View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-2000

A Comparison Study of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems

Tracy D. Braunt
Purdue University School of ECE

Howard Jay Siegel
Purdue University School of ECE

Noah Beck
Purdue University School of ECE

Ladislau L. Boloni
Purdue University Department of Computer Science

Muthucumaru Maheswarans
University of Manitoba, Department of Computer Sciences

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Braunt, Tracy D. ; Siegel, Howard Jay ; Beck, Noah ; Boloni, Ladislau L.; Maheswarans, Muthucumaru ; Reuthert, Albert L;
Robertson, James P.; Theys, Mitchell D.; Yao, Bin; Hensgeno, Debra ; and Freund, Richard F,, "A Comparison Study of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Ileterogeneous Distributed Computing Systems" (2000). ECE Technical
Reports. Paper 19.

http://docs.lib.purdue.edu/ecetr/19

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/4947911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Tracy D. Braunt, Howard Jay Siegel, Noah Beck, Ladislau L. Boloni, Muthucumaru Maheswarans, Albert L.
Reuthert, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgeno, and Richard F. Freund

This article is available at Purdue e-Pubs: http://docslib.purdue.edu/ecetr/19

http://docs.lib.purdue.edu/ecetr/19?utm_source=docs.lib.purdue.edu%2Fecetr%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

A COMPARISON STUDY OF ELEVEN
STATIC HEURISTICSFOR MAPPING A
CLASSOF INDEPENDENT TASKS
ONTO HETEROGENEOUS
DISTRIBUTED COMPUTING SYSTEMS

TRACY D. BRAUN, HOWARD JAY SIEGEL,
NOAH BECK, LADISLAU L. BOLONI,
MUTHUCUMARU MAHESWARAN, ALBERT .
REUTHER, JAMES P. ROBERTSON, MITCHELL
D. THEYS, BIN YAO, DEBRA HENSGEN, AND
RICHARD F. FREUND

TR-ECE 00-4
MARcH 2000

€ s, SCHOOL OF ELECTRICAL
§9 — % AND COMPUTER ENGINEERING
o P~ ;} PURDUE UNIVERSITY
>

0 WEST LAFAYETTE, INDIANA 47907-1285

A Comparison Study of Eleven Static Heuristics
for Mapping a Class of | ndependent Tasks onto
Heterogeneous Distributed Computing Systems

Tracy D. Braun®, Howard Jay Siegel!, Noah Beck!, Ladislau L. Bsloni?,
Muthucumaru Maheswaran®, Albert |. Reuthert, James P. Robertson*,
Mitchell D. Theys™, Bin Yao!, Debra Hensgeno, and Richard F. Freund

fSchool of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285 U S4
{tdbraun, hj, noah. reuther, yaob}Q@ecn.purdue.edu

*Department of Computer Sciences $Department of Computer Science
Purdue University University of Manitoba
West Lafayette, IN 47907 USA Winnipeg, MB R3T 2N2 Canada
boloni@cs.purdue.edu maheswar@cs.umanitoba.ca
Motorola " Department of Electrical Engineering
6300 Bridgepoint Parkway and Computer Science
Bldg. #3, MD: OET71 University of Illinois at Chicago
Austin, TX 78730 CSA Chicago, IL 60607-7053 USA
robertso@ibmoto.com mtheys@eecs.uic.edu
"Department of Computer Science TNOEMIX
Naval Postgraduate School 1425 Russ Blvd. Ste. T-110
Monterey, CA 93943-5118 USA San Diego, CA 92101 USA
hensgen@cs.nps.navy.mil rffreund@noemix.com

March 2000

Purdue University
School of Electrical and Computer Engineering
Technical Report TR-ECE 00-4

This research was supported in part by the DARPA/ITO Quorum Program under NPS subcon-
tract numbers N62271-98-M-0217and N62271-98-M-0448, and under the GSA subcontract number
GS09K99BH0250. Some of the equipment used was donated by Intel and Microsoft.

i

TABLEOFCONTENTS

LIST OF FIGURES. e

LIST OF TABLES.

ABSTRACT

1 INTRODIJCTION . ..o e

2. SIMULATION MODEL

3. HEURISTIC DESCRIPTIONS i

3.1 INntroductiono e
3.2 HEUNSHICS . .o

3.21
3.2.2
3.2.3
3.24
3.25
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11

Opportunistic Load Balancing (OLB)....................
Minimum Execution Time (MET)
Minimum Completion Time (MCT)
MiN-Min ... e
MaX-MIiN ...

3.3 Concluding Remarks.

4. EXPERIMENTAL RESULTS e

41 IntroducCtion e
42 Results for 512 TasKSottt e e

4.2.1
4.2.2
4.2.3
4.2.4

Heuristic Execution Times
Consistent Heterogeneity
Inconsistent Heterogeneity
Partially-consistent Heterogeneity

Page

Vii

X

e EENEEN e

~

8.3 SUMMEIY -+« e v v e et e e e e e e e e e 27
5. ALTERNATIVE IMPLEMENTATIONS o 28
6. CONCLUSIONS ..ot e e 30
LIST OF REFERENCES .+« vt ettt ettt e 31

FIGURES o e 35

_i\/—

LIST OF FIGURES

Figure

31

3.2

41

4.2

4.3

General procedure for a Genetic Algorithm, based on [StP94].

Pseudocode describing the short hop procedure used in Tabu search. ...

Consistent, high task, high machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic. the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than

any other schedule and soisnot shown.

Consistent, high task, low machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than

any other schedule and soisnot shown.

Consistent, low task, high machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than

any other scheduleand soisnotshown.

38

39

Figure

4.4

4.5

4.6

4.7

4.8

4.9

Consistent, low task, low machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars
show the 95 percent confidence interval for the mean. For this
case, the MET schedule was an order of magnitude worse than

any other schedule and soisnot shown.

Inconsistent, high task, high machine heterogeneity execution
timesfor schedules from the eleven mapping heuristics, taken as
the mean over 100 ETC matrices (trials). For each trial there
are 512 tasks and 16 machines. For each heuristic, the range

bars show the 95 percent confidence interval for the mean..

Inconsistent, high task, low machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken
as the mean over 100 ETC matrices (trials). For each trial there
are 512 tasks and 16 machines. For each heuristic, the range

bars show the 95 percent confidence interval for the mean...... ...

Inconsistent. low task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken
as the mean over 100 ETC matrices (trials). For each trial there
are 512 tasks and 16 machines. For each heuristic, the range

bars show the 95 percent confidenceinterval for themean.........

Inconsistent, low task, low machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are
512 tasks and 16 machines. For each heuristic, the range bars

show the 95 percent confidence interval for themean.

Partially-consistent, high task, high machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,

Page

the range bars show the 95 percent confidence interval for the mean..... 45

4.10

4.11

4.12

- VI -

Partially-consistent, high task, low machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,

the range bars show the 95 percent confidence interval for the mean.. . ..

Partially-consistent, low task, high machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For. each
trial there are 512 tasks and 16 machines. For each heuristic,

the range bars show the 95 percent confidence interval for the mean. . ..

Partially-consistent, low task, low machine heterogeneity exe-
cution times for schedules from the eleven mapping heuristics,
taken as the mean over 100 ETC matrices (trials). For each
trial there are 512 tasks and 16 machines. For each heuristic,
the range bars show the 95 percent confidence interval for the mean

47

Tahble

3.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

- Vil -

LIST OF TABLES

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, high task, high machine heterogeneity used in

generating Figure 4.1, e

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, high task, low machine heterogeneity used in

generating Figure 4.2. e

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, low task, high machine heterogeneity used in

generating Figure4.3. e

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with consistent, low task, low machine heterogeneity used in

generating Figure 4.4. e

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, high task, high machine heterogeneity used in

generating Figure 4.5. e

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, high task, low machine heterogeneity used in

generating Figure 4.6. ir ittt

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with inconsistent, low task, high machine heterogeneity used in
generating Figure 4.7.

Sample 8 x 8 excerpt from one of the 512 X 16 ETC matrices
with inconsistent, low task, low machine heterogeneity used in

generating Figure 4.8.

Sample 8 X 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent, high task, high machine heterogeneity

used in generating Figure4.9. L ..

Page

....... 37

....... 38

....... 39

....... 40

....... 41

....... 42

........ 43

....... a4

....... 45

4.10

4.11

4.12

- Vil -

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent, high task, low machine heterogeneity
used in generating Figure 4.10. - . . - -« oo L

Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices
with partially-consistent, low task, high machine heterogeneity
used in generating Figure 4.11. - ...« .o

Sample 8 x 8 excerpt from one of the 512 x 16 £T'C matrices with
partially-consistent, low task, low machine heterogeneity used in
generating Figure 4.12. - -« - -« oo e

-ix -

ABSTRACT

Mixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links
to perform different computationally intensive applications that have diverse compu-
tational requirements. HC environments are well suited to meet the computational
demands of large, diverse groups of tasks. The problem of mapping (defined as match-
ing and scheduling) these tasks onto the machines of a distributed HC environment
has been shown, in general, to be NP-complete, requiring the development of heuris-
tic techniques. Selecting the best heuristic to use in a given environment, however,
remains a difficult problem, because comparisons are often clouded by different un-
derlying assumptions in the original studies of each heuristic. Therefore, a collection
of eleven heuristics from the literature has been selected: adapted, implemented, and
anaiyzed under one set of common assumptions. It is assumed that the heuristics de-
rive a mapping statically (i.e., off-line). It is also assumed that a meta-task (i.e., a set
of independent, non-communicating tasks) is being mapped, and that the goal is to
minimize the total execution time of the meta-task. The eleven heuristics examined
are Opportunistic Load Balancing, Minimum Execution Time, Minimmum Completion
Time, Min-min, Max-min, Duplex?Genetic Algorithm, Simulated Annealing, Genetic
Simulated Annealing, Tabu, and A*. This study provides one even basis for compar-
ison and insights into circumstances where one technique will out perform another.
The evaluation procedure is specified, the heuristics are defined, and then comparison
results are discussed. It is shown that for the cases studied here, the relatively simple
Mir-min heuristic performs well in comparison to the other techniques.

