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ABSTRACT 

Il'lixed-machine heterogeneous computing (HC) environments utilize a distributed 
suite of different high-performance machines, interconnected with high-speed links 
to  perform different computationally intensive applications that have diverse compu- 
t ational requirements. HC environments are well suited to meet thl: computational 
dell-tands of large, diverse groups of tasks. The problem of mapping (defined as match- 
ing and scheduling) these tasks onto the machines of a distributed HC environment 
has been shown, in general, to  be NP-complete, requiring the development of heuris- 
tic techniques. Selecting the best heuristic to  use in a given enviroi~ment, however, 
remains a difficult problem, because comparisons are often clouded by different un- 
derlying assumptions in the original studies of each heuristic. There~fore; a collection 
of eleven heuristics from the literature has been selected: a,dapted, in~plemented, and 
anaiyzed under one set of common assumptions. It is assumed that the heuristics de- 
rive a, mapping statically (i.e., off-line). It is also assumed that a meta-task (i.e., a set 
of independent, non-communicating tasks) is being mapped, and that the goal is to  
minimize the total execution time of the metla-task. The eleven heuristics examined 
are Opportunistic Load Balancing, Minimum Execution Time, MininLlum Clompletion 
Time, Min-min, hllax-min, Duplex? Genetic i-Ilgorithm, Simulated Annealing, Genetic 
Simulat.ed .Annealing, Tabu, and A x.  This study provides one even basis for compar- 
isor] and insights into circumstances where one technique will out perform another. 
The evaluation procedure is specified, the heuristics are defined, and then comparison 
results are discussed. It is shown that for the ca.ses studied here, the relat,ively simple 
Min-min heuristic performs well in comparison to  the other techniques. 



1. INTRODUCTION 

.Mixed-machine heterogeneous computing (HC) environments utilize a distributed 

suite of different high-perforn~ance machines, interconnected with high-speed links to 

perform different computationally intensive applications t'hat have diverse computa- 

tional requirements [FrS93, MaB99, SiD971. The general problem of mapping (i.e., 

matching and scheduling) tasks to machines in an HC suite has been shown to be 

NP-complete [Fer89, IbE<77]. Heuristics developed to perform this mapping function 

are often difficult to compare because of different underlying assump.tions in the orig- 

inal studies of each heuristic [BrS98]. Therefore, a collection of eleven heuristics from 

the literature has beer1 selected, adapted? implemented, and compared by simulation 

stuclies under one set of common assumptions 

To facilitate these comparisons, certain simplifying assumptions were made. For 

these studies, let a meta-task be defined as a collection of independent tasks with 

no (data dependencies (a given task, however, may have subtasks and dependencies 

among the subtasks). For this case study, it is assumed that static: (i.e., off-line or 

predictive) mapping of meta-tasks is being performed. The goal of this mapping 

is to minimize the total execution t.ime of the meta-task. Static mapping is useful 

for predictive analyzes (e.g., planning work for the next day), impisct studies (e.g., 

determining the effect of purchasing another machine for the HC suite), a,nd post- 

mortem analyzes (e.g., evaluating how well an on-line mapper performed). 

It is also assumed that each machine executes a single task at a time (i.e., no 

multi-tasking), in the order in which the tasks are assigned. The size of the meta- 

taslc (i.e., the number of tasks to execute), l, and the number of machines in the HC 

environment, nx, are static and known a priori. 



'This study provides one even basis for comparison and insights into circumstances 

where one mapping technique will out perform another. The evaluation procedure 

is specified, the heuristics are defined, and then comparison results are shown. It 

is shown t,hat for the cases studied here, t,he relatively simple Mn-min heuristic 

(defined in Chapter 3) performs well in comparison to other, more complex techniques 

investigated. 

The remainder of this report is organized as follows. Chapter 2 defines the com- 

put stional environment parameters that were varied in the simulations. Descriptions 

of the eleven mapping heuristics are found in Chapter 3. Chapter 4 examines se- 

lected results from the simulation study. A list of implementation parameters and 

procedures that could be varied for each heuristic is presented in Chapter 5 .  

This research was supported in part by the DARPA/ITO Quorum Program project 

called MSHN (Management System for Heterogeneous Networks) [HeK99]. MSHN 

is a collaborative research effort among the Naval Postgraduate School, NOEMIX, 

Purdue University, and the University of Southern California. The technical objec- 

tive of the MSHN project is to design, prototype, and refine a distributed resource 

rnallagerllent system that leverages the heterogeneity of resources and tasks to deliver 

requested qualities of service. The heuristics developed in this papei- or t,heir deriva- 

tives may be included in the Scheduling Advisor component of the MSHN prototype. 



2. SIMULATION MODEL 

'I'he eleven static mapping heuristics were evaluated using simulated execution 

times for an HC environment. Because these are static heuristics, it is assumed that 

an accurate estimate of tlle expected execution tirrle for each task on each machine is 

k n o m  prior to  execution and contained within an ETC (expected time to compute) 

matrix. One row of the ETC matrix contains the estimated execution times for a -- 

given task on each machine. Similarly, one column of the ETC matrix consists of the 

estimated execution times of a given machine for each task in the niet,a-task. Thus, 

for an arbitrary task - t ,  and an arbitrary machine m,. ETC(t , ,  m,) is the estimated 
- 

exec:ution time of t ,  on m,. 

For cases when inter-machine communications are required. ETC(t , ,  m,) could 

be iissunled to include the time to move the executables and data associated with 

task t ,  from their known source to machine m,. For cases when it is impossible to 

execute task t ,  on machine m, (e.g., if specialized hardware is needl-dl, the value of 

ETC( t , ,  m,) can be set to infinity, or some other arbitrary value. For this study, 

it i:; assumed that there are no inter-task communications, each task can execute 

on each machine, and the estimated expected execution t i~nes  of each task on each 

machine are known. The assumption that these estimated expected execution times 

are known is conlmonly made when studying mapping heuristics for HC systems 

(e.g., [Ghk793, KaA98. SiY961). (Approaches for doing this estimation based on task 

profiling and analytical benchmarking are discussed in [KhP93, Ma1399, SiD971.) 

For the simulation studies, characteristics of the ETC matrices were varied in an 

att,empt to represent a range of possible HC environments. The ETC matrices used 

were generated using the following method. Initially, a t  x 1 baseline colunln vector, 



B of floa.ting point values is created. Let (bb be the upper-bound of the range of -, - 

possible values within the baseline vector. The baseline column vector is generated 

by repeat,edly selecting a uniform randorn number, - zb E [ I ,  db ) :  and lmetting B( i )  = xi 

for 0 < i < t .  Next, the rows of the ETC matrix are constructed. Each element 

ETC( t ; ,  m j )  in row i of the ETC matrix is created by taking the baseline value, 
. . 

B(i') ,  and multiplying it by a uniform random number, x:J, which has an upper- - 
. . 

bound of 4,.  This new random number, x;J E [ I ,  +,), is called a row multiplier. One 

row requires In different row multipliers, 0 5 j < m. Each row i of the ETC matrix 
. . 

can then be described as ETC(t i ,  m j )  = B(i)  x xf;J, for 0 < j < mn;!. (The baseline 

column itself does not appear in the final ETC matrix.) This process is repeated for 

each row until the t x i n  ETC matrix is full. Therefore, any given value in the ETC 

matrix is within the range [l, db x 4,) [MaA99]. 

'To evaluate the heuristics for different mapping scenarios, the characteristics of 

the ETC matrix were varied based on several different methods fr0.m [Armg'i]. The 

amount of variance among the execution times of tasks in the meta-task for a given 

ma,c:hine is defined as task heterogeneity. Task het,erogeneity was varied by changing 

the upper-bound of t'he random numbers within the baseline colurnn vector. High 

task heterogeneity was represented by bb = 3000 and low task heterogeneity used 

ib == 100. Machine heterogeneity represents the variation that is possible among the 

execution times for a g i ~ e n  task across all the machines. Machine hleterogeneity was 

varied by changing the upper-bound of the random numbers used to  multiply the 

baseline values. High machine heterogeneity values were generated using 4,  = 1000, 

while low machine heterogeneity values used q, = 10. These heterogeneous ranges 

are based on one type of expected environment for MSHN. The ranges were chosen to 

reflect the fact that in real situations there is more variability across execution times 

for different tasks on a given machine than the execution time for a single task across 

different machines. 



