; the only direct read in the program is to the fibtree

argument in sumtree. There are some indirect reads and writes - for example, both fill_fibarrayeven

and fillfib_array_odd perform writes to the array passed to them, but they do it by doing a procedure call

to fillfib_array slot. In order to find the indirect reads and writes, we must perform some interprocedural

analysis, as we do in Stage 2.



Procedure direct mod set direct ref set
makefibtree { } { }
sumtree { } { fibtree }
fill_fibarrayslot { al } { }
evenp {} {}
fill fibarray _even { } { }
fillfib.array_odd { } { }
sumfibarray { } { }
main {} {}

Figure 4.6: The direct mod and ref sets of each procedure are only to objects which are T, procedure
arguments, or return values of calls - references to objects allocated within the procedure are not visible
externally. In our fibtree example, the direct mod and ref sets are all to procedure arguments.

Propagate mod/ref information interprocedurally

1. Create a binding multi-graph, representing interactions between formal parameters

2. Eliminate cycles by finding strongly connected components (SCC's), and substituting each SCC
with a supernode

3. Propagate mod-ref information up through the supernode DAG, bottom up

4. Propagate information back from supernodes to nodes

Figure 4.7: Procedure for propagating mod/ref information interprocedurally.

4.3.3 Stage 2: find interprocedural mod and ref sets

To propagate mod/ref information interprocedurally, we use Cooper and Kennedy's algorithm [19],

which we found to be simpler than Banning's original algorithm [15], or the algorithm in Aho, Sethi

and Ullman [3].

Cooper and Kennedy's algorithm uses a data structure called the binding multi-graph, instead of a

normal call graph. The binding multi-graph, 3 = (Np, E), represents interactions between procedural

formal parameters (arguments). Each node in the multi-graph represents a formal parameter of a proce-

dure, and each edge in the multi-graph connects a formal parameter which is itself used as an argument

in a procedure call.

Let the nth argument (formal parameter) to procedure p be called fpn. If, fp3 is used in a procedure

call as the second argument to procedure q, fpq, then there is an edge in the binding multigraph between

node fp3 and node fp2. This structure is a multi-graph because there may be multiple edges between



a2 a3 a4

al fibtree

Figure 4.8: Binding multi-graph for fibtree example. We know from Stage 1 that al is written, so we
determine that a2 and a3 are also written. We know from Stage 1 that fibtree is read, so we determine
that a4 is also read.

pairs of nodes in the graph. Each node in the multi-graph has two flags which indicate whether that node

is referenced or modified - if we know that the procedure associated with that node directly references

or modifies that formal parameter (which we calculated in Stage 1) then the appropriate flag is set to

true, otherwise, it is initialized to false. If the procedure directly modifies or references T, then we set

the appropriate flags to T.

The binding multi-graph for the fibtree example is shown in Figure 4.8. Each node is a procedure

argument which may be a data structure, and each edge is the potential use of an argument passed to

another argument. Note that make_fibtree has only a scalar (integer) argument, so its argument is not in

the graph. The recursive function sumtree has a data structure argument (fibtree), but that argument is

not passed to itself in the recursive call, so there is no cycle in the binding multi-graph. Finally, the data

structure a5 (line 58) is passed to filLfibarrayodd's argument a2, and fillfibarray_even's argument a3,

but a5 itself is not an argument, so it is not in the binding multi-graph.

The binding multi-graph may have cycles if the program contains recursive calls which bind argu-

ments to call-sites in a cyclic fashion. To eliminate any cycles, we calculate the strongly connected

components (SCC) of the multi-graph, and substitute each SCC with a supernode, while maintaining

the edges between SCC's for each supernode. Any cycle in the original multi-graph indicates that all

the nodes in the cycle should have the same mod/ref sets, so the mod/ref sets of each supernode is rep-

resentative of the all of the nodes in the cycle. Each supernode should be initialized mod/ref flags with

the "logical or" of all of the nodes in the SCC, while maintaining and direct reads and writes to T. Once

the supernode graph is constructed from the SCC, the graph is a directed acyclic graph (DAG).

Performing a bottom-up traversal of the graph from its leaves to its roots, we set the mod/ref flags

for each node to be the "logical or" of the original flag setting and the settings of its descendants. The

logical or is used because if any of the nodes children read the structure, then we want to mark the node



Resolving Procedure Argument Aliases

1. Create a pair binding multi-graph, where each node represents a potentially aliased procedure
argument pair

2. Initialize all nodes to nil, except those which we determine are directly aliased within the proce-
dure

3. Push alias pairs through the multi-graph

Figure 4.9: Procedure for resolving aliases from procedure arguments.

itself as being read, if it isn't already marked as being read from Stage 1. Likewise, if any of the node's

children are marked as being written, then we mark the node as being written, , if it isn't already marked

as being written from Stage 1.

In the fibtree example, the leaf nodes al and fibtree are written and read, respectively. When

we percolate this up the graph, we mark a2 and a3 as written, and a4 as read. In the fibtree example,

each node has at most one child, but in general, a procedure argument may be passed to several different

procedures, each of which may read or write it.

Finally, if we have supernodes due to cycles in the original binding multi-graph, we propagate this

information back to the component nodes of each supernode. We keep this information for Stage 5,

where we will combine it with interprocedural alias information of Stage 3 and Stage 4, and relate it

back to the local context of each procedure.

Readers interested in more details about the correctness and construction of this algorithm are re-

ferred to [19].

4.3.4 Stage 3: find procedure argument aliases

Although Id does not have arbitrary pointer aliasing of the type found in C, aliasing can still occur

through two mechanisms: procedure argument passing, and return value. Procedure argument aliasing

can occur when the same object is passed to two different arguments of the same procedure. Within

that procedure, one must assume that all of the arguments may potentially be the same object unless

interprocedural analysis proves that there are no call sites in the entire program which call the procedure

with multiple identical objects.

We use Cooper and Kennedy's [20] refinement of Banning's original interprocedural argument alias



analysis [15]. We give a sketch in Figure 4.9. The analysis uses a interprocedural data structure which

is different from the binding multi-graph, called the pair binding multi-graph, 7r = (N,, Er). In this

graph, each node is a pair of formal parameters to the same procedure representing a possible mapping

of an alias pair in one procedure to an alias pair of another procedure. For example, if the first and

third formal parameters of procedure p (fp ,fp3) are passed as the fourth and second arguments of

procedure q (fp ,fp ), then there is an edge between the two nodes - note that each node in the pair

binding multi-graph represents a pair of formal parameters.

Each node in the multi-graph has a flag determining whether the formal parameter pair is aliased

or not. This flag is initialized from procedure local information to be false unless we know from local

information that the object sets associated with two formal parameters intersect, causing a potential alias

within the callee.

We then push the flags for each aliased node to its children and their descendants. At this point, all

potential aliased formal parameter pairs have been marked, and we keep this information for Stage 5,

where we related it back to the local context for each procedure.

None of the functions in the fibtree example have procedures which have more than one argument

which is a data structure, so there are no opportunities for procedure argument aliasing in that program.

However, consider the following three procedures:

def write_a a =
{ a[l] = 1; };

def readb b =
bll];

def calltwofunctions al bl =
{ _ = writea al;
n = read_b bl;
in

n );

Can the two procedure calls in call_two_functions be executed in parallel? It depends upon

whether arguments al and bi are the same or not. If the rest of the program was the following main

function, then the two functions cannot be called in parallel, because the write in the first function causes

a dependency to the read in the second function.

def main =
{ a2 = iarray (1,1);
nl = calltwofunctions a2 a2;
in

nl };



If, however, the rest of the program was the following main function, then the two functions in

calltwo_functions can be called in parallel, because the write in the first function is to a different

data structure than the read in the second function.

def main =
{ a3 = iarray (1,1) ;

b3 = i_array (1,1) ;
b3 [1] = 2;
n2 = call_two_functions a3 b3;
in

n2 };

Aliasing through arguments can happen often when T is passed as one of the arguments. If there are

any other arguments which are potentially data structures, we must assume that those arguments may be

aliased to T.

This approach to alias analysis is conservative, because if any call-site happens to cause a potential

alias in a called procedure, then we assume that that alias can always occur. It is also possible to have

the compiler clone a procedure such that call-sites which use aliased arguments call one version, while

call-sites which don't use aliased arguments call a separate, more parallel version. Cloning to provide

specialized, optimized or parallelized versions of procedures is discussed in Hall's PhD thesis [39]. Our

analysis does not perform cloning.

4.3.5 Stage 4: find return value aliases

For Id, we also have to find the aliases which may be due to procedure return values - the value that is

returned by a procedure may be either aliased through one of two ways:

* It may be aliased to one of the arguments that is passed to the procedure in the case that the
procedure returns a value which was passed to it - for example, the identity function returns a
value which is aliased to its formal parameter.

* It may be aliased to T, in the case that it is returning a referenced value which is an object.

Our algorithm for resolving aliasing through return values is shown in Figure 4.10. Again, this

procedure is extremely simple and conservative, but sufficient.

We make the simplifying assumption that all return values are either new, i.e. objects allocated

within the context of the procedure call, or else T. Although there are some times when this procedure

would label a return-value as T, when a more precise approach would determine it was aliased to a



Resolving Return Value Aliases

1. Create a "return value" node for each procedure which may return a data structure.

2. Initialize each rv-node to nil, unless you know it is a new node (allocated in the current procedure)
or you know it is T.

3. Wire up rv-nodes to each other in a doubly-linked fashion if the return value of one procedure is
the return value of another.

4. Propagate T and new to your children, and remove the arc to the child. If T is propagated, the
child also becomes of type T. If new is propagated, then the child becomes of type new if there
are no more parent arcs. Children whose types are resolved to be either T or new propagate their
types to their children.

5. When there are no more nodes to work on, label any remaining nil nodes to be of type T.

Figure 4.10: Procedure for resolving aliases from return values.

procedure argument or even new, it does not seem to impede our parallelization for most of the programs

we are testing.

We have found that most objects which are returned from a procedure call are new, perhaps because

Id programmers tend to write in a functional programming style. Of course, procedures can also return

scalar or null values, which do not affect alias analysis. Fairly rarely, a procedures returns one of the

values it was passed in an argument (e.g. the identity function) which is what makes our simplifying

assumption reasonable.

The only procedure in the fibtree example which returns a data structure is the make_fibtree

function, which returns either leaf or node, both of which are new, and therefore we mark the return

value of make_fibtree as returning new.

We keep the return value alias information for the next stage, where it is incorporated with informa-

tion gathered from Stage 2 and 3 to give us a procedure local view of mod-ref sets.

4.3.6 Stage 5: incorporate interprocedural mod/ref and alias information locally

Once interprocedural alias and mod-ref information is gathered, we update the local mod and ref sets.

This is necessary because we now know that some of the objects passed into procedure calls may be

modified or referenced, or that a procedure call may modify or reference an arbitrary object. From the



Incorporating interprocedural alias and mod/ref information locally

1. Recursively update mod/ref information through conditional and loop encapsulators with new
mod/ref information for each call-site

2. Propagate new reads and write to T back to callers using the binding multigraph

3. For each procedure, create an "alias map", mapping local object names to the set of objects that
they may possibly be aliased to.

4. Update each node's mod/ref sets by augmenting the sets with information from the procedure's
alias map.

Figure 4.11: Incorporating interprocedural information locally.

Figure 4.12: In Stage 5, we augment each of the calls with the objects which are potentially read and
written, and propagate this information through conditionals and loops, and back through the call tree,
if necessary.

interprocedural aliasing information, we also may discover that a store or fetch to one object may also

reference another object.

As proven by Banning [15], this can be performed in two steps - first by incorporating mod/ref

information due to procedure calls, and second by augmenting local mod/ref information with alias

information. The first step is done by recursively updating mod/ref sets through conditional and loop

encapsulators for each call-site using the information gathered in Stage 2. During the recursive descent,

we also update the mod/ref sets of each conditional and loop with the union of the mod/ref sets of the

nodes internal to each conditional and loop.

In essence, the first step replaces call of the individual procedure call references in Figure 4.5 with

Augmenting local mod/ref sets with interprocedural information
Procedure call-site (line no.) Objects Reads Objects Written
makefibtree makefibtree (10) none none

makefibtree (11) none none
sumtree sumtree (23) T none

sumtree (25) T none
fill_fib_array_slot makefibtree (31) none none
fillfibarray_even fillfibarrayslot (43) none a2
fill_fib_array _odd fillfibarray-slot (48) none a3
sum-fib_array sumtree (54) T none
main fill_fibarray_odd (59) none a5

fillfib_array_even (60) none a5
sumfib_array (61) T, a5 none
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Figure 4.13: Dependence matrices which determine when nodes can execute in parallel. Single-
assignment semantics allow more nodes to be executed in parallel than imperative semantics.

the reads and writes which are performed when those procedure calls are performed.

If there are any new references to T caused by this step, this information is propagated back through

the call tree.

Once the mod/ref information is updated to include the effect of procedure calls, we augment the

mod/ref sets with alias information. First, we create an "alias map" for each procedure, using the alias

information we calculated in Stages 3 and 4. Then, for each program graph node in the procedure, we

supplement the mod and ref sets with the objects which may be aliased to the objects in the current mod

and ref sets.

4.3.7 Stage 6: add data structure dependences

Once we determine what objects are modified and referenced by each conditional, loop, store, fetch, and

procedure call, we recursively consider each encapsulator surface. For each potentially side-effecting

node in a surface, we compare it with every other node within the same surface and apply one of the the

matrices shown in Figure 4.13.

When we assume single-assignment semantics, we consider the mod set of the first node and the ref

set of the second node - if they intersect, then we must insert a dependence arc between the two nodes

to respect the potential dependence. When we assume imperative semantics, the only case in which we

do not insert a dependence between two nodes is when the only intersections between the mod/ref sets

YES YES

NO YES

YES NO

NO NO



Figure 4.14: In Stage 6, we decide
dence matrix for single-assignment

whether to add dependencies between references, using the depen-
semantics.

of the two nodes is between the ref sets.

The two matrices in Figure 4.13 are different because with single-assignment semantics, only true

data dependencies must be respected. There are no output dependences or anti-dependences, which are

represented by the additional two "NO" entries in the imperative matrix.

