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Iterative methods are currently the solvers of choice for large sparse linear systems of equations.
However, it is well known that the key factor for accelerating, or even allowing for, convergence
is the preconditioner. The research on preconditioning techniques has characterized the last two
decades. Nowadays, there are a number of different options to be considered when choosing the
most appropriate preconditioner for the specific problem at hand. The present work provides an
overview of the most popular algorithms available today, emphasizing the respective merits and
limitations. The overview is restricted to algebraic preconditioners, that is, general-purpose algo-
rithms requiring the knowledge of the systemmatrix only, independently of the specific problem it
arises from. Along with the traditional distinction between incomplete factorizations and approxi-
mate inverses, the most recent developments are considered, including the scalable multigrid and
parallel approaches which represent the current frontier of research. A separate section devoted to
saddle-point problems, which arise in many different applications, closes the paper.

1. Historical Background

The term “preconditioning” generally refers to “the art of transforming a problem that appears
intractable into another whose solution can be approximated rapidly” [1], while the “precondi-
tioner” is the mathematical operator responsible for such a transformation. In the context of
linear systems of equations,

Ax = b, (1.1)

where A ∈ R
n×n and x,b ∈ R

n, the preconditioner is a matrix which transforms (1.1) into
an equivalent problem for which the convergence of an iterative method is much faster.
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Preconditioners are generally used when the matrix A is large and sparse, as it typically,
but not exclusively, arises from the numerical discretization of Partial Differential Equations
(PDEs). It is not rare that the preconditioner itself is the operator which makes it possible to
solve numerically the system (1.1), that otherwise would be intractable from a computational
viewpoint.

The development of preconditioning techniques for large sparse linear systems is
strictly connected to the history of iterative methods. As mentioned by Benzi [2], the term
“preconditioning” used to identify the acceleration of the iterative solution of a linear system
can be found for the first time in a 1968 paper by Evans [3], but the concept is pretty older and
was already introduced by Cesari back in 1937 [4]. However, it is well known that the earliest
tricks to solve numerically a linear system were already developed in the 19th century. As
reported in the survey by Saad and Van der Vorst [5] and according to the work by Varga [6],
Gauss set the pace for iterative methods in an 1823 letter, where the famous German math-
ematician describes a number of clever tricks to solve a singular 4 × 4 linear system arising
from a geodetic problem. Most of the strategies suggested by Gauss compose what we cur-
rently know as the stationary Gauss-Seidel method, which was later formalized by Seidel in
1874. In his letter, Gauss jokes saying that the method he suggests is actually a pleasant enter-
tainment, as one can think about many other things while carrying out the repetitive opera-
tions required to solve the systems. Actually, it is rather a surprise that such a method
attracted a great interest in the era of automatic computing! In 1846 another famous algorithm
was introduced by Jacobi to solve a sequence of 7 × 7 linear systems enforcing diagonal
dominance by plane rotations. Other similar methods were later developed, such as the
Richardson [7] and Cimmino [8] iteration, but no significant improvements in the field of
numerical solution of linear systems can be reported until the 40s. This period is referred to
as the prehistory of this subject by Benzi [2].

As it often occurred in the past, a dramatic and tragic historical event likeWorldWar II
increased the research fundings for military reasons and helped accelerate the development
and progress also in the field of numerical linear algebra. World War II brought a great
development of the first automatic computingmachines, which later led to themodern digital
electronic era. With the availability of such new computing tools, the interest in the numerical
solution of relatively large linear systems of equations suddenly grew. The more significant
advances were obtained in the field of direct methods. Between the 40s and 70s the algorithms
of choice for solving automatically a linear system are based on the Gaussian elimination,
with the development of several important variants which helped greatly improve the native
method. First, it was recognized that pivoting techniques are of paramount importance to
stabilize the numerical computations of the triangular factors of the systemmatrix and reduce
the effects of rounding errors, for example, [9]. Second, several reordering techniques were
developed in order to limit the fill-in of the triangular factors and the number of operations
required for their computation. The most famous bandwidth reducing algorithms, such as
Cuthill-McKee and its reverse variant [10], nested dissection [11–13], and minimum degree
[14–16], are still very popular today. Third, appropriate scaling strategies were introduced so
as to balance the system matrix entries and help stabilize the triangular factor computation,
for example, [17, 18].

In the meantime, iterative methods lived in a kind of niche, despite the publication
in 1952 of the famous papers by Hestenes and Stiefel [19] and Lanczos [20] who discovered
independently and almost simultaneously the Conjugate Gradient (CG) method for solving
symmetric positive definite (SPD) linear systems. These papers did not go unnoticed, but at
that time CG was interpreted as a direct method converging in m steps, if m is the number
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of distinct eigenvalues of the system matrix A. As it was soon realized [21], this property is
lost in practice when working in finite arithmetics, so that convergence is actually achieved
in a number of iterations possibly much larger than m. This is why CG was considered an
attractive alternative to Gaussian elimination in a few lucky cases only and was not rated
much more than just an elegant theory. The iterative method of choice of the period was the
Successive Overrelaxation (SOR) algorithm, which was introduced independently by Young
[22] in his Ph.D. thesis and Frankel [23] as an acceleration of the old Gauss-Seidel stationary
iteration. The possibility of estimating theoretically the optimal overrelaxation parameter for
a large class of matrices having the so-called property A [22] gained a remarkable success
for SOR especially in problems arising from the discretization of PDEs of elliptic type, for
example, in groundwater hydrology or nuclear reactor diffusion [6].

In the 60s the Finite Element (FE) method was introduced in structural mechanics.
The newmethod had a great success and gave rise to a novel set of large matrices which were
very sparse but neither diagonally dominant nor characterized by property A. Unfortunately,
SOR techniques were not reliable inmany of these problems, either converging very slowly or
even diverging. Therefore, it is not a surprise that direct methods soon became the reference
techniques in this field. The irregular sparsity pattern of the FE-discretized structural prob-
lems gave a renewed impulse to the development of more appropriate ordering strategies
based on the graph theory and more efficient direct algorithms, leading in the 70s and
early 80s to the formulation of the modern multifrontal solvers [13, 24, 25]. In the 80s the first
pioneering commercial codes for FE structural computations became available and the
solvers of choice were obviously direct methods because of their reliability and robustness.
At this time the solution of sparse linear systems by direct techniques appears to be quite a
mature field of research, well summarized in famous reference textbooks such as the ones by
Duff et al. [26] and Davis [27].

In contrast, during the 60s and 70s iterative solvers were living their infancy. CG was
rehabilitated as an iterative method by Reid in 1971 [28] who showed that for reasonably
well-conditioned sparse SPD matrices the convergence could have been reached after far
fewer than n steps, being n the size of A. This work set the pace for the extension of CG to
nonsymmetric and indefinite problems, with the introduction of the earliest Krylov subspace
methods such as the Minimal Residual (MINRES) [29] and the Biconjugate Gradient (Bi-
CG) [30] algorithms. However, the crucial event for the future success of Krylov subspace
methods was the publication in 1977 by Meijerink and van der Vorst of the Incomplete
Cholesky CG (ICCG) algorithm [31]. Incomplete factorizations had been already introduced
in the Soviet Union [32] and independently by Varga [33] in the late 50s, and the seminal
ideas for improving the conditioning of the system matrix in the CG iteration can be found
also in the original work by Hestenes and Stiefel [19] and in Engeli et al. [21], but Meijerink
and van der Vorst were the first who put the things together and showed the great potential
of the preconditioned CG. The idea was later extended by Kershaw [34] to an SPD matrix
not necessarily of M-type and gained soon a great popularity. The key point was that CG
as well as any other Krylov subspace method with a proper preconditioning could become
competitive with the latest direct methods, though requiring much less memory and so being
attractive for large three-dimensional (3D) simulations.

The 80s and 90s are the years of the great development of Krylov subspace methods. In
1986 Saad and Schultz introduced the Generalized Minimal Residual (GMRES) method [35]
which soon became the algorithm of choice among the iterative methods for nonsymmetric
linear systems. Some of the drawbacks of Bi-CG were addressed in 1989 by Sonnenveld who
developed the Conjugate Gradient Squared (CGS)method [36], on the basis of which in 1992
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van der Vorst presented the Biconjugate Gradient Stabilized (Bi-CGSTAB) algorithm [37].
Along with GMRES, Bi-CGSTAB is the most successful technique for nonsymmetric linear
systems, with the advantage of relying on a short-term recurrence. As demonstrated in the
famous Faber-Manteuffel theorem [38], Bi-CGSTAB is not optimal in the sense that it does not
theoretically lead to an approximate solution with some minimum property in the current
Krylov subspace; however, its convergence can be faster than GMRES. Another family of
Krylov subspace methods includes the Quasi-Minimal Residual (QMR) algorithm [39], with
its transpose-free (TFQMR) and symmetric (SQMR) variants [40, 41]. Several other variants
of the methods above, including truncated, restarted, and flexible versions, along with nested
optimal techniques, for example, [42, 43], have been introduced by several researchers until
the late 90s. A recent review of Krylov subspace methods for linear systems is available in
[44], while several textbooks have been written on this subject at the beginning of the 21st
century, among which the most famous is perhaps the one by Saad [45].

Initially, Krylov subspacemethods were seenwith some suspicion by the practitioners,
especially those coming from structural mechanics, because of their apparent lack of reli-
ability. Numerical experiments in different fields, such as FE elastostatics, geomechanics, con-
solidation of porousmedia, fluid flow, and transport, for example, [46–51], showed a growing
interest for these methods, mainly because they potentially could allow for the solution of
much bigger andmore detailed problems.Whereas direct methods typically scale poorlywith
the matrix size, especially in 3D models, Krylov subspace methods appeared to be virtually
mandatory with large problems. On the other hand, it became soon clear that the key factor
to improve the robustness and the computational efficiency of any iterative solver is precon-
ditioning. Nowadays, it is quite well accepted that it is preconditioning, rather than the
selected Krylov algorithm, the most important issue to address.

This is why research on the construction of effective preconditioners has significantly
grown over the last two decades, while advances on Krylov subspace methods have progres-
sively faded. Currently, preconditioning appears to be a much more active and promising
research field than either direct and iterative solution methods, and particularly so within
the context of the fast evolution of the hardware technology. On one hand, this is due to the
understanding that there are virtually no limits to the available options for obtaining a good
preconditioner. On the other hand, it is also generally recognized that an optimal general-
purpose preconditioner is unlikely to exist, so that there is the possibility to improve the
solver efficiency in different ways for any specific problem at hand within any specific com-
puting environment. Generally, the knowledge of the governing physical processes, the struc-
ture of the resulting system matrix, and the available computer technology are factors that
cannot be ignored in the design of an appropriate preconditioner. It is also recognized that
theoretical results are few, and frequently “empirical” algorithmsmaywork surprisingly well
despite the lack of a rigorous foundation. This is why finding a good preconditioner for
solving a sparse linear system can be viewed rather as “a combination of art and science” [45]
than a rigorous mathematical exercise.

2. Basic Concepts

Roughly speaking, preconditioning means transforming system (1.1) into an equivalent
mathematical problem which is expected to converge faster using an iterative solver. For
instance, given a nonsingular matrixM, premultiplying (1.1) byM−1 yields

M−1Ax =M−1b. (2.1)



ISRN Applied Mathematics 5

If the matrix M−1A is better conditioned than A for a Krylov subspace method, then M−1 is
the preconditioner and (2.1) denotes the left preconditioned system. Similarly,M−1 can be appl-
ied on the right:

AM−1y = b, x =M−1y, (2.2)

thus producing a right preconditioned system. The use of left or right preconditioning depends
on a number of factors and can produce quite different behaviors; see, for example, [45]. For
instance, right preconditioning has the advantage that the residual of the preconditioned
system is the same as the native system, while with left preconditioning it is not, and this can
be important in the convergence check or using a residual minimization algorithm such as
GMRES. By the way, with the right preconditioning a back transformation of the auxiliary
variable ymust be carried out to resume the original unknown x. If the preconditioner can be
written in a factorized form:

M−1 =M−1
2 M

−1
1 , (2.3)

a split preconditioning can be also used:

M−1
1 AM

−1
2 y =M−1

1 b, x =M−1
2 y, (2.4)

thus potentially exploiting the advantages of both left and right formulations.
Writing the preconditioned Krylov subspace algorithms is relatively straightforward.

