6,755 research outputs found

    A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Ileterogeneous Distributed Computing Systems

    Get PDF
    ABSTRACT Il\u27lixed-machine heterogeneous computing (HC) environments utilize a distributed suite of different high-performance machines, interconnected with high-speed links to perform different computationally intensive applications that have diverse comput ational requirements. HC environments are well suited to meet thl: computational dell-tands of large, diverse groups of tasks. The problem of mapping (defined as matching and scheduling) these tasks onto the machines of a distributed HC environment has been shown, in general, to be NP-complete, requiring the development of heuristic techniques. Selecting the best heuristic to use in a given enviroi~menth, owever, remains a difficult problem, because comparisons are often clouded by different underlying assumptions in the original studies of each heuristic. There~fore; a collection of eleven heuristics from the literature has been selected: a,dapted, in~plementeda, nd anaiyzed under one set of common assumptions. It is assumed that the heuristics derive a, mapping statically (i.e., off-line). It is also assumed that a meta-task (i.e., a set of independent, non-communicating tasks) is being mapped, and that the goal is to minimize the total execution time of the metla-task. The eleven heuristics examined are Opportunistic Load Balancing, Minimum Execution Time, MininLlum Clompletion Time, Min-min, hllax-min, Duplex? Genetic i-Ilgorithm, Simulated Annealing, Genetic Simulat.ed .Annealing, Tabu, and Ax. This study provides one even basis for comparisor] and insights into circumstances where one technique will out perform another. The evaluation procedure is specified, the heuristics are defined, and then comparison results are discussed. It is shown that for the ca.ses studied here, the relat,ively simple Min-min heuristic performs well in comparison to the other techniques

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    A Multi-Criteria Meta-Fuzzy-Scheduler for Independent Tasks in Grid Computing

    Get PDF
    The paradigm of distributed computation in heterogeneous resources, grid computing, has given rise to a large amount of research on resource scheduling. This paper presents a Meta-Scheduler for grid computing that does not need any given information about tasks length or tasks arrival time unlike traditional dynamic heuristics. Our Meta-Scheduler is of multi-criteria type, because it solves two conflicting objectives: minimize the makespan of a set of tasks and distribute these tasks in a balanced way among the resources of the Grid. Experimental results using fuzzy scheduler show that, through our proposal, we achieve these two objectives and improve dynamic heuristics presented in prior literature

    Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population

    Get PDF
    Independent Job Scheduling is one of the most useful versions of scheduling in grid systems. It aims at computing efficient and optimal mapping of jobs and/or applications submitted by independent users to the grid resources. Besides traditional restrictions, mapping of jobs to resources should be computed under high degree of heterogeneity of resources, the large scale and the dynamics of the system. Because of the complexity of the problem, the heuristic and meta-heuristic approaches are the most feasible methods of scheduling in grids due to their ability to deliver high quality solutions in reasonable computing time. One class of such meta-heuristics is Hierarchic Genetic Strategy (HGS). It is defined as a variant of Genetic Algorithms (GAs) which differs from the other genetic methods by its capability of concurrent search of the solution space. In this work, we present an implementation of HGS for Independent Job Scheduling in dynamic grid environments. We consider the bi-objective version of the problem in which makespan and flowtime are simultaneously optimized. Based on our previous work, we improve the HGS scheduling strategy by enhancing its main branching operations. The resulting HGS-based scheduler is evaluated under the heterogeneity, the large scale and dynamics conditions using a grid simulator. The experimental study showed that the HGS implementation outperforms existing GA-based schedulers proposed in the literature.Peer ReviewedPostprint (author's final draft

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    IMMEDIATE/BATCH MODE SCHEDULING ALGORITHMS FOR GRID COMPUTING: A REVIEW

    Get PDF
    Immediate/on-line and Batch mode heuristics are two methods used for scheduling in the computational grid environment. In the former, task is mapped onto a resource as soon as it arrives at the scheduler, while the later, tasks are not mapped onto resource as they arrive, instead they are collected into a set that is examined for mapping at prescheduled times called mapping events. This paper reviews the literature concerning Minimum Execution Time (MET) along with Minimum Completion Time (MCT) algorithms of online mode heuristics and more emphasis on Min-Min along with Max-Min algorithms of batch mode heuristics, while focusing on the details of their basic concepts, approaches, techniques, and open problems
    • …
    corecore