
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-2000

A Comparison Study of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto
Ileterogeneous Distributed Computing Systems
Tracy D. Braunt
Purdue University School of ECE

Howard Jay Siegel
Purdue University School of ECE

Noah Beck
Purdue University School of ECE

Ladislau L. Boloni
Purdue University Department of Computer Science

Muthucumaru Maheswarans
University of Manitoba, Department of Computer Sciences

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Braunt, Tracy D. ; Siegel, Howard Jay ; Beck, Noah ; Boloni, Ladislau L.; Maheswarans, Muthucumaru ; Reuthert, Albert I.;
Robertson, James P.; Theys, Mitchell D.; Yao, Bin; Hensgeno, Debra ; and Freund, Richard F., "A Comparison Study of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Ileterogeneous Distributed Computing Systems" (2000). ECE Technical
Reports. Paper 19.
http://docs.lib.purdue.edu/ecetr/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4947911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Tracy D. Braunt, Howard Jay Siegel, Noah Beck, Ladislau L. Boloni, Muthucumaru Maheswarans, Albert I.
Reuthert, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgeno, and Richard F. Freund

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/ecetr/19

http://docs.lib.purdue.edu/ecetr/19?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

A COMPARISON STUDY OF EL~EVEN
STATIC HEURISTICS FOR MAPPING A

CLASS OF INDEPENDENT TASKS

ONTO HETEROGENEOUS
DISTRIBUTED COMPUTING SYSTEMS

TRACY D. BRAUN, HOWARD JAY SIEGEL,
NOAH BECK, LADISLAU L. BOLONI,
MUTHUCUMARU MAHESWARAN, ALBERT I.
REUTHER, JAMES P. ROBERTSON, MITCHELL

D. THEYS, BIN YAO, DEBRA HENSGEN, AND

RICHARD F. FREUND

TR-ECE 00-4
MARCH 2000

A Comparison Study of Eleven Static Heuristics

for Mapping a Class of Independent Tasks onto

Ileterogeneous Distributed Computing Systems

Tracy D. Bra,unt, Howard Jay Siegelt, Noah Beckt, La,dislau :L. Boloni$,
hIut,hucuma,ru Maheswarans, Albert I. Reuthert, James P. Robertson*,

Mitchell D. Theys"", Bin Ya,ot! Debra Hensgeno, a,nd Richard F. Freundv

tSchool of Electrical and Computer Engineering
1255 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285 US4

{tdbraun, hj, noah. reuther, yaob)Becn.purdue.ed~~

$Department of Computer Sciences §Department of Computer Science
Purdue University University of Manitoba

West Lafayette, IN 47907 USA Winnipeg, MB R3T 2PJ2 Canada
boloni@cs.purdue.edu maheswar@cs.umanitoba.ca

*Motorola "Department of Electrica.1 Engineering
6300 Bridgepoint Parkway and Computer Science

Bldg. #3, MD: OE71 University of Illinois at Chicago
Austin, TX 78730 CSA Chicago, IL 60607-7053 USA
rober tso~ibn~oto .com mtheys@eecs.uic.edu

"Department of Conlputer Science TNOEMIX
Naval Postgraduate School 1425 Russ Blvd. Ste. T-110

Monterey, CA 93943-51 18 US,4 San Diego, CA 92101 USA
hensgenQcs .nps.navy.mil rffreund@noemix .com

Purdue University
School of Electrical and Computer Engineering

Technical Report TR-ECE 00-4

This research was supported in part by the DARPA/ITO Quorum Program under NPS subcon-
tract numbers N62271-98-M-0217 and N62271-98-b1-0448, and under the GSA subcontract number
GS09K99BH02.50. Some of the equipment used was donated by Intel and Microsoft.

TABLEOFCONTENTS

. LIS'T OF FIGURES iv

LIST O F TABLES . vii

1 . INTRODIJCTION . 1

2 . SIMULATION MODEL . 3

3 . HEURISTIC DESCRIPTIONS . 6

3.1 Introduction . 6
3.2 Heuristics . 7

3.2.1 Opport,unistic Load Balancing (OLB) . 7
n 3.2.2 Mininlum Execution Time (MET) . i

3.2.3 hlinimuill Completion Time (MCT) . 7
3.2.4 Min-min . 7
3.2.5 Max-min . 8

. 3.2.6 Duplex 9
3.2.7 GA . 9
3.2.8 S,4 . 11
3.2.9 GSA . 12
3.2.10 Tabu . 13
3.2.11 Ax . 15

3.3 Concluding Remarks . 18

4 . 13XPERIMENTAL RESULTS . 19

4.1 Introduction . 19
4.2 Resultsfor512 Tasks . 19

4.2.1 Heuristic Execution Times . 19
4.2.2 Consistent Heterogeneity . 20
4.2.3 Inconsistent Heterogeneity . 24
4.2.4 Partially-consistent Heterogeneity . 26

. iii .

. 4.3 Summary 27

. 5 . ALTERNATIVE IMPLEMENTATIONS 28

. 6 . CONCLUSIONS 30

. LIST OF R.EFERENCES 31

. FIClURES 35

LIST OF FIGURES

Figure Page

3.1 General procedure for a Genetic Algorithm, based on [SrP94]. 35

. . . 3.2 Pseudocode describing the short hop procedure used in Tabu search. 36

4.1 Consistent, high task, high machine heterogeneity execution tirries
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic. the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than
any other schedule and so is not shown.

4.2 Consistent, high task, low machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there a]-e
512 tasks and 16 machines. For each heuristic, the range bxrs
show the 95 percent confidence int,erval for the mean. For this
case, the MET schedule was an order of magnitude worse than
any other schedule and so is not shown. 38

4.3 Consistent, low task, high machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial t,here are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse t,ha,n
any other schedule and so is not shown. 39

Figure

4.4 Consistent, low task, low machine heterogeneity execution times
for schedules from the eleven mapping heuri~t~ics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than

. any other schedule and so is not shown. 40

4.5 Inconsistent, high task, high machine heterogeneity executioin
times for schedules from the eleven mapping heuristics, taken as
the mean over 100 ETC matrices (trials). For each trial there
are 512 tasks and 16 machines. For each heuristic, the range
bars show the 95 percent confidence interval for the mean.. 41

4.6 Inconsistent, high task, lorn: machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken
as the mean over 100 ETC matrices (trials). For each trial there
are 512 tasks and 16 machines. For each heuristic, the range
11ars show the 95 percent confiderlce interval for the mean.. 42

4.7 Inconsistent. low task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken
as the mean over 100 ETC matrices (trials). For each trial t h e ~ e
are 512 tasks and 16 machines. For each heuristic, the range
bars show the 95 percent confidence interval for the mean.. 43

4.8 Inconsistent, low task, low machine het,erogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. 44

4.9 Part ially-consistent , high task, high machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,
the range bars show the 95 percent confidence interval for the mean. 45

4.10 Partially-consistent, high task, low machine heterogeneity exte-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,
the range bars show the 95 percent confidence interval for the mean. 46

4.111 Partially-consistent, low task, high machine heterogeneity exte-
cution times for schedules from the eleven mapping heuristics,
taken as t'he mean over 100 ETC matrices (trials). For. each
trial there are 512 tasks and 16 machines. For each heuristic,
t,he range bars show the 95 percent confidence interval for the mean. 47

4.12 Partially-consistent, low task, low machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,
the range bars show the 95 percent confidence interval for the mean. 48

- vii -

LIST OF TABLES

Page

3.1 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, high task, high machine heterogeneity used in
generating Figure 4.1. 37

4.2 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, high task, low machine heterogeneity used in
generating Figure 4.2. 38

4.3 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, low task, high machine heterogeneity used jn
generating Figure 4.3. 39

4.4 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
wit,h consistent, low task, low machine heterogeneity used in
generating Figure 4.4. 40

4.5 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, high task, high machine heterogeneity used in
generating Figure 4.5. 41

4.6 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, high task, low machine heterogeneity used in
generating Figure 4.6. 42

4.7 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, low task, high machine heterogeneity used i~n

. generating Figure 4.7. 43

4.8 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, low task, low machine heterogeneity used 'in
generating Figure 4.8. 44

1.9 Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent, high task, high machine heterogeneiliy
used in generating Figure 4.9. 45

- viii -

4.1CI Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent , high task, low machine heterogeneity
used in generating Figure 4.10. 46

4.11. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent, low task, high machine heterogeneity
used in generating Figure 4.11. 47

4 . 1 Sample8x8 excerpt f ro~noneof the512x 16 ETCmatr iceswi th
partially-consistent, low task, low machine heterogeneit,~ used in
generating Figure 4.12. 48

ABSTRACT

Il'lixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links
to perform different computationally intensive applications that have diverse compu-
t ational requirements. HC environments are well suited to meet thl: computational
dell-tands of large, diverse groups of tasks. The problem of mapping (defined as match-
ing and scheduling) these tasks onto the machines of a distributed HC environment
has been shown, in general, to be NP-complete, requiring the development of heuris-
tic techniques. Selecting the best heuristic to use in a given enviroi~ment, however,
remains a difficult problem, because comparisons are often clouded by different un-
derlying assumptions in the original studies of each heuristic. There~fore; a collection
of eleven heuristics from the literature has been selected: a,dapted, in~plemented, and
anaiyzed under one set of common assumptions. It is assumed that the heuristics de-
rive a, mapping statically (i.e., off-line). It is also assumed that a meta-task (i.e., a set
of independent, non-communicating tasks) is being mapped, and that the goal is to
minimize the total execution time of the metla-task. The eleven heuristics examined
are Opportunistic Load Balancing, Minimum Execution Time, MininLlum Clompletion
Time, Min-min, hllax-min, Duplex? Genetic i-Ilgorithm, Simulated Annealing, Genetic
Simulat.ed .Annealing, Tabu, and A x. This study provides one even basis for compar-
isor] and insights into circumstances where one technique will out perform another.
The evaluation procedure is specified, the heuristics are defined, and then comparison
results are discussed. It is shown that for the ca.ses studied here, the relat,ively simple
Min-min heuristic performs well in comparison to the other techniques.

