
Efficient parameterized algorithms
on structured graphs

DISSERTATION

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Florian Nelles

Präsidentin der Humboldt-Universität zu Berlin
Prof. Dr. Julia von Blumenthal

Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät
Prof. Dr. Caren Tischendorf

Gutachter:
1. Prof. Dr. Stefan Kratsch
2. Prof. Dr. Tobias Friedrich
3. Prof. Dr. Stephan Kreutzer

Tag der mündlichen Prüfung: 18. April 2023

Abstract

In classical complexity theory, the worst-case running times of algorithms depend (solely) on the
size of the input, i.e., depending on the number of vertices and edges if the input is a graph. For
a lot of popular tractable problems, the best worst-case running times have not been improved
for decades, while for some problems it is also conjectured that it is not possible to solve them
any faster. But even if those conjectures turn out to be true, there are different directions of
possible further research (apart from actually proving corresponding lower bounds). Next to
approximations or heuristics, the goal in parameterized complexity is to make use of potential
structure in the input to solve some instances provably faster. In this reign, the goal is to refine
the analysis of the running time of an algorithm by considering a parameter that measures some
kind of structure in the input, additionally to the input size. A parameterized algorithm then
utilizes the structure described by the parameter and achieves a running time that is faster
than the best general (unparameterized) algorithm for instances of low parameter value. This
framework was first introduced to deal with NP-hard problems, but at least since the work of
Giannopoulu et al. in 2017, a systematic study of parameterized algorithms also for tractable
problems has been started.

In this thesis, we carry forward in this direction and investigate the influence of several
parameters on the running times of well-known tractable problems like maximum matching,
vertex-weighted all-pairs shortest paths, or triangle counting. In the first part
of this thesis, we consider the parameters modular-width, clique-width, and twin-width, and
give efficient parameterized algorithms. Among other results, we improve the running time for
maximum matching when parameterized by the modular-width of a graph from O(h4 n + m)
by Coudert et al. (SODA 2018) to O(h2 log h n + m) for graphs with n vertices, m edges, and a
modular-width of at most h; as another highlight, we present an O(cw2 n2)-time algorithm for
vertex-weighted all-pairs shortest paths (vapsp) when parameterized by the clique-
width cw of a graph. Throughout, we achieve running times that match the trivial lower
bound of a problem for constant parameter values, i.e., quadratic time Ω(n2) for vapsp and
linear time Ω(n + m) for all other problems. Several presented algorithms are additionally
adaptive algorithms, meaning that they match the running time of a best unparameterized
algorithm for worst-case parameter value k ∈ Θ(n). Thus, an adaptive parameterized algorithm
is asymptotically never worse than the best unparameterized algorithm, while it outperforms
the best general algorithm already for slightly non-trivial parameter values of k ∈ o(n).

As illustrated in the first part of this thesis, for many problems there exist efficient parameter-
ized algorithms regarding multiple parameters, each describing a different kind of structure. In
the second part of this thesis, we explore how to combine such homogeneous structures to more
general and heterogeneous structures. Using algebraic expressions, we define new combined
graph classes of heterogeneous structure in a clean and robust way, and we showcase this for
the heterogeneous merge of the parameters tree-depth and modular-width. We present a generic
framework for designing efficient parameterized algorithms on such heterogeneous graph classes
and apply our framework for the problems vertex-weighted all-pairs shortest paths,
negative cycle detection, and triangle counting; getting running times that match
the homogeneous cases throughout.

Zusammenfassung

In der klassischen Komplexitätstheorie werden worst-case Laufzeiten von Algorithmen typischer-
weise (einzig) abhängig von der Eingabegröße angegeben, d.h., abhängig von der Anzahl der
Knoten und Kanten für Eingaben, die einen Graphen beschreiben. Für viele bekannte Probleme
hat sich die worst-case Laufzeit seit Jahrzehnten nicht mehr verbessert, für einige Probleme wird
sogar stark vermutet, dass man diese nicht noch schneller lösen kann. Aber selbst wenn diese
Vermutungen sich als korrekt erweisen, gibt es, neben dem Beweisen von passenden unteren
Schranken, noch vielfältige Möglichkeiten, zu forschen. Neben möglichen heuristischen Algo-
rithmen oder Approximationsalgorithmen, ist es Ziel der parametrisierten Komplexitätstheorie,
Strukturen in der Eingabe auszunutzen, um manche Instanzen nachweislich schneller lösen zu
können. In diesem Kontext versucht man die Analyse der Laufzeit dahingehend zu verfeinern,
dass man, zusätzlich zu der Eingabengröße, auch einen Parameter berücksichtigt, welcher an-
gibt, wie strukturiert die Eingabe bezüglich einer gewissen Eigenschaft ist. Ein parametrisierter
Algorithmus nutzt dann diese von dem Parameter beschriebene Struktur in der Eingabe aus und
erreicht so eine Laufzeit, welche schneller ist als die eines besten unparametrisierten Algorith-
mus, falls der Parameter klein ist. Ursprünglich betrachtete man parametrisierte Algorithmen
vor allem für NP-schwere Probleme, aber spätestens seit der Arbeit von Giannopoulu et al. im
Jahre 2017 startete auch eine systematische Betrachtung von effizient lösbaren Problemen. Die
vorliegende Dissertation führt die Forschung in diese Richtung weiter aus und untersucht den
Einfluss von verschieden Parametern auf die Laufzeit von bekannten effizient lösbaren Prob-
lemen, wie z.B. maximum matching, vertex-weighted all-pairs shortest paths oder
triangle counting.

Im ersten Hauptteil dieser Arbeit betrachten wir die Parameter modular-width, clique-width
und twin-width, und geben effiziente parametrisierte Algorithmen für einige Polynomialzeit-
probleme. Unter anderem verbessern wir die Laufzeit für das Problem maximum matching
parametrisiert durch den Parameter modular-width von O(h4 n+m) durch Coudert et al. (SODA
2018) auf eine Laufzeit von O(h2 log h n + m) für Graphen mit n Knoten, m Kanten und einer
modular-width höchstens h; als ein weiteres Highlight beschreiben wir einen Algorithmus mit
Laufzeit O(cw2 n2) für vertex-weighted all-pairs shortest paths parametrisiert durch
den Parameter clique-width cw. Durchweg erzielen wir Laufzeiten in dieser Arbeit, welche
mit den trivialen unteren Schranken übereinstimmen, falls der betrachtete Parameter konstant
ist, d.h. eine quadratische Laufzeit Ω(n2) für vertex-weighted all-pairs shortest paths
und lineare Laufzeiten Ω(n + m) für alle anderen betrachteten Probleme. Einige vorgestellte
Algorithmen sind dabei adaptive Algorithmen, was bedeutet, dass die Laufzeit von diesen Al-
gorithmen mit der Laufzeit des besten unparametrisierten Algorithm für den größtmöglichen
Parameterwert k ∈ Θ(n) übereinstimmt. Daher sind adaptive Algorithmen niemals schlechter
als die besten unparametrisierten Algorithmen und übertreffen diese bereits für leicht nichttriv-
iale Parameterwerte von k ∈ o(n).

Aufbauend auf dem großen Erfolg und der Vielzahl an parametrisierten Algorithmen, welche
alle jeweils eine andere Struktur ausnutzen, untersuchen wir im zweiten Hauptteil dieser Arbeit,
wie man solche unterschiedliche homogene Strukturen zu mehr heterogenen Strukturen vereinen
kann. Ausgehend von algebraischen Ausdrücken, welche benutzt werden können, um von Pa-

iv Abstract

rametern beschriebene Strukturen zu definieren, charakterisieren wir klar und robust heterogene
Strukturen. Wir zeigen exemplarisch, wie sich die Parameter tree-depth und modular-width het-
erogen verbinden lassen. Mit Hilfe eines generischem Theorems zur Bestimmung von Laufzeiten
auf solchen Strukturen beschreiben wir effiziente Algorithmen auf heterogenen Strukturen mit
Laufzeiten, welche im Spezialfall mit den homogenen Algorithmen übereinstimmen.

Acknowledgements

First of all I want to thank everyone that have accepted to be in committee for my dissertation to
take the time and read this thesis; especially to my supervisor Stefan Kratsch. The first lecture
from Stefan I attended was back in Bonn, called “Parameterized Complexity”, and this was
retrospective the reason I wanted to continue doing research after my masters degree. Thank
you for introducing me into this field of research, for letting me do my PhD with you, and for
being such a great supervisor. In every single meeting you was able to give me motivation,
inspiration, and energy to tackle all those research questions. Thank you for introducing me
into a whole new level of board games, for establishing all the digital and analog board game
evening, and for all other helpful advises outside of research. I have learned a lot from you, and
this is not at all limited to theoretical computer science.

Further, I want to thank all my colleagues, starting with Falko, my office mate for the majority
of the time (until Corona was a thing). Thanks for all the helpful research discussions; and
especially for the non-research discussions. Thanks to Vera and Falko that have read parts
of this thesis, and to all my current and former colleagues Narek, Leonid, Robert, Alexandre,
Astrid, Sebastian, and Eva-Maria. It was a pleasure to work with all of you. A special thanks
also to Galina, Fabian, and Ralf, for helping with all the paperwork and technical problems.

