22 research outputs found

    Violator Spaces: Structure and Algorithms

    Get PDF
    Sharir and Welzl introduced an abstract framework for optimization problems, called LP-type problems or also generalized linear programming problems, which proved useful in algorithm design. We define a new, and as we believe, simpler and more natural framework: violator spaces, which constitute a proper generalization of LP-type problems. We show that Clarkson's randomized algorithms for low-dimensional linear programming work in the context of violator spaces. For example, in this way we obtain the fastest known algorithm for the P-matrix generalized linear complementarity problem with a constant number of blocks. We also give two new characterizations of LP-type problems: they are equivalent to acyclic violator spaces, as well as to concrete LP-type problems (informally, the constraints in a concrete LP-type problem are subsets of a linearly ordered ground set, and the value of a set of constraints is the minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006; author spelling fixe

    Policy iteration algorithm for zero-sum stochastic games with mean payoff

    Get PDF
    We give a policy iteration algorithm to solve zero-sum stochastic games with finite state and action spaces and perfect information, when the value is defined in terms of the mean payoff per turn. This algorithm does not require any irreducibility assumption on the Markov chains determined by the strategies of the players. It is based on a discrete nonlinear analogue of the notion of reduction of a super-harmonic function

    Non-oblivious Strategy Improvement

    Full text link
    We study strategy improvement algorithms for mean-payoff and parity games. We describe a structural property of these games, and we show that these structures can affect the behaviour of strategy improvement. We show how awareness of these structures can be used to accelerate strategy improvement algorithms. We call our algorithms non-oblivious because they remember properties of the game that they have discovered in previous iterations. We show that non-oblivious strategy improvement algorithms perform well on examples that are known to be hard for oblivious strategy improvement. Hence, we argue that previous strategy improvement algorithms fail because they ignore the structural properties of the game that they are solving

    Oink: an Implementation and Evaluation of Modern Parity Game Solvers

    Full text link
    Parity games have important practical applications in formal verification and synthesis, especially to solve the model-checking problem of the modal mu-calculus. They are also interesting from the theory perspective, as they are widely believed to admit a polynomial solution, but so far no such algorithm is known. In recent years, a number of new algorithms and improvements to existing algorithms have been proposed. We implement a new and easy to extend tool Oink, which is a high-performance implementation of modern parity game algorithms. We further present a comprehensive empirical evaluation of modern parity game algorithms and solvers, both on real world benchmarks and randomly generated games. Our experiments show that our new tool Oink outperforms the current state-of-the-art.Comment: Accepted at TACAS 201

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    Tropical Fourier-Motzkin elimination, with an application to real-time verification

    Get PDF
    We introduce a generalization of tropical polyhedra able to express both strict and non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from which we derive geometrical properties of these polyhedra. In particular, we show that they coincide with the tropically convex union of (non-necessarily closed) cells that are convex both classically and tropically. We also prove that the redundant inequalities produced when performing successive elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive at a simply exponential bound for the total execution time. These algorithms are illustrated by an application to real-time systems (reachability analysis of timed automata).Comment: 29 pages, 8 figure
    corecore