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A B S T R A C T
As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing,
the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency
of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term
wind speed forecasting tools play important role in maintaining reliability and safe operation of the
power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm
decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines
the advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM
which provides faster calculation with a lower computational burden. In order to enhance accuracy
and stability, the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD.
To validate the model, a comparison against four conventional and state-of-the-art hybrid models is
performed. The implemented models are tested on two real wind datasets. The results demonstrate
that the proposed model outperforms the counterparts for all performance metrics considered. The
proposed hybrid approach can also improve the performance of the Meta-ELM model as a well-known
and robust method.

1. Introduction
Wind energy has been the leading renewable energy

form to decarbonize energy production that helps reach the
net zero targets across the world. As of 2021, the global
wind power capacity constitutes almost 50% of the global
renewable power capacity excluding hydropower. The wind
market set a yearly installed capacity record in 2020 with 93
GW, bringing global installed wind capacity to 743 GW [1].
Thanks to the cost reductions of larger turbines, innovations
in installations and O&M, and reduced investor risk, the
wind industry is set to continue growing [2]. With higher
capacity factors and improvements in the full life cycle of
processes, offshore wind is seen as a vital technology for the
needed carbon mitigation and becoming competitive [3]. As
such, the levelised cost of electricity (LCOE) from offshore
wind is expected to decline by 55% in 2030 [4].

EU has been home to most of the global offshore ca-
pacity that raised its offshore wind power capacity target
to 60 GW by 2030 [5]. As large-scale renewable electricity
penetration for wind is seen in the leading countries such
as Denmark, Ireland, the flexibility of power system is
becoming challenging [6, 7]. To enable adequate system
security and flexibility, fast and accurate wind forecasting
tools are vital. So far, several state-of-the-art forecasting
models have been originally implemented in onshore wind
installations [8]. However, conventional methods need to be
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improved for offshore applications for several reasons. Wind
speed in offshore environment is more persistent while calm
conditions are less frequent and persistent [9]. Offshore wind
speed observations are not available as much as onshore.
Moreover the coastal effects should be also considered [10].
To enable large-scale offshore wind penetration with power
system reliability, the offshore wind speed characteristics
and its properties should be well determined. In this respect,
offshore wind characteristics have been obtained for more
than 10 years for North Europe [9]. Liu et al. [11] inves-
tigates offshore wind speed forecasting studies from 2015
to 2020. It is concluded that there are a limited number of
offshore forecasting studies, recently started since 2017.

Wind speed forecasting can be categorized as very short
term (a few seconds up to 30 minutes), short term(30 minutes
up to 6 hours), medium term (6 hours - 1 days) and long-
term (more than 1 days) according to time scale [12]. Very
short and short-term forecasting is becoming prominent in
turbine control, economic load dispatch, regulation action,
and electricity market clearing. In terms of model used,
the wind speed forecasting studies in the literature can be
categorized as physical models, traditional statistical mod-
els, artificial intelligence (AI) based approaches and hybrid
models. Based on meteorological data, physical models are
often developed using data analysis with multi inputs. While
the models outperform in long-term wind speed forecasting,
they display remarkably low performance in dealing with
very short-term forecasting. They also require much com-
putational time due to the higher number of inputs [13, 14].
Physical models are not easy to improve for offshore applica-
tions as they require accurate wind speed characteristics. The
statistical models such as Generalized autoregressive con-
ditional heteroskedasticity (GARCH) [15], autoregressive
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Offshore Wind Speed Short-term Forecasting

moving average (ARMA) [16], autoregressive integrated
moving average (ARIMA) [17], seasonal autoregressive in-
tegrated moving average (SARIMA) [11] use traditional
time series analysis in the forecasting process. As these
approaches allow for linear fluctuations in the wind speed
characteristic, they have been applied for short-term and
very short-term forecasting horizons. However, the perfor-
mance of such models is highly dependent on the linearity
and stationary features of historical wind speed data.