Although the teaching obligations are often seen only as an obstacle and a distraction, my
colleagues in teaching and also the students that needed to suffer from my teaching over all these
year have made the teaching obligations quite bearable, actually even very enjoyable. Thank
you all!

A very special thanks to my friends and family for always being sympathetic, although me
not being there on all celebrations and parties.

Last but foremost, I want to thank Katja. Thank you for supporting me all the time with
your love, understanding, and patience; for picking me up at the airport or train station at all
times, even tough the plain or train was delayed, once again. Thank you taking care of all other
things whenever I needed the time for a paper or this thesis. And all this while not complaining
a single time, although it was me who decided to work in Berlin, more than 600 kilometers
away. Thank you, I would not have done it without you.

Contents

Abstract i

Acknowledgements v

I Fundamentals 1

1 Introduction 3
1.1 Parameterized Algorithms . 7
1.2 Towards Heterogeneous Structure . 9
1.3 Motivation of the Considered Problems . 11
1.4 Thesis Overview . 12

2 Preliminaries 15
2.1 General Notation . 15
2.2 Graph Theory . 16
2.3 Parameters . 19
2.4 Considered Problems . 24

II Parameterized Algorithms 29

3 Algorithms Parameterized by the Modular-Width of the Input 31
3.1 Definition of Modular-Width . 34
3.2 Maximum Matching . 38
3.3 General Running Time Theorem . 42
3.4 Vertex-Weighted All-Pairs Shortest Path . 44
3.5 Triangle Counting . 46
3.6 Edge-Disjoint Paths . 48

3.6.1 Maximum Edge-Disjoint s-t Paths . 49
3.6.2 Global Minimum Cut . 52

3.7 Vertex-Disjoint Paths . 54
3.7.1 Maximum s-t Vertex Flow . 54
3.7.2 Global Minimum Vertex Cut . 56

3.8 Conclusion . 58

viii Contents

4 Algorithms Parameterized by the Clique-Width of the Input 61
4.1 Definition of Clique-Width and NLC-Width . 62
4.2 All-Pairs Shortest Path Parameterized by Clique-Width 66
4.3 Triangle Counting Parameterized by Clique-Width 79
4.4 Conclusion . 82

5 Triangle Counting Parameterized by the Twin-Width of the Input 83
5.1 Definition of Twin-Width. 84
5.2 Algorithm . 85
5.3 Conclusion . 92

III Heterogeneous Graph Classes 93

6 Heterogeneous Structure: Combining Tree-Depth and Modular-Width 95
6.1 Graph Operations and Algebraic Expressions . 97
6.2 Heterogeneous Structure . 98
6.3 Running Time Framework . 100
6.4 Applications . 102

6.4.1 Triangle Counting . 103
6.4.2 Negative Cycle Detection . 104
6.4.3 Vertex-Weighted All-Pairs Shortest Paths 108

6.5 Comparing the Graph Classes . 112
6.6 Conclusion . 115

IV Conclusion 117

7 Concluding Remarks and Open Problems 119
7.1 Algorithms Parameterized by a Single Parameter 119
7.2 Heterogeneous Structure . 122

Bibliography 125

Part I

Fundamentals

1
Introduction

Solving a challenge, a task, or a computation problem as fast as possible is a natural human
aspiration. It can already be observed among children who want to be faster than their friends
in a specific challenge or who just want to complete a given task to finally have time to play
computer games or board games. As an employer, it often goes hand in hand with earning
more money if one is able to solve a problem more efficiently and with fewer resources; and as a
researcher, determining the best possible worst-case running times for computational problems
can be seen as the core of algorithmic research.

Consider for example the problem vertex-weighted all-pairs shortest paths in which
one is given a directed vertex-weighted graph, i.e., a collection of weighted vertices and a speci-
fication of the connections between those. The task is now to compute the shortest distances for
each pair of vertices. There is the standard textbook algorithm due to Floyd and Warshall from
1962 using dynamic programming that solves this problem in cubic running time Θ(n3) where
n denotes the number of vertices in the input graph. In contrast to the edge-weighted variant,
there is also a theoretically faster algorithm with a time complexity of O(n2.842), however, this
algorithm does make use of fast matrix multiplication that is only of theoretical interest and
is not of practical use. Indeed, there is no algorithm known for vertex-weighted all-pairs
shortest paths with a truly subcubic running time that does not use fast matrix multipli-
cation, i.e., there is no combinatorial algorithm with a running time of O(n3−ε) for any ε > 0
known. Now, imagine that there is Bob, an employee of a company, and the boss of Bob assigns
him a job to compute all pairwise distances of a vertex-weighted directed graph. Bob does
look at the graph and sees 20 vertices and a lot of edges. Bob could simply apply the general
algorithm by Floyd and Warshall and solve this instance using about 203 = 8000 computations
necessarily. This nice algorithm always solves the problem in cubic time Θ(n3), irrespective of
the concrete instance. But Bob is clever and lazy, he does not need an algorithm that can solve
any instance, it would be enough to solve this specific instance. He looks closely at the input
and after a while, he draws the graph in a somewhat organized way, see Figure 1.1: He discovers

4 Introduction

7

4

13

4

7

1

4

9 2 5

7

2

6

28

4

7
u

3

3
v

5
3

Figure 1.1: The directed graph for which Bob needs to compute the pairwise shortest distances,
drawn in a structured way discovered by Bob. The number next to a vertex denotes
the weight of this vertex.

that one could divide the graph into two parts, a left part and a right part, and he clusters
some vertices using colors such that there are only bridges from one side to the other via full
directed joins between some clustered vertices. I.e., the only way one can pass from the left
side to the right side is from any red-painted vertex to any yellow-painted vertex or from any
blue-painted vertex to the purple-painted vertex; while from the right side to the left side there
are only connections between the two brown vertices to the green- and blue-painted vertices.

Now, Bob has the idea to consider each side individually. He computes the distances between
each pair of vertices on the left side and right side separately and stores them in two distance
matrices DL and DR, using only 2 · 103 = 2000 computations. If a shortest path between two
vertices from one side only uses vertices from this side, Bob already knows the solution. If a
shortest path goes back and forth between the two sides, Bob realizes that every path will enter
the right side either on a yellow-painted vertex or on the purple-painted vertex, and will leave
the right side on one of the two brown-painted vertices. Since between clustered vertices from
different sides there is either a complete join or no edge at all, Bob recognizes that any shortest
path that goes to the right side and goes back to the left side will simply use a shortest path
from either any yellow-painted vertex to any brown-painted vertex or from the purple-painted
vertex to any brown-painted vertex. Using the distances in DR, Bob can read off that on the
right side a shortest “yellow-brown” path has costs 10 (= 1 + 2 + 5 + 2) and a shortest “purple-
brown” path has cost 7 (= 5 + 2), by comparing the corresponding values in DR. Contrarily,

Introduction 5

+

+

−

−

−

−

+

0

0

0

9
13

10
7

0

3
18

Figure 1.2: The edge-weighted auxiliary graph H with edge weights corresponding to the short-
est distance between the respective vertex sets. Colored sets that have incoming
edges from the other side are marked by a “-” while colored sets that have outgoing
edges to the other side are marked by a “+”. The edge weights between a colored
vertex with a minus and a colored vertex with a plus correspond to the shortest
distance between these colored sets on this side of the graph.

if a shortest path enters and leaves the left side, it will use a shortest path between a colored
set that has incoming edges from the right side to a colored set that has outgoing edges to the
right side. Bob can again compare the corresponding values in DL and concludes that on the
left side a shortest “green-red” path is of cost 13 (= 6 + 7), a shortest “green-blue” path of cost
9(= 6+3), a shortest “blue-red” path of cost 18(= 4+3+7+4), and a shortest “blue-blue” path
of cost 3. Bob summarizes these distances in an edge-weighted auxiliary graph H as depicted
in Figure 1.2. Since the shortest paths between clustered vertices already include the start-
and end-vertex, the directed edges between the left and right side are assigned the costs zero
in the auxiliary graph H. Thus, the graph H encodes several paths from G in a compact way.
For example, a shortest •−-•+ path in H corresponds to a shortest u-v path in G of the same
weight for a specific blue-painted vertex u and a specific brown-painted vertex v. In particular,
one can determine the shortest distances between two colored sets in G with the property that
the first and last edge of this path is an edge of a full join between the two sides of G. E.g., a
shortest path from any red-colored vertices to any purple-colored vertex in G with this property
corresponds to a shortest •+-•− path in H.1

Now, for u and v being two vertices in G, each shortest u-v path that uses vertices on the
left and right side will consist of three parts: First, a shortest path from u to some colored
set on the same side, followed by a shortest path that will go back and forth between the two
sides, finalized by a shortest path from a colored set on the same side as v to the vertex v. The
middle part corresponds to some shortest path in the auxiliary graph H, hence, Bob computes
the shortest distances for each pair of vertices in H, using only roughly 73 = 343 computations.
The first and the last part can be looked up quite fast from DL resp. DR. E.g., for two vertices

1Note that since a shortest •+-•− path in H corresponds to an u-v path in G with the properties that u is any
red-painted vertex and v is any purple-painted vertex, the weight of this path in H ignores the weights of the
vertices u and v.