Simply, the basic algorithms can be implemented replacing A with either M−1A, or AM−1,
orM−1

1 AM
−1
2 , and then back substituting the original variable x where the auxiliary vector y

is used. It can be easily observed that it is not necessary to build the preconditioned matrix,
which could be much less sparse thanA, but just to compute the product ofM−1, orM−1

1 and
M−1

2 , if the factorized form (2.3) is used, by a vector. This operation is called application of the
preconditioner.

Generally speaking, there are three basic requirements for obtaining a good precondi-
tioner:

(i) the preconditioned matrix should have a clustered eigenspectrum away from 0,

(ii) the preconditioner should be as cheap to compute as possible,

(iii) its application to a vector should be cost-effective.

The origin of condition (i) relies on the convergence properties of CG. It is quite intuitive that
ifM−1 resembles in some senseA−1 the preconditioned matrix should be close to the identity,
thus making the preconditioned system somewhat “easier” to solve and accelerating the con-
vergence. If A and M−1 are SPD, it has been proved that the iteration count niter of the CG
algorithm to go below the tolerance ε depends on the spectral conditioning number ξ of the
preconditioned matrix G, for example [52]:

niter ≤ 1
2

√
ξ(G) ln

2
ε
+ 1, (2.5)
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so that clustering the eigenvalues of G away from 0 is of paramount importance to accelerate
convergence. If A is not SPD, things can be much more complicated. For example, the per-
formance of GMRES depends also on the conditioning of the matrix of the eigenvectors of G,
and the fact that the preconditioned matrix has a clustered eigenspectrum does not guarantee
a fast convergence [53]. Anyway, it is quite a common experience that a clustered eigenspec-
trum away from 0 often yields a rapid convergence also in nonsymmetric problems.

The importance of conditions (ii) and (iii) depends on the specific problem at hand and
may be highly influenced by the computer architecture. From a practical point of view, they
can also be more important than condition (i). For example, if a sequence of linear systems
has to be solved with the same matrix A or with slight changes only, as it often may occur
when using a Newton method for a set of nonlinear equations, the same preconditioner can
be used several times, with the cost for its computation easily amortized. In this case, it could
be convenient spending more time to build an effective preconditioner. On the other hand,
the computational cost for the preconditioner application basically depends on its density. As
M−1 has to be applied once or twice per iteration, according to the selected Krylov subspace
method, it is of paramount importance that the increased cost of each iteration is counter-
balanced by an adequate reduction of their number. Typically, pursuing condition (i) reduces
the iteration count but is in conflict with the need for a cheap computation and application
of the preconditioner, so that in the end preconditioning efficiently the linear system (1.1) is
always the result of an appropriate tradeoff.

An easy way to build a preconditioner is based on the decomposition of A. Recalling
the definition of stationary iteration,

xk+1 = xk + Crk, (2.6)

where rk = b − Axk is the current residual, the matrix C can be used as a preconditioner.
SplittingA asD −E −F, whereD, −E, and −F are the diagonal, the lower, and the upper parts
of A, respectively, then

M−1
J = D−1, (2.7)

M−1
S = (D − E)−1, (2.8)

M−1
ω = ω(D −ωE)−1, (2.9)

M−1
Ω = ω(2 −ω) (D −ωF)−1D(D −ωE)−1 (2.10)

are known as the Jacobi, Gauss-Seidel, SOR, and Symmetric SOR preconditioners, respec-
tively, where ω is the overrelaxation factor. Replacing E with F in (2.8) and (2.9) gives rise
to the backward Gauss-Seidel and SOR preconditioners, respectively. The preconditioners
obtained from the splitting of A do not require additional memory and have a null computa-
tion cost, while their application can be simply done by a forward or backward substitution.
WithM−1

J a simple diagonal scaling is actually required.
Because of their simplicity, Jacobi, Gauss-Seidel, SOR, and Symmetric SOR precondi-

tioners are still used in some applications. Assume, for instance, that matrix A has two
clusters of eigenvalues due to the heterogeneity of the underlying physical problem. This is
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a quite common experience in geotechnical soil/structure or contact simulations, for example,
[49, 54–58]. In this case the matrix A can be written as

A =
[
K B1

B2 H

]
, (2.11)

where the square diagonal blocks are responsible of the two clusters of eigenvalues and
usually arise in a natural way from the original problem. FactorizingA in (2.11) according to
Sylvester’s theorem of inertia:

A =
[

I 0
B2K

−1 I

][
K 0
0 S

][
I K−1B1

0 I

]
, (2.12)

where

S = H − B2K
−1B1 (2.13)

is the Schur complement, a Generalized Jacobi (GJ) preconditioner [59], based on the seminal
idea in [60], can be obtained as a diagonal approximation of the central block diagonal factor
in (2.12):

M−1 =

[
diag(K) 0

0 ϕdiag(S̃)

]−1
, (2.14)

where ϕ is a user-specified parameter and S̃ is an approximation of S in (2.13) with diag(K)
used instead ofK. Quite recently Bergamaschi and Martı́nez [61] have indirectly proved that
an optimal value for ϕ is the ratio between the largest eigenvalues of K and S. Another very
simple algorithm which has proved effective in similar applications is based on SOR and
Symmetric SOR preconditioners, for example, [62–64].

Though the algorithms above cannot compete with more sophisticated tools in terms
of global performance [58, 65], they are an example of how even somewhat naive ideas can
work and be useful for practitioners. Generally speaking, it is always a good idea to develop
an effective preconditioner starting from the specific problem at hand. Interesting strategies
have been developed approximating directly the differential operator the matrix A arises
from, by using a “nearby” PDE or a less accurate problem discretization, for example, [66–
69]. For instance, popular preconditioners typically used within the transport community are
often physically based, for example, [70–72].

For the developers of computer codes, however, using physically based precondition-
ers is not always desirable. In fact, it is usually simpler introducing the linear solver as a black
box which is expected to work independently of the specific problem at hand, and especially
so with less specialized codes such as the commercial ones. This is why a great interest
has arisen also in the development of purely algebraic preconditioners that claim to be as
much “general purpose” as possible. Algebraic preconditioners are usually robust algorithms
which require the knowledge of the matrixA only, independently of the underlying physical
problem. This paper will concentrate on such a class of algorithms. Subdividing algebraic
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preconditioners into categories is not straightforward, as especially in recent years there
have been several contaminations from adjacent fields with the development of “hybrid”
approaches. Traditionally, and as already done by Benzi [2], algebraic preconditioners can be
roughly divided into two classes, that is, incomplete factorizations and approximate inverses.
The main distinction is that with the former approach M is actually computed and M−1 is
applied but never formed explicitly, whereas with the latterM−1 is directly built and applied.
Within each class, moreover, different strategies can be pursued according to a number of
factors, such as whether A is SPD or not, its sparsity structure and size, the magnitude of its
coefficients, and ultimately the computer hardware available to solve the problem, so that a
large number of variants have been proposed by the researchers. As anticipated before, the
unavoidable contamination from adjacent fields, for example, the direct solution methods,
has made the boundaries between different groups of algorithms often vague and certainly
questionable.

In this work, the traditional distinction between incomplete factorizations and approxi-
mate inverses is followed, describing the most successful algorithms belonging to each class
and the most significant variants developed to address particular occurrences and increase
efficiency. Then, two additional sections will be devoted to the most recent results obtained
in the fields that currently appear to be the more active frontier of research in the area of
algebraic preconditioning, that is, multigrid techniques and parallel algorithms. Finally, a few
words will be spent on a special class of problems characterized by indefinite saddle-point
matrices, which arise quite frequently in the applications and have attracted much interest in
recent years.

3. Incomplete Factorizations

Given a nonsingular matrix A such that

A = LU, (3.1)

the basic idea of incomplete factorizations is to approximate the triangular factors L andU in
a cost-effective way. If L andU are computed so as to satisfy (3.1), for example, by a Gaussian
elimination procedure, typically fill-in takes place, with L and U much less sparse than A.
This is what limits the use of direct methods in large 3D problems. The approximations L̃ and
Ũ of L and U, respectively, can be obtained by simply discarding a number of fill-in entries
according to some rules. The resulting preconditioner

M−1 = Ũ−1L̃−1 (3.2)

is generally denoted as Incomplete LU (ILU). Quite obviously, M−1 in (3.2) is never built
explicitly as it is much denser than both L̃ and Ũ. Its application to a vector is therefore
performed by forward and backward substitutions. Moreover, the ILU factorized form (3.2) is
well suited for split preconditioning. In case A is SPD, the upper incomplete factor Ũ is
replaced by L̃T and the related preconditioner is known as Incomplete Cholesky (IC).

The native ILU algorithm runs as follows. Define a setS of position (i, j), with 1 ≤ i, j ≤
n, where either L̃ if i > j or Ũ if j > i has a nonzero entry. The set S is also denoted as the
nonzero pattern of the incomplete factors. To avoid breakdowns in the ILU computation, it is
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Input: Matrix A, the nonzero pattern S
Output: Matrix A containing L̃ and Ũ
for each (i, j) /∈ S do

aij = 0
end
for i = 2, ..., n do

for k = 1, . . . , i − 1 and (i, k) ∈ S do
aik ← aik/akk
for j = k + 1, ..., n and (i, j) ∈ S do
aij ← aij − aikakj

end
end

end

Algorithm 1: IKJ variant of ILU factorization with a static pattern S.

generally recommended to include all the diagonal entries in S. Then, make a copy ofA over
an auxiliary matrix which will contain L̃ and Ũ in the lower and upper parts, respectively,
at the end of the computation, and set to zero all entries aij such that (i, j) /∈ S. If the main
diagonal belongs to L̃, then it is implicitly assumed that the diagonal of Ũ is unitary and vice
versa. For every position (i, j) ∈ S, the following update is computed:

aij ←− aij − aika−1kkakj (3.3)

with k = 1, . . . , i − 1. At the end of the loop, the ILU factors are stored in the copy of A.
The procedure described above is clearly an incomplete Gauss elimination. Hence,

no surprise that several implementation tricks developed to improve the efficiency of direct
solution methods can be borrowed in order to reduce the computational cost of the ILU
computation. For example, the algorithm can follow either the KIJ, or the IKJ, or the IJK
elimination variants. To give an idea, Algorithm 1 provides a sketch of the sequence of opera-
tions required by the IKJ implementation, which is generally preferred whenever the sparse
matrix A along with both L̃ and Ũ is stored in a compact form by rows. It can be easily
observed that Algorithm 1 proceeds by rows, computing first the row of L̃ and then that of Ũ
and accessing the previous rows only to gather the required information (Figure 1). Many
other efficient variants have been developed, for example, storingA in a sparse skyline format
or computing L̃ by columns [73, 74].

3.1. Fill-In Strategies

The several existing versions of the ILU preconditioner basically differ for the rules followed
to select the retained entries in L̃ and Ũ. The simplest idea is to defineS statically at the begin-
ning of the algorithm and equal to the set of the nonzero positions in A. This idea was ori-
ginally implemented by Meijerink and van der Vorst [31] in their 1977 seminal work, giving
rise to what is traditionally referred to as ILU(0), or IC(0) for SPDmatrices. This simple choice
is easy to implement and very cost-effective, as the preconditioner construction is quite cheap
and its application to a vector costs as much as a matrix-by-vector product withA. Moreover,
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Current row

Accessed part

∼L

∼U

Figure 1: IKJ variant of ILU factorization.

ILU(0) can be quite efficient, especially for matrices arising from the discretization of elliptic
problems, for example, [75–77].

