18 research outputs found

    A Comparative Study of Desktop, Fishtank, and Cave Systems for the Exploration of Volume Rendered Confocal Data Sets

    Get PDF
    We present a participant study that compares biological data exploration tasks using volume renderings of laser confocal microscopy data across three environments that vary in level of immersion: a desktop, fishtank, and cave system. For the tasks, data, and visualization approach used in our study, we found that subjects qualitatively preferred and quantitatively performed better in the cave compared with the fishtank and desktop. Subjects performed real-world biological data analysis tasks that emphasized understanding spatial relationships including characterizing the general features in a volume, identifying colocated features, and reporting geometric relationships such as whether clusters of cells were coplanar. After analyzing data in each environment, subjects were asked to choose which environment they wanted to analyze additional data sets in - subjects uniformly selected the cave environment

    Visualization and Analysis Tools for Neuronal Tissue

    Get PDF
    The complex nature of neuronal cellular and circuit structure poses challenges for understanding tissue organization. New techniques in electron microscopy allow for large datasets to be acquired from serial sections of neuronal tissue. These techniques reveal all cells in an unbiased fashion, so their segmentation produces complex structures that must be inspected and analyzed. Although several software packages provide 3D representations of these structures, they are limited to monoscopic projection, and are tailored to the visualization of generic 3D data. On the other hand, stereoscopic display has been shown to improve the immersive experience, with significant gains in understanding spatial relationships and identifying important features. To leverage those benefits, we have developed a 3D immersive virtual reality data display system that besides presenting data visually allows augmenting and interacting with them in a form that facilitates human analysis.;To achieve a useful system for neuroscientists, we have developed the BrainTrek system, which is a suite of software applications suited for the organization, rendering, visualization, and modification of neuron model scenes. A middle cost point CAVE system provides high vertex count rendering of an immersive 3D environment. A standard head- and wand-tracking allows movement control and modification of the scene via the on-screen, 3D menu, while a tablet touch screen provides multiple navigation modes and a 2D menu. Graphic optimization provides theoretically limitless volumes to be presented and an on-screen mini-map allows users to quickly orientate themselves. A custom voice note-taking mechanism has been installed, allowing scenes to be described and revisited. Finally, ray-casting support allows numerous analytical features, including 3D distance and volume measurements, computation and presentation of statistics, and point-and-click retrieval and presentation of raw electron microscopy data. The extension of this system to the Unity3D platform provides a low-cost alternative to the CAVE. This allows users to visualize, explore, and annotate 3D cellular data in multiple platforms and modalities, ranging from different operating systems, different hardware platforms (e.g., tablets, PCs, or stereo head-mounted displays), to operating in an online or off-line fashion. Such approach has the potential to not only address visualization and analysis needs of neuroscientists, but also to become a tool for educational purposes, as well as for crowdsourcing upcoming needs for sheer amounts of neuronal data annotation

    Teaching Threshold Concepts in Virtual Reality: Exploring the Conceptual Requirements for Systems Design.

    Get PDF
    In a complex world students need to be equipping with a range of capabilities that will enable them to be critical and flexible learners and citizens. The central research objective in this paper is to explore the argument that virtual reality (VR) technologies, collaborative learning approaches and recognition of the values and importance of thresholds to learning are components that can equip students in and for the future. Threshold concepts are specific concepts which are identified as essential in the acquisition of thinking, learning and communication of understanding within a specific subject of learning. Threshold experiences occur when learners identify moments of “learning leaps” which are cognitive transformations or changes in conceptual role for the learner, enabling them to work at higher levels of abstraction and creativity. Virtual reality technology is increasingly applied in education and can be used to test multiple threshold concepts and applied to open problems that allow for low-stress and real-time interactions as well as supporting collaborative groups with rapid interactions. Applications built on VR can engage, immerse, and guide learners in ways not yet undertaken in the education of threshold concepts. Through literature review we explore the definitions of threshold concepts, VR technologies, and the opportunities for teaching threshold concepts using VR technologies. We additionally predict possible limitations of the technologies. Further, we propose a systems design approach as informed by our literature review