6 Introduction

u and v that are both on the left side in G, Bob can compute the shortest distance as follows:

distG(u, v) = min{distDL
(u, •+) + distH(•+, •−) + distDL

(•−, v),
distDL

(u, •+) + distH(•+, •−) + distDL
(•−, v),

distDL
(u, •+) + distH(•+, •−) + distDL

(•−, v),
distDL

(u, •+) + distH(•+, •−) + distDL
(•−, v),

distDL
(u, v)}

For example, consider the two vertices in the graph G from Figure 1.1 that are marked by u and
v. The values distDL

(u, •+) = 11, distDL
(u, •+) = 39, distDL

(•−, v) = 13, distDL
(•−, v) = 7, and

distDL
(u, v) = 38 can be looked up in DL by comparing the corresponding distances, while the

values distH(•+, •−) = distH(•+, •−) = 10 and distH(•+, •−) = distH(•+, •−) = 7 are explicitly
computed in H. Thus, for this example, it holds that distG(u, v) = 11 + 10 + 7 = 28. Similar
equations hold in the case that u and v are both on the right side or being on different sides
(while in the latter case the last argument in the computation above is dropped). Thus, Bob
can now compute the shortest distance for each pair of vertices using this approach and needs
substantially less time in comparison to the use of the classical algorithm by Floyd and Warshall
on the whole graph.

The formal proof of correctness of Bob’s approach follows from the discussion in Section 4.2,
as the structure that Bob utilizes here is related to a parameter called NLC-width of a graph,
which (very) roughly denotes the number of different colors in this example. However, in a graph
with structures described by the NLC-width, the left and right sides were already created in a
structured way,2 thus, using the NLC-width one does not need to compute the pairwise distance
on each side from scratch, yielding an even better speed-up. Note that in the above example, Bob
only roughly halves the size of the graph, which would not result in an asymptotic improvement,
however, we will see that graphs of low NLC-width can be indeed solved asymptotically faster.
So while it may be true that solving vertex-weighted all-pairs shortest paths in general
needs time Θ(n3), for a lot of instances we might find some kind of structure to speed up the
computation significantly.

In this thesis, we will consider fundamental polynomial-time solvable problems (like vertex-
weighted all-pairs shortest paths) on graphs that contain some kind of structure. To
measure the structure in a graph we will consider various parameters. We will give algorithms
that are perfectly tailored to these parameters to gain faster algorithms on graphs with low
parameter values. Such algorithms are called parameterized algorithms. Some parameterized
algorithms that we will present in this thesis are even adaptive, which means that although
they try to make use of the specific structure, these algorithms are asymptotically never worse
than the currently best unparameterized algorithm, even if there is no specific structure for the
algorithm to exploit; while an adaptive algorithm already outperforms the best unparameterized
algorithms for slightly non-trivial parameter values.

Note that in the above example, Bob found the structure that he used to compute the pairwise
distances faster by just looking closely at the graph. In general, finding a suitable structure,
i.e., to compute a corresponding decomposition or expression, is a separate question of interest.
For some structures, even if you know that there is this structure in a graph, it is still NP-hard
to find it.

2Indeed, the NLC-width is defined via operations on labeled graphs. One operation takes two already created
graphs G1 and G2 and returns the disjoint union of these graphs with additional edges being added between
the two graphs whose existence solely depends on the labels of the vertices.

1.1 Parameterized Algorithms 7

1.1 Parameterized Algorithms
To define and further motivate the use of parameterized algorithms, let us first define very
shortly decision and optimization problems, and the classical analysis of these. For a finite set
Σ, called an alphabet, we define Σ∗ as the set of all finite strings with elements from Σ. Any
subset L ⊆ Σ∗ is called a language over the alphabet Σ. We define a decision problem as a
problem that asks if a given instance does fulfill a specified property or not, i.e., each instance
can be evaluated to true or false. Formally, a decision problem is a pair (I, L) with I and L
being languages over a finite alphabet Σ and L ⊆ I. The elements in I are called instances and
for a given instance x ∈ I the task is to determine if x ∈ L or x /∈ L. An optimization problem Π
is either a minimization problem or maximization problem, and consists of the following three
parts [GJ79, Chapter 6]:

• A set of instances I,

• for each instance x ∈ I, a finite set S(x) of candidate solutions, and

• a function m that assigns to each instance x ∈ I and each candidate solution σ ∈ S(x) a
positive rational number m(x, σ), called the solution value of σ.

For a minimization (resp. maximization) problem, an optimal solution for an instance x ∈ I is a
candidate solution σ∗ ∈ S(x) such that for all σ ∈ S(x) it holds that m(x, σ∗) ≤ m(x, σ) (resp.
m(x, σ∗) ≥ m(x, σ)). For an optimization problem Π the task is then to compute an optimal
solution σ∗ ∈ S(x) for a given instance x ∈ I.

The conventional analysis of the worst-case running time of some algorithm that solves an
optimization problem Π is to bound the number of performed operations (solely) relative to the
size |x| of the input x. For a lot of optimization problems, including all considered problems
in this thesis, the input will consist of a (possibly weighted) graph G = (V, E), i.e., the size
of the input can be specified by the number n = |V | of vertices and the number m = |E| of
edges.3 Determining the best possible worst-case running times depending on the input size
|x| for computational problems lies at the heart of algorithmic research. However, for many
intensively studied problems progress has been stalled for decades and one may suspect that
the “correct” running times have already been found. To actually prove that one cannot solve
a specific problem any faster in general seems to be challenging since there is still only little
known regarding unconditional lower bounds. Considering conditional lower bounds, the recent
success of “fine-grained analysis of algorithms” has brought plenty of tight conditional lower
bounds for a wealth of problems (see, e.g., [PW10, Bri14, AWY18]). If one is willing to believe
in the conjectured worst-case optimality of known algorithms for 3-sum, all-pairs-shortest
paths (APSP), or satisfiability4 then lots of other known algorithms must be optimal as
well. Even if there is no general agreement on the truth of the conjectures, the previously
stalled work can now be focused on beating the best known times for just a few conjectured
problems rather than for a multitude of problems. Complementary to the quest for refuting
conjectures and beating long-standing fastest algorithms, what should we do if the conjectures
and implied lower bounds are true (or if we simply fail to disprove them)? Surely, this would not
be the end of the story. Apart from heuristics and approximate algorithms, a possible solution

3For some optimization problems, the input will consist of a graph plus some additional information like specified
vertices or an algebraic expression. However, the input size will always be linear in the number of vertices
and edges of the input graph.

4It has been conjectured that there is no O(n2−ε) time algorithm for 3-sum, no O(n3−ε) time for APSP, and
that there is no c < 2 such that k-SAT can be solved in time O(cn) for each fixed k (SETH).

8 Introduction

lies in taking advantage of some structure in the input and deriving worst-case running times
that depend on parameters that quantify this structure.

The main idea in parameterized complexity is to refine the analysis of optimization problems
by not only characterizing the running time depending on the size |x| of the instance but addi-
tionally considering a parameter k that measures some kind of structure in the input instance.
This framework was first initiated by Downey and Fellows [DF99] for NP-hard problems, i.e.,
problems that do not admit polynomial-time algorithms subject to the input size, assuming
P ̸= NP. One goal in the context of parameterized complexity is to obtain algorithms that solve
a decision problem or optimization problem in time f(k) · |x|c for some computable function f
and a constant c, where |x| denotes the size of the input instance and k denotes the parameter
measuring some kind of structure in the input x. Hence, if k is fixed by a constant, f(k) is
bounded and such an algorithm does run in polynomial time O(|x|c) where the exponent c
is not depending on the parameter value k. Algorithms that allow for such a running time
for a parameterized problem are called fixed-parameter tractable algorithms (fpt-algorithms for
short). The class of all parameterized problems to which such an fpt-algorithm exists is called
FPT. It trivially holds that all problems in P are contained in the class FPT. For more infor-
mation about parameterized complexity, especially about fpt-algorithms for NP-hard problems,
we refer to [CFK+15]. Generally speaking, in the realm of parameterized algorithms the goal
is to design algorithms that leverage some structure measured by a parameter to obtain faster
algorithms for instances for which the parameter value is low.

This framework is not limited to problems that are NP-hard. Applying this paradigm to
the realm of problems in P was done in the literature occasionally. Consider for example the
minimum weight circle cover problem in which one is given a set of weighted circular arcs of
a circle and the task is to find a subset of the circular arcs of minimum weight that covers
the whole circle. For this problem, most of the standard algorithms have a running time also
depending on the minimum thickness of the circle, i.e., the minimum number q of arcs crossing
any point on the circle. Atallah et al. [ACL95] described in 1995 how to solve this problem in
time O(qn log n), which improved an earlier O(qn2)-time algorithm [Ber88] from 1988. Thus,
the minimum thickness q of the circle can be seen as a parameter. Similarly, for the longest
common subsequence problem, in which one is interested in the length of a longest common
subsequence for two strings over a finite alphabet, there is a breakthrough result [ABW15, BK15]
that proves that there is no O(n2−ε) time algorithm for any ε > 0 unless satisfiability can
be solved in O((2 − ε′)n) time for some ε′ > 0 and SETH fails. Long before this result,
algorithms were discovered that run much faster than O(n2) time when certain parameters
are small (cf. [BK18]); curiously, a very recent result of Bringmann and Künnemann [BK18]
shows that these are optimal modulo SETH (while giving one new optimal algorithm for binary
alphabets). For further examples of early algorithms that utilize some structure we refer for
instance to [HW07, OMSW10], or [CEN12].