Unfortunately, there are a number of problems where the ILU(0) preconditioner
converges very slowly or even fails. There are several different reasons for this, depending on
both the unstable computation and the unstable application of L̃ and Ũ, as was experimen-
tally found by Chow and Saad on a large number of test matrices [78]. For example, ILU(0)
often exhibits a bad behavior with structural matrices and the highly nonsymmetric and
indefinite matrices arising from computational fluid dynamics. In these cases the nonzero
pattern ofA proves a too crude approximation of the exact L andU structure, so that a possi-
ble remedy is to allow for a larger number of entries in L̃ and Ũ in order to make them closer
to L and U. In the limiting case, the exact factors are computed and the solution to (1.1) is
obtained in just one iteration. Obviously, enlarging the ILU pattern on one hand reduces
the iteration count but on the other increases the cost of computation and application of the
preconditioner, so an appropriate tradeoff must be found.

There are several different ways for enlarging the initial pattern S, or computing it in
a dynamic way. In any specific problem, the winning algorithm is the one that proves able to
capture the most significant entries in L̃ and Ũ at the lowest cost. One of the first attempts for
enlarging dynamically S is based on the so-called level-of-fill concept [79, 80]. The idea is to
assign an integer value �ij , denoted as level-of-fill, to each entry in position (i, j) computed
during the ILU construction process. The lower the level, the more important the entry. The
initial level is set to

�ij =

{
0 if aij /= 0
∞ if aij = 0.

(3.4)

During the ILU construction, with reference for instance to the Algorithm 1, the level-of-fill
of each entry is updated according to the level-of-fill of the entries used for its computation
using the following rule:

�ij ←− min
{
�ij , �ik + �kj + 1

}
. (3.5)
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In practice, any position corresponding to a nonzero entry in A remains with a zero level-of-
fill. The terms computed using entries with a zero level-of-fill have a level equal to 1. Those
built using one entry of the first level have level 2 and so on. The new level-of-fill of each entry
is computed adding 1 to the sum of the levels of the entries used for it. This kind of algorithm
creates a hierarchy among the potential entries that allows for selecting the “most important”
nonzero terms only. The resulting preconditioner is denoted as ILU(p), where p > 0 is the
integer user-specified level-of-fill of the entries retained into each row of L̃ and Ũ. It follows
immediately that ILU(0) coincides exactly with the zero fill-in ILU previously defined.

In most applications, ILU(1) is already a significant improvement to ILU(0). The
experience shows that the fill-in increases quite rapidly with p, so that for p ≥ 2 the cost for
building and applying the preconditioner can become a price too high to pay. Moreover it can
be observed that at each level there are also many terms which are very small in magnitude,
thus providing a small contribution to the preconditioning of the original matrix A. Hence,
a natural way to avoid such an occurrence is to add a dropping rule according to which the
terms below a user-specified tolerance τ are neglected. Several criteria have been defined for
selecting τ and the way the ILU entries are discarded. A usual choice is to compute the ith
row of both L̃ and Ũ and drop an entry whenever smaller than τ‖ai‖, being ‖·‖ an appropriate
vector norm and ai the ith row of A, but other strategies have been also attempted, such as
comparing the entry lij of L̃with τliiljj [81] or with an estimate of the norm of the jth column
of L̃−1 [82, 83].

Similarly to the level-of-fill approach, a drawback of the drop tolerance strategy is
that the amount of fill-in of L̃ and Ũ is strongly dependent on the selected user-specified
parameter and the specific problem at hand and is unpredictable a priori. To address such
an issue a second user-specified parameter ρ can be introduced, denoting the largest number
of entries that can be retained per row. In some versions, ρ is also defined as the number of
entries added at most per row in excess to the number of entries of the same row ofA. The use
of this dual threshold strategy, which may be quite simple and effective, has been proposed by
Saad [84], and the related preconditioner is referred to as ILUT(ρ, τ). A sketch of the sequence
of steps required for its computation is provided in Algorithm 2.

As the drop tolerance may be quite sensitive to the specific problem and so difficult
to implement in a black box solver, ILU variants that use only the fill-in parameter ρ have
been proposed [85, 86]. These versions are generally outperformed by ILUT(ρ, τ) but are
much easier to set and generally less sensitive to the user-specified parameter, allowing the
user for a thorough control of the memory occupation. More recent ILU variants developed
with the aim of improving the preconditioner performance and better exploiting the hard-
ware potential are based on multilevel techniques, dense block identification, and adaptive
selections of the setup parameters [87–89], with significant contaminations from the methods
developed for the latest multifrontal solvers.

3.2. Stabilization Techniques

Both Algorithms 1 and 2 require the execution of divisions where the denominator, that is, the
pivot, is not generally guaranteed to be nonzero. It is well known that in finite arithmetics also
small pivots can create numerical difficulties. If A is SPD, the pivot has to be also positive in
order to produce a real incomplete factorization. These issues are very important because they
can jeopardize the existence of the preconditioner itself and so the robustness of the overall
iterative algorithm.
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Input: Matrix A, the user-specified parameters ρ and τ
Output: Matrices L̃ and Ũ
for i = 1, . . . , n do

w = ai
for k = 1, . . . , i − 1 and wk /= 0 do
wk ← wk/akk
if wk ≥ τ‖ai‖2 then

w← w −wkuk
else
wk = 0

end
end
Retain the ρ largest entries in w
for j = 1, . . . , i − 1 do

lij = wj

end
for j = i, . . . , n do

uij = wj

end
end

Algorithm 2: ILUT(ρ, τ) computation.

Meijerink and van der Vorst [31] demonstrated that for an M-matrix a zero fill-in IC is
guaranteed to exist. However, ifA is SPD but not of M-type zero or negative pivots may arise,
thus theoretically preventing from the IC computation. Typically, such an inconvenience may
be avoided by increasing properly the fill-in. In this way the incomplete factor tends to the
exact factor, which is guaranteed to be SPD. However, this may generate a fill-in degree that
is unacceptably high, lowering the performance of the preconditioned solver. To avoid this
undesirable occurrence a number of tricks have been proposed which can greatly increase the
IC robustness. The first, and maybe simplest, idea was advanced by Kershaw [34] who just
suggested to replace zero or negative pivots with an arbitrary positive value, for example,
the last valid pivot. The implementation of this trick is straightforward, but it seldom
provides good results as the resulting IC often exhibits a very low quality. In fact, recall from
Algorithm 1 that modifying arbitrarily a pivot in the kth row means influencing the com-
putation of all the following rows. Another simple strategy recently advanced in [90] relies
on avoiding the computation of the square root of the pivot, required in the IC algorithm, thus
eliminating a source of breakdown. In [91] a diagonal compensated reduction of the positive
off-diagonal entries is suggested in order to transform the native matrix into an M-matrix
before the incomplete factorization process is performed. A different algorithm is proposed
in [92] with the incomplete factors obtained through an A-orthogonalization instead of a
Cholesky elimination.

A famous stabilization technique to ensure the IC existence is the one advanced byAjiz
and Jennings [93], that has proved quite effective especially in structural applications [50, 90].
Following this approach, we can write

A = LLT = L̃L̃T + R, (3.6)
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where R is a residual matrix collecting with all the entries discarded during the incomplete
procedure. From (3.6), L̃L̃T is actually the exact factorization ofA−R. AsA is SPD, it follows
immediately that a sufficient condition for L̃ to be real is that R is negative semidefinite.
Suppose that the first column of L has been computed and the term lj1 = aj1/a11 has to be
dropped along with the corresponding l1j term in LT . Hence, the incomplete factorization is
equivalent to the exact factorization of A where the entries a1j and aj1 are replaced by zero,
and the error matrix R contains aj1 in position 1j and j1. For example, in a 3 × 3 matrix with
j = 2, we have

A =

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣
a11 0 a13
0 a22 a23
a31 a32 a33

⎤
⎦ +

⎡
⎣

0 a12 0
a21 0 0
0 0 0

⎤
⎦ = A + R. (3.7)

The residual matrix R can be forced to be negative semidefinite by adding two coefficients α
and β in position (1, 1) and (j, j), such that the submatrix

[
α a1j
aj1 β

]
(3.8)

is negative semidefinite. The matrix A must be modified accordingly by subtracting α and β
from the corresponding diagonal terms. Though different choices are possible, for example,
[50, 93], the option α = β = −|a1j | is particularly attractive because in this way the sum of
the absolute values of the arbitrarily introduced entries |α| + |β| is minimized. This procedure
ensures that L̃L̃T is the exact factorization of a positive definite matrix, hence its existence is
guaranteed, but obviously such a matrix can be quite different from A. The quality of this
stabilization strategy basically depends on the quality of A as an approximation of A.

Unstable factors and negative pivots typically arise if the diagonal terms of A are
remarkably smaller than the off-diagonal ones, or if there are significant contrasts in the coeffi-
cient magnitude. The latter occurrence is particularly frequent in heterogeneous problems
or in models coupling different physical processes, such as multiphase flow in deformable
media, coupled flow and transport, themomechanical models, fluid-structure interactions, or
multibody systems, for example, [94–97]. All these problems give naturally rise to amultilevel
matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

K1 B12 B13 · · · B1�

B21 K2 B23 · · · B2�

B31 B32 K3 · · · B3�
...

...
...

. . .
...

B�1 B�2 B�3 · · · K�

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.9)

where the system unknowns can be subdivided into contiguous groups. By distinction with
multigrid methods, a multilevel approach assumes that the different levels do not necessarily
correspond to model subgrids. Several strategies have been proposed to handle properly the
matrix levels, for example, [98–102]. Generally speaking, all such algorithms can be viewed as
approximate Schur complement methods that differ for the strategy used to perform the level
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subdivision and the restriction and prolongation operators adopted [103, 104]. For a recent
review, see, for instance, [105]. The basic idea of multilevel ILU proceeds as follows. Consider
the partial factorization ofA in (3.9), whereA1 is the submatrix obtained fromAwithout the
first level, and B̂12 and B̂21 are the rectangular submatrices collecting the blocks B1j and Bj1,
j = 2, . . . , �:

A =

[
K1 B̂12

B̂21 A1

]
=

[
L1 0

B̂21U
−1
1 I

][
I 0
0 S1

][
U1 L−11 B̂12

0 I

]
. (3.10)

In (3.10) K1 = L1U1 and S1 is the Schur complement:

S1 = A1 − B̂21U
−1
1 L

−1
1 B̂12. (3.11)

Replacing L1 and U1 with the ILU factors L̃1 and Ũ1 of K1 gives rise to a partial incomplete
factorization of A that can be used as a preconditioner:

M−1 =

[
Ũ1 H12

0 I

]−1[
I 0
0 S̃−11

][
L̃1 0
H21 I

]−1
, (3.12)

where

H12 = L̃−11 B̂12

H21 = B̂21Ũ
−1
1 ,

(3.13)

S̃1 = A1 −H21H12. (3.14)

As H12 and H21 tend to be much denser than B̂12 and B̂21, some degree of dropping can be
conveniently enforced, thus replacing these blocks with H̃12 and H̃21, respectively. Recalling
the level structure of A1, the inverse of the approximated Schur complement S̃1 can be also
replaced by a partial incomplete factorization with the same structure as M−1 in (3.12).
Repeating recursively the procedure above starting from S̃0 = A, at the ith level, S̃−1i is
replaced by

S̃−1i �
[
Ũi+1 H̃i+1,i+2

0 I

]−1[
I 0
0 S̃−1i+1

][
L̃i+1 0

H̃i+2,i+1 I

]−1
, (3.15)

thus giving rise to an (i + 1)th level Schur complement S̃i+1 = Ai+1 − H̃i+2,i+1H̃i+1,i+2. The algo-
rithm stops when the size of S̃i+1 equals 0, that is, when i+1 equals the user specified number
of levels �. Multilevel ILU preconditioners are generally much more robust than standard
ILU and can be very effective provided that a suitable level subdivision is defined. If A is
SPD, however, it is necessary to enforce the positive definiteness of all approximate Schur
complements, which is no longer ensured when incomplete decompositions and dropping
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procedures are used. Recently, Janna et al. [106] have developed a stabilization strategywhich
can guarantee the positive definiteness of each S̃i. Basically, they extend to levels of the factor-
ization procedure introduced by Tismenetsky [107] where the Schur complement is updated
by a quadratic formula. The theoretical robustness of Tismenetsky’s algorithm has been
proved in [108]. Recalling (3.6), the matrix S̃i can be additively decomposed as