For our fibtree example, the dependence arcs are added only between the call to f ill _f ib_array_odd

and the call to sum_f ib_array, and the the call to f ill_f ib_arrayeven and the call to sum_f ib_array,

as shown in Figure 4.14. For the functions fill_fib_array_slot, fill_f ib_arrayeven,

f ill_f ib_array_odd, and sum_f ibarray, there is only one static reference in each function,

so no additional dependence arcs need to be added.

For make_fibtree, there are only write after write pairs, which would be considered output

dependences in an imperative language, but which are not output dependences in a single-assignment

semantics. Note that we only compare references which occur within the same control block - references

in one arm of the conditional are not compared for potential dependences with references in the other

arm, because within a particular function invocation, they cannot be simultaneously active.

Furthermore, we are only comparing direct structure writes in make_fibtree, because our in-

Adding dependence arcs
Procedure First ref (line no.) Second ref Read after Write? 1st mod set n 2nd ref set
make-fibtree write leaf (4) write leaf (4) no

write node (12) write node (13) no
write node (12) write node (14) no
write node (13) write node (14) no

sumtree read fibtree (22) read T (23) no
read fibtree (22) read fibtree (24) no
read fibtree (22) read T (25) no
read T (23) read fibtree (24) no
read T (23) read T (25) no
read fibtree (24) read T (25) no

fillfib_arrayslot none none
evenp none none
fillfib_arrayeven none none
fillfib_array_odd none none
sumfib_array none none
main write a5 (59) write a5 (60) no

write a5 (59) read T (61) yes { T }
write a5 (60) read T (61) yes { T }



terprocedural analysis determined that the two recursive procedure calls do not cause any visible ref-

erences. We need to compare direct reads and writes for potential dependences, because there is no

sequentialization within the dataflow graph representation, except indirectly in the node numbering.

For sumtree, there are only read after read pairs, which do not cause dependences, even though

there are references to T. Here, we compare direct reads and procedure calls.

Only within the main procedure do we need to insert dependences, and even the two calls to

f ill_f ib_array_odd and f ill_f ib_array_even can proceed in parallel, because the only visi-

ble side-effects which main can see are writes. Because of the single-assignment semantics, the writes

may occur in parallel to the same data structure.

However, the writes caused by f ill_f ib_arrayodd and f ill_f ib_array_even do occur

before the reads caused by sum_fib_array, so we need to check for those reference pairs whether the

mod sets of the first nodes intersect with the ref set of sum_f ib_array. In fact, because sum_f ib_array

references T, no write may execute in parallel with it, because T intersects with any non-empty ref

set. Because of this, we insert a two dependence arcs in the main procedure, one between the call

to fill_fib_array_odd and sum_fib_array and one between fill_fibarray_even and

sum_f ib_array.

Once this phase has completed, the code generator can generate multithreaded code which takes

advantage of DAG-style parallelism - two procedures which do not have a data dependency between

them can execute in parallel. However, have not yet discovered loop-level parallelism, although the

analysis we have performed thus far can be used to trivially parallelize loops, as we explain in the next

section.

4.3.8 Stage 7: characterizing loop induction variables

As we noted in Section 4.2, there is no fundamental difference between discovering DAG parallelism

and loop parallelism. Our analysis attempts to parallelize loops which have no loop-carried dependen-

cies - that is, those loops for which we can execute every iteration in parallel, without some run-time

synchronization between concurrent iterations.

We initially check a loop for its suitability for parallelization by analyzing each induction variable,

and determining whether it is a constant-incrementing variable, or a reduction variable. A constant-

incrementing variable is a variable which increments by a constant amount on each iteration - this



Procedure and line no. of loop Induction variable Type of induction variable
fillfibarray even (41) i constant-incrementing (+1, initial: 1, final: nl)
fillfibarrayodd (46) i2 constant-incrementing (+1, initial: 1, final: n2)
sumfibarray (53) i3 constant-incrementing (+1, initial: 1, final: n3)

sum reduction (integer +)

Figure 4.15: In Stage 7, we characterize all loop induction variables as being either constant-
incrementing, reduction, or other. Loops which have any induction variables which are classified as
other we do not parallelize

constant may be a literal or a loop constant. Constant-incrementing variables also require initial and

final values which are either literals or loop constant.

A reduction variable is a variable which computes a reduction using an associative and commutative

operator, where the running value is not used within the loop - the most common example of a reduction

variable is a sum.

We characterize loop induction variables with a simple pattern matching approach, augmented by

some normalizing transformations. We do not attempt to parallelize loops which contain induction

variables that do not fall into one of these two categories.

In the fibtree example, there are three loops, one each in f illf ib_array_even, f ill_f ibarray_odd,

and sum_f ib_array. We show all of their induction variables and the characterization of each variable

in Figure 4.15.

fill_fibarray_even and fill_fib_arrayodd only have the main induction variable,

which increments by 1 on each iteration. The initial value for both loops is a literal, 1, and the final

value is a loop constant, n1 and n2, respectively. Because we know the initial, final and increment

value of the induction variables for these two loops, there are no loop carried dependencies caused by

the induction variables. There may be some loop carried dependencies caused by references to data

structures, which we will check in Stage 8.

For sum_f ib_array, there is the main induction variable, i3, and one more induction variable,

sum. The i3 induction variable is a constant-incrementing variable like the previous two. The sum

induction variable is a reduction - it computes the integer sum of the return values from the calls to

sumtree, and integer addition is both commutative and associative. Furthermore, the intermediate

values of sum are not used within the loop body. Because sum is a reduction variable, we can parallelize

its computation such that the loop iterations can go on in parallel, while the reduction (the sum) can be



computed in a tree-like fashion, instead of iteratively.

Note that although for fibsum, the constant-incrementing induction variables have an initial value

and increment value which are literals, those could also be loop variables. For example, suppose that

we decide to replace f ill_f ib_arrayeven and f ill_f ib_array_odd with a single procedure

which takes the initial and increment values as procedure arguments, as follows:

def fill_fib_array_from_by a n start inc =
{ for i <- start to n by inc do

fill_fib_array_slot a i;);

We can then pass in the arguments start and inc as 0 and 2 to fill in the even elements, and 1 and

2 to fill in the odd elements. The main induction variable is still constant-incrementing, because start

and inc are loop constants.

For reduction induction variables, it is important that the running value is not used within the loop

body, because that makes it difficult to parallelize the computation of that variable. For instance, suppose

that the procedure sum_fib_array was modified to fill in the running sum E'-L1 fib(i) into an array

b into the nth slot of b, as in the following procedure.

def running_sum_fib_array a b n =
{ sum = 0;
in

{ for i <- 1 to n do
b[i] = sum;
next sum = sum + sumtree a[i];

In this case, although the induction variable sum is being computed with an associative and com-

mutative operator, because the running value is used in the loop body, we choose not to parallelize this

loop. This induction variable would be classified as other.

4.3.9 Stage 8: marking parallel loops

Once we determine which loops have induction variables which are all either constant-incrementing or

reduction variables, we then check the loop's mod and ref sets. Only loops which have disjoint mod

and ref sets are marked to be parallelized. If a loop may reference and modify the same object, then we

make the conservative assumption that the loop has some loop-carried dependences.

Figure 4.16 shows how we mark the loops in the fibtree example. As we saw in Stage 7, none of

the loops have any loop carried dependences due to the induction variables. When we examine the mod



Procedure and line no. of loop Induct. var. dependence? mod set ref set Parallelizable?
fillfib_array_even (41) no { a2 } { } yes
fill_fib_array_odd (46) no { a3 } { } yes
sumfibarray (53) no { } { T } yes

Figure 4.16: In Stage 8, we first check if there are any loop carried dependences due to induction
variables, and then we check whether there is any intersection between the mod and ref sets of the loop.
If there are no loop carried dependences in the induction variables and the intersection of the mod and
ref sets is the empty set, then we can parallelize the loop

and ref sets of each loop, we see that there is no intersection for each of the three loops, so they are all

parallelizable.

In the fibtree program, all of the loops either had mod sets or ref sets which were empty. In fact,

many loop have non-empty mod and ref sets, but are still parallelizable because their intersection is

empty. A simple example is the following function, which copies the contents of array a into array b:

def copy_array a b n =
{ for i <- 1 to n do

b[i] = a[i];};

The mod set of the loop is { b } and the ref set is { a }, but the two sets don't intersect, so the loop is

parallelizable. Note that the analysis never looked at the loop indices. We could just as easily parallelize

the following loop, without considering what anyfunc t ion does.

def permute_array a b n =
{ for i <- 1 to n do

b[(any_function i)] = a[i];};

We depend on the programmer to adhere to the single-assignment semantics, ensuring that no ele-

ment of b gets written more than once.

Note that even if a loop references and modifies the same object, the loop may be parallelized

using traditional loop dependence analyses to determine whether the references to the objects incur

loop-carried dependences, or whether those dependences could be eliminated with some loop transfor-

mations. For example, consider the following loop which copies one row of a matrix into the following

row:

def copy_row a n =
{ for i <- 1 to n do

a[i,j+11 = a[i,j];);



Our parallelization will see that the mod and ref sets of the loop overlap, so we conservatively

assume there is some loop carried data dependence. In fact, the loop can be parallelized using traditional

Fortran compiler index analysis, which would determine that the read and write indices into the matrix

never overlap. Other loops which benefit from index analysis include those in wavefront computations,

and LU or cholesky decomposition.

4.4 Limitations and improvements to the parallelization

In this section, we describe some of the limitations of our parallelization approach, as described so far,

and some of the ways we address the limitations.

4.4.1 False dependencies due to T

When we call a procedure within a loop, that procedure may reference T, which causes the loop itself

to have T within its reference set. If the same loop is attempting to store values into an object allocated

within the procedure, then our simple approach will assume that the store to the local object and the

reference to T intersect.

However, T is just an approximation - it cannot really be aliased to every object in the system. In

particular, if we trace the lifetime of the objects allocated within the current procedure, we can determine

that those objects cannot be stored via a function call, if those objects do not escape the local procedure

context. The two main methods by which an object may escape are by being stored into a data structure

which is passed to a procedure, or else being passed to a procedure directly.

We trace all created objects to determine if they escape, and if they do not escape, then we can

determine that they cannot be referenced by a procedure call.

4.4.2 False dependencies due conservative object labelling

Our local object labelling algorithm (Stage 1) labels each textual occurrence of an object definition, but

does not distinguish between occurrences which are textually identical, but not the same object. For

instance, an object definition which occurs within a loop will be labelled the same, regardless of which

iteration of the loop it is allocated in.



This could be improved by labelling object definitions differently for different iterations. A simple,

conservative approach would be to have two labels for each object - one of which corresponded to the

current iteration, and one which corresponded to any other iteration.

4.4.3 Room for improvement in index analysis

As we discussed earlier, our analysis does not detect some parallel loops which might be detected using

traditional parallelizing loop optimizations and transformations. However, our compiler framework does

not preclude using those techniques, and in fact, because those techniques are typically more expensive,

our simple analysis could be viewed as a pre-test to screen out the majority of loops which do not require

a more sophisticated analysis [51] [65] [14] [5] [31].

This approach has also been taken in the parallelizing loop analysis by Maydan, et.al. [51] and Goff,

et.al. [31] - a tree of dependence tests is performed, where the fastest and simplest tests are performed

first, while slower and more complicated tests are performed only if necessary, with the order and type

of test performed determined by the results of the initial tests.

4.5 Parallelization results

In this section, we show some results which indicate how well the compiler was able to detect parallelism

for a set of Id-S program. We use the measurement of idealized parallelism to isolate results of the

compiler parallelization from machine-specific issues such as cache organization, memory bandwidth

limitations, as well as the effect of run-time scheduling policies. Real speedup numbers will be shown

in a later chapter.

Idealized parallelism gives us an upper bound on the parallel speedup we can expect on a real ma-

chine (modulo superlinear effects due to increased cache capacity in a parallel machine) by assuming

speedup with an infinite number of processors, perfect scheduling, and no communication or synchro-

nization costs. We can only measure idealized parallelism for a certain program input - not surprisingly,

the same program can have a different idealized parallelism for a different program input.

We use idealized parallelism to measure the effectiveness of our parallelization rather than a com-

mon alternative measurement called parallel coverage [6] - parallel coverage gives the percentage of

time a program spends in parallelized sections of code. Parallel coverage can give a lower bound on



START

op

critical path = 17
total work = 5+3+7+2+2+2+9+3 = 33

idealized parallelism = 33/1 7

END

Figure 4.17: Example of idealized parallelism calculation. The critical path and total work is calculated,
and the idealized parallelism is the ratio of the total work to critical path.

the sequential section of a program run, but does not relate to real parallel speedup. In the case where

the entire program fits in one outer loop which is parallelized, but which only has one iteration, there

is 100% parallel coverage, but no idealized speedup. Parallel coverage also masks the effects of paral-

lelization which is not at the outer loop, and unbalanced work within loop iterations, both of which have

impact on real speedup.

4.5.1 Methodology for measuring idealized parallelism

We use the same strategy as the Cilk system [16] to measure idealized parallelism. We instrument the

parallelized code to count the total work performed, and the critical path through the code. The total

work is equal to the time the code would take to run on 1 processor, and the the critical path is the time

the code would take to run on an infinite number of processors, where all work is scheduled perfectly.

The idealized parallelism is the ratio of the total work to the critical path. A simple example of idealized

parallelism is shown in Figure 4.17, with each thread represented by a node in the execution DAG.

The total work is measured simply by inserting a global counter increment for every operation the

compiler generates. At the end of program execution, the total work is the value of the global counter.



In Figure 4.17 is the sum of all the work in all the threads, or 33 units.

The critical path is measured by "timestamping" threads - when two threads are forked off, we

timestamp both threads, and when two threads join, we take the maximum timestamp of the two threads.

For parallelized loops, we assume all iterations begin at the same time, and the finish time for a parallel

loop is the start time plus the time taken by the longest running iteration. In Figure 4.17, the critical

path of the program execution is shown to be also the height of the execution DAG, or 17 units. The

idealized parallelism of the program execution in Figure 4.17 is therefore 33/17.

The idealized parallelism for a program execution is affected by many factors, including:

1. The inherent parallelism in the program - some algorithms simply do not have very much paral-
lelism.

2. The parallel execution model - we are only taking advantage of procedure and loop parallelism.
Our idealized parallelism numbers do not include producer-consumer or instruction-level paral-
lelism [12].

3. The effectiveness of the parallelization - the compiler may miss some opportunities for paralleliz-
ing loops or procedure calls.

