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Abstract

Independent Job Scheduling is one of the most useful versions of scheduling in Grid sys-
tems. It aims at computing efficient and optimal mapping of jobs and/or applications submitted
by independent users to the Grid resources. Besides traditional restrictions, mappings of jobs to
resources should be computed under high degree of heterogeneity of resources, the large scale and
the dynamics of the system. In view of the challenging nature of the problem, heuristic and meta-
heuristic approaches are the most feasible candidate methods due to their ability to deliver high
quality solutions in reasonable computing time. One class of meta-heuristics, less explored for the
problem, is that of Hierarchic Genetic Strategy (HGS), a variant of Genetic Algorithms (GAs) that
distinguishes for its capability of concurrent search of the solution space. In this work we present
an implementation of HGS for Independent Job Scheduling in dynamic Grid environments. We
consider the bi-objective version of the problem in which makespan and flowtime are simultane-
ously optimized. Building on our previous work, we improve the HGS scheduling strategy for
the problem, by enhancing its main branching operation. The resulting HGS-based scheduler is
evaluated under the heterogeneity, the large scale and dynamics conditions using a Grid simula-
tor. The experimental study showed that the HGS implementation outperforms existing GA-based
schedulers proposed in the literature.
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1. Introduction

Computational Grids (CGs) has emerged as an alternative to super-computing for solving large-
scale problems within a reasonable time, by making use of large amounts of computational re-
sources virtually joined in CGs. At the center of CGs is the mapping of tasks and applications
submitted by independent user to Grid resources. Indeed, matching the computational needs of
applications within resource availability in the system is crucial to achieve the efficiency and scal-
ability under the conditions of heterogeneity, large scale and dynamics of the CGs.

Despite of many known approaches from traditional scheduling in super-computing, cluster
computing and LANs, the design of efficient schedulers in Grid environments remains still a chal-
lenging task. In fact, scheduling problem in Grid systems can be seen as a family of problems.
Depending on the restrictions imposed by the application needs, the problem model depends on
the number of objectives to optimize (single vs. multi-objective), the environment (static vs. dy-
namic), processing mode (immediate vs. batch), tasks dependencies (independent vs. dependent),
among others. In this paper we consider the bi-objective scheduling problem in the Computational
Grid, referred to as the Independent Job Scheduling, in which two main metrics of the schedul-
ing effectiveness, namely makespan and flowtime, are simultaneously optimized. We assume that
tasks are processed in a batch mode and there are no dependencies among tasks so that they can be
independently computed on Grid resources.

Independent Batch Job Scheduling is one of the most useful versions of scheduling in Grid
systems. There are many realistic application scenarios in which arises the need of independent
job scheduling. First, this version is suitable to Grid systems given the nature of its users, who
submit jobs or monolithic application in independent manner to the system. Second, Grid systems
are most useful for massive parallel processing, in which large amounts of data are processed in-
dependently. In such case, batch mode is appropriate given that Grid-enabled application manage
voluminous data, could run periodically and also because large amount of data have to be trans-
ferred, replicated and accessed by the applications. Thus, tasks and applications are grouped in
batches and scheduled as a group. Real life examples of batch scheduling include processing of
large log data files of online systems (e.g. banking systems, virtual campuses, health systems, etc.),
processing of large data sets from scientific experimental simulations (e.g. High Energy Physics,
Parameter sweep applications, etc.), data mining in bio-informatics applications, etc. Even under
the independent nature of jobs and the batch processing, the problem is computationally hard to
solve [8]. Moreover, it becomes more challenging due to their high degree of heterogeneity of
resources, the large scale and the dynamics of Grid systems.

In view of the challenging nature of the problem, heuristic and meta-heuristic approaches are
the most feasible candidate methods due to their ability to deliver high quality solutions in rea-
sonable computing time. One class of meta-heuristics, less explored for the problem, is that of
Hierarchic Genetic Strategy (HGS), a variant of Genetic Algorithms (GAs) that distinguishes for
its capability of concurrent search of the solution space. The objective of this work is to define
an effective genetic-based batch scheduler, which can be easily implemented in a dynamic Grid
environment. We used the framework of the Hierarchical Genetic Strategy (HGS) [10] to design
the Hierarchic Genetic Scheduler (hereafter HGS-Sched), which is based on the family of de-
pendent genetic processes enabling a concurrent search in the optimization domain. Building on



our previous work [12], we improve the HGS scheduling strategy for the problem, by enhancing
its main branching operation. Further, the resulting HGS-based scheduler is evaluated under the
heterogeneity, the large scale and dynamics conditions using a Grid simulator [21].

The remainder of this paper is structured as follows. We define the Independent Job Scheduling
problem in Section 3. The specification of HGS-Sched procedures and a short description of
genetic operators used in HGS are given in Section 4. Section 5 presents the experimental analysis
of the performance of HGS-Sched. The paper ends in Section 6 with some final remarks.

2. Related work

Several stochastic and heuristic optimization methods have been proposed for Job Scheduling
in Computational Grids. Monte Carlo methods, Simulated Annealing (SA), Tabu Search (TS),
Genetic Algorithms (GA), among others, attempt to avoid the premature convergence to the local
minima. An interesting implementation of SA for Grid scheduling was proposed by Yarhan and
Dongarra in [28]. In their work the Annealing Scheduler is compared to the ad-hoc scheduler
by the experimental evaluation in a real life scenario. The authors performed their experimental
study in the network of three US Grid clusters, namely UTK TORC, UTK MSC and UIUC OPUS
clusters. Abraham et al. [1] present three heuristic schedulers, namely SA, TS and GA, which can
be additionally hybridized with each other in order to improve the scheduling efficiency.

