689 research outputs found

    Utilization Of Artificial Intelligence (AI) And Machine Learning (ML) in the Field of Energy Research

    Get PDF
    Many governments have committed to becoming carbon neutral by 2050. The main argument is that renewable resources are more eco-friendly than fossil fuels. However, the unpredictable nature of solar and wind power results in either excess or lack of energy generation. This article will evaluate the current machine-learning-based solutions for forecasting renewable energy demand and capacity. Many researchers have used machine learning (ML) to anticipate the amount of generated wind or solar energy. SVM, RNN, NN, and ELM are the most utilized algorithms. Prediction accuracy is improved through optimization (metaheuristics and evolution). These methods can forecast renewable energy for periods ranging from seconds to months. This article compares several ML methodologies and metaheuristic strategies and reviews the current state of research. The hybrid MLS outperforms the standalone optimizers. A more extensive data set for ANN, the introduction of NWP, and a shorter prediction timeframe are suggested as alternatives to Bayesian and random grid tuning. Further research on probabilistic predictions and mathematical relationships between inputs and outputs is needed to close the research gap

    A Hybrid Sailfish Whale Optimization and Deep Long Short-Term Memory (SWO-DLSTM) Model for Energy Efficient Autonomy in India by 2048

    Get PDF
    In order to formulate the long-term and short-term development plans to meet the energy needs, there is a great demand for accurate energy forecasting. Most of the existing energy demand forecasting models predict the amount of energy at a regional or national scale and failed to forecast the demand for power generation for small-scale decentralized energy systems, like micro grids, buildings, and energy communities. Deep learning models play a vital role in accurately forecasting the energy de-mand. A novel model called Sail Fish Whale Optimization-based Deep Long Short- Term memory (SFWO-based Deep LSTM) to forecast electricity demand in the distribution systems is proposed. The proposed SFWO is designed by integrating the Sail Fish Optimizer (SFO) with the Whale Optimiza-tion Algorithm (WOA). The Hilbert-Schmidt Independence Criterion Lasso (HSIC) is applied on the dataset, which is collected from the Central electricity authority, Government of India, for selecting the optimal features using the technical indicators. The proposed algorithm was implemented in MATLAB software package and the study was done using real-time data. The feature selection pro-cess improves the accuracy of the proposed model by training the features using Deep LSTM. The results of the proposed model in terms of install capacity prediction, village electrified prediction, length of R & D lines prediction, hydro, coal, diesel, nuclear prediction, etc. are compared with the existing models. The proposed model achieves good accuracy with the average normalized Root Mean Squared Error (RMSE) value of 4.4559. The hybrid approach provides improved accuracy for the prediction of energy demand in India by the year 2047.publishedVersio

    Load forecast on a Micro Grid level through Machine Learning algorithms

    Get PDF
    As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes. Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede. A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo.Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs. For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application. Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations. From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics

    Offshore wind speed short-term forecasting based on a hybrid method: swarm decomposition and meta-extreme learning machine.

    Get PDF
    As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing, the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term wind speed forecasting tools play important role in maintaining reliability and safe operation of the power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines the advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM which provides faster calculation with a lower computational burden. In order to enhance accuracy and stability, the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD. To validate the model, a comparison against four conventional and state-of-the-art hybrid models is performed. The implemented models are tested on two real wind datasets. The results demonstrate that the proposed model outperforms the counterparts for all performance metrics considered. The proposed hybrid approach can also improve the performance of the Meta-ELM model as a well-known and robust method

    Comparative analysis of neural networks techniques to forecast Global Horizontal Irradiance

    Get PDF
    Due to the continuous increasing importance of renewable energy sources as an alternative to fossil fuels, to contrast air pollution and global warming, the prediction of Global Horizontal Irradiation (GHI), one of the main parameters determining solar energy production of photovoltaic systems, represents an attractive topic nowadays. Solar irradiance is determined by deterministic factors (i.e. the position of the sun) and stochastic factors (i.e. the presence of clouds). Since the stochastic element is difficult to model, this problem can benefit from machine learning techniques, like artificial neural networks. This work proposes a methodology to forecast GHI in short- (i.e. from 15 min to 60 min) and mid-term (i.e. from 60 to 120 min) time horizons. For this purpose, we designed, optimised and compared four neural network architectures for time-series forecasting, respectively based on: i) Non-Linear Autoregressive, ii) Feed-Forward, iii) Long Short-Term Memory and iv) Echo State Network. The original data-set, consisting of GHI values sampled every 15min, has been pre-processed by applying different filtering techniques. Our results analysis compares the performance of the proposed neural networks identifying the best in terms of error rate and forecast horizon. This analysis highlights that the clear-sky index results the preferred filtering technique by giving greatly improvements in data-set pre-processing, and Echo State Network gives best accuracy results

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management
    corecore