1. INTRODUCTION

.Mixed-machine heterogeneous computing (HC) environments utilize a distributed

suite of different high-performance machines, interconnected with high-speed links to
perform different computationally intensive applications that have diverse computa-
tional requirements [FrS593, MaB99, SiD97]. The general problem o mapping (i.e.,
matching and scheduling) tasks to machines in an HC suite has been shown to be
NP-complete [Fer89, [bK77]. Heuristics developed to perform this mapping function
are often difficult to compare because o different underlying assumptions in the orig-
inal studies of each heuristic [BrS98]. Therefore, a collection of eleven heuristics from
the literature has been selected, adapted?implemented, and compared by simulation

stuclies under one set of common assumptions

To facilitate these comparisons, certain simplifying assumptions were made. For
these studies, let a meta-task be defined as a collection of independent tasks with
no data dependencies (a given task, however, may have subtasks and dependencies
among the subtasks). For this case study, it is assumed that static: (i.e., off-line or
predictive) mapping of meta-tasks is being performed. The goa of this mapping
is to minimize the total execution time of the meta-task. Static mapping is useful
for predictive analyzes (e.g., planning work for the next day), impact studies (e.g.,
determining the effect o purchasing another machine for the HC suite), and post-

mortem analyzes (e.g., evaluating how well an on-line mapper performed).

It is also assumed that each machine executes a single task at a time (i.e., no
multi-tasking), in the order in which the tasks are assigned. The size of the meta-
task (i.e., the number of tasks to execute), |, and the number of machinesin the HC

environment, m, are static and known a priori.

This study provides one even basis for comparison and insights into circumstances
where one mapping technique will out perform another. The evaluation procedure
is specified, the heuristics are defined, and then comparison results are shown. It
is shown that for the cases studied here, the relatively simple Min-min heuristic
(defined in Chapter 3) performs well in comparison to other, more complex techniques

investigated.

The remainder of this report is organized as follows. Chapter 2 defines the com-
putstional environment parameters that were varied in the simulations. Descriptions
of the eleven mapping heuristics are found in Chapter 3. Chapter 4 examines se-
lected results from the simulation study. A list of implementation parameters and

procedures that could be varied for each heuristic is presented in Chapter 5.

This research was supported in part by the DARPA /ITO Quorum Program project
called MSHN (Management System for Heterogeneous Networks) [HeK99]. MSHN
is a collaborative research effort among the Naval Postgraduate School, NOEMIX,
Purdue University, and the University of Southern California. The technical objec-
tive of the MSHN project is to design, prototype, and refine a distributed resource
management system that leverages the heterogeneity of resources and tasks to deliver
requested qualities of service. The heuristics developed in this paper or their deriva-

tives may be included in the Scheduling Advisor component of the MSHN prototype.

2. SIMULATION MODEL

The eleven static mapping heuristics were evaluated using simulated execution
times for an HC environment. Because these are static heuristics, it is assumed that
an accurate estimate of the expected execution time for each task on each machine is
known prior to execution and contained within an ETC (expected time to compute)
matrix. One row of the ETC matrix contains the estimated execution times for a
given task on each machine. Similarly, one column of the ETC matrix consists of the
estimated execution times of a given machine for each task in the meta-task. Thus,
for an arbitrary task L, and an arbitrary machine m,. ETC(t;,m,) is the estimated

execution timeof t; on m,.

For cases when inter-machine communications are required. £7C(t,,m;) could
be assumed to include the time to move the executables and data associated with
task t, from their known source to machine m,. For cases when it is impossible to
execute task t, on machine m; (e.g., if specialized hardware is needed), the value of
ETC(t;;m,) can be set to infinity, or some other arbitrary value. For this study,
it is assumed that there are no inter-task communications, each task can execute
on each machine, and the estimated expected execution times of each task on each
machine are known. The assumption that these estimated expected execution times
are known is commonly made when studying mapping heuristics for HC systems
(e.g., [GhY93, KaA98. SiY96]). (Approaches for doing this estimation based on task
profiling and analytical benchmarking are discussed in [KhP93, MaB99, SiD97].)

For the simulation studies, characteristics of the £7'C' matrices were varied in an
attempt to represent a range of possible HC environments. The £T'C' matrices used

were generated using the following method. Initially, at X 1 baseline column vector,

4 -

B, of floating point values is created. Let ¢, be the upper-bound of the range of
possible values within the baseline vector. The baseline column vector is generated
by repeatedly selecting a uniform random number, z}, € [1, ¢;), and letting B(:) = z}
for 0 < 7 < t. Next, the rows of the ETC matrix are constructed. Each element
ETC(t;,;m;) in row ¢ of the ETC matrix is created by taking the baseline value,
B(z), and multiplying it by a uniform random number, a_*ji which has an upper-
bound of ¢,. This new random number, 27 € [1, ¢,), is called a row multiplier. One
row requires m different row multipliers, 0 < 3 < m. Each row : of the ETC matrix
can then be described as ETC(t;,m;) = B(i) X 227, for 0 < 3 < m. (The baseline
column itself does not appear in the final ETC matrix.) This process is repeated for

each row until thet x m ETC matrix isfull. Therefore, any given value in the ETC

matrix is within the range [1, ¢, X ¢.) [MaA99].

To evaluate the heuristics for different mapping scenarios, the characteristics of
the ET C matrix were varied based on several different methods from [Arm97]. The
amount of variance among the execution times of tasks in the meta-task for a given
machine is defined as task heterogeneity. Task heterogeneity was varied by changing
the upper-bound of the random numbers within the baseline coluran vector. High
task heterogeneity was represented by ¢, = 3000 and low task heterogeneity used
¢, = 100. Machine heterogeneity represents the variation that is possible among the
execution times for a given task across all the machines. Machine heterogeneity was
varied by changing the upper-bound of the random numbers used to multiply the
baseline values. High machine heterogeneity values were generated using ¢, = 1000,
while low machine heterogeneity values used ¢, = 10. These heterogeneous ranges
are based on one type of expected environment for MSHN. The ranges were chosen to
reflect thefact that in real situations there is more variability across execution times
for different tasks on a given machine than the execution time for a single task across

different machines.

_5 -

To further vary the ETC matrix in an attempt to capture more aspects of realistic
mapping situations. different ETC matrix consistences were used. An ETC matrix
is said to be consistent if whenever a machine m; executes any task t; faster than
machine my, then machine m; executes all tasks faster than machine m; [Arm97].
Consistent matrices were generated by sorting each row of the ETC matrix indepen-
dently, with machinemq always being the fastest and machine m,,_;) the slowest. In
contrast: inconsistent matrices characterize the situation where machine m; may be
faster than machinem for some tasks, and slower for others. These matrices are |left
in the unordered, random state in which they were generated (i.e., no consistence is

enforced). Partially-consistent matrices are inconsistent matrices that include a con-

sistent submatrix. For the partially-consistent matrices used here, the row elements
in column positions {0,2,4,...} of row : are extracted, sorted, and replaced in order,
while the row elements in column positions {1,3,5,...) remain unordered (i.e., the

even columns are consistent and the odd columns are, in general, inconsistent).

Sample ETC matrices for the twelve possible permutations of the characteristics
listed above are shown in Tables 4.1 through 4.12. Results in this study used ETC
matrices that had t = 512 tasks and m = 16 machines. These results (see Chapter 4)

were taken as the average of 100 ETC matrices for each case.

While it was necessary to select some specific parameter values for t, m, and the
ETC entries to alow implementation of a simulation, the techniques presented here
are completely general. Therefore, if these parameter values do not apply to a specific
situation of interest, researchers may substitutein their own values and the evaluation

software of this study will still apply.

3. HEURISTIC DESCRIPTIONS

3.1 Introduction

The definitions of the eleven static meta-task mapping heuristics are provided

below. First, some preliminary terms must be defined. Machine availability time,

mat(m;), is the earliest time machinem; can complete the execution of all the tasks
that have previously been assigned to it. The completion time for a new task tj on
machine m;, ct(t;, m;), is the machine availability time plus the execution time of task
t; on machinem;, i.e., ct(t;, m,) = mat(m;)+ ETC(t;,m;). Theperformance criterion
used to compare the results of the heuristics is the maximum value of c¢t(¢;, m,), for
0 <i<tand 0 <7 < m. The maximum ct(¢;,m;) value is aso known as the
maxespan [Pin95]. Each heuristic is attempting to minimize the makespan (i.e., finish

execution of the meta-task as soon as possible).

The descriptions below implicitly assume that the machine availability times are
updated after each task is mapped. For heuristics where the tasks are considered in an
arbitrary order, the order in which the tasks appeared in the ET C matrix was used.
Most of the heuristics discussed here had to be adapted for this problem domain.

For many of the heuristics, there are control parameters values and/or control
function specifications that can be selected for a given implementation. For the
studies here, such values and specifications were selected based on experimentation
and/or information in the literature. These parameters and functions are mentioned

in Chapter 5.

3.2 Heuristics

3.2.1 Opportunistic Load Balancing (OLB)

Opportunistic Load Balancing (OLB) assigns each task, in arbitrary order, to
the next available machine, regardless of the task's expected execution time on that
machine [ArH98, FrG98. FrS93]. The intuition behind OLB is to keep all machines
as busy as possible. One advantage of OLB is its simplicity, but because OLB does
not consider expected task execution times, the mappings it finds can result in very

poor makespans.

3.2.2 Minimum Execution Time (MET)

In contrast to OLR, Minimum Execution Time (MET) assigns each task, in ar-

bitrary order, to the machine with the best expected execution tirne for that task,
regardless of that machine's availability [ArH98, FrG98]. The motivation behind MET
isto give each task to its best machine. This can cause a severeload imbalance across
machines. In general, this heuristic is obviously not applicable to EIC environments

characterized by consistent ETC matrices.

3.2.3 Minimum Completion Time (MCT)

Minimum Completion Time assigns each task, in arbitrary order, to the machine
with the minimum completion time for that task [ArH98]. This causes some tasks
to be assigned to machines that do not have the minimum execution time for them.
The intuition behind MCT is to combinethe benefits OLB and MET, while avoiding

the circumstances in which OLB and MET perform poorly.

3.2.4 Min-min

The Min-min heuristic begins with the set U o all unmapped tasks. Then, the

set of minimum completion times, M = {ming<;<m(ct(t;;m,)), for each ¢, € U}, is

_8.

found. Next, the task with the overall minimumcompletion time from M is selected
and assigned to the corresponding machine (hence the name Min-min). Lastly, the
newly mapped task is removed from U, and the process repeats until al tasks are
mapped (i.e., U isempty) [ArH98, FrG98, IbK77|. Min-minis based on the minimum
completion time, as is MCT. However, Min-min considers all unmapped tasks during

eaca mapping decision and MCT only considers one task at a time.