4. The program input - the parallelism is likely to be less for a small problem size than a large one.

Our parallelization results measure the first three factors. We provide some commentary on the

characteristics of the program, the sources of potential parallelism, and the effectiveness of the paral-

lelization. We also separate out the effects of procedural (or DAG) parallelism from loop parallelism

to gain more insight on the sources of parallelism and the effectiveness of the compiler. Our program

inputs are somewhat arbitrary, and are set to be large enough to allow us to obtain good wall clock

timings for Chapters 5 and 6.

Note that idealized parallelism is not the same as the eventual speedup we will see on a real parallel

machine. The idealized parallelism shows how much of the inherent parallelism in the algorithm the

compiler could discover. Some of this parallelism may be too fine-grained to take advantage of prof-

itably on an SMP, even though we are avoiding the type of producer-consumer parallelism used in Id90.

Furthermore, idealized parallelism does not measure the effects of the memory system, and takes an ide-

alized approach to scheduling and work distribution overheads. That being said, idealized parallelism is

useful in that it gives us an upper bound on the parallelism we can expect to exploit, and provides some

insight into the interaction of DAG and loop parallelism.



Figure 4.18: Idealized parallelism for structured
parallelism, and both types of parallelism.

codes, showing the effects of DAG parallelism, loop

4.5.2 Parallelism in structured codes

We first discuss the parallelization results for structured codes, which are more amenable to Fortran-style

analysis. Figure 4.18 shows the idealized parallelism for a set of structured codes. We show separate

numbers for DAG and loop parallelism, as well as combined DAG and loop parallelism. These numbers

were obtained by selectively turning off analysis phases in the compiler which discover loop and DAG

parallelism, generating codes which only exploit one type of parallelism.

The parallelism numbers do not make a distinction between vector-style inner-loop parallelism and

coarser-grained outer loop parallelism - that is, those numbers incorporate vector-style loop parallelism

as well as coarse-grained outer-loop parallelism and DAG parallelism. In Chapter 5, we will revisit these

parallelism numbers in the context of generating efficient parallel code, which will entail a tradeoff of

fine-grained vector-style parallelism for efficiency.

Not surprisingly, most of the structured programs (except for mm-kes) exhibit mostly loop paral-

lelism, and relatively little DAG parallelism. Because there is such a large amount of loop parallelism

being exposed, even a little bit of DAG parallelism seems to have a large effect when the two are com-

bined - for example, in the relax program, a miniscule amount of DAG parallelism seems to triple the

ideal parallelism between loop and "DAG & loop". This effect is not important for us, because we are

targeting small machines, where the additional parallelism is not necessary.

Program Arguments DAG only Loop only DAG & Loop
eigen-jacobi 50 2.05 23.11 82.80
knapsack-dp 10010000 1.00 1.00 1.00
mm-kes 500 68.45 192.97 18157.99
mm-kes 700 95.53 269.45 35532.30
mm 500 1.00 308979.23 308979.23
nas-multigrid 6 5 1.14 1529.22 2175.44
poly-mult 13000 1.00 13922.50 13922.50
precond-conj-grad 300 1.25 4476.74 5195.32
region-labelling 500 1.52 46001.40 66167.64
relax 1000 10 1.01 14574.52 43274.73
simple-kt 10200 1.12 3.47 4.89
simple-new 10200 1.93 24.25 24.37
simplex 70 1.05 1.17 1.19
warshall 300 1.00 20524.01 20541.52



Here, we explain in more detail the parallelism results in Figure 4.18.

eigen-jacobi is a Jacobi eigensolver, which finds the eigenvalues of a symmetric matrix which has

a width and height the size of the input argument. There is a moderate amount of loop parallelism,

and a small amount of DAG parallelism. The combined parallelism is greater than the product of the

individual parallelism numbers, a phenomenon we explain in greater detail in Section 4.6.

knapsack-dp solves an integer knapsack problem using a dynamic programming algorithm. The first

argument is the number of items we have, and the second argument is the capacity of the knapsack. The

program determines the set of items with the maximum value which weigh less than the capacity of the

knapsack.

The inner loops of the program fill in a 2D array with wavefront dependencies. Our loop paral-

lelization analysis cannot determine that the loops can be parallelized because we do not perform index

analysis.

Index analysis might determine that the loops should be transformed so that the iteration space is

traversed along diagonal elements of the 2D array, yielding a parallelizable inner loop - however, this

inner loop parallelism is extremely fine-grained, and would probably only yield at most 100 idealized

parallelism (because a diagonal of length 100 could be calculated in parallel at any time).

mm-kes is a blocked 4 x 4 double-precision matrix multiply which does a decomposition to 4 x 4

blocks recursively, then computes the values of the 4 x 4 block iteratively. The argument is the length

of a side of the square matrices which are multiplied. mm-kes shows both DAG and loop parallelism.

mm is a standard triply-nested matrix multiply, which parallelizes well. The argument is the length of

a side of the square matrices which are multiplied.

nas-multigrid is the 3D multigrid benchmark from the NAS suite [59], which parallelizes well. The

first argument is the number of levels that the multigrid uses, and the second argument is the number of

iterations of performed. The size of the grid at maximum resolution is 64 x 64 x 64.



poly-mult performs a polynomial multiplication, where the polynomials are represented as arrays of

coefficients. Poly-mult parallelizes well. The argument represents the degree of the input polynomial

which is multiplied by itself.

precond-conj-grad is the core of an ocean model which solves a sparse, banded system linear of

equations [74] which parallelizes well. The argument is the size of the square input matrices which

describe the 2D pressure equation solved by a preconditioned conjugate gradient algorithm.

region-labelling is an image processing algorithm which labels "regions" of the same color with

unique identifiers. The argument is the size of the square "image" which is labelled. Region-labelling

parallelizes well.

relax is a simple 2D Gaussian relaxation problem which parallelizes well. The first argument is the

size of the input matrix, and the second is the number of iterations.

simple-kt is a 2D hydrodynamics simulation - the first argument is the number of iterations, and the

second is the size of a side of the square grid area.

Simple-kt which parallelizes poorly because it makes heavy use of tuples of state arrays to pass

results between loop iterations. Our analysis loses track of arrays once they are stored and read from

tuples, and assumes that those arrays could be aliased to T, which makes parallelization rather poor.

simple-new is a re-write of simple-kt which does not use tuples to pass results, and consequently

achieves better parallelization. Several procedures in simple-new still do not parallelize, leading to a

critical path which is about 4% of the run-time.

simplex is an optimization algorithm for a linearly constrained system, which has an LUD decompo-

sition at its core. The linear constraint is of the size of the argument.

The LUD decomposition cannot be parallelized because the inner loops read and write the same

LUD array - Fortran-style index analysis might be able to analyze the data dependencies, and restructure

the loops to allow them to execute in parallel.



Figure 4.19: Idealized parallelism for unstructured codes.

warshall is Warshall's all-pairs shortest paths algorithm, where the argument is the number of cities.

Warshall parallelizes well.

4.5.3 Parallelism in unstructured codes

Figure 4.19 shows the idealized parallelism numbers for some codes which are unstructured - these

codes probably would not parallelize well using conventional Fortran parallelizing loop compiler tech-

nology for a variety of reasons. These codes make greater use of DAG style parallelism than the struc-

tured codes, but many still rely primarily on loop parallelism.

Even the codes which rely primarily on loop parallelism are not structured codes because the pattern

of memory accesses within the loops are not amenable to traditional index analysis.

btree converts a list of integers into a btree structure, and shows moderate speedup. The argument is

the size of the list. This code has some fundamental sequential sections which limit idealized speedup.

fft-1d uses a recursive divide-and-conquer ID FFT algorithm with a base case of 4 elements. The

argument is the size of the array on which the FFT is performed. The combine is implemented as a

Program Arguments DAG only Loop only DAG & Loop
btree 5000 63.99 1.00 63.99
fft-ld 65536 6.80 9.12 13939.13
fib 36 1254426.01 1.03 1254426.01
gamteb 40000 1.18 1.00 1.18
gamteb-new 40000 1.21 333.61 339.47
knapsack-bb 100 10000 2484.17 1.00 2484.17
mm-sparse 300 1.00 197.71 380.26
nas-cg 300 1.00 532.51 539.09
nqueens 12 15796.00 1.00 15796.00
paraffins 20 1.28 1.74 2.53
pic 64 40000 100 1.01 2498.57 3830.77
qs 10000 3.81 1.00 3.81
ray-tracer 500 1.06 7659.55 8272.00
speech-dtw 350 69.72 85.55 86.75
speech-proc 10240 30 9.54 13.57 16.66
speech-proc 2000000 40 8.17 13.19 15.90
tree 23 501995.42 1.00 501995.42



single loop. Although DAG and loop idealized parallelism numbers are moderate in isolation, fft-ld

shows good idealized parallelism when both are used. This phenomenon is explained in Section 4.6.2.

fib is a doubly recursive fibonacci program which speeds up well. The argument is the nth fibonacci

number.

gamteb is a Monte Carlo photon transport simulation code which creates particles of random energy

and velocity, and tracks their fate through a cylindrical geometry. The argument is the number of

particles which are simulated.

The main loop of gamteb performs a vector-style sum of a tuple of integers on each iteration, which

causes a loop-carried dependency. Although our compiler can detect reductions of scalars, it cannot

detect reductions on arrays or tuples, and thus cannot parallelize the main loop.

gamteb-new is a re-write of gamteb which is approximately twice as fast on a single processor, and

which does not have a loop-carried dependency in the main loop. Gamteb-new parallelizes well.

knapsack-bb is a knapsack problem which uses a branch and bound search algorithm instead of the

more structured dynamic programming algorithm explained above. The first argument is the number of

items we have, and the second argument is the capacity of the knapsack. The program determines the

set of items with the maximum value which weigh less than the capacity of the knapsack. Knapsack-bb

parallelizes well.

mm-sparse performs a sparse matrix multiply using an list-based matrix representation. The size of

the argument is the length of the side of the square input matrix. Mm-sparse parallelizes well.

nas-cg is a sparse conjugate gradient problem from the NAS benchmark suite. The input size is the

square root of the side of the input matrix.

Nas-cg differs from precond-conj-grad in that it can solve any linear system, whereas precond-conj-

grad is specialized to solve only a particular banded linear system.



nqueens computes the number of solutions to the N Queens problem, and shows good ideal paral-

lelism. The input size is the number of queens and the size of the side of the chess-board on which the

queens are placed.

paraffins enumerates the unsaturated hydrocarbons up to a certain diameter. Paraffins is an unusual

case in that we are able to parallelize the main outer loop which calculates the paraffins of diameter 1 to

n, where n is the input size. For each diameter of paraffin, we can take advantage of DAG parallelism

to calculate two different types of paraffins of the same diameter in parallel. However, we cannot

parallelize the inner-most loops which are triply-nested loops constructing a list of paraffins. The list

construction causes a loop-carried dependency which we cannot break. Because the lengths of the

paraffins lists increase exponentially with the diameter, we are constrained by the calculation of the list

of the paraffins of the largest diameter, which must be done sequentially.

Paraffins cannot be parallelized effectively unless the compiler can parallelize loops which simulta-

neously traverse and construct lists. This is an application which is better handled for now by the more

dynamic approach of Id running on Monsoon.

pic is a 2D particle in cell simulation where particles are followed around in rectangular cells on a

grid. The first argument is the number of cells on the side of an N x N grid, the second argument is the

number of particles simulated, and the third argument is the number of time steps simulated.

The code consists of alternating phases which are particle-centric and cell-centric. Depending on the

motion of the particles, the loops in the code may be extremely unbalanced, because certain iterations

of important outer loops may handle thousands of particles, while other iterations handle none. Pic

parallelizes well.

qs is a quicksort on lists, where the input size is the length of the list to be sorted.

Qs parallelizes poorly. Although the compiler can detect the DAG-style parallelism and fork off

two child quicksorts in parallel, the divide and merge steps are both inherently sequential, because they

traverse lists. Even on the extremely idealized TTDA dataflow architecture, this code achieves limited

idealized parallelism (about 50, including instruction-level and producer-consumer parallelism) due to

inherent sequentiality in the divide and merge steps.



ray-tracer is a ray-tracer which traces a square scene consisting of a few spheres. The input argument

is the number of pixels on the side of the scene.

Ray-tracer shows good idealized parallelism because the outer loops enumerating the field are par-

allelized, even though the code creates and consumes many lists and tuples.

speech-dtw is a kernel from a speech recognition code which performs dynamic time warping. The

argument is the size of the side of the square reference template,

The code performs many doubly recursive decompositions with iterative base cases, resulting in

both DAG and loop parallelism. Speech shows good DAG and loop parallelism, but does not show

significant improvement when both are used together. This is explained in Section 4.6

speech-proc is another kernel from a speech recognition code which performs pre-processing of raw

speech samples. The first argument is the number of samples, and the second is the size of the window

over the samples.

Like speech-dtw, it performs many doubly recursive decompositions with iterative base cases, but it

has a unparallelized wavefront computation which takes up a relatively small portion of the sequential

execution, but which limits idealized parallelism.

tree constructs a balanced binary tree and then recursively computes the sum of the leaves. The input

argument is the depth of the tree. Tree shows good idealized parallelism.

4.5.4 Effect of single-assignment semantics

Much of the parallelism we are detecting is due to the single-assignment semantics, but some of the

parallelism we could have detected even assuming imperative semantics, where object elements may

be written more than once. Figure 4.13 shows the idealized parallelism under imperative and single-

assignment semantics, while exploiting both DAG and loop parallelism.

