142 research outputs found

    Precision Control of High Speed Ball Screw Drives

    Get PDF
    Industrial demands for higher productivity rates and more stringent part tolerances require faster production machines that can produce, assemble, or manipulate parts at higher speeds and with better accuracy than ever before. In a majority of production machines, such as machine tools, ball screw drives are used as the primary motion delivery mechanism due to their reasonably high accuracy, high mechanical stiffness, and low cost. This brings the motivation for the research in this thesis, which has been to develop new control techniques that can achieve high bandwidths near the structural frequencies of ball screw drives, and also compensate for various imperfections in their motion delivery, so that better tool positioning accuracy can be achieved at high speeds. A precision ball screw drive has been designed and built for this study. Detailed dynamic modeling and identification has been performed, considering rigid body dynamics, nonlinear friction, torque ripples, axial and torsional vibrations, lead errors, and elastic deformations. Adaptive Sliding Mode Controller (ASMC) is designed based on the rigid body dynamics and notch filters are used to attenuate the effect of structural resonances. Feedforward friction compensation is also added to improve the tracking accuracy at velocity reversals. A bandwidth of 223 Hz was achieved while controlling the rotational motion of the ball screw, leading to a servo error equivalent to 1.6 um of translational motion. The motor and mechanical torque ripples were also modeled and compensated in the control law. This improved the motion smoothness and accuracy, especially at low speeds and low control bandwidths. The performance improvement was also noticeable when higher speeds and control bandwidths were used. By adding on the torque ripple compensation, the rotational tracking accuracy was improved to 0.95 um while executing feed motions with 1 m/sec velocity and 1 g acceleration. As one of the main contributions in this thesis, the dynamics of the 1st axial mode (at 132 Hz) were actively compensated using ASMC, which resulted in a command tracking bandwidth of 208 Hz. The mode compensating ASMC (MC-ASMC) was also shown to improve the dynamic stiffness of the drive system, around the axial resonance, by injecting additional damping at this mode. After compensating for the lead errors as well, a translational tracking accuracy of 2.6 um was realized while executing 1 m/sec feed motions with 0.5 g acceleration transients. In terms of bandwidth, speed, and accuracy, these results surpass the performance of most ball screw driven machine tools by 4-5 times. As the second main contribution in this thesis, the elastic deformations (ED) of the ball screw drive were modeled and compensated using a robust strategy. The robustness originates from using the real-time feedback control signal to monitor the effect of any potential perturbations on the load side, such as mass variations or cutting forces, which can lead to additional elastic deformations. In experimental results, it is shown that this compensation scheme can accurately estimate and correct for the elastic deformation, even when there is 130% variation in the translating table mass. The ED compensation strategy has resulted in 4.1 um of translational accuracy while executing at 1 m/sec feed motion with 0.5 g acceleration transients, without using a linear encoder. This result is especially significant for low-cost CNC (Computer Numerically Controlled) machine tools that have only rotary encoders on their motors. Such machines can benefit from the significant accuracy improvement provided by this compensation scheme, without the need for an additional linear encoder

    From plain visualisation to vibration sensing: using a camera to control the flexibilities in the ITER remote handling equipment