'ro further vary the ETC matrix in an attempt to  capture more aspects of realistic 

mapping situations. different ETC rnatrix consistences were used. i ln  ETC matrix 

is said to  be consistent if whenever a machine nzj executes any task ti faster than 

~nachine mk, then machine m j  executes all tasks faster than machine mk [Arm97]. 

Consistent matrices were generated by sorting each row of the ETC nlatrix indepen- 

denl.ly, with machine nzo always being the fastest and machine m(,,,-l) the slowest. In 

contrast: inconsistent matrices characterize the situation where machine nzi may be 

faster than machine mk for some tasks, and slower for others. These matrices are left 

in the unordered, random state in which they were generated (i.e., no consistence is 

enforced). Partia,lly-consistent matrices are inconsistent matrices that include a con- 

sistent submatrix. For t,he partially-consistent matrices used here, the row elements 

in column positions { 0 , 2 , 4 , .  . .) of row i are extracted, sorted, and replaced in order, 

while the row elements in column positions {1,3,5,  . . .) remain unordered (i.e., the 

even columns are consistent and the odd columns are, in general, inconsistent). 

Sample ETC matrices for the twelve possible permutations of the characteristics 

listed above are shown in Tables 4.1 through 4.12. Results in this ~ t u d y  used ETC 

mat ices  that had t = 512 tasks and m = 16 machines. These results (see Chapter 4) 

were taken as the average of 100 ETC matrices for each case. 

While it was necessary to  select some specific parameter values for t ,  m ,  and the 

ETC entries to  allow implementation of a simulation, the techniques presented here 

are completely general. Therefore, if these parameter values do not apply to  a specific 

situation of interest, researchers may substitute in their own values and the evaluation 

software of this study will still apply. 



3. HEURISTIC DESCRIPTIONS 

3.1 Introduction 

The definitions of the eleven static meta-task mapping heuristics are provided 

below. First, some preliminary terms must. be defined. Machine availability time, 

nlat (m,),  is the earliest time machine m, can conlplete the execution of all the tasks 
-- 

t.hat have previously been assigned to it. The completion time for a new task t i  on 

machine m,j, c t ( t ; ,  mj) ,  is the machine availability time plus the execution time of task 

ti  on machine mi, i.e., ct(t;, m,) = mat(rr>,j)+ ETC(t;; m j ) .  The performance criterion 

used to compare the results of the heuristics is the maximum value of ct( t , ,  m,), for 

0 2; i < t and 0 < j < m. The maximum ct(t, ,mj) value is also known as the 

1na:iespan [PinSC5]. Each heuristic is attempting to minimize the makespan (i.e.: finish -- 

execut'ion of the meta-task as soon as possible). 

The descriptions below inlplicitly assume that the machine availability times are 

upclatecl after each task is mapped. For heuristics where the tasks are considered in an 

arbitrary order, the order in which the tasks appeared in the ETC matrix was used. 

h'Iost of the heuristics discussed here had to be adapted for this problem domain. 

For many of the heuristics, there are control parameters values and/or control 

function specifications that can be selected for a given implementation. For the 

studies here, such values and specifications were selected based on experimentation 

and/or information in the literature. These parameters and functions are mentioned 

in Chapter 5 .  



3.2 Heuristics 

3.2.1 Opportunistic Load Balancing (OLB) 

Opportunistic Load Balancing (OLB) assigns each task, in arl~it~rary order, to 

the next available machine, regardless of the task's expected execution time on that 

machine [ArH98, FrG98, FrS931. The intuition behind OLB is to keep all machines 

as busy as possible. One advantage of OLB is its simplicity, but because OLB does 

not consider expected task execution times, the mappings it finds can result in very 

poor makespans. 

3.2.2 Minimum Execution Time (MET) 

In contrast to OLR, hlinimum Execution Tirne (MET) assigns each task, in ar- 

bitrary order, to the machine with the best expected execution tirne for that task, 

regardless of that machine's availability [ArH98, FrG981. The motivat,ion behind MET 

is to give each task to its best machine. This can cause a severe load imbalance across 

machines. In general, this heuristic is obi-iously not applicable to EIC environments 

characterized by consistent ETC matrices. 

3.2.3 Minimum Completion Time (MCT) 

Minimum Completion Time assigns each task, in arbitrary o r d e ~ ,  to the machine 

with the minimum completion time for that task [ArH98]. This causes some tasks 

t,o he assigned to machines that do not have the minimum execution time for them. 

The intuition behind MCT is to combine the benefits OLB and MET, while avoiding 

the circumstances in which OLB and MET perform poorly. 

The Min-min heuristic begins with the set of all unmapped t,asks. Then, the 

set of rnininlum completion times, &f = {nling<,<m(ct(t,, m,)), for each t, E U ) .  is 



found. Next, the task with the overall minimum completion t,ime from 121 is selected 

and assigned to the corresponding machine (hence the name Min-min). Lastlj., the 

ne\vly mapped task is removed from U ,  and the process repeats until all tasks are 

mal~ped (i.e., U is empty) [ArH98, FrG98, IbK771. Min-min is based on the minimum 

conlpletion time, as is MCT. However, Min-min considers all unmapped tasks during 

eaci  mapping decision and MCT only considers one task at a time. 

Min-min begins by scheduling the tasks tha.t change the machine a,vailabili ty status 

by -the least amount that any assignment could. For example, let. t i  be the first task 

ma,pped by Min-min. The machine that finishes ti the earliest, say ,mj, is also the 

machine that executes t i  the fastest. For every task tha.t Min-min nnaps after t i ,  the 

Mi11-min heuristic changes the availability status of 1n.j by the least possible amount 

for every assignment. Therefore, the percentage of tasks assigned to their first choice 

(on the basis of execution time) is likely to be higher for Min-min than for Ma.x-min 

(defined next). The expectation is that a smaller ma.kespan can be obtained if more 

taslts are assigned to t,lle machines that complete them the earliest a,nd a,lso execute 

the~m the fastest. 

The Max-min heuristic is very similar to Min-min. The Max-rr~in heuristic also 

begins with the set of all unmapped tasks. Then, the set of minimum completion 

times, M is found. Next, the task with the overall maximum completion time from 

s selected and assigned to the corresponding machine (hence the name Max-min). 

Lastly, the newly mapped task is removed from U, and the process repeats until all 

taslts are mapped (i.e., U is empty) [ArH98, FrG98, IbK771. 

Intuitively, Max-min attempts to minimize the penalties incurred from performing 

taslts with longer execution times. Assume, for example, that the meta-task being 

mapped has many tasks with very short execution times, and one task with a very 

long execution time. Mapping the task with the longer execution time to its best 



machine first allows this task to be executed concurrently with the remaining tasks 

(wi.,h shorter execution times). For this case, this would be a better mapping than 

a Min-min mapping, where all of the shorter tasks would execute first, and then the 

longer running task would execute while several machines sit idle. Thus, in cases 

similar to this example, the Max-min heuristic may give a mapping with a more 

balitnced load across machines and a better makespan. 

3.2.6 Duplex 

The Duplex heuristic is literally a combination of the Min-min and Max-mi11 

heuristics. The Duplex heuristic performs both of the hfin-mi11 and Max-min heuris- 

tics, and then uses the better solution [ArH98, FrG981. Duplex can be performed 

to exploit the conditions in which either Min-min or Max-min perforrns well, with 

negligible overhead. 