Min-min begins by scheduling thetasks that change the machine availability status
by the least amount that any assignment could. For example, let. ¢; be thefirst task
mapped by Min-min. The machine that finishes ¢; the earliest, say m;, is also the
machine that executes ¢; the fastest. For every task that Min-min nnaps after ¢;, the
Min-min heuristic changes the availability status of m; by the least possible amount
for every assignment. Therefore, the percentage of tasks assigned to their first choice
(on the basis of execution time) is likely to be higher for Min-min than for Max-min
(defined next). The expectation is that a smaller makespan can be obtained if more
taslts are assigned to the machines that complete them the earliest and also execute

them the fastest.

3.2.5 Max-min

The Max-min heuristic is very similar to Min-min. The Max-min heuristic also
begins with the set U/ of all unmapped tasks. Then, the set of minimum completion
times, M is found. Next, the task with the overall maximumcompletion time from
M sselected and assigned to the corresponding machine (hence the name Max-min).
Lastly, the newly mapped task is removed from U, and the process repeats until al

taslts are mapped (i.e., U is empty) [ArH98, FrG98, IbK77].

Intuitively, Max-min attempts to minimize the penalties incurred from performing
taslts with longer execution times. Assume, for example, that the meta-task being
mapped has many tasks with very short execution times, and one task with a very

long execution time. Mapping the task with the longer execution time to its best

-9 -

machine first allows this task to be executed concurrently with the remaining tasks
(wih shorter execution times). For this case, this would be a better mapping than
a Min-min mapping, where al of the shorter tasks would executefirst, and then the
longer running task would execute while several machines sit idle. Thus, in cases
similar to this example, the Max-min heuristic may give a mapping with a more

balanced load across machines and a better makespan.

3.2.6 Duplex

The Duplex heuristic is literally a combination of the Min-min and Max-min
heuristics. The Duplex heuristic performs both of the Min-min and Max-min heuris-
tics, and then uses the better solution [ArH98, FrG98]. Duplex can be performed
to exploit the conditions in which either Min-min or Max-min performs well, with

negligible overhead.

3.2.7 GA

Genetic Algorithms (GAs) have been studied for years [Hol75], and have become
a popular technique used for searching large solution spaces (e.g., [SiY96, TiP96,
WaS97]). The version of the heuristic used for this study was adapted from [WaS97]

for this particular problem domain. Figure 3.1 shows the steps in a general GA.

The GA implemented here operates on a population of 200 chromosomes (possible
mappings) for a given meta-task. Each chromosomeis at X 1 vector, where position
1 (C <i <'t) represents task t,, and the entry in position i is the machine to which
the task has been mapped. The initial population is generated using two methods:
(a) 200 randomly generated chromosomes from a uniform distribution, or (b) one
chromosome that is the Min-min solution and 199 random solutions (mappings). The
latter method is called seeding the population with a Min-min chromosome. The GA
actually executes eight times (four times with initial populations from each method),

and the best of the eight mappings is used as the final solution.

- 10 -

Each chromosome has a fitness value, which is the makespan that results from the
matching of tasks to machines within that chromosome. After the generation of the
initial population, all of the chromosomes in the population are evaluated based on
their fitness value, with a smaller fitness value being a better mapping. Then, the
main loop in Figure 3.1 is entered and a rank-based roulette wheel scheme [SrP94] is
used for selection. This scheme probabilistically duplicates some chromosomes and
deletes others. where better mappings have a higher probability of being duplicated in
the next generation. Elitism, the property of guaranteeing the best solution remains
in the population [Rud94], was also implemented. The population size stays fixed at

200.

Next, the crossover operation selects a random pair of chromosomes and chooses
a random point in the first chromosome. For the sections of both chromosomes from
that point to the end of each chromosome, crossover exchanges machine assignments
between corresponding tasks. Every chromosome is considered for crossover with a

probability of 60%.

After crossover, the mutation operation is performed. Mutation randomly selects
a chromosome, then randomly selects a task within the chromosome. and randomly
reassigns it to a new machine. Every chromosome is considered for mutation with a
probability of 40%. For both crossover and mutation, the random operations select

values from a uniform distribution.

Finally, the chromosomesfrom this modified population are evaluated again. This
completes one iteration of the GA. The GA stops when any one of three conditions
are met: (a) 1000 total iterations, (b) no change in the elite chromosome for 150
iterations, or (c) all chromosomes converge to the same mapping. If no stopping
criteria is met, the loop repeats, beginning with the selection of a new population.
The stopping criteria that usually occurred in testing was no change in the elite

chromosome in 150 iterations.

- 11 -

3.2.8 SA

Simulated Annealing (SA) is an iterative technique that considers only one pos-
sible solution (mapping) for each meta-task at a time. This solution uses the same
representation for a solution as the chromosome for the GA. The initial implementa-
tion of SA was evaluated and then modified and refined to give a better final version.

Both theinitial and final implementations are described below.

SA uses a procedure that probabilistically allows poorer solutions to be accepted
to attempt to obtain a better search of the solution space (e.g., [CoP96, KiG83,

RuN95, ZoK99]). This probability is based on a system temperature that decreases

for each iteration. As the system temperature "cools,” it is more difficult for poorer
solutions to be accepted. The initial system temperature is the makespan of the

initial (random) mapping.

The initial SA procedure implemented here is as follows. The first mapping is
generated from a uniform random distribution. The mapping is mutated in the same
manner as the GA, and the new makespan is evaluated. The decision algorithm for
accepting or rejecting the new mapping is based on [CoP96]. If the new makespan is
better, the new mapping replaces the old one. If the new makespan is worse (larger),

a uniform random number z € [0, 1) is selected. Then, > is compared with y, where

1

old makespan-new makespan
1+e temperature

y = (3.1)

If z >y the new (poorer) mapping is accepted, otherwise it is rejected, and the old
mapping is kept.

Notice that for solutions with similar makespans (or if the system temperature is
very large), y — 0.5, and poorer solutions are accepted with approximately a 50%
probability. In contrast, for solutions with very different makespans (or if the system

temperatureis very small),y — 1, and poorer solutions will usually be rejected.

19 -

After each mutation, the system temperature is reduced to 90% of its original
value. (This percentage is defined as the cooling rate.) This completes one iteration
of SA. The heuristic stops when there is no change in the makespan for 150 itera-
tions or the system temperature approaches zero. Most tests ended when the system

temperature approached zero (approximated by 1072%).

Results from preliminary studies using theinitial implementation described above
showed that the GA usually found the best mappings of all eleven heuristics. How-
ever, the execution time of the SA heuristic was much shorter than that of the GA.
Therefore, in order to try and provide a more “fair” comparison, the SA heuristic
was adapted so that it would be more similar to GA. The modifications gave SA an
execution timeas long as GA. Thelonger execution time allowed more of the solution
space to be searched with the SA procedure, with the hope that SA would then find

mo-e competitive mappings.

To try to make SA more competitive with GA, the following changes were made to
the the final SA implementation. First, the stopping conditions were modified. The
nurnber of unchanged iterations was raised to 200 and two different cooling rates were
used, 80% and 90%. Next, SA was allowed to execute eight times for each cooling
rate, using the best solution from all sixteen runs as the final mapping. Lastly, four
of the eight runs for each cooling rate were seeded with the Min-min solution, just as

with the GA.

Even with the additional execution time and Min-min seeding:;, SA still found
poarer solutions than Min-min or GA. Because SA allows poorer solutions to be
accepted at intermediate stages, it allows some very poor solutions in the initial

stages, from which it can never recover (see Chapter 4).

329 GSA

The Genetic Simulated Annealing (GSA) heuristic is a combination of the GA

and SA techniques [ChF98, ShW96]. In general, GSA follows procedures similar to

- 13 -

the GA outlined above. However, for the selection process, GSA uses the SA cooling
schedule and system temperature, and a simplified SA decision process for accepting

or rejecting a new chromosomes.

Specifically, the initial system temperature was set to the average makespan of
the initial population, and decreased 10% for each iteration. When a new (post-
mutation, post-crossover, or both) chromosome is compared with the corresponding
original chromosome, if the new makespan is less than the original makespan plus the
system temperature; then the new chromosome is accepted. Otherwise, the original
chromosome survives to the next iteration. Therefore, as the system temperature
decreases, it is again more difficult for poorer solutions to be accepted. The two stop-
ping criteria used were either (a) no change in the elite chromosomein 150 iterations
or (b) 1000 total iterations. The most common stopping criteria was no change in

the elite chromosome in 150 iterations.

3.2.10 Tabu

Tabu search is a solution space search that keeps track of theregions of the solution

space which have already been searched so as not to repeat a search near these areas
[DeD94, GILI7]. A solution (mapping) uses the same representation as a chromosome

in the GA approach.

The implementation of Tabu search used here begins with a random mapping,
generated from a uniform distribution. To manipulate the current solution and move
through the solution space, a short hop is performed. The intuitive purpose of a short
hop isto find the nearest local minimum solution within the solution space. The basic
procedure for performing a short hop is to select a pair of tasks and assign them to
every possible combination of machines. This is done for every possible pair of tasks.

Tht: pseudocode for the short hop procedure is given in Figure 3.2.

Let the tasks in the pair under consideration be denoted ti and tj in Figure 3.2.

(The machine assignments for the other t — 2 tasks are held fixed.) The machines to

- 14 -

which tasks ti and tj are remapped are mi and mj, respectively. For each possible pair
of tasks, each possible pair of machine assignments is considered. Lines 1 through
4 set the boundary values of the different loops. Line 6 or 8 is where each new
solution (mapping) is evaluated, and line 9 is where the new solution is considered
for acceptance. Each of these new solutions is a short hop. If the new makespan is
an improvement, the new solution is saved, replacing the current solution. (Thisis

defined as a successful short hop.) When ti and tj represent the sarne task (ti = tj),

a special case occurs (line5). In these situations, all machinesfor that one task are

considered.

When any new solution is found to be an improvement (line 10), the procedure
breaks out of the for loops, and starts searching from the beginning again. The
short hop procedure ends when (1) every pair-wise remapping combination has been
exhausted with no improvement (i.e., the bounds of all four for locps in Figure 3.2
have been reached), or (2) the limit on the total number of successful hops, limity,,,

is reached.

When the short hop procedure ends, the fina mapping from the local solution
space search is added to the tabu list. The tabu list is a method of keeping track
of the regions of the solution space that have already been searched. Next, a new
random mapping is generated, and it must differ from each mapping in the tabu list
by at least half of the machine assignments (a successful long hap). The intuitive
purpose o along hop is to move to a new region of the solution space that has not

already been searched.

Thefinal stopping criterion for the heuristic is determined by the total number of
successful long and short hops combined. That is, when the sum of the total number
of successful short hops and successful long hops equals limity,,,, the heuristic ends.