However, there was no explicit mention of the framework of parameterized algorithms.5
Giannopoulou et al. [GMN17] reignited in 2017 the paradigm of parameterized algorithms
for problems in P (what they called “FPT in P”). Followed by this work, a thorough and
more systematic study of parameterized algorithms for tractable problems started, see, e.g.,
[FLS+18, MNN16, BFNN19, FKM+19, IOO18, CDP19, Duc22a, Duc22b]. To give a general
and more formal example for the framework of FPT in P, consider an optimization problem Π
over the class of graphs for which the (currently) best algorithms depending solely on the input

5Several algorithms that we now would classify as “FPT in P” are developed even before the introduction of the
toolbox of FPT for NP-hard problems.

1.2 Towards Heterogeneous Structure 9

size run in time O(nγ), with n denoting the number of vertices in the input graph. Let k denote
a parameter that measures some kind of structure of the input, e.g., the maximum degree, the
minimum size of a vertex cover, or a value that describes how well one can decompose the graph
recursively in a specific way. See also Section 2.3 for a (not nearly exhaustive) list of possible
parameters. For all possible parameters, it holds that the more structure there is, the lower
the parameter value will be. Typically, the parameter value is at most n, which indicates that
there is no structure in the input specified by this parameter. The first goal in FPT in P is now
to engineer algorithms with a time complexity of O(f(k) · nβ) for some computable function
f and with β < γ. Thus, for constant parameter values we achieve a running time of O(nβ)
which is faster than the best unparameterized algorithm. Other than for NP-hard problems, the
function f does not necessarily need to be exponential in k, since the problem Π can already be
solved in polynomial time. Hence, it is often the case that one can also state the function f as
a polynomial in k. Hence, the next goal is to get a running time of type O(kα ·nβ) with β < γ.
Surely, for such a running time it holds that α+β ≥ γ as otherwise the parameterized algorithm
would outperform the unparameterized algorithm even for worst-case parameter value k = n.
However, α + β = γ is possible; and thus, a final goal is to develop parameterized algorithms
with a time complexity of O(kα · nβ) with α + β = γ. In this case, it holds that even if k = n,
the parameterized algorithm is just as good as the unparameterized algorithm; while being
faster than the unparameterized algorithm even for slightly non-trivial values k ∈ o(n). We call
algorithms with this property adaptive algorithms. Adaptive algorithms were also considered
by Iwata et al. [IOO18] and already way earlier for the task of sorting an array of n items. For
sorting, there is the (unconditional) lower bound of Ω(n log n) for comparison-based sorting,
which is matched by well-known sorting algorithms. The goal in the area of adaptive sorting is
to find algorithms that are adaptive to presortedness (which can be seen as some structure in
the input) with very low running times for almost sorted inputs while maintaining competitive
running times as disorder increases (cf. [EW92]).

In this thesis, we will present parameterized algorithms for well-known tractable problems,
some of them will even be adaptive. We will primarily consider the parameters modular-width,
clique-width, and twin-width. All these three parameters roughly measure how close a graph is
to a cograph6, meaning that the parameter values of any cographs will be smallest possible for
each of these parameters.

1.2 Towards Heterogeneous Structure

In Part II of this thesis, we will describe parameterized algorithms for several well-known
tractable problems concerning the parameters modular-width, clique-width, or twin-width.
Also, many other computational problems can be solved (much) faster on inputs that exhibit
certain beneficial structures, while such beneficial structures may show up in several ways (e.g.,
symmetry, sparsity, structured separations, or graphs of bounded parameter values). Indeed,
the framework of parameterized complexity is a huge success. For many problems and vari-
ous parameters, there are fast parameterized algorithms solving the problem much faster if the
considered parameter is low. This is true for both tractable and intractable problems.

For a concrete problem, there are often multiple parameterized algorithms with regard to
several different parameters, as we will also see in this thesis for example for the problems

6Cograph (from complement reducible graphs) can be defined recursively as follows: A single-vertex graph is a
cograph; if G1, G2, . . . , Gt are cographs, then so is their union G1 ∪̇ G2 ∪̇ . . . ∪̇ Gt for all t ∈ N; and if G is a
cograph then so is its complement G [CLB81]

10 Introduction

vertex-weighted all-pairs shortest paths or triangle counting. Each parameter
describes a different structure that will be utilized in the parameterized algorithm, while some
parameters are simply less general than others, meaning that they specify a more restricted
structure. This often comes with a better dependency on the parameter value in the concrete
running time, as those algorithms especially make use of the more restricted structure, instead
of applying the more general algorithms (and ignoring the finer structure). On the other hand,
there might also be parameterized algorithms for a problem with respect to several parameters
that are incomparable to each other, i.e., algorithms that utilize completely different structures
to get a faster running time. Take for example the incomparable parameters tree-depth and
modular-width (the actual definitions are not crucial here and are postponed to Section 2.3
and Section 3.1). Low tree-depth does always imply that the graph is somewhat sparse since
the number of edges in a graph of tree-depth k is always at most k · n. Thus, algorithms
parameterized by the tree-depth alone can never be applied successfully on dense graphs, i.e.,
graphs with a lot of edges in proportion to the number of vertices. On the other side, the
modular-width of all cliques is zero, and intuitively, a graph of low modular-width is very
likely to have a lot of edges because low modular-width usually requires full joins between
large parts of the graphs. At the same time, there are parameterized algorithms for both, the
tree-depth and the modular-width of a graph for, e.g., the problems triangle counting or
also vertex-weighted all-pairs shortest paths (the algorithms regarding modular-width
can be found in Chapter 3, while the algorithm regarding tree-depth is a special case of the
presented algorithms in Chapter 6). One goal is now to design an algorithm that not only
can deal with both types of structures at once, but also utilize the different approaches to be
applicable to graphs with a much more interwoven structure arising from the different definitions
of the parameters.

That is the motivation and starting point of the discussions in Part III of this thesis, where we
combine the structural ideas as well as the algorithmic ideas from two or more different param-
eters to obtain efficient parameterized algorithms that can be applied to much less restrictive
input classes, without losing much in terms of running times. Building on the use of alge-
braic expressions that characterize the structure measured by a parameter, we present a clean
and robust way of combining such homogeneous structures into a more complex heterogeneous
structure. We showcase our approach for the combination of the parameters tree-depth and
modular-width, but the applicability to other parameters is evident. By using an operational
way via algebraic expressions to define the parameters tree-depth and modular-width, we first
define the natural notion of modular tree-depth, where instead of the size of the pattern graph
(as done for modular-width) only the tree-depth of the pattern graphs is taken into account.
Based on the operational definition of these three parameters, we then can define heterogeneous
graph classes for all combinations. Since the operations may be intertwined arbitrarily, the new
heterogeneous graph classes are way more general than just the union of the corresponding ho-
mogeneous graph classes, while it turns out that the obtained running times will be just the sum
of those running times achieved in the homogeneous case, with potentially much lower parameter
values. Hence, we can apply the algorithm for the heterogeneous case to graphs that otherwise
were not able to be captured by a single parameter alone; and we extend the class of graphs
for which we get faster algorithms significantly. Interestingly, the algorithm parameterized by
the tree-depth alone for vertex-weighted all-pairs shortest paths of time O(td n2) is
not impressive, since the implied sparsity of graphs of tree-depth td directly results in a run-
ning time of O(td n2 + n2 log log n) using the algorithm of Pettie and Ramachandran [PR05].
However, it is of great benefit for the combination with other parameters.

1.3 Motivation of the Considered Problems 11

1.3 Motivation of the Considered Problems

In this thesis, we will consider fundamental tractable problems like maximum matching,
vertex-weighted all-pairs shortest paths, triangle counting, or several problems
related to edge- and vertex-disjoint paths. For the currently best parameterized and unparam-
eterized algorithms for each of the considered problems, we refer to Section 2.4

In the maximum matching problem, the task is to find a maximum set X ⊆ E of pairwise
disjoint edges in an undirected graph G = (V, E). A set of edges is said to be disjoint if every
vertex v ∈ V is incident to at most one edge in X. maximum matching is one of the oldest
tractable problems considered in the literature. The first polynomial-time algorithm for this
problem was already established in 1965 [Edm65]. Maximum matchings play an important role
in several other problems, e.g., in the realm of scheduling problems; for instance, to find an
optimal sequencing of two equivalent processors for n tasks with a given precedence relation
(provided by an arbitrary acyclic directed graph), the maximum matching-problem is an
important subroutine for finding a maximum number of disjoint compatible task pairs [FKN69].
Another application can also be found in medicine, e.g., for kidney exchanges. Most kidney
transplant recipients already come to the hospital with a relative or friend that is willing to
donate a kidney. However, these patient-donor pairs are often incompatible, for example, due
to wrong blood types. Thus, one does look for another patient-donor pair with complementary
blood types such that they can help each other out. In this context, a lot of research is done
to develop a provably fair strategy for the exchange of two incompatible patient-donor pairs for
kidney exchange [RSÜ04, RSÜ05]. Maximum matchings are also used to solve other problems,
e.g., by König’s Theorem [Kön31], the size of a minimum vertex cover in a bipartite graph is
equal to the size of a maximum matching in this graph. The maximum b-matching is an
extension of the maximum matching problem in which one is interested in a multiset M of
its edges such that the number of edges of M that are incident to a vertex v does not exceed
b(v), for every vertex v and a given function b that defines for each vertex a maximum capacity
b(v). Applications for maximum b-matching are also manifolds, see for example [Gue07] for
an application on combinatorial auctions.