Genetic Algorithms ( u s )  have been studied for years [Ho175], and have become 

a popular technique used for searching large solution spaces (e.g., [SiY96, TiP96, 

WaS971). The version of the heuristic used for this study was adapted from [Was971 

for this particular problem domain. Figure 3.1 shows the steps in a general GA. 

The GA implemented here operates on a population of 200 cl1romosomes (possible 

ma:>pings) for a given meta-task. Each chromosome is a t x 1 vector, where position 

i ( C  5 i < t )  represents task t,, and the entry in position i is the machine to which 

the task has been mapped. The initial population is generated usi-ng two methods: 

(a) 200 randomly generated chromosomes from a uniform distribution, or (b)  one 

chromosome that is the Min-mi11 solution and 199 random solutions (mappings). The 

latter method is called seeding the population with a Min-min chromosome. The GA 

actllally executes eight times (four times with initial populations from each method), 

and the best of the eight mappings is used as the final solution. 



Each chromosome has a fitness value, which is the makespan that results from the 

matching of tasks to machines within that chromosome. After the generation of the 

initial population, all of the chromosomes in the population are evaluated based on 

their fitness value, with a smaller fitness value being a better mapping. Then, the 

main loop in Figure 3.1 is entered and a rank-based roulette wheel scheme [SrP94] is 

used for selection. This scheme probabilistically duplicates some cl~romosomes and 

deletes others. where better mappings have a higher probability of being duplicated in 

the next generation. Elitism, the property of guaranteeing the best solution remains 

in the population [Rud94], was also implemented. The population size stays fised at 

200. 

Next, the crossover operation selects a random pair of chromosomes and chooses 

a random point in the first chromosome. For the sections of both chromosomes from 

that point to  the end of each ch ro~~~osome ,  crossover exchanges mac:hine assignments 

between corresponding tasks. Every chromosome is considered for crossover with a 

probability of 60%. 

After crossover, the mutation operation is performed. Mutation randomly selects 

a cl~romosome~ then randomly selects a task within the chromosome. and randomly 

reassigns it t,o a new machine. Every chrornosome is considered for mutation with a 

probability of 40%. For bot,h crossover and mutation, the random operations select 

values from a uniform distribution. 

Finally, the chromosomes from this modified population are evaluated again. This 

conlpletes one iteration of the GA. The GA stops when any one of three conditions 

are met: (a )  1000 total iterations, (b)  no change in the elite chrc~mosome for 150 

iterations, or (c) all chro~llosomes converge to the same mapping. If no stopping 

criteria is met, the loop repeats, beginning with the selection of a new population. 

The stopping criteria that usually occurred in testing was no change in the elite 

chromosome in 150 iterations. 



Simulated - Annealing (u) is an iterative technique that considers only one pos- 

sible solution (mapping) for each meta-task at a time. This solution uses the same 

representation for a solution as the chromosome for the GA. The  initial implementa- 

tion of SA was evaluated and then modified and refined to give a beliter final version. 

Bolh the initial and final implementations are described below. 

SA uses a procedure that probabilistically allows poorer so lu t io~~s  to be accepted 

to attempt to  obtain a better search of the solution space (e.g., [CoP96, KiG83, 

Ru.N95, ZoK991). This probability is based on a system temperature - that decreases 

for each iteration. As the system temperature "cools," it is more difficult for poorer 

solutions to be accepted. The  init,ial system temperature is the irnakespan of the 

initial (random) mapping. 

The  initial SA procedure implemented here is as follows. The  first mapping is 

generated from a uniform random distribution. The  mapping is mutated in the same 

mariner as the GA, and the new makespan is evaluated. The  decision algorithm for 

accepting or rejecting the new mapping is based on [CoP96]. If the new makespan is 

better, the new mapping replaces the old one. If the new makespan is worse (larger), 

a uniform random number g E [0, 1) is selected. Then, z is compared with - y, where 

L 

old makespan-new makespan 
temperature 

If z > y the new (poorer) mapping is accepted, otherwise it is rejected, and the old 

mapping is kept. 

Notice that for solutions with similar makespans (or if the system temperature is 

very large), y + 0.5, and poorer solutions are accepted wit'h approximately a 50% 

probabilit,~. In cont'rast, for solutions with very different makespans (or if the system 

temperature is very small), y + 1, and poorer solutions will usually be rejected. 



-4fter each mutation, the system temperature is reduced to 90% of its original 

value. (This percentage is defined as the cooling &.) This completes one iteration 

of !;A. The  heuristic stops when there is no change in the makespan for 1.50 itera- 

tions or the system temperature approaches zero. Most tests ended when the system 

temperature approached zero (approximated by 10-200). 

Results from preliminary studies using the initial implementation described above 

showed that the GA usually found the best mappings of all eleven heuristics. How- 

ever, the execution time of the SA heuristic was much shorter than that of the GA. 

Therefore, in order to  try and provide a more .'fair" comparison, the S A  heuristic 

wa: adapted so that it would be more similar to GA. The  modificai ions gave SA an 

execution time as long as GA. The  longer execution time allowed more of the solution 

space to be searched with the SA procedure, with the hope that SA would then find 

mo-e competitive mappings. 

To try to  make SA more conlpetitive with GA, the following changes were made to 

the the final SA implementation. First, the stopping conditions were modified. The 

nurnber of unchanged iterations was raised to  200 and two different cooling rates were 

used, 80% and 90%. Next, SA was allowed to execute eight times for each cooling 

rate, using the best solution from all sixt,een runs as the final mapping. Lastly, four 

of the eight runs for each cooling rate were seeded with the Min-min solution, just as 

with the GA. 

Even with the additional execution time and Min-min seeding:;, SA still found 

poarer solutions than Min-min or GA. Because SA allows poorer solutions to be 

accepted at intermediate stages, it allows some very poor solutions in the initial 

stages, from which it can never recover (see Chapter 4). 

3.2.9 GSA 

The Genetic Simulated Annealing (GSA) heuristic is a combination of the GA 

and SA techniques [ChF98, ShW961. In general, GSA follows procedures similar to 



the GA outlined above. However, for the selection process, GSA uses the SL4 cooling 

schedule and system temperat,ure, and a simplified SA decision process for accept,ing 

or rejecting a new chromosomes. 

Specifically, the initial system temperature was set to the avercage makespan of 

the initial population, and decreased 10% for each iteration. When a new (post- 

mutation, post-crossover, or both) chromosome is compared with the corresponding 

original chromosome, if the new makespan is less t,han the original makespan plus the 

sys1,em temperature; then the new chromosome is accepted. Ot,herwise, the original 

chromosome survives to the next iteration. Therefore, as the system temperature 

decreases, it is again more difficult for poorer solutions to be accepted. The two stop- 

ping criteria used were either (a) no change in the elite chromosome in 150 iterations 

or ~ ( b )  1000 total iterations. The most common stopping criteria was no change in 

the elite chromosome in 150 iterations. 

3.2.10 Tabu 

Tabu search is a solution space search that keeps track of the regions of the solution 

space which have already been searched so a,s not to repeat a search near these areas 

[DeD94, C;lL97]. A solutioll (mapping) uses the same representation as a chromosome 

in the GA approa.ch. 

The implementation of Tabu search used here begins with a random mapping, 

generated from a uniform distribution. To manipulate the current solution and move 

through the solution space, a short hop is performed. The intuitive purpose of a short - 

hop is to find the nearest local minimum solution within the solution space. The basic 

procedure for performing a short hop is to select a pair of tasks and assign them to 

every possible combination of machines. This is done for every possible pair of tasks. 

Tht: pseudocode for the short hop procedure is given in Figure 3.2. 

Let the tasks in the pair under consideration be denoted ti and tj in Figure 3.2. 