Most of the structured codes do not parallelize well without single-assignment semantics, using our

parallelization approach. Only mm-kes and mm showed some speedup, and that is for the inner-most

loop of the matrix multiply, which is an inner product - the loop can be parallelized because it only



Structured codes
Program Arguments Imperative Single-Assignment
eigen-jacobi 75 5.50 82.80
knapsack-dp 100 10000 1.00 1.00
mm-kes 500 105.91 18157.99
mm-kes 700 147.85 35532.30
mm 500 214.45 308979.23
nas-multigrid 6 5 1.02 2175.44
poly-mult 13000 2.14 13922.50
precond-conj-grad 300 1.52 5195.32
region-labelling 500 1.53 66167.64
relax 1000 10 1.01 43274.73
simple-kt 10200 1.08 4.89
simple-new 10 200 1.61 24.37
simplex 70 1.12 1.19
warshall 300 1.00 20541.52

Unstructured codes
Program Arguments Imperative Single-Assignment
btree 5000 63.74 63.99
fft-ld 65536 6.14 13939.13
fib 36 1254426.01 1254426.01
gamteb 40000 1.17 1.18
gamteb-new 40000 336.21 339.47
knapsack-bb 100 10000 2484.17 2484.17
nas-cg 300 7.51 539.09
nqueens 12 15796.00 15796.00
paraffins 1 20 1.28 2.53
pic 64 40000 100 1.60 3830.77
qs 10000 1.66 3.81
ray-tracer 500 1.04 8272.00
speech-dtw 350 53.63 86.75
speech-proc 10240 30 13.40 16.66
speech-proc 200000040 13.19 15.90
tree 23 493065.88 501995.42

Figure 4.20: Idealized parallelism assuming imperative and single-assignment semantics. Single-
assignment has a greater effect on structured codes - for unstructured codes, the functional style of
programming forced by single-assignment semantics is more important.



references matrices, and computes a running sum on the inner product. This level parallelism can be

exploited on a vector machine, but is not easily exploited on an SMP, because it is very fine-grained.

As a simple example of why these structured codes do not lend themselves to our simple paral-

lelization approach, consider the following Id-S daxpy function, which writes the solution to the daxpy

computation into array z. Without the single-assignment semantics, even this simple loop cannot be

parallelized without index analysis, because the compiler cannot determine whether there are output

dependences to the writes to z within the loop.

def daxpy z a x y size =
{for i <- 1 to size do

z[i] = a * x[i] + y[ill);

Of course, the index analysis for daxpy is quite straightforward, and we believe that many of the

structured applications could be parallelized effectively with Fortran-style index analysis. However,

the fact that our approach could not parallelize them indicates that these programs exhibit a significant

amount of output- and anti- dependences.

For the unstructured codes, single-assignment semantics allow the compiler to find more parallelism

than imperative semantics, but the compiler can still find a significant amount of parallelism even when

it must assume imperative semantics. The reason for this is that single-assignment semantics encour-

age the programmer to use a functional style of programming, where new heap objects are allocated

frequently. When a function is called which creates a new object and fills it in, all writes to the new

object are masked from the callee, therefore eliminating dependencies, including output-, anti-, and

data-dependences.

As an example, consider the recursive buildtree function, which constructs a balanced binary tree of

depth depth.

type Ttree = LEAF I NODE Ttree Ttree;

def buildtree depth =
if (depth == 0) then
LEAF 1

else
NODE (buildtree (depth-1)) (buildtree (depth-1));

When the depth argument is 0, the function returns a LEAF structure with a value of 1. For depth

greater than 0, the function makes two recursive calls to itself, and stores the left and right subtrees into a

NODE structure. Although the buildtree function performs some side-effects, they are to structures

which are allocated in scope of the function, which does not get reflected into the scope of the callee,

allowing the two recursive calls to be safely executed in parallel.



Although many of the unstructured codes exhibit good idealized speedup even with imperative se-

mantics, some of the programs would not necessarily show such good speedup if written in a Fortran-

style or C-style, because of the those languages do not encourage programmers to frequently use heap

allocation - data structures are typically static, and programmers are forced to use and re-use them. C

programs also contain arbitrary pointers and type-casting, which make side-effect analysis difficult even

when the programmer frequently uses heap allocation. However, many of the unstructured programs

could be written in Lisp or Java, and our parallelization techniques could discover a fair amount of

parallelism.

4.6 Interaction of DAG and loop parallelism

As can be seen from the results in Figure 4.19, the effects of DAG and loop parallelism can vary widely.

Some codes only have DAG parallelism, such as fib, and some codes only have loop parallelism, such

as nas-cg. These codes are fairly straightforward to understand. However, some codes show both DAG

and loop parallelism, and the interaction of the two is sometimes somewhat unintuitive.

The combination of DAG and loop parallelism can produce significantly more parallelism than

either DAG or loop parallelism does individually, or about the same, depending upon characteristics of

the application and parallelization.

In this section, we try to provide some intuition for the interaction of DAG and loop parallelism in

determining overall parallelism.

4.6.1 Example to illustrate DAG and loop parallelism interaction

Consider the simple example in Figure 4.21. Let us assume that most of the time is spent in the

the constant-time sequential function slow_seq_function, such that procedure call overhead and

loop execution overhead are negligible. If we assign the value of 1 for the time taken to execute

slow_seq_function, then the total time taken to sequentially execute functions two_parloops

and one_par_one_seq is 8 apiece.

However, these two functions parallelize differently, leading to different idealized parallelism num-

bers. Figure 4.22 shows graphically the effect of different parallelizations of two_parloops. If we

only take advantage of DAG parallelism, then the two calls to parallelizableloop can execute



def parallelizable_loop a =
{for i <- 1 to 4 do

a[i] = slow_seq_function 0;};

def sequential_loop b n =
{for i <- 1 to 4 do

b[i] = b[i+n] + slow_seq_function 0;};

def two_par_loops c d =
{ _ = parallel_loop c;
_ = parallel_loop d; };

def one_par_one_seq e f m =
( _ = parallel_loop e;
_ = sequential_loop f m; };

Figure 4.21: Example program to illustrate interaction of DAG and loop parallelism. The function
sl owseq_func t i on is very slow, performs no side effects, and takes a constant amount of time.

in parallel, and we halve our critical path, giving us an ideal parallelism of 2. If we only take advantage

of loop parallelism, then the two calls to paralleli zablelo op must be executed sequentially, but

the loops may be executed in parallel, leaving us with a critical path of 2, and an idealized parallelism

of 4. If we take advantage of both DAG and loop parallelism, then both the calls can occur in parallel,

and the loops can also execute in parallel, giving us a critical path of 1, and an ideal parallelism of 8.

Now consider the other function, one_par_one_seq, whose parallelization we show in Figure

4.23. The white loop is inherently sequential, whereas the shaded loop is parallel. This function takes

the same amount of time sequentially, and for DAG parallelization. However, since only one of the

loops can be parallelized, the critical path is 5, and the idealized parallelism is 8/5. This function can

exploit both DAG and loop parallelism, but when both are combined, the critical path is not any better

than when we just exploited DAG parallelism, because the critical path is determined by the sequential

loop.

These two programs are fairly easy to understand using the graphical representation in Figure 4.22

and Figure 4.23, and they show that the DAG and loop parallelism sometimes complement each other,

and sometimes do not. We see examples of both cases in the codes that we have parallelized.

However, sometimes, the overall parallelism is much higher than either of the individual DAG or

loop parallelism numbers, such as for FFT. This phenomenon is best explained with a complexity analy-

sis of the critical path under the different parallelization assumptions, as we do in the following section.



Sequential DAG only loop only DAG and loop
critical path = 8 critical path = 4 critical path = 2 critical path = 1

ideal parallelism = 1 ideal parallelism = 2 ideal parallelism = 4 ideal parallelism = 8

Figure 4.22: The parallelism of twopar_loops under different assumptions about parallelization.

Exploiting both DAG and loop parallelism is better than exploiting just one or the other.

4.6.2 Analyzing DAG and loop parallelism interaction for FFT

The FFT (Fast Fourier Transform) program, shown in Figure 4.24, performs a recursive divide-and-

conquer in procedure ff t, until it reaches the base case of size 4. The function shuffle divides the

problem into two subproblems, and the function combine takes the two subsolutions and combines

them into one solution. FFT is typical of divide-and-conquer algorithms.

When we try to parallelize this program, the DAG parallel portions are the recursive calls to f f t,

and the loop parallel portions are the divide (shuf f le) and join (combine). For all three versions,

the total work is O(n In n). However, the critical paths of the three versions are derived in three quite

different ways.

We perform a complexity analysis next to explain the DAG and loop parallelism interaction, and

we also show some data collected from instrumented FFT executables in Figure 4.24 which confirm the

analysis. The units of the measurements are machine operations, as estimated by the compiler.

For the DAG-parallel version, the two recursive calls can be done in parallel, but the divide and

combine must be done sequentially. The time to solve a problem of size n can then be done in time:

T(n) = T(n/2) + O(n) (4.1)

Using the master theorem described in Chapter 4 of [23], we can solve this recurrence, and determine
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Sequential DAG only loop only DAG and loop
critical path = 8 critical path = 4 critical path =5 critical path = 4

ideal parallelism = 1 ideal parallelism = 2 ideal parallelism = 8/5 ideal parallelism = 2

Figure 4.23: The parallelism of oneparone_seq under different assumptions about parallelization.
The shaded loop is parallelizable, whereas the unshaded loop is unparallelizable. Exploiting both DAG
and loop does not provide any incremental improvement over just DAG parallelism, because the critical
path does not change.

that the critical path of the DAG parallel version scales as O(n). This is confirmed in Figure 4.24, where

we run the DAG parallel version under increasing problem sizes, with the critical path scaling with the

problem size.

For the loop-parallel version, the two recursive calls must be done sequentially, but both the divide

and combine can be done in parallel. The time to solve a problem of size n can then be done in time:

T(n) = 2T(n/2) + 0(1) (4.2)

Using the master theorem, the critical path of the loop-parallel version also scales as O(n). This is

also confirmed with our instrumented executable in Figure 4.24.

Finally, using both DAG and loop parallelism, the recursive calls can be done in parallel, and the

divide and combine can be done in parallel. The time to solve a problem of size n can then be done in

time:

T(n) = T(n/2) + 0(1) (4.3)

Using the master theorem, the critical path of the DAG and loop parallel version also scale as

O(lgn), which is also confirmed by the instrumented executable. This critical path is significantly

shorter than either the critical paths of the DAG-parallel or loop-parallel versions.
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defsubst shuffle v =
( (_, size) = bounds v;

m = div size 2;

{ 2_arrays (1, m) of
[i] = v[ i*2 - 1 ], v[ i*2 ] I i <- 1 to m});

def fft v roU =
{ (_, size) = bounds v ;
in

if
{
(size
11 =
12 =
rl =

r2 =

== 4) then

complex_add
complex_sub
complex_add
complex_sub

v[l]
v[l]
v[2]
v[2]

v[3]
v[3]
v[4]
v[4]

{ array (1, size) of
[1] = complex_add 11 rl

[2] = addflip_c 12 r2
[3] = complex_sub 11 rl

(4] = subflip_c 12 r2}}
else

{ (left_v, rightv) = shuffle v ;
fft_left = fft left_v roU;
fft_right = fft rightv roU;

in
combine fft_left fft_right roU}};

def combine u v roU =
{(_,m) = bounds u;

(_,n) = bounds roU;

index = div n m;

prod = { array (1, m) of
[i] = complex_mul roU[((i-l)

| i <- 1 to m};

( array (1, 2*m) of
[i] = complex_add u[i]
[m+i] = complex_sub u[i]

prod[i]
prod[i]

*index)+ 1] v[i]

Si <- 1 to m
|| i <- 1 to m})};

Total Work Critical Path Idealized Parallelism
n DAG Loop Both DAG Loop Both DAG Loop Both

128 2.8e4 2.8e4 2.8e4 9.9e3 7.0e3 957 2.8 4.0 29.1
256 6.4e4 6.4e4 6.4e4 2.0e4 1.4e4 1115 3.3 4.5 57.3
512 1.4e5 1.4e5 1.4e5 3.9e4 2.8e4 1273 3.7 5.1 113.4

1024 3.2e5 3.2e5 3.2e5 7.7e4 5.6e4 1431 4.2 5.7 224.7

O(n Ig n) O(n Ig n) O(n Ig n) O(n) O(n) O(lg n) O(lg n) O(lg n) O(n)

Figure 4.24: The FFT program illustrates the effect of exponential total parallelism in comparison to

individual DAG and loop parallelism. The "Total Work", "Critical Path" and "Ideal Parallelism" data

are collected by instrumenting the FFT program and running under different problem sizes.
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Since the total work for all three versions is equal, and scales as O(n ig n), the idealized parallelism

for the DAG-only and loop-only versions is O (ig n), whereas the idealized parallelism for the combined

DAG and loop version is O(lg n), which is significantly higher for even moderate problem sizes such as

n = 1024.

4.7 Id-S parallelization conclusions

In this chapter, we have described a simple parallelization technique for Id-S programs which uses

existing interprocedural side-effect analyses. Our technique detects procedural DAG parallelism, as

well as loop parallelism. We measured the effectiveness of our approach by instrumenting parallelized

codes to give us idealized parallelism.

For structured codes, we primarily discovered loop parallelism, much of which might have been

discovered using conventional Fortran-style index analysis even if the language semantics were imper-

ative, instead of single-assignment. However, single-assignment semantics allow us to discover loop

parallelism without complicated and expensive index analysis, although there are some cases (such as

for wavefront or LUD decomposition) where our technique could be profitably augmented with index

analysis.

For unstructured codes, we discovered both significant DAG and loop parallelism, even for codes

which do not have "structured" loops amenable to traditional index analysis. Much of this parallelism

could have been discovered even if we assumed imperative semantics, using the same side-effect anal-

ysis, because of the functional style of programming encouraged by the single-assignment semantics.

Many side-effects were masked by heap allocations occurring within a function call.

These parallelization results suggest that a reasonable parallelization might be performed on an

imperative language without arbitrary pointers and type-casting (i.e. C), by using a combination of

Fortran-style index analysis for structured codes, and relying on the programmer to use a functional

programming style with unstructured codes, or perhaps compiler transformations to transform less func-

tional codes into a more functional style.

DAG and loop parallelism sometimes interact in unintuitive ways - the parallelism which can be

exploited when using both DAG and loop parallelism is sometimes much less than the product of the

individual DAG and loop parallelism numbers, and sometimes much more than the product of the indi-

vidual numbers. This phenomenon is the result of the effect of parallelization on the complexity of the
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critical path.

In the following chapters, we build on our parallelization with code generation and run-time system

techniques for obtaining meaningful real-time speedups for these codes versus their efficient sequential

implementation.
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Chapter 5

Code Generation

Good parallel code generation is the first line of defense in attaining parallel speedups relative to efficient

sequential execution. Any overheads that we incur in code generation will carry over into our parallel

speedup numbers - once we generate parallel-ready code, the best we can usually expect is a perfect

speedup versus the parallel code. In practice, other overheads will further reduce speedups, including

lack of parallelism, scheduling overhead, communication and synchronization overhead, and memory

system limitations such as cache interference and main memory bandwidth. However, these overheads

mostly come into play after we have already generated parallel code.