Recently, AI-based and hybrid models have been de-
veloped to overcome the disadvantages of physical and
statistical methods [12, 18]. Since AI-based models do not
require very precise wind information that might occur in an
offshore environment, they outperform physical models in
forecasting. So far, the results with these models have been
promising for offshore applications. While traditional learn-
ing methods were initially used in artificial neural network
(ANN) models [19],[20], [21], the deep learning methods
[22],[23], [24] have become widespread nowadays. Neshat
et al. [23] proposed a hybrid deep learning-based evolution-
ary approach for an offshore wind farm application in the
Baltic Sea. Following the decomposition of offshore wind
speed data with an evolutionary decomposition-based ap-
proach, a bidirectional long short term memory (Bi-LSTM)
model is developed. Based on the generalized normal dis-
tribution optimization, the optimal parameter selection is
used in the deep learning model. In terms of accuracy,
the proposed hybrid model was shown to be superior even
more with seasonal data set as compared with ten different
models. Liu et al. [11] presented a SARIMA model for
offshore wind speed forecasting. The SARIMA model was
shown higher accuracy than the Gated Recurrent Unit and
the Long Short Term Memory (LSTM) models. Based on the
ensemble empirical mode decomposition (EEMD) method,
Saxena et al. [25] developed a hybrid model by combining
six different deep learning techniques for offshore wind
speed estimation. The model was tested for different heights
and was found be superior. Thanks to fast response, Ex-
treme Learning Machine (ELM)-based models have become
increasingly popular in wind energy forecasting in recent
years [26],[27],[28],[29]. Liu et al. [30] proposed a hybrid
forecasting model based on Robust ELM (RELM) to predict
the cumulative capacity of offshore wind power installed in
China in the future. The stand-alone RELM algorithm was
not as good as that of the Least-Squares Support Vector Ma-
chine (LSSVM), but it can be greatly improved with hybrid
algorithms such as decomposition techniques. Adapted ELM
models such as Meta-Extreme Learning Machine (Meta-
ELM) have been used as prediction and classification tools
in several research disciplines [31], [32].

One of the main challenges of short-term forecasting
is that the original time series data is nonlinear and non-
stationary. Decomposition of the original series, therefore,
plays a critical role in improving forecast performance.
To cope with these characteristics, the hybrid approaches
use decomposition methods for filtering and include a pre-
processing step that improve the model performance. In

the preprocessing step, Wavelet-based decompositions [33],
[34], empirical mode decomposition (EMD)[35], ensemble
empirical mode decomposition (EEMD) [36], fast ensemble
empirical mode decomposition (FEEMD) [37], complete
ensemble empirical mode decomposition (CEEMD) [38],
complete ensemble empirical mode decomposition adaptive
noise (CEEMDAN) [39] have been widely used in the litera-
ture. Each decomposition approach has its own strengths and
limitations. Empirical wavelet transform fails to detect com-
ponents when the signal contains multiple chirps in both the
time and frequency domains. The singular spectral analysis
may produce a few useless components or the information
may be lost due to the difficulty in selecting individual
parameters. The variational mode decomposition takes prior
experience or multiple trials to deduce the number of modes
[40]. Huang et al. [41] proposed EMD overcomes these
problems to handle nonlinear and non-stationary time series.
However, the mode mixing can happen when the EMD
decomposition has oscillations of different amplitudes in one
mode or similar oscillations in different modes. To overcome
this problem, Wu and Huang [42] improved the EEMD
method by adding white noise to provide a uniform reference
frame in the time–frequency space. As such, the different
scale signals can be separated naturally without any a priori
subjective criterion selection as in the EMD method. Based
on swarm-prey hunting, the Swarm Decomposition (SWD)
approach is an intelligent method for non-stationary signals
[43]. It has proven efficiency in different research areas such
as biomedical signals by Apostolidis and Hadjileontiadis in
[44]. The main advantage of the SWD method is that allows
the efficient decomposition of a signal into components that
preserve the physical meaning [44].

This study presents a new hybrid model based on SWD
and Meta-ELM for short-term offshore wind speed forecast-
ing. While SWD and Meta-ELM based models have been
separately investigated for different applications, such as
biomedical signals [44] and financial time series [45], this
study is the first attempt to implement a combined model to
the offshore wind forecasting problem. To test and validate
the model accuracy, it is compared with well-known two
multi-scale decomposition-based hybrid approaches, EMD-
Meta-ELM, EEMD-Meta-ELM, including Meta-ELM and
standalone Multi Layer Perceptron (MLP) architecture. The
original wind time series data for two regions, namely, the
North Sea and the Aegean Sea are used to evaluate the pro-
posed model. Results are demonstrated that the SWD-Meta-
ELM hybrid model provides a considerable improvement
compared to the models proposed in other recent studies.