    Get PDF
    Thermonuclear fusion is expected to play a key role in the energy market during the second half of this century, reaching 20% of the electricity generation by 2100. For many years, fusion scientists and engineers have been developing the various technologies required to build nuclear power stations allowing a sustained fusion reaction. To the maximum possible extent, maintenance operations in fusion reactors are performed manually by qualified workers in full accordance with the "as low as reasonably achievable" (ALARA) principle. However, the option of hands-on maintenance becomes impractical, difficult or simply impossible in many circumstances, such as high biological dose rates. In this case, maintenance tasks will be performed with remote handling (RH) techniques. The International Thermonuclear Experimental Reactor ITER, to be commissioned in southern France around 2025, will be the first fusion experiment producing more power from fusion than energy necessary to heat the plasma. Its main objective is “to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes”. However ITER represents an unequalled challenge in terms of RH system design, since it will be much more demanding and complex than any other remote maintenance system previously designed. The introduction of man-in-the-loop capabilities in the robotic systems designed for ITER maintenance would provide useful assistance during inspection, i.e. by providing the operator the ability and flexibility to locate and examine unplanned targets, or during handling operations, i.e. by making peg-in-hole tasks easier. Unfortunately, most transmission technologies able to withstand the very specific and extreme environmental conditions existing inside a fusion reactor are based on gears, screws, cables and chains, which make the whole system very flexible and subject to vibrations. This effect is further increased as structural parts of the maintenance equipment are generally lightweight and slender structures due to the size and the arduous accessibility to the reactor. Several methodologies aiming at avoiding or limiting the effects of vibrations on RH system performance have been investigated over the past decade. These methods often rely on the use of vibration sensors such as accelerometers. However, reviewing market shows that there is no commercial off-the-shelf (COTS) accelerometer that meets the very specific requirements for vibration sensing in the ITER in-vessel RH equipment (resilience to high total integrated dose, high sensitivity). The customisation and qualification of existing products or investigation of new concepts might be considered. However, these options would inevitably involve high development costs. While an extensive amount of work has been published on the modelling and control of flexible manipulators in the 1980s and 1990s, the possibility to use vision devices to stabilise an oscillating robotic arm has only been considered very recently and this promising solution has not been discussed at length. In parallel, recent developments on machine vision systems in nuclear environment have been very encouraging. Although they do not deal directly with vibration sensing, they open up new prospects in the use of radiation tolerant cameras. This thesis aims to demonstrate that vibration control of remote maintenance equipment operating in harsh environments such as ITER can be achieved without considering any extra sensor besides the embarked rad-hardened cameras that will inevitably be used to provide real-time visual feedback to the operators. In other words it is proposed to consider the radiation-tolerant vision devices as full sensors providing quantitative data that can be processed by the control scheme and not only as plain video feedback providing qualitative information. The work conducted within the present thesis has confirmed that methods based on the tracking of visual features from an unknown environment are effective candidates for the real-time control of vibrations. Oscillations induced at the end effector are estimated by exploiting a simple physical model of the manipulator. Using a camera mounted in an eye-in-hand configuration, this model is adjusted using direct measurement of the tip oscillations with respect to the static environment. The primary contribution of this thesis consists of implementing a markerless tracker to determine the velocity of a tip-mounted camera in an untrimmed environment in order to stabilise an oscillating long-reach robotic arm. In particular, this method implies modifying an existing online interaction matrix estimator to make it self-adjustable and deriving a multimode dynamic model of a flexible rotating beam. An innovative vision-based method using sinusoidal regression to sense low-frequency oscillations is also proposed and tested. Finally, the problem of online estimation of the image capture delay for visual servoing applications with high dynamics is addressed and an original approach based on the concept of cross-correlation is presented and experimentally validated

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    The design development and evaluation of an active control aircraft model wind tunnel facility.

    Get PDF
    Recent progress in the field of Active Controls Technology(ACT) has resulted in increased interest in dynamic wind tunnel testing for basic research. The present work reports the findings of a three year research and development programme to build a dynamic wind tunnel testing facility. The task included the design and construction of a controllable dynamically scaled aircraft model, a suspension system to give the model four degrees of freedom, and an electronic control unit to interface with the model for operating the primary controls, for stability augmentation and for providing output signals for measurement purposes. The dynamic characteristics of the model have been recorded for some simulated representative flight conditions and are compared with theoretical predictions and the expected characteristics derived from full size aircraft data. The use of various stability augmentation functions has also been investigated to assess the usefulness of the electronic control unit as a means for providing stability augmentation. The results show the system to have considerable potential as an ACT Simulator. Modifications are suggested for further development of the facility to achieve a higher degree of accuracy and versatility

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Aeronautical Engineering: A special bibliography with indexes, supplement 37

    Get PDF
    This special bibliography lists 511 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1973

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Annual report of the National Advisory Committee for Aeronautics (40th). administrative report including Technical Report nos. 1158-1209

    Get PDF
    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report
    corecore