(The machine assignments for the other t - 2 taslts are held fixed.) The machines to 



which tasks ti and tj are remapped are mi and mj, respectively. For each possible pair 

of tasks, each possible pair of machine assignments is considered. Lines 1 through 

4 set the boundary values of the different loops. Line 6 or 8 is where each new 

so l~~ t ion  (mapping) is evaluated, and line 9 is where the new solution is considered 

for acceptance. Each of these new solutions is a short hop. If the new makespan is 

an improvement, the new solution is saved, replacing the current solution. (This is 

defined as a successful short hop.) When ti and tj represent the sarne task (ti = tj), - 

a special case occurs (line 5 ) .  In these situations, all machines for that one task are 

considered. 

When any new solution is found to be an improvement (line l o ) ,  the procedure 

breaks out of the for loops, and starts searching from the beginning again. The 

short hop procedure ends when (1) every pair-wise remapping conlbination has been 

exhausted with no improvement (i.e., the bounds of all four for loclps in Figure 3.2 

have been reached), or (2) the limit on the total number of successfi~l l-iops, limith,,, 

is reached. 

When the short hop procedure ends, the final mapping from tlie local solution 

space search is added to the tabu list. The tabu list is a method of keeping track 

of the regions of the solution space that have already been searched. Next, a new 

random mapping is generated, and it must differ from each mapping in the tabu list 

by at least half of the machine assignments (a  successful -- long hop). The intuitive 

purpose of a long hop is to move to a new region of the solution space that has not 

already been searched. 

The final stopping criterion for the heuristic is determined by the t,otal number of 

successful long and short hops combined. That is, when the sum of the total number 

of successful short hops and successful long hops equals limith,,,, the heuristic ends. 

Then, the best mapping from the tabu list is the final answer. 

Similar to SA, some parameters of Tabu were varied in an attempt to make Tabu 

more competitive with GA, while also trying to provide a more "fair" comparison 



between Tabu and GA.  To this end, the value used for limith,,, was varied depending 

on {,he type of consistency of the mat,rix being co~lsidered. 

Because of the implementation of the short hop procedure described above, the 

execution time of the Tabu search depended greatly on the type of consistency of 

the ETC matrix. Each time a new task is considered for remapping in the short 

hop procedure, it is first considered on mo,  then m l ,  etc. For consistent matrices, 

these will be the fastest machines. Therefore, once a task gets reassigned to a fast 

machine, the remaining permutations of the short hop procedure will be unsuccessful. 

In other words, because the short hop procedure begins searching sequentially from 

the best machines, there will be a larger number of unsuccessful holns performed for 

each successful hop for consistent ETC matrices. Thus, the execution time of Tabu 

will increase. 

Therefore, to keep execution times "fair" and c~mpet i t~ ive  with GIA, limith,,, was 

set to 1000 for consistent ETC matrices, 2000 for partially-consistent matrices, and 

25013 for inconsistent matrices. When most test cases had stopped, the percentage of 

succ:essful short hops was high (90% or more) relative to the percentage of successful 

long hops (10% or less). But because there were long hops being performed, every 

pairwise combination of short hops was being exhausted, and new, different regions 

of the solution space were being searched. 

The final heuristic in the comparison study is known as the & heuristic. A* has 

been applied to many other task allocation je.g., [ChLSl, KaA98, RuN95, 

Sh7'851). The technique used here is similar to [ChLS-I.]. 

A* is a search technique based on an m-ary tree, beginning at i5 root node that 

is a, null solution. As the tree grows, nodes represent partial mappings (a  subset 

of tasks are assigned to machines). The partial mapping (so1ution:l of a child node 

has one more task mapped than t,he parent node. Call this additioiial task a. Each 



parent node generates .rn children, one for each possible mapping of a. After a parent 

node has done t'his, t,he parent node becomes inactive. To keep execut'ion t'ime of the 

heuristic tractable, t'here is a pruning process to limit t'he maximum :number of active 

nodes in the tree at any one time (in bhis study, to 1024). 

Each node, n! has a function, f i n ) ,  associated with it. The cost function - 

is an estimated lower-bound on the makespan of the best solution that includes the 

partial solution represented by node n. 

Let g(n)  - represent the makespan of the tasklmachine assignments in the par- 

tial solution of node n,  i.e., g(n)  is the maximum of the machine a,vailability times 

(rnclt(mj)) based on the set of tasks that have been mapped to machines in node 

n's partial solution. Let h(72) be a lower-bound estimate on the difference between - 

the makespan of node n's partial solution and the makespan for t'he best complete 

solution that includes node n's partial solution. Then, the cost funct.ion for node n 

Therefore, f ( n )  represents the makespan of the partial solution of node n plus a 

low'er-bound estimate of the time to execute the rest of the (unmapl?ed) tasks in t'he 

meta-task. 

The function h(n) is defined in terms of two functions, h l (n )  and hz(n) ,  which 

are two different approaches to deriving a lower-bound estimate. Recall that M = 

{mi.no<j<,(ct(t;? - mj)) ,  for each t; E U). For node n let mmct(n) be the overall max- 

imum element of ;2/1 (i.e., "the maximum minimum completion time"). Intuitively, 

mmct(n) represents the best possible meta-task rnakespan by making the typically 

unrealistic assumption that each task in U can be assigned to the machine indicated 

in :Pi without. conflict. Thus, based on [ChLSI.], h l (n )  is defined as 

hl (n)  = max(0, (mmct(n) - g(n)) ) .  (3.3) 



Vext, let sdma(n) be the sum of the differences between g(n)  and each machine 

availability time over all machines after executing all of the tasks in the partial solution 

represented by node n: 

Intuitively, sdma(n) represents the collective amount of machine availability time 

remaining that can be scheduled without increasing the final makespan. Let smet(n)  

be defined as the sum over all tasks in U of the minimum expected execution time 

(i.e., ETC value) for each task in U 

This gives an estimate of the amount of remaining work to do, which could increase 

the final makespan. The function h2 is then defined as 

where (smet(n)  - sd,ma(n))/m represents an estimate of the minimu7m increase in the 

meta-task makespan if the tasks in I/:  could be "ideally" (but,  in general, unrealisti- 

cally) distributed arnong the machines. Csing these definitions, 

representing a lower-bound estimate on the time to execute the tasks in U. 

Thus, after the root node generates m nodes for to (each node mapping to to a 

difft-rent machine), the node with the minimum f ( n )  generates its m children, until 

1024 nodes are created. From that point on, any time a node is added, the tree is 

pruned by deactivating the leaf node with the largest f (n) .  This process cont,inues 

until a leaf node representing a complete mapping is reached. Note idhat if the tree is 

not pruned, this method is equivalent to an exhaustive search. 



3.3 Concluding Remarks 

'I'his set of eleven stat,ic mapping heuristi

c

s is not exhaustive, nor is it meant 

to  be. It is simply a representative set of several different approaches, including 

iterative? non-iterative, greedy, a.nd biologically inspired te

c

hnique:;. Several other 

types of static mapping heuristics exist. For exa.mple, other techniques that have 

bee11 or could be used as static mappers for heterogeneous computi-ng environments 

include t,he following: neural networks [ChH98], linear programming [CoL92]> the 

"Mapping Heurist,icn (MH) algorit,hm [ElL90], the Cluster-M technique [EsW96], the 

Levelized Min Time (LMT) algorithn~ [Iv095], the k-percent best (KPB) and Suf- 

ferage heuristics [MaL499], the Dynamic Level Scheduling (DLS) algorithm [SiL93], 

recursive bisection [SiT97]: and the Heterogeneous Earliest-Finish-Time (HEFT) and 

Crilical-Path-on-a-Processor (CROP) t,echniques [ToH99]. The eleven heuristics ex- 

a.mined here were initially selected because t,hey seemed among the rnost appropriate 

for the static mapping of meta-tasks, and covered a, wide range of techniques. 



4. EXPERIMENTAL RESULTS 

4.1 Introduction 

An interactive software application has been developed tha t  allows simulation, 

testing, and demonstration of the heuristics examined in Chapter :!, applied to  the 

met a-tasks defined by the ETC matrices described in Chapter 2. The  software allows 

a user to  specify t and m, to  select which type of ETC' matrices t o  use, and to  choose 

which heuristics t o  execute. It then generates the specified ETC' matrices, executes 

the desired heuristics, and displays the results, similar to  Figures 4 . 1  through 4.12. 