Then, the best mapping from the tabu list is the final answer.

Similar to SA, some parameters of Tabu were varied in an attempt to make Tabu

more competitive with GA, while also trying to provide a more "fair" comparison

- 15 -

between Tabu and GA. To this end, the value used for limit,,,, was varied depending

on the type of consistency of the matrix being considered.

Because of the implementation of the short hop procedure described above, the
execution time of the Tabu search depended greatly on the type of consistency of
the ETC matrix. Each time a new task is considered for remapping in the short
hop procedure, it is first considered on mg, then m;, etc. For consistent matrices,
these will be the fastest machines. Therefore, once a task gets reassigned to a fast
machine, the remaining permutations of the short hop procedure will be unsuccessful.
In other words, because the short hop procedure begins searching sequentially from
the best machines, there will be a larger number of unsuccessful hops performed for
each successful hop for consistent ETC matrices. Thus, the execution time of Tabu

will increase.

Therefore, to keep execution times "fair" and competitive with GA, limzty,,, was
set to 1000 for consistent ETC matrices, 2000 for partially-consistent matrices, and
2500 for inconsistent matrices. When most test cases had stopped, the percentage of
successful short hops was high (90% or more) relative to the percentage of successful
long hops (10% or less). But because there were long hops being performed, every
pairwise combination of short hops was being exhausted, and new, different regions

of the solution space were being searched.

3.2.11 A*

Thefinal heuristic in the comparison study is known as the A* heuristic. A* has
been applied to many other task allocation problems {e.g., [ChL91, KaA98, RuN95,
ShT85]). The technique used hereis similar to [ChL91].

A* is a search technique based on an m-ary tree, beginning at a root node that
is a null solution. As the tree grows, nodes represent partial mappings (a subset
of tasks are assigned to machines). The partial mapping (solution} of a child node

has one more task mapped than the parent node. Call this additional task ¢. Each

_ 16 -

parent node generates m children, one for each possible mapping of «. After a parent
node has done this, the parent node becomes inactive. To keep execution time of the
heuristic tractable, there is a pruning process to limit the maximum :number of active

nodes in the tree at any one time (in this study, to 1024).

Each node, n, has a cost function, f(n), associated with it. The cost function
is an estimated lower-bound on the makespan of the best solution that includes the

partial solution represented by node n.

Let g(n) represent the makespan of the task/machine assignments in the par-
tial solution of node n, i.e., g(n) is the maximum of the machine availability times
(mat(m;)) based on the set of tasks that have been mapped to machines in node
n's partial solution. Let M be a lower-bound estimate on the difference between
the makespan of node n’s partial solution and the makespan for the best complete
solution that includes node n’s partial solution. Then, the cost function for node n

is computed as
f(n) = g(n)+ h(n) (3.2)

Therefore, f(n) represents the makespan of the partial solution of node n plus a
lower-bound estimate of the timeto execute the rest of the (unmapped) tasks in the

meta-task.

The function h(n) is defined in terms of two functions, h;(n) and hy(n), which

are two different approaches to deriving a lower-bound estimate. Recall that M =
{minog;em(ct(t;, m;)), for each t; € U}. For node n let mmct(n) be the overall max-
imum element of M (i.e., "the maximum minimum completion time"). Intuitively,
mmect(n) represents the best possible meta-task makespan by making the typically
unrealistic assumption that each task in I/ can be assigned to the machine indicated

in M without. conflict. Thus, based on [ChL91], ~y(n) is defined as

hi(n) = max(0, (mmet(n) - g(rn))). (3.3)

- 17 -

Next, let sdma(n) be the sum of the differences between g(n) and each machine

availability timeover all machines after executing all of thetasks in the partial solution

represented by node n:
m—1
sdma(n) = Y (g(n) — mat(m;)). (3.4)
7=0
Intuitively, sdma(n) represents the collective amount of machine availability time
remaining that can be scheduled without increasing the final makespan. Let smet(n)
be defined as the sum over all tasks in U of the minimum expected execution time
(i.e., ETC value) for each task in U
smet(n) = Y _ (min (ETC(t;,m;)) (3.5)

0<
{eU <i<m

This gives an estimate of the amount o remaining work to do, which could increase

the final makespan. The function h; is then defined as
ha(n) = max(0, (smet(n) — sdma(n))/m), (3.6)

where (smet(n) — sdma(n))/m represents an estimate of the minimum increase in the
meta-task makespan if the tasks in I/ could be "idealy" (but, in general, unrealisti-

cally) distributed among the machines. Using these definitions,
h(n) = max(hi(n), hz(n)), (3.7)
representing a lower-bound estimate on the time to execute the tasks in U.

Thus, after the root node generates m nodes for t, (each node mapping ¢, to a
different machine), the node with the minimum f(n) generates its m children, until
1024 nodes are created. From that point on, any time a node is added, the tree is
pruned by deactivating the leaf node with the largest f(n). This process continues
until a leaf node representing a complete mapping is reached. Note that if the treeis

not pruned, this method is equivalent to an exhaustive search.

- 18 -

3.3 Concluding Remarks

I'his set of eleven static mapping heuristi s is not exhaustive, nor is it meant
to be. It is simply a representative set of several different approaches, including
iterative? non-iterative, greedy, and biologically inspired te hnique:;. Several other
types of static mapping heuristics exist. For example, other techniques that have
been or could be used as static mappers for heterogeneous @mputing environments
include the following: neural networks [ChH98], linear programming [CoL92], the
"Mapping Heuristic” (MH) algorithm [EIL90], ghe Cluster-M technique [EsW96], the
Levelized Min Time (LMT) algorithm [IvO95], the k-percent best (KPB) and Suf-
ferage heuristics [MaA99], the Dynamic Level Scheduling (DLS) algorithm [Sil.93],
recursive bisection [SiT97], and the Heterogeneous Earliest-Finish-Time (HEFT) and
Critical-Path-on-a-Processor (CROP) techniques [ToH99]. The eleven heuristics ex-
amined here were initially selected because they seemed among the rnost appropriate

for the static mapping of meta-tasks, and covered a wide range of techniques.

- 19 -

4. EXPERIMENTAL RESULTS

4.1 Introduction

An interactive software application has been developed that allows simulation,
testing, and demonstration of the heuristics examined in Chapter 3, applied to the
met a-tasks defined by the ET C matricesdescribed in Chapter 2. The software allows
a user to specify t and m, to select which type of ETC matricesto use, and to choose
which heuristics to execute. It then generates the specified ETC' matrices, executes
the desired heuristics, and displays the results, similar to Figures 4.1 through 4.12.

The results discussed in this chapter were generated using this software.

4.2 Resultsfor 512 Tasks

4.2.1 Heuristic Execution Times

When comparing mapping heuristics, the execution time of the heuristics them-
selves is an important consideration. For the eleven heuristics that were compared,
the execution times varied greatly. The experimental results discussed below were
obtsined on a Pentium II 300 MHz processor with 1GB of RAM. The heuristic ex-
ecution times are the average time each heuristic took to compute a mapping for a
single 512 task x 16 machine ETC matrix, averaged over 100 different matrices (each

of the same type).

The first three heuristics described, OLB, MET, and MCT, each of which has
asymptotic complexity of O(mt), executed in less than one microsecond per ET'C
matrix. Next, the Min-min, Max-min, and Duplex heuristics, each with asymptotic

complexity O{mt?), executed in an average of 200 milliseconds. The GA, which

- 90 -

usually provided the best results (in terms of makespan), had an average execution
time of 60 seconds. GSA, which uses many procedures similar to the GA, had an
average execution time of 69 seconds. As described in the previous chapter, SA and
Tabu were adapted to provide a more fair comparison with the results of the GA, so
their average execution times were also approximately 60 seconds per ETC matrix.
Finally A* which has exponential complexity, executed in an average of over 20

minutes (1200 seconds).

The resulting makespans (i.e., the time it would take for a given meta-task to
complete on the heterogeneous environment) from the simulations for every case of
consistency, task heterogeneity, and machine heterogeneity are shown in Figures 4.1
through 4.12. After each figure is a table with a sample 8 X 8 subsection from one of
the 512 x 16 ET C matrices with the same type of consistency (Tables 4.1 through
4.12). All experimental results represent the average makespan for a meta-task of
the defined type of ETC matrix. For each heuristic and each type of ETC matrix,
the results were averaged over 100 different ETC matrices of the same type (i.e., 100
mappings). Therange barsfor each heuristic show the 95% confidenceinterval [Jai91]
(min, max) for the average makespan. This interval represents the likelihood that
maliespans of mappings for that type of heterogeneity and heuristic fall within the
specified range. That is, if another ETC matrix (of the same type) was generated,
and the specified heuristic generated a mapping, then the makespan of the mapping

would be within the given confidence interval with 95% certainty.

4.2.2 Consistent Heterogeneity

The results for the meta-task execution times for the four consistent cases are
shown in Figures 4.1, 4.2, 4.3, and 4.4. The corresponding ETC matrix excerpts are
in Tables 4.1, 4.2, 4.3, and 4.4. The differences in magnitude on the y-axis among
the graphs are from the different ranges of magnitude used in generating the different

types of ETC matrices.

e e

_91 -

F)

For both cases of low machine heterogeneity. the relative performance order of the
heuristics from best to worst was: (1) GA, (2) Min-min, (3) Duplex, (4) GSA, (5)
A*, (6) Tabu, (7) MCT, (8) SA, (9) Max-min, (10) OLB, and (11) MET. For the two
high machine heterogeneity cases, the relative performance order of theheuristics from
best to worst was: (1) GA, (2) Min-min, (3) Duplex, (4) A*, (5) GSA, (6) MCT, (7)
Tabu, (8) S4, (9) Max-min, (10) OLB, and (11) MET. For consistent ETC matrices,
the MET algorithm mapped all tasks to the same machine, resulting in the worst
performance by an order of magnitude. Therefore, MET is not included in the figures
for the consistent cases. The performance of the heuristics will be discussed in the

order in which they appear in the figures.

For all four consistent cases, OLB gave the second worst results (after MET). In
OLB, the first m tasks get assigned, one each, to the m idle machines. Because of
the the consistent ETC matrix, there will be some very poor initial mappings (tasks
m — 2 and m — 1, for example, get their worst machines). Because task execution
times are not considered, OLB may continue to assign tasks to machines where they

execute slowly, hence the poor makespans for OLB.

MCT aways performed around the median of the heuristics, giving the sixth best
(low machine heterogeneity) or seventh best (high machine heterogeneity) results.
MCT only makesone iteration through the ETC matrix, assigning tasks in the order
in which they appear in the ETC matrix, hence it can only make mapping decisions

of limited scope, and it cannot make globally intelligent decisions like Min-min or A*.