In Chapter 3, we showed that an ultra-fine grained multithreading approach with synchronization on

every memory reference incurred too much overhead to be exploited profitably on a small-scale SMP.

In this chapter, we show that the coarser grained parallelism we have detected in Chapter 4 has a chance

of being exploited profitably if care is taken at the code generation phase.

Our code generation schemas are based on the TAM approach [32], which is similar to P-RISC [56].

Goldstein's [32] detailed explanation of the TAM code generation approach is highly recommended.

Nonetheless, the only TAM parallel speedup numbers we are aware of are for the CM-5, where they

achieve linear speedup up to 64 processors on two benchmarks (Gamteb and Simple) by (1) linearly

increasing the problem size, and then (2) paying about an 10x (i.e. 900%) overhead for Gamteb and

about a 16x (i.e. 1500%) overhead for Simple versus efficient sequential execution. In other words,

they achieved a real speedup versus an efficient sequential implementation of Id of 6 x for Gamteb and

4x for Simple on a 64 processor CM-5. Much of that is due to architectural overheads, but some of it

is due to fine-grain execution (which we showed in Chapter 3 was a factor of 1.5-4.0) and some of it is

due to code generation and run-time scheduling.
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We begin our description of our code generation strategy with the partitioning algorithm, and then

continue with the calling convention, run-time system interface, control optimizations, and parallel

loops. Although code generation is the meat of our compiler, in practice, most of the time in compilation

is spent by the C compiler and the assembler.

5.1 Partitioning

We will only briefly discuss partitioning because it is not as critical to our implementation as it is for Id90

[81] [82] [72] [22], where thread length was severely limited by non-strictness (function call, conditional

and data structure) and element-wise synchronization of data structures. For our implementation, the

primary determinator of thread length is the number of procedure calls and parallelized loops, because

we only attempt to take advantage of procedure-style DAG and loop parallelism.

Partitioning is also not as important for Id as for Sisal [67] because we maintain procedures as a

natural unit of execution, whereas most Sisal compilers inline all procedures and perform partitioning

to minimizing communication and synchronization. We depend upon our work stealing scheduling to

lower our communication and synchronization costs, which puts less emphasis on the compiler, and

more on the run-time system - this is described in more detail in Chapter 6.

Before the partitioning phase, parallelized loops are spliced out of their procedures and are handled

as if they were separate procedures. The parallelization phase inserted enough dependency arcs such that

any remaining reads, writes and procedure calls can execute in parallel without any Id90-style run-time

presence-tag checks - we therefore translate all reads and writes to heap as C memory reads and writes.

Furthermore, all ALU operations (adds, subtracts, etc.) are simply translated to their C equivalent. By

this stage in the compiler, all while loops and for loops have been translated into conditionals and do-

until loops - any remaining do-until loops we encounter are compiled sequentially, since all parallelized

loops have been spliced out.

To the partitioner, each procedure consists of four types of "nodes" which are illustrated in Figure

5.1: (1) atomic operations such as ALU operations, literals or memory accesses, (2) procedure calls, (3)

do-until loops, and (4) conditionals. Conditionals and do-until loops are frames (which we call encap-

sulators) for subgraphs of nodes (which we call surfaces). In the partitioner, we treat all encapsulators

identically. Encapsulators are augmented with pseudo-nodes at their entry and exit points - these nodes

are simply place holders which assist in the partitioning phase and later code generation.
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Figure 5.1: Dataflow graph nodes

Partitions are groups of nodes within a procedure which can be executed together. We would like

have as few partitions as possible within a procedure in order to maximize thread length, and minimize

threading overheads such as state transfer, synchronization and scheduling. Any partitioning we choose

must fit the following constraints:

1. No partitions may cross encapsulator boundaries. This simplifies our partitioning, and we can

increase thread length by gluing together partitions across encapsulator boundaries at a later stage

of code generation.

2. Matching call and return nodes must reside in different partitions, as must any ancestor nodes of

the call and descendant nodes of the return.

3. Matching "outside" pseudo-nodes for encapsulators must reside in different partitions, as must

any ancestor nodes of the entry and descendant nodes of the exit.

4. Only one return may be in a partition. Note, however, that multiple outside exit pseudo-nodes

may be in the same partition.

5. No descendant node may reside in an ancestor partition.

Restriction 1 is particularly useful, because it allows us to treat each encapsulator surface indepen-

dently of any other nodes in the procedure. Conversely, when we encounter an encapsulator during

partitioning, we can treat it as a black box and ignore any nodes within it until a later stage. The

remaining restrictions guide our partitioning as we see below.
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Pre-partitioning to make encapsulators atomic

1. Perform a recursive inside-out traversal of the encapsulators in the program graph

2. Mark the encapsulator as "atomic" if all nodes, including encapsulators, are atomic - i.e. are not
call nodes.

Figure 5.2: Pre-partitioning to make encapsulators atomic

5.1.1 Pre-partitioning

Before we perform partitioning, we perform a stage of pre-partitioning to make some encapsulators

atomic nodes - encapsulators which contain no calls to procedures or parallel loops can be executed

atomically. The algorithm for pre-partitioning is shown in Figure 5.2.

5.1.2 Partitioning algorithm

The partitioning algorithm we use is Schauser's algorithm for partitioning non-strict Id [72], which for

intraprocedural partitioning is identical to Coorg's [22] algorithm. This algorithm is overly general for

our problem because our language is strict, but we used the same algorithm because we had already

implemented it for our fine-grained compiler. A simpler algorithm with a lower algorithmic complexity

would probably be suitable for our strict language - for instance, the demand and dependence algorithms

described initially by Traub [81] [82].

Readers interested in the correctness of Schauser's algorithm are referred to [71]. The general

outline of the algorithm is shown in Figure 5.3. This algorithm has complexity of O(n 3 ), which results

from O(n 2) possible partition merges, each of which requires O(n) to check whether the merge is

possible and O(n) to update separation constraints.

Although this computational complexity is unacceptable for a production compiler, our problem size

is limited by the fact that we check each surface independently, and we perform another pre-partitioning

step which does a fast, naive, demand-set based partitioning where nodes with identical ancestor sets are

grouped into partitions. Furthermore, we use a bit-vector set representation which makes set operations

much cheaper. In practice, partitioning is quite fast for all of the programs we are compiling.
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Separation Constraint Partitioning

1. Examine each encapsulator surface separately, including the main procedure surface, because they
are all independent.

2. Assign a separation constraint between each matching pair of call and return, and every matching
pair of encapsulator outside pseudo-nodes.

3. Calculate all of the ancestor nodes and descendant nodes of every node.

4. Assign a separation constraint between every descendant node of a matching pair.

5. Assign each node its own partition.

6. For each pair of partitions, merge them under the following conditions:

* There is no separation constraint

* A maximum of one of them has a return node.

* If one of them contains a return node, the other partition's ancestors must be a subset of the
first's ancestors.

7. Update separation constraints on each merge.

8. Stop when there are no further possible merges.

Figure 5.3: Separation Constraint Partitioning

5.1.3 Peephole fixups

Although separation constraint partitioning guarantees maximal partitions, it does not necessarily pro-

duce optimal partitions [71]. What this means is that separation constraint partitioning produces the

minimal number of partitions, but that the number of arcs between partitions is not minimized.

After partitioning, we do some peephole "fixups" to reduce the overhead of state transfer between

threads. There is an analogous problem in compiling sequential languages in determining what opera-

tions should be in the basic block before and after a function call. Some nodes which are on the border

of a partition may be moved to the other side of the border, reducing a state transfer - for instance, if a

literal node is in a parent partition, but all of its uses are in a child partition, we move the literal to the

child (or children) to avoid the cost of saving and restoring that value across the border. In some cases,

we must clone the literal so that it can be in the parent and child, or in multiple children.

A similar fixup is possible with binary operators in a child whose operands come from the same

parent, and whose operands have no other destination within the child. In this case, it is better to move
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work queue

work queue

Figure 5.4: The calling convention pushes procedure calls onto the main work queue, in ip/fp con-
tinuations. The fp points to a frame, which contains the procedure arguments, as well as the return
continuation, and a flag to tell whether the frame is associated with a procedure call or parallel loop call.

the binary operator into the parent to save the transfer of one value.

5.2 Calling convention

We must use a non-standard calling convention because procedure calls may execute in parallel. Our

calling convention is similar to one used in the original Cilk system [16], which is similar to lazy task

creation [52], lazy threads [35], and the hybrid calling convention used in the Illinois Concert system

[64] [63]. We use an adaptation of the procedure calling convention for parallel loops, which we describe

in Section 5.4.

Procedure calls occur when we have ready work - our calling convention represents this ready work

in such a way that it can be transferred to another processor to be executed, if necessary. However, we

make the assumption that most likely, it will be executed on the local processor.

Figure 5.4 shows the calling convention we use - first, a frame is allocated for the new procedure

activation, and the return instruction pointer (i.e. the partition which will receive the procedure return

value) and current frame pointer are written into the base of the frame. For scheduling purposes, we

need a flag within the frame to determine whether the frame is associated with a procedure activation

or loop activation - by default, the frame allocator gives us a frame with a procedure flag, so we do not

need to write the frame flag. We write the arguments for the procedure into the frame, and then enqueue
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the callee instruction pointer and the frame pointer onto the work queue. The instruction and frame

pointer pair is called a continuation. Once we enqueue the procedure call onto the work queue, we can

continue executing the current thread until it is completed. The procedure is eventually executed when

it is dequeued from the work queue, either by the current processor, or by a steal request from another

processor.

When a procedure has finished executing and is ready to return a value to its caller, it simply writes

its return value into a global register, deallocates its own frame, sets the current frame to be the return

frame, and jumps to the return instruction pointer. We explain in Chapter 6 what happens when the

return value must be sent to another processor, but the return sequence is identical whether the caller

activation is local or remote.

This calling convention has two main overheads compared to a typical sequential calling conven-

tion. First, instead of allocating and deallocating a stack frame on a contiguous stack, we allocate and

deallocate activation frames in a heap-like manner, because at any point in time, we have a tree of frames

which may be growing and shrinking in different areas simultaneously. To make this allocation fast, all

frames are local to a processor, and frame allocation is done using a local free list, and all frames are the

same size. We determine the default frame size at link time, by taking the maximum required frame size

of all the procedures in our program. Finally, the free list base resides in a machine register rather than a

memory location, to eliminate one more literal instruction (on the Sparc) and one memory reference. A

slightly more sophisticated frame allocation algorithm would provide multiple frame sizes to increase

frame memory utilization and improve cache performance. However, we found our simple, fixed-size

frame allocator to be adequate for the programs we tested.

The second main overhead is that the arguments are written into the frame, and then read out, rather

than being passed through registers. We believe this is the most significant overhead, although if the

frame remains in the first-level cache, this should only double the cost of argument passing.

Some other overheads include enqueuing and dequeuing the continuation from the work queue,

performing an indirect jump rather than a direct jump to enter a procedure, and some loss of temporal

locality by postponing the procedure call rather than executing it immediately.

Figure 5.5 shows the overhead which is directly due to our parallel calling convention. To measure

the overhead from the parallel calling convention, we have turned off all of the parallelization phases

so that we do not take advantage of DAG or loop parallelism, and we have also removed all message

polling overheads. We executing the code using the parallel calling convention on one processor, and
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Parallel Calling Convention Overhead vs. Sequential Time
Structured Codes

Program Arguments Seq. Time Cycles/Call Calling Overhead
eigen-jacobi 50 10.8 9.1e + 04 +1.9%
knapsack-dp 100 10000 0.4 1.7e + 07 +0.0%
mm-kes 500 7.0 7.4e + 04 +0.0%
mm-kes 700 20.1 1.le + 05 +2.0%
mm 500 39.3 1.7e + 09 +0.3%
nas-multigrid 6 5 17.9 3.6e + 06 +3.9%
poly-mult 13000 22.0 1.2e + 09 +0.5%
precond-conj-grad 300 19.5 1.le + 07 +1.0%
region-labelling 500 16.5 4.7e + 07 +2.4%
relax 1000 10 19.8 2.2e + 08 +2.0%
simple-kt 10 200 13.9 2.0e + 03 +7.2%
simple-new 15 300 39.3 969.1 +8.9%
simplex 70 3.3 704.6 +9.1%
warshall 300 16.2 9.0e + 06 +0.0%

Unstructured Codes
Program Arguments Seq. Time Cycles/Call Calling Overhead
btree 5000 29.1 94.0 -29.6%
fft-ld 262144 10.4 8.9e + 03 -12.5%
fib 36 9.4 32.7 +48.9%
gamteb 40000 30.4 747.3 +4.3%
gamteb-new 80000 30.9 597.6 +9.1%
knapsack-bb 120 100000 36.4 486.0 +16.5%
mm-sparse 350 44.5 345.8 -35.5%
nas-cg 600 28.2 2.5e + 07 +27.7%
nqueens 14 13.4 83.4 +58.2%
paraffins 1 22 4.8 2.4e + 04 +4.2%
pic 64 40000 100 21.7 1.7e + 06 +26.3%
qs 10000 0.2 560.0 +0.0%
ray-tracer 500 15.7 155.4 +2.5%
speech-dtw 350 19.9 1.2e + 06 +1.0%
speech-proc 2000000 40 18.1 3.1e + 03 -2.2%
tree 23 16.8 84.1 +22.0%

Figure 5.5: The parallel calling convention overhead is more noticeable for unstructured codes, because
those codes tend to execute more function calls, as evidenced by the processor cycles between calls. The
UltraSparc processors run at 168 MHz. Because of register windows, some codes actually run faster
with the parallel calling convention.
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compare it to the same code using the sequential calling convention.

As could be expected, the overhead for the structured codes is not very high, because these codes

do not rely heavily on procedure calls - most of the work in these codes lies in loops.

The unstructured codes show a wide range of overheads, and in some cases, our parallel calling

convention is actually faster than the sequential C calling convention, because of inefficiencies due to

the Sparc register windows. Register windows are effective on codes which have a shallow call depth,

but can cause thrashing when the call depth changes dramatically. In mm-sparse, the inner product is

written as a tail-recursive function, and the call depth is dependent upon the data, but is typically more

than the number of register windows available on the UltraSparc, causing significant thrashing.