The results discussed in this chapter were generated using this software. 

4.2 Results for 512 Tasks 

4.2.1 Heuristic Execution Times 

When comparing nlapping heuristics, the esecution t ime of the heuristics them- 

selves is an important consideration. For the eleven heuristics tha t  were compared, 

the  esecution times varied greatly. The  experimental results discussed below were 

obtsined on a Pentium I1 300 MHz processor with 1GB of RAM. 'The heuristic ex- 

ecut,ion times are the average time each heurist,ic took to  compute a mapping for a 

single 512 task x 16 machine ETC matrix, averaged over 100 different matrices (each 

of the  same type). 

The first three heuristics described, OLB, MET, and MCT, each of which has 

asymptotic complexity of O(mt) ,  executed in less than one microsecond per ETC 

ma1,rix. Next, the  Min-min, Max-min, and Duplex heuristics, each with asymptotic 

complexity O(mtL) ,  executed in an average of 200 milliseconds. The  GA, which 



usu4311y provided the best results (in terms of makespan), had a11 al;erage execution 

timl? of 60 seconds. GSA, which uses many procedures similar to  the GA, had an 

average execution time of 69 seconds. As described in the previous chapter, SA and 

Tabu were adapted to  provide a more fair comparison with the results of the GA, so 

their average execution times were also approximately 60 seconds per ETC matrix. 

Fin,ally .4*: which has exponential complexity, executed in an average of over 20 

minutes (1200 seconds). 

The resulting makespans (i.e., the t ime it would take for a given meta-task to  

complete on the  heterogeneous environment) from the simulations for every case of 

con;;istency, task heterogeneity, and machine heterogeneity are shown in Figures 4.1 

through 4.12. After each figure is a table with a sample 8 x 8 subsection from one of 

the 512 x 16 ETC matrices with the same type of consistency (Tables 4.1 through 

4.1;!). All experimental results represent the average makespan foi- a meta-task of 

the defined type of ETC matrix. For each heuristic and each type of ETC matrix, 

the results were averaged over 100 different ETC matrices of the same type (i.e., 100 

mappings). The  range bars for each heuristic show the 95% confidence interval [JaiYl] 

(min, max) for the average makespan. This interval represents the likelihood that 

maliespans of mappings for that type of heterogeneity and heuristic fall within the 

specified range. That  is, if another ETC matrix (of the same type) was generated, 

and the specified heuristic generated a mapping, then the makespan of the mapping 

would be within the given confidence interval with 9.5% certainty. 

4.2.2 Coilsistent Heterogeneity 

The  results for the ~neta- task execution times for the four consistent cases are 

shown in Figures 4.1, 4.2, 4.3, and 4.4. The  corresponding ETC matrix excerpts are 

in Tables 4.1, 4.2, 4.3, and 4.4. The  differences in magnitude on the y-axis among 

the gra.phs are from the different ranges of magnitude used in generating the different 

types of ETC matrices. 



For both cases of low machine heterogeneity. the relative perfornx~nce order of the 

heuristics from best to worst was: (1) GA, (2) Min-min, (3) Duplex, (4) GSA, (5) 

A*, (6) Tabu, (7) MCT, (8) SA, (9 )  Max-min, (10) OLB, and (11) MET. For the two 

high machine heterogeneity cases, the relative perforrilance order of the heuristics from 

best to worst was: (1) GA,  (2) illin-min, (3) Duplex, (4) .4*, (5) GSA, (6) MCT, (7) 

Tabu, (8) S.4, (9) Max-min, (10) OLB, and (11) MET. For consistent ETC matrices, 

the MET algorithm mapped all tasks to the same machine, resulting in the worst 

performance by an order of magnitude. Therefore, MET is not included in the figures 

for the consistent cases. The performance of the heuristics will be discussed in the 

order in which they appear in the figures. 

For all four corlsistent cases, OLB gave the second worst results (after MET). In 

OLIB, the first m tasks get assigned, one each, to the m idle machines. Because of 

the the consistent ETC matrix, there will be some very poor initial mappings (tasks 

m -- 2 and m - 1, for example, get their worst machines). Because task execution 

times are not considered, OLB may continue to assign tasks to machines where they 

execute slowly, hence the poor makespans for OLB. 

MCT always performed around the median of the heuristics, giving the sixth best 

(lovl~ machine heterogeneity) or seventh best (high machine heterogeneity) results. 

hZCT only makes one iteration through the ETC matrix, assigning tasks in the order 

in which they appear in the ETC matrix, hence it can orlly make rnapping decisions 

of limited scope, and it cannot make globally intelligent decisions like Min-nlin or A*. 

The Min-min heuristic performed very well for consistent ETC matrices, giving 

the second best result in each case. Not only did Min-min always give the second 

best mapping, but the Min-min mapping was always within ten percent of the best 

mapping found (which was with GA, discussed below). Min-min is able to make 

globally intelligent decisions to minimize task completion times, which also results 

in good machine utilization and good makespans. Similar arguments hold for the 

Duplex heuristic. 



[n contrast, the Max-min heuristic always performed poorly, giving only the ninth 

best mapping. Consider the state of the machine ready times during the execution 

of the Min-min and Max-min heuristics. hilin-min always makes the assignment that 

c h a ~ g e s  the machine ready times by the least amount. In general, ihe assignment 

made by >lax-min will change the machine ready times by a larger amount. Therefore, 

the values of the rnachine ready t i~nes for each machine will remain closer to each 

other when using the Min-min heuristic than when using the Max-mill heuristic. Both 

Min-min and Max-min will assign a given task to the machine that gives the best 

co~rlpletion time. However, if the machine ready times remain close to each other, 

the11 Min-min gives each task a better chance of being assigned to the machine that 

gives the task its best execution time. In contrast. with Max-min, there is a higher 

probability of there being relatively greater differences among the machine ready 

times. This results in a "load balancing" effect, and each task has a lower chance of 

being assigned to the machine that gives the task its best execution time. 

For the heterogeneous environments considered in this study, the type of special 

case where Max-min may outperform Min-min (as discussed in Chapter 3) never 

occurs. hlin-min found a better mapping than Max-min every time (i.e., i11 each 

of the 100 trials for each type of heterogeneity). Thus, h:Iax-min performed poorly 

in this study. ,4s a direct result, the Duplex heurist'ic always selected the Min-min 

solution, giving Duplex a tie for the second best solution. (Because Duplex always 

relied on the Min-~nin solution, it is listed in third place.) 

GA provided the best mappings for the consistent cases. This was due in large 

part to the good performance of the Min-min heuristic. The best GPL solution always 

came from one of the populations that had been seeded with the I\/[i11-min solution. 

However, the addit,ional searching capabilities afforded to GA by performing crossover 

and mutation were beneficial, as the GA was always able to i~nprove upon this solutio~l 

by Ive to ten percent. 



SA, which manipulates a single solution, ranked eighth for both types of machine 

heterogeneity. For this type of heterogeneous environment, this heuristic (as imple- 

11lented here) do not perform as well as the GA which had si~nilar execution time and 

Min-min which had a faster execution time. While the SA procedure is iterative (like 

the GA procedure), it appears that the crossover operation and selection procedure 

of the GA are advantageous for this problem domain. 

The mapping found by GSA was eit,her the fourth best (low machine hetero- 

geneity) or the fifth best (high machine heterogeneity) mapping found, alternating 

wit1 A*. GS-4 does well for reasons similar to  those described for (>A. The average 

maliespan found by GS.4 could have been slightly better, but the results were hin- 

dered by a few very poor mappings that were found. These very poor mappings result 

in the large confidence intervals found in the figures for GS.4. Thus, for these hetero- 

geneous environments, the selection method from GA does better than the method 

from GSA. 