The Min-min heuristic performed very well for consistent ETC matrices, giving
the second best result in each case. Not only did Min-min always give the second
best mapping, but the Min-min mapping was always within ten percent of the best
mapping found (which was with GA, discussed below). Min-min is able to make
globally intelligent decisions to minimize task completion times, which also results
in good machine utilization and good makespans. Similar arguments hold for the

Duplex heuristic.

- 99

{n contrast, the Max-min heuristic always performed poorly, giving only the ninth
best mapping. Consider the state of the machine ready times during the execution
of the Min-min and Max-min heuristics. Min-min always makes the assignment that
chaages the machine ready times by the least amount. In general, the assignment
made by Max-min will change the machineready times by alarger amount. Therefore,
the values of the machine ready times for each machine will remain closer to each
other when using the Min-min heuristic than when using the Max-min heuristic. Both
Mir-min and Max-min will assign a given task to the machine that gives the best
completion time. However, if the machine ready times remain close to each other,
then Min-min gives each task a better chance of being assigned to the machine that
gives the task its best execution time. In contrast. with Max-min, there is a higher
probability of there being relatively greater differences among the machine ready
times. This results in a"load balancing" effect, and each task has a lower chance of

being assigned to the machine that gives the task its best execution time.

For the heterogeneous environments considered in this study, the type of special
case where Max-min may outperform Min-min (as discussed in Chapter 3) never
occurs. Min-min found a better mapping than Max-min every time (i.e., in each
of the 100 trials for each type of heterogeneity). Thus, Max-min performed poorly
in this study. As a direct result, the Duplex heuristic always selected the Min-min
solution, giving Duplex a tie for the second best solution. (Because Duplex aways

relied on the Min-min solution, it is listed in third place.)

GA provided the best mappings for the consistent cases. This was due in large
part to the good performance of the Min-min heuristic. The best GA solution always
came from one o the populations that had been seeded with the Min-min solution.
However, the additional searching capabilities afforded to GA by performing crossover
and mutation were beneficial, as the GA was always able to improve upon thissolution

by ive to ten percent.

- 93 -

SA, which manipulates a single solution, ranked eighth for both types of machine
heterogeneity. For this type of heterogeneous environment, this heuristic (as imple-
mented here) do not perform as well as the GA which had similar execution time and
Min-min which had a faster execution time. While the SA procedure isiterative (like
the GA procedure), it appears that the crossover operation and selection procedure

of the GA are advantageous for this problem domain.

The mapping found by GSA was ecither the fourth best (low machine hetero-
geneity) or the fifth best (high machine heterogeneity) mapping found, alternating
wita A*. GSA does well for reasons similar to those described for (GA. The average
makespan found by GSA could have been slightly better, but the results were hin-
dered by afew very poor mappings that werefound. These very poor mappings result
in the large confidence intervals found in the figures for GSA. Thus, for these hetero-
geneous environments, the selection method from GA does better than the method

frormn GSA.

Tabu provides fairly constant results, always finding the sixth or seventh best
mapping (alternating with MCT). As noted in the previous chapter, because of the
short hop procedure implemented and the structure of the consistent matrices, Tabu
finds most of the successful short hops right away and must then perform a large
nurnber of unsuccessful short hops (recall machine m; outperforms machine m;,; for
the consistent cases). Because the stopping criteria is determined by the number of
successful hops, and because each short hop procedure has few successful hops, more
successful long hops are generated, and more of the solution space is searched. Thus,

Tabu performs better for consistent matrices than for inconsistent.

Considering the order of magnitude difference in execution times between A* and
the other heuristics, the quality of the mappings found by A* was disappointing. The
A* mappings alternated between fourth and fifth best with GSA. The performance
of A* was hindered because the estimates made by A;{n) and hy(n) are not as ac-

curate for consistent cases as they are for inconsistent and partially-consistent cases.

- 924 -

For consistent cases, h;(n) underestimates the competition for machines and f,(n)

overestimates the number of tasks that can be assigned to their best machine.

4.2.3 Inconsistent Heter ogeneity

For the four inconsistent test cases in Figures 4.5 through 4.8 and Tables 4.5
through 4.8, one sees similar trends in all four cases. For both cases of low machine
heterogeneity, the relative performance order of the heuristics from best to worst was:
(1) GA, (2) A*, (3) Min-min, (4) Duplex, (5) MC'T, (6) MET, (7) GSA, (8) SA, (9)
Tabu, (10) Max-min, and (11) OLB. For the two high machine heterogeneity cases,
the relative performance order of the heuristics from best to worst was: (1) GA, (2)
A*, (3) Min-min, (4) Duplex. (5) MCT, (6) MET, (7) SA, (8) GS4, (9) Max-min,
(10)Tabu, and (11) OLB.

MET performs much better than in the consistent cases, while the performance of
OL B degrades. Thereason OLB does better for consistent than inconsistent matrices
is as follows. Consider for example, machine my and machine m; n the consistent
case. By definition, all tasks assigned to mq will be on their best machine, and all tasks
assigned to m; will be on their second best machine. However, OLB ignores direct
consideration of the execution times of tasks on machines. Thus, for the inconsistent
case, none of the tasks assigned to mg may be on their best machine, and none of
the tasks assigned to m; may be on their second best machine, etc. Therefore. it is
more likely that OLB will assign more tasks to poor machines, resulting in the worst
mappings for each of the inconsistent cases. In contrast, MET improves and finds
the sixth best schedules because the “best” machines are distributed across the set
of machines, thus task assignments will be more evenly distributed among the set of

machines avoiding load imbalance.

Similarly, MCT can also exploit thefact that the machines providing the best task
completion times are more evenly distributed among the set of machines. Thus, by

assigning each task, in the order specified by the ETC matrix, to the machine that

completes it the soonest, there is a better chance of assigning a task to a machine

that executes it well, decreasing the overall makespan.

Min-min continued to give better results than Max-min (which ranked ninth or
tenth), by a factor of about two for all of the inconsistent cases. In fact,, Min-min
was again one of the best of all eleven heuristics, giving the third best mappings,
which produced makespans that were still within 12% of the best makespans found.
As noted earlier, Duplex selected the Min-min solution in every case, and so ranked

fourth.

GA provided the best mappings for the inconsistent cases. GA was again able to
benefit from the performance of Min-min, as the best solution always came from from
one of the populations seeded with the Min-min solution. GA has provided the best
solution in all consistent and inconsistent cases examined, and its execution timeis
largely independent of any of the heterogeneity characteristics. This makesit a good

general-purpose heuristic, when mapper execution time is not a critical issue.

SA and GSA had similar results, alternating between the seventh and eighth best
schedules. For the high machine heterogeneity cases, SA found mappings that were
better by about 25%. For the low niachine heterogeneity cases, GSA found the better

mappings, but only by 3to 11%.

Tabu performs very poorly (ninth or tenth best) for inconsistent matrices when
compared to its performance for consistent matrices (sixth or seventh best). The se-
quential procedure for generating short hops, combined with theinconsistent structure
of the ETC matrices, results in Tabu finding more successful short hops, and per-
forming fewer unsuccessful short hops. Many more intermediate solutions of marginal
improvement exist within an inconsistent E7'C' matrix. Therefore, the hop limit is
reached faster because of all the successful short hops (even though the hop limit is
higher). Thus, less of the solution space is searched, and the result is a poor solution.

That is, for the inconsistent case, the ratio of successful short hops to successful long

- 926 -

hops increases, as compared to the consistent case, and fewer areas in the search space

are examined.

A* had the second best average makespans, behind GA, and both of these methods
produced results that were usually within a small factor of each other. A" did well
because if the machines with the fastest execution times for different tasks are more

evenly distributed, the lower-bound estimates of k;(n) and %;(n) are more accurate.

4.2.4 Partially-consistent Heter ogeneity

Finally, consider the partially-consistent cases in Figures 4.9 through 4.12 and
Tables 4.9 through 4.12. For both cases of low machine heterogeneity, the relative
performance order of the heuristics from best to worst was: (1) GA, (2) Min-min,
(3) Duplex, (4) AT, (5) MCT. (6) GSA, (7) Tabu, (8) SA, (9) Max-min, (10) OLB,
and (11) MET. For the high task, high machine heterogeneity cases, the relative
performance order of the heuristics from best to worst was: (1) GA, (2) Min-min,
(3) Duplex, (4) A*, (5) MCT, (6) GSA, (7) SA, (8) Tabu, (9) Max-min, (10) OLB,
and (11) MET. The rankings for low task, high machine heterogeneity were similar

to high task, high machine heterogeneity, except GSA and SA are switched in order.

'The MET performed the worst for every partially-consistent case. Intuitively,

MET is suffering from the same problem as in the consistent cases. half of all tasks

are getting assigned to the same machine.

OLB does poorly for high machine heterogeneity cases because bad assignments
will have higher execution times for high machine heterogeneity. For low machine
heterogeneity, the bad assignments have a much lower penalty. In all four cases, OLB

was the second worst approach.

MCT again performs relatively well (fifth best) because the machines providing
the best task completion times are moreevenly distributed among the set of machines,

similar to the inconsistent cases. Max-min continued to do poorly and ranked ninth.

The Duplex solutions were the same as the Min-min solutions, and tied for second
best. Therankings for SA, GSA, and Tabu were approximately the averages of what

they were for the consistent and inconsistent cases, as might be expected.

The best heuristics for the partially-consistent cases were GA (best), and Min-
min (second best), followed closely by A* (fourth best, after Duplex). This is not
surprising because these were among the best heuristics from the consistent and
inconsistent tests, and partially-consistent matrices are a combinaiion of consistent
and inconsistent matrices. Min-min was able to do well because it's approach assigned
a high percentage of tasks to their first choice of machines. A* was robust enough to
handle the consistent components of the matrices, and did well for the same reasons
mentioned for inconsistent matrices. GA maintained its position as best heuristic.
The execution time and performance of GA is largely independent of heterogeneity
characteristics. The additional regions of the solution space that are searched by the
GA mutation and crossover operations are beneficial, as they were always able to

improve on the Min-min solution by five to ten percent.

4.3 Summary

To summarize the findings of this chapter, for consistent ETC matrices, GA gave
the best results, Min-min the second best, and MET gave the worst. When the ETC
matrices were inconsistent, OLB provided the poorest mappings while the mappings
from GA and A* performed the best. For the partially-consistent cases. GA still gave
the best results, followed closely by Min-min and A*. while MET had the slowest.
All results were for meta-tasks with t = 512 tasks executing on m = 16 machines,

averaged over 100 different trials.