The paper is organized as follows. Section 2 describes
the principles of EMD, SWD, and Meta-ELM methods
and structure of the proposed forecasting model. Section 3
presents the characteristics of the collected wind data sets
and a comparative performance analysis for the models
based on different multi-scale decompositions. Finally, Sec-
tion 4 provides concluding remarks and address future re-
search perspectives.
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2. Material and Methods
The proposed methodology follows two consecutive

steps as decomposition and forecasting. It combines the
advantages of the SWD which has proven efficiency for non-
stationary signals, with the Meta-ELM approach, which pro-
vides faster response with lower computational intensity. In
the decomposition step, the SWD method is the first attempt
applied to wind forecasting in this study. In the forecasting
step, it has been proved that a group combination of ELMs
achieves better generalization performance than the original
ELM [46]. However, the computational cost is found to be
higher for large-scale applications in most studies due to
the repetitive training of the entire data set. Liao and Feng
in [47] proposed a Meta-ELM architecture that combines
multiple ELM structures to solve this problem. In order
to take advantage of the faster response feature, this study
utilizes the Meta-ELM approach in the forecasting step. The
training methodology of the Meta-ELM method is detailed
in this section.
2.1. The Existing Decomposition Methods based

on Empirical Mode Decomposition
The EMD method extracts Intrinsic Mode Functions

(IMF)s and a residual signal R𝑛 from the original signal
by elimination. Here, IMFs refer to the decomposed signals
from the highest frequency component to the lowest fre-
quency component of the original series while R𝑛 denotes
the trend of wind speed. An IMF is a function that satisfies
two conditions: (1) The difference between the number of
maxima and the number of zero crossings must be less than
one, (2) at any point, the mean value of the envelopes defined
by the local maximums and local minimums must be zero.

Where x(t) is a specific original wind speed time series,
the calculation steps of the EMD are defined as follows [41]:

Step 1: All local extrema of the signal are defined for
x(t). Then, all local maximums and local minimums are
interpolated like a cubic spline to form an upper and lower
envelopes 𝑥𝑢(𝑡) and a lower 𝑥𝑙(𝑡), respectively. Step 2: The
mean envelope value m(t) and the detail component d(t) are
calculated as in (1) and (2), respectively:

𝑚(𝑡) =
𝑥𝑢(𝑡) + 𝑥𝑙(𝑡)

2
, (1)

𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). (2)
Step 3: Until d(t) becomes an IMF, the process continues
according to the following criteria:

𝑙
∑

𝑡=1
=

[

𝑑𝑗−1(𝑡) + 𝑑𝑗(𝑡)
]2

[

𝑑𝑗−1(𝑡)
]2

≤ 𝛿(𝑗 = 1, 2,⋯ ; 𝑡 = 1, 2,⋯ , 𝑙)

(3)
where, l is the length of signal and j is the number of iterative
calculations. A typical value for 𝛿 is usually set between 0.2
and 0.3.

Step 4: Repeat Steps 1-3 until all IMFs and detailed signal
are obtained. Finally, the original time series x(t) can be
decomposed as follows:

𝑥(𝑡) = 𝑐𝑖(𝑡) + 𝑅𝑛(𝑡), (4)
where, c𝑖(𝑡) (i=1,2,...,n) and R𝑛(𝑡) represent IMF signals
and residual signal, respectively. An IMF of EMD consists
of signals with significantly different scales or a signal of
the same scale that appears in different components. To
overcome this problem, white noise is added to the original
signal in the EEMD. The above-mentioned steps apply to the
EEMD by adding a white noise in Step 1.
2.2. Swarm Decomposition Method

The SWD is proposed by Apostolidis and Hadjileon-
tiadis [44] for the analysis of non-stationary signals. The
basic structure of this method consists of Swarm filtering
(SWF), which has the swarm-prey hunting approach and
generated oscillating components (OCs) from an element
input data. Each of the OCs is considered as a real com-
ponent of the original signal. There are two interaction
forces for successful swarm-prey hunting: the driving and
the cohesion. The driving force 𝐹𝑑𝑟(n,i) is defined by

𝐹𝑑𝑟(𝑛, 𝑖) = 𝑃𝑝𝑟𝑒𝑦(𝑛) − 𝑃𝑖(𝑛 − 1), (5)
where, i and n are the number of members and the number of
steps, respectively. Here, the location information of the prey
is represented by 𝑃𝑝𝑟𝑒𝑦. An induced cohesion force 𝐹𝑐𝑜ℎ(𝑛, 𝑖)for all members of the swarm is defined by (6).