GAs are well known for their robustness and have been applied successfully to solve schedul-
ing problems in a variety of fields. The GAs approaches for Grid scheduling are addressed in
several works. Zomaya and Teh [29] used GAs for dynamic load balancing. Braun et al. [4] com-
pare the efficiency of a simple GA-based scheduler and methods from the set of ten static meta-task
mapping heuristics from the literature, including Min-Min, Min-Max, Minimum Completion Time
(MTC) algorithms [3]. The experimental study were performed for the static benchmark for Inde-
pendent Job Scheduling in distributed heterogenous computing environment. The instances in this
benchmark were defined using the ETC matrix model [2]. The same type of scheduling problem
is considered by Xhafa et al. [22], where the authors examine several variations of GAs opera-
tors in order to identify a configuration of operators and parameters that works best for the prob-
lem. Then, the efficiency of GA-based scheduler with the appropriate combination of operators
is compared with the effectiveness of the GAs approach presented in [4]. The method presented
in [22] were extended by plugging the GA scheduler into Grid simulator [21] to perform the exper-
iments in a dynamic environment. The results of the evaluation of the GA scheduler were reported
in [24, 7, 27].

Recently some parallel GA frameworks are used for designing the effective Grid schedulers.
Lim et al. [14] propose Grid-Enabled Hierarchical Parallel Genetic Algorithm (GE-HPGA) based
on HPGA framework. Another method of improving the scheduling quality is the hybridization
of the heuristics with Local Search methods for the problem [19]. A GA-TS hybrid version was
proposed by Xhafa et al. [26]. Other approaches for the problem include the use of Fuzzy Particle
Swarm Optimization [15] and economic-based approaches [6].

We propose in this paper a HGS-based scheduler using the HGS framework [10]. HGS has
been successfully applied in solving continuous global optimization problems with multi-modal



and weakly convex objective functions [20]. It was also used as an efficient method for Permutation
Flowshop Scheduling [13] as well as for solving some practical engineering problems [11].

3. Statement of the problem

In the version of Independent Batch Scheduling, it is assumed that jobs submitted to the Grid
are independent and not preemptive. Additionally, we consider that tasks are processed in batch
mode [23]. The problem is formalized using the Expected Time to Compute (ETC) matrix model [2]
(see Subsec. 3.1). Based on this model, we define several optimization criteria as well as the
objective function used in this work for the scheduling problem (see Subsec. 3.2).

3.1. The Expected Time to Compute model
In the ETC model an instance of the problem is defined by the following data, which has to be

provided in input:

• the estimation of workload of each task (usually in millions of instructions);

• the computing capacity of each machine (usually in millions of instructions per second,
MIPS);

• the estimation of the prior load of each available machine;

• the ETC matrix, whose entries ETC[t][i] define the estimation of the time needed for the
completion task t in machine i.

The workload of all tasks submitted to the Grid system is defined by the workload vector
WL = [wl1, . . . ,wln], where wlt denotes the computational load of the task t and n is the total
number of tasks. The computing capacity of the Grid resources can be characterized by the vector
CC = [cc1, . . . , ccm], in which cci denotes the computing capacity of machine i and m is the
total number of machines. The workload of each submitted task can be estimated based on the
specifications provided by the users, on historical data, or it can be obtained from predictions [9].
Having the vectors WL and CC, the entries of the ETC matrix can be computed as the ratio:

ETC[t][i] =
wlt

cci
. (1)

Next, we use the ETC matrix to express optimization criteria as well as the objective function
used in this work.

3.2. Optimization criteria and objective function
The problem of scheduling jobs in Computational Grid is multi-objective in its general setting

as the quality of the solutions can be measured under several criteria. Similarly as in [22], [24]
and [7] we consider the scheduling in Grids as the bi-objective global optimization in which
makespan and flowtime are to be minimized. The makespan is defined as the finishing time of the
latest task and can be calculated by the following formulae:

Makespan = min
S∈S chedules

max
j∈Tasks

F j, (2)



where F j denotes the time when task j is finalized, Tasks denotes the set of all tasks submitted to
the Grid system and S chedules is the set of all possible schedules.

The second criterion is the flowtime, expressed as the sum of finalization times of all the tasks.
It can be defined in the following way:

Flowtime = min
S∈S chedules

∑

j∈Tasks

F j (3)

Both makespan and flowtime are expressed in arbitrary time units. In fact, their values are in
incomparable ranges (flowtime has a higher magnitude order over makespan and its values increase
as more jobs and machines are considered), therefore mean f lowtime = f lowtime/nb machines is
used to evaluate the flowtime criterion.

In the multi-objective optimization two fundamental models are useful: the hierarchical and
the simultaneous optimization. In the hierarchical case, the objectives are sorted according to
their importance in the model. The optimization process starts by optimizing the most important
objective. Then, when further improvements are not possible, the second objective is optimized,
without worsening the value of the first objective. The method proceeds until all objectives have
been considered. In the simultaneous method all objectives are optimized simultaneously.

We used the simultaneous method in this work2 expressed as follows:

f itness = λ · makespan + (1 − λ) · mean f lowtime. (4)

4. Hierarchic Genetic Strategy based scheduler

The main idea of HGS-Sched is to enable a concurrent search of the optimal schedules in
Grid environment by the simultaneous execution of many dependent evolutionary processes. The
dependency relation among processes has a tree structure with the restricted number of levels.
Every single process is interpreted as the branch in this structure and can be defined as a sequence
of evolving populations. Many known GA-based schedulersb (e.g. [? 22]) can be implemented as
main mechanisms of the evolution in HGS-Sched branches. The process in the core of the structure
governs all search procedures and it is active until the stopping criterion for the whole strategy is
satisfied. The HGS-Sched mechanism is different from the mechanism of the hierarchical and
branching schedulers applied for solving the grid scheduling problems as well as the classical
job-shop problems (see e.g. [5]).

A simple graphical representation of the HGS-Sched structure is presented in Fig. 1.
Each branch in this structure is characterized by a degree parameter j ∈ N. The degree of

the given branch corresponds to the accuracy of the search of the active process in this branch.
The unique branch of the lowest degree 0 is called root. The processes of lower degree are not
expected to be as effective as the global and local optimizers. The main idea of the execution of
such processes is just the detection of the promising regions in the optimization domain, where
more accurate processes of the higher degrees are further activated.