Tabu provides fairly constant results, a1wa.y~ finding the sixth or seventh best 

mapping (alternating with MCT). As noted in the previous chapte-r, because of the 

short hop procedure implemented and the structure of the consistent matrices, Tabu 

finds most of the successful short hops right away and must then perform a large 

nurnber of unsuccessful short hops (recall machine m; outperforms machine for 

the consistent cases). Because the stopping criteria is determined by the number of 

suc~~essful hops, and because each short hop procedure has few successfi~l hops, Inore 

~uc~cessful long hops are generated, and more of the solution space is searched. Thus, 

Tabu performs bet'ter for consistent matrices than for inconsistent. 

Considering the order of magnitude difference in execution times between A* and 

the other heuristics, the quality of the mappings found by A* was disappointing. The 

A* mappings alternated between fourth and fifth best with GSA. The performance 

of A x  was hindered because the estimates made by hl(n)  and h2(72) are not as ac- 

curate for consistent cases as they are for inconsistent and partially--consistent cases. 



For consistent cases, h l ( n )  underestimates the competition for machines and h2(rz) 

overestinlates the number of tasks that can be assigned to their besl; machine. 

4.2.3 Inconsistent Heterogeneity 

For the four inconsistent test cases in Figures 4.5 through 4.8 and Tables 4.5 

through 4.8, one sees similar trends in all four cases. For both case:; of low machine 

heterogeneity, the relative performance order of the heuristics from best to worst was: 

(1) GA, (2) A*, (3)  Min-min, (4) Duplex, ( 5 )  MC'T, ( 6 )  MET, ( 7 )  GSA, ( 8 )  SA, (9) 

Tabu, ( 1 0 )  Max-min, and ( 1 1 )  OLB. For the two high machine hetlerogeneity cases, 

the relative performance order of the heuristics from best to  worst was: ( 1 )  GA, (2) 

A v ,  (3) Min-min, ( 4 )  Duplex. ( 5 )  MCT, ( 6 )  MET, ( 7 )  SL4, (8) G S 4 ,  (9) Max-min, 

( 1 0 )  Tabu, and ( 1 1 )  OLB. 

MET performs much better than in the consistent cases, while the performance of 

OL B degrades. The reason OLB does better for consistent than inconsistent matrices 

is as follows. Consider for example, machine mo and machine ml In the consistent 

case. By definition, all tasks assigned to mo will be on their best machine, and all tasks 

assigned to 7nl will be on their second best machine. However, OLIB ignores direct 

consideration of the execution times of tasks on machines. Thus, for the inconsistcent 

case, none of the tasks assigned to mo may be on their best machine, and none of 

the tasks assigned to rill may be on their second best machine, etc. Therefore. it is 

more likely that OLB will assign more tasks to poor machines, resulting in the worst 

mappings for each of the inconsistent cases. In contrast, MET improves and finds 

the sixth best schedules because the "best" machines are distributed across the set 

of machines, thus task assignments will be more evenly distributed among the set of 

machines avoiding load imbalance. 

Similarly, h4CT can also exploit the fact that the machines providing the best task 

completion times are more evenly distributed among t,he set of machines. Thus, by 

assigning each task, in the order specified by the ETC matrix, to t,he machine that 



conlpletes it the soonest, there is a better chance of assigning a task to  a machine 

that executes it well, decreasing the overall makespan. 

Min-min continued to  give better results than Max-min (which ranked ninth or 

tent,h), by a factor of about two for all of the inconsistent cases. In fact,, Min-niin 

was again one of the best of all eleven heuristics, giving the third best mappings, 

which produced makespans that were still within 12% of the best makespans found. 

As noted earlier, Duplex selected the Min-min solution in every case, and so ranked 

fourth. 

GA provided the best mappings for t.he inconsistent cases. GA was again able to  

benefit from the performance of Min-min, as the best solution always came from from 

one of the populations seeded with the Min-min solution. GA has provided the best 

solution in all consistent and inconsistent cases examined, and its esecut,iorl time is 

largely independent of any of the heterogeneity characteristics. This makes it a good 

general-purpose heuristic, when mapper execution time is not a crit ~ c a l  issue. 

SA and GSA had similar results, alternating between the seventh and eighth best 

schedules. For the high machine heterogeneity cases, SA found mappings that were 

betier by about 25%. For the low niachine heterogeneity cases, GSA found the better 

mappings, but only by 3 to  Il%,. 

Tabu performs very poorly (ninth or tenth best) for inconsistent matrices when 

compared to  its performance for consistent matrices (sixth or seventh best). The  se- 

quential procedure for generating short hops, combined with t he inconsistent structure 

of the ETC matrices, results in Tabu finding more successful short hops, and per- 

forming fewer unsuccessful short hops. Many more intermediate solut,ions of marginal 

improvement exist within an inconsistent ETC.' matrix. Therefore, the hop limit is 

reached faster because of all the successful short hops (even though the hop limit is 

higher). Thus, less of the solution space is searched, and the result is a poor solution. 

That is, for the inconsistent case, the ratio of successful short hops to successful long 



hops increases, as compared to the consistent case, and fewer areas in the search space 

are examined. 

A* ha.d the second best average makespans, behind GA, and both of these methods 

produced results that  were usually within a small factor of each other. A" did well 

because if the machines with the fastest execution times for different t,asks are more 

evenly distributed, the lower-bound estimates of h l  (n) and h z ( n )  are more accurate. 

4.2.4 Partially-consistent Heterogeneity 

Finally, consider the partially-consistent cases in Figures 4.9 through 4.12 and 

Tables 4.9 through 4.12. For both cases of low machine heterogeneity, the relative 

performance order of the heuristics from best to  worst was: (1) GA, (2) Min-min, 

(3)  Duplex, (4) AT,  (5) MCT, (6) GSA4, (7) Tabu, (8) SA, (9) Mas-min, (10) OLB, 

and (11) MET. For the high task, high machine heterogeneity cases, the relative 

performance order of the heuristics from best to  worst was: (1) GA, (2) Min-min, 

(3 )  Duplex, (4) A*, (5) NlCT, (6) GSA, (7) SA, (8) Tabu, (9) Max-min, (10) OLB, 

and (11) MET. The railkings for low task, high machine heterogeneity were similar 

to high task, high machine heterogeneity, except GSA and SA are switched in order. 

'The MET performed the worst for every partially-consistent case. Intuitively, 

MET is suffering from the same problem as in the consistent cases: half of all tasks 

are gett<ing assigned to the same ma.chine. 

OLB does poorly for high machine heterogeneity cases because bad assignments 

will have higher execution times for high machine heterogeneity. For low machine 

hetr:rogeneity, the bad assignments have a much lower penalty. In all four cases, OLB 

was the second worst approach. 

MCT again performs relatively well (fifth best) because the machines providing 

the best task completion t,imes are more evenly distributed among the set of machines, 

similar to  the inconsistent cases. Max-min continued to do poorly and ranked ninth. 



The Duplex solutions were the same as the Min-min solutions, and tied for second 

best. The  rankings for SA, GSA, and Tabu were approximately the averages of what 

they were for the consistent and inconsistent cases, as might be expected. 

The  best heuristics for the partially-consistent cases were GA (best), and Min- 

mill (second best), followed closely by A* (fourth best, after Duplex). This is not 

surprising because these were among the best heuristics from the consistent and 

inconsistent t,ests, and partially-consistent matrices are a combinaiion of consistent 

and inconsistent matrices. Min-min was able to do well because it's approach assigned 

a high percentage of tasks to  their first choice of machines. A* was robust enough to  

handle t,he consistent components of the matrices, and did well for the same reasons 

mentioned for inconsistent mat,rices. GA maintained its position as best heuristic. 

The  execution time and performance of GA is largely independent of heterogeneity 

characteristics. The  additional regions of the solution space that are searched by the 

GA mutation and crossover operations are beneficial, as they were always able to  

improve on the Min-min solution by five to  ten percent. 