𝐹 𝑛
𝐶𝑜ℎ,𝑖 =

1
𝑀 − 1

.
𝑀
∑

𝑗=1,𝑗≠𝑖
𝑓 (𝑃𝑖 [𝑛 − 1] − 𝑃𝑗(𝑛 − 1))

(6)

𝑓 (𝑑) = −𝑠𝑔𝑛(𝑑). ln
(

|𝑑|
𝑑𝑐𝑟

)

(7)

Here, the sign function and logarithmic function are shown
as 𝑠𝑔𝑛(.) and 𝑙𝑛(.), respectively. The distance between mem-
bers and the critical distance are indicated by d and 𝑑𝑐 ,respectively. 𝑀 represents the number of swarm. In order
to track its prey, the swarm updates the location and velocity
information at each time step as follows:

𝑉𝑖 [𝑛] = 𝑉𝑖 [𝑛 − 1] + 𝛿.
(

𝐹 𝑛
𝐷𝑟,𝑖 + 𝐹 𝑛

𝐶𝑜ℎ,𝑖

)

, (8)

𝑃𝑖 [𝑛] = 𝑃𝑖 [𝑛 − 1] + 𝛿.
(

𝑉𝑖 [𝑛]
)

. (9)
One of the most important parameter in the SWD is the 𝛿,
which controls the flexibility of the swarm. The output of the
SWF is given by.

𝑦 [𝑛] = 𝛽.
𝑀
∑

𝑖=1
𝑃𝑖 [𝑛] (10)
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Figure 1: Structure of the SLFN model

Here, 𝛽 is the scale parameter that affects the swarm member.
A value of 𝛽=0.005 which causes the smallest reasonable,
𝑀 is preferred [48]. In order to determine appropriate values
of these parameters according to different signal types, the
following criteria is followed:

arg𝛿,𝑀 𝑚𝑖𝑛
∑

𝑘

{

|

|

𝑌𝛿,𝑀 [𝑘] − |𝑆[𝑘]||
|

}2 , (11)

where, |𝑌𝛿,𝑀 [𝑘]| and |𝑆[𝑘]| represent the amplitude of
discrete Fourier transform for the original series of 𝑌𝛿,𝑀 [𝑛]
and 𝑆[𝑛]. The SWF output with 𝛿 and 𝑀 parameters is
represented by 𝑌𝛿,𝑀 [𝑛]. 𝑆[𝑛] contains the non-stationary
one component signal. The main purpose of this process is
to find the 𝛿 and 𝑀 parameters at an optimal level. The SWF
identifies similarity in OCs by comparing these parameters
to the non-stationary signal. The relationship between the
swarm parameters and each frequency component is given
by [44]

𝑀(�̂�) = [33.46�̂�−0.735 − 29.1], (12)

𝛿(�̂�) = −1.5�̂�2 + 3.454�̂� − 0.01, (13)
Here, �̂� indicates the normalized frequency. 𝑀 is deter-
mined by the rounding operation. The SWF is iteratively
continued and the algorithm is terminated when the oscilla-
tions in the input signal cease. It is advantageous to apply the
Savitzky–Golay filter in the decomposition step for the SWD
process. Detailed information about the process in this step
can be found in [44]. As a result, the components and the
residual signal of the original signal are obtained by using
the SWD method.
2.3. Meta-Extreme Learning Machine Method