1. INTRODUCTION

.Mixed-machine heterogeneous computing (HC) environments utilize a distributed

suite of different high-perforn~ance machines, interconnected with high-speed links to

perform different computationally intensive applications t'hat have diverse computa-

tional requirements [FrS93, MaB99, SiD971. The general problem of mapping (i.e.,

matching and scheduling) tasks to machines in an HC suite has been shown to be

NP-complete [Fer89, IbE<77]. Heuristics developed to perform this mapping function

are often difficult to compare because of different underlying assump.tions in the orig-

inal studies of each heuristic [BrS98]. Therefore, a collection of eleven heuristics from

the literature has beer1 selected, adapted? implemented, and compared by simulation

stuclies under one set of common assumptions

To facilitate these comparisons, certain simplifying assumptions were made. For

these studies, let a meta-task be defined as a collection of independent tasks with

no (data dependencies (a given task, however, may have subtasks and dependencies

among the subtasks). For this case study, it is assumed that static: (i.e., off-line or

predictive) mapping of meta-tasks is being performed. The goal of this mapping

is to minimize the total execution t.ime of the meta-task. Static mapping is useful

for predictive analyzes (e.g., planning work for the next day), impisct studies (e.g.,

determining the effect of purchasing another machine for the HC suite), a,nd post-

mortem analyzes (e.g., evaluating how well an on-line mapper performed).

It is also assumed that each machine executes a single task at a time (i.e., no

multi-tasking), in the order in which the tasks are assigned. The size of the meta-

taslc (i.e., the number of tasks to execute), l, and the number of machines in the HC

environment, nx, are static and known a priori.

'This study provides one even basis for comparison and insights into circumstances

where one mapping technique will out perform another. The evaluation procedure

is specified, the heuristics are defined, and then comparison results are shown. It

is shown t,hat for the cases studied here, t,he relatively simple Mn-min heuristic

(defined in Chapter 3) performs well in comparison to other, more complex techniques

investigated.

The remainder of this report is organized as follows. Chapter 2 defines the com-

put stional environment parameters that were varied in the simulations. Descriptions

of the eleven mapping heuristics are found in Chapter 3. Chapter 4 examines se-

lected results from the simulation study. A list of implementation parameters and

procedures that could be varied for each heuristic is presented in Chapter 5 .

This research was supported in part by the DARPA/ITO Quorum Program project

called MSHN (Management System for Heterogeneous Networks) [HeK99]. MSHN

is a collaborative research effort among the Naval Postgraduate School, NOEMIX,

Purdue University, and the University of Southern California. The technical objec-

tive of the MSHN project is to design, prototype, and refine a distributed resource

rnallagerllent system that leverages the heterogeneity of resources and tasks to deliver

requested qualities of service. The heuristics developed in this papei- or t,heir deriva-

tives may be included in the Scheduling Advisor component of the MSHN prototype.

2. SIMULATION MODEL

'I'he eleven static mapping heuristics were evaluated using simulated execution

times for an HC environment. Because these are static heuristics, it is assumed that

an accurate estimate of tlle expected execution tirrle for each task on each machine is

k n o m prior to execution and contained within an ETC (expected time to compute)

matrix. One row of the ETC matrix contains the estimated execution times for a --

given task on each machine. Similarly, one column of the ETC matrix consists of the

estimated execution times of a given machine for each task in the niet,a-task. Thus,

for an arbitrary task - t , and an arbitrary machine m,. ETC(t , , m,) is the estimated
-

exec:ution time of t , on m,.

For cases when inter-machine communications are required. ETC(t , , m,) could

be iissunled to include the time to move the executables and data associated with

task t , from their known source to machine m,. For cases when it is impossible to

execute task t , on machine m, (e.g., if specialized hardware is needl-dl, the value of

ETC(t , , m,) can be set to infinity, or some other arbitrary value. For this study,

it i:; assumed that there are no inter-task communications, each task can execute

on each machine, and the estimated expected execution t i~nes of each task on each

machine are known. The assumption that these estimated expected execution times

are known is conlmonly made when studying mapping heuristics for HC systems

(e.g., [Ghk793, KaA98. SiY961). (Approaches for doing this estimation based on task

profiling and analytical benchmarking are discussed in [KhP93, Ma1399, SiD971.)

For the simulation studies, characteristics of the ETC matrices were varied in an

att,empt to represent a range of possible HC environments. The ETC matrices used

were generated using the following method. Initially, a t x 1 baseline colunln vector,

B of floa.ting point values is created. Let (bb be the upper-bound of the range of -, -

possible values within the baseline vector. The baseline column vector is generated

by repeat,edly selecting a uniform randorn number, - zb E [I , db) : and lmetting B(i) = xi

for 0 < i < t . Next, the rows of the ETC matrix are constructed. Each element

ETC(t ; , m j) in row i of the ETC matrix is created by taking the baseline value,
. .

B(i') , and multiplying it by a uniform random number, x:J, which has an upper- -
. .

bound of 4,. This new random number, x;J E [I , +,), is called a row multiplier. One

row requires In different row multipliers, 0 5 j < m. Each row i of the ETC matrix
. .

can then be described as ETC(t i , m j) = B(i) x xf;J, for 0 < j < mn;!. (The baseline

column itself does not appear in the final ETC matrix.) This process is repeated for

each row until the t x i n ETC matrix is full. Therefore, any given value in the ETC

matrix is within the range [l, db x 4,) [MaA99].

'To evaluate the heuristics for different mapping scenarios, the characteristics of

the ETC matrix were varied based on several different methods fr0.m [Armg'i]. The

amount of variance among the execution times of tasks in the meta-task for a given

ma,c:hine is defined as task heterogeneity. Task het,erogeneity was varied by changing

the upper-bound of t'he random numbers within the baseline colurnn vector. High

task heterogeneity was represented by bb = 3000 and low task heterogeneity used

ib == 100. Machine heterogeneity represents the variation that is possible among the

execution times for a g i ~ e n task across all the machines. Machine hleterogeneity was

varied by changing the upper-bound of the random numbers used to multiply the

baseline values. High machine heterogeneity values were generated using 4, = 1000,

while low machine heterogeneity values used q, = 10. These heterogeneous ranges

are based on one type of expected environment for MSHN. The ranges were chosen to

reflect the fact that in real situations there is more variability across execution times

for different tasks on a given machine than the execution time for a single task across

different machines.

'ro further vary the ETC matrix in an attempt to capture more aspects of realistic

mapping situations. different ETC rnatrix consistences were used. i ln ETC matrix

is said to be consistent if whenever a machine nzj executes any task ti faster than

~nachine mk, then machine m j executes all tasks faster than machine mk [Arm97].

Consistent matrices were generated by sorting each row of the ETC nlatrix indepen-

denl.ly, with machine nzo always being the fastest and machine m(,,,-l) the slowest. In

contrast: inconsistent matrices characterize the situation where machine nzi may be

faster than machine mk for some tasks, and slower for others. These matrices are left

in the unordered, random state in which they were generated (i.e., no consistence is

enforced). Partia,lly-consistent matrices are inconsistent matrices that include a con-

sistent submatrix. For t,he partially-consistent matrices used here, the row elements

in column positions { 0 , 2 , 4 , . . .) of row i are extracted, sorted, and replaced in order,

while the row elements in column positions {1,3,5, . . .) remain unordered (i.e., the

even columns are consistent and the odd columns are, in general, inconsistent).

Sample ETC matrices for the twelve possible permutations of the characteristics

listed above are shown in Tables 4.1 through 4.12. Results in this ~ t u d y used ETC

mat ices that had t = 512 tasks and m = 16 machines. These results (see Chapter 4)

were taken as the average of 100 ETC matrices for each case.

While it was necessary to select some specific parameter values for t , m , and the

ETC entries to allow implementation of a simulation, the techniques presented here

are completely general. Therefore, if these parameter values do not apply to a specific

situation of interest, researchers may substitute in their own values and the evaluation

software of this study will still apply.

3. HEURISTIC DESCRIPTIONS

3.1 Introduction

The definitions of the eleven static meta-task mapping heuristics are provided

below. First, some preliminary terms must. be defined. Machine availability time,

nlat (m,), is the earliest time machine m, can conlplete the execution of all the tasks
--

t.hat have previously been assigned to it. The completion time for a new task t i on

machine m,j, c t (t ; , mj) , is the machine availability time plus the execution time of task

ti on machine mi, i.e., ct(t;, m,) = mat(rr>,j)+ ETC(t;; m j) . The performance criterion

used to compare the results of the heuristics is the maximum value of ct(t , , m,), for

0 2; i < t and 0 < j < m. The maximum ct(t, ,mj) value is also known as the

1na:iespan [PinSC5]. Each heuristic is attempting to minimize the makespan (i.e.: finish --

execut'ion of the meta-task as soon as possible).

The descriptions below inlplicitly assume that the machine availability times are

upclatecl after each task is mapped. For heuristics where the tasks are considered in an

arbitrary order, the order in which the tasks appeared in the ETC matrix was used.

h'Iost of the heuristics discussed here had to be adapted for this problem domain.