2We used λ = 0.75 in the main parameter settings based on the experimental tuning results presented in [24].



 

Figure 1: An example structure of HGS-Sched after execution of 3 meta-epochs

We denote by Pe
i, j; ( j ∈ {1, . . . , M}, M ∈ N) the population evolving in the branch of degree j,

where:

• e ∈ N defines the global meta-epoch counter;

• M is the maximal degree of a branch;

• i is the unambiguous branch identifier, i =
(
i1, . . . , iM), ih = 0 for h > j, which describes the

“history of creation” of the given branch [20]

A k-periodic meta-epoch, denoted by Mk, (k ∈ N), can be defined as a finite k-generational
evolutionary process terminated by the selection of the best adapted individual. The outcome of
the meta-epoch started from the population Pe

i, j is expressed by the following formulae:

Mk
(
Pe

i, j
)

=
(
Pe+l

i. j , x̂
)
; (5)

where x̂ is the best adapted individual in the meta-epoch.
The algorithm starts from an initial population generated in the root. A new branch of the higher

degree can be created by using the Sprouting Operation (SO) after running a meta-epoch in the
parental branch. In Sections 4.1 and 4.2 we define the genetic mechanism implemented in HGS-
Sched branches. The reduction of some ineffective branches operating in similar regions in the
optimization domain can be performed by using the Branch Reduction Operation (see Section 4.5).



Algorithm 1 Genetic engine template
1: Generate the initial population P0 of size µ; t = 0
2: Evaluate P0;
3: while not termination-condition do
4: Select the parental pool T t of size λ; T t := S elect(Pt);
5: Perform crossover procedure on pars of individuals in T t with probability pc; Pt

c := Cross(T t);
6: Perform mutation procedure on individuals in Pt

c with probability pm; Pt
m := Mutate(Pt

c);
7: Evaluate Pt

m ;
8: Create a new population Pt+1 of size µ from individuals in Pt and Pt

m ; Pt+1 := Replace(Pt; Pt
m)

9: t := t + 1;
10: end while
11: return Best found individual as solution;

4.1. GA engine in HGS scheduling branches
In all HGS-Sched branches, we used as evolutionary processes the GA template of Alg. 1 (a

similar template can be found in [22].)
The general framework of the Alg. 1 is based on the idea of the classical (µ + λ) evolutionary

strategy (see e.g. [18]), adapted to the scheduling problem through the implementation of specific
schedule encoding methods and genetic operators.

4.2. Representations of individuals and genetic operators
In this section we specify the basic methods of chromosome representation and various ge-

netic operators we applied in GA-engine of our hierarchical scheduler. We used in our work two
methods of encoding of the schedules in Grids, namely direct representation and permutation-
based encoding. In the direct representation each schedule is defined as the schedule vector
x = [x1, . . . , xnb task]T , coordinates of which are the numbers of machines to which the particular
tasks are assigned, i.e. xi ∈ [1, nb machines]; i = 1, . . . nb tasks. In permutation-based represen-
tation we define for each machine a sequence of tasks assigned to that machine. The tasks in the
sequence are increasingly sorted with respect to their completion times. Then all task sequences
are concatenated into one global vector u, which is in fact the permutation of tasks to machines.
In this representation some additional information about the numbers of tasks assigned to each
machine is required. We defined then the vector v of the size nb machines, in which the numbers
of tasks assigned to the following machines are specified as its coordinates. A schedule in this
representation is then defined as the pair of vectors:

x = (u; v), u = [ui, . . . , unb task]T , v = [v1, . . . , vnb machines]T (6)

where ui ∈ [1, . . . , nb task] and v j ∈ [1, . . . , nb task].
The following vector [1, 2, 1, 4, 3, 1, 2, 4, 3, 3]T is an example of the schedule for 4 machines

and 10 tasks encoded by the direct representation method. The same schedule in the permutation-
based representation is as follows: ([1, 3, 6, 2, 7, 5, 9, 10, 4, 8]T ; [3, 2, 3, 2]T .

We used in this work the direct representation for the encoding of the individuals in the base
populations denoted by Pt in Alg. 1. The permutation-based representation allowed us to apply
some additional types of genetic operators, which increases thus the number of possible configu-
rations in the genetic engine of HGS-Sched.



4.3. Initial population
The initial population in GA is usually generated randomly. However in the case of scheduling

problems it can be useful to combine the random method with another heuristic for creating a
small amount of individuals (usually single individual) to increase the diversity of the population.
The detailed characteristics of several initialization methods for scheduling in Grids can be found
in [22]. In our approach we propose the MTC + LJFR-SJFR method for the initialization of the
population in HGS-Sched root. In this method all but two individuals are generated randomly.
Two solutions are created by using the Longest Job to Fastest Resource - Shortest Job to Fastest
Resource (LJFR-SJFR) and Minimum Completion Time (MCT) heuristics.

In LJFR-SJFR heuristic both makespan and flowtime are minimized simultaneously (LJFR
(min makespan) is alternated with the SJFR (min flowtime)). Initially the number of nb machines
tasks with the highest workload are assigned to the available machines sorted increasingly to their
computing capacities. Then the remaining unassigned tasks are allocated in the remaining re-
sources. In the MCT heuristic, a given task is assigned to the machine yielding the earliest com-
pletion time.

4.4. Genetic operators
The genetic procedures used in Alg. 1 are selected from the following set of operators:

• Selection operators: Linear Ranking Selection, N-Tournament Selection;

• Crossover operators: One Point Crossover, PMX, OX, CX;

• Mutation operators: Move, Swap, Rebalancing;

• Replacement operators: Steady State, Elitist Generational.

All those operators are typical for genetic algorithms used in the combinatorial optimization.
We briefly describe here the mutation operators whose definition is more problem dependent.

We consider in this paper three variants of mutation operators: Move, Swap and Rebalancing.
In Move mutation a task is moved from one machine to another one. Although the task can be
appropriately chosen, this mutation strategy tends to unbalance the number of jobs per machine.
In Swap mutation the number of task assigned to the given machine remains unchanged, but two
tasks are swapped in two different machines. Finally, the Rebalancing method makes use of the
load balancing technique.