Next to maximum matching, also all-pairs shortest paths is a fundamental and much-
studied problem in the field of algorithmic graph theory. Here, one is interested in the shortest
distances for all pairs of vertices in a possibly weighted graph. Besides the theoretical interest in
the problem, the computation of all pairwise distances is an important routine for many practical
applications, e.g., it is closely related to several vertex centrality measures in networks. For
example, the betweenness centrality [Fre77] of a vertex v ∈ V in a graph G = (V, E) is defined
as the sum over all pairs s, t ∈ V \ {v} taking the fraction of the number of shortest s-t paths
that pass through v to the total number of shortest s-t paths. For example in transportation
networks, vertices of high betweenness centrality are those vertices that will be frequently used
for transportation through the network, and thus, these vertices are of critical interest. See also
[Ren15] for a summary of applications of the betweenness centrality. The all-pairs shortest
paths-problem is also considered as the core of many routing problems and has applications for
example in areas such as routing protocols, driving direction on web mappings, traffic assignment
problems, and many more. See also the survey of Susmita [SP15] for more applications. Most
of these applications have also vertex-weighted variants, however, the vertex-weighted variant
is less studied in the literature.

Like all-pairs shortest paths, also the triangle counting-problem, in which one needs
to determine the number of triangles, i.e., the number of subgraphs that are isomorphic to
K3, is a very important subroutine for computing network indices. Many coefficients, such as

12 Introduction

the clustering coefficient [WS98] or the transitive coefficient [HK79], are important indices for
measuring the frequency of clusters and the likelihood of dense communities in graphs. Such
indices of social networks or urban social contact structures are of immense importance for
social scientists, urban planners, governments, and many others, cf. [EKM+04, BBCG10]. Also
the spread of infectious diseases, in particular how to control the disease, e.g., by identifying
potential super-spreaders, can be listed as a relevant example. For the clustering coefficient,
one first considers the local clustering coefficient of a node v in a graph G that is defined
as the fraction of existing edges in NG(v) to the number of all possible edges in NG(v). The
clustering coefficient of a graph G is then defined as the normalized sum over the local clustering
coefficients of each node. The transitive coefficient of a graph is the quotient of three times the
number of triangles in G and the number of all wedges, i.e., paths of length two, in the graph.

Determining the maximum number of edge- or vertex disjoint paths in a graph and the more
general problem of computing a maximum flow in a network also have several applications. The
vertex or edge connectivity number in a graph indicates how robust a graph is towards vertex
deletions or edge deletions. Using a maximum flow, one can determine the maximum size of a
matching in a bipartite graph, and thus, by König’s Theorem, also the minimum size of a vertex
cover in bipartite graphs. Also, certain combinatorial problems can be solved using a maximum
flow computation, e.g., for airline scheduling where one needs to determine which crew should
take charge of which aircraft in the flight plan. Another example is to determine which football
teams still have a chance to win the championship, which is not only depending on how many
games a team still has to play but also against whom they play.

1.4 Thesis Overview

This thesis consists of four parts. The first part consists of this introduction and Chapter 2, in
which we define all the necessary notations and definitions about graph theory. Further, we give
in Chapter 2 the definitions of graph parameters that are related to the considered parameters
modular-width, clique-width, and twin-width and discuss the relationship among those. We
close Chapter 2 with related work about the problems considered in this thesis.

Part II is all about efficient parameterized algorithms. In Chapter 3, we consider the pa-
rameter modular-width. After the formal definition of this parameter, we give efficient param-
eterized algorithm w.r.t. the modular-width for the problems maximum matching, maximum
b-matching, vertex-weighted all-pairs shortest paths, triangle counting, maxi-
mum edge-disjoint s-t paths, global minimum edge cut, maximum s-t vertex-flow,
and global minimum vertex cut. Here, we also present a running-time framework that sim-
plifies the computation of the running time for most algorithms that make use of the structure
quantified by the parameter modular-width, including all presented algorithms in this chapter.
The very recent breakthrough result of an almost linear time algorithm for computing a maxi-
mum flow has not been taken into consideration in this work. In the conclusion of Chapter 3, we
shortly discuss the implication of this result to the problems regarding edge- and vertex-disjoint
paths. The results of Chapter 3 are based on joint work with Stefan Kratsch [KN18, KN20].
In Chapter 4, we consider the parameter clique-width and the closely related parameter NLC-
width. First, we define both parameters for directed and undirected graphs. Then, we present
parameterized algorithms for the problems vertex-weighted all-pairs shortest paths
and triangle counting. The results of this chapter are based on joint work with Stefan
Kratsch [KN20]. We complete Part II in Chapter 5 and consider the most general parameter
of this thesis, twin-width. We define this parameter and present an algorithm for solving the

1.4 Thesis Overview 13

triangle counting problem. The result of this chapter is based on joint work with Stefan
Kratsch and Alexandre Simon [KNS22].

In Part III, we move from the homogeneous graph classes as presented in Part II towards
heterogeneous graph classes. We first recall operations-based definitions of the parameters tree-
depth and modular-width alone. Building on these operations, we describe a clean and robust
way of formalizing graph classes of heterogeneous structure. We introduce the new notion of
modular tree-depth and define for all combinations of the three parameters tree-depth, modular-
width, and modular tree-depth, a corresponding graph class. For these much more general
graph classes, we extend the framework of Iwata et al. [IOO18], which applies to the operations
that define the tree-depth alone, to all required operations. We then extend the running time
framework for modular-width from Chapter 3 to all these graph classes and give application for
the problems vertex-weighted all-pairs shortest paths, negative cycle detection,
and triangle counting. Throughout, the algorithmic results relative to the heterogeneous
measures match the best running times known for the homogeneous cases. Finally, we compare
the arising heterogeneous graph classes among each other and relative to existing parameters.
The results of Part III are based on joint work with Stefan Kratsch [KN22]. We conclude this
thesis in Part IV with some open problems and final remarks.

2
Preliminaries

In this chapter, we will introduce the basic notations and fundamentals that we will use
throughout this thesis. After defining some general notations in Section 2.1, we will present
an overview of all graph-related notations that we will use in this thesis in Section 2.2. We
continue in Section 2.3 by showcasing related parameters to the ones considered in this thesis
and by discussing the relationships among them. Finally, in Section 2.4 we present related
work regarding the problems that we will study in this thesis. This section about graph theory
follows mostly the books of Korte and Vygen [KVKV11] and Diestel [Die12].

2.1 General Notation

We define N = {0, 1, 2, 3, . . .} as the set of natural numbers and denote by N+ = N \ {0} the
set of natural numbers excluding the zero. For any integers j, k ∈ N with j < k, we shortcut
[j, k] = {j, j + 1, . . . , k} and [k] = [1, k] = {1, 2, . . . , k}. For a set A we define |A| as the number
of elements in A. For two sets A and B with A ∩B = ∅, we sometimes highlight for the union
A ∪ B that these sets are disjoint by writing A ∪̇B instead. We say that two sets A and B
overlap if A∩B ̸= ∅, A \B ̸= ∅, and B \A ̸= ∅. We define the symmetric difference of two sets
A and B by A ∆ B = (A \B) ∪ (B \A).

For a set A and k ∈ N, we denote by
(A

k

)
:= {B ⊆ A | |B| = k} the set of all size-k subsets

of A and we define Ak = {(a1, a2, . . . , ak) | a1, a2, . . . , ak ∈ A} as the set of all k-tuples with
elements in A. In particular, the set [k]2 defines the set of all 2-tuples over the set {1, 2, . . . , k}
and we define a binary relation S over the set [k] by S ⊆ [k]2. By 2A = {B | B ⊆ A} we denote
the power set of the set A. Let A be a non-empty set and let A1, A2, . . . , Ak ⊆ A. We say that
{A1, A2, . . . , Ak} is a partition of A, if every element of A is contained in exactly one Ai for
i ∈ [k], i.e., A = ∪i∈[k]Ai and Ai ∩ Aj = ∅ for all i, j ∈ [k] with i ̸= j. For a set A and the
power set 2A, we say that a set B ∈ 2A is maximal regarding some property if for all other sets
B′ ∈ 2A with this property it holds that either B ⊈ B′ or B = B′.

16 Preliminaries

2.2 Graph Theory

We define an undirected graph as a tuple G = (V, E) consisting of a finite set V and a set
E ⊆

(V
2
)
. Similarly, we define a directed graph as a tuple G = (V, E) consisting of a finite

set V and a set E ⊆ V 2. We refer to the elements in V as vertices and to the elements in
E as edges. In a directed graph we sometimes call elements in E arcs for better distinction.
In this thesis, we will only consider simple graphs, i.e., graphs without multiple edges between
two vertices and without loops, i.e., edges between the same vertex. If we simply write graph
in this section, we refer to both, undirected and directed graphs. For a graph G = (V, E)
we denote by V (G) the set of vertices and by E(G) the set of edges in G, independently of
the actual name of the vertex set or edge set, i.e., for a graph H = (W, F) we denote by
V (H) = W the vertex set and by E(H) = F the edge set of the graph H. We define the
complement graph G of a graph G = (V, E) as the graph with the same vertex set and exactly
those edges that are not present in the original graph, i.e., G = (V,

(V
2
)
\ E) if G is undirected

resp. G = (V, V 2 \ E) if G is directed. For a directed graph G = (V, A), we define the edge-
flipped graph as the directed graph G← = (V, A←) defined over the same vertex set as G and
with A← = {(u, v) ∈ V 2 | (v, u) ∈ A}. Further, we define for a directed graph G = (V, A) the
underlying undirected graph u(G) = (V, E) as the undirected graph defined over the same vertex
set and E = {{u, v} ∈

(V
2
)
| (u, v) ∈ A ∨ (v, u) ∈ A}. On the other hand, for an undirected

graph G = (V, E), we denote by ←→G = (V, A) with A = {(u, v), (v, u) ∈ V 2 | {u, v} ∈ E} the
corresponding (bi-)directed graph.