For many of the heuristics, there are control parameters values and/or control

function specifications that can be selected for a given implementation. For the

studies here, such values and specifications were selected based on experimentation

and/or information in the literature. These parameters and functions are mentioned

in Chapter 5 .

3.2 Heuristics

3.2.1 Opportunistic Load Balancing (OLB)

Opportunistic Load Balancing (OLB) assigns each task, in arl~it~rary order, to

the next available machine, regardless of the task's expected execution time on that

machine [ArH98, FrG98, FrS931. The intuition behind OLB is to keep all machines

as busy as possible. One advantage of OLB is its simplicity, but because OLB does

not consider expected task execution times, the mappings it finds can result in very

poor makespans.

3.2.2 Minimum Execution Time (MET)

In contrast to OLR, hlinimum Execution Tirne (MET) assigns each task, in ar-

bitrary order, to the machine with the best expected execution tirne for that task,

regardless of that machine's availability [ArH98, FrG981. The motivat,ion behind MET

is to give each task to its best machine. This can cause a severe load imbalance across

machines. In general, this heuristic is obi-iously not applicable to EIC environments

characterized by consistent ETC matrices.

3.2.3 Minimum Completion Time (MCT)

Minimum Completion Time assigns each task, in arbitrary o r d e ~ , to the machine

with the minimum completion time for that task [ArH98]. This causes some tasks

t,o he assigned to machines that do not have the minimum execution time for them.

The intuition behind MCT is to combine the benefits OLB and MET, while avoiding

the circumstances in which OLB and MET perform poorly.

The Min-min heuristic begins with the set of all unmapped t,asks. Then, the

set of rnininlum completion times, &f = {nling<,<m(ct(t,, m,)), for each t, E U) . is

found. Next, the task with the overall minimum completion t,ime from 121 is selected

and assigned to the corresponding machine (hence the name Min-min). Lastlj., the

ne\vly mapped task is removed from U , and the process repeats until all tasks are

mal~ped (i.e., U is empty) [ArH98, FrG98, IbK771. Min-min is based on the minimum

conlpletion time, as is MCT. However, Min-min considers all unmapped tasks during

eaci mapping decision and MCT only considers one task at a time.

Min-min begins by scheduling the tasks tha.t change the machine a,vailabili ty status

by -the least amount that any assignment could. For example, let. t i be the first task

ma,pped by Min-min. The machine that finishes ti the earliest, say ,mj, is also the

machine that executes t i the fastest. For every task tha.t Min-min nnaps after t i , the

Mi11-min heuristic changes the availability status of 1n.j by the least possible amount

for every assignment. Therefore, the percentage of tasks assigned to their first choice

(on the basis of execution time) is likely to be higher for Min-min than for Ma.x-min

(defined next). The expectation is that a smaller ma.kespan can be obtained if more

taslts are assigned to t,lle machines that complete them the earliest a,nd a,lso execute

the~m the fastest.

The Max-min heuristic is very similar to Min-min. The Max-rr~in heuristic also

begins with the set of all unmapped tasks. Then, the set of minimum completion

times, M is found. Next, the task with the overall maximum completion time from

s selected and assigned to the corresponding machine (hence the name Max-min).

Lastly, the newly mapped task is removed from U, and the process repeats until all

taslts are mapped (i.e., U is empty) [ArH98, FrG98, IbK771.

Intuitively, Max-min attempts to minimize the penalties incurred from performing

taslts with longer execution times. Assume, for example, that the meta-task being

mapped has many tasks with very short execution times, and one task with a very

long execution time. Mapping the task with the longer execution time to its best

machine first allows this task to be executed concurrently with the remaining tasks

(wi.,h shorter execution times). For this case, this would be a better mapping than

a Min-min mapping, where all of the shorter tasks would execute first, and then the

longer running task would execute while several machines sit idle. Thus, in cases

similar to this example, the Max-min heuristic may give a mapping with a more

balitnced load across machines and a better makespan.

3.2.6 Duplex

The Duplex heuristic is literally a combination of the Min-min and Max-mi11

heuristics. The Duplex heuristic performs both of the hfin-mi11 and Max-min heuris-

tics, and then uses the better solution [ArH98, FrG981. Duplex can be performed

to exploit the conditions in which either Min-min or Max-min perforrns well, with

negligible overhead.

Genetic Algorithms (u s) have been studied for years [Ho175], and have become

a popular technique used for searching large solution spaces (e.g., [SiY96, TiP96,

WaS971). The version of the heuristic used for this study was adapted from [Was971

for this particular problem domain. Figure 3.1 shows the steps in a general GA.

The GA implemented here operates on a population of 200 cl1romosomes (possible

ma:>pings) for a given meta-task. Each chromosome is a t x 1 vector, where position

i (C 5 i < t) represents task t,, and the entry in position i is the machine to which

the task has been mapped. The initial population is generated usi-ng two methods:

(a) 200 randomly generated chromosomes from a uniform distribution, or (b) one

chromosome that is the Min-mi11 solution and 199 random solutions (mappings). The

latter method is called seeding the population with a Min-min chromosome. The GA

actllally executes eight times (four times with initial populations from each method),

and the best of the eight mappings is used as the final solution.

Each chromosome has a fitness value, which is the makespan that results from the

matching of tasks to machines within that chromosome. After the generation of the

initial population, all of the chromosomes in the population are evaluated based on

their fitness value, with a smaller fitness value being a better mapping. Then, the

main loop in Figure 3.1 is entered and a rank-based roulette wheel scheme [SrP94] is

used for selection. This scheme probabilistically duplicates some cl~romosomes and

deletes others. where better mappings have a higher probability of being duplicated in

the next generation. Elitism, the property of guaranteeing the best solution remains

in the population [Rud94], was also implemented. The population size stays fised at

200.

Next, the crossover operation selects a random pair of chromosomes and chooses

a random point in the first chromosome. For the sections of both chromosomes from

that point to the end of each ch ro~~~osome , crossover exchanges mac:hine assignments

between corresponding tasks. Every chromosome is considered for crossover with a

probability of 60%.

After crossover, the mutation operation is performed. Mutation randomly selects

a cl~romosome~ then randomly selects a task within the chromosome. and randomly

reassigns it t,o a new machine. Every chrornosome is considered for mutation with a

probability of 40%. For bot,h crossover and mutation, the random operations select

values from a uniform distribution.

Finally, the chromosomes from this modified population are evaluated again. This

conlpletes one iteration of the GA. The GA stops when any one of three conditions

are met: (a) 1000 total iterations, (b) no change in the elite chrc~mosome for 150

iterations, or (c) all chro~llosomes converge to the same mapping. If no stopping

criteria is met, the loop repeats, beginning with the selection of a new population.

The stopping criteria that usually occurred in testing was no change in the elite

chromosome in 150 iterations.

Simulated - Annealing (u) is an iterative technique that considers only one pos-

sible solution (mapping) for each meta-task at a time. This solution uses the same

representation for a solution as the chromosome for the GA. The initial implementa-

tion of SA was evaluated and then modified and refined to give a beliter final version.

Bolh the initial and final implementations are described below.

SA uses a procedure that probabilistically allows poorer so lu t io~~s to be accepted

to attempt to obtain a better search of the solution space (e.g., [CoP96, KiG83,

Ru.N95, ZoK991). This probability is based on a system temperature - that decreases

for each iteration. As the system temperature "cools," it is more difficult for poorer

solutions to be accepted. The init,ial system temperature is the irnakespan of the

initial (random) mapping.

The initial SA procedure implemented here is as follows. The first mapping is

generated from a uniform random distribution. The mapping is mutated in the same

mariner as the GA, and the new makespan is evaluated. The decision algorithm for

accepting or rejecting the new mapping is based on [CoP96]. If the new makespan is

better, the new mapping replaces the old one. If the new makespan is worse (larger),

a uniform random number g E [0, 1) is selected. Then, z is compared with - y, where

L

old makespan-new makespan
temperature

If z > y the new (poorer) mapping is accepted, otherwise it is rejected, and the old

mapping is kept.

Notice that for solutions with similar makespans (or if the system temperature is

very large), y + 0.5, and poorer solutions are accepted wit'h approximately a 50%

probabilit,~. In cont'rast, for solutions with very different makespans (or if the system

temperature is very small), y + 1, and poorer solutions will usually be rejected.

-4fter each mutation, the system temperature is reduced to 90% of its original

value. (This percentage is defined as the cooling &.) This completes one iteration

of !;A. The heuristic stops when there is no change in the makespan for 1.50 itera-

tions or the system temperature approaches zero. Most tests ended when the system

temperature approached zero (approximated by 10-200).

Results from preliminary studies using the initial implementation described above

showed that the GA usually found the best mappings of all eleven heuristics. How-

ever, the execution time of the SA heuristic was much shorter than that of the GA.

Therefore, in order to try and provide a more .'fair" comparison, the S A heuristic

wa: adapted so that it would be more similar to GA. The modificai ions gave SA an

execution time as long as GA. The longer execution time allowed more of the solution

space to be searched with the SA procedure, with the hope that SA would then find

mo-e competitive mappings.

To try to make SA more conlpetitive with GA, the following changes were made to

the the final SA implementation. First, the stopping conditions were modified. The

nurnber of unchanged iterations was raised to 200 and two different cooling rates were

used, 80% and 90%. Next, SA was allowed to execute eight times for each cooling

rate, using the best solution from all sixt,een runs as the final mapping. Lastly, four

of the eight runs for each cooling rate were seeded with the Min-min solution, just as

with the GA.