4.5. HGS-Sched branching operators
In this section we define two branching operators for HGS-Sched, namely HGS-Sched Sprout-

ing Operator (SO) and Branch Comparison Operator (BC). We used them for the extension of the
tree structure of the strategy. BC operator is the main mechanism in Branch Reduction Operation,
which reduces the number of branches operating in the same region in the optimization domain.

The sprouting operator SO operator is defined by the following formulae:

S O
(
Pe

i, j
)

=
(
Pe

i, j, P
0
i′, j+1

)
, (7)



where x̂ is the best adapted individual found in the parental branch Pe
i, j after execution of e-th

meta-epoch.
The outcome of the operator S O is the initial population for a new branch of degree j + 1

denoted by P0
i′, j+1, where i′ =

(
i1, . . . , i j−1, 1, 0, . . . , 0

)
. The individuals for that population are

selected from the s j-neighborhood (1 ≤ s j ≤ nb tasks) of the best adapted individual x̂ in the
parental population Pe

i, j. This neighborhood can be defined by using the operator As j , which “cuts
out” a s j-length prefix from a given chromosome x, i.e.:

As j(x) = {x̃, |x̃| = s j, |x| ≥ s j}, (8)

where |x| denotes the length of x.
The s j-neighborhood of the schedule x contains all individuals which can differ from x by(

n − s j
)
-length suffixes in their genotypes. It can be achieved by the permutation of tasks in the

suffixes in the permutation representation, or task transfers to another machines in the suffixes in
the case of direct representation of individuals.

The values of s j are different in branches of the different degrees. These parameters are calcu-
lated using the following formulae:

s j = s j · nb tasks, (9)

where s ∈ [0, 1] is a global strategy parameter called neighborhood parameter and j is the branch
degree.

The sprouting operation can be activated or not, depending on the outcome of Branch Compar-
ison operator. This operator is also used in the Branch Reduction Operation for the reduction of
the branches of the same degree operating in the same (or similar) s j- neighborhood.

The BC operator is defined in the following way: BC : Q→ {0, 1} and :

BC(X,Y, s j) =


1, ∃x ∈ X,∃y ∈ Y : As j(x) = As j(y)

0, otherwise,
(10)

where Q = {(X,Y, s j)} and X,Y- are the populations in branches of degrees j and j+1 respectively in
the case of conditional sprouting of the new branch from the parental one. In the case of reduction
of the numbers of branches This operator is activated after execution of at least two meta-epochs
in the root. The value 1 means that no new branch can be sprouted form a given parental branch or
that two populations in the branches of the same degree j evolve in the same (or closely located)
s j-neighborhoods.

The main disadvantage of the implementation of the BC operator in our previous approach [12]
is its high computational cost. In fact, all populations on a given tree level have been scanned and
individuals with the same prefixes should be indicated. In this work we propose the use of hash
techniques to reduce the execution time of the BC procedure.

Similarly as in [25], where hash techniques were successfully applied for improving the effi-
ciency of the Struggle Algorithm, we define the hash table with the task-resource allocation key



denoted by k. The value of this key is calculated as the sum of the absolute values of the subtrac-
tion of each position and its precedent in the s j-length suffix in direct representation of the schedule
vector (reading the suffix in a circular way). The hash function fhash is defined as follows:

fhash(k) =



0, k < kmin⌊
N ·

(
k−kmin

kmax−kmin

)⌋
kmin ≤ k < kmax

N − 1, k ≥ kmax

(11)

where kmin and kmax correspond respectively to the smallest and the largest value of k in the popu-
lation, and N is the population size.

In the case of the conditional sprouting of the new branches of the degree j + 1 from the
parental branch of the degree j the keys are calculated for the best individual in the parental branch
and individuals in all populations in all active branches of the degree j+1. If there is any individual
in the higher degree branches, for which the key matches the key of the best adapted individual in
the parental branch, then the value of BC is 1 and no branch of the degree j + 1 is sprouted in that
moment.

In the case of the comparison of the branches of the same degree j, all branches, in which
there exists the individuals with the identical keys have to be reduced and a single joint branch is
created (the value of BC is 1). The individuals to this branch are generated using the implemented
replacement mechanism from the union of the populations from all reduced branches.

5. Experimental study

In this section we present the results of the experimental evaluation of our HGS-Sched imple-
mentation for static and dynamic versions of the scheduling problem in Grid. We integrated the
C++ code for HS-Sched algorithm with the Grid simulator HyperSim-G presented in [7, 27].

Although the aim of our experimental analysis was to test the HGS-based scheduler in a dy-
namic environment, we found it useful to initially evaluate the proposed method for a bench-
mark of static instances. We conducted our experimental study into two steps. First we validated
HGS-Sched meta-heuristic by comparing it with state-of the-arts GAs results in the literature on a
classical benchmark of the problem (Subsec. 5.1). After that, we evaluated the efficiency of four
GA-based meta-heuristics on two benchmarks composed by a set of large size static (Subsec. 5.3.1)
and dynamic (Subsec. 5.3.2) instances generated using a Grid simulator [21]. Finally, the statistical
analysis of the results is given in Subsec. 5.4.

5.1. Evaluation of the algorithm on a static benchmark
The objective of the study presented in this section is to show the efficiency of the HGS-Sched

algorithm on the classical benchmark (see below). For that, our algorithm is compared versus some
other GA-based schedulers that were previously applied to the problem.



Table 1: Comparison of crossover operators for makespan and flowtime values.
Operator Average Average

Makespan Flowtime
PMX 8182258.77332 1083433775.989
OX 9283953.76642 1253654022.331
CX 7684490.43898 10452860938.452

5.1.1. Benchmark description
The subset of static instances was taken from a larger benchmark, whose instances are classified

into 12 types of ETC matrix, according to task heterogeneity, machine heterogeneity and consis-
tency of computing. There are 512 tasks and 16 machines defined in each instance. Instances are
labelled by u x yyzz.0, where

• u denotes the uniform distribution used in generating the ETC matrix;

• x means the type of consistency (c-consistent, ĩ-inconsistent and s means semi-consistent);

• yy indicates the heterogeneity of the jobs (hi means high, and lo means low);

• zz expresses the heterogeneity of the resources (hi means high, and lo means low).