For the situations considered in this study, the relative performance of the mapping
hecristics varied based on the characteristics of the HC environments. The GA always
gave the best performance. If mapper execution timeisalso considered, Min-min gave

excellent performance (within 12% of the best) and had a very small execution time.

~ 98 -

5. ALTERNATIVE IMPLEMENTATIONS

The experimental results in Chapter 4 show the performance of each heuristic
uncler the assumptions presented. For several heuristics, specific control parameter
values and control functions had to be selected. In most cases, control parameter
values and control functions were based on the references cited and/or preliminary
experiments that were conducted. However, for these heuristics, several different,
valid implementations are possible using different control parameters and control
functions. Sorne of these control parameters and control functions are listed below

for selected heuristics.

GA: Several control parameter values could be varied in the GA, including
population size, crossover probability, mutation probability, stopping criterial and
nurnber of initial populations considered per result. Specific functions within GA
controlling the progress of the search that could be changed are initial population
"seed" generation, mutation, crossover, selection, and elitism.

SA: Parameter values with SA that could be modified are system temperature,
cooling rate, stopping criteria, and the number of runs per result. Adaptable control
procedures in SA include theinitial population "seed" generation, mutation, and the
equation for deciding when to accept a poorer solution.

GSA: Like the two heuristics its based upon, GSA also has several parame-
ters that could be varied, including: population size, crossover probability, mutation
probability, stopping criteria, cooling rate, number of runs with different initial pop-
ulations per result, and the system temperature. The specific procedures used for

the following actions could also be modified: initial population "seed" generation,

_99 .

mutation, crossover, selection, and the equation for deciding when to accept a poorer
solution.

Tabu: The short hop method implemented was a "first descent” (take the first
improvement possible) method. "Steepest descent” methods (where several short
hops are considered simultaneously, and the one with the most improvement is se-
lected) are also used in practice [DeD94]. Other techniques that could be varied are
the long hop method, the order of the short hop pair generation-and-exchange se-
guence, and the stopping condition. Two possible alternative stopping criteria are
when the tabu list reaches a specified humber of entries, or when there is no change
in the best solution in a specified number of hops.

A*:. Several variations of the A* method that was employed here could be
implemented. Different functions could be used to estimate the lower-bound A(n).
The maximum size of the search tree could be varied, and several other techniques

exist for tree pruning (e.g., [RuN95]).

In summary, for the GA, SA, GSA, Tabu, and A" heuristics there are a great
nucnber of possible valid implementations. An attempt was made to use a reasonable
implementation of each heuristic for this study. Future work could examine other

implementations.

- 30 -

6. CONCLUSIONS

The goal of this study was to provide a basis for comparison and insights into cir-
cumstances where one technique will out perform another for eleven different heuris-
tics. The characteristics of the ETC matricesused as input for the heuristics and the
methods used to generate them were specified. The implementation of a collection of
eleven heuristics from theliterature was described. The results of the mapping heuris-
tics were discussed, revealing the best heuristics to use in certain scenarios. For the
situations, implementations, and parameter values used here, GA consistently gave
the best results. The average performance of the relatively simple Min-min heuristic

was always within twelve percent of the GA heuristic.

The comparisons of the eleven heuristics and twelve situations provided in this
study can be used by researchers as a starting point when choosing heuristics to apply
in different scenarios. They can also be used by researchers for selecting heuristics to

compare new, developing techniques against.

Aclknowledgments — The authors thank Shoukat Ali for his comments. Portions
of this document appear in the proceedings of the 8th IEEE Workshop on Heteroge-
neous Computing (HCW '99).

[ArH98]

[Arm97]

[BrS98]

[ChF98]

[ChH9S]

[ChLY1]

[CoP96]

[CoL92]

-31-

LIST OF REFERENCES

R. Armstrong, D. Hensgen, and T. Kidd, "The relative performance of
various mapping algorithms is independent of sizable variances in run-time
predictions,” 7th |EEE Heterogeneous Computing Workshop (HCW ’98),

Mar. 1998, pp. 79-87.

R. Armstrong, Investigation of Effect of Different Run-Time Distributions
on SmartNet Performance, Thesis, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, Sept. 1997 (D. Hensgen, advisor.)

T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A taxonomy for
describing matching and scheduling heuristics for mixed-machine heteroge-
neous computing systems,” |EEE Workshop on Advances in Parallel and
Distributed Systems (APADS ’98), Oct. 1998, pp. 330-335 (includedin 17th
| EEE Symposium on Reliable Distributed Systems, 1998).

H. Chen, N. S. Flann, and D. W. Watson, "Parallel genetic simulated an-
nealing: A massively parallel SIMD approach,” |EEE Transactions on Par-
alel and Distributed Computing, Vol. 9, No. 2, Feb. 1998, pp. 126-136.

R.-M. Chen and Y.-M. Huang, “Multiconstraint task scheduling in multi-
processor systems by neural networks,” 10th IEEE Conference on Tools
with Artificial Intelligence, Nov. 1998, pp. 288-294.

K. Chow and B. Liu, "On mapping signal processing algorithms to a hetero-
geneous multiprocessor system," 1991 International Conference on Acous-
tics, Speech, and Signal Processing - ICASSP 91, Voal. 3, May 1991, pp.
1585-1588.

M. Coli and P. Palazzari, "Real time pipelined system design through sim-
ulated annealing,” Journal of' Systems Architecture, Vol. 42, No. 6-7, Dec.
1996, pp. 465-475.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 1992.

[DeD94|

[E11.90]

[EsW96]

[Fer89]

[FrG9g]

[Fr$93]

[GhY93]

[GIL97]

[HeK99)]

[Hol75]

[IbK77]

[TvO95]

-39

|. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, “Improving search
by incorporating evolution principles in parallel tabu search,” 1994 IEEE
Conference on Evolutionary Computation, Vol. 2, 1994, pp. 823-828.

H. ElI-Rewini and T. G. Lewis, "Scheduling parallel program tasks onto
arbitrary target machines,” Journal of Parallel and Distributed Computing,
Vol. 9, No. 2, June 1990, pp. 138-153.

M. M. Eshaghian and Y.-C. Wu, "Mapping and resource estimation in
network heterogeneous computing,” in Heterogeneous Computing, M. M.
Eshaghian, ed., Artech House, Boston, MA, 1996, pp. 197-223.

D. Fernandez-Baca, "Allocating modules to processors in a distributed sys-
tem,” | EEE Transactions on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427-1436.

R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.
Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore,
B. Rust, and H. J. Siegel, "Scheduling resources in multi-user, heteroge-
neous, computing environments with SmartNet,” 7th | EEE Heterogeneous
Computing Workshop (HCW ’98), Mar. 1998, pp. 184-199.

R. F. Freund and H. J. Siegel, "Heterogeneous processing," |EEE Com-
puter, Vol. 26, No. 6, June 1993, pp. 13-17.

A. Ghafoor and J. Yang, "Distributed heterogeneous supercomputing man-
agement system,” |EEE Computer, Vol. 26, No. 6, June 1993, pp. 78-86.

F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers,
Boston, MA, June 1997.

D. A. Hensgen, T. Kidd, M. C. Schnaidt, D. St. John, H. J. Siegel, T. D.
Braun, M. Maheswaran, S. Ali, J-K. Kim, C. Irvine, T. Levin, R. Wright, R.
F. Freund, M. Godfrey, A. Duman, P. Carff, S. Kidd, V. Prasanna, P. Bhat,
and A. Alhusaini, "An overview of MSHN: A management system for het-
erogeneous networks,” 8th IEEE Workshop on Heterogeneous Computing
Systems (HCW ’99), Apr. 1999, pp. 184-198.

J. H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, M|, 1975.

0. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling indepen-
dent tasks on nonidentical processors,” Journal of the ACM, Vol. 24, No.
2, Apr. 1977, pp. 280-289.

M. Iverson, F. Ozguner, G. Follen, "Parallelizing existing application in
a distributed heterogeneous environment,” 4th |EEE Heterogencous Com-
puting Workshop (HCW ’93), Apr. 1995, pp. 93-100.

[Jai9l]

[KaA9S]

[KhP93)

[KiC83]

[MaA99]

[MaB99]

[Pin95)

[Rud94]

[RuN95]

[ShTS5]

[ShW96]

[SiD97]

- 33 -

R. Jain, The Art of Computer Systems Perfbrmance Analysis Techniques
for Experimental Design, Measurement, Simulation, and Modeling, John
Wiley & Sons, New York, NY, 1991.

M. Kafil and |I. Ahmad, "Optimal task assignment in heterogeneous dis-
tributed computing systems,” |EEE Concurrency, Vol. 6, No. 3, July-Sept.
1998, pp. 42-51.

A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. L. Wang, "Hetero-
geneous computing: Challenges and opportunities,” IEEE Computer, Vol.
26, No. 6, June 1993, pp. 18-27.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by sim-
ulated annealing,” Science, Vol. 220, No. 4598, May 1983, pp. 671-680.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, "Dy-
namic mapping of a class of independent tasks onto heterogeneous comput-
ing systems,” Journal of Parallel and Distributed Computing, Vol. 59, No.
2, Nov. 1999, pp. 107-121

M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed
computing,” Encyclopedia of Electrical and Electronics Engineering, J. G.
Webster, ed., John Wiley & Sons, New York, NY, 1999, Voal. 8, pp. 679-690.

M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall,
Englewood Cliffs, NJ, 1995.

G. Rudolph, "Convergence analysis of canonical genetic algorithms,” |EEE
Transactions on Neural Networks, Vol. 5, No. 1, Jan. 1994, pp. 96-101.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs; NJ, 1995.

C.-C. Shen and W.-H. Tsai, "A graph matching approach to optimal task
assignment in distributed computing system using a minimax criterion:"
|[EEE Transactions on Computers, Vol. C-34, No. 3, Mar. 1985, pp. 197-
203.

P. Shroff, D. Watson, N. Flann, and R. Freund, "Genetic simulated anneal -
ing for scheduling data-dependent tasks in heterogeneous environments,”
5th |EEE Heterogeneous Computing Workshop (HCW °96), April 1996,
pp. 98-104.

H. J. Siegel, H. G. Dietz, and J. K. Antonio, "Software support for hetero-
geneous computing,” The Computer Science and Engineering Handbook.
A. B. Tucker, Jr., ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

[SiL93]

SiT97]

[SiY96]

[SrP94]

[TiP96]

[ToH99]

[VVELSQ?]