Even with the additional execution time and Min-min seeding:;, SA still found

poarer solutions than Min-min or GA. Because SA allows poorer solutions to be

accepted at intermediate stages, it allows some very poor solutions in the initial

stages, from which it can never recover (see Chapter 4).

3.2.9 GSA

The Genetic Simulated Annealing (GSA) heuristic is a combination of the GA

and SA techniques [ChF98, ShW961. In general, GSA follows procedures similar to

the GA outlined above. However, for the selection process, GSA uses the SL4 cooling

schedule and system temperat,ure, and a simplified SA decision process for accept,ing

or rejecting a new chromosomes.

Specifically, the initial system temperature was set to the avercage makespan of

the initial population, and decreased 10% for each iteration. When a new (post-

mutation, post-crossover, or both) chromosome is compared with the corresponding

original chromosome, if the new makespan is less t,han the original makespan plus the

sys1,em temperature; then the new chromosome is accepted. Ot,herwise, the original

chromosome survives to the next iteration. Therefore, as the system temperature

decreases, it is again more difficult for poorer solutions to be accepted. The two stop-

ping criteria used were either (a) no change in the elite chromosome in 150 iterations

or ~ (b) 1000 total iterations. The most common stopping criteria was no change in

the elite chromosome in 150 iterations.

3.2.10 Tabu

Tabu search is a solution space search that keeps track of the regions of the solution

space which have already been searched so a,s not to repeat a search near these areas

[DeD94, C;lL97]. A solutioll (mapping) uses the same representation as a chromosome

in the GA approa.ch.

The implementation of Tabu search used here begins with a random mapping,

generated from a uniform distribution. To manipulate the current solution and move

through the solution space, a short hop is performed. The intuitive purpose of a short -

hop is to find the nearest local minimum solution within the solution space. The basic

procedure for performing a short hop is to select a pair of tasks and assign them to

every possible combination of machines. This is done for every possible pair of tasks.

Tht: pseudocode for the short hop procedure is given in Figure 3.2.

Let the tasks in the pair under consideration be denoted ti and tj in Figure 3.2.

(The machine assignments for the other t - 2 taslts are held fixed.) The machines to

which tasks ti and tj are remapped are mi and mj, respectively. For each possible pair

of tasks, each possible pair of machine assignments is considered. Lines 1 through

4 set the boundary values of the different loops. Line 6 or 8 is where each new

so l~~ t ion (mapping) is evaluated, and line 9 is where the new solution is considered

for acceptance. Each of these new solutions is a short hop. If the new makespan is

an improvement, the new solution is saved, replacing the current solution. (This is

defined as a successful short hop.) When ti and tj represent the sarne task (ti = tj), -

a special case occurs (line 5) . In these situations, all machines for that one task are

considered.

When any new solution is found to be an improvement (line l o) , the procedure

breaks out of the for loops, and starts searching from the beginning again. The

short hop procedure ends when (1) every pair-wise remapping conlbination has been

exhausted with no improvement (i.e., the bounds of all four for loclps in Figure 3.2

have been reached), or (2) the limit on the total number of successfi~l l-iops, limith,,,

is reached.

When the short hop procedure ends, the final mapping from tlie local solution

space search is added to the tabu list. The tabu list is a method of keeping track

of the regions of the solution space that have already been searched. Next, a new

random mapping is generated, and it must differ from each mapping in the tabu list

by at least half of the machine assignments (a successful -- long hop). The intuitive

purpose of a long hop is to move to a new region of the solution space that has not

already been searched.

The final stopping criterion for the heuristic is determined by the t,otal number of

successful long and short hops combined. That is, when the sum of the total number

of successful short hops and successful long hops equals limith,,,, the heuristic ends.

Then, the best mapping from the tabu list is the final answer.

Similar to SA, some parameters of Tabu were varied in an attempt to make Tabu

more competitive with GA, while also trying to provide a more "fair" comparison

between Tabu and GA. To this end, the value used for limith,,, was varied depending

on {,he type of consistency of the mat,rix being co~lsidered.

Because of the implementation of the short hop procedure described above, the

execution time of the Tabu search depended greatly on the type of consistency of

the ETC matrix. Each time a new task is considered for remapping in the short

hop procedure, it is first considered on mo, then m l , etc. For consistent matrices,

these will be the fastest machines. Therefore, once a task gets reassigned to a fast

machine, the remaining permutations of the short hop procedure will be unsuccessful.

In other words, because the short hop procedure begins searching sequentially from

the best machines, there will be a larger number of unsuccessful holns performed for

each successful hop for consistent ETC matrices. Thus, the execution time of Tabu

will increase.

Therefore, to keep execution times "fair" and c~mpet i t~ ive with GIA, limith,,, was

set to 1000 for consistent ETC matrices, 2000 for partially-consistent matrices, and

25013 for inconsistent matrices. When most test cases had stopped, the percentage of

succ:essful short hops was high (90% or more) relative to the percentage of successful

long hops (10% or less). But because there were long hops being performed, every

pairwise combination of short hops was being exhausted, and new, different regions

of the solution space were being searched.

The final heuristic in the comparison study is known as the & heuristic. A* has

been applied to many other task allocation je.g., [ChLSl, KaA98, RuN95,

Sh7'851). The technique used here is similar to [ChLS-I.].

A* is a search technique based on an m-ary tree, beginning at i5 root node that

is a, null solution. As the tree grows, nodes represent partial mappings (a subset

of tasks are assigned to machines). The partial mapping (so1ution:l of a child node

has one more task mapped than t,he parent node. Call this additioiial task a. Each

parent node generates .rn children, one for each possible mapping of a. After a parent

node has done t'his, t,he parent node becomes inactive. To keep execut'ion t'ime of the

heuristic tractable, t'here is a pruning process to limit t'he maximum :number of active

nodes in the tree at any one time (in bhis study, to 1024).

Each node, n! has a function, f i n) , associated with it. The cost function -

is an estimated lower-bound on the makespan of the best solution that includes the

partial solution represented by node n.

Let g(n) - represent the makespan of the tasklmachine assignments in the par-

tial solution of node n, i.e., g(n) is the maximum of the machine a,vailability times

(rnclt(mj)) based on the set of tasks that have been mapped to machines in node

n's partial solution. Let h(72) be a lower-bound estimate on the difference between -

the makespan of node n's partial solution and the makespan for t'he best complete

solution that includes node n's partial solution. Then, the cost funct.ion for node n

Therefore, f (n) represents the makespan of the partial solution of node n plus a

low'er-bound estimate of the time to execute the rest of the (unmapl?ed) tasks in t'he

meta-task.

The function h(n) is defined in terms of two functions, h l (n) and hz(n) , which

are two different approaches to deriving a lower-bound estimate. Recall that M =

{mi.no<j<,(ct(t;? - mj)) , for each t; E U). For node n let mmct(n) be the overall max-

imum element of ;2/1 (i.e., "the maximum minimum completion time"). Intuitively,

mmct(n) represents the best possible meta-task rnakespan by making the typically

unrealistic assumption that each task in U can be assigned to the machine indicated

in :Pi without. conflict. Thus, based on [ChLSI.], h l (n) is defined as

hl (n) = max(0, (mmct(n) - g(n))) . (3.3)

Vext, let sdma(n) be the sum of the differences between g(n) and each machine

availability time over all machines after executing all of the tasks in the partial solution

represented by node n:

Intuitively, sdma(n) represents the collective amount of machine availability time

remaining that can be scheduled without increasing the final makespan. Let smet(n)

be defined as the sum over all tasks in U of the minimum expected execution time

(i.e., ETC value) for each task in U

This gives an estimate of the amount of remaining work to do, which could increase

the final makespan. The function h2 is then defined as

where (smet(n) - sd,ma(n))/m represents an estimate of the minimu7m increase in the

meta-task makespan if the tasks in I/: could be "ideally" (but, in general, unrealisti-

cally) distributed arnong the machines. Csing these definitions,

representing a lower-bound estimate on the time to execute the tasks in U.

Thus, after the root node generates m nodes for to (each node mapping to to a

difft-rent machine), the node with the minimum f (n) generates its m children, until

1024 nodes are created. From that point on, any time a node is added, the tree is

pruned by deactivating the leaf node with the largest f (n) . This process cont,inues

until a leaf node representing a complete mapping is reached. Note idhat if the tree is

not pruned, this method is equivalent to an exhaustive search.

3.3 Concluding Remarks

'I'his set of eleven stat,ic mapping heuristi

c

s is not exhaustive, nor is it meant

to be. It is simply a representative set of several different approaches, including

iterative? non-iterative, greedy, a.nd biologically inspired te

c

hnique:;. Several other

types of static mapping heuristics exist. For exa.mple, other techniques that have

bee11 or could be used as static mappers for heterogeneous computi-ng environments

include t,he following: neural networks [ChH98], linear programming [CoL92]> the

"Mapping Heurist,icn (MH) algorit,hm [ElL90], the Cluster-M technique [EsW96], the

Levelized Min Time (LMT) algorithn~ [Iv095], the k-percent best (KPB) and Suf-

ferage heuristics [MaL499], the Dynamic Level Scheduling (DLS) algorithm [SiL93],

recursive bisection [SiT97]: and the Heterogeneous Earliest-Finish-Time (HEFT) and

Crilical-Path-on-a-Processor (CROP) t,echniques [ToH99]. The eleven heuristics ex-

a.mined here were initially selected because t,hey seemed among the rnost appropriate

for the static mapping of meta-tasks, and covered a, wide range of techniques.