Over the past decade, various ELM studies have been
performed to improve generalization performance [49],[50],
[47]. The ELM architecture has a very similar topological
structure to other popular neural networks such as Back
Propagation Neural Network and radial basis neural net-
work. It is an advanced method for training single hidden
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layer feed-forward network (SLFN) as shown in Fig. 1. Here,
the input weights and bias value are randomly selected and
the output is calculated analytically. Fig. 1 illustrates the
input connection weights 𝜔𝑖,𝑗 , biases 𝑏𝑘 and connection
weights 𝜃𝑘. The number of hidden layers 𝑁ℎ, bias and
input link weights are randomly determined. 𝜃𝑘 is calculated
analytically by following the steps given below. The output
of SLFN is calculated depending on the input and connection
as follow:

𝑦𝑖 =
𝑁ℎ
∑

𝑗=1
𝜃𝑗𝜑(𝑥𝑖𝜔𝑗 + 𝑏𝑗). (14)

Input data 𝑥𝑖 ∈ ℝ𝑛 and output data 𝑡𝑖 ∈ ℝ𝑝 created by
the sliding windowing technique discussed in detail in the
next section. 𝑛 and 𝑝 are the numbers of inputs and outputs,
respectively. In this study, one-step ahead forecasting is
investigated with three previous hours and instant data set
by using Meta-ELM.

Since (14) contains 𝑁 training samples, 𝑁 number
equations can be created. These equations can be represented
by a matrix vector notation as 𝐻 follow:

𝐻 =
⎡

⎢

⎢

⎣

𝜑(𝑥1𝜔1 + 𝑏1) ⋯ 𝜑(𝑥1𝜔𝑁ℎ
+ 𝑏𝑁ℎ

)
⋮ ⋮ ⋮

𝜑(𝑥𝑁𝜔1 + 𝑏1) ⋯ 𝜑(𝑥𝑁𝜔𝑁ℎ
+ 𝑏𝑁ℎ

)

⎤

⎥

⎥

⎦𝑁𝑥𝑁ℎ(15)
The output weights and the target of each output are given
by

𝑇 = 𝐻𝛾, 𝛾 =
⎡

⎢

⎢

⎣

𝜃1
⋮

𝜃𝑁ℎ

⎤

⎥

⎥

⎦

, 𝑇 =
⎡

⎢

⎢

⎣

𝑡1
⋮
𝑡𝑁 .

⎤

⎥

⎥

⎦

(16)

The estimation of the output connection weights is calcu-
lated by taking the inverse of the Moore-Penrose 𝐻 matrix.

�̂� = 𝐻+𝑇 . (17)
Each ELM in the Meta-ELM network is trained by a part of
the data set. Fig2 depicts the architecture of the Meta-ELM
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Figure 3: The structure of the SWD and Meta-ELM hybrid forecasting model

network with each ELM. The output connection weights of
the combined ELMs are determined by the ELM learning
rule using the whole dataset. When the Meta-ELM architec-
ture is trained, all input and output samples are decomposed
into 𝑀 subgroups as shown in Fig.2. Each SLFN is trained
by the subgroups of data using ELM. Thus, the output
connection weights of each SLFN are calculated. Finally,
Meta-ELM output connection weights are determined using
the trained SLFNs and the data set.
2.4. The Proposed Approach SWD-Meta-ELM

The proposed hybrid model for short-term offshore wind
speed forecasting is presented in Fig. 3. It is composed of
three modules as decomposition, forecasting module, and
combination modules. In the decomposition module, the
wind datasets are decomposed into multiple sub-series by
using the SWD. Then, the decomposed signals are fed into
the forecasting module in which the prediction of each sub-
series is performed by the Meta-ELM algorithm. At the last
stage, the hybrid model results are found by taking the sum
of all test and training results.

In order to test the proposed model, two original off-
shore wind datasets have been obtained from the Marine
Renewables Infrastructure Network for Emerging Energy
Technologies (MARINET2) project [51] and the Coastal
Dataset for the Evaluation of Climate Impact (CoDEC). For
validation, the model results are compared with those of
well-known EMD and EEMD-based models. The developed
models have univariate analysis based on only historical
wind data. The offshore wind speed data is used for the input
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Figure 4: Learning procedures of the models

parameter. All hybrid models use input and output matrices
that are performed by the sliding window technique. Fig. 4
illustrates this learning procedure. Here, the window width
affects the performance of the models. In this study, the
window width and Meta-ELM optimal parameters were
taken from Authors’ previous study [26].