S̃i =

[
S̃i,11 S̃i,12
S̃Ti,12 S̃i,22

]
= Si + Ri =

[
Si,11 S̃i,12
S̃Ti,12 S̃i,22

]
+

[
R 0
0 0

]
, (3.16)

where R is the residual matrix obtained from the IC decomposition of S̃i,11. Assuming that an
appropriate stabilization technique has been used, for example, the one by Ajiz and Jennings
[93],Ri is negative semidefinite, so Si is positive definite. Let us collect all the entries dropped
in the H̃i+1,i+2 computation in the error matrix EH , thus writing Hi+1,i+2 = H̃i+1,i+2 + EH . The
Schur complement of S̃i can be now rewritten as

Si+1 = S̃i,22 − H̃T
i+1,i+2H̃i+1,i+2 − ETHH̃i+1,i+2 − H̃T

i+1,i+2EH − ETHEH. (3.17)

Ignoring the last three terms of (3.17) we obtain

S̃i+1 = S̃i,22 − H̃T
i+1,i+2H̃i+1,i+2, (3.18)

that is the standard Schur complement usually computed in amultilevel algorithm; see (3.14).
As ETHH̃i+1,i+2 is generally indefinite, S̃i+1 in (3.18) may be indefinite too. As a remedy, add
and subtract H̃T

i+1,i+2H̃i+1,i+2 to the right-hand side of (3.17):

Si+1 = S̃i, 22 + H̃T
i+1,i+2H̃i+1,i+2 −

(
H̃i+1,i+2 + EH

)T
H̃i+1,i+2 − H̃T

i+1,i+2

(
H̃i+1,i+2 + EH

)
− ETHEH.

(3.19)

Recalling that

H̃i+1,i+2 + EH = Hi+1,i+2 = L̃−1i+1S̃i,12, (3.20)

(3.19) becomes

Si+1 = S̃i,22 + H̃T
i+1,i+2H̃i+1,i+2 − S̃Ti,12L̃−Ti+1H̃i+1,i+2 − H̃T

i+1,i+2L̃
−1
i+1S̃i,12 − ETHEH. (3.21)

Neglecting the last term in (3.21)we obtain another expression for the Schur complement:

S̃i+1 = S̃i,22 + H̃T
i+1,i+2H̃i+1,i+2 − S̃Ti,12L̃−Ti+1H̃i+1,i+2 − H̃T

i+1,i+2L̃
−1
i+1S̃i,12, (3.22)

which is always SPD. In fact, (3.21) yields

S̃i+1 = Si+1 + ETHEH, (3.23)
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which is SPD independently of the degree of dropping enforced on H̃i+1,i+2. The procedure
above is generally more expensive than the standard one but is also more robust.

If A is not SPD, enforcing the positivity of pivots or the positive definiteness of the
Schur complements is not necessary. However, the experience shows that, in many problems,
especially those with a high degree of nonsymmetry and a lack of diagonal dominance, ILU
can be much more unstable in both the computation and the application, leading to frequent
solver failures [78]. In this case no rigorousmethods have been introduced to avoid numerical
instabilities. The effect of a preliminary reordering and/or scaling of A has been debated for
quite a long time, without achieving a shared conclusion. The fact that the matrix nonzero
pattern has an effect on the quality of the resulting ILU preconditioner, similarly to what
happens with direct methods, is quite well understood, but not all the methods performing
well with direct techniques appear to be efficient for ILU, for example, [90, 109–112]. A similar
result is obtained with a preliminary scaling. As proved in [113], scaling the native matrix
does not change the spectral properties of an ILU preconditioned matrix; however it can
greatly stabilize the ILU computation by reducing significantly the impact of the round-off
errors. Useful scaling strategies can be taken from the GJ preconditioning of (2.14) or the Least
Square Log algorithm introduced in [18].

4. Approximate Inverses

Incomplete factorizations can be very powerful preconditioners; however the issues concern-
ing their existence and numerical stability can undermine their robustness in several
examples. One reason for such a weakness can be understood using the following simple
argument. Consider the incomplete factorization L̃Ũ along with the corresponding residual
matrix for a general matrix A:

A = L̃Ũ + R. (4.1)

Left and right multiplying both sides of (4.1) by L̃−1 and Ũ−1, respectively, yields

L̃−1AŨ−1 = I + L̃−1RŨ−1. (4.2)

The matrix controlling the convergence of a preconditioned Krylov subspace method is actu-
ally L̃−1AŨ−1 which differs from the identity by L̃−1RŨ−1. This means that a residual matrix
close to 0 is not sufficient to guarantee a fast convergence. In fact, if the norms of either L̃−1 or
Ũ−1 are large, L̃−1AŨ−1 can be anyway far from the identity and yields a slow convergence,
that is, even an accurate incomplete factorization can provide a poor outcome. This is why
problemswith strongly nonsymmetric matrices and a lack of diagonal dominance incomplete
factorizations often have a bad reputation.

To cope with these drawbacks the researchers in the past have developed a second big
class of preconditioners with the aim of computing an explicit form for M−1, thus avoiding
the solution of the linear system needed to apply the preconditioner. Generally speaking, an
approximate inverse is an explicit approximation of A−1. Quite obviously, it has to be sparse
in order to maintain a workable cost for its computation and application. It is no surprise
that several different methods have been proposed to build an approximate inverse. The
most successful ones can be roughly classified according to whether M−1 is computed
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monolithically or as the product of two matrices. In the first case, the approximate inverse is
generally computed by minimizing the Frobenius norm:

∥∥∥I −AM−1
∥∥∥
F

or
∥∥∥I −M−1A

∥∥∥
F
, (4.3)

thus obtaining either a right or a left approximate inverse, which is generally different. In the
second case, the basic idea is to find an explicit approximation of the inverse of the triangular
factors of A:

M−1
1 � L−1, M−1

2 � U−1, (4.4)

and then useM−1 in the factored form (2.3). Different approaches have been advanced within
each class and also in between these two groups.

Early algorithms for computing an approximate inverse via the Frobenius norm mini-
mization appeared as far back as in the 70s [114, 115]. The basic idea is to select a nonzero
patternS forM−1 including all the positions where nonzero termsmay be expected. Denoting
byWS the set of matrices with nonzero pattern S, any algorithm belonging to this class looks
for a matrix M−1 ∈ WS such that ‖I − AM−1‖F is minimum. Recalling the definition of
Frobenius norm:

‖A‖F =

√√√√
n∑
j=1

n∑
i=1

a2ij , (4.5)

it follows that

∥∥∥I −AM−1
∥∥∥
2

F
=

n∑
j=1

∥∥ej −Amj

∥∥2
2, (4.6)

where ej and mj are the jth column of I and M−1, respectively. The sum at the right-hand
side of (4.6) is minimum only if each addendum is minimum. Therefore, the computation of
M−1 is equivalent to the solution of n least-squares problems with the constraint that mj has
nonzero components only in the positions i such that (i, j) ∈ S. This requirement reduces
enormously the computational cost required to buildM−1. Denote by J the set

J =
{
i :

(
i, j

) ∈ S}
(4.7)

and mj[J] the subvector of mj made of the components included in J. In the product Amj

only the columns ofAwith index in Jwill provide a nonzero contribution. Moreover, asA is
sparse, only a few rows will have a nonzero term in at least one of these columns (Figure 2).
Denoting by I the set

I =
{
i : aij /= 0 with j ∈ J}

(4.8)
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J

JI

Figure 2: Schematic representation of a matrix-vector product subject to sparsity constraints.

and A[I,J] the submatrix of A made of the coefficients aij such that i ∈ I and j ∈ J, each
least square problem at the right-hand side of (4.6) reads

∥∥ej[I] −A[I,J]mj[J]
∥∥2
2 −→ min (4.9)

and is typically quite small. The procedure illustrated above allows for the computation of a
right approximate inverse. To build a left approximate inverse just observe that

∥∥∥I −M−1A
∥∥∥
F
=

∥∥∥I −ATM−T
∥∥∥
F
. (4.10)

Hence, (4.9) can still be used for any j replacing AwithAT and obtaining the rows ofM−1. It
turns out that for strongly nonsymmetric matrices the right and left approximate inverse can
be quite different.

The main difference in the algorithms developed within this class relies on how the
nonzero pattern S is selected, and this is indeed the key factor for the overall quality of the
approximate inverse. A more detailed discussion on this point will be provided in the next
section. Some of the most popular algorithms in this class have been advanced in [116–121],
each onewith its pros and cons. Probably themost successful approach is the one proposed by
Grote and Huckle [117]which is known as SPAI (SParse Approximate Inverse). Basically, the
SPAI algorithm follows the lines described above dynamically enlargingJ for each column of
M−1 until the least square problem (4.9) is solvedwith a prescribed accuracy. SPAI has proved
to be quite a robust method allowing for a good control of its quality by the user. Unfor-
tunately, its computation can be quite expensive also on a parallel machine. A sketch of the
SPAI construction is reported in Algorithm 3.

A different way to build an approximate inverse of A relies on approximating the
inverse of its triangular factors. Assuming that all the leading principal minors of A are not
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Input: Matrix A, the initial nonzero pattern S and the tolerance ε
Output: MatrixM−1

for j = 1, . . . , n do
Compute J = {i : (i, j) ∈ S}
Compute I = {i : aik /= 0, k ∈ J}
Gather A[I,J] from A
Solve the least square problem ‖ej[I] −A[I,J]mj[J]‖2 → min
rj = ej[I] −A[I,J]mj[J]
while ‖rj‖2 > ε do

Enlarge J and update I
Gather A[I,J] from A
Solve the least square problem ‖ej[I] −A[I,J]mj[J]‖2 → min
rj = ej[I] −A[I,J]mj[J]

end
end

Algorithm 3: Computation of the SPAI preconditioner.

null, that is, A can be factorized as the product LDU where L is unit lower triangular, D is
diagonal, andU is upper unit triangular, then

L−1AU−1 = D (4.11)

implying that the rows of L−1 and the columns ofU−1 are two sets ofA-biconjugate vectors. In
other words, denoting bywi and zj the ith row of L−1 and the jth column ofU−1, respectively,
(4.11)means that

wT
i Azj = 0 ∀i, j = 1, . . . , n, i /= j. (4.12)

IfW and Z are the matrices collecting all vectors wi and zj , i, j = 1, . . . , n, satisfying the con-
dition (4.12) and D =WTAZ, then the inverse of A reads

A−1 = ZD−1WT =
n∑
k=1

zkwT
k

dk
(4.13)

and can be computed explicitly. There are infinite sets of vectors satisfying (4.12), and they
can be computed by means of a biconjugation process, for example, via a two-sided Gram-
Schmidt algorithm, starting from two arbitrary initial sets. Quite obviously, these vectors are
dense and their explicit computation is practically unfeasible. However, if the process is car-
ried out incompletely, for instance, dropping the entries of wk and zk, k = 1, . . . , n, whenever
smaller than a prescribed tolerance, the matricesW and Z can be acceptable approximations
of L−T and U−1 though preserving a workable sparsity. The resulting preconditioner is
denoted as AINV (Approximate INVerse) and has been introduced in the late 90s by Benzi
and coauthors [122–124]. In the following years the native algorithm has been further devel-
oped by other researchers as well, for example, [125–130]. A sketch of the basic procedure
to build the AINV preconditioner is provided in Algorithm 4.
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Input: Matrix A, the tolerance τ
Output: MatricesW , Z and D such thatM−1 = ZD−1WT

Set p = q = 0, Z =W = I
for k = 1, . . . , n do
pk = wT

k
Azk, qk = wT

k
Azk

for i = k + 1, . . . , n do
pi = (wT

i Azk)/pk, qi = (wT
k
Azi)/qk

wi ← wi − piwk, zi ← zi − qizk
for j = 1, . . . , i do

Drop the jth component ofwi and zi if smaller than τ
end

end
end
for k = 1, . . . , n do

dk = pk
end

Algorithm 4: Computation of the AINV preconditioner.

