723 research outputs found

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths

    Get PDF
    Computing all-pairs shortest paths is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n3)\mathcal{O}(n^3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n2.842)\mathcal{O}(n^{2.842}), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or "FPT in P"), we investigate the influence of the graph parameters clique-width (cwcw) and modular-width (mwmw) on the running times of algorithms for solving All-Pairs Shortest Paths. We obtain efficient (and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times O(cw2n2)\mathcal{O}(cw^2n^2), resp. O(mw2n+n2)\mathcal{O}(mw^2n + n^2). If fast matrix multiplication is allowed then the latter can be improved to O(mw1.842n+n2)\mathcal{O}(mw^{1.842}n + n^2) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mwmw equal to nn, and they outperform them already for mwO(n1ε)mw \in \mathcal{O}(n^{1 - \varepsilon}) for any ε>0\varepsilon > 0

    Detection of Core-Periphery Structure in Networks Using Spectral Methods and Geodesic Paths

    Full text link
    We introduce several novel and computationally efficient methods for detecting "core--periphery structure" in networks. Core--periphery structure is a type of mesoscale structure that includes densely-connected core vertices and sparsely-connected peripheral vertices. Core vertices tend to be well-connected both among themselves and to peripheral vertices, which tend not to be well-connected to other vertices. Our first method, which is based on transportation in networks, aggregates information from many geodesic paths in a network and yields a score for each vertex that reflects the likelihood that a vertex is a core vertex. Our second method is based on a low-rank approximation of a network's adjacency matrix, which can often be expressed as a tensor-product matrix. Our third approach uses the bottom eigenvector of the random-walk Laplacian to infer a coreness score and a classification into core and peripheral vertices. We also design an objective function to (1) help classify vertices into core or peripheral vertices and (2) provide a goodness-of-fit criterion for classifications into core versus peripheral vertices. To examine the performance of our methods, we apply our algorithms to both synthetically-generated networks and a variety of networks constructed from real-world data sets.Comment: This article is part of EJAM's December 2016 special issue on "Network Analysis and Modelling" (available at https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/issue/journal-ejm-volume-27-issue-6/D245C89CABF55DBF573BB412F7651ADB

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    Distributed Planar Reachability in Nearly Optimal Time

    Get PDF

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Efficient parameterized algorithms on structured graphs

    Get PDF
    In der klassischen Komplexitätstheorie werden worst-case Laufzeiten von Algorithmen typischerweise einzig abhängig von der Eingabegröße angegeben. In dem Kontext der parametrisierten Komplexitätstheorie versucht man die Analyse der Laufzeit dahingehend zu verfeinern, dass man zusätzlich zu der Eingabengröße noch einen Parameter berücksichtigt, welcher angibt, wie strukturiert die Eingabe bezüglich einer gewissen Eigenschaft ist. Ein parametrisierter Algorithmus nutzt dann diese beschriebene Struktur aus und erreicht so eine Laufzeit, welche schneller ist als die eines besten unparametrisierten Algorithmus, falls der Parameter klein ist. Der erste Hauptteil dieser Arbeit führt die Forschung in diese Richtung weiter aus und untersucht den Einfluss von verschieden Parametern auf die Laufzeit von bekannten effizient lösbaren Problemen. Einige vorgestellte Algorithmen sind dabei adaptive Algorithmen, was bedeutet, dass die Laufzeit von diesen Algorithmen mit der Laufzeit des besten unparametrisierten Algorithm für den größtmöglichen Parameterwert übereinstimmt und damit theoretisch niemals schlechter als die besten unparametrisierten Algorithmen und übertreffen diese bereits für leicht nichttriviale Parameterwerte. Motiviert durch den allgemeinen Erfolg und der Vielzahl solcher parametrisierten Algorithmen, welche eine vielzahl verschiedener Strukturen ausnutzen, untersuchen wir im zweiten Hauptteil dieser Arbeit, wie man solche unterschiedliche homogene Strukturen zu mehr heterogenen Strukturen vereinen kann. Ausgehend von algebraischen Ausdrücken, welche benutzt werden können, um von Parametern beschriebene Strukturen zu definieren, charakterisieren wir klar und robust heterogene Strukturen und zeigen exemplarisch, wie sich die Parameter tree-depth und modular-width heterogen verbinden lassen. Wir beschreiben dazu effiziente Algorithmen auf heterogenen Strukturen mit Laufzeiten, welche im Spezialfall mit den homogenen Algorithmen übereinstimmen.In classical complexity theory, the worst-case running times of algorithms depend solely on the size of the input. In parameterized complexity the goal is to refine the analysis of the running time of an algorithm by additionally considering a parameter that measures some kind of structure in the input. A parameterized algorithm then utilizes the structure described by the parameter and achieves a running time that is faster than the best general (unparameterized) algorithm for instances of low parameter value. In the first part of this thesis, we carry forward in this direction and investigate the influence of several parameters on the running times of well-known tractable problems. Several presented algorithms are adaptive algorithms, meaning that they match the running time of a best unparameterized algorithm for worst-case parameter values. Thus, an adaptive parameterized algorithm is asymptotically never worse than the best unparameterized algorithm, while it outperforms the best general algorithm already for slightly non-trivial parameter values. As illustrated in the first part of this thesis, for many problems there exist efficient parameterized algorithms regarding multiple parameters, each describing a different kind of structure. In the second part of this thesis, we explore how to combine such homogeneous structures to more general and heterogeneous structures. Using algebraic expressions, we define new combined graph classes of heterogeneous structure in a clean and robust way, and we showcase this for the heterogeneous merge of the parameters tree-depth and modular-width, by presenting parameterized algorithms on such heterogeneous graph classes and getting running times that match the homogeneous cases throughout

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width
    corecore