4. EXPERIMENTAL RESULTS

4.1 Introduction

An interactive software application has been developed tha t allows simulation,

testing, and demonstration of the heuristics examined in Chapter :!, applied to the

met a-tasks defined by the ETC matrices described in Chapter 2. The software allows

a user to specify t and m, to select which type of ETC' matrices t o use, and to choose

which heuristics t o execute. It then generates the specified ETC' matrices, executes

the desired heuristics, and displays the results, similar to Figures 4 . 1 through 4.12.

The results discussed in this chapter were generated using this software.

4.2 Results for 512 Tasks

4.2.1 Heuristic Execution Times

When comparing nlapping heuristics, the esecution t ime of the heuristics them-

selves is an important consideration. For the eleven heuristics tha t were compared,

the esecution times varied greatly. The experimental results discussed below were

obtsined on a Pentium I1 300 MHz processor with 1GB of RAM. 'The heuristic ex-

ecut,ion times are the average time each heurist,ic took to compute a mapping for a

single 512 task x 16 machine ETC matrix, averaged over 100 different matrices (each

of the same type).

The first three heuristics described, OLB, MET, and MCT, each of which has

asymptotic complexity of O(mt) , executed in less than one microsecond per ETC

ma1,rix. Next, the Min-min, Max-min, and Duplex heuristics, each with asymptotic

complexity O(mtL) , executed in an average of 200 milliseconds. The GA, which

usu4311y provided the best results (in terms of makespan), had a11 al;erage execution

timl? of 60 seconds. GSA, which uses many procedures similar to the GA, had an

average execution time of 69 seconds. As described in the previous chapter, SA and

Tabu were adapted to provide a more fair comparison with the results of the GA, so

their average execution times were also approximately 60 seconds per ETC matrix.

Fin,ally .4*: which has exponential complexity, executed in an average of over 20

minutes (1200 seconds).

The resulting makespans (i.e., the t ime it would take for a given meta-task to

complete on the heterogeneous environment) from the simulations for every case of

con;;istency, task heterogeneity, and machine heterogeneity are shown in Figures 4.1

through 4.12. After each figure is a table with a sample 8 x 8 subsection from one of

the 512 x 16 ETC matrices with the same type of consistency (Tables 4.1 through

4.1;!). All experimental results represent the average makespan foi- a meta-task of

the defined type of ETC matrix. For each heuristic and each type of ETC matrix,

the results were averaged over 100 different ETC matrices of the same type (i.e., 100

mappings). The range bars for each heuristic show the 95% confidence interval [JaiYl]

(min, max) for the average makespan. This interval represents the likelihood that

maliespans of mappings for that type of heterogeneity and heuristic fall within the

specified range. That is, if another ETC matrix (of the same type) was generated,

and the specified heuristic generated a mapping, then the makespan of the mapping

would be within the given confidence interval with 9.5% certainty.

4.2.2 Coilsistent Heterogeneity

The results for the ~neta- task execution times for the four consistent cases are

shown in Figures 4.1, 4.2, 4.3, and 4.4. The corresponding ETC matrix excerpts are

in Tables 4.1, 4.2, 4.3, and 4.4. The differences in magnitude on the y-axis among

the gra.phs are from the different ranges of magnitude used in generating the different

types of ETC matrices.

For both cases of low machine heterogeneity. the relative perfornx~nce order of the

heuristics from best to worst was: (1) GA, (2) Min-min, (3) Duplex, (4) GSA, (5)

A*, (6) Tabu, (7) MCT, (8) SA, (9) Max-min, (10) OLB, and (11) MET. For the two

high machine heterogeneity cases, the relative perforrilance order of the heuristics from

best to worst was: (1) GA, (2) illin-min, (3) Duplex, (4) .4*, (5) GSA, (6) MCT, (7)

Tabu, (8) S.4, (9) Max-min, (10) OLB, and (11) MET. For consistent ETC matrices,

the MET algorithm mapped all tasks to the same machine, resulting in the worst

performance by an order of magnitude. Therefore, MET is not included in the figures

for the consistent cases. The performance of the heuristics will be discussed in the

order in which they appear in the figures.

For all four corlsistent cases, OLB gave the second worst results (after MET). In

OLIB, the first m tasks get assigned, one each, to the m idle machines. Because of

the the consistent ETC matrix, there will be some very poor initial mappings (tasks

m -- 2 and m - 1, for example, get their worst machines). Because task execution

times are not considered, OLB may continue to assign tasks to machines where they

execute slowly, hence the poor makespans for OLB.

MCT always performed around the median of the heuristics, giving the sixth best

(lovl~ machine heterogeneity) or seventh best (high machine heterogeneity) results.

hZCT only makes one iteration through the ETC matrix, assigning tasks in the order

in which they appear in the ETC matrix, hence it can orlly make rnapping decisions

of limited scope, and it cannot make globally intelligent decisions like Min-nlin or A*.

The Min-min heuristic performed very well for consistent ETC matrices, giving

the second best result in each case. Not only did Min-min always give the second

best mapping, but the Min-min mapping was always within ten percent of the best

mapping found (which was with GA, discussed below). Min-min is able to make

globally intelligent decisions to minimize task completion times, which also results

in good machine utilization and good makespans. Similar arguments hold for the

Duplex heuristic.

[n contrast, the Max-min heuristic always performed poorly, giving only the ninth

best mapping. Consider the state of the machine ready times during the execution

of the Min-min and Max-min heuristics. hilin-min always makes the assignment that

c h a ~ g e s the machine ready times by the least amount. In general, ihe assignment

made by >lax-min will change the machine ready times by a larger amount. Therefore,

the values of the rnachine ready t i~nes for each machine will remain closer to each

other when using the Min-min heuristic than when using the Max-mill heuristic. Both

Min-min and Max-min will assign a given task to the machine that gives the best

co~rlpletion time. However, if the machine ready times remain close to each other,

the11 Min-min gives each task a better chance of being assigned to the machine that

gives the task its best execution time. In contrast. with Max-min, there is a higher

probability of there being relatively greater differences among the machine ready

times. This results in a "load balancing" effect, and each task has a lower chance of

being assigned to the machine that gives the task its best execution time.

For the heterogeneous environments considered in this study, the type of special

case where Max-min may outperform Min-min (as discussed in Chapter 3) never

occurs. hlin-min found a better mapping than Max-min every time (i.e., i11 each

of the 100 trials for each type of heterogeneity). Thus, h:Iax-min performed poorly

in this study. ,4s a direct result, the Duplex heurist'ic always selected the Min-min

solution, giving Duplex a tie for the second best solution. (Because Duplex always

relied on the Min-~nin solution, it is listed in third place.)

GA provided the best mappings for the consistent cases. This was due in large

part to the good performance of the Min-min heuristic. The best GPL solution always

came from one of the populations that had been seeded with the I\/[i11-min solution.

However, the addit,ional searching capabilities afforded to GA by performing crossover

and mutation were beneficial, as the GA was always able to i~nprove upon this solutio~l

by Ive to ten percent.

SA, which manipulates a single solution, ranked eighth for both types of machine

heterogeneity. For this type of heterogeneous environment, this heuristic (as imple-

11lented here) do not perform as well as the GA which had si~nilar execution time and

Min-min which had a faster execution time. While the SA procedure is iterative (like

the GA procedure), it appears that the crossover operation and selection procedure

of the GA are advantageous for this problem domain.

The mapping found by GSA was eit,her the fourth best (low machine hetero-

geneity) or the fifth best (high machine heterogeneity) mapping found, alternating

wit1 A*. GS-4 does well for reasons similar to those described for (>A. The average

maliespan found by GS.4 could have been slightly better, but the results were hin-

dered by a few very poor mappings that were found. These very poor mappings result

in the large confidence intervals found in the figures for GS.4. Thus, for these hetero-

geneous environments, the selection method from GA does better than the method

from GSA.

Tabu provides fairly constant results, a1wa.y~ finding the sixth or seventh best

mapping (alternating with MCT). As noted in the previous chapte-r, because of the

short hop procedure implemented and the structure of the consistent matrices, Tabu

finds most of the successful short hops right away and must then perform a large

nurnber of unsuccessful short hops (recall machine m; outperforms machine for

the consistent cases). Because the stopping criteria is determined by the number of

suc~~essful hops, and because each short hop procedure has few successfi~l hops, Inore

~uc~cessful long hops are generated, and more of the solution space is searched. Thus,

Tabu performs bet'ter for consistent matrices than for inconsistent.

Considering the order of magnitude difference in execution times between A* and

the other heuristics, the quality of the mappings found by A* was disappointing. The

A* mappings alternated between fourth and fifth best with GSA. The performance

of A x was hindered because the estimates made by hl(n) and h2(72) are not as ac-

curate for consistent cases as they are for inconsistent and partially--consistent cases.

For consistent cases, h l (n) underestimates the competition for machines and h2(rz)

overestinlates the number of tasks that can be assigned to their besl; machine.

4.2.3 Inconsistent Heterogeneity

For the four inconsistent test cases in Figures 4.5 through 4.8 and Tables 4.5

through 4.8, one sees similar trends in all four cases. For both case:; of low machine

heterogeneity, the relative performance order of the heuristics from best to worst was:

(1) GA, (2) A*, (3) Min-min, (4) Duplex, (5) MC'T, (6) MET, (7) GSA, (8) SA, (9)

Tabu, (1 0) Max-min, and (1 1) OLB. For the two high machine hetlerogeneity cases,

the relative performance order of the heuristics from best to worst was: (1) GA, (2)

A v , (3) Min-min, (4) Duplex. (5) MCT, (6) MET, (7) SL4, (8) G S 4 , (9) Max-min,

(1 0) Tabu, and (1 1) OLB.