For other codes, the additional overhead of storing and reading the procedure arguments from mem-

ory are too high to overcome, especially in codes with small procedure bodies that perform many pro-

cedure calls, such as fib, nqueens, and tree.

5.3 Join synchronization

The calling convention we described, in combination with the data dependence analysis we performed

for parallelization, allows us to take advantage of DAG style parallelism. Once multiple procedure calls

are forked off, however, they must be synchronized on their return. To synchronize threads, we use join

counters, coupled with a local work queue. Join counters are also used in TAM [32], P-RISC [56], and

Cilk [16].

Using control flow information, we perform some compiler optimizations to reduce the cost of join

synchronization, including tail optimization, and join sorting.

5.3.1 Join counters and local work queue

Join synchronization is necessary when a partition has multiple parents which may return asynchronously.

The partition can only execute when all of its parent partitions have returned. Some partitions do not re-

quire synchronization, because they receive return values from procedure calls - because of our calling

convention, these partitions execute immediately. Also, a partition does not need to synchronize on the

value of all of its parents, just the parents which do not depend on any of the other parents.
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Assigning join counters

1. Calculate each partitions ancestors

2. For each partition, examine its parents. If the parent is not the ancestor of any of the other parents,
then it is one of the synchronizing parents for the partition.

3. The join count for each partition is the number of synchronizing parents.

Figure 5.6: Join counter assignment.

Figure 5.6 sketches the procedure for determining the synchronization count for each partition. The

join counts are based in the frame, and the join count frame slots are initialized when a procedure enters

its first partition. When a synchronizing parent terminates, it decrements the join count for all of its

children, and if the join count reaches zero, then that child is enabled.

We enable a child by enqueuing it on a local work queue - unlike the regular work queue, the

local work queue only has instruction pointers, because it will only be used on threads from the same

activation frame. We enable work by pushing an instruction pointer onto the queue (which is a stack)

and we schedule work by popping off an instruction pointer and jumping to it. The top of the local

work queue is pointed to by the local work queue pointer, which resides in a machine register, to make

enqueuing and dequeuing fast. The bottom of the work queue is a guard slot which points to a code

fragment which dequeues work from the main work queue, setting the frame appropriately.

At the end of each thread, we dequeue the next ready thread from the local queue and jump to it.

Because the frame resides in local memory, and we know that no other processor can touch this state,

all of the operations can be performed without shared memory synchronization.

5.3.2 Control optimizations for join synchronizations

The scheme we outlined above is very general, but we can perform some optimizations because we have

some control information. For example, the typical thread will perform one or more join synchroniza-

tions, and then dequeue a thread off of the local queue and jump to it. This is redundant if we push

some work onto the queue and then pop it off immediately - in this case, the last join synchroniza-

tion in a thread is modified such that if it succeeds, it will jump directly to the thread. In the case the

synchronization fails, we pop work from the local queue and jump to it, as we usually do.

Sometimes, we know that there is no work on the local queue, because we were either the first thread
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in the procedure or a receiving a return value from a procedure call, and we know we didn't put any

work on the local queue because we didn't perform any join synchronizations. In that case, we avoid

executing the guard code fragment from the bottom of the local work queue, and directly dequeue the

next ready thread from the main work queue and execute it

5.3.3 Optimizing for binary joins

Almost all of the joins which are executed in practice are binary joins, where the join counter is initial-

ized to "2". In these cases, we do not need to perform a subtraction of the join counter - we just need to

read the value, compare it to 1, and store 1 into the join counter if the value is not 1. This eliminates a

few instructions in the join synchronization.

5.3.4 Join synchronization overhead

Figure 5.7 shows some of the statistics for join synchronizations. To give an idea of the relationship

between joins and procedure calls, we give the ratio of joins to calls, which typically is less than 1 - for

example, in the fib program, almost every procedure call except the original call to fib must perform a

join synchronization, resulting in a ratio of 1.0. However, the nqueens program shows that the number

of joins per call may be more than one - in this case, the procedure call is wrapped in a conditional, and

may or may not be called. In either case, the thread containing the conditional terminates and causes a

join synchronization. For every procedure call taken in nqueens, one is not taken which still requires a

join synchronization.

The fact that there are usually less joins than calls indicates that joins are much less important to

optimize than calls. Furthermore, the cost of joins is only significant when there are a large number of

them - of our codes, only the ones which are heavily doubly recursive ones (btree, fib, knapsack-bb,

nqueens, and tree) have a relatively frequent occurrence of joins. As expected, the structured codes

show much fewer joins than the unstructured codes, with a few structured codes having no joins at all.

Our control optimizations are also able to turn the vast majority of joins into binary immediate joins,

eliminating many indirect jumps, join counter arithmetic, and work queue manipulation. All in all, join

synchronizations add a small overhead in addition to the parallel calling call overhead.

Note, however, that more join synchronizations will be necessary when we attempt to take advantage

of parallel loops because parallel loops are implemented as separate functions. In the next sections, we
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Join Synchronization Overhead
Structured Codes

Program Arguments Joins/Call Cycles/Join % Binary Immd. Overhead
eigen-jacobi 50 0.66 1.4e + 05 100.0 -0.9%
knapsack-dp 100 10000 0.50 3.4e + 07 100.0 +0.0%
mm-kes 500 0.02 4.6e + 06 98.8 +4.3%
mm-kes 700 0.01 9.8e + 06 99.1 +4.4%
mm 500 no joins
nas-multigrid 65 0.84 4.4e + 06 0.28 +0.0%
poly-mult 13000 no joins
precond-conj-grad 300 0.40 2.8e + 07 3.4 -5.1%
region-labelling 500 0.61 7.9e + 07 100.0 -0.6%
relax 1000 10 0.13 1.7e + 09 100.0 +1.5%
simple-kt 10 200 0.00 7.0e + 07 55.6 +2.0%
simple-new 15 300 0.99 1.le + 03 0.0 +0.2%
simplex 70 0.00 2.1e + 06 100.0 -2.8%
warshall 300 no joins

Unstructured Codes
Program Arguments Joins/Call Cycles/Join % Binary Immd. Overhead
btree 5000 1.00 66.4 100.0 +0.0%
fft-ld 262144 0.67 1.2e + 04 100.0 +5.5%
fib 36 1.00 51.1 100.0 +10.7%
gamteb 40000 0.08 1.Oe + 04 100.0 -3.8%
gamteb-new 80000 0.12 5.4e + 03 100.0 +1.5%
knapsack-bb 120 100000 1.00 566.1 100.0 -8.7%
mm-sparse 350 0.00 2.4e + 09 100.0 +0.7%
nas-cg 600 0.33 9.8e + 07 100.0 +0.3%
nqueens 14 2.00 66.0 50.0 +0.5%
paraffins 1 22 0.00 1.9e + 07 100.0 +0.0%
pic 64 40000 100 0.10 2.3e + 07 100.0 +4.4%
qs 10000 0.33 1.7e + 03 100.0 +0.0%
ray-tracer 500 0.06 2.5e + 03 100.0 -6.2%
speech-dtw 350 0.75 1.6e + 06 100.0 -1.0%
speech-proc 2000000 40 0.43 7.0e + 03 100.0 +0.6%
tree 23 1.00 102.6 100.0 +5.9%

Figure 5.7: Join synchronization typically occurs less often than procedure calls, and is only frequent for
programs which make a lot of procedure calls. Many of the join synchronizations can be optimized into
binary immediate joins, and join synchronization does not add significant code generation overhead.
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will show the effect of parallel loop codes.

5.4 Parallel Loop Code

Thus far, we have described the implementation of the parallel calling convention, join synchronization

and join synchronization optimizations, which coupled with a parallel run-time system allows us to take

advantage of DAG-style parallelism. As we saw in Chapter 4, many codes depend upon parallel loops

for most of their parallelism.

Our loop code generation strategy is structured such the work queues are used in much the same way

that they are for procedures. When work is dequeued from the main work queue, the same instructions

are executed: the frame pointer is set, and we jump to the instruction pointer. Since we would like the

loop to be executed in parallel, we do not execute all of the iterations on each scheduling of the loop.

Rather, we execute a chunk of iterations at once, and leave the rest to be executed later - the specification

of the iterations which are left to be executed are stored in the frame. The size of the chunk is determined

by the compiler, and set to be large enough to minimize loop scheduling overhead while small enough

to expose parallelism in the loop.

If no work is ever stolen from the parallel loop, we execute all of the loop iterations in order on the

same processor. If work is stolen from the loop, the loop is roughly executed in a divide-and-conquer

fashion as a binary tree.

5.4.1 Parallel loop calling convention

The parallel loop calling convention is outlined in Figure 5.8. As for procedure calls, parallel loops

are called by enqueuing a continuation onto the main work queue. However, loop frames contain more

information than procedure frames, in order to handle parallel loop bookkeeping. For example, the

frame contains information about how many times work was stolen from this loop activation, what the

final iteration and current iteration are, as well as the loop induction variables and loop constants.

As we described in Chapter 4, we only parallelize loops where all of the induction variables are

either constantly incrementing variables, or reduction variables. These induction loop variables are

maintained in the loop frame, with the incrementing variables kept at their correct state for the number

of iterations executed. The reduction variables keep the running sum of the iterations calculated thus

far.
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Figure 5.8: Parallel loop calling convention

The number and type of loop induction variables and loop constants is kept in an auxiliary static

structure called the "loop info" which is pointed at by the second slot in the frame - for procedures, this

same slot is filled with zero. The run-time system, when it needs to distinguish between a procedure and

loop, can then check this flag to see whether it is a procedure or loop frame. Loop induction variables

are defined as follows:

* Incrementing variables

- incremented by a literal, literal value

- incremented by a constant, constant frame slot offset

* Reduction variables

- Boolean and, or

- Integer addition, minimum, maximum, logical and, logical or, multiplication

- Floating point addition, multiplication, minimum, maximum

These loop variable specifications are stored in the loop info, so that the run-time system can figure

out how to split up a loop to execute the two parts in parallel, and how to reconcile the two parts once

they are each finished. Given the first and last iterations as specified in the loop frame, and the loop

info, we can calculate the incrementing variables, and we can initialize the reduction variables with

their identity values.
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Loop chunking protocol

1. Loop prelude

(a) read the first and last iterations

(b) determine the number of iterations to execute - either chunk size n or the number of itera-
tions left in the loop, whichever is smaller.

(c) update the first iteration in the frame

(d) increment the steal count

(e) read each constant incrementing loop variable, and increment it.

2. Loop body, executed n times as a do-while loop, where n is a compile-time constant.

3. Loop postlude

(a) decrement the steal count

(b) if there are more iterations left, push loop continuation onto main work queue

(c) otherwise if the steal count is greater than 0, then dequeue and execute next continuation on
main work queue

(d) otherwise, return the loop variables on the local work queue, and jump to the parent return
partition.

Figure 5.9: The loop chunking protocol is used to "strip mine" loop iterations and reduce the overhead
of parallel loop execution, while exposing loop parallelism.

During local execution, we execute a set number of iterations at a time, using the loop chunking

protocol described in the following section.

5.4.2 Loop chunking protocol

The loop chunking protocol is described in Figure 5.9 - on every entry to the parallel loop, a set number

of iterations are executed at a time, and the loop prelude and postlude perform the bookkeeping and

synchronization to ensure that any iterations which are stolen are properly accounted for.

The loop chunk, as shown in Step 2 of Figure 5.9 is potentially different for each loop. A larger

loop chunk will create a coarser grain of execution - we would like to use large loop chunks for loops

with small loop bodies, because we need to overcome the parallel call overhead. We would like to

use a small loop chunk for loops which have a large loop body, because we can afford to execute the

parallel loop protocol many times, and because we want to expose as much parallelism as possible for

other processors to steal. The loop chunk is not unrollable because we may have a different number of
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Setting default loop chunks

1. If parallel loop nest is 1 or 2 then:

(a) If loop body is greater than or equal to 30 nodes, then set loop chunk to 1

(b) If loop body is less than 30 nodes, then set loop chunk to oo

2. If parallel loop nest is greater than 2, don't parallelize the loop

Figure 5.10: Simple minded algorithm to set the parallel loop chunk.

iterations for the tail of the loop execution if the number of iterations is not a multiple of the loop chunk,

which it usually is not.

Although the loop chunking protocol is fairly complicated, in practice, we can amortize its overhead

effectively by being judicious about which loops we parallelize, and by setting the loop chunk size using

compile time information about the size of the loop bodies, which we describe in the next section.

5.4.3 Work estimation

Although we have tried to keep the loop parallelization overhead as low as possible, essentially, we are

adding a procedure-call overhead for each parallel loop, as well as some bookkeeping overhead for each

loop chunk schedule. For some loops, this overhead is insignificant, because the loop executes for such

a long time - for other loops, this overhead is very significant, because the loops execute for a short

time, and have a small loop body.

We face two questions in parallelizing loops - first, whether to parallelize the loop at all, and sec-

ondly, if we decide to parallelize the loop, what chunk size we should use. Both of these questions relate

to the amount of work in a loop body. If a loop body contains a lot of work, then we should parallelize

the loop and set a small chunk size to allow maximum parallelization of the loop. If the loop body

contains less work, then may still want to parallelize the loop, but set a large chunk size. If the loop

body contains very little work, we may not want to parallelize the loop at all, because it does not contain

enough work to warrant parallelization.

To determine the amount of work performed in a loop body, we perform a simple intraprocedural

analysis, determining the loop nesting depth and counting the number of nodes within a loop body, with

procedure calls estimated to be 250 nodes, and loops within any loop bodies estimated to execute 10

iterations.
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The loop chunk is then set using the procedure shown in Figure 5.10. This procedure could probably

be tuned using by more precise work estimates and more information about tradeoffs due to the number

of loop variables and constants, and interprocedural information about loop body work. We don't even

bother to set the loop chunk to anything other than 1 or oo - note that setting the loop chunk to oo is not

equivalent to sequentializing the loop, because it is still possible for loop iterations to be stolen when

the loop chunk is oo if the loop is not scheduled before a steal request is handled by the local processor.

In practice, even this simple minded procedure does a good job in keeping parallel loop overhead

down, while exposing enough parallelism to provide reasonable speedups on most of the codes. In the

next section, we examine the cumulative effect of overheads resulting from the calling convention, join

synchronization, and parallel loops with chunks set by the procedure in Figure 5.10.