We started our experimental study by finding an appropriate combination of genetic operators
for HGS-Sched. Then we proceeded with a short comparison analysis of the performances of our
algorithm and GA-based schedulers presented in [4] and [22]. We used the hash procedure for the
reduction the ineffective branches in HGS-Sched structure (see Section 4.5). For the initial popu-
lation, one individual was generated using LJFR-SJFR, and the rest of individuals were obtained
by largely and randomly perturbing it.

5.2. Tuning of GA operators for HGS-Sched
The sizes of populations for HGS-Sched branches were set as follows:

• base populations in root and sprouted branches of degree 1: 50 and 18 respectively;

• the intermediated populations: 48 and 16 – in the case of Elitist replacement method; 38 and
14 – in the case of Steady State replacement method.

Each experiment was repeated 30 times under the same configuration of operators and parameters
and the average makespan and flowtime values were computed.

Table 1 shows the results obtained for selected crossover operators and Rebalancing mutation.
In fact, the experiments were restricted to the permutation-based methods, as the operators of this
representation showed to outperforms those of direct representation [12, 22]. As can be seen from
Table 1, CX outperforms the rest of the operators for both makespan and flowtime criteria.

The results of the tuning the mutation operators are presented in Table 2. The three selected
mutation methods (Move, Swap and Rebalancing) were combined them with CX operator. Rebal-
ancing showed to outperform significantly Move and Swap mutation operators.



Table 2: Comparison of mutation operators for makespan and flowtime values.
Operator Average Average

Makespan Flowtime
Move 8853148.607664 1087530440.192
Swap 19031484.397466 2283034176.802

Rebalancing 7696260.50065 10413560968.452

Table 3: Comparison of performance of replacement operators.
Operator Average Average

Makespan Flowtime
Steady State 7701052.84523 1041400700.341

Elitist Generational 7696260.50065 10413860968.452

Regarding the replacement of individuals, two methods were selected: the Steady State and
Elitist Generational methods. The results for both methods are given in Table 3. The Elitist Gener-
ational performed better although the differences in the results are minor. We then decided to apply
Elitist Generational in the tests with the static benchmark and to use both methods in two alternate
HGS-Sched implementation for the study of larger size instances (static and dynamic case).

5.2.1. Comparison analysis of GA-based schedulers
Once the operators performing best were identified, we used the best combination of HGS-

Sched operators to compare the HGS-Sched performance with that of two other GA-schedulers
presented in Braun et al. [4] and Xhafa et al. [22].

The values of HGS-Sched parameters for all tests are given in Table 4. The nb o f metaepochs
defines a global stopping criterion for the whole strategy, which is usually the maximal number
of meta-epochs run in the root of the structure. We denoted by cross prob the probability of
crossover in the branches of all degrees and by mut prob(0) and mut prob(1) the probabilities of
mutation for the root and the branches of degree 1, respectively. The linear ranking method was
used as selection procedure.

In order to make a fair comparison we defined for all algorithms the work parameter W, which
expresses the amount of work of the particular scheduler. The objective was to observe the perfor-
mance of the algorithms within the similar amount of work, even though they use different genetic
operators and parameters. We defined the work of GA in Eq. (12).

W = (mut prob + cross prob) × pop size × nb o f generations (12)

Table 4: HGS-Sched global parameter values
Parameter Value
degrees of branches ( j) 0 and 1
period o f metaepoch - (k) 200
nb o f metaepochs 10
neighborhood parameter - (s) 0.5
mut prob(0) 0.4
mut prob(1) 0.2
cross prob 0.8



For HGS-Sched parameter W is calculated as given in Eq. (13).

W =
[
(mut prob(0) + cross prob) × pop size(0)+

+
∑M

j=1
(
(mut prob( j) + cross prob)×

×pop size( j) × nb br( j)
)] × period o f metaepoch × nb o f metaepochs

(13)

where:

• M is the maximal degree of the branch,

• nb br( j) is the number of sprouted branches of degree j,

• pop size( j) denotes the size of population in the branch of degree j.

Based on Eqs. (12) and (13), the amount of work of three analyzed schedulers are as follows:

• for GA in [4]: W = (0.4 + 0.6) ∗ 200 ∗ 1000 = 200000,

• for GA in [22]: W = (0.4 + 0.8) ∗ 68 ∗ 2500 = 240000, and

• for HGS-Sched: W = W = ((0.2 + 0.8) ∗ 8 ∗ 12 + (0.4 + 0.8) ∗ 28) ∗ 200 ∗ 10 = 259200.

As can be seen form the above calculation, the values of work parameters are in the same range
ensuring thus a fair comparison between the considered algorithms.

Comparison of makespan values.. We present in Table 5 the average makespan values obtained by
the three GA-based schedulers.

Table 5: Comparison of average makespan values for three genetic algorithms.
Instance Braun et al. Xhafa et al. HGS-Sched
u c hihi 8050844.500 7610176.437 7607223.586402
u c hilo 156249.200 155251.196 154944.93441
u c lohi 258756.770 248466.775 247899.224211
u c lolo 5272.250 5226.972 5216.134866
u i hihi 3104762.500 3077705.818 3078022.298866
u i hilo 75816.130 75924.023 75699.81442
u i lohi 107500.720 106069.101 108646.831972
u i lolo 2614.390 2613.110 2620.150313
u s hihi 4566206.000 4359312.628 4343467.785157
u s hilo 98519.400 98334.640 98179.968964
u s lohi 130616.530 127641.889 126822.766276
u s lolo 3583.440 3515.526 3555.009945

It can be observed that HGS-Sched outperforms the GA by Braun et al. for all instances and
the GA by Xhafa et al. for 75% of considered instances. The HGS-Sched meta-heurisctic showed
to be most effective for consistent and semi-consistent ETC matrices. This observation is useful
in considering HGS-Sched as a basis for Grid scheduler that could have consistent computing
features.