MET performs much better than in the consistent cases, while the performance of

OL B degrades. The reason OLB does better for consistent than inconsistent matrices

is as follows. Consider for example, machine mo and machine ml In the consistent

case. By definition, all tasks assigned to mo will be on their best machine, and all tasks

assigned to 7nl will be on their second best machine. However, OLIB ignores direct

consideration of the execution times of tasks on machines. Thus, for the inconsistcent

case, none of the tasks assigned to mo may be on their best machine, and none of

the tasks assigned to rill may be on their second best machine, etc. Therefore. it is

more likely that OLB will assign more tasks to poor machines, resulting in the worst

mappings for each of the inconsistent cases. In contrast, MET improves and finds

the sixth best schedules because the "best" machines are distributed across the set

of machines, thus task assignments will be more evenly distributed among the set of

machines avoiding load imbalance.

Similarly, h4CT can also exploit the fact that the machines providing the best task

completion times are more evenly distributed among t,he set of machines. Thus, by

assigning each task, in the order specified by the ETC matrix, to t,he machine that

conlpletes it the soonest, there is a better chance of assigning a task to a machine

that executes it well, decreasing the overall makespan.

Min-min continued to give better results than Max-min (which ranked ninth or

tent,h), by a factor of about two for all of the inconsistent cases. In fact,, Min-niin

was again one of the best of all eleven heuristics, giving the third best mappings,

which produced makespans that were still within 12% of the best makespans found.

As noted earlier, Duplex selected the Min-min solution in every case, and so ranked

fourth.

GA provided the best mappings for t.he inconsistent cases. GA was again able to

benefit from the performance of Min-min, as the best solution always came from from

one of the populations seeded with the Min-min solution. GA has provided the best

solution in all consistent and inconsistent cases examined, and its esecut,iorl time is

largely independent of any of the heterogeneity characteristics. This makes it a good

general-purpose heuristic, when mapper execution time is not a crit ~ c a l issue.

SA and GSA had similar results, alternating between the seventh and eighth best

schedules. For the high machine heterogeneity cases, SA found mappings that were

betier by about 25%. For the low niachine heterogeneity cases, GSA found the better

mappings, but only by 3 to Il%,.

Tabu performs very poorly (ninth or tenth best) for inconsistent matrices when

compared to its performance for consistent matrices (sixth or seventh best). The se-

quential procedure for generating short hops, combined with t he inconsistent structure

of the ETC matrices, results in Tabu finding more successful short hops, and per-

forming fewer unsuccessful short hops. Many more intermediate solut,ions of marginal

improvement exist within an inconsistent ETC.' matrix. Therefore, the hop limit is

reached faster because of all the successful short hops (even though the hop limit is

higher). Thus, less of the solution space is searched, and the result is a poor solution.

That is, for the inconsistent case, the ratio of successful short hops to successful long

hops increases, as compared to the consistent case, and fewer areas in the search space

are examined.

A* ha.d the second best average makespans, behind GA, and both of these methods

produced results that were usually within a small factor of each other. A" did well

because if the machines with the fastest execution times for different t,asks are more

evenly distributed, the lower-bound estimates of h l (n) and h z (n) are more accurate.

4.2.4 Partially-consistent Heterogeneity

Finally, consider the partially-consistent cases in Figures 4.9 through 4.12 and

Tables 4.9 through 4.12. For both cases of low machine heterogeneity, the relative

performance order of the heuristics from best to worst was: (1) GA, (2) Min-min,

(3) Duplex, (4) AT, (5) MCT, (6) GSA4, (7) Tabu, (8) SA, (9) Mas-min, (10) OLB,

and (11) MET. For the high task, high machine heterogeneity cases, the relative

performance order of the heuristics from best to worst was: (1) GA, (2) Min-min,

(3) Duplex, (4) A*, (5) NlCT, (6) GSA, (7) SA, (8) Tabu, (9) Max-min, (10) OLB,

and (11) MET. The railkings for low task, high machine heterogeneity were similar

to high task, high machine heterogeneity, except GSA and SA are switched in order.

'The MET performed the worst for every partially-consistent case. Intuitively,

MET is suffering from the same problem as in the consistent cases: half of all tasks

are gett<ing assigned to the same ma.chine.

OLB does poorly for high machine heterogeneity cases because bad assignments

will have higher execution times for high machine heterogeneity. For low machine

hetr:rogeneity, the bad assignments have a much lower penalty. In all four cases, OLB

was the second worst approach.

MCT again performs relatively well (fifth best) because the machines providing

the best task completion t,imes are more evenly distributed among the set of machines,

similar to the inconsistent cases. Max-min continued to do poorly and ranked ninth.

The Duplex solutions were the same as the Min-min solutions, and tied for second

best. The rankings for SA, GSA, and Tabu were approximately the averages of what

they were for the consistent and inconsistent cases, as might be expected.

The best heuristics for the partially-consistent cases were GA (best), and Min-

mill (second best), followed closely by A* (fourth best, after Duplex). This is not

surprising because these were among the best heuristics from the consistent and

inconsistent t,ests, and partially-consistent matrices are a combinaiion of consistent

and inconsistent matrices. Min-min was able to do well because it's approach assigned

a high percentage of tasks to their first choice of machines. A* was robust enough to

handle t,he consistent components of the matrices, and did well for the same reasons

mentioned for inconsistent mat,rices. GA maintained its position as best heuristic.

The execution time and performance of GA is largely independent of heterogeneity

characteristics. The additional regions of the solution space that are searched by the

GA mutation and crossover operations are beneficial, as they were always able to

improve on the Min-min solution by five to ten percent.

4.3 Summary

To summarize the findings of this chapter, for consistent ETC 11-~atrices, GA gave

the best results, Min-min the second best, and MET gave the worst. When the ETC

matrices were inconsistent, OLB provided the poorest mappings while the mappings

froin GA and A* performed the best. For the partially-consistent cases. GA still gave

the best results, followed closely by Min-min and A*. while MET had the slowest.

All results were for meta-tasks with t = 512 tasks executing on m = 16 machines,

averaged over 100 different trials.

For the situations considered in this study, the relative performance of the mapping

hecristics varied based on the characteristics of the HC environments. The GA always

gave the best performance. If mapper execution time is also considered, Min-min gave

excellent performance (within 12% of the best) and had a very small execution time.

5. ALTERNATIVE IMPLEMENTATIOlNS

The experimental results in Chapter 4 show the performance (sf each heuristic

uncler the assumptions presented. For several heuristics, specific control paramet,er

values and control functions had to be selected. In most cases, control parameter

values and control functions were based on the references cited and/or preliminary

experiments that were conducted. However, for these heuristics, several different,

valid implementations are possible using different control parameters and control

functions. Sorne of these control parameters and control functions are listed below

for selected heuristics.

GA: Several control parameter values could be varied in the GA, including

population size, crossover probability, mut,ation probability, stopping criteria! and

nurnber of initial populations considered per result. Specific functions wit'hin GA

controlling the progress of the search that could be changed are initial population

"seed" generation, mutation, crossover, selection, and elitism.

SA: Parameter values with SA that could be modified are system temperature,

cooling rate, stopping criteria, and the number of runs per result. Adaptable control

procedures in SA include the initial population "seed" generation, rriutation, and the

equation for deciding when to accept a poorer solution.

GSA: Like the two heuristics its based upon, GS,4 also has several parame-

ters that could be varied, including: population size, crossover probability, mutation

probability, stopping criteria, cooling rate, number of runs with different initial pop-

ula-tions per result, and the system temperature. The specific procedures used for

the following actions could also be modified: initial population "seed" generation,

mui;a.tion, crossover, selection, and t,he equa.tion for deciding when to accept a, poorer

solution.

Tabu: The short hop method implemented was a. "first descent" (take the first

i~nprovement possible) method. "Steepest descent" methods (where severa.1 short

hops are considered simultaneously, and the one with the most improvement is se-

lected) are also used in practice [DeD94]. Other techniques that could be va.ried are

the long hop method, the order of the short hop pair generation-and-exchange se-

quence, and the stopping condition. Two possible alternative stopping criteria are

when the tabu list reaches a specified number of entries, or when there is no change

in the best solution in a specified number of hops.

A*: Several variations of the A* method that was employed here could be

implemented. Different functions could be used to estimate the lower-bound h (n) .

The maximum size of the search tree could be varied, and several other techniques

exist for tree pruning (e.g., [R.uN95]).

In summary, for the GA, SA, GSA, Tabu, and A" heuristics there are a great

nucnber of possible valid implementations. An attempt was made to use a reasonable

implementation of each heuristic for this study. Future work could examine other

implementations.

6. CONCLUSIONS

The goal of this study was to provide a basis for comparison and insights into cir-

cunlstances where one technique will out perform another for eleven different heuris-

tics. The characteristics of the ETC matrices used as input for the heuristics and the

me1,hods used to generate them were specified. The implementation of a collection of

eleven heuristics from the literature was described. The results of the mapping heuris-

tics were discussed, revealing the best heuristics to use in certain scenarios. For the

situations, implementatio~ls, and parameter values used here, GA consistently gave

the best results. The average performance of the relatively simple illin-min heuristic

was always nrithin twelve percent of the G A heuristic.

The comparisons of the eleven heuristics and twelve situations provided in this

st,udy can be used by researchers as a starting point when choosing heuristics to apply

in different scenarios. They can also be used by researchers for selecting heuristics to

conipare new, developing techniques against.

Aclknowledgments - The authors thank Shoukat ,41i for his corr~rnents. Portions
of this document appear in the proceedings of the 8th IEEE Workshop on Heteroge-
neous Computing (HCW '99).