    IQ-Station: A Low Cost Portable Immersive Environment

    Full text link
    The emergence of inexpensive 3D TV’s, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive environments (IE). A low cost IE system, or IQ-station, fashioned from commercial off the shelf technology (COTS), coupled with a targeted immersive application can be a viable laboratory instrument for enhancing scientific workflow for exploration and analysis. The use of an IQ-station in a laboratory setting also has the potential of quickening the adoption of a more sophisticated immersive environment as a critical enabler in modern scientific and engineering workflows. Prior work in immersive environments generally required either a head mounted display (HMD) system or a large projector-based implementation both of which have limitations in terms of cost, usability, or space requirements. The solution presented here provides an alternative platform providing a reasonable immersive experience that addresses those limitations. Our work brings together the needed hardware and software to create a fully integrated immersive display and interface system that can be readily deployed in laboratories and common workspaces. By doing so, it is now feasible for immersive technologies to be included in researchers’ day-to-day workflows. The IQ-Station sets the stage for much wider adoption of immersive environments outside the small communities of virtual reality centers

    Usabilidade em sistemas de realidade virtual : estudos com utilizadores

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaExiste uma grande variedade de dispositivos que podem ser usados pelos utilizadores, em sistemas de realidade virtual, para visualizar e interagir com ambientes virtuais. No entanto, não se conhecem bem as suas potencialidades e problemas em termos de usabilidade. O principal objectivo deste trabalho foi estudar a influência dos dispositivos de saída e de interacção, bem como de algumas características externas, do sistema e dos próprios utilizadores, na usabilidade de um sistema de realidade virtual. Sendo assim, estudou-se através de experiências controladas e estudos exploratórios o desempenho, satisfação e conforto de utilizadores enquanto realizavam tarefas de navegação num ambiente virtual, utilizando diferentes plataformas em diferentes condições de familiarização com o sistema e em diferentes circunstâncias (do ambiente virtual e real) As plataformas usadas foram um desktop comum, um desktop modificado em que a imagem é projectada numa tela e uma plataforma que inclui um Head Mounted Display (HMD) com diferentes dispositivos de interacção em alternativa. Este trabalho veio reforçar a ideia anteriormente existente de que os utilizadores têm dum modo geral piores desempenhos com o HMD, porém a sua satisfação é semelhante; no entanto o desempenho dos utilizadores que se treinaram a usar o HMD melhorou. Verificou-se ainda, que o desempenho dos utilizadores com dois dispositivos de entrada (rato e joystick) não foi significativamente diferente. ABSTRACT: A variety of devices exist for the interaction and visualization of virtual environments that users experiment through virtual reality systems. However, their usability issues are not well known. This work aimed at studying the influence on the usability of a virtual reality system with interaction and display devices, of some external characteristics such as the itself and the user. Hence, we studied (through controlled and exploratory experiments) user performance, satisfaction and comfort while performing navigation tasks in a virtual environment, using different platforms under various conditions. The platforms used were a common desktop, a modified desktop where the image is projected on an ordinary screen, and a platform including a Head Mounted Display (HMD) with several alternative interaction devices. The results support the outcome of previous work, according to which, users have worse performances while using the HMD, yet they demonstrate similar satisfaction levels, and the performance of users that were trained in using the HMD improved. Moreover, user performance was not significantly different while using two different interaction devices (mouse and joystick)

    Beaming into the Rat World: Enabling Real-Time Interaction between Rat and Human Each at Their Own Scale

    Get PDF
    Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human’s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale

    Challenges and Strategies for Educational Virtual Reality

    Get PDF
    Virtual reality (VR) is a rich visualization and analytic platform that furthers the library’s mission of providing access to all forms of information and supporting pedagogy and scholarship across disciplines. Academic libraries are increasingly adopting VR technology for a variety of research and teaching purposes, which include providing enhanced access to digital collections, offering new research tools, and constructing new immersive learning environments for students. This trend suggests that positive technological innovation is flourishing in libraries, but there remains a lack of clear guidance in the library community on how to introduce these technologies in effective ways and make them sustainable within different types of institutions. In June 2018, the University of Oklahoma hosted the second of three forums on the use of 3D and VR for visualization and analysis in academic libraries, as part of the project Developing Library Strategy for 3D and Virtual Reality Collection Development and Reuse(LIB3DVR), funded by a grant from the Institute of Museum and Library Services. This qualitative study invited experts from a range of disciplines and sectors to identify common challenges in the visualization and analysis of 3D data, and the management of VR programs, for the purpose of developing a national library strategy
    corecore