Subgraphs. A graph H = (W, F) is called a subgraph of a graph G = (V, E) if it holds that
W ⊆ V and F ⊆ E ∩

(W
2
)

for undirected graphs resp. F ⊆ E ∩W 2 in the directed case. For
a set M ⊆ V , we call G[M] the subgraph of G induced by M , defined by V (G[M]) = M and
E(G[M]) = {{u, v} ∈ E | u ∈ M ∧ v ∈ M} if G is undirected resp. E(G[M]) = {(u, v) ∈ E |
u ∈ M ∧ v ∈ M} if G is directed. For a set M ⊆ V (G), we shorthand G −M for the induced
subgraph G[V \M] and for a singleton set {x} with x ∈ V , we write G− x instead of G− {x}.
Similarly, for a graph G = (V, E) and a set F ⊆ E, we shorthand G−F for the graph (V, E \F)
and for a singleton set {f} with f ∈ E, we write G− f instead of G− {f}.

Adjacency. Consider a graph G = (V, E). For an edge {u, v} ∈ E, resp. (u, v) ∈ E with
u, v ∈ V we call u and v adjacent. Further, we call the vertices u (and v) incident to this
edge. Two edges in G that share an incident vertex are also called adjacent. For a directed
edge (u, v) ∈ E we sometimes say that this edge starts in u and ends in v, or it goes from u
to v. In a graph G = (V, E), we denote for a vertex v ∈ V the open neighborhood NG(v) as
the set of all vertices in G that are adjacent to v and denote by degG(v) = |NG(v)| the degree
of this vertex. We define the closed neighborhood of a vertex v ∈ V as NG[v] = NG(v) ∪ {v}.
If G is directed, we additionally distinguish between N+

G (v) = {u ∈ V | (v, u) ∈ E} and
N−G (v) = {u ∈ V | (u, v) ∈ E}. We denote by deg+

G(v) = |N+
G (v)| the out-degree and by

deg−G(v) = |N−G (v)| the in-degree of the vertex v ∈ V . As in the undirected case, we define
N+

G [v] = N+
G (v) ∪ {v} and N−G [v] = N−G (v) ∪ {v}. For a set of vertices X ⊆ V , we define for

an undirected graph G the closed neighborhood of X as NG[X] = ∪v∈XNG[v] and the open
neighborhood of X as NG(X) = NG[X]\X. In the directed case, we define analogously the sets
N+

G [X], N−G [X], N+
G (X), and N−G (X). Further, we denote for an undirected graph G by δG(v)

the set of incident edges of a vertex v ∈ V , resp. for directed graphs δ+
G(v) = {(x, y) ∈ E | x = v}

and δ−G(v) = {(x, y) ∈ E | y = v}. The extensions to sets of vertices can be defined analogously,

2.2 Graph Theory 17

but are not used in this thesis. If the graph G is clear from the context, we may omit the
subscript in all our notations.

Two vertices u, v ∈ V (G) in an undirected graph G = (V, E) are called twins if N(v)\{u, v} =
N(u) \ {u, v}. In particular, we call u and v true twins if additional {u, v} ∈ E and false twins
if {u, v} /∈ E.

A vertex of degree zero is called isolated and a vertex of maximum degree is called universal,
i.e., of degree |V |−1 for undirected graphs resp. of in-degree and out-degree |V |−1 for directed
graphs. A graph in which every vertex is an isolated vertex is called an isolated graph and a
graph in which every vertex is a universal vertex is called a complete graph or a clique. We
denote by Ii resp. Ki the isolated graph resp. the complete graph with i vertices for i ∈ N+.

For a graph G = (V, E), we say that two disjoint vertex sets L, R ⊆ V are connected by a full
join in G if {{u, v} ∈

(V
2
)
| u ∈ L ∧ v ∈ R} ⊆ E resp. connected by a directed full join from L

to R if {(u, v) ∈ V 2 | u ∈ L ∧ v ∈ R} ⊆ E. We call an undirected graph G = (V, E) a bipartite
graph if one can partition the vertex set into two sets V = L ∪̇R such that G[L] and G[R] are
isolated graphs. If further L and R are connected by a full join, we call G a complete bipartite
graph. We denote by Ki,j the complete bipartite graph with |L| = i and |R| = j for i, j ∈ N+.

Paths, trees, and connectivity. In a graph G = (V, E), we define a walk as a sequence of
vertices (v1, v2, . . . , vt) with {vi, vi+1} ∈ E, resp. (vi, vi+1) ∈ E for some t ∈ N+ and all i ∈ [t−1].
The length of walk is defined as the number of vertices in the walk minus one. A walk is called
a closed walk if v1 = vn. A path is a walk with the property that vi ̸= vj for all i, j ∈ [t] and
i ̸= j, and a cycle is a closed walk with the property that vi ̸= vj for all i, j ∈ [t− 1] and i ̸= j.
We denote a path consisting of t ≥ 1 vertices by Pt and a cycle consisting of t ≥ 3 vertices
by Ct. A path P = (v1, v2, . . . , vt) that starts in v1 and ends in vt is also called a v1-vt path.
We refer to the vertices v2, v3, . . . , vt−1 as internal nodes of the path P and we define by P[vi,vj]
the subpath of P starting in vi and ending in vj for i, j ∈ [t] with i < j. An undirected graph
G = (V, E) is connected if there exists a path between each pair of vertices in V . A directed
graph is called connected, if the underlying undirected graph u(G) is connected, and strongly
connected if there exists a path between each pair of vertices in V . A connected component in
a graph G is a maximal connected subgraph of G.

A graph that does not contain any cycle is called acyclic. An undirected and acyclic graph is
called a forest and a connected forest is called a tree, i.e, each connected component of a forest
is a tree. In a tree, each vertex of degree one is called a leaf. A star is a tree with at most
one vertex that is not a leaf. Note that as a tree is acyclic and connected, there is a unique
path between every pair of vertices in a tree. A rooted tree is a tree T = (V, E) together with
a designated vertex r ∈ V that we call the root of T . Consider a vertex v ∈ V of a rooted tree
T = (V, E) with root node r ∈ V . We call those neighbors of v that are not contained in the
unique v-r path the children of v; and we call the unique neighbor of v that is contained in the
unique v-r path in T the parent of v in T . The height or depth of a rooted tree T = (V, E) with
root node r ∈ V is the maximum length of any r-v path in T for all v ∈ V . A rooted forest is
a graph in which each connected component is a rooted tree and the height of a rooted forest
is the maximum height of any rooted tree in it. The closure of a rooted forest F , denoted by
clos(F), is the graph H obtained from the graph F by adding for all u, v ∈ V (F) the edge {u, v}
if u and v are contained in a leaf-to-root path in any rooted tree in F .

A graph G = (V, E) is said to be k-vertex connected, if G−X is connected for all X ∈
(V

k−1
)
,

i.e., G remains connected after deleting fewer than k arbitrary vertices. The vertex-connectivity
of a graph G, denoted by κ(G), is the maximum k ∈ N such that G is k-vertex connected.
Analogously, a graph G = (V, E) is said to be k-edge connected, if G′ = (V, E \E′) is connected

18 Preliminaries

for all E′ ⊆
(E

k−1
)
, i.e., G remains connected after deleting fewer than k arbitrary edges. The

edge-connectivity of a graph G, denoted by λ(G), is the maximum k ∈ N such that G is k-edge
connected.

Weighted graphs. An edge-weighted graph is a graph G = (V, E) attributed by a function
c that assigns a weight or cost c(e) to each edge e ∈ E. The costs of a path P = (v1, v2, . . . , vt)
in G with edge weights c is defined as c(P) = ∑t−1

i=1 c({vi, vi+1}) if G is undirected and c(P) =∑t−1
i=1 c((vi, vi+1)) if G is directed. For two vertices u, v ∈ V , we denote by distG,c(u, v) the

minimum cost of all u-v paths in G. In particular, it holds that distG,c(u, u) = 0 for all u ∈ V .
A vertex-weighted graph is a graph G = (V, E) attributed by a function ω that assigns a

weight ω(v) to each vertex v ∈ V . The costs of a path P = (v1, v2, . . . , vt) in G with vertex
weights ω is defined as ω(P) = ∑t

i=1 ω(vi). This holds for both, undirected and directed graphs.
For two vertices u, v ∈ V , we denote by distG,ω(u, v) the minimum cost of all u-v paths in G. In
particular, every u-v path in a graph G with vertex weights ω has minimum weight ω(u) + ω(v)
and it holds that distG,ω(u, u) = ω(u) for u, v ∈ V . If the weight function is clear from context,
we may omit c resp. ω in the subscript. For both, edge-weighted and vertex-weighted graphs,
we define distG(u, X) = minv∈X distG(u, v) for a vertex u ∈ V and any vertex set X ⊆ V .
Similarly, we define distG(X, Y) = minu∈X,v∈Y (u, v) for two sets of vertices X, Y ⊆ V .

