research

Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population

Abstract

Independent Job Scheduling is one of the most useful versions of scheduling in grid systems. It aims at computing efficient and optimal mapping of jobs and/or applications submitted by independent users to the grid resources. Besides traditional restrictions, mapping of jobs to resources should be computed under high degree of heterogeneity of resources, the large scale and the dynamics of the system. Because of the complexity of the problem, the heuristic and meta-heuristic approaches are the most feasible methods of scheduling in grids due to their ability to deliver high quality solutions in reasonable computing time. One class of such meta-heuristics is Hierarchic Genetic Strategy (HGS). It is defined as a variant of Genetic Algorithms (GAs) which differs from the other genetic methods by its capability of concurrent search of the solution space. In this work, we present an implementation of HGS for Independent Job Scheduling in dynamic grid environments. We consider the bi-objective version of the problem in which makespan and flowtime are simultaneously optimized. Based on our previous work, we improve the HGS scheduling strategy by enhancing its main branching operations. The resulting HGS-based scheduler is evaluated under the heterogeneity, the large scale and dynamics conditions using a grid simulator. The experimental study showed that the HGS implementation outperforms existing GA-based schedulers proposed in the literature.Peer ReviewedPostprint (author's final draft

    Similar works