LIST O F REFERENCES

[ArH98] R. Armstrong, D. Hensgen, and T. Kidd, "The relative performance of
various mapping algorithms is independent of sizable varie,nces in run-time
predictions," 7th IEEE Heterogeneous Computing Workshop (HCW '98),
Mar. 1998, pp. 79-87.

[Arm971 R. Armstrong, Investigation of Effect of Different Run-Time Distributions
on SmartA1et Performance, Thesis, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, Sept. 1997 (D. Hensgen, advisor.)

[BrS98] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I.
Reuther, J . P. Robertson, M. D. Theys, and B. Yao, ",4 taxonomy for
describing matching and scheduling heuristics for mixed-n~achine heteroge-
neous computing systems," IEEE Ibrkshop on Advance.3 in Parallel and
Distributed Systems (APADS '98), Oct. 1998, pp. 330-335 (included in 17th
IEEE Symposium on Reliable Distributed Systems, 1998).

[Ch.F98] H. Chen, N. S. Flann, and D. W. Watson, "Parallel genetic simulated an-
nealing: A massively parallel SIMD approach," IEEE Trarlsactions on Par-
allel and Distributed Computing, Vol. 9, No. 2, Feb. 1998: pp. 126-136.

[ChHSS] R.-M. Chen and Y.-M. Huang, "h4ult.iconstrai1~t task scheduling in multi-
processor systems by neural networks," 10th IEEE Conference on Tools
with ilrtificial Intelligence, Nov. 1998, pp. 288-294.

[ChL91] K. Chow and B. Liu, "On mapping signal processing algoril~hms to a hetero-
geneous multiprocessor system," 1991 International Confkrence on Acous-
tics, Speech, and Signal Processing - ICASSP 91, Vol. 3, May 1991, pp.
1585-1588.

[CoP96] M. Coli and P. Pa,lazzari, "Real time pipelined system design through sim-
ulated annealing," Journal of' Systems Architecture, Vol. 42, No. 6-7, Dec.
1996, pp. 465-47.5.

[CoL92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 1992.

[DeD94] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, "Improving search
by incorporating evolution principles in parallel tabu search," 1994 IEEE
Conference on Evolutionary Computation, L701. 2, 1994, pp. 823-828.

[E11,90] H. El-Rewini and T. G. Lewis, "Scheduling parallel program tasks onto
arbitrary target machines," Journal of Parallel and Distributed Computing,
Vol. 9, No. 2, June 1990, pp. 138-1.53.

[Es1GV96] M. M. Eshaghian and Y.-C. Wu, "Mapping and resource estimation in
network heterogeneous computing," in Heterogeneous Computing, hzl. h/l.
Eshaghian, ed., Artech House, Boston, MA, 1996, pp. 197-223.

[Fel-891 D. Fernandez-Baca, "Allocating modules t,o processors in a distributed sys-
tem," IEEE Transactions on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427-1336.

[FrG98] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M . Halderman, D.
Hensgen, E. Keith, T. Kidd, M. Kussow, J . D. Lima, F. Mirabile, L. Moore,
B. Rust, and H. J . Siegel, "Scheduling resources in multi-user, heteroge-
neous, computing environments with SmartNet," 7th IEEE Heterogeneous
Computing Ubrkshop (HCW '98), Mar. 1998, pp. 184-199.

[FrS93] R. F. Freund and H. J . Siegel, "Heterogeneous processing,'' IEEE Com-
puter, Vol. 26, No. 6, June 1993, pp. 13-17.

[GhY93] A. Ghafoor and J . Yang, "Distributed heterogeneous supercomputing man-
agement system," IEEE Computer, Vol. 26, No. 6, June 1'993, pp. 78-86.

[Gl'L97] F. Glover a,nd hl . Laguna, Tabu Search, Kluwer Academic Publishers,
Boston, MA, June 1997.

[HeK99] D. A. Hensgen, T. Kidd, M. C. Schnaidt, D. St. John, H. J . Siegel, T. D.
Braun, M. Maheswaran, S. Ali, J-K. Kim, C. Irvine, T. Levin, R. Wright, R.
F. Freund, M. Godfrey, A. Duman, P. Carff, S. Kidd, V. Prasanna, P. Bhat,
and -4. Alhusaini, "An overview of MSHN: A management system for het-
erogeneous networks," 8th IEEE Workshop on Heterogeneous Computing
Systems (HCIV '99), Apr. 1999, pp. 184-195.

[Hol7.5] J . H. Holland, Adaptation in Natural and Artificial Syste~ns, University of
Michigan Press, Ann Arbor, MI, 1975.

[SbK77] 0 . H. Sbarra and C. E. Kim, "Heuristic algorithms for scheduling indepen-
dent tasks on nonidentical processors," Journal of the ACM, Vol. 24, No.
2, Apr. 1977, pp. 280-259.

[IvO95] M. Iverson, F. Ozguner: G. Follen, "Parallelizing existing application in
a distributed heterogeneous environment," 4th IEEE Hetc3rogeneous Com-
puting Nbrkshop (HCW '9j;), Apr. 1995, pp. 93-100.

[Jai91] R. Jain, The Art of Computer Systems Perfbrmance Ana,lvsis Techniques
for Experimental Design, Measurement, Simulation, and Modeling, John
Wiley & Sons, New York, NY, 1991.

[KaA98] M. Kafil and I. Ahmad, "Optimal task assignment in heterogeneous dis-
tributed computing systems," IEEE Concurrency, Vol. 6, No. 3, July-Sept.
1998, pp. 42-51.

[Kh.P93] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. L. LVang, "Hetero-
geneous computing: Challenges and opportunities," IEEEI Computer, Vol.
26, No. 6, June 1993, pp. 18-27.

[I<iG83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by sim-
ulated annealing," Science, Vol. 220, No. 4598, May 1983, pp. 671-680.

[MaA99] M. Maheswaran, S. Ali, H. J . Siegel, D. Hensgen, and R. F. Freund, "Dy-
namic mapping of a class of independent tasks onto heterogeneous comput-
ing systems," Journal of Parallel and Distributed Computing, Vol. 59, No.
2, Nov. 1999, pp. 107-121

[MaB99] M. Maheswaran, T . D. Braun, and H. J . Siegel, "I-Ieterogeneous distributed
computing," Encyclopedia of Electrical and Electronics Engineering, J. G.
Webster, ed., John n7iley & Sons, New York, NY, 1999, Vol. 8; pp. 679-690.

[Pin951 M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall,
Englewood Cliffs, NJ, 1995.

[Rud94] G. Rudolph, "Convergence analysis of canonical genetic ali=orithms," IEEE
Transactions on Neural Networks, Vol. 5, No. 1, Jan. 1994, pp. 96-101.

[RuN95] S. J . Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs: NJ, 1995.

[ShT85] C.-C. Shen and W.-H. Tsai, "A graph matching approach to optimal task
assignment in di~t~ributed computing system using a minimax criterion:"
IEEE Transactions on Computers, Vol. C-34, No. 3, Mar. 1985, pp. 197-
203.

[ShW96] P. Shroff, D. Watson, N. Flann, and R . Freund, "Genetic simulated anneal-
ing for scheduling data-dependent tasks in heterogeneous environments,"
5th IEEE Heterogeneous Computing Workshop (HCW '96), April 1996,
pp. 98-104.

[SiI)97] H. J . Siegel, H. G. Dietz, and J . K. Antonio, "Software support for hetero-
geneous computing," The Computer Science and Engineering Handbook.
A. B. Tucker, Jr. , ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

[To I3 9 91

G. C. Sih and E. A. Lee, ",4 compile-time scheduli-ng heuristic for
interconnection-constrained heterogeneous processor architectures," IEEE
Transactions on Parallel and Distributed Systems, 1701. 4 , Feb. 1993, pp.
175-186.

H. D. Simon and S.-H. Teng, "How good is recursive bisection?" SIAM
Journal on Scierltific Computing, Vol. 18, No. 5, Sept. 1997, pp. 1436-1445.

H. Sing11 and A. youssef, "Mapping and scheduling heterogeneous ta,sk
graphs using genetic algorithms," 5th IEEE Heferogencous Cornpu t i~ lg
Workshop (HCW '96), Apr. 1996, pp. 86-97.

M. Srinivas and L. M. Patnaik, "Genetic algorithms: Pi survey," IEEE
Computer, 1~~01. 27, No. 6, June 1994, pp. 17-26.

Y. G. Tirat-Gefen and A. C. Parker, "MEGA: An approach to system-level
design of application specific heterogeneous multiproces~;ors,'~ 5th IEEE
Heterogeneous Conzputing IVorkshop (HC W '96), Apr. 1996, pp. 105-1 17.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Task schedu1in.g algorithms for
heterogeneous processors ," 8th IEEE Heterogeneous Computing Workshop
(HCW '99), Apr. 1999, pp. 3-14.

L. Wang, H. J . Siegel, V. P. Roychowdhury, and A. A. Maciejewski, "Task
ma,tching and scheduling in heterogeneous computing environments using
a genetic-algorithm-based approach," Journal of Parallel and Distributed
Computing, Vol. 47, No. 1, Nov. 1997, pp. 1-15.

A. Y. Zomaya and R. Kazman, "Simulated annealing techniques," Algo-
rithms and Theorj. of Computation Handbook, M. J . Atallah, ed., CRC
Press, Boca Raton, FL, 1999, pp. 37-1-37-19.

initial population generation;
evaluation;
while (stopping criteria not met) {

selection;
crossover;
mutation;
evaluation;

1

Figure 3.1. General procedure for a Genetic Algorithm, based on [SrP94].