Flow networks. An edge-capacitated network N = (G, s, t, c) is a 4-tuple consisting of a
directed graph G = (V, E), two specified vertices s ∈ V (called the source) and t ∈ V (called
the sink), and a capacity function defined on the set of edges c : E → R≥0. A flow f in an
edge-capacitated network N is a function f : V × V → R with the properties that it holds that
f(u, v) = 0 if (u, v) /∈ E and (v, u) /∈ E, and additionally

• ∀(u, v) ∈ E : f(u, v) ≤ c(u, v) (capacity constraint)

• ∀u, v ∈ V : f(u, v) = −f(v, u) (skew symmetry property)

• ∀u ∈ V \ {s, t} : ∑v∈V f(u, v) = 0 (flow conservation property)

In a vertex-capacitated network, the capacity function is defined over the set of vertices, i.e.,
c : V → R≥0. A flow in a vertex-capacitated network is a function f : V ×V → R with the same
properties as defined for the edge-capacitated case except the capacity constraint is replaced by

• ∀v ∈ V : ∑(u,v)∈δ−
G(v) f(u, v) ≤ c(v) (capacity constraint)

In the undirected setting, we again (only) need to adjust the capacity constraint. For edge-
capacitated networks on undirected graphs we require the flow to fulfill the inequality f(u, v) ≤
c({u, v}) for all u, v ∈ V with {u, v} ∈ E, while in vertex-capacitated networks on undirected
graphs we require the flow to fulfill the inequality ∑u∈N(v) f(u, v) ≤ c(v) for all v ∈ V . For
all variants, the value of a flow is defined by |f | = ∑

v∈V f(s, v) = ∑
v∈V f(v, t). It was shown

in [SGDJ04], that one can compute a flow in a network (G, s, t, c) with G being an undirected
graph by computing a flow in the network (←→G , s, t, c′) with ←→G denoting the corresponding
bidirected graph, and c′ ≡ c for vertex capacities, resp. c′(u, v) = c({u, v}) for edge-capacities.
Note that for unit vertex-capacities c ≡ 1 a maximum s-t flow in a network (G, s, t, c) is
equivalent to a maximum collection of vertex-disjoint s-t paths.

2.3 Parameters 19

Modifications on graphs. For two undirected graphs G1 = (V1, E1) and G2 = (V2, E2), we
denote by G1 ∪̇G2 their disjoint union, i.e., the graph (V1 ∪̇V2, E1 ∪̇E2). Further, we denote
by G1 ⋊⋉ G2 their (disjoint) join, i.e., the graph (V1 ∪̇V2, E1 ∪̇E2 ∪̇{{u, v} | u ∈ V1, v ∈ V2}).
We say that a graph H results from an undirected graph G = (V, E) by subdividing an edge
{u, v} ∈ E, if V (H) = V ∪ {w} and E(H) = E \ {{u, v}} ∪ {{w, u}, {w, v}} for a new vertex
w /∈ V . A graph H results from an undirected graph G = (V, E) by contracting an edge
{u, v} ∈ E, if H results from G − {u, v} after adding a new vertex w /∈ V with neighborhood
NH(w) = NG(u)∪NG(v), i.e., in H the edge {u, v} ∈ E is removed and the vertices u and v are
merged together. For two graphs G and H, and a vertex v ∈ V (H), we denote by H[v ← G]
the substitution of G into v in H, i.e., the graph obtained by replacing v in H with the graph
G and giving each of its vertices the same neighborhood as v had.

2.3 Parameters

In this thesis, we will especially focus on the parameters modular-width, clique-width, and twin-
width. For a detailed definition of these parameters, we refer to Section 3.1, Section 4.1, and
Section 5.1. In this section, we will put these parameters into the context of other well-known
parameters that we will shortly define now. See Figure 2.1 for a graphical summary of the
relations between the different parameters. We stress that we can only cover a fraction of all
well-known parameters.

Vertex-cover, twin-cover, and neighborhood-diversity. A vertex-cover in a graph G =
(V, E) is a set X ⊆ X such that G − X is an isolated graph. The vertex-cover number of a
graph, denoted by vc(G) is the smallest k ∈ N such that there exists a vertex-cover X with
|X| = k. As a graph with n vertices and a vertex-cover of size k contains at most k(n−1) many
edges, only sparse graphs can have a vertex-cover of low size. The parameters neighborhood-
diversity [Lam12] and the twin-cover [Gan11] both generalize the parameter vertex-cover to
dense graphs. For a graph G = (V, E) we call an edge e ∈ E a twin edge if its incident vertices
are true twins. A subset X ⊆ V is called a twin-cover if every edge e ∈ E is either a twin
edge or is incident to some vertex in X. The twin-cover of a graph G, denoted by tc(G), is the
smallest k such that there is a twin-cover X of size k. This means that if there is a twin-cover
X in a graph G it holds that each connected component in G−X is a complete graph.1 Thus,
the twin-cover is a strict generalization of vertex-cover, and it holds that tc(G) ≤ vc(G) for all
graphs G.

For a graph G = (V, E) we call a partition of the vertices T = {T1, T2, . . . , Tt} of size t ≥ 1
a neighborhood decomposition if for every i ∈ [t] it holds that all pairs of vertices u, v ∈ Ti are
either true twins or false twins. The neighborhood-diversity of a graph G, denoted by nd(G),
is the smallest t ≥ 1, such that there exists a neighborhood decomposition of size t. Note that
in a neighborhood decomposition it does not only hold that all vertices in a vertex set Ti have
the same neighborhood outside Ti, but also that each Ti either induces a clique or an isolated
graph in G, for each i ∈ [t]. Each graph of bounded vertex-cover does also have bounded
neighborhood diversity, however, the neighborhood-diversity might be exponentially larger as
it holds that nd(G) ≤ 2vc(G) + vc(G) [Lam12]. Since all cliques have constant neighborhood-
diversity (and also twin-cover), one cannot bound the vertex-cover of a graph by any function
depending on the neighborhood-diversity or twin-cover.

1This implication does not hold in the other direction as it is requested that all vertices in a connected component
of G − X must have a uniform neighborhood also to vertices in X.

20 Preliminaries

Since the neighborhood decomposition is a special case of the modular decomposition, namely
a modular decomposition into modules that corresponds to cliques or isolated graphs, the
modular-width is a strict generalization of the neighborhood-diversity, while there exist graphs
of constant modular-width with unbounded neighborhood-diversity and also unbounded twin-
cover [GLO13]. Regarding the twin-cover tc(G) and the modular-width mw(G) of a graph is
holds that mw(G) ≤ 2tc(G) + tc(G) [GLO13].

Tree-depth. The tree-depth of a graph G = (V, E), also known as the vertex ranking number
or elimination tree height, is the minimum height of a rooted forest F such that G is a subgraph
of the closure clos(F) of F [NdM06]. An analog definition of tree depth is the following recursive
formula, where G1, . . . , Gt denote the connected components of a graph G:

td(G) =


0 if G = ∅
1 + minv∈V (G) td(G− v) if G is connected and |V (G)| ≥ 1
maxt

i=1 td(Gi) otherwise

A simple illustration of the above definition is also the following two-player game between a
player and an adversary: The game starts with the graph G. The player can choose any vertex
of G to get deleted. The adversary now must choose any connected component of the remaining
graph and all other connected components (if existent) get deleted. Now it is again the player’s
turn to delete a vertex in the remaining graph and so on. The player’s goal is to delete the whole
graph as fast as possible while the adversary tries to prolong the game as much as possible. The
tree-depth of a graph G is then the minimum number of turns such that there exists a winning
strategy for the player, regardless of the actions of the adversary. Another equivalent definition
of the tree-depth of a graph via operations is given in Section 6.1.

For any graph that contains a vertex-cover of size k, it holds that the tree-depth is at most
k+1, while the vertex-cover cannot be bounded by any function of the tree-depth. In comparison
to the parameters neighborhood-diversity, twin-cover, and modular-width, we observe that for
a complete graph Kn with n ∈ N it holds that td(Kn) = n. On the other side, the class of
all subdivided stars, i.e. all graphs that emerge from a star K1,n after subdividing each edge,
has tree-depth at most three but unbounded modular-width. Thus, the parameter tree-depth
is incomparable to modular-width, neighborhood-diversity, and twin-cover.

Tree-width. A tree-decomposition of an undirected graph G = (V, E) is a pair (X, T) where
T = (I, A) is a tree and X = {Xi | i ∈ I} is a collection of subsets of V , such that

• ∪i∈IXi = V ,

• For each edge {u, v} ∈ E there exists an i ∈ I with u, v ∈ Xi,

• For each vertex v ∈ V the set {i ∈ I | v ∈ Xi} of nodes in T forms a subtree of T .
The width of a tree-decomposition (X, T) is maxi∈I |Xi| − 1. The tree-width of a graph G,
denoted by tw(G), is the minimum width among all possible tree-decompositions of G. As an
example, the tree-width of any tree is exactly one by setting X = E, while the tree-width of a
complete graph Kn is n − 1 for all n ∈ N. By the famous theorem by Courcelle [Cou90], one
can decide every graph property that can be defined in MSO2 logic in linear time on graphs of
bounded tree-width.2

2In the MSO2 logic one may define the property with quantifications over sets of vertices, sets of edges, and
an incidence relation between vertices and edges. In the weaker MSO1 logic, only quantifications over sets of
vertices are allowed.