3. Experiments and Analysis
3.1. Data Collection

The experimental wind data for the North Sea were
collected as part of the Marinet2 project, and the Aegean
Sea data came from the CoDEC database (Fig. 5). The first
data corresponds to the hourly wind speed at a height of 10
m from the ground for the meteorology station, located at
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Figure 5: Original wind speed datasets (a) The North Sea (b)
The Aegean Sea

Table 1
The statistical information of datasets
Locations Dataset Size Min Max Mean Std. Kur. Skew.

All Sample 8760 0.2720 28.4650 7.7775 4.6890 4.4711 1.1757

North Sea Training Sample 6132 0.2720 24.6810 7.8947 4.2346 3.3208 0.7386

Test Sample 2628 0.4530 28.4650 7.5042 5.5993 5.0338 1.6196

All Sample 8760 0.0992 18.5611 6.6441 3.2045 2.7477 0.4235

Aegean Sea Training Sample 6132 0.0992 18.5611 6.7971 3.1940 2.7989 0.3764

Test Sample 2628 0.2044 18.3439 6.2870 3.2011 2.6972 0.5464

38°46’N 26°56’E on the Aegean Sea. The second data is
for Frøya island in the western coastal region of Trondelag,
Norway, collected in 10 minute resolutions at a height of 100
m from the sea surface using 2D ultrasonic anemometers.
The wind speed data is sent from the measurement instru-
ments to the data logger at a sampling rate of 1 Hz, and from
the data logger to a computer running Campell Scientific’s
LoggerNet 3.4.1 software. Finally, the data is averaged at
ten-minute intervals. The anemometer has an accuracy of
±2% at 12 m/s and an offset of ±1 m/s. Any over- or under-
estimation of wind speed is thus assumed to be negligible
and will not be corrected.

Two groups of wind data set containing 8760 data are
selected, and four consecutive wind speed data are taken
as the input of the prediction model, and the output of
prediction is the remaining data, as shown in the one-step
prediction in Fig. 4. In addition to this, 8760 data sets
are constructed, in which the first 6132 sets of data are
used as a training set, and the remaining part is used as a
test set. The statistical indices of the offshore wind speed
data used including mean, maximum (Max) and minimum
(Min) values, standard deviation (Std), skewness (Skew),
and kurtosis (Kurt) are reported in Table 1.
3.2. Decomposition Results

Following the normalization procedure in the SWD
method, the decomposed offshore wind speed data are
obtained as shown in Fig. 6. As can be seen, the Aegean
Sea data is decomposed into five sub-components, while the
North Sea has four sub-components. It can be concluded that
the number of components varies with the data characteris-
tics. The original offshore wind speed and the sum of the
SWD reconstructed series in time and frequency domains
are presented in Fig. 7 (a) and (b), respectively. It can be
seen that there is no data loss in both domains at the end
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Figure 6: Decomposed data using SWD approach (a) The
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of the decomposition. For comparison, the decomposition
results of IMFs obtained from the EMD model for the
Aegean and the North Sea are shown in Fig. 8 (a) and
(b), respectively. It is shown that each signal has different
characteristics, indicating different natural oscillation modes
embedded in the series. Here, the first IMF signal has the
highest frequency component, while the last decomposed
signal shows the variable trend of the wind speed series.
Similar procedure is applied for the EEMD model and the
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(a) (b)

Figure 8: EMD processing results of IMFs and residual of wind speed data, (a) The Aegean Sea (b) The North Sea

decomposition results are obtained. As such, 10 separate
IMF components including a residual signal component are
compared.
3.3. Forecasting Results and Performance

Evaluation
In this section, the forecasting results of all models

including the proposed model, the MLP, Meta-ELM, EMD-
Meta-ELM, EEMD-Meta-ELM are discussed in detail. Herein,
the Meta-ELM model is used for the forecasting of each
decomposed component generated using the SWD, EMD,
and EEMD. Moreover, the traditional MLP model is also
presented for comparison purposes. Fig. 9 and Fig. 10
demonstrate the comparison of the forecasting results from
the above-mentioned models implemented for the North Sea
and the Aegean Sea, respectively.