5.4.4 Cumulative overheads from calling convention, join synchronization, and parallel

loops

Figures 5.11 and 5.12 show the cumulative effect of the code generation overheads versus the efficient

sequential implementation, when the codes are run on a single processor. We perform no message

polling for these runs - polling overhead is characterized in the next chapter. For the structured codes,

there is little overhead incurred, even with the parallel loop schema described in the previous section.

For the unstructured codes, the overhead varies widely, with some codes actually running faster

(btree, mm-sparse and ray-tracer) because of the overhead of register windows in the sequential version.

Some codes with small procedure bodies and many procedure calls (fib, nqueens, and tree) show high

overheads due to the procedure calls.

In general, the join synchronization overhead is only significant for speech-proc - the other codes

do not show a significant jump in overhead from the overhead introduced by the calling convention. The

join synchronization overhead is low because many of the codes do not perform a significant number

of join synchronizations, and the ones which do are typically amenable to the control optimizations we

described in Section 5.3.

Finally, the parallel loop overhead is only significant for nas-cg, after our work estimation weeded

out loops which were not worth parallelizing, and setting loop chunks to minimize parallel loop overhead

while exposing coarse-grained work.

The overhead numbers in the rightmost bars of the graphs in Figure 5.11 and 5.12 show our starting
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Code Generation Overheads vs. Sequential Time for Structured Codes
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Figure 5.11: Cumulative overheads from the calling convention, join synchronization and parallel loops

for the structured codes. The rightmost bars are our starting points in parallel execution.
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Code Generation Overheads vs. Sequential Time for Unstructured Codes
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Figure 5.12: Cumulative overheads from the calling convention, join synchronization and parallel loops

for the unstructured codes. The rightmost bars are our starting points in parallel execution.
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point in parallelization. The parallel codes incorporate this base overhead, and our speedup numbers

relative to the efficient sequential codes are limited by it. We have incurred all of the overheads of code

generation which will ready us for parallel execution - most of the additional overheads we face in

parallel execution are due to the run-time system and limitations of the architecture.
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Chapter 6

Run-Time System

In the previous chapters, we have described how the compiler discovers DAG and loop parallelism, how

it generates parallel-ready code to exploit that parallelism, and how much overhead is incurred on a

single-processor execution of the parallel-ready code. In this chapter, we show how to schedule this

code in parallel with relatively low overhead, achieving good speedups on our SMP configurations.

The run-time system communicates using a active message-passing layer [83] written on top of the

hardware supported shared memory. The message-passing layer allows us to introduce modifications

to processor-local state only when we are prepared to, thereby reducing synchronization overheads.

Messages are handled only when the local processor polls its network input queues, and we reduce the

cost of the polling so that it can be done frequently without adding additional overhead.

Our run-time system uses a random work stealing scheduling policy. Work is performed locally

by each processor, and if a processor has no work to do, it sends steal requests for work to random

processors. This policy has been shown to be efficient in Cilk [16], lazy task creation [52], Multilisp

[40], and lazy threads [33]. We extend the policy to work with parallel loops, using the parallel loop

protocol described in the previous chapter, and describe some alternatives for work stealing which we

compare.

Finally, we implement an SPMD-style scheduler which takes parallelized loops and divides their

iteration space equally among the processors, while exploiting no DAG parallelism. The structure of the

SPMD implementation is quite similar to the work-stealing compiler and run-time system - the SPMD

scheduler and compilation can be considered a subset of the multithreaded scheduler and compilation.

We compare performance results from SPMD scheduling with work-stealing multithreaded scheduling.
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message queue head

message 3

Figure 6.1: The structure of the active-message passing layer on shared memory. Each processor has a
message queue head, tail and lock, all of which reside in shared memory. Messages are linked fixed-
sized blocks of shared memory.

6.1 Message passing layer

Although our target architecture is shared-memory SMP's, we implement communications within the

run-time system using message-passing because it allows us to manipulate processor local state without

locking - this processor state includes the main work queues and the join synchronization counters. The

message-passing layer is structured as an active message passing layer [83].

Figure 6.1 shows the structure of the active message layer within a processor. Each processor has

a message head, message tail, and message lock for its own local message queue. The message queue

heads, tails and locks all reside in shared memory, accessible to all processors.

When a processor sends a message to another processor, it must perform the following actions:

1. Allocate a message (a fixed-size block of shared memory) from a quick list, and compose the
message, filling in the message handler instruction pointer, and the data in the message

2. Acquire the lock for the destination processor's message queue

3. Splice the message onto the end of the message queue's linked list structure

4. Release the message queue lock
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Polling Overhead vs. Non-polling Code
Structured Codes Unstructured Codes

Program Polling Overhead Program Polling Overhead
eigen-jacobi +0.9% btree +2.4%
knapsack-dp +0.0% fft-ld -2.1%
mm-kes +0.0% fib +5.2%
mm-kes +0.5% gamteb -4.7%
mm +0.0% gamteb-new -2.9%
nas-multigrid -0.5% knapsack-bb +2.8%
poly-mult -0.5% mm-sparse +0.3%
precond-conj-grad +0.5% nas-cg +2.2%
region-labelling +0.0% nqueens +7.2%
relax +0.0% paraffins +2.0%
simple-kt -0.6% pic +0.3%
simple-new -1.9% qs +0.0%
simplex +2.8% ray-tracer +2.0%
warshall +1.2% speech-dtw +1.0%

speech-proc +0.0%
tree +2.8%

Figure 6.2: Polling overheads shown by running identical parallel-ready codes with polling and without
polling on one processor. Polling is done before every procedure entry or loop chunk execution. Polling
does not show a significant overhead, except for procedure-call intensive codes such as fib, nqueens and
tree.

When a processor is ready to check its message queues (i.e. "poll") it merely does an unlocked read

of the message queue head - if the head is 0, then the queue is empty. We reserve a register to point to

the head of the message queue so that polling consists of a memory read, a compare and branch, where

the vast majority of the time, there is no message in the message queue.

When a processor poll finds that there is at least one message in the queue, it does the following:

1. Acquire its own message queue lock

2. Splice out the linked list of messages, setting the head and tail of the queue to 0

3. Release the message queue lock

4. Execute the handler for each message, using the message itself as an argument - the handler
themselves are responsible for interpreting the data in the message

Although the overhead of message passing can be relatively high, we are not as concerned about

message passing overhead as much as we are attempting to avoid overhead in the common case. Mes-

sage passing allows us to avoid locking when we modify local state such as work queues and join
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synchronizations, and the cheap polling allows us to avoid most of the message passing overheads in

the usual case when we have no messages to handle.

Each processor polls the network when there is no longer any work in the local work queue, before

it pulls work from the main work queue. This policy is frequent enough to gain good response, but

infrequent enough that polling does not add significantly to the overhead. Figure 6.2 shows the overhead

of polling relative to the identical code which doesn't perform polling, running on a single processor.

The overhead due to polling is not high, except for codes which perform a lot of procedure calls, such

as fib, nqueens, and tree, where more polling is done than is necessary.

6.2 Work stealing policy

Work is distributed in our system via randomized work stealing. Idle processors are responsible for

finding work - they do that by picking a random processor, sending a request for work to that processor,

and waiting for a response. During the wait for the response, the processor continues handling messages

from other processors, in order to avoid deadlock. If the response is negative (i.e. no work) then the

processor picks another random processor and tries until it finds some work. If the response is positive,

enough information is included in the response to start work.

Figure 6.3 shows the basic steal protocol. When a processor becomes idle, it sends a steal request to

a random "victim" processor. If the victim processor has surplus work on its main work queue, then it

sends the work in the form of a continuation to the idle processor, which then executes the work. When

the work is complete, the result is sent back to the victim processor, which immediately returns it to the

original caller.

We use return and receive stubs so that we can use the ordinary calling convention described in

5.2, without checking whether we need to send the return value of a procedure to a different processor,

and without checking whether we need to receive the return value of a procedure call from a different

processor, even though any procedure call may be potentially executed on a different processor than the

callee.

6.2.1 Return and receive stubs

When a continuation is stolen from a victim's work queue, a "receive stub" is created which keeps

track of the continuation's own return continuation. The receive stub is a frame/ip pair where the return
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Figure 6.3: The basic steal protocol - idle processors send requests to random processor for work. If the
request is satisfied, the idle processor executes the work, and when done, sends back the result.

continuation is saved in the frame, and a pointer to a code sequence which receives the return value

from a message, and then immediately passes it to the return continuation. A pointer to the receive stub

frame is passed along with the work continuation and the processor number to the requesting processor.

When the requesting processor receives the work continuation, it stores away the victim processor

number along with the pointer to the receive stub frame in its own "return stub" frame. The return

stub consists of a frame/ip pair with the aforementioned frame, and a pointer to a code sequence which

receives the return value from the work continuation (once it has completed) and packages it up along

with a pointer to the receive stub frame, and sends it back to the victim processor.

With these two stubs, the compiler only generates procedure calls and returns which match each

other, and are optimized for sequential execution on a single processor. The stubs themselves are much

slower than the normal calling sequence because they must marshal and unmarshal values to and from

messages, but are used infrequently because most procedure calls will execute sequentially.

Return and receive stubs allow us to make the tradeoff of optimizing the common case (sequential

call and return) while handling the uncommon case (parallel call and return). We have extended the

basic protocol for stealing procedures to also handle stealing of loop iterations.
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6.2.2 Stealing loop iterations

The parallel loop calling convention described in Section 5.4 was designed so that parallel loops are

handled in the same way as procedure calls from the local point of view, with enough hooks so that

the run-time system could distribute iterations of the loop when a steal request is received. When

a steal request is received the victim processor checks the bottom of its work queue, looking at the

loop/procedure flag as shown in Figure 5.4.

If the flag indicates that the frame (and continuation) is a procedure call, then the standard steal

protocol is executed as just described. If the flag indicates that the frame (and continuation) is a parallel

loop call, then the victim processor updates the loop frame by bumping the steal counter, removing half

of the iterations and packaging them up to send to the requesting processor. The loop/procedure flag

also is a pointer to a static loop info structure, which is generated by the compiler, and which describes

the structure of the loop induction variables, loop constants, and how these are mapped into the loop

frame. This loop info pointer is stored in the receive stub, and also sent along with the loop iterations to

the requesting processor.

The loop info pointer can be used by the requesting processor to interpret the message sent by the

victim, and create a new loop frame, which is treated in the same way as any other parallel loop frame -

other processors may also steal iterations from this loop as well. The stolen loop iterations are chunked

in the same way as the original loop, and when the iterations are complete, the loop returns control to

the return stub, which using the static loop info, determines which induction variables are reduction

variables, and need to be returned to the victim processor to merge with the original loop frame.

These reduction variables are marshaled into a message along with the pointer to the loop info

structure and a pointer to the receive stub frame. The receive stub interprets the loop info, and then

performs the merge of the reduction variables into the parent loop frame. After the merge, the steal

count is decremented, and if the local loop is complete and the steal count is 0, then the loop returns to

its caller.

6.3 SPMD scheduling

Our compilation approach to this point has been extremely flexible, which allows us to experiment with

different run-time policies. One alternative policy to the multithreaded work-stealing strategy is the

Single Program Multiple Data (SPMD) policy, where loops are divided up evenly among the processors.
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With very minor changes to the run-time system and code-generation, we can also generate codes

which are scheduled in an SPMD fashion. This is only useful for codes which rely mostly on loop

parallelism, including all of the structured codes, and a few of the unstructured codes.

The code generation is slightly different for the SPMD scheduling than for multithreaded scheduling

- most obviously, we turn off all DAG parallelism, as we did in Chapter 4, because SPMD scheduling

does not exploit DAG parallelism. Furthermore, we only try to exploit one level of loop parallelism, so

we do not parallelize inner loops. However, in general, we do not know whether a parallelizable loop will

or will not be executed within the context of another parallel loop, since the two loops may be in different

procedures, so we also generate code for each parallel loop which dynamically checks a processor local

flag which is set when we enter a parallel loop, in order to avoid forking off additional parallel loops.

Some of these checks could be eliminated by better interprocedural analysis, but the check itself is so

cheap relative to forking the parallel loop that this analysis would not improve performance noticeably.

At the run-time system level, we use a slightly modified scheduler which never sends steal requests.

Processor "0" computes sequentially until it reaches a parallel loop, and then distributes the iterations

of the loop evenly to the other processors via message passing. The same handlers are used to distribute

loop iterations in the multithreaded and SPMD versions, since the multithreaded versions must be gen-

eral enough to handle an arbitrary number of iterations. When a loop terminates, it sends a message

with the loop return values to processor 0.

We use the same message handlers for the loop distribution as we do for the loop iteration stealing,

and we use the same "loop victim stubs". In general, the loop schema used by the compiler differs from

the work-stealing version in only a few lines of code for the loop iteration distribution. The two run-time

systems differ only in that for the SPMD version, the steal code is commented out.

This approach allows us to compare the relative merits of a semi-static, single-threaded work dis-

tribution policy with a dynamic, work-stealing multithreaded policy, using the same language and same

compiler.

6.4 Performance and speedups

Figures 6.4 and 6.5 show the speedup numbers on 4 processors for the structured and unstructured

codes, under the work-stealing multithreaded and SPMD schedulers. The outer bars of the graphs show

the limitations due to lack of parallelism - for example, we were not able to parallelize knapsack-dp and
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simplex because of limitations in our compiler parallelization, so those codes are limited by a lack of

parallelism. We simply took the maximum of the number of processors (4) and the idealized parallelism

we measured in Chapter 4. For the multithreaded case, we included both loop and DAG parallelism,

whereas for the SPMD case, we only included loop parallelization.

Note that this bar is optimistic - in fact, the real exploitable parallelism could be less than shown in

the graphs for a number of reasons. For example, suppose that the idealized parallelism is 5, but that

there is a sequential section which accounts for 1/5 of the running time of the code. In this case, if the

rest of the code is sped up by a factor of 4, the speedup is still only 1/5+45x1/4 = 5/2 = 2.5. In other

cases, it might be possible to speed up the code by a factor of 4, even if the idealized parallelism is 5 - it

depends how the program is parallelized. In Figures 6.4 and 6.5, we optimistically assume that we can

achieve a speedup of 4, even for a code which has an idealized parallelism of 5.