4.3  Summary 

To summarize the findings of this chapter, for consistent ETC 11-~atrices, GA gave 

the best results, Min-min the second best, and MET gave the worst. When the ETC 

matrices were inconsistent, OLB provided the poorest mappings while the mappings 

froin GA and A* performed the best. For the partially-consistent cases. GA still gave 

the best results, followed closely by Min-min and A*. while MET had the slowest. 

All results were for meta-tasks with t = 512 tasks executing on m = 16 machines, 

averaged over 100 different trials. 

For the situations considered in this study, the relative performance of the mapping 

hecristics varied based on the characteristics of the HC environments. The  GA always 

gave the best performance. If mapper execution time is also considered, Min-min gave 

excellent performance (within 12% of the best) and had a very small execution time. 



5. ALTERNATIVE IMPLEMENTATIOlNS 

The experimental results in Chapter 4 show the performance (sf each heuristic 

uncler the assumptions presented. For several heuristics, specific control paramet,er 

values and control functions had to be selected. In most cases, control parameter 

values and control functions were based on the references cited and/or preliminary 

experiments that were conducted. However, for these heuristics, several different, 

valid implementations are possible using different control parameters and control 

functions. Sorne of these control parameters and control functions are listed below 

for selected heuristics. 

GA: Several control parameter values could be varied in the GA, including 

population size, crossover probability, mut,ation probability, stopping criteria! and 

nurnber of initial populations considered per result. Specific functions wit'hin GA 

controlling the progress of the search that could be changed are initial population 

"seed" generation, mutation, crossover, selection, and elitism. 

SA: Parameter values with SA that could be modified are system temperature, 

cooling rate, stopping criteria, and the number of runs per result. Adaptable control 

procedures in SA include the initial population "seed" generation, rriutation, and the 

equation for deciding when to accept a poorer solution. 

GSA: Like the two heuristics its based upon, GS,4 also has several parame- 

ters that could be varied, including: population size, crossover probability, mutation 

probability, stopping criteria, cooling rate, number of runs with different initial pop- 

ula-tions per result, and the system temperature. The specific procedures used for 

the following actions could also be modified: initial population "seed" generation, 



mui;a.tion, crossover, selection, and t,he equa.tion for deciding when to accept a, poorer 

solution. 

Tabu: The short hop method implemented was a. "first descent" (take the first 

i~nprovement possible) method. "Steepest descent" methods (where severa.1 short 

hops are considered simultaneously, and the one with the most improvement is se- 

lected) are also used in practice [DeD94]. Other techniques that  could be va.ried are 

the long hop method, the order of the short hop pair generation-and-exchange se- 

quence, and the stopping condition. Two possible alternative stopping criteria are 

when the tabu list reaches a specified number of entries, or when there is no change 

in the best solution in a specified number of hops. 

A*: Several variations of the A* method that was employed here could be 

implemented. Different functions could be used to estimate the lower-bound h (n ) .  

The maximum size of the search tree could be varied, and several other techniques 

exist for tree pruning (e.g., [R.uN95]). 

In summary, for the GA, SA, GSA, Tabu, and A" heuristics there are a great 

nucnber of possible valid implementations. An attempt was made to use a reasonable 

implementation of each heuristic for this study. Future work could examine other 

implementations. 



6. CONCLUSIONS 

The goal of this study was to provide a basis for comparison and insights into cir- 

cunlstances where one technique will out perform another for eleven different heuris- 

tics. The characteristics of the ETC matrices used as input for the heuristics and the 

me1,hods used to generate them were specified. The implementation of a collection of 

eleven heuristics from the literature was described. The results of the mapping heuris- 

tics were discussed, revealing the best heuristics to use in certain scenarios. For the 

situations, implementatio~ls, and parameter values used here, GA consistently gave 

the best results. The average performance of the relatively simple illin-min heuristic 

was always nrithin twelve percent of the G A  heuristic. 

The comparisons of the eleven heuristics and twelve situations provided in this 

st,udy can be used by researchers as a starting point when choosing heuristics to apply 

in different scenarios. They can also be used by researchers for selecting heuristics to 

conipare new, developing techniques against. 

Aclknowledgments - The authors thank Shoukat ,41i for his corr~rnents. Portions 
of this document appear in the proceedings of the 8th IEEE Workshop on Heteroge- 
neous Computing (HCW '99). 
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initial population generation; 
evaluation; 
while (stopping criteria not met) { 

selection; 
crossover; 
mutation; 
evaluation; 

1 

Figure 3.1. General procedure for a Genetic Algorithm, based on [SrP94]. 



0 LOOP: /* begin short hop procedure */ 
1 for ti = 0 t o t  - 1 /* first task in pair */ 
2 for mi = 0 to m - 1 /* ,first machine in pair " /  
3 for tj = ti to t - 1 /* second task in pair */ 
4 for mj = 0 to m - 1 /* second machine in pair */ 

if (ti == tj) 
evaluate new solution 
with task tj on machine mj; 

else 
evaluate new solution with 
task ti on machine mi and 
task tj on machine mj; 

if (new solution is better) { 
replace old solution with new solution; 
successful~hops = successful~hops + 1 ; 
goto LOOP; I* restart from inital state */ 

} 

if (successful~hops == limithops) 
goto END; I* end all searching */ 

1 Ei end for 
16 end for 
17 end for 
18 end for 
1Ef END: 

Figure 3.2. Pseudocode describing the short hop procedure used in Tabu search. 



Figure 4.1. Consistent, high task, high machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken a,s the mean over 
100 ETC matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence interval for the mean. For this case, the MET schedule mias an 
order of magnitude worse than any other schedule and so is not shown. 

machines 
289,992.5 392,348.2 
50,575.6 58,268.1 

81 7,745.8 915,235.9 
643,133.7 841,877.3 
166,346.8 240,319.5 
306,034.2 393,292.2 
406,791.4 1,108,758.0 
221,390.0 259,491.1 

Table 4.1. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
consistent, high task, high maclline heterogeneity used in generating 
Figure 4.1. 



Figure 4.2. Consisterlt, high task, low machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken a s  the mean over 
100 ETC matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence interval for the mean. For this case, the MET schedule was an 
order of magnitude worse than any other schedule and so is not shown. 

machines -- 

745.2 839.8 1,192.9 1,342.1 1,896.3 2,861.4 3,180.5 zm 
5,000.3 5,084.6 7,350.5 8,291.5 8,517.4 8,653.4 8,977.8 9,658.6 
2,119.7 2,975.5 3,046.0 4,162.5 4,663.0 4,971.3 5,057.6 5,318.3 

Table 4.2. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
consistent, high task, low machine heterogeneity used in generating 
Figure 4.2. 



Figure 4.3. Consistent,, low task, high machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken 2,s the mean over 
100 ETCY matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence interval for the mean. For this case, the MET schedule was an 
order of magnitude worse than any other schedule and so is not shown. 

machines 
847.7 1,113.3 1,494.2 

6,705.0 6,852.4 7,116.5 
13,475.7 13,660.6 14,090.2 
18,803.2 18,913.0 19,020.1 
23,665.0 23,687.3 23,759.6 
30,172.9 30,239.7 30,695.7 
35,909.2 36,265.1 36,394.4 
41,359.1 41,798.4 41,893.0 

Table 4.3. Sample S x 8 excerpt from one of the 512 x 16 ETC matrices wit11 
consistent, low task, high machine het,erogeneity used in generating 
Figure 4.3. 



Figure 4.4. Consistent, low task, low machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken aus the mean over 
100 ETC matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence interval for the mean. For this case, the MET schedule was an 
order of magnitude worse than any other schedule and so is not shown. 

machines 

Table 4.4. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with consis- 
tent, low task, low machine heterogeneity used in generating Figure 4.4. 