All models were run separately fifty times and the results
were presented statistically to eliminate the errors that may
arise from the randomness of the model parameters. The
performance of all models are evaluated by considering the
deviation of the predicted value from the target value in
the test step. For this purpose, the root mean square error
(RMSE), mean square error (MSE), mean absolute error
(MAE), sum square error (SSE) and 𝑅2 metrics were used.
The performance metrics are mathematically represented in
(18) through (22) as follows:

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
(18)

𝑀𝑆𝐸 =
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦𝑖)2

𝑁
(19)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| (20)

𝑆𝑆𝐸 =
𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (21)

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(22)

Table 2 reports a complete comparative analysis of the
forecasting models employed. Herein, unlike the literature,
the SSE metric is presented to compare the performance of
the forecasting models at the peak points. It can be observed
that the proposed model outperforms the forecasting models
implemented for all metrics. Particularly, it achieves the
lowest SSE of 720.17 and 653.98 for the Aegean Sea and
the North Sea, respectively. It means that the estimation of
peak points is achieved the best by the proposed model. The
proposed model reduced the RMSE forecasting error by 10-
24% with respect to that of the Meta-ELM for the Aegean
and North Seas, respectively. Further reductions have been
obtained as compared to the EMD-Meta-ELM method. In
terms of MSE and MAE, similar reduced forecasting error
figures have been obtained as well. Furthermore, the pro-
posed model achieves the closest 𝑅2 values to 1. The data
correlation power between the actual and predicted values
of offshore wind speed is the highest. In this respect, the
proposed SWD-Meta-ELM forecasting model is found to be
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Table 2
Performance of the forecasting algorithms implemented

Site Performance Metric MLP Meta-ELM EMD-Meta-ELM EEMD-Meta-ELM Proposed model
RMSE 0.6300 0.5870 0.5989 0.7609 0.5236
MSE 0.3969 0.3445 0.3586 0.5789 0.2741
MAE 0.3709 0.3579 0.4946 0.5615 0.3508
SSE 1042.57 905.07 942.14 1520.82 720.17

Aegean Sea

𝑅2 0.9613 0.9664 0.9650 0.9435 0.9732
RMSE 0.6363 0.6558 1.0403 2.4481 0.4989
MSE 0.4049 0.4300 1.0821 5.9933 0.2489
MAE 0.4385 0.4465 0.7541 2.0168 0.3475
SSE 1063.71 1129.73 2842.70 1574.40 653.98

North Sea

𝑅2 0.9871 0.9863 0.9655 0.8088 0.9921
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Figure 9: Forecasting test results of the North Sea

effective and reliable. As a result, the findings confirm that
the proposed hybrid approach improves the performance of
the well-known and robust Meta-ELM model.

While it is aimed to validate and test the performance
of the proposed model in this study, the finding shows that
the expected higher accuracy rates with the EMD-based
models were not achieved. Therefore, the EMD-Meta-ELM
performs better than the single MLP model for the Aegean
Sea but provides approximate results with the Meta-ELM
model. This verifies that the optimal model could not be
selected for each decomposed signal component. Instead of
taking the Meta-ELM parameters differently in each model,
they were taken at the same value for each model. In this
case, this selection can create a disadvantage for the EMD.
It is also worth noticing that the performance of the EEMD-
Meta-ELM model is found to be poor. In the EEMD-based
model, the impact of white noise is said to be ineffective. The
highest error rates were also observed in the EEMD-Meta-
ELM model when the performance at the peak points was

0 500 1000 1500 2000 2628
Time

0

2

4

6

8

10

12

14

16

18

20

Ae
ge

an
 S

ea
W

in
d 

S
pe

ed
 D

at
a 

(m
/s

)

Real
Meta-ELM
MLP
EMD-Meta-ELM 
Proposed Model 
EEMD-Meta-ELM

2420 2440 2460 2480 2500
0

5

10

15

20

Figure 10: Forecasting test results of Aegean Sea

considered. As a result, while all hybrid models (e.g., EMD-
Meta-ELM, EEMD-Meta-ELM, SWD-Meta-ELM) are im-
plemented, the proposed model provides the best correlation
of experimental data.

It was observed that the forecasting performance is
highly affected by particularly high-frequency components,
which makes it have lower accuracy. In this respect, a
secondary decomposition or filtering process can be used
to improve the prediction performance of high-frequency
components. However, it increases the computational bur-
den. The forecasting module did not include the highest
frequency component. For example, the model was simu-
lated considering the highest frequency component. It was
observed that the 𝑅2 performance had fallen from 0.9732
to 0.9639. Similar results for the EMD and EEMD models
occurred.

