191 research outputs found

    Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics

    Full text link
    We present a new algorithm that computes eigenvalues and eigenvectors of a Hermitian positive definite matrix while solving a linear system of equations with Conjugate Gradient (CG). Traditionally, all the CG iteration vectors could be saved and recombined through the eigenvectors of the tridiagonal projection matrix, which is equivalent theoretically to unrestarted Lanczos. Our algorithm capitalizes on the iteration vectors produced by CG to update only a small window of vectors that approximate the eigenvectors. While this window is restarted in a locally optimal way, the CG algorithm for the linear system is unaffected. Yet, in all our experiments, this small window converges to the required eigenvectors at a rate identical to unrestarted Lanczos. After the solution of the linear system, eigenvectors that have not accurately converged can be improved in an incremental fashion by solving additional linear systems. In this case, eigenvectors identified in earlier systems can be used to deflate, and thus accelerate, the convergence of subsequent systems. We have used this algorithm with excellent results in lattice QCD applications, where hundreds of right hand sides may be needed. Specifically, about 70 eigenvectors are obtained to full accuracy after solving 24 right hand sides. Deflating these from the large number of subsequent right hand sides removes the dreaded critical slowdown, where the conditioning of the matrix increases as the quark mass reaches a critical value. Our experiments show almost a constant number of iterations for our method, regardless of quark mass, and speedups of 8 over original CG for light quark masses.Comment: 22 pages, 26 eps figure

    Preconditioned Krylov solvers on GPUs

    Get PDF

    Deflation for the off-diagonal block in symmetric saddle point systems

    Full text link
    Deflation techniques are typically used to shift isolated clusters of small eigenvalues in order to obtain a tighter distribution and a smaller condition number. Such changes induce a positive effect in the convergence behavior of Krylov subspace methods, which are among the most popular iterative solvers for large sparse linear systems. We develop a deflation strategy for symmetric saddle point matrices by taking advantage of their underlying block structure. The vectors used for deflation come from an elliptic singular value decomposition relying on the generalized Golub-Kahan bidiagonalization process. The block targeted by deflation is the off-diagonal one since it features a problematic singular value distribution for certain applications. One example is the Stokes flow in elongated channels, where the off-diagonal block has several small, isolated singular values, depending on the length of the channel. Applying deflation to specific parts of the saddle point system is important when using solvers such as CRAIG, which operates on individual blocks rather than the whole system. The theory is developed by extending the existing framework for deflating square matrices before applying a Krylov subspace method like MINRES. Numerical experiments confirm the merits of our strategy and lead to interesting questions about using approximate vectors for deflation.Comment: 26 pages, 12 figure

    Which are Better Conditioned Meshes Adaptive, Uniform, Locally Refined or Localised

    Full text link
    Adaptive, locally refined and locally adjusted meshes are preferred over uniform meshes for capturing singular or localised solutions. Roughly speaking, for a given degree of freedom a solution associated with adaptive, locally refined and locally adjusted meshes is more accurate than the solution given by uniform meshes. In this work, we answer the question which meshes are better conditioned. We found, for approximately same degree of freedom (same size of matrix), it is easier to solve a system of equations associated with an adaptive mesh.Comment: 4 Page

    Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century: History, Current Developments, and Future Perspectives

    Get PDF
    Iterative methods are currently the solvers of choice for large sparse linear systems of equations. However, it is well known that the key factor for accelerating, or even allowing for, convergence is the preconditioner. The research on preconditioning techniques has characterized the last two decades. Nowadays, there are a number of different options to be considered when choosing the most appropriate preconditioner for the specific problem at hand. The present work provides an overview of the most popular algorithms available today, emphasizing the respective merits and limitations. The overview is restricted to algebraic preconditioners, that is, general-purpose algorithms requiring the knowledge of the system matrix only, independently of the specific problem it arises from. Along with the traditional distinction between incomplete factorizations and approximate inverses, the most recent developments are considered, including the scalable multigrid and parallel approaches which represent the current frontier of research. A separate section devoted to saddle-point problems, which arise in many different applications, closes the paper

    Numerical methods for large-scale Lyapunov equations with symmetric banded data

    Full text link
    The numerical solution of large-scale Lyapunov matrix equations with symmetric banded data has so far received little attention in the rich literature on Lyapunov equations. We aim to contribute to this open problem by introducing two efficient solution methods, which respectively address the cases of well conditioned and ill conditioned coefficient matrices. The proposed approaches conveniently exploit the possibly hidden structure of the solution matrix so as to deliver memory and computation saving approximate solutions. Numerical experiments are reported to illustrate the potential of the described methods

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method

    Efficient p-multigrid spectral element model for water waves and marine offshore structures

    Full text link
    In marine offshore engineering, cost-efficient simulation of unsteady water waves and their nonlinear interaction with bodies are important to address a broad range of engineering applications at increasing fidelity and scale. We consider a fully nonlinear potential flow (FNPF) model discretized using a Galerkin spectral element method to serve as a basis for handling both wave propagation and wave-body interaction with high computational efficiency within a single modellingapproach. We design and propose an efficientO(n)-scalable computational procedure based on geometric p-multigrid for solving the Laplace problem in the numerical scheme. The fluid volume and the geometric features of complex bodies is represented accurately using high-order polynomial basis functions and unstructured meshes with curvilinear prism elements. The new p-multigrid spectralelement model can take advantage of the high-order polynomial basis and thereby avoid generating a hierarchy of geometric meshes with changing number of elements as required in geometric h-multigrid approaches. We provide numerical benchmarks for the algorithmic and numerical efficiency of the iterative geometric p-multigrid solver. Results of numerical experiments are presented for wave propagation and for wave-body interaction in an advanced case for focusing design waves interacting with a FPSO. Our study shows, that the use of iterative geometric p-multigrid methods for theLaplace problem can significantly improve run-time efficiency of FNPF simulators.Comment: Submitted to an international journal for peer revie
    • …
    corecore