[Z0K99)

G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,” |EEE
Transactions on Parallel and Distributed Systems, Vol. 4, Feb. 1993, pp.
175~186.

H. D. Simon and S.-H. Teng, "How good is recursive bisection?” SIAM
Journal on Scientific Computing, Vol. 18, No. 5, Sept. 1997, pp. 1436-1445.

H. Singh and A. Youssef, "Mapping and scheduling heterogeneous task
graphs using genetic algorithms,” 5th |EEE Heterogeneous Computing
Workshop (HCW ’96), Apr. 1996, pp. 86-97.

M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," |EEE
Computer, Vol. 27, No. 6, June 1994, pp. 17-26.

Y. G. Tirat-Gefen and A. C. Parker, "MEGA: An approach to system-level
design of application specific heterogeneous multiprocessors,” 5th IEEE
Heterogeneous Computing Workshop (HCW ’96), Apr. 1996, pp. 105-117.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Task scheduling algorithms for
heterogeneous processors,” 8th | EEE Heterogeneous Computing Workshop
(HCW °99), Apr. 1999, pp. 3-14.

L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, "Task
matching and scheduling in heterogeneous computing environments using
a genetic-algorithm-based approach,” Journal of Parallel and Distributed
Computing, Vol. 47, No. 1, Nov. 1997, pp. 1-15.

A. Y. Zomaya and R. Kazman, "Simulated annealing techniques,” Algo-
rithms and Theory of Computation Handbook, M. J. Arallah, ed., CRC
Press, Boca Raton, FL, 1999, pp. 37-1-37-19.

initial population generation;

evaluation;
while (stopping criteria not met) {
selection;
Crossover;
mutation;
evaluation;
}

Figure 3.1. General procedure for a Genetic Algorithm, based on [SrP94].

0 LOOP: /*begin short hop procedure */
1 forti=0tot — 1 /* first task in pair */
2 formi=0tom — 1 /* first machine in pair */
3 fortj=titot — 1 /* second task in pair */
4 formj=0tom — 1 /* second machine in pair */
5 if (ti == 1))
6 evaluate new solution
with task tj on machine myj;
7 else
8 evaluate new solution with
task ti on machine mi and
task tj on machine myj;
9 if (new solution is better) {
10 replace old solution with new solution;
11 successful~hops successful~hopd 1;
2 goto LOOP; /* restart from inital state */
}
13 if (successful~hops= limit,ps)
14 goto END; /* end all searching */
15 end for
16 end for
17 end for
18 end for
19 END:

Figure 3.2. Pseudocode describing the short hop procedure used in Tabu search.

1.7e+07
1.6e+07 | { 1
—~ 1.5e+07 1
3
L 1.4e+07 t T 1
)]
E 13e+07 [1
c
S 1.2e+07 | -
=1 -
S 1.1e+07 |]
5 | |
35 1e+07 i 1
S .
& 9e+06 | 1
)]
£ 8e+06 r W 1
7e+06 - L i 1
6e+06 FE| L 4t t 1 1 ‘ 1 1
m (s c [> < < s *
4 O E§E E o »n v =2 <
© = f % 3 3
s g ¢8

Figure 4.1. Consistent, high task, high machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines

25,137.5 52,468.0 150,206.8 289,992.5 392,348.2 399,562.1 441,485.5 518,283.1
30,802.6 42,7445 49,578.3 50,575.6 58,268.1 58,987.9 852132 87,893.0
242,727.1 661,498.5 796,048.1 817,745.8 915,235.9 925,875.6 978,057.6 1,017,448.1
68,050.1 303,515.9 324,093.1 643,133.7 841,877.3 856,312.9 861,314.8 978,066.3
6,480.2 42,396.7 98,1054 166,346.8 240,319.5 782,658.5 871,532.6 1,203,339.8
175,953.8 210,341.9 261,825.0 306,034.2 393,292.2 412,085.4 483,691.9 515,645.9
116,821.4 240,577.6 241,127.9 406,791.4 1,108,758.0 1,246,430.8 1,393,067.0 1,587,743.1
| 36,760.6 111,631.5 150,926.0 221,390.0 259,491.1 383,709.7 442,605.7 520,276.8

n X0 D ~

Table 4.1. Sample 8 x 8 excerpt from one of the 512 X 16 ET'C matrices with
consistent, high task, high machine heterogeneity used in generating
Figure 4.1.

230000 —
220000 L 1
210000 | :
200000 | |
190000

180000 V%W]

170000 - 1 1

meta-task execution time (sec.)

160000 | | |]

150000 .

L.

140000

AT+

< <
I %)

OLB |
MCT |
Min-min
Max-min |
Duplex r
GSA +
Tabu

Figure 4.2. Consistent, high task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines
745.2 839.8 1,1929 1,342.1 1,896.3 2,861.4 3,180.5 3,4833]
5,000.3 5,084.6 7,350.5 8,291.5 8,517.4 8,653.4 8,977.8 9,658.6
2,119.7 2,975.5 3,046.0 4,1625 4,663.0 4,971.3 5,057.6 5,318.3
2,571.3 2,788.2 3,100.9 6,086.9 7,346.7 8,908.7 8909.2 9,171.6
1,344.3 1,559.0 1,758.3 2,815.1 3,057.0 3,161.5 4,174.6 4,949.9
4.479.1 6,283.3 8,735.4 9,241.4 12,022.0 12,079.3 14,165.8 15,684.7
3,775.2 4,506.4 4,902.4 7,2422 7,843.8 86473 8,861.6 10,161.8
2,227.6 5,199.6 5896.1 6,316.3 10,079.8 10,175.9 10,630.7 10,9776

v x O ~

Table 4.2. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
consistent, high task, low machine heterogeneity used in generating
Figure 4.2.

550000
500000 F rl— 1
450000 F |]
400000 -]
350000 - l [

300000 | W T .

250000 i

meta-task execution time (sec.)

200000

SA +

<C
O]

OLB +
MCT |
GSA
Tabu t
A*

Duplex i

Min-min
Max-min

Figure 4.3. Consistent,, low task, high machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 £TC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines

117.8 771.3 847.7 1,113.3 1,4942 1,769.5 1,784.8 2,065.6
5,645.6 6,664.7 6,705.0 6,852.4 7,116.5 7,193.0 7,858.9 7,947.9
13,232.4 13,404.8 13,475.7 13,660.6 14,090.2 14,122.1 14,238.¢ 14,889.6
18,486.2 18,515.4 18,803.2 18,913.0 19,020.1 19,319.0 19,605.4 20,001.6
22,748.8 22,999.1 23,665.0 23,687.3 23,759.6 23,780.4 24,632.7 25,329.2
28,511.5 29,095.5 30,172.9 30,239.7 30,695.7 30,854.2 30,886.1 31,261.5
35,244.7 35,293.3 35,909.2 36,265.1 36,394.4 38,436.7 38,545.2 38,560.5
41,086.6 41,133.9 41,359.1 41,798.4 41,893.0 42,235.0 42,641.0 42,6924

nw xn o ~

Table 4. 3. Sample 8 X 8 excerpt from one of the 512 X 16 ETC matrices with
consistent, low task, high machine heterogeneity used in generating
Figure 4.3.

8000
7500 |
S
(0]
£ 7000 |
(0]
E l
5 6500 T
=
Q
(0]
X 6000 - [1
e - —
8 i
& 5500 : g
0]
£
5000 |
4500 : : : — ‘ S
[1a] = c c > L~ < e = *
&) E € £ ¢ oo w =2 <
© = £ I 5 o &8
s & °

Figure 4.4. Consistent, low task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 £TC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean. For this case, the MET schedule was an
order of magnitude worse than any other schedule and so is not shown.

machines
701 1117 1176 118.7 1529 1553 1754 1774
554 706 725 1212 131.8 1429 207.1 2419
104.0 106.8 118.7 152.3 156.0 170.0 193.0 2584
1136 1612 186.4 260.0 274.1 366.5 369.0 3704
46.0 530 545 627 686 1315 1412 1435
295 332 805 108.8 110.8 119.4 133.0 1523
609 733 778 928 1025 134.0 1479 1614
752 1119 2042 270.3 293.9 3044 408.7 429.1|

n X n N ~

L

Table 4.4. Sample8x 8 excerpt from one of the 512x 16 ET C matrices with consis-
tent, low task, low machine heterogeneity used in generating Figure 4.4.

Figure 4.5.

)

(0]

22

Q L]
£ 2e+07

c

o

3 1.85e+07 + g
a oe+0)/

(]

X

[}]

X

g 1e+07 +]
T

=

Q

£

5e+06 r T
. 11 ini

<

<
w

GSA

<
O

OlLB
Tabu |

-
w o
= =

Min-min }

Max-min t

Duplex | }H

Inconsistent, high task, high machine heterogeneity execution times
for schedules from the eleven mapping heuristics, taken as the mean
over 100 ETC matrices (trials). For each trial there are 512 tasks and
16 machines. For each heuristic, the range bars show the 95 percent
confidence interval for the mean.

machines

436,735.9
950,470.7
453,126.6
1,289,078.2
646,129.6
1,061,682.3
10,783.8
1,940,704.5

815,309.1 891,469.0 1,722,197.6 1,340,988.1 740,028.0 1,749,673.7 251,140.1
933,830.1 2,156,144.2 2,202,018.0 2,286,210.0 2,779,669.0 220,536.3 1,769,184.5
479,091.9 150,324.5 386,338.1 401,682.9 218,826.0 242,699.6 11,392.2
1,400,308.1 2,378,363.0 2,458,087.0 351,387.4 925,070.1 2,097,914.2 1,206,158.2
576,144.9 1,475,908.2 424,448.8 576,238.7 223,453.8 256,804.5 88,737.9
43,439.8 1,355,855.5 1,736,937.1 1,624,942.6 2,070,705.1 1,977,650.2 1,066,470.8
7,453.0 3,454.4 23,720.8 29,817.3 1,143.7 44,249.2 5,039.5
1,682,338.5 1,978,545.6 788,342.1 1,192,052.5 1,022,914.1 701,336.3 1,052,728.3

Table 4.5.

Sample 8 X 8 excerpt from one of the 512 x 16 ET(C matrices with
inconsistent, high task, high machine heterogeneity used in generating
Figure 4.5.

300000

b

250000 ¢ 1

200000

150000 | .
: .-

100000

meta-task execution time (sec.)