Table 6: Average flowtime values for benchmark instances (in arbitrary time units).
Instance Xhafa et al. Xhafa et al. HGS-Sched

Steady State GA Struggle GA
u c hihi 1048333229 1039048563 1038168110.125
u c hilo 27687019.4 27620519, 27428920.1234
u c lohi 34767197.1 34566883,8 34240865.3567
u c lolo 920475.17 917647,31 915823.12398
u i hihi 378010732 379768078 356653620.984
u i hilo 12775104.7 12674329,1 12266233.125
u i lohi 13444708.3 13417596,7 12921130.58765
u i lolo 446695.83 440728,98 440255.6532
u s hihi 526866515 524874694 521943320.3322
u s hilo 16598635.5 16372763,2 16446320.578
u s lohi 15644101.3 15639622,5 15333843.1117
u s lolo 605375.38 598332,69 602810.81222

Comparison of flowtime values.. We report in Table 6 the flowtime values obtained in the exper-
imental study with the Steady State GA presented in [22], Struggle GA presented in [24] and
HGS-Sched algorithm (Braun et al. did not report the flowtime values). From the results, we
can conclude that HGS-Sched outperforms Steady State GA for all types of ETC matrices and
it provides better results than Struggle GA for ten instances. In the case of flowtime, HGS-Sched
performed coherently for all three groups of instances (consistent, semi-consistent and inconsistent
ETC matrices).

Results of summative evaluation for the static benchmark.. The results of the experimental com-
parison analysis of the performance of three GA-based schedulers on the static benchmark show
that HGS-Sched is more effective than two other GA-based meta-heuristics in simultaneously mini-
mizing makespan and flowtime. The reduction of makespan by the HGS-Sched was not so efficient
only for the inconsistent ETC matrices.

5.3. Experimental study of GA schedulers on large-size static and dynamic instances
Following the evaluation of HGS scheduler using instances of the static benchmark, we an-

alyzed next its performance using realistic Grid scenarios. The benchmark of new instances of
larger sizes has been generated by the HyperSim-G Grid simulator [21].

Our experiments were conducted for four variants of GA-based schedulers, namely GA-Elitist
Generational, GA-Steady State, HGS-Elitist Generational and HGS-Steady State. The GA and
HGS parameter settings are given in Tables 7and 8, resp. (Similar parameter settings for GA-based
schedulers were used in [27].)

The performance of GA-based schedulers was analyzed for two types of Grid environment:
static and dynamic. In the former, the number of tasks and the number of machines remain constant
during the simulator run. In the later case, the number of tasks and machines may vary over time.
In both cases four Grid size scenarios: small (32 hosts/512 tasks), medium (64 hosts/1024 tasks),
large (128 hosts/2048 tasks), and very large (256 hosts/4096 tasks). The capacity of the resources
and the workload of tasks are randomly generated by a normal distribution, denoted N(µ, σ). It is
assumed that all tasks submitted to the system must be scheduled and all machines in the system
can be used.



Table 7: GA settings for large static and dynamic benchmarks

Parameter Elitist Generational Steady State
evolution steps 5 ∗ (nb jobs) 20 ∗ (nb jobs)
population size (pop size) d(log2(nb jobs))2 − log2(nb jobs)e 4 ∗ (log2(nb jobs) − 1)
intermediate pop. pop size − 2 (pop size)/3
selection method LinearRanking
crossover method CX
cross probab. 0.8 1.0
mutation method Rebalancing
mutation probab. 0.2
replace only i f better false
replace generational false
initialization LJFR-SJFR + MCT + Random
max time to spend 40 secs (static) / 25 secs (dynamic)

Table 8: HGS-Sched settings for large static and dynamic benchmarks

Parameter Elitist Generational Steady State
period o f metaepoch 5 ∗ (nb jobs) 20 ∗ (nb jobs)
nb o f metaepochs 10
degrees of branches ( j) 0 and 1

population size 3 ∗ (d((log2(nb jobs))2/− 3 ∗ (d4 ∗ (log2(nb jobs) − 1)/(11.8)e)
in the root(r pop size) − log2(nb jobs))/(10.4)e

population size (b pop size) (d((log2(nb jobs))2/− (d(4 ∗ (log2(nb jobs) − 1)/(11.8)e)
in the sprouted branches − log2(nb jobs))/(10.4)e

intermediate pop. in the root r pop size − 2 abs((r pop size)/3)
intermediate pop. in the sprouted branch b pop size − 2 abs((b pop size)/3)
selection method LinearRanking
crossover method CX
cross probab. 0.8 1.0
mutation method Rebalancing
mutation probab. in root 0.4
mutation probab. in the sprouted branches 0.2
replace only i f better false
replace generational false
initialization LJFR-SJFR + MCT + Random
max time to spend 70 secs (static) / 40 secs (dynamic)



Table 9: Setting for the grid simulator for generating large static instances
Small Medium Large Very Large

Number of hosts 32 64 128 256
Resource capacities (in MIPS) N(1000, 175)∗
Total number of tasks 512 1024 2048 4096
Workload of tasks N(250000000, 43750000)
Host selection All
Task selection All
Number of runs 30

Table 10: Makespan values (±s.d.) for large static instances (s.d.: standard deviation)

Meta-heuristic Small Medium Large Very Large
GA-Elitist Generational 3988113.784 4007586.118 4023746.479 4169054.398

(±72006.550) (±50105.695) (±42185.823) (±25747.948)
GA-Steady State 3988118.830 3993515.185 4021368.781 4127259.199

(± 72001.378) (±49728.050) (±41201.608) (±25872.462)
HGS-Elitist Generational 3988112.261 3992434.325 4045232.077 4134498.487

(± 72008.149) (±49942.644 ) (±45579.987) (±26874.793)
HGS - Steady State 4012057.101 4108747.951 4121977.943 4136884.354

(±78200.951) (±58994.804) (±41121.498) (±25842.542)

5.3.1. Experimental study using Grid static instances
The parameter setting for the simulator for static Grid scenarios is presented in Table 9.
Each experiment was repeated 30 times under the same configuration of operators and param-

eters. The averaged makespan and flowtime values obtained by four GA-based schedulers are
presented in Tables 10 and 11.

