6 research outputs found

    GCOM-W AMSR2 Soil Moisture Product Validation Using Core Validation Sites

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W). AMSR2 has filled the gap in passive microwave observations left by the loss of the Advanced Microwave Scanning RadiometerEarth Observing System (AMSR-E) after almost 10 years of observations. Both missions provide brightness temperature observations that are used to retrieve soil moisture estimates at the near surface. A merged AMSR-E and AMSR2 data product will help build a consistent long-term dataset; however, before this can be done, it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on the validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites around the world. A total of three soil moisture products that rely on different algorithms were evaluated; the Japan Aerospace Exploration Agency (JAXA) soil moisture algorithm, the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). JAXA, SCA and LPRM soil moisture estimates capture the overall climatological features. The spatial features of the three products have similar overall spatial structure. The JAXA soil moisture product shows a lower dynamic range in the retrieved soil moisture with a satisfactory performance matrix when compared to in situ observations (ubRMSE0.059 m3m3, Bias-0.083 m3m3, R0.465). The SCA performs well over low and moderately vegetated areas (ubRMSE0.053 m3m3, Bias-0.039 m3m3, R0.549). The LPRM product has a large dynamic range compared to in situ observations with a wet bias (ubRMSE0.094 m3m3, Bias0.091 m3m3, R0.577). Some of the error is due to the difference in observation depth between the in situ sensors (5 cm) and satellite estimates (1 cm). Results indicate that overall the JAXA and SCA have the best performance based upon the metrics considered

    Evaluation of Sentinel-1, SMAP and SMOS surface soil moisture products for distributed eco-hydrological modelling in Mediterranean forest basins

    Full text link
    [EN] Reliable distributed hydrological modeling, especially in semi-arid areas, must consider the inclusion of surface soil moisture (SSM) spatial information during the calibration process. This variable plays a key role in the evapotranspiration processes that determine the hydrological cycle. The coarse resolution of the SSM estimates by satellite remote sensing has restricted the application of this approach to only large basins, focusing most of the studies in the consideration of simply the temporal dynamics of this variable. The growing efforts in providing higher spatial resolution through disaggregating methodologies or new sensor estimates facilitates the application of this spatial approach to small basins. This paper explores the applicability of the currently available satellite surface soil moisture estimates for distributed eco-hydrological modelling in Mediterranean forest basins. On one hand, this study contributes to fill the existing research gap on the use of remote sensing SSM spatial patterns within the distributed hydrological modelling framework in small basins. On the other hand, it serves as an indirect validation method for the spatial performance of satellite SSM products. To achieve this goal, we implemented the eco-hydrological model TETIS in three case studies named: Hozgarganta (southern Spain), Ceira (western Portugal) and Carraixet (eastern Spain). The SSM estimates selected for comparison were Sentinel-1 SSM provided by the Copernicus Global Land Services (CGLS), SMAP SSM disaggregated using Sentinel-1 (SPL2SMAP_S) provided by the National Aeronautics and Space Administration (NASA), SMOS SSM provided by the Barcelona Expert Center (BEC), and SMOS and SMAP SSM disaggregated using the DISPATCH algorithm provided by Lobelia Earth. The methodology employed involved a multi-objective and multi-variable calibration in terms of remote sensing SSM spatial patterns and in-situ streamflow, using the Spatial Efficiency Metric (SPAEF) and the Nash-Sutcliffe efficiency index (NSE) respectively. Before model calibration a sensitivity analysis of the most influent variables was performed. The temporal and spatial comparison of the reference SSM products revealed inconsistencies amongst products. The disaggregating methodology determined the spatial agreement to a greater degree than the sensor itself (i.e. SMAP, SMOS). In spite of the differences amongst products, the multi-objective calibration approach proposed increased the robustness of the hydrological modelling.This study was founded by the Spanish AEI within the program WaterJPI through the project iAqueduct (PCI2019-103729) , by the EC Life project ResilientForests (LIFE17 CCA/ES/000063) , and by the project Water4Cast funded by Generalitat Valenciana (PROMETEO/2021/074) . We also acknowledge the following hydrometeorological data providers institutions: SiAR, SAIH-HIDROSUR, SAIH Jucar and SNIRH.Gomis-Cebolla, J.; Garcia-Arias, A.; Perpinyà-Vallès, M.; Francés, F. (2022). Evaluation of Sentinel-1, SMAP and SMOS surface soil moisture products for distributed eco-hydrological modelling in Mediterranean forest basins. Journal of Hydrology. 608:1-19. https://doi.org/10.1016/j.jhydrol.2022.12756911960

    Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula

    Get PDF
    In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth's surface soil moisture (SSM): the ESA's Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA's Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth's surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30-40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active-passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation. Keywords: soil moisture; moisture variability; temporal dynamics; moisture patterns; spatial disaggregation; Soil Moisture Active Passive (SMAP); Soil Moisure and Ocean Salinity (SMOS); REMEDHUSSobre la continuidad de las misiones satelitales debanda L. Nuevos paradigmas en productos y aplicaciones, grant numbers ESP2017-89463-C3-2-R (UPC part) andESP2017-89463-C3-1-R (ICM part)Unidad de Excelencia María de Maeztu MDM-2016-060

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version
    corecore