Quite obviously, if A is SPD, then W = Z, and in Algorithm 4 only the update of zi
must be carried out. The resulting AINV preconditioner can be written asM−1 = ZZT , is SPD,
and exists if pk /= 0 for all k = 1, . . . , n. Unfortunately, the same does not hold true for non-
factored sparse approximate inverses based on minimizing the Frobenius norm in (4.3). In
general, using an algorithm developed along the lines of SPAI there is no guarantee thatM−1

is SPD if A is so. This is quite a strong limitation, as it prevents from using the powerful CG
method to solve an SPD linear system. Such a weak point motivated the development of the
Factorized Sparse Approximate Inverse (FSAI) preconditioner by Kolotilina and Yeremin
[131]. The FSAI algorithm lies somewhat between the two classes of approximate inverses
previously identified, as it produces a factored preconditioner in the form

M−1 = GTG, (4.14)

where G is a sparse approximation of the inverse of the exact Cholesky factor L of an SPD
matrix A obtained with a Frobenius norm minimization procedure. Select a lower triangular
nonzero patternSL and find thematrixG ∈ WSL, whereWSL is the set of matrices with pattern
SL such that

‖I −GL‖F −→ min . (4.15)

The minimization (4.15) can be performed recalling that

‖I −GL‖F = Tr
[
(I −GL)(I −GL)T

]
= n − 2 Tr(GL) + Tr

(
GAGT

)
. (4.16)

Deriving the right-hand side of (4.16) with respect to the nonzero entries of G and setting to
0 yield

[GA]ij = lji ∀
(
i, j

) ∈ SL, (4.17)
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where the symbol [·]ij denotes the entry in position (i, j) of the matrix in the brackets. As SL
is a lower triangular pattern, the entry lji of L is nonzero only if i = j and the off-diagonal
terms of L are not required. Scaling (4.17) so that the right-hand side is either 1 or 0 yields

[
ĜA

]
ij
= δij ∀(i, j) ∈ SL, (4.18)

where Ĝ is the scaled factor G and δij the Kronecker delta. Solving (4.18) by rows leads to a
sequence of dense SPD linear systems with size equal to the number of nonzeroes set for each
row of Ĝ. More precisely, denoting by J the set of column indices where the ith row gi of Ĝ
has a nonzero entry, the following SPD systems have to be solved:

A[J,J]gi[J] = im, (4.19)

where im ∈ R
m has zero components except the mth one that is unitary, and m is the car-

dinality of J. The FSAI factor G is finally restored from Ĝ as

G =
[
diag

(
Ĝ
)]−1/2

Ĝ (4.20)

such that the preconditioned matrix GAGT has all diagonal entries equal to 1. It has been
demonstrated that FSAI is optimal in the sense that it minimizes the Kaporin conditioning
number ofGAGT for anyG ∈ WSL [131, 132]. Another remarkable property of FSAI is that the
minimization in (4.15) does not require the explicit knowledge of L, which would make the
algorithm unfeasible. A sketch of the procedure to build FSAI is reported in Algorithm 5. The
FSAI preconditioner was later improved in several ways [133], with the aim of increasing its
efficiency by dropping the smallest entries while preserving its optimal properties. Between
the late 90s and early 00s further developments of FSAI were abandoned, as AINV proved
generally superior. In recent years, however, a renewed interest for FSAI has started, mainly
because of its high intrinsic parallel degree, for example, [134–136].

The native FSAI algorithm has been developed for SPD matrices. A generalization
to nonsymmetric matrices is possible and quite straightforward [137, 138]; however the
resulting preconditioner is much less robust because the solvability of all local linear systems
and the nonsingularity of the approximate inverse are no longer theoretically guaranteed.
This is why with general sparse matrices SPAI and AINV are generally preferred.

4.1. Nonzero Pattern Selection and Stability Issues

A key factor for the efficiency of approximate inverse preconditioning based on the Frobenius
norm minimization is the choice of the nonzero pattern S or SL. If the nonzero pattern
is not good for the problem at hand, the result is generally a failure in the Krylov solver
convergence. This is due to the fact that approximate inverse techniques assume that a sparse
matrixM−1 can be a good approximation, in some sense, of A−1. This is not obvious at all, as
the inverse of a sparse matrix is structurally dense. IfA is diagonally dominant, the entries of
A−1 decay exponentially away from the main diagonal [139], hence a banded pattern forM−1

typically provides good results. Other favorable situations include block tridiagonal or
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Input: Matrix A and the nonzero pattern SL
Output: Matrix G
for i = 1, . . . , n do

Compute J = {j : (i, j) ∈ SL}
Setm = |J|
Gather A[J,J] from A
Solve A[J,J]gi[J] = im
gi ← gi/

√
gi,m

end

Algorithm 5: Computation of the FSAI preconditioner.

pentadiagonal matrices [140], but for a general sparse matrix choosing a good nonzero
pattern is not trivial at all.

With respect to the nonzero pattern selection, approximate inverses can be defined as
static or dynamic, according towhetherS andSL are initially chosen and kept unvaried during
the computation, or S and SL are generated by an adaptive algorithm which selects the
position of the nonzero entries in an a priori unpredictable way. Typically, dynamic approx-
imate inverses are more powerful than static ones, but their implementation especially on
parallel computers can be much more complicated. The most popular and common strategy
to define a static nonzero pattern forM−1 is to take the nonzero pattern of a power κ of A as
is justified in terms of the Neumann series expansion of A−1. In real problems, however, it is
uncommon to set a κ value larger than 2 or 3, as S can soon become too dense, so it is often
preferable working with sparsified matrices. The sparsification of Aκ can be done by either a
prefiltration, or a postfiltration strategy, or both. For example, Chow [141] suggests dropping
the entries ofA smaller than a threshold, thus obtaining the sparsifiedmatrix Â and using the
pattern of Âκ. An a posteriori sparsification strategy is advanced for the FSAI algorithm by
Kolotilina and Yeremin [133] with the aim of reducing the cost for the preconditioner appli-
cation by dropping its smallest entries. Such a dropping, however, is nontrivial and is per-
formed so as to preserve the property that the FSAI preconditioned matrix has unitary diag-
onal entries, with a possibly nonnegligible computational cost. Anyway, pre- and/or post-
filtration of a static approximate inverse is generally to be recommended, as the cost of the
preconditioner application can be dramatically reduced with a relatively small increase of the
iteration count, for example, [135, 136, 142]. By the way, this suggests that the pattern of Aκ

is often much larger than what would be actually required to get a good preconditioner, the
difficulty relying on the a priori recognition of the most significant entries.

Dynamic approximate inverses are based on adaptive strategies which start from a
simple initial guess, for example, a diagonal pattern, and progressively enlarge it until a
certain criterion is satisfied. For instance, a typical dynamic algorithm is the one proposed by
Grote and Huckle [117] for the SPAI preconditioner; see Algorithm 3. More specifically, they
suggest to collect the indices of the nonzero components of the residual vector in a new set L
and to enlarge the current set J by adding the new column indices that appear in the rows
with index in L. An improvement can be obtained by retaining only a few new column
indices, specifically the indices j such that the new residual norm:

ρj =
∥∥rj

∥∥2
2 −

(
rTj Aej

)2

∥∥Aej
∥∥2
2

, (4.21)
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is larger than a user-specified tolerance. Then, the set I is enlarged correspondingly, and a
new least square problem is solved. Other dynamic techniques for generating S have been
advanced by Huckle for both nonsymmetric [143] and SPD matrices [134]. More recently, Jia
and Zhu [121] have advanced a novel dynamic approximate inverse denoted as PSAI (Power
Sparse Approximate Inverse), and Janna and Ferronato [144] have developed a new adaptive
strategy for Block FSAI that has proved quite efficient also for the native FSAI algorithm and
will be presented in more detail in the sequel.

In contrast with approximate inverses based on the Frobenius normminimization, the
AINV algorithm does not need the selection of the nonzero pattern, so it can be classified
as a purely dynamic preconditioner. However, its computation turns out to be pretty similar
to that of an incomplete factorization, see Algorithms 2 and 4, thus raising concerns on its
numerical stability. In particular, due to incompleteness a zero pivot may result, causing a
breakdown, or small pivots can trigger unstable behaviors. To avoid such difficulties a sta-
bilized AINV preconditioner has been developed independently in [124, 145] for SPD prob-
lems. For generally nonsymmetric problems, especially with large off-diagonal entries, the
numerical stability in the AINV computation may still be an issue.

Theoretically, for an arbitrary nonzero pattern S it is not guaranteed that M−1 is
nonsingular. This could also happen for a few combinations of the user-specified tolerances
set for generating dynamically the approximate inverse pattern. However, such an occurrence
is really unlikely in practice, and typically approximate inverses prove to be very robust in
problems arising from a variety of applications. According to the specific problem at hand,
the choice of the most efficient type of approximate inverse may vary. For a thorough com-
parative study of the available options as of 1999 see the work by Benzi and Tůma [146].
Generally, SPAI is a robust algorithm able to converge also in difficult problems where incom-
plete factorizations fail, for example, [147], allowing the user to have a complete control of the
quality of the preconditioner through the parameter ε, see Algorithm 3. However, its com-
putation is quite expensive and can be rarely competitive with AINV if only one system has to
be solved so that the construction time cannot be amortized by recycling a few times the same
preconditioner. For SPD problems, SPAI is not an option and FSAI is always well defined
and a very stable preconditioner, even if its convergence rate may be lower than AINV. For
unsymmetric matrices, however, FSAI is not reliable and may often fail. On the other hand,
AINV seldom fails and generally outperforms both SPAI and FSAI.

Numerical experiments in different problems typically show that, whenever a stable
ILU-type preconditioner can be computed, that is probably the most efficient preconditioner
on a scalar machine [129, 148, 149]. However, approximate inverses play an important role in
offering a stable and robust alternative to ILU in ill-conditioned problems. Moreover, they can
become the preconditioner of choice for parallel computations, as it will be discussed in more
detail in the sequence.

5. Algebraic Multigrid Methods

It is well known that the convergence rate of any Krylov subspace method preconditioned
by either an incomplete factorization or an approximate inverse tends to slow down as the
problem size increases. The convergence deterioration along with the increased number of
operations per iteration may lead to an unacceptably high computational cost, thus limiting
de facto the size of the simulated model even though large memory resources are available.
This is why in recent years much work has been devoted to the so-called scalable algorithms,
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that is, solvers where the iteration count is insensitive to the characteristic size of the discreti-
zation mesh.

Multigrid methods can provide an answer to such a demand. Pioneering works on
multigrid are due to Brandt [150, 151]who promoted these techniques for the solution of reg-
ularly discretized elliptic PDEs. The matrices arising from this kind of problem have a regular
structure for which all eigenvalues and eigenvectors are known. For example, let us consider
the 1D model problem:

−u′′(x) = f(x), x ∈ [0, 1], (5.1)

with homogeneous Dirichlet boundary conditions discretized by centered differences over
n + 2 equally spaced points xi, i = 0, . . . , n + 1. The grid characteristic size is therefore h =
1/(n + 1). This discretization results in the tridiagonal n × n linear system Ahx = b, where, as
is well known, the eigenvalues of Ah are

λk = 4 sin2
(
khπ

2

)
k = 1, . . . , n, (5.2)

with the associated eigenvectors

wk = [sin(khπ), sin(2khπ), . . . , sin(nkhπ)]T . (5.3)

In other words, the ith component ofwk is actually

wk,i = sin(kπxi). (5.4)

Let us solve the discretized model problem by a stationary method, for example, the Jacobi
iteration. As themain diagonal ofAh has all components equal to 2, the Jacobi iterationmatrix
Sh is just

Sh = I − Ah

2
(5.5)

and the kth component of the error along the direction of the kth eigenvector of Sh is damped
at each iteration by the reduction coefficient ηk:

ηk = 1 − 2 sin2
(
khπ

2

)
. (5.6)

The reduction coefficients with k around n/2 are very small, and the related error components
are damped very rapidly in a few iterations. This part of the error is often referred to as the
oscillatory part corresponding to high frequency modes. However, if h is small, there are also sev-
eral reduction coefficients close to 1, related to both the smallest and largest values of k, that
slow down significantly the stationary iteration. This part of the error is usually referred to as
the smooth part corresponding to low frequency modes. Let us now consider a coarser grid



ISRN Applied Mathematics 25

where the characteristic size is doubled, that is, we simply keep the nodes of the initial discre-
tizationwith an even index. Recalling (5.4) it follows that a smoothmode on the fine grid, that
is, k < n/4 and k > 3n/4, is now automatically injected into an oscillatory mode on the coarse
grid. Building A2h and S2h, it is now possible to damp in a few iterations the error on the
coarse grid and then project back the result on the fine grid. Similar conclusions can be drawn
also using other stationary iterations, such as Gauss-Seidel, though in a much less straight-
forward way.

