1,745 research outputs found

    CREATING A BIOMEDICAL ONTOLOGY INDEXED SEARCH ENGINE TO IMPROVE THE SEMANTIC RELEVANCE OF RETREIVED MEDICAL TEXT

    Get PDF
    Medical Subject Headings (MeSH) is a controlled vocabulary used by the National Library of Medicine to index medical articles, abstracts, and journals contained within the MEDLINE database. Although MeSH imposes uniformity and consistency in the indexing process, it has been proven that using MeSH indices only result in a small increase in precision over free-text indexing. Moreover, studies have shown that the use of controlled vocabularies in the indexing process is not an effective method to increase semantic relevance in information retrieval. To address the need for semantic relevance, we present an ontology-based information retrieval system for the MEDLINE collection that result in a 37.5% increase in precision when compared to free-text indexing systems. The presented system focuses on the ontology to: provide an alternative to text-representation for medical articles, finding relationships among co-occurring terms in abstracts, and to index terms that appear in text as well as discovered relationships. The presented system is then compared to existing MeSH and Free-Text information retrieval systems. This dissertation provides a proof-of-concept for an online retrieval system capable of providing increased semantic relevance when searching through medical abstracts in MEDLINE

    Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches

    Get PDF
    We investigate the accuracy of different similarity approaches for clustering over two million biomedical documents. Clustering large sets of text documents is important for a variety of information needs and applications such as collection management and navigation, summary and analysis. The few comparisons of clustering results from different similarity approaches have focused on small literature sets and have given conflicting results. Our study was designed to seek a robust answer to the question of which similarity approach would generate the most coherent clusters of a biomedical literature set of over two million documents.We used a corpus of 2.15 million recent (2004-2008) records from MEDLINE, and generated nine different document-document similarity matrices from information extracted from their bibliographic records, including titles, abstracts and subject headings. The nine approaches were comprised of five different analytical techniques with two data sources. The five analytical techniques are cosine similarity using term frequency-inverse document frequency vectors (tf-idf cosine), latent semantic analysis (LSA), topic modeling, and two Poisson-based language models--BM25 and PMRA (PubMed Related Articles). The two data sources were a) MeSH subject headings, and b) words from titles and abstracts. Each similarity matrix was filtered to keep the top-n highest similarities per document and then clustered using a combination of graph layout and average-link clustering. Cluster results from the nine similarity approaches were compared using (1) within-cluster textual coherence based on the Jensen-Shannon divergence, and (2) two concentration measures based on grant-to-article linkages indexed in MEDLINE.PubMed's own related article approach (PMRA) generated the most coherent and most concentrated cluster solution of the nine text-based similarity approaches tested, followed closely by the BM25 approach using titles and abstracts. Approaches using only MeSH subject headings were not competitive with those based on titles and abstracts

    Concept embedding-based weighting scheme for biomedical text clustering and visualization

    Get PDF
    Biomedical text clustering is a text mining technique used to provide better document search, browsing, and retrieval in biomedical and clinical text collections. In this research, the document representation based on the concept embedding along with the proposed weighting scheme is explored. The concept embedding is learned through the neural networks to capture the associations between the concepts. The proposed weighting scheme makes use of the concept associations to build document vectors for clustering. We evaluate two types of concept embedding and new weighting scheme for text clustering and visualization on two different biomedical text collections. The returned results demonstrate that the concept embedding along with the new weighting scheme performs better than the baseline tf–idf for clustering and visualization. Based on the internal clustering evaluation metric-Davies–Bouldin index and the visualization, the concept embedding generated from aggregated word embedding can form well-separated clusters, whereas the intact concept embedding can better identify more clusters of specific diseases and gain better F-measure

    Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease

    Get PDF
    Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical. This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest. The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge
    • …
    corecore