141 research outputs found

    Performance improvement in geographic routing for vehicular Ad Hoc networks

    Get PDF
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and spee

    Auro: Adaptive Unicast Routing Framework for Vehicular Ad Hoc Network

    Get PDF
    A special type of Mobile Ad hoc network (MANET) is Vehicular Ad hoc Network (VANET) and it provides exchange of messages between vehicles. VANET encourages researchers to create safety and comfort applications that will lead to Intelligent Transport Systems (ITS). Link failure in the routing path occurs due to frequent change in the network topology of VANET. To handle this situation, the routing protocol has to initiate either a local repair of route or find a route by broadcasting control overhead packets. This increases the network bandwidth utilization of the VANET. When the number of vehicles increase in VANET, broadcasting of redundant route repair packets increases the collisions in the medium leading to broadcasting storm problem. This paper proposes an Adaptive Unicast ROuting (AURO) framework to address frequent disconnections and broadcast storm problems in VANET. This framework selects suitable protocol from the three unicast routing protocols namely On-demand Proactive with Route Maintenance Protocol (ORPM), Efficient Reactive routing Protocol (ERP) and Stable Routing Protocol (SRP) from the network context and the user requirements. The proposed AURO framework is implemented using NS2 and SUMO simulators. The performance of these protocols were thoroughly analyzed and compared with existing popular protocols

    A Multi-agent Approach for Routing on Vehicular Ad-Hoc Networks

    Get PDF
    AbstractVehicular Ad-Hoc Network is a special form of mobile ad -hoc networks (MANETs) which is a vehicle to vehicle and vehicle roadside wireless communication network. VANET is a new standard that integrates Wi-Fi, Bluetooth and other mobile connectivity protocols. The essential requirement of VANET is that it should be able to communicate in any environment irrespective of traffic densities and vehicle locations. Vehicular communications are made in fluctuating environment and should work both in urban and rural areas. Considering the large number of nodes participating in these networks and their high mobility, debates still exist about the feasibility of routing protocols. Analyzes of traditional routing protocols for MANETs demonstrated that their performance is poor in VANETs. The main problem with these protocols in VANETs environments is their route instability. Consequently, many packets are dropped and the overhead due to route repairs or failure notifications increases significantly, leading to low delivery ratios and high transmission delays. This paper introduces a multi-agent system approach to solve the problems mentioned above and improve Vehicular ad-hoc network routing

    U2RV: UAV-assisted reactive routing protocol for VANETs

    Get PDF
    When it comes to keeping the data routing robust and effective in Vehicular Ad hoc Networks (VANETs), stable and durable connectivity constitutes the keystone to ensure successful point-to-point communication. Since VANETs can comprise all kinds of mobile vehicles moving and changing direction frequently, this may result in frequent link failures and network partitions. Moreover, when VANETs are deployed in a city environment, another problem arises, that is, the existing obstructions (e.g., buildings, trees, hoppers, etc.) preventing the line-of-sight between vehicles, thus degrading wireless transmissions. Therefore, it is more complicated to design a routing technique that adapts to frequent changes in the topology. In order to settle all these problems, in this work, we design a flooding scheme that automatically reacts at each topology variation while overcoming the present obstacles while exchanging data in ad hoc mode with drones that are commonly called Unmanned Aerial Vehicles (UAVs). Also, the aim of this work is to explore well-regulated routing paths providing a long lifetime connectivity based on the amount of traffic and the expiration time of each discovered path, respectively. A set of experiments is carried out using simulation, and the outcomes are confronted with similar protocols based on a couple of metrics. The results clearly show that the assistance of UAVs to vehicles is capable to provide high delivery ratios and low delivery delays while efficiently extending the network connectivity

    PERFORMANCE ANALYSIS ON GPSR PROTOCOL IN VANETS ENVIRONMENT OF OVERLAY NETWORK AND FORWARDING NODE SELECTION METHODS

    Get PDF
    VANETs are technology in Intelligent Transport Systems (ITS) in driving safety and convenient network services for vehicle users. However, the high mobility of VANETs makes the topology change frequently, resulting in the unavailability of routes and causing communication failures between nodes. Greedy Perimeter Stateless Routing (GPSR) is a routing protocol that solves communication problems in the VANETs environment. GPSR is a geographic routing protocol that uses information on the location of neighbouring nodes and the transmission range to the nearest destination node. But, GPSR does not always find the optimal route because not all nearby nodes can forward packets to their destination during heavy traffic and many intersections. In this research, the overlay network and forwarding node selection methods will be used to solve problems in the GPSR routing protocol related to communication instability because of changing node positions. Based on the results of testing and analysis that has been carried out on a grid scenario with 50 nodes, the Packet Delivery Ratio results are 32.60. In contrast, the results for the real scenario with the same nodes produce a value of 64. The analysis of End to End Delay in the 50-node grid scenario produces 5.64, while the real scenario results with 50 nodes yield the value of 24.11. The analysis Routing Overhead in the grid scenario with 50 nodes produces a value of 39,978, while the results of the real scenario with 50 nodes get a value of 10,239. With the result of these two analysis methods, it is expected to increase the average value of package delivery

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community

    A novel k-means powered algorithm for an efficient clustering in vehicular ad-hoc networks

    Get PDF
    Considerable attention has recently been given to the routing issue in vehicular ad-hoc networks (VANET). Indeed, the repetitive communication failures and high velocity of vehicles reduce the efficacy of routing protocols in VANET. The clustering technique is considered an important solution to overcome these difficulties. In this paper, an efficient clustering approach using an adapted k-means algorithm for VANET has been introduced to enhance network stability in a highway environment. Our approach relies on a clustering scheme that accounts for the network characteristics and the number of connected vehicles. The simulation indicates that the proposed approach is more efficient than similar schemes. The results obtained appear an overall increase in constancy, proven by an increase in cluster head lifetime by 66%, and an improvement in robustness clear in the overall reduction of the end-to-end delay by 46% as well as an increase in throughput by 74%

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario
    corecore