Recalling the previous observations, the basic idea of multigrid proceeds as follows.
The operator Sh, usually denoted as the smoother in the multigrid terminology, is applied to
the fine grid discretization for ν1 iterations. The resulting fine grid residual is computed and
injected into the coarse grid through a restriction operator RH

h . Recalling the relationship
between error and residual, the coarse grid problem is solved using the residual as known
term, thus providing the coarse grid error. Such an error is then projected back to the original
fine grid using a prolongation operator PhH , and the fine grid solution, obtained after the
initial ν1 smoothing iterations, is corrected. Finally, the fine grid smoother is applied again
until convergence. The algorithm described above is known as two-grid cycle and is the basis
of multigrid techniques. Quite naturally, the two-grid cycle can be extended in a recursive
way. At the coarse level, another two-grid cycle can be applied moving at a coarser grid,
defining appropriate smoother, restriction, prolongation operators, and so on, until the
coarsest problem is so small that it can be efficiently solved by a direct method. The recursive
application of the two-grid cycle gives rise to the so-called V-cycle. Other more complex
recursions can provide the so-called W-cycle; see, for instance, [152] for details.

Multigrid methods have been introduced as a solver for discretized PDEs of elliptic
type, and indeed in such problems they have soon proved to be largely superior to existing
algorithms. The first idea to extend their use to other applications was to look at the
multigrid as a purely algebraic solver, where one has to define the smoother, restriction,
and prolongation operators knowing the system matrix A only independently of the grid
and the discretized PDE it actually comes from. This strategy, known as Algebraic Multigrid
(AMG), was first introduced in the mid 80s [153–155] and became soon quite popular. The
second idea was to regard AMG not as a competitor with Krylov subspace solvers, rather as a
potentially effective preconditioner. In fact, to work as a preconditioner it is simply sufficient
to fix the number ν2 of smoothing iterations needed to reconstruct the system solution at the
finest level, thus obtaining an inexact solution. The scheme of a V-cycle AMG application as
a preconditioner is provided in Algorithm 6.

Basically, AMG preconditioners vary according to the choice of both the restriction
operator and the smoother, while the prolongation operator is often defined as the transposed
of the restrictor. The basic idea for defining a restriction is to coarsen the native pattern of
A and prescribe an appropriate interpolation over the coarse nodes. Classical coarsening
strategies have been introduced in [155, 156] which separate the variables into coarse (C-)
and fine (F-) points according to the strength of each matrix connection. A point j strongly
influences the point i if

−aij ≥ θ max
k=1, n, k /= i

(−aik), (5.7)

where θ is the user-defined strength threshold. For each point j that strongly influences an F-
point i, j is either a C-point or is strongly influenced by another C-point k. Moreover, two
C-points should not be connected to each other. An alternative successful coarsening strategy
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Input: Matrix A(k), the known vector v(k), the restriction and prolongation
operators RH (k)

h
and Ph (k)

H , the smoothers S(k)
h

, k, ν1, ν2 and μ
Output: Vector u(k) =M−1v(k)

if k = μ then
Solve A(k)u(k) = v(k)

else
Apply ν1 iterations of the smoother S(k)

h
to A(k)u(k) = v(k)

r(k) = v(k) −A(k)u(k)

r(k+1) = RH (k)
h

r(k)

Call MGV(A(k+1), R
H (k+1)
h

, P
h (k+1)
H , S

(k+1)
h

, r(k+1), e(k+1))
e(k) = Ph (k)

H e(k+1)

u(k) ← u(k) + e(k)

Apply ν2 iterations of the smoother S(k)
h

to A(k)u(k) = v(k)

end

Algorithm 6: Recursive application for μ times of the V-cycle AMG function MGV(A,RH
h
, Ph

H, Sh,v,u).

is based on the so-called smoothed aggregation (SA) technique [157], where a coarse node is
defined by an aggregate of a root point i and all the neighboring nodes j such that

∣∣aij
∣∣ > θ

√∣∣aiiajj
∣∣. (5.8)

Another possibility is to use a variant of the independent set ordering (ISO) technique which
subdivides a matrix into a 2 × 2 block structure and projects the native system into the Schur
complement space. Using ISO or SA can lead to an elegant relationship between AMG and
multilevel ILU as exploited in [98, 101, 158, 159]. More recently, a number of both parallel and
scalar coarsening strategies have been also advanced, for example, [160–164]. As far as the
smoother is concerned, for many years the method of choice has been the standard Gauss-
Seidel iteration. With the development of parallel computers other smoothers have been
introduced with the aim of increasing the parallel degree of the resulting AMG algorithm.
Multicoloring approaches [165] can be used in connection to standard Gauss-Seidel, or also
polynomial and C-F Jacobi smoothers [166, 167]. It is no surprise that also approximate
inverses can be efficiently used as a smoother, for example, [168, 169].

The last decade has witnessed an explosion of research on AMG techniques. The key
factor leading to such a great interest is basically their potential scalability with the size of the
problem to be solved, in the sense that the iteration count to converge for a given problem
does not depend on the number of the mesh nodes. Several theoretical results have been
obtained with the aim of generalizing as much as possible AMG to nonelliptic problems, for
example, [158, 170–174]. AMG techniques have been used in several different applications
with promising results, such as fluid-structure interactions, meshless methods, Maxwell and
Helmoltz equations, structural mechanics, sedimentary basin reconstruction, and advection-
convection and reactive systems, for example, [175–185]. The above list of references is just
representative and of course largely incomplete. Nonetheless, much work is still to be done in
order to make AMG the method of choice. In particular, difficulties can be experienced where
the system matrix arises from highly distorted and irregular meshes, or in presence of strong
heterogeneities. In these cases, even the most advanced AMG strategies can fail.
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6. Parallel Preconditioners

Parallel computing is widely accepted as the only pathway toward the possibility of manag-
ing millions of unknowns [186]. At the same time, hardware companies are improving
the available computational resources with an increasing degree of parallelism rather than
accelerating each single computing core. This is why the interest in parallel computations
is continuously growing in recent years. Krylov subspace methods are in principle almost
ideally parallel, as their kernels are matrix-vector and scalar products along with vector
updates. Unfortunately, the same is not true for most algebraic preconditioners. There are
basically two approaches for developing parallel preconditioners: the first tries to extract
as much parallelism as possible from existing algorithms with the aim of transferring them
to high-performance platforms, while the second is based on developing novel techniques
which would not make sense on a scalar computer. Quite obviously, the former approach is
easier to understand from a conceptual point of view, as the native algorithm is not modified
and the difficulties are mainly technological. The latter implies an additional effort to develop
new explicitly parallel methods.

ILU-based preconditioners are highly sequential in both their computation and
application. Anyway, some degree of parallelism can be achieved through graph coloring
techniques. These strategies have been known from a long time by numerical analysts, for
example, [6], and used in the context of relaxation methods. The aim is to build a partition
of the matrix graph such that all vertices in the same group form an independent set, so that
all unknowns in the same subset can be solved in parallel. Other useful orderings are based
on domain decomposition strategies minimizing the edges connecting different subdomains,
with a local ordering applied also to each unknown subset. Parallel ILU implementations
based on these concepts have been developed in [187–190]; however it was soon made clear
that generally such algorithms could not have a promising scalability.

In contrast, approximate inverses are intrinsically much more parallel than ILU
factorizations, as they can be applied by a matrix-vector product instead of forward and
backward substitutions. The construction of an approximate inverse, however, can be difficult
to parallelize. For example, the AINV Algorithm 4 proceeds by columns and is conceptually
pretty similar to an ILU factorization. A parallel AINV construction can be obtained bymeans
of graph partitioning techniques which decompose the adjacency graph of A in a number of
subsets of roughly the same size with a minimal number of edge cuts [191]. In such a way
the inner variables of each subset can be managed independently by each processor, while
communications occur only with the boundary variables. By distinction, the construction of
an approximate inverse based on a Frobenius norm minimization is naturally parallel if a
static nonzero pattern is defined a priori. For example, the computation of both static SPAI
and FSAI consists of a number of independent least-square problems and dense linear sys-
tems, respectively, which can be trivially partitioned among the available processors. Hence,
static SPAI and FSAI are almost perfectly parallel algorithms. However, when the nonzero
pattern is defined dynamically parallelization is no longer straightforward, as the operation
of gathering the required submatrix of A, see Algorithms 3 and 5, gives rise to unpredictable
communications. For example, details of the nontrivial parallel implementation of the dyna-
mic SPAI algorithm are provided in [147].

The theoretical scalability properties of AMG make it very attractive for parallel com-
putations. This is why in the last few years the research on AMG techniques has concentrated
on high-performance massively parallel implementations. The main difficulties may arise in
parallelizing the Gauss-Seidel smoother and the coarsening stage. Asmentioned before, these
problems can be overcome by using naturally parallel smoothers, such as Jacobi, relaxed
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Jacobi, polynomial or a static approximate inverse smoother, for example, [162, 166], and
parallel coarsening strategies, for example, [160, 162, 192, 193]. Currently, efficient parallel
implementations of AMG are already available in several software packages, for example,
Hypre [194] and Trilinos [195].

An alternative strategy for developing parallel preconditioners relies on building new
algorithms which should consist of matrix-vector products and local triangular solves only.
Perhaps the earliest technique of this kind belongs to the class of the polynomial precondi-
tioners which was first introduced by Cesari as back as in 1937 [4], even though obviously
not in the context of Krylov subspace methods and supercomputing. Modern polynomial
preconditioners have been developed in [196–198]. A polynomial preconditioner is defined
as

M−1 = s(A), (6.1)

where s ∈ Pk is a polynomial of degree not exceeding k. The preconditioned system becomes:

s(A)Ax = s(A)b, (6.2)

where s(A) andA commute, so that right and left preconditionings coincide. Quite obviously,
s(A)A is never formed explicitly and its application to a vector is simply performed by a
sequence of matrix-vector products. Therefore, polynomial preconditioners can be ideally
implemented in a parallel environment. There are different polynomial preconditioners
according to the choice of s(A). One of the simplest options, advanced in [196], is using the
Neumann expansion I +N +N2 + · · · +Nl, where

N = I −ωA (6.3)

andω is a scaling parameter. The degree l ≤ k cannot be too large, and this can limit the effec-
tiveness of this preconditioner. Another option, advanced in [197], is to select a somewhat
“optimal” polynomial, where optimality is evaluated in some sense. A natural choice is
prescribing that the eigenspectrum of the preconditioned matrix is as close as possible to
that of the identity, that is, finding s ∈ Pk such that

max
λ∈σ(A)

|1 − λs(λ)| −→ min, (6.4)

where σ(A) is the eigenspectrum of A. The min-max problem above can be addressed by
using Chebyshev polynomials but cannot be solved exactly, as σ(A) is generally not known.
An approximate minimization can be done replacing σ(A) with a continuous set which
encloses σ(A). A third option is to compute s as the polynomial that minimizes

‖1 − λs(λ)‖w, (6.5)
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Figure 3: Matrix partitioning into possibly overlapping subdomains.

where the symbol ‖·‖w denotes the 2-norm induced by the inner product on the space Pk with
respect to some nonnegative weight function defined in the interval [α, β]:

(
p, q

)
=

∫β

α

p(λ) q(λ)w(λ)dλ. (6.6)

The resulting polynomial is known as least-squares and was actually introduced by Stiefel in
the solution of eigenproblems [199]. According to Saad [198], least-squares polynomials tend
to perform better than Chebyshev and Neumann. However, a major drawback for the use of
this kind of preconditioners stems from the need at least for estimates of the smallest and
largest eigenvalues of A and often their performance is quite poor in terms of convergence
rate [200].