The best results for makespan and flowtime in the cases of small and medium Grid sizes were
achieved by HGS-Elitist Generational scheduler. In the larger Grid systems GA-Steady State al-
gorithm outperform the other meta-heuristics for both makespan and flowtime. It can be observed
that as the instance size is doubled, the makespan values increase slowly while the flowtime values
increase considerably.

5.3.2. Experimental study in dynamic setting
In this section we applied four considered genetic-based schedulers to dynamic instances in

order to evaluate them in more realistic Grid scenario. The benchmark of the dynamic instances

Table 11: Flowtime values (±s.d) for large static instances (s.d.: standard deviation)

Meta-heuristic Small Medium Large Very Large
GA - Elitist Generational 1085676446 2169597733.454 4336424647.141 8694552320.869

(±20217021.689) (±27233178.413) (±44432177.763) (±56530933.972)
GA - Steady State 1085655077.793 2169431289.314 4334715011.418 8692986359.587

(±20371529.692) (±27062114.940) (±44455953.563) (±56442033.933)
HGS - Elitist Generational 1085575340.426 2169308217.698 4336077721.299 8693447951.636

(±20326272.800) (±27063647.498) (±44327155.275) (±56288034.985)
HGS - Steady State 1086071183.744 2169852393.768 4336176645.169 8693540827.579

(±20160724.169) (±27327858.722) (±44507669.562) (±56254201.350)



Table 12: Settings for the dynamic grid simulator

Small Medium Large Very Large
Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
MIPS N(1000, 175)
Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(250000000, 43750000)
Interarrival E(7812.5)† E(3906.25) E(1953.125) E(976.5625)
Activation Resource and time interval(250000)
Reschedule True
Host select All
Task select All
Number of runs 30

Table 13: Makespan values (±s.d)for dynamic instances (s.d.: standard deviation)

Strategy Small Medium Large Very Large
GA - Elitist Generational 4116952.350 4071583.284 4093643.875 4101176.899

(± 88997.075) (±82755.099) (±65754.879) (±19663.984)
GA - Steady State 4116828.792 4086775.533 4080009.908 4098693.322

(±88003.621) (±94409.376) (±78694.349) (± 49044.581)
HGS - Elitist Generational 4041720.386 4049342.089 4074756.208 4102796.820

(±64604.330) (±53679.081) (±41417.522) (±27351.630)
HGS - Steady State 4029602.691 4036987.551 4079790.083 4096857.780

(±62158.628) (±57950.032) (±28385.311) (±26850.714)

(from 32 to 256 machines) were defined using the same simulator as in the static case described in
the Subsec. 5.3.1. The settings for the applied dynamic grid version are presented in Table 12.

The number of hosts initially activated in the Grid environment is defined by the parameter
Init.hosts. The parameters Max.hosts and Min.hosts specify the range of changes in the number of
active hosts during the simulation process. The frequency of appearing and disappearing resources
is defined by the normal distributions given by Add host and Delete host, while the initial number
of tasks is given by Init. tasks. New tasks can arrive at the system with the frequency Interarrival
until Total tasks is reached. The Activation parameter establishes the activation policy according to
an exponential distribution. The already assigned tasks which have not been executed yet cannot
be rescheduled if the value of the boolean parameter Reschedule is false.

Similarly as in the static case the GA- and HGS-based schedulers were plugged into the sim-
ulator. The generated problem instance is passed to the particular scheduler by the execution of
the schedule procedure in the simulator. The scheduler finds a solution, which is then sent back
to the simulator to allocate tasks to machines. Tasks assigned to machines not available in the
Grid will be re-scheduled in next batch. The results of experiments performed separately for each
meta-heuristic were averaged over 30 independent runs of the simulator (see Tables 13 and 14).

It can be observed from the obtained results that HGS-Sched with Steady State replacement



Table 14: Flowtime values (±s.d.) for dynamic instances (s.d.: standard deviation)

Strategy Small Medium Large Very Large
GA - Elitist Generational 1088624728.827 2161958805.835 4325774055.778 8667695620.357

(±20327874.283) (±27840056.635) (±53264525.057) (±59203131.427)
GA - Steady State 1089239424.050 2161600149.176 4326061767.612 8663803028.647

(±20401980.079) (±21185288.886) (±53514052.118) (±57499052.221)
HGS - Elitist Generational 1071455164.177 2149393085.396 4309915896.495 8662288096.550

(±15440799.154) (±22459040.577) (±34474855.407) (±24537584.957)
HGS - Steady State 1072962417.032 2147265387.563 4308229866.603 8658644141.606

(±18783553.345) (±19506908.647) (±34146974.186) (±22299941.828)

method outperforms other three meta-heuristics in all but two instances in the minimization of
both makespan and flowtime metrics. In two cases - small grid for flowtime and large grid for
makespan – the HGS-Sched with Elitist Generational replacement holds the best results. It should
be also noticed that similarly as in the case of the large static instances (see Subsec. 5.3.1), as the
instance size is doubled, the makespan value increases slowly while the flowtime value is doubled.

5.4. Statistical analysis of the results
The results sampled in Tables 10- 14 give a general information about the schedulers’ perfor-

mance. Additionally we employed two statistical methods, namely the coefficient of variation and
the Student’s t-test for means, to analyze the statistical significance of the results.

Coefficient of variation. The coefficient of variation (CV) [17] is defined as the statistical measure
of the dispersion of data around the average value. It expresses the variation of the data as a
percentage of its mean value, and is calculated as follows:

CV(x) =
s.d.

mean(x)
· 100% (14)

The CV statistic is a useful in the analysis of the data series. It can also provide a general
analysis of the performance of the method used for generating the data. CVs calculated for stable
heuristic methods should not be greater than 5%. We present in Table 15 the coefficients of
variation calculated for all makespan and flowtime results achieved by four applied genetic-based
schedulers in the cases of the large size static and dynamic benchmarks (see Tables 10– 14).