The second and fifth bars on the graphs show any further limits due to code generation - since

the parallel versions of the code are usually slower than the sequential ones when both are run on a

single processor. We call this code generation overhead, and this shows the effect of the parallel calling

convention, join synchronization and parallel loop schema. In general, the SPMD versions show less

code generation overhead than the multithreaded versions because we are not taking advantage of DAG

parallelism, so we don't have join synchronizations - furthermore, we choose to parallelize fewer loops

in the SPMD version, because we can only exploit a single level of loop parallelism.

The third and fourth bars on the graphs show the actual measured speedups on four processors versus

the efficient sequential version of the same code. Depending upon the application, the multithreaded or

SPMD version may be faster. As expected, the SPMD scheduler is better for the structured codes, where

only loop parallelism is exploited, and where loops and data structures are very regular.

6.4.1 Speedups limited by lack of parallelism

As we explained above, some codes are limited by a lack of parallelism found by the compiler. Some of

the unstructured codes do not exploit loop parallelism, such as btree, fib, nqueens, qs, tree) and so are

not amenable to SPMD scheduling.

Some of the idealized parallelism we measured is too fine-grain to be exploited effectively on an

SMP. This is the case for codes like eigen-jacobi, simple-kt, and simple-new, which contain fine-grained

loop parallelism which is either eliminated by the compiler, or not exploited by the run-time system

when it realizes that the loop is too fine-grained.
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Structured Code Speedups, Multithreaded and SPMD Scheduling
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Figure 6.4: Speedups on 4 processors for structured applications under work-stealing multithreaded and
SPMD scheduling. The outer bars show the limitations due to lack of parallelism and code generation
overheads
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Unstructured Code Speedups, Multithreaded and SPMD Scheduling
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Figure 6.5: Speedups on 4 processors for structured applications under work-stealing multithreaded and
SPMD scheduling. The outer bars show the limitations due to lack of parallelism and code generation
overheads
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For codes which exploit both loop and DAG parallelism such as mm-kes, fft-ld, and speech-proc

the DAG parallelism is coarser-grained than the loop parallelism, and is more easily exploited by the

multithreaded scheduler.

6.4.2 Speedups limited by code generation

Some codes have a decent amount of parallelism, but are hit by poor code generation. As we explained

in Chapter 5, these are mostly codes which are procedure-call intensive, such as fib,nqueens, and tree,

although some codes actually get faster when we use the parallel calling convention because of effects

of the register windows on the sequential execution.

Some of these code generation overheads might be alleviated by using a more efficient parallel

calling convention, such as that described by Mohr [52], Goldstein [33] or Plevyak [64].

6.4.3 Run-time system overheads

Overheads due to the run-time system are evident in many of the structured codes, where the work-

stealing multithreaded run-time system is shown to be less efficient than a simpler SPMD scheduler. The

overheads introduced by the multithreaded scheduler include overheads from excessive work stealing,

poor load distribution, and suboptimal utilization of the memory system, because work is not scheduled

identically across the processors as it is in the SPMD code.

Some unstructured codes which contain sequential sections suffer from excessive steal requests,

such as btree and speech-proc. We try to alleviate these effects with backoff requests, but there is still

some performance degradation.

6.4.4 Load imbalances

Certain codes which are loop-dominated show better performance under the multithreaded scheduler

than the SPMD scheduler - for example, poly-mult, gamteb-new, and ray-tracer. This is due primarily

to load imbalance across the loop, which is handled by the work-stealing policy of the multithreaded

scheduler. Although for the data set we use as input for mm-sparse shows good speedup under both

multithreaded and SPMD scheduling, other data sets could be arbitrarily bad for SPMD scheduling.
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Figure 6.6: Speedups for "warshall 400" when freeing memory and not freeing memory, running under
the SPMD scheduler. Note that the sequential times for this were 37.7 seconds when freeing memory
and 55.2 when not freeing memory.

6.4.5 Effects of the memory system and freeing memory

When we do not free memory, we are forced to perform writes to newly allocated memory, which

does not reside in the processor caches. A very extreme example of what can happen when there is no

memory reclamation is shown in Figure 6.6, where we run the warshall code using SPMD scheduling

on a problem size of 400, which creates 400 400 x 400 matrices. Without freeing the memory, all of the

matrices are allocated from fresh memory, and with freeing memory, only two matrices are allocated.

First of all, not surprisingly, the sequential code runs faster when memory is reclaimed - 37.7 sec-

onds versus 55.2 seconds. However, even scaling speedups from a slower sequential program, the non-

freeing version shows very poor speedup because all writes must go to main memory. On our bus-based

SMP, the memory bandwidth is shared among the processors, and so we hit a limit and even see some

performance degradation. This is an extreme example - for many codes, we can have some speedup

even when we do not free memory, but freeing memory keeps our working set size smaller, and puts

less stress on the memory system.

Some of the poor speedup for the unstructured codes is due to this phenomenon - we do not have a

garbage collector, and not as much memory is reclaimed by the programmer as in the structured codes,

because it is more difficult to manually determine the safety of freeing memory, especially in a parallel

environment.

For shared-bus SMP's, it is important to manage memory carefully, not just for increased sequential

performance, but to allow for good parallel speedups as well. By limiting the effect of cache write-
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through and cache thrashing each processor places less stress on the fixed resource of the shared-bus

memory bandwidth.

For multithreaded execution and structured codes, the effect of memory management may not be as

significant, unless the memory management is more closely tied with the scheduler.

6.5 Multithreaded versus SPMD scheduling

It should be clearer that multithreaded and SPMD scheduling are two points along a continuum: SPMD

scheduling has proven efficient for many structured, Fortran-style codes, which we also see in our

performance data. However, a more dynamic multithreaded scheduling also allows us to exploit a wider

variety of programs, without sacrificing significant performance given a careful implementation.

For some very regular, structured applications, SPMD is better than multithreaded scheduling be-

cause the loop iteration load balance is regular, and the memory system can take advantage of locality.

For these situations, the programmer could have the option of linking in the SPMD run-time system

as a library, and using SPMD flags for the compiler. If the program changes at a later stage to be less

structured, a simple re-compile and re-link could allow it to use the dynamic multithreaded scheduling.

Alternatively, the run-time system and compiler could take an adaptive approach which determines at

run-time which scheduling approach would be more effective.

Compiler analysis for parallelization and code generation does not differ significantly for multi-

threaded and SPMD execution if parallelization and code generation are designed with both in mind at

the beginning. Id-S provides the programmer a high-level programming model such that he does not

need to be concerned, to the first degree, with how the program is parallelized and scheduled.
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Chapter 7

Conclusions

This thesis addresses many practical issues in exploiting structured and unstructured parallelism on

small-scale shared-memory SMP's. The results fall into four main categories: language, parallelization,

code generation, and scheduling. To an extent, the results from the different categories can be considered

independently of each other. Although we have taken a particular path in terms of language semantics,

approach to parallelization, code generation and scheduling, any of these components may be useful in

and of themselves in a different context.

7.1 Non-strictness isn't used to write more expressive programs and non-

strictness adds too much execution overhead

We have two major results regarding language semantics - the first regards expressiveness and the

second regards performance.

Almost every Id program that we could find executed correctly (with very minor modifications) us-

ing a sequential top-down left-to-right evaluation order such as that used in C or Fortran. This indicates

that non-strict eager language semantics do not provide significant expressiveness to programmers. It is

fairly difficult to construct example programs which actually take advantage of non-strictness, and most

of the programs we found which did take advantage of non-strictness were formulated explicitly to test

non-strictness. This result concurs with Schauser and Goldstein's [70] analysis of how non-strictness is

used in lenient programs - our methodology is more rigorous than theirs.

Using the best known partitioning algorithms and code-generation techniques developed for eager

non-strict languages [72] [32], we showed that there is an instruction count overhead of 40-300%, not
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counting support for atomicity in parallel execution. The overhead for non-strict execution is about

evenly divided between presence checking for non-strict data structures, and multithreading overheads

due to scheduling very short threads.

This overhead introduced by non-strictness makes it less attractive for exploiting parallelism on

small-scale machines. Non-strictness is primarily needed for parallelism, but we describe methods of

detecting DAG and loop parallelism from sequential programs which incur much less overhead. Non-

strictness may be useful given hardware support for presence checking and fine-grained multithreading.

Non-strictness may also be useful for certain codes which are difficult to parallelize, when a large

machine size can overcome some of the execution overheads.

7.2 Sequential single-assignment simplifies parallelization

Imposing a sequential evaluation order on Id allows us to have a fast implementation, competitive with

conventional imperative sequential languages such as C or Fortran. The single-assignment semantics for

data structures allow us perform a very simple, traditional interprocedural side-effect analysis in order

to parallelize loops without index analysis and to find opportunities for procedure-level parallelism.

Single-assignment semantics eliminate output-dependences and anti-dependences at the source level.

For most of our programs, we found ample idealized parallelism, although some index analysis would

allow us to find some more.

By selectively parallelizing loops and procedures, we found the amount of idealized DAG paral-

lelism, loop parallelism, and parallelism when both loop and DAG parallelism are exploited. Not sur-

prisingly, programs which we categorized as "structured" contained primarily loop parallelism, while

"unstructured" programs contained a mix of loop and/or DAG parallelism.

The interaction of loop and DAG parallelism is sometimes unintuitive - combining loop and DAG

parallelism can sometimes provide an exponential amount more idealized parallelism than simply using

loop or DAG parallelism in isolation.

7.3 Generating efficient multithreaded parallel code for SMP's

Once parallelization is complete, we generate parallel-ready code which contains hooks for parallel

execution. These hooks include parallel procedure calls, join synchronization, and parallel loops. We
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tested the incremental cost of each, and for the codes that we tested, most of the overhead was incurred

for parallel procedure calls, but almost only for codes which were very procedure-call intensive. Join

synchronization and parallel loops did not incur significant overheads due to code generation.

Our parallel loop chunking schema allows for dynamic multithreaded scheduling of loop iterations

without the large number of activation frames which would be used in a straightforward recursive divide-

and-conquer implementation.

7.4 Multithreaded scheduling can be as efficient as SPMD scheduling for

structured codes, while handling DAG parallelism and unbalanced

loop parallelism better than SPMD

Using the similar parallelization and code-generation techniques, we were able to generate code which

could be scheduled under SPMD and work-stealing multithreaded scheduling. SPMD scheduling proved

to be more efficient for very structured "Fortran-style" codes, because of caching effects and good

load balancing. However, even for codes which are extremely well-suited for SPMD, the dynamically

scheduled multithreaded implementation typically performed within 30% of the SPMD implementation,

and often at almost the same performance.

SPMD is not useful for codes which primarily have DAG parallelism, and multithreaded execution

also performs better for codes which are loop-dominated, but where the work is not evenly distributed

across the loop iterations.

The SPMD scheduler is a slight modification of the multithreaded scheduler and the SPMD code

generation is also only slightly different from the multithreaded code generation.

For certain applications, a pure SPMD implementation may be more efficient, but our work shows

that a multithreaded implementation is more versatile. Compiler and run-time infrastructure can be

shared, and the programmer can be free to experiment with either policy simply by changing some

compiler and run-time library options.
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7.5 Memory management increases single-processor performance and

increases speedups

For implementations on bus-based SMP's, memory management is important in obtaining good speedups

because some programs become memory-bus limited if they are always writing to "new" memory. Our

results show that not only is single-processor performance better when memory is reclaimed, but those

programs also show much better speedups, even relative to a faster single-processor performance.

7.6 Future work

We had to make many engineering decisions which allowed us to answer the questions we were in-

terested within given time constraints. Some obvious improvements to the system would include the

following:

* Support for interprocedural analysis with separate compilation.

* Garbage collection [1] and/or compiler-directed memory deallocation [44].

* More Fortran-style index analysis and loop transformations.

* A lighter-weight parallel calling convention.

* A debugger for parallel multithreaded execution.

* A profiler for parallel multithreaded execution.

In addition, some future work which is related to, but not directly based on the language/compiler/run-

time system we describe in this thesis include the following.

7.6.1 Parallelizing conventional languages

Although we learned a significant amount from parallelizing a single-assignment language, paralleliz-

ing conventional imperative languages would have a much larger impact. Our parallelism studies show

that many of the structured programs are amenable to Fortran-style parallelization, while many of the

unstructured programs have significant parallelism even when the compiler assumes imperative seman-

tics because of the functional programming style which is used, where frequent heap allocations mask

side-effects which would otherwise limit parallelization.
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Java is a language which may encourage programmers to use a functional style because of its lan-

guage support for heap allocations and garbage collection. Furthermore, Java does not have arbitrary

pointer aliasing as C does, making it a more attractive target for parallelization. Java's strong typing

may also disambiguate the effects of some side-effects, and compiler transformations which turn an

imperative program into a single-assignment program may also reveal more parallelism.

7.6.2 Integration with software distributed shared memory

Our system was developed for a hardware-supported shared memory computer, but it would be relatively

straightforward to re-target it for a software-based distributed shared memory system [69] [73]. Such

a system might have much simpler cache-coherence protocols than for a general imperative language,

because the protocols could take advantage of the single-assignment semantics [11].

7.6.3 Single-chip SMP as an alternative to wider superscalars and VLIW's

Although the machines that we ran on for this thesis are extremely expensive, high-end servers, much

cheaper SMP's are also available. Furthermore, the most promising direction may be in single-chip

SMP's [79] [54] [60]. By having the SMP on a single-chip, system design costs could be significantly

lowered, truly bringing parallel computing to the desktop for the mass of users.

A single-chip SMP, coupled with parallelizing compiler technology, could prove to be a realistic

alternative to higher performance to wider superscalars or VLIW's. A single-chip SMP could be used for

running multiple jobs in parallel, or a single parallel job, or even multiple parallel jobs, given some more

progress in operating systems and run-time systems. Rather than an alternative to VLIW, a single-chip

SMP might have multiple narrower VLIW's, rather than a single wide VLIW. Superscalar architectures

are beginning to reach their limits in complexity, and the additional payoff in functional units is not

necessarily worth the chip real estate.

Many of the programs which are amenable to VLIW compiler techniques such as software pipelin-

ing can also be handled with SMP-style architectures and parallelizing compilers. DAG-parallelism is

difficult or impossible to exploit on VLIW-style processors.

The technology is available today to implement 2- or 4-processor single-chip SMP's today, and

the design issues on the hardware side are fairly straightforward. The enabling technologies for this

approach are the compiler and run-time system which we have addressed in this thesis.
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