Another popular parallel preconditioner is based on the Additive Schwarz (AS)meth-
ods [201]. The idea is to use a domain decomposition approach for dividing the variables into
a number of possibly overlapping subdomains and to address separately each subdomain
at a local level (Figure 3). On the overlaps the contribution of each subdomain is added
or treated in some special way by averaging techniques. AS preconditioners can be easily
parallelized by assigning each subdomain to a single processor. For instance, a sequential ILU
factorization can be computed for each subdomain, thus miming a kind of parallel ILU. If no
overlaps are allowed for, AS preconditioners with inner ILU factorizations simply reduce to
an incomplete Block Jacobi. This class of preconditioners has experienced some success in the
90s as it is conceptually perfectly parallel. Unfortunately, the quality of the preconditioner
deteriorates as the number of processors, that is, subdomains, grows, because the size of each
subset progressively decreases. This causes an increase of the iteration count which can also
completely offset the advantage of using a larger number of processors.

A novel recent parallel preconditioner which tries to combine the positive features of
both approximate inverses based on the Frobenius norm minimization and AS methods is
Block FSAI [202]. The basic idea exploits the fact that in the Frobenius norm minimization
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the preconditioned matrix can be actually forced to resemble any targetmatrix T , by comput-
ing a pseudoapproximate inverseM−1 such that

∥∥∥T −AM−1
∥∥∥
F
−→ min (6.7)

for all matrices having a prescribed nonzero pattern S. This concept, originally introduced in
[120], can be used to choose a target matrix T that is particularly attractive for parallel com-
puting. The idea of Janna et al. [202] is to generalize the FSAI approach using as a target
a block diagonal matrix. As FSAI is a robust preconditioner for SPD problems, Block FSAI
has been originally developed for this class of matrices, although a generalization to nonsym-
metric indefinite linear systems has also been attempted [203]. So let A be SPD with SL and
SBD a sparse lower triangular and a dense block diagonal nonzero n×n pattern, respectively.
Denote by nb the number of diagonal blocks andmib the size of the ibth block, and letD be an
arbitrary full-rank matrix with nonzero pattern SBD. The Block FSAI preconditioner of A is
defined as the product FTF, where F is a lower block triangular factor with nonzero pattern
SBL = SBD ∪ SL such that

‖D − FL‖F −→ min (6.8)

with L the exact lower Cholesky factor ofA. AsD is arbitrary, it goes without saying that F as
defined in (6.8) is also. Similarly to the FSAI algorithm, minimization of (6.8) yields a linear
relationship for the ith row fi of F:

A[J,J]fi[J] = v, (6.9)

where J is the set of column indices in the ith row of F with nonzero entries and v is the null
vector except for the lastmib components which are arbitrary, being ib the block index the row
i belongs to (Figure 4). For the system (6.9) to have a unique solutionmib components of fi[J]
can be set arbitrarily because of the arbitrariness ofD. According to [202] themost convenient
choice is to prescribe all the components of fi[J] falling within the ibth diagonal block to be
null, with the exception of the diagonal entries set to 1. This implies that F is actually a unit
lower triangular matrix with structure

F =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0
F21 I

...
...

. . .
...

Fnb1 Fnb2 · · · I

⎤
⎥⎥⎥⎥⎥⎦
. (6.10)

Similarly to the static FSAI algorithm, the factor F can be efficiently built in parallel as all
systems (6.9) are independent. According to (6.8), the preconditioned matrix FAFT should
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fi[J]

F

(a)

A[J, J]

A

(b)

Figure 4: Elements belonging to fi[J] (a) andA[J,J] (b).

resembleDDT , that is, a block diagonal matrix for any arbitraryD. In other words, FAFT has
the block structure

FAFT =

⎡
⎢⎢⎢⎢⎣

B1 R1,2 · · · R1nb

RT
12 B2 · · · R2nb
...

. . .
...

RT
1nb

RT
2nb
· · · Bnb

⎤
⎥⎥⎥⎥⎦
, (6.11)

where Rij are residual blocks and Bib tend to the diagonal blocks of DDT . As D is arbitrary,
there is no reason for FAFT to be better thanA in a CG iteration, so it is necessary to precondi-
tion FAFT again. Assuming that the residual off-diagonal blocks in (6.11) are close to 0, an
effective choice could be using as “outer” preconditioner a nonoverlapped AS method con-
taining a local preconditioner for each block Bib . Writing the “outer” preconditioner in the fac-
tored block diagonal form J−TJ−1, the resulting preconditioned matrix reads

J−1FAFTJ−T =WAWT (6.12)

with the final Block FSAI preconditioner:

M−1 =WTW = FTJ−TJ−1F. (6.13)

The Block FSAI preconditioner described above can be improved by defining SBL
dynamically. An adaptive algorithm for the SBL pattern identification can be implemented
starting from the theoretical optimal properties of Block FSAI. Janna and Ferronato [144] have
demonstrated that under the hypothesis that the J−TJ−1 contains the exact inverse of each
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diagonal block Bib the Kaporin conditioning number β of the preconditioned matrixWAWT

[132]:

β
(
WAWT

)
=

tr
(
WAWT

)

ndet
(
WAWT

)1/n , (6.14)

satisfies the following bound:

1 ≤ β
(
WAWT

)
≤ Cψ(F), (6.15)

where C is a constant scalar independent ofW and

ψ(F) =

(
n∏
i=1

[
FAFT

]
ii

)1/n

. (6.16)

Block FSAI has the theoretical property of minimizing ψ(F) for any given pattern SBL.
The basic idea of the adaptive algorithm is to select the off-block diagonal nonzero entries in
any row fi of F so as to reduce ψ(F) as much as possible. This is feasible because each factor
[FAFT ]ii turns out to be a quadratic form depending on fi only. Denoting by f̃i the subvector
of fi including the off-block diagonal entries only, Ãib the square submatrix of A built from
the first to the mth row/column, with m the sum of size of the first (ib − 1) diagonal blocks
of SBD, and ai the subrow of Awith the firstm elements of the ith row (Figure 5), each factor
[FAFT ]ii in (6.16) reads

[
FAFT

]
ii
= f̃Ti Ãib f̃i + 2f̃Ti ãi + aii. (6.17)

Minimizing every [FAFT ]ii, i = 1, . . . , n, is equivalent to minimizing ψ(F). The adaptive
pattern search for F can be therefore implemented as follows. Start from an initial guessS0

F for
the nonzero pattern of the off-block diagonal part of F, for example, the empty pattern, and
compute the gradient gi of each quadratic form [FAFT ]ii:

gi = 2
(
Ãib f̃i + ãi

)
. (6.18)

Then, add to S0
F the position j into each row i corresponding to the largest component of gi

computed in (6.18), so as to obtain an augmented pattern S1
F . After computing the new factor

F over S1
F , the procedure above can be iterated in order to build S2

F , S3
F , and so on. The search

into each row can be stopped when either a maximum number kmax of entries are added to
the initial pattern or the relative variation of [FAFT ]ii in two consecutive steps is smaller
than a prescribed tolerance εF . The construction of the dynamic Block FSAI is summarized
in Algorithm 7. The Block FSAI computed with the dynamic algorithm described above is
known as Adaptive Block FSAI (ABF) and has proved very effective even if the outer precon-
ditioner does not contain the exact inverse of the diagonal blocks Bib . As any dynamic
algorithm, the parallel construction of ABF is not straightforward. However, an almost ideal
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F

∼fi

(a)

ib

A

∼A

∼ai

(b)

Figure 5: Matrix Ãib and vectors f̃i and ãi used in the [FAFT ]ii and gi computation.

Input: Matrix A, the initial pattern S0
F

Output: Matrix F
for i = 1, . . . , n do

Extract J0 from S0
F

if J0 /= ∅ then
Gather A[J0,J0] and A[J0, i] from A
Solve A[J0,J0] fi[J0] = −A[J0, i]

end
Set k = 0 and εi > εF
while (k ≤ kmax) and (εi < εF) do
k ← k + 1
Compute gi = 2(Ãib f̃i + ãi)
Update Jk−1 by adding the index of the largest component of gi
Gather A[Jk,Jk] and A[Jk, i] from A
Solve A[Jk,Jk] fi[Jk] = −A[Jk, i]
Compute the diagonal term [FAFT ]kii at the current step
Compute εi = ([FAFT ]kii − [FAFT ]k−1ii )/[FAFT ]k−1ii

end
end

Algorithm 7: Dynamic construction of the Block FSAI preconditioner.

efficiency can be obtained in massively parallel computations as well. For more details, see
[144].

Block FSAI coupled with a block diagonal IC factorization, for example, as imple-
mented in [74, 84, 86, 90], has proved to be a very efficient parallel preconditioner for both
SPD linear systems [144, 202] and eigenproblems [204, 205] arising from different areas, such
as fluid dynamics, structural mechanics, and contact problems. The combination of FSAI with
block diagonal IC joins the parallelization degree of the former with the effectiveness of the
latter. Similarly to standard incomplete Block Jacobi algorithms, the iteration count tends to
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grow increasing the number of computing cores. However, the convergence deterioration is
much smoothed by the Block FSAI effect which always outperforms the standard FSAI algo-
rithm. To improve the preconditioner scalability for massively parallel simulations the use
of graph partitioning and/or domain decomposition strategies can be of great help [206, 207].

7. Saddle-Point Problems

In recent years the interest in the solution of saddle-point problems has grown, with many
contributions from different fields. Themain reason is the great variety of applications requir-
ing the solution of linear systems with a saddle-point matrix. For example, such problems
arise in the discretization of compressible and incompressible Navier-Stokes equations in
computational fluid dynamics [208, 209], constrained optimization [210, 211], electromag-
netism [212, 213], mixed FE approximations in fluid and solid mechanics [208, 214], and
coupled consolidation problems in geomechanics [58].

A saddle-point problem is defined as a linear system where the matrix A has the
structure

A =
[
K B1

B2 −C
]
, (7.1)

where K ∈ R
n1×n1 , B1 ∈ R

n1×n2 , B2 ∈ R
n2×n1 , C ∈ R

n2×n2 , and K, B1, and B2 are nonzero. Typ-
ically, but not necessarily, n1 ≥ n2. Moreover, C is symmetric and positive semidefinite, and
often C = 0, while in most applications K is SPD and B2 = BT1 , that is, A is symmetric
indefinite. For example, a saddle-point matrix A arises naturally in an equality-constrained
quadratic problem:

J(x) =
1
2
xTAx − fTx −→ min subject to Bx = g (7.2)

with C = 0 and B2 = BT1 = B, solved with the aid of Lagrangian multipliers. A nonzero Cmay
arise in some interior point methods [210, 211], compressible Navier-Stokes equations [215],
or coupled consolidation problems [65]. Frequently the norm of C is much smaller than that
ofK. Because of the great variety of applications leading to saddle-point matrices, it is no sur-
prise that several different solution methods have been developed. For an exhaustive, review,
see Benzi et al. [216]. In the context of the present paper, the attention will be obviously
restricted to preconditioned iterative methods.