50000 r

GA
SA
GSA t

Tabu
A"

ay
|_
(@)
=

OoLB

MET }
Min-min
Duplex

Max-min

Figure 4.6. Inconsistent, high task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean.

machines

21,612.6 13,909.7 6,904.1 3,621.5 3,289.5 8,752.0 5,0563.7 145153
578.4 681.1 647.9 477.1 811.9 619.5 490.9 828.7
122.8 236.9 61.3 143.6 56.0 313.4 283.5 241.9
1,785.7 1,528.1 6,998.8 4,265.3 3,1746 3,438.0 7,168.4 2,059.3
510.8 472.0 358.5 461.4 1,898.7 1,535.4 1,810.2 906.6
22,916.7 18,510.0 11,932.7 6,088.3 9,239.7 15,036.4 18,107.7 12,262.6
5,985.3 2,006.5 1,546.4 6,4446 2,6400 7,389.3 5924¢ 1,867.2
J 16,192.4 3,088.9 16,5632.5 13,160.6 10,574.2 7,136.3 153534 2,150.6

nw X ®n D ~

Table 4.6. Sample 8 X S excerpt from one of the 512 X 16 ETC matrices with
inconsistent, high task, low machine heterogeneity used in generating
Figure 4.6.

1e+06
900000 r 1
800000 r %_]
700000 r 1
600000 r 1
500000 +]

400000 l 1

300000 - 1

meta-task execution time (sec.)

200000 *

100000 |

L

<C <<
O 12}

0

MCT ¢t }
Min-min }

Max-min

GSA | —
[

OLB t

[
w
=

Duplex H“

Figure 4.7. Inconsistent, low task, high machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the 95 percent con-
fidence interval for the mean.

machines

t 16,603.2 71,369.1 39,849.0 44,566.1 55,1243 9,077.3 87,594.5 31,530.5
a 738.3 2,375.0 5,606.2 8049 11,5358 4,772.3 994.2 1,833.9
s| 15138 451 1,027.3 29621 2,748.2 2,406.3 19.4 969.9
k| 22199 5,989.2 2,747.0 88.2 2,055.1 665.0 356.3 2,404.9
S

12,654.7 10,483.7 10,601.5 6,804.6 134.3 10,532.8 12,341.5 5,046.3

4,226.0 48,152.2 11,279.3 35,471.1 30,723.4 24,234.0 6,366.9 22,926.9
20,668.5 28,875.9 29,610.1 7,363.3 24,488.0 31,077.3 8,705.0 11,849.4
52,953.2 14,608.1 58,137.2 16,685.5 36,571.3 35,888.8 38,147.0 15,167.5

Table 4.7. Sample 8 X 8 excerpt from one of the 512 X 16 ETC matrices with
inconsistent, low task: high machine heterogeneity used in generating
Figure 4.7.

10000

meta-task execution time (sec.)

Figure 4.8.

Table 4.8.

- 44 -

9000 %

8000 |
7000 |
6000 |]
5000 | '%*]
.
4000 } T |]
I
3000 }
2000 | ‘ | {J
1000 P = . ‘ : ‘ ‘
m - - c X <« <« < 3
J W o £ 2 g w wu 9 <
o = 5 & S S 8
E (@)

Max-min

Inconsistent, low task, low machine heterogeneity execution times for
schedules from the eleven mapping heuristics, taken as the mean over
100 ETC matrices (trials). For each trial there are 512 tasks and 16
machines. For each heuristic, the range bars show the: 95 percent con-
fidence interval for the mean.

machines

5129 268.0 9249 4944 611.2 606.9 921.6 209.6

85 168 234 192 279 227 196 8.3
228.8 2385 107.2 180.0 334.6 88.2 1928 1257
3451 6424 136.8 206.2 559.5 349.5 640.2 6642
117.3 2359 1499 715 136.6 363.6 182.8 3595
240.7 412.0 259.1 319.8 237.5 338.3 178.5 5377
462.8 93.3 574.9 449.4 421.8 559.6 4877 2987
1195 36.7 2242 1942 176.5 156.8 182.7 1920 |

“nu X0 M~

Sample 8 X 8 excerpt from one of the 512 x 16 ETC matrices with
inconsistent, low task, low machine heterogeneity used in generating
Figure 4.8.

2.

1

meta-task execution time (sec.)

Figure 4.9.

5e+07 1

- 45 -

3e+07

5e+07 r 1

2e+Q7 ‘]‘ |]

1e+07 +

5e+06 |

|

<<
O

A b

OLB
MET t
Tabu |

l_
O
=

Min-min +
Max-min |
Duplex

Partially-consistent, high task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic, the range bars show the 95
percent confidence interval for the mean.

machines

1,003,569.7
27,826.6
8,415.4
17,050.5
32,275.4
28,850.0
145,038.5
11,763.0

v x 0w ~

910,811.9 1,085,529.8 1,646,242.8 1,087,655.5 2,121,084.5 1,141,898.7 749,952.3
409,936.4 168,341.7 858,511.3 353,691.8 270,449.8 420,799.6 152,786.0
101,202.5 16,453.7 64,152.5 29,172.8 36,738.5 61,114.5 142,411.2
195,067.8 79,175.8 787,263.3 173,239.2 438,599.0 378,563.4 747,305.4
434,445.7 135,989.1 496,326.8 221,097.9 463,577.7 244,747.3 431,704.5
138,449.0 32,730.9 93,025.9 90,044.4 223,827.9 96,715.5 129,979.1
350,917.4 210,957.4 265,590.5 486,217.7 317,915.2 728,732.4 625,365.5
460,975.2 214,456.3 821,904.1 296,960.4 459,109.0 350,026.7 54,926.4

Table 4.9.

Sample 8 X 8 excerpt from one of the 512 x 16 ETC matrices with
partially-consistent, high task, high machine heterogeneity used in gen-
erating Figure 4.9.

- 46 -

700000

600000 1

500000]

400000

300000

200000 r

meta-task execution time (sec.)

100000

Tabu |

<
O

il

MET t
MCT |

(@)
Min-min }

Max-min |

m
|
o

Duplex | }

Figure 4.10. Partially-consistent, high task, low machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic, the range bars show the 95
percent confidence interval for the mean.

machines
2,312.2 3,186.4 2,475.5 10,455.3 3,749.3 11,8795 4,5943 1,861.9
3,403.7 16,5721 6,503.7 5,764.5 12,108.2 19,655.2 13,769.3 16,726.1
5909.0 17,4981 90424 25581.2 11,604.0 9,846.1 12,502.8 12,182.2
1,911.0 10,251.3 3,551.2 11,450.1 4,710.2 5,633.8 4,900.0 7,4856
2,3036 5,952.0 2468.3 7,1286 2,616.6 7,028.0 4,622.8 8,6404
6,866.3 2,723.1 8,230.5 14,167.8 9,109.1 16,2715 9,376.5 20,782.4
3,968.7 3,9547 7,130.2 10,055.4 11,557.9 13,028.4 14,230.1 3,955.8
3,250.5 14,1241 4,099.1 16,093.4 4,845.7 5201.4 5,756.0 7,354.7

n x o ~

Table 4.10. Sample 8 x 8 excerpt from one of the 512 X 16 ETC matrices with
partially-consistent, high task, low machine heterogeneity used in gen-
erating Figure 4.10.

_47 -

1e+06
900000 f [
S 800000 - i
g ‘
e
o 700000 t + ‘
£
= 600000 |
9
3 500000 | 1
Q
5 J
3 400000 |
x
q I
< 300000 | |
a
©
£ 200000 - |
100000 - ﬂ 1
O I L 1 1 L 1 t I L L L
(aa) — = c c x < < < = *
4 W O § E 2 s B a8 <
5 = = £ £ 3 © GRS
= d (m]
2 =

Figure 4.11. Partially-consistent. low task, high machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 ETC matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic. the range bars show the 95
percent confidence interval for the mean.

machines
173.9 1,262.8 438.4 174.5 539.4 216.9 701.3 931.2
3,007.7 14,169.0 3,075.9 3,810.9 13,178.0 30,2929 18,849.8 18,687.7
1,187.5 9,948.8 4,700.4 17,941.7 7,057.8 4,495.1 8,449.5 8,212.0
2,342.0 2,938.6 5,212.7 11,842.0 5,946.4 5,816.1 7,481.9 3,923.8
82.2 9,957.8 8,950.4 57,354.7 9,369.5 10,626.8 10,286.4 52,394.2
4,746.0 26,994.2 10,501.9 64,684.6 12,482.4 57,055.0 16,125.6 40,0441
464.9 1,363.6 508.7 1,692.6 913.7 3,953.8 1,159.5 3,660.2
15,295.7 58,303.0 20,572.0 50,002.9 21,410.2 34,503.0 24,606.6 44,327.0

w X 0n Q0 ~

Table 4.11. Sample 8 x 8 excerpt from one of the 512 X 16 ETC matrices with
partially-consistent, low task, high machine heterogeneity used in gen-
erating Figure 4.11.

_ 48 -

22000
20000 | 1
18000 *
16000 |
14000
12000]
10000

8000 - [1
6000 | 1
4000] m]
2000 ! | ‘ 1 ’_l—| ’——‘ 1 ‘
] 3 %
o) =¥ o
0

meta-task execution time (sec.)

L

<

MCT |+
Min-min j

Max-min F

< < bl
O

MET
Tabu |

Figure 4.12. Partially-consistent, low task: low machine heterogeneity execution
times for schedules from the eleven mapping heuristics, taken as the
mean over 100 KT'C matrices (trials). For each trial there are 512
tasks and 16 machines. For each heuristic, the range bars show the 95
percent confidence interval for the mean.

machines

90.5 703.0 148.2 736.7 151.0 251.2 177.4 593.6

475 3292 655 61.0 1216 915 1449 728
107.8 5444 1795 309.4 247.1 287.7 380.9 1432

62.0 203.2 69.2 61.7 924 557 938 2213
159.7 823.7 160.1 560.7 392.9 133.7 603.9 621.3

945 279.1 113.0 48.7 139.0 167.8 230.8 127.8

93.9 1752 413.7 144.6 489.2 6129 5419 7554
109.5 503.1 226.0 213.0 601.9 8125 709.5 238.0

O X 0n N ~

Table 4.12. Sample 8 x 8 excerpt from one of the 512 x 16 ETC matrices with
partially-consistent, low task, low machine heterogeneity used in gen-
erating Figure 4.12.

	Purdue University
	Purdue e-Pubs
	3-1-2000

	A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Ileterogeneous Distributed Computing Systems
	Tracy D. Braunt
	Howard Jay Siegel
	Noah Beck
	Ladislau L. Boloni
	Muthucumaru Maheswarans
	See next page for additional authors
	Authors