0 LOOP: /* begin short hop procedure */
1 for ti = 0 t o t - 1 /* first task in pair */
2 for mi = 0 to m - 1 /* ,first machine in pair " /
3 for tj = ti to t - 1 /* second task in pair */
4 for mj = 0 to m - 1 /* second machine in pair */

if (ti == tj)
evaluate new solution
with task tj on machine mj;

else
evaluate new solution with
task ti on machine mi and
task tj on machine mj;

if (new solution is better) {
replace old solution with new solution;
successful~hops = successful~hops + 1 ;
goto LOOP; I* restart from inital state */

}

if (successful~hops == limithops)
goto END; I* end all searching */

1 Ei end for
16 end for
17 end for
18 end for
1Ef END:

Figure 3.2. Pseudocode describing the short hop procedure used in Tabu search.

Figure 4.1. Consistent, high task, high machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken a,s the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule mias an
order of magnitude worse than any other schedule and so is not shown.

machines
289,992.5 392,348.2
50,575.6 58,268.1

81 7,745.8 915,235.9
643,133.7 841,877.3
166,346.8 240,319.5
306,034.2 393,292.2
406,791.4 1,108,758.0
221,390.0 259,491.1

Table 4.1. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
consistent, high task, high maclline heterogeneity used in generating
Figure 4.1.

Figure 4.2. Consisterlt, high task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken a s the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines --

745.2 839.8 1,192.9 1,342.1 1,896.3 2,861.4 3,180.5 zm
5,000.3 5,084.6 7,350.5 8,291.5 8,517.4 8,653.4 8,977.8 9,658.6
2,119.7 2,975.5 3,046.0 4,162.5 4,663.0 4,971.3 5,057.6 5,318.3

Table 4.2. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
consistent, high task, low machine heterogeneity used in generating
Figure 4.2.

Figure 4.3. Consistent,, low task, high machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken 2,s the mean over
100 ETCY matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines
847.7 1,113.3 1,494.2

6,705.0 6,852.4 7,116.5
13,475.7 13,660.6 14,090.2
18,803.2 18,913.0 19,020.1
23,665.0 23,687.3 23,759.6
30,172.9 30,239.7 30,695.7
35,909.2 36,265.1 36,394.4
41,359.1 41,798.4 41,893.0

Table 4.3. Sample S x 8 excerpt from one of the 512 x 16 ETC matrices wit11
consistent, low task, high machine het,erogeneity used in generating
Figure 4.3.

Figure 4.4. Consistent, low task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken aus the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines

Table 4.4. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with consis-
tent, low task, low machine heterogeneity used in generating Figure 4.4.

Figure 4.5. Inconsistent, high task, high machine heterogeneity execution times
for schedules from the eleven mapping heuristics, talcen as the mean
over 100 ETC rnatrices (trials). For each trial there are 512 tasks and
16 machines. For each heuristic, the range bars show the 95 percent
confidence interval for the mean.

machines
815,309.1 891,469.0 1,722,197.6 1,340,988.1 740,028.0 1,749,673.7 251,140.1
933,830.1 2,156,144.2 2,202,018.0 2,286,210.0 2,779,669.0 220,536.3 1,769,184.5
479,091.9 150,324.5 386,338.1 401,682.9 21 8,826.0 242,699.6 1 1,392.2

1,400,308.1 2,378,363.0 2,458,087.0 351,387.4 925,070.1 2,097,914.2 1,206,158.2
576,144.9 1,475,908.2 424,448.8 576,238.7 223,453.8 256,804.5 88,737.9

43,439.8 1,355,855.5 1,736,937.1 1,624,942.6 2,070,705.1 1,977,650.2 1,066,470.8
7,453.0 3,454.4 23,720.8 29,817.3 1,143.7 44,249.2 5,039.5

1,682,338.5 1,978,545.6 788,342.1 1,192,052.5 1,022,914.1 701,336.3 1,052,728.3

Table 4.5. Sample 8 x 8 excerpt froin one of the 512 x 16 E'TC matrices with
inconsistent, high task, high machine heterogeneity used in generating
Figure 4.5.

Figure 4.6. Inconsistent, high task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken FIS the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean.

machines
3,621.5 3,289.5

477.1 811.9
143.6 56.0

4,265.3 3,174.6
461.4 1,898.7

6,088.3 9,239.7
6,444.6 2,640.0

13,160.6 10,574.2

Table 4.6. Sample 8 x S excerpt from one of the 512 x 16 ETC matrices with
inconsistent, high task, low machine heterogeneity used in generating
Figure 4.6.

Figure 4.7. Inconsistent, low task, high machine heterogeneity execution t i~nes for
schedules from the eleven mapping heuristics, taken a,s the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence int,erval for the mean.

machines
16,603.2 71,369.1 39,849.0 44,566.1 55,124.3 9,077.3 87,594.5 31,530.5

738.3 2,375.0 5,606.2 804.9 1,535.8 4,772.3 994.2 1,833.9
1,513.8 45.1 1,027.3 2,962.1 2,748.2 2,406.3 19.4 969.9
2,219.9 5,989.2 2,747.0 88.2 2,055.1 665.0 356.3 2,404.9

12,654.7 10,483.7 10,601.5 6,804.6 134.3 10,532.8 12,341.68 5,046.3
4,226.0 48,152.2 11,279.3 35,471.1 30,723.4 24,234.0 6,366.9 22,926.9

20,668.5 28,875.9 29,610.1 7,363.3 24,488.0 31,077.3 8,705.0 11,849.4
52,953.2 14,608.1 58,137.2 16,685.5 36,571.3 35,888.8 38,147.0 15,167.5

Table 4.7. Sample 8 x 8 excerpt fro111 one of the 512 x 16 ETC matrices with
inconsistent, low task: high machine heterogeneity used in generating
Figure 4.7.

Figure 4.8. Inconsistent, low task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each tria,l there are 512 tasks and 16
machines. For each heuristic, the range bars show the: 95 percent con-
fidence interval for the mean.

machines
494.4 61 1.2

19.2 27.9
180.0 334.6
206.2 559.5
71.5 136.6

319.8 237.5
449.4 421.8
194.2 176.5

Table 4.8. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
inconsistent, low task, low machine heterogeneity used in generating
Figure 4.8.

Figure 4.9. Partially-consisterlt, high task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, ta.ken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 rna.chines. For each heuristic, the range 11ars show the 95
percent confidence interval for the mean.

machines
1,003,569.7 910,811.9 1,085,529.8 1,646,242.8 1,087,655.5 2,121,084.5 1,141,898.7 749,952.3

27,826.6 409,936.4 168,341.7 858,511.3 353,691.8 270,449.8 420,799.6 152,786.0
8,415.4 101,202.5 16,453.7 64,152.5 29,172.8 36,738.5 61,114.5 142,411.2

17,050.5 1 95,067.8 79,175.8 787,263.3 173,239.2 438,599.0 378,563.4 747,305.4
32,275.4 434,445.7 135,989.1 496,326.8 221,097.9 463,577.7 244,747.3 431,704.5
28,850.0 1 38,449.0 32,730.9 93,025.9 90,044.4 223,827.9 96,715.5 129.979.1

145,038.5 350,917.4 210,957.4 265,590.5 486,217.7 317,915.2 728,732.4 625,365.5
1 1,763.0 460,975.2 21 4,456.3 821,904.1 296,960.4 459,109.0 350,026.7 54,926.4

Table 4.9. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
partially-consistent, high task, high machine heterogeneity used in gen-
erating Figure 4.9.

Figure 4.10. Partially-consistent, high task, low machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic, the range bars show the 95
percent confidence interval for the mean.

machines
10,455.3 3,749.3

5,764.5 12,108.2
25,581.2 11,604.0
1 1,450.1 4,710.2
7,128.6 2,616.6

14,167.8 9,109.1
10,055.4 11,557.9
16,093.4 4,845.7

Table 4.10. Sample 8 x 8 excerpt from one of the 512 x 16 ET(7 matrices with
partially-consistent, high task, low machine heterogeneity used in gen-
erating Figure 4.10.

Figure 4.11. Partially-consistent. low task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic. the range bars show the 95
percent confidence interval for the mean.

machines
1,262.8 438.4 174.5 539.4

14,169.0 3,075.9 3,810.9 13,178.0
9,948.8 4,700.4 17,941.7 7,057.8
2,938.6 5,212.7 11,842.0 5,946.4
9,957.8 8,950.4 57,354.7 9,369.5

26,994.2 10,501.9 64,684.6 12,482.4
1,363.6 508.7 1,692.6 913.7

53,303.0 20,572.0 50,002.9 21,410.2

Table 4.11. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
partially-consistent, low task, high machine heterogent:ity used in gen-
erating Figure 4.11.

Figure 4.12. Partially-consistent, low task: low machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic, the range bars show the 95
percent confidence interval for the mean.

machines
148.2 736.7 151 .O
65.5 61.0 121.6

179.5 309.4 247.1
69.2 61.7 92.4

160.1 560.7 392.9
113.0 48.7 139.0
413.7 144.6 489.2
226.0 213.0 601.9

Table 4.12. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
partially-consistent, low task, low machine heterogeneity used in gen-
erating Figure 4.12.

	Purdue University
	Purdue e-Pubs
	3-1-2000

	A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Ileterogeneous Distributed Computing Systems
	Tracy D. Braunt
	Howard Jay Siegel
	Noah Beck
	Ladislau L. Boloni
	Muthucumaru Maheswarans
	See next page for additional authors
	Authors