A natural way to solve the problem

[
K BT

B −C
](

x1
x2

)
=

(
b1

b2

)
(7.3)

is to reduce the system (7.3) to the Schur complement form. Solve for x1 in the upper set of
equations:

x1 = K−1
(
b1 − BTx2

)
, (7.4)



ISRN Applied Mathematics 35

and substitute (7.4) in the lower set:

(
BK−1BT + C

)
x2 = BK−1b1 − b2. (7.5)

The matrix S = BK−1BT + C at the left-hand side of (7.5) is the Schur complement of system
(7.3). Hence, the global solution x can be obtained by solving the Schur complement system
(7.5) and substituting the result back in (7.4) which implies solving another system with the
matrix K. This pair of SPD linear systems can be elegantly solved by partitioned schemes, as
those proposed in [217, 218] in the context of coupled diffusion and consolidation problems,
resulting in a double CG iteration where two distinct preconditioners forK and S are needed.
A usually more efficient alternative is to solve the systems (7.4) and (7.5) inexactly and use
the procedure described above as a preconditioner in a Krylov subspace method. This is what
is traditionally referred to as constraint preconditioning because the idea was first introduced
in the solution of equality-constrained optimization problems such as (7.2) [219, 220].

Quite obviously, there are several different constraint preconditioners according to
howK−1 and S−1 in (7.4) and (7.5) are approximated. Themost effective choice turns out to be
strongly dependent on the specific problem at hand. A popular strategy consists of replacing
K−1 with M−1

K and solving exactly the Schur complement system (7.5) [219–222]. Such an
approach can be convenient if n2 is much smaller than n1, so that the system (7.5) can be
efficiently solved by a direct method. Otherwise, an inner CG iteration can be set up exiting
the procedure even at a relatively large residual [130]. In this case the resulting preconditioner
reads

M−1
ECP =

[
MK BT

B −C
]−1

(7.6)

and is usually denoted as Exact Constraint Preconditioner (ECP). ECP has several interesting
theoretical properties which have been studied in detail by several authors. For instance, an
exhaustive eigenanalysis of the preconditioned matrix can be found in [223]. In particular,
denoting with αK and βK the smallest and the largest eigenvalue, respectively, of M−1

K K,
Durazzi and Ruggiero [224] have shown that the eigenvalues λ ofM−1

ECPA are either one, with
multiplicity at least n2, or real positive and bounded by αK ≤ λ ≤ βK. Quite interestingly,
this result can lead the classical CG algorithm to converge even with the indefinite matrix
(7.3), provided that the last n2 components of the initial residual are zero. This can be simply
accomplished by choosing as initial guessM−1

ECPb.
Despite its remarkable properties, ECP has at least two severe limitations. First, M−1

K

must be known explicitly to allow for the computation of S and must be very sparse in
order to preserve a workable sparsity for S as well. Second, although an accurate solution
of (7.5) is not really needed, solving it at each preconditioner application can represent a
significant computational burden for the overall scheme. This is why ECP is often used with
M−1

K = [diag(K)]−1, which can be quite detrimental for the solver convergence in caseK is not
diagonally dominant or is ill-conditioned, such as in coupled consolidation problems [130].

To make the preconditioner application cheaper, a substitute for (7.5) can be solved
replacing S with another approximationMS as easy to invert as possible. Moreover, in some
cases it may also be possible to approximate S without computing it explicitly, thus further
reducing the constraint preconditioner cost. Obviously the theoretical properties of ECP no
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longer hold true. Recalling the factorization (2.12) by Sylvester’s theorem of inertia, the new
preconditioner is

M−1
ICP =

[
I −M−1

K B
T

0 I

][
M−1

K 0
0 −M−1

S

][
I 0

−BM−1
K I

]

=
[
MK BT

B BM−1
K B

T −MS

]−1 (7.7)

and is denoted as Inexact Constraint Preconditioner (ICP). This class of preconditioners has
been introduced in [130, 225, 226] using [diag(K)]−1 or AINV for M−1

K and a zero fill-in IC
factorization forM−1

S . The choice forM−1
S is justified by the fact that usually S is well condi-

tioned. Moreover, this allows for splitting the central block diagonal factor in (7.7) into the
product of twomatrices, thus providing a factorized form forM−1

ICP. A block triangular variant
of ICP can be easily deduced from (7.7) by neglecting either the upper or the lower outer
factors:

M−1
TICP =

[
I −M−1

K B
T

0 I

][
M−1

K 0
0 −M−1

S

]
=

[
Mk BT

0 −MS

]−1
. (7.8)

The theoretical properties of block triangular ICP have been investigated by Simoncini [227]
and effectively used in the solution of the discretized Navier-Stokes equations [228–230].

Similar to ECP, ICP as well requires an explicit approximationM−1
K to build the Schur

complement. This is still a limitation in some problems, such as coupled consolidation [130],
where even AINV can be a poor approximation ofK−1 leading to an unacceptably high itera-
tion count to converge. Actually, this is only partially connected with the quality of AINV
itself, rather it is the need for the explicit construction of the Schur complement matrix that
calls for a reduced fill-in of M−1

K . In order to remove this inconvenience an implicit approxi-
mation of K−1 can be used, such as a stabilized IC factorization with partial fill-in:

M−1
K = L̃−TK L̃−1K . (7.9)

The new Schur complement reads

S = BL̃−TK L̃−1K B
T + C (7.10)

but cannot be computed explicitly. Although the S implicit form (7.10) can still be used to per-
form a product between S and a vector, and consequently onemay think of solving the related
inner system by an iterative method, a suitable preconditioner for S is not easily available.
Alternatively, an explicit approximation of S can be computed, for example, using the AINV
of K−1, namely

Ŝ = BZZTBT + C, (7.11)
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where Z is the upper triangular factor resulting from the AINV Algorithm 4, and then an IC
factorization of Ŝ is performed:

M−1
S = L̃−TS L̃−1S . (7.12)

In this way the quality of M−1
K is improved, but generally an additional approximation in

M−1
S is introduced. However, in several problems, especially those arising from coupled con-

solidation where such a constraint preconditioning variant has been introduced [148, 231],
the overall algorithm has a beneficial effect. This ICP variant blending two different approxi-
mations for K−1 in the same scheme reads

M−1
MCP =

[
I −L̃−TK L̃−1K B

T

0 I

][
L̃−TK L̃−1K 0

0 −L̃−TS L̃−1S

][
I 0

−BL̃−TK L̃−1K I

]

=

[
L̃−TK −L̃−TK GT

0 L̃−TS

][
L̃−1K 0
GL̃−1K −L̃−1S

]
,

(7.13)

where G = L̃−1S BL̃
−T
K , and is denoted as Mixed Constraint Preconditioner (MCP). Recently

an improved MCP version has been advanced by properly relaxing the Schur complement
approximation [61].

It is quite well accepted that constraint preconditioners outperform any other “global”
preconditioning approach applied to saddle-point matrices. This remarkable property has
attracted the theoretical interest of several researchers who have investigated the spectral
properties of constraint-preconditioned saddle-point matrices [225, 227, 231–233], obtaining
quite accurate bounds for the eigenvalues of M−1A. For instance, in the case of MCP in
(7.13) Ferronato et al. [231] have shown that the eigenvalues λ ofM−1

MCP satisfy the following
inequality:

|λ − 1| ≤ ek
(
1 + g2

)
+ es, (7.14)

where

ek =
∥∥∥I − L̃−1K KL̃−TK

∥∥∥,

es =
∥∥∥I − L̃−1S SL̃−TS

∥∥∥,

g = ‖G‖.

(7.15)

In other words, ek and es are a measure of the error made when using the approximations
M−1

K and M−1
S in place of K−1 and S−1, respectively, while g provides an estimate of the

strength of coupling between the upper and lower set of equations in (7.3). Inequality (7.14)
provides a useful and relatively cheap indication on how the quality ofM−1

K andM−1
S affects

the overall convergence rate of MCP. In particular, note that the quality of M−1
K is generally

more important than that of M−1
S , with the difference becoming larger as the coupling

becomes stronger.
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Quite naturally, there is the distinct interest to implement constraint preconditioners
on parallel computers. The main difficulties for developing efficient parallel variants of con-
straint preconditioners are twofold. First, the constraint preconditioning concept is inherently
sequential, as it involves the preliminary computation of the Schur complement and then
the subsequent approximate solution to two inner systems. Thus, a standard parallel
approach where the system matrix is distributed among the processors as stripes of con-
tiguous rows is not feasible, because all the processors owning the second block of
unknowns are idle when the other processors perform the operation on the first block, and
viceversa. Second, efficient parallel approximations of K−1 and S−1 have to replace incom-
plete factorizations. For example, in incompressible Navier-Stokes problems parallel AMG
techniques have been efficiently used to approximate the K block which arises from a
discretized Laplace operator [234]. In coupled consolidation better results have been obtained
by using a double FSAI [235], parallel multilevel variants [236], and Block FSAI [237], which
appears to be currently the most promising approach in the context of geomechanical
problems.

8. Conclusions and Future Perspectives

The development and implementation of efficient preconditioners are the key factors for
improving the performance and robustness of Krylov subspace methods in the solution of
large sparse linear systems. Such as issue is a central task in a great number of different appli-
cations, not all necessarily related to PDEs, so it is no surprise that much research has been
devoted to it. After a time where most efforts were focused on direct and iterative solvers, the
last two decades can be denoted as the “preconditioning era.” The number of papers, projects,
and international conferences addressing this topic has largely exceeded those aimed at the
development of new solvers, and this trend is not likely to fade in the next few years. This
is mainly due to the fact that an optimal general-purpose preconditioner does not exist and
that any specific problem can afford the opportunity to develop an ad hoc strategy.

The present paper is intended to offer an overview of the most important algebraic
preconditioners available today for the solution of sparse linear systems. Hence, it cannot
exhaust the subject of preconditioning as the entire class of problem-specific algorithms
has been omitted. Algebraic preconditioners have been chosen for their “universality,” in
that they can be effectively used as black-box tools in general-purpose codes requiring the
knowledge of the system matrix only. A classification of algebraic preconditioners has been
attempted based on the most significant representatives of each group along with their pro-
minent features:

(i) incomplete factorizations have been the earliest algebraic preconditioners massively
used to accelerate Krylov subspace solvers. The several weak points related to
robustness and numerical stability have stimulated the development of many
different variants meant to both improve their performance and extend the appli-
cation area. Although some advances are still under way, this class of precondi-
tioners appears to be quite mature with the related strong and weak points very
well known. Incomplete factorizations can be very effective and in many cases are
still the most performant preconditioners, but their intrinsic lack of robustness and
especially the very reduced parallel degree are probably going to bound their role
in the next future;
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(ii) approximate inverses were originally developed with the aim of resolving the main
difficulties of ILU-based preconditioners. Between the late 90s and early 00s they
looked as a very promising approach especially in view of their robustness and
potentially high parallel degree. Indeed, these preconditioners have proved very
robust and so well suited for black-box solvers and in some cases almost perfectly
parallel. In a sequential run, however, their performance can be lower than that of
an ILU-based preconditioner. At present, the class of approximate inverses appears
to be quite a mature field of research, with the most significant breakthroughs
advanced more than 10 years ago. Nonetheless, their influence is probably going
to be still very important in the next few years;

(iii) the potentially high scalability of algebraic multigrid techniques has promoted much
research in this area. In contrast with both incomplete factorizations and approxi-
mate inverses, AMG can allow for a stable iteration count to converge indepen-
dently of the characteristic mesh size, that is, the overall system dimension, thus
making AMG a potentially ideally scalable tool. Currently, AMG appears as one
of the more active research areas, with possible contaminations from incomplete
factorizations and approximate inverses in the choice of the smoother. In several
applications arising from discretized PDEs with severe mesh distortions, however,
AMG can still lack robustness, and more research is still needed to make it the
algorithm of choice in the next future;

(iv) the current hardware development is leading to a much more pronounced parallel
degree of any computer. Besides the parallelization of existing algorithms, this
trend is going to enforce the development of totally new techniqueswhich canmake
sense in a parallel computing environment only. This is why parallel preconditioners
are now emerging as a class of algorithms which are likely to expand in the next
future. These tools can take advantage of important contributions from all the pre-
vious classes and can also relaunch some techniques, such as polynomial precon-
ditioners or FSAI-based approximate inverses, which had been somewhat forgotten
over the last years.
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