It can be observed that in all instances the values of CVs are in the range 0−2% which confirms
the stability of the applied algorithms. Each meta-heuristic achieved the best results in the case of
very large Grid with regard to both makespan and flowtime measures.

Student’s t–test for means. Following the stability analysis of the applied meta-heuristics we per-
formed a simple statistical comparison analysis of the methods on the same sample data, in order
to confirm whether the methods provide similar analytical results or not. We used for that study the
Student’s t–test for the comparison of two means [17]. The outcome of this test is the acceptance
or rejection of the null hypothesis (H0), which states that any differences in results are purely due
to random. An erroneous rejection of the null hypothesis constitutes a Type 1 error.



Table 15: Comparison of the Coefficients of Variation (C.V.) for flowtime and makespan values in the large size static
and dynamic instances

Large Size Static Instances
Strategy Makespan Flowtime

Small Medium Large Very Large Small Medium Large Very Large
GA - Elitist Generational 1.80 1.25 1.04 0.61 1.86 1.25 1.02 0.65
GA - Steady State 1.80 1.24 1.02 0.62 1.87 1.24 1.02 0.64
HGS - Elitist Generational 1.95 1.25 1.12 0.64 1.87 1.24 1.02 0.64
HGS - Steady State 1.94 1.43 0.99 0.62 1.85 1.25 1.02 0.64

DYNAMIC INSTANCES
GA - Elitist Generational 2.16 2.03 1.60 0.47 1.86 1.28 1.23 0.68
GA - Steady State 2.13 2.31 1.92 1.19 1.87 0.98 1.23 0.66
HGS - Elitist Generational 1.59 1.31 1.01 0.66 1.44 1.04 0.79 0.28
HGS - Steady State 1.54 1.43 0.69 0.65 1.75 0.90 0.79 0.25

Table 16: Comparison of the two-tailed P-values for flowtime and makespan results in the large size static and dynamic
instances

Large Size Static Instances
Strategy Makespan Flowtime

Small Medium Large Very Large Small Medium Large Very Large
GA - Elitist Generational 0.999 0.243 0.826 < 0.001 0.984 0.967 0.882 0.914
GA - Steady State 0.999 0.933 1 1 0.987 0.986 1 1
HGS - Elitist Generational 1 1 0.037 0.292 1 1 0.905 0.974
HGS - Steady State 0.222 < 0.001 < 0.001 0.154 0.924 0.938 0.899 0.969

DYNAMIC INSTANCES
GA - Elitist Generational < 0.001 0.065 0.188 0.480 0.0005 0.021 0.134 0.436
GA - Steady State < 0.001 0.016 0.747 0.857 0.0003 0.008 0.129 0.648
HGS - Elitist Generational 0.462 0.395 1 0.399 1 0.696 0.849 0.549
HGS - Steady State 1 1 0.585 1 0.735 1 1 1

We compared the best results for the makespan and flowtime values in the static and dynamic
instances (shown in bold in Tables 10–14) with the remained results for the same Grid type. We
applied t-test within the predefined confidence level C.L., which was 95 % in our approach. In
table 16 we report the probabilities of Type 1 errors (P-values) [17], which give us the adequate
information to judge the acceptance or the rejection of the null hypothesis. The difference in results
is not statistically significant if the P-value is not grater than 0.05 (P-value is 1 for the base (best)
results to which the remained results are referred).

It can be observed that in the static instances HGS- based schedulers are not significantly better
than GA meta-heuristics. In the case of ’very large’ Grid the values of makespan achieved by
GA-Steady State algorithm are much lower (statistically) than those achieved by the other meta-
heuristics.

An interesting conclusion can be drawn from the analysis of the results in the dynamic in-
stances. It can be seen that HGS-based schedulers outperform GAs in the cases of small and
medium Grids, while in the larger systems the differences in results are not statistically significant.
It seems that HGS-Sched is the most effective in scheduling of small to medium size batches of
tasks in the case where the structure of the Grid is dynamically changed. It can make this method
very useful in the real-life scenario, in which the scheduling process can be activated with a high
frequency for small pools of tasks.



6. Conclusions

In this work we have presented the implementation and evaluation of Hierarchic Genetic Strate-
gies (HGS) for Independent Batch Job Scheduling on Computational Grids for which both makespan
and flowtime parameters are simultaneously minimized. Achieving high quality planning of jobs
into machines is crucial for Grid systems due to their highly heterogenous and dynamic nature.
The work is motivated by a series of works on the literature on the use of Genetic Algorithms
(GAs) for the problem. The interest here was, first to explore if the capability of HGS of concur-
rently searching the search space, as opposed to single population GAs, to achieve fast reductions
in makespan and flowtime. Second, the objective has been to analyze the HGS scheduler under a
dynamic environment using a Grid simulator.

In our HGS implementation, we have examined several variations of HGS operators in order
to identify a configuration that works best for the problem. We also provide some enhancements
of the HGS algorithms such as the use of hash techniques for an efficient branch comparison
operator. A three-fold experimental studied was carried out to analyze the performance of the
HGS-based scheduler. Initially, we used a static benchmark of rather small size instances that has
reported in the literature. For the sample of instances selected from the benchmark, the HGS-
based scheduler showed to outperform the state-of-the-art GA-based schedulers. Second, we used
a Grid simulator to evaluate the HGS-based scheduler in a more realistic setting. In this case,
two scenarios were considered, namely the number of tasks and hosts is kept constant and the
tasks and machines are dynamically changing their availability. Finally, in both cases, the Grid
scenarios ranged from small to very large size instances in order to see the scalability of HGS-
based scheduler. The experimental results showed a very good performance, whose validity was
also confirmed by statistical analysis of coefficient of variance and Student t-test methods.
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