2.3 Parameters 21

The tree-width of a graph is at most the tree-depth of a graph, i.e., it holds that tw(G) ≤
td(G) − 1 [NdM12]. Indeed, it holds that even the greater parameter path-width pw(G) which
can be defined in the same way as the parameter tree-width but with the constraint that T
needs to be a path instead of a tree, is at most the tree-depth, i.e., it holds that tw(G) ≤
pw(G) ≤ td(G)− 1. On the other side, it holds that td(G) ≤ tw(G) log n for any graph G with
n vertices [NdM12].

For clique-width, one can show that cw(G) ≤ 3 · 2tw(G)−1 while for any k there exist a graph
G with tw(G) = k, but cw(G) ≥ 2⌊tw(G)/2⌋−1 [CR05]. On the other side, the tree-width (and
branch-width) can not be bounded by a function depending on the clique-width, as for every
complete graph Kn it holds that cw(Kn) = 2, but tw(Kn) = n− 1.

Branch-width. A branch-decomposition of an undirected graph G = (V, E) is a tree T with
vertices of either degree one or degree three, with exactly |E| many leaves and a one-to-one
mapping of the set of edges E to the set of leaves of T . Note that for each edge e ∈ E(T), the
graph T − e consists of exactly two connected components. The order of an edge e ∈ E(T)
is the number of vertices v ∈ V (G) such that v is incident to at least one edge corresponding
to a leaf in both connected components in T − e. The width of T is the maximum order over
all edges in T . The branch-width of a graph G, denoted by bw(G) is the minimum width over
all possible branch decompositions of G. It holds that bw(G) ≤ tw(G) + 1 ≤ ⌊3/2 bw(G)⌋, i.e.,
the branch-width and the tree-width of a graph are always withing a constant factor of each
other [RS91].

We remark that for the definition of the parameters boolean-width and rank-width, we will
consider a very similar decomposition, however, with T having exactly |V | many vertices and
there is a one-to-one mapping of the set of vertices V to the set of leaves in T .

Boolean-width and rank-width. For the definition of the parameters boolean-width and
rank-width of an undirected graph G = (V, E), we consider a so-called decomposition tree of G
that is a tree T with vertices of either degree one or degree three, with exactly |V | many leaves
and a one-to-one mapping of the set of vertices V to the set of leaves of T . Removing an edge
e ∈ E(T) results in two subtrees of T , defining a partition of V into two sets A and V \A with
A is the set of vertices corresponding to the leaves of one of the two subtrees in T − e. Such a
partition of the vertices into two sets is also called a cut. Consider now a function f : 2V → R
that is symmetric, i.e., f(A) = f(V \A) for all A ⊆ V . We can now define the f -width of such
a decomposition tree T as the maximum value of f(A) over all cuts {A, V \A} of G defined by
a removal of an edge in T . The f -width of a graph G is the minimum f -width over all possible
decomposition trees T .

To define the boolean-width we consider the function f = bool-dim that is defined by bool-
dim(A) = log2(|U(A)|) where U(A) = {Y ⊆ V \A | ∃X ⊆ A∧ Y = N(X)∩ V \A} denotes the
set of unions of neighborhoods of A across the cut {A, V \A} [BTV11].

For rank-width we consider the function f = rank with rank(A) denotes the rank of the
|A| × |V \A| 0-1 matrix MA over the binary field where MA[i][j] is equal to 1 if the i-th vertex
in A is adjacent to the j-th vertex in V \A, and 0 otherwise [OS06].

For a graph of clique-width at most k, also the rank-width and the boolean-width is at most
k, while for graphs of rank-width k or boolean-width k the clique-width can only be bounded
by 2k, i.e., it holds that log(cw(G)) ≤ rw(G) ≤ cw(G) [Oum08] as well as log(cw(G)) ≤
boolw(G) ≤ cw(G) [BTV11]. The boolean-width can be polynomially bounded by the rank-
width, while the boolean-width might be much smaller than the rank-width, i.e., it holds that
log(rw(G)) ≤ boolw(G) ≤ 1/4 rw(G)2 +O(rw(G)) [BTV11].

22 Preliminaries

In comparison to tree-width and branch-width it holds that rw(G) ≤ tw(G) + 1 and rw(G) ≤
bw(G) [Oum08] as well as boolw(G) ≤ tw(G) + 1 and boolw(G) ≤ bw(G) [BTV11]. On the
other side, the tree-width (and branch-width) can not be bounded by a function depending on
the rank-width or boolean-width.

Bonnet et al. [BKTW20] showed that every graph of boolean-width k has twin-width at most
2k+1−1, i.e., it holds that tww(G) ≤ 2boolw(G)+1−1. This implies that the class of bounded twin-
width graphs contains all graph that has bounded parameter value for all considered parameters
in this section, however, the twin-width might be exponentially larger. On the other hand,
one cannot bound any considered parameter in this section by a function depending on the
twin-width (for example the class of all grids is of constant twin-width, while of unbounded
clique-width [GR99b]).

Shrub-depth. The parameter shrub-depth was introduced by Ganian et al. [GHN+12] as a
dense analog of the parameter tree-depth and as a depth-variant of the parameter clique-width.
The shrub-depth is related to the parameter clique-width similar as the parameter tree-depth is
related to tree-width. To define the shrub-depth of a graph G, we first need to define the tree-
model of a graph. Let m and d be non-negative integers. A tree-model for a graph G of depth
d with m colors is a pair (T, S) where T is a rooted tree of depth d and S ⊆ [m]2× [d] such that
(1) the length of each root-to-leaf path in T is exactly d; (2) the set of leaves of T corresponds
to the set of vertices of G; (3) each leaf in T is colored by a color in [m]; (4) for any i, j ∈ [m]
and k ∈ [d] it holds that (i, j, k) ∈ S if and only if (j, i, k) ∈ S (called symmetry in colors);
(5) for any two vertices u, v ∈ V (G), it holds that {u, v} ∈ E(G) if and only if (i, j, k) ∈ S
where i and j refers to the colors of u and v in T and k denotes the distance from u or v to
the least common ancestor of them in T . Thus, condition (5) expresses that the existence of an
edge between u and v in G solely depends on the color of the corresponding leaves in T and the
distance between u and v in T . The set S is called the signature of the tree-model. The class
of all graphs having a tree-model of depth d with m colors is denoted by TMm(d). A class G
of graphs has shrub-depth d if there exists an integer m such that G ⊆ TMm(d).

As an example, the class of all stars K1,n has shrub-depth one as this class is contained in
TM2(1). The class of all graphs with bounded neighborhood-diversity has shrub-depth at most
one while the class of all graphs with bounded twin-cover has shrub-depth at most two. Note
that the definition of shrub-depth is asymptotic and only makes sense for infinite graph classes.
Any finite graph with n vertices is always contained in TMn(1), and thus, any finite graph
class has shrub-depth at most one.

It holds that the class of graphs with tree-depth at most d is also of shrub-depth at most
d, while the converse statement is not true in general [GHN+19]. Further, for every graph
G ∈ TMm(d) it holds that cw(G) ≤ m, thus, each graph class that is of bounded shrub-depth
is also of bounded clique-width. Since the class of all cographs is not of bounded shrub-depth,
shrub-depth is incomparable to modular-width.

Every MSO1 definable property for graphs with n vertices can be solved in linear time on
graph classes of bounded shrub-depth. In particular, for a property φ defined in MSO1, one
can decide whether φ holds in G in time O(f(φ) · |n|). The same results do also hold for any
graph of bounded clique-width. However, for a bounded clique-width graph, the function f
is non-elementary, i.e., it grows with a tower of exponentials whose height depends on φ. On
graph classes of bounded shrub-depths, the height of exponentials in the function f does not
depend on the formula.

2.3 Parameters 23

vc

td

twbw

tc nd

mwsd

cw nlc

rw

boolw

tww

≤
tw

log
n

≤
rw

2

4

bo
un

de
d

Figure 2.1: Diagram of the relationships between the parameters considered in Section 2.3. A
green arc from a parameter p to a parameter q indicates that the parameter q
is linearly bounded by the parameter p, while a red arc indicates that the value of
parameter q is exponentially bounded by the value of parameter p. The dependencies
on yellow arcs are explicitly written down. Arcs incident to the node shrub-depth
consider graph classes, e.g., if a graph class has tree-depth at most k, this graph
class also has shrub-depth at most k. The light green arrows indicate that if a
graph class has twin-cover or neighborhood-diversity at most k this graph class has
shrub-depth at most two. If for two parameters p and q there is no p-q path in the
diagram, then one cannot bound q by any function of p.

24 Preliminaries

2.4 Considered Problems

In this section, we consider related work concerning problems for which we will give efficient
parameterized algorithms. All of the considered problems can be solved (unparameterized) in
polynomial time.

Maximum matching and maximum b-matching. The maximum matching problem is
one of the longest established problems with the first polynomial-time