Considering the single forecasting models (e.g., MLP
and Meta-ELM), they display lower performance as com-
pared to their hybrid counterparts. While their results are
approximate, the performance of Meta-ELM has been found
to be slightly higher for most of the metrics considered.

Dokur et al.: Preprint submitted to Elsevier Page 8 of 11

Jo
urn

al 
Pre-

pro
of



Offshore Wind Speed Short-term Forecasting

0 2 4 6 8
0

2

4

6

8

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

  0

  1

  2

  3

  4

  5

  6

  7

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.20.10

Cor r e l a t i on  Coe f f i c
i en

t

R
M

S
D

Proposed Model 
EMD-Meta-ELM 
EEMD-Meta-ELM 
MLP
Meta-ELM

Figure 11: The Taylor diagram of the forecasting results

Although Figs. 9 and 10 and Table 2 show the observed
and predicted values and evaluation criteria for all models,
the comparison results among forecasting models cannot be
discussed easily using these figures and table. The Taylor di-
agram, shown in Fig. 11, describes the relationship between
the standard deviation, root mean square deviation (RMSD),
and correlation coefficient. The closer the correlation coef-
ficient value to 1, the more linear the relationship between
the original and predicted data is. Moreover, the lower the
standard deviation and RMSD values on the diagram, the
higher the performance of the model is. As shown, the
proposed model, represented by the sum sign in red in
Fig. 11, provides the best RMSD, standard deviation, and
correlation values.

In conclusion, in the proposed model, the redundant
information from wind speed datasets can be determined
with the SWD approach while the Meta-ELM provides
compatibility among other components. It is important that
a short-term forecasting model with a lower computational
time is preferred. In this respect, the Meta-ELM appears
to be an effective method for reaching a fast solution. The
optimal parameters of the Meta-ELM were determined and
the run-time was presented comparatively in detail in the
author’s earlier study in [26].

4. Conclusions
This paper investigates short-term wind speed forecast-

ing. Based on the SWD and Meta-ELM approaches, a new
hybrid forecasting model has been developed. In the decom-
position module, a swarm-prey hunting algorithm has been
implemented. The model was validated using two original
wind datasets with varying characteristics. A comparison
with four EMD and EEMD-based models was performed
to validate the proposed model. The performance has been
evaluated using well-known metrics.It has been shown that,
in terms of all performance metrics considered, the pro-
posed hybrid model improved the forecasting results for
both wind characteristics considered. Specifically, it reduced

forecasting errors (e.g., RMSE) by 10-24% and 12.5-
52% as compared to stand-alone META-ELM and hybrid
EMD-Meta-ELM methods, respectively. Furthermore, 𝑅2

increased from 0.9863 to 0.9655 to 0.9921 when compared
to stand-alone META-ELM and hybrid EMD-Meta-ELM
methods. The reliability of short-term offshore wind fore-
casting has been improved by the model. As a result, the pro-
posed hybrid SWD-Meta-ELM approach outperformed both
stand-alone META-ELM and hybrid model approaches.

The proposed model can also be applied to other appli-
cations related to forecasting, such as solar power, electric
vehicle charging loads. Application specific aspects must
be taken into account. In this respect, in terms of the de-
composition, different methods can be applied depending on
the data characteristics (e.g., whether it has high-frequency
components or not). Future studies of offshore wind fore-
casting studies might consider the adaptive neuro-fuzzy
inference system with Meta-ELM in the forecasting step in
order to further increase the performance. Nevertheless, the
impact on the computation time should also be considered.
A meta-heuristic approach could also be considered when
selecting Meta-ELM parameters in the future.
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Highlights 

Offshore Wind Speed Short-term Forecasting Based on A Hybrid Model: Swarm Decomposition 
and Meta-Extreme Learning Machine 

 

• Based on SWD and Meta-ELM , a novel hybrid offshore wind forecasting model is proposed. 

• The original data is decomposed by implementing a swarm-prey hunting algorithm. 

• The Meta-ELM model is used to forecast each decomposed component. 

• The implemented models are validated against two real-world offshore wind datasets. 
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