Figure 4.5. Inconsistent, high task, high machine heterogeneity execution times 
for schedules from the eleven mapping heuristics, talcen as the mean 
over 100 ETC rnatrices (trials). For each trial there are 512 tasks and 
16 machines. For each heuristic, the range bars show the 95 percent 
confidence interval for the mean. 

machines 
815,309.1 891,469.0 1,722,197.6 1,340,988.1 740,028.0 1,749,673.7 251,140.1 
933,830.1 2,156,144.2 2,202,018.0 2,286,210.0 2,779,669.0 220,536.3 1,769,184.5 
479,091.9 150,324.5 386,338.1 401,682.9 21 8,826.0 242,699.6 1 1,392.2 

1,400,308.1 2,378,363.0 2,458,087.0 351,387.4 925,070.1 2,097,914.2 1,206,158.2 
576,144.9 1,475,908.2 424,448.8 576,238.7 223,453.8 256,804.5 88,737.9 

43,439.8 1,355,855.5 1,736,937.1 1,624,942.6 2,070,705.1 1,977,650.2 1,066,470.8 
7,453.0 3,454.4 23,720.8 29,817.3 1,143.7 44,249.2 5,039.5 

1,682,338.5 1,978,545.6 788,342.1 1,192,052.5 1,022,914.1 701,336.3 1,052,728.3 

Table 4.5. Sample 8 x 8 excerpt froin one of the 512 x 16 E'TC matrices with 
inconsistent, high task, high machine heterogeneity used in generating 
Figure 4.5. 



Figure 4.6. Inconsistent, high task, low machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken FIS the mean over 
100 ETC matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence interval for the mean. 

machines 
3,621.5 3,289.5 

477.1 811.9 
143.6 56.0 

4,265.3 3,174.6 
461.4 1,898.7 

6,088.3 9,239.7 
6,444.6 2,640.0 

13,160.6 10,574.2 

Table 4.6. Sample 8 x S excerpt from one of the 512 x 16 ETC matrices with 
inconsistent, high task, low machine heterogeneity used in generating 
Figure 4.6. 



Figure 4.7. Inconsistent, low task, high machine heterogeneity execution t i~nes for 
schedules from the eleven mapping heuristics, taken a,s the mean over 
100 ETC matrices (trials). For each trial there are 512 tasks and 16 
machines. For each heuristic, the range bars show the 95 percent con- 
fidence int,erval for the mean. 

machines 
16,603.2 71,369.1 39,849.0 44,566.1 55,124.3 9,077.3 87,594.5 31,530.5 

738.3 2,375.0 5,606.2 804.9 1,535.8 4,772.3 994.2 1,833.9 
1,513.8 45.1 1,027.3 2,962.1 2,748.2 2,406.3 19.4 969.9 
2,219.9 5,989.2 2,747.0 88.2 2,055.1 665.0 356.3 2,404.9 

12,654.7 10,483.7 10,601.5 6,804.6 134.3 10,532.8 12,341.68 5,046.3 
4,226.0 48,152.2 11,279.3 35,471.1 30,723.4 24,234.0 6,366.9 22,926.9 

20,668.5 28,875.9 29,610.1 7,363.3 24,488.0 31,077.3 8,705.0 11,849.4 
52,953.2 14,608.1 58,137.2 16,685.5 36,571.3 35,888.8 38,147.0 15,167.5 

Table 4.7. Sample 8 x 8 excerpt fro111 one of the 512 x 16 ETC matrices with 
inconsistent, low task: high machine heterogeneity used in generating 
Figure 4.7. 



Figure 4.8. Inconsistent, low task, low machine heterogeneity execution times for 
schedules from the eleven mapping heuristics, taken as the mean over 
100 ETC matrices (trials). For each tria,l there are 512 tasks and 16 
machines. For each heuristic, the range bars show the: 95 percent con- 
fidence interval for the mean. 

machines 
494.4 61 1.2 

19.2 27.9 
180.0 334.6 
206.2 559.5 
71.5 136.6 

319.8 237.5 
449.4 421.8 
194.2 176.5 

Table 4.8. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
inconsistent, low task, low machine heterogeneity used in generating 
Figure 4.8. 



Figure 4.9. Partially-consisterlt, high task, high machine heterogeneity execution 
times for schedules from the eleven mapping heuristics, ta.ken as the 
mean over 100 ETC matrices (trials). For each trial there are 512 
tasks and 16 rna.chines. For each heuristic, the range 11ars show the 95 
percent confidence interval for the mean. 

machines 
1,003,569.7 910,811.9 1,085,529.8 1,646,242.8 1,087,655.5 2,121,084.5 1,141,898.7 749,952.3 

27,826.6 409,936.4 168,341.7 858,511.3 353,691.8 270,449.8 420,799.6 152,786.0 
8,415.4 101,202.5 16,453.7 64,152.5 29,172.8 36,738.5 61,114.5 142,411.2 

17,050.5 1 95,067.8 79,175.8 787,263.3 173,239.2 438,599.0 378,563.4 747,305.4 
32,275.4 434,445.7 135,989.1 496,326.8 221,097.9 463,577.7 244,747.3 431,704.5 
28,850.0 1 38,449.0 32,730.9 93,025.9 90,044.4 223,827.9 96,715.5 129.979.1 

145,038.5 350,917.4 210,957.4 265,590.5 486,217.7 317,915.2 728,732.4 625,365.5 
1 1,763.0 460,975.2 21 4,456.3 821,904.1 296,960.4 459,109.0 350,026.7 54,926.4 

Table 4.9. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
partially-consistent, high task, high machine heterogeneity used in gen- 
erating Figure 4.9. 



Figure 4.10. Partially-consistent, high task, low machine heterogeneity execution 
times for schedules from the eleven mapping heuristics, taken as the 
mean over 100 ETC matrices (trials). For each trial there are 512 
tasks and 16 machines. For each heuristic, the range bars show the 95 
percent confidence interval for the mean. 

machines 
10,455.3 3,749.3 

5,764.5 12,108.2 
25,581.2 11,604.0 
1 1,450.1 4,710.2 
7,128.6 2,616.6 

14,167.8 9,109.1 
10,055.4 11,557.9 
16,093.4 4,845.7 

Table 4.10. Sample 8 x 8 excerpt from one of the 512 x 16 ET(7 matrices with 
partially-consistent, high task, low machine heterogeneity used in gen- 
erating Figure 4.10. 



Figure 4.11. Partially-consistent. low task, high machine heterogeneity execution 
times for schedules from the eleven mapping heuristics, taken as the 
mean over 100 ETC matrices (trials). For each trial there are 512 
tasks and 16 machines. For each heuristic. the range bars show the 95 
percent confidence interval for the mean. 

machines 
1,262.8 438.4 174.5 539.4 

14,169.0 3,075.9 3,810.9 13,178.0 
9,948.8 4,700.4 17,941.7 7,057.8 
2,938.6 5,212.7 11,842.0 5,946.4 
9,957.8 8,950.4 57,354.7 9,369.5 

26,994.2 10,501.9 64,684.6 12,482.4 
1,363.6 508.7 1,692.6 913.7 

53,303.0 20,572.0 50,002.9 21,410.2 

Table 4.11. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
partially-consistent, low task, high machine heterogent:ity used in gen- 
erating Figure 4.11. 



Figure 4.12. Partially-consistent, low task: low machine heterogeneity execution 
times for schedules from the eleven mapping heuristics, taken as the 
mean over 100 ETC matrices (trials). For each trial there are 512 
tasks and 16 machines. For each heuristic, the range bars show the 95 
percent confidence interval for the mean. 

machines 
148.2 736.7 151 .O 
65.5 61.0 121.6 

179.5 309.4 247.1 
69.2 61.7 92.4 

160.1 560.7 392.9 
113.0 48.7 139.0 
413.7 144.6 489.2 
226.0 213.0 601.9 

Table 4.12. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with 
partially-consistent, low task, low machine heterogeneity used in gen- 
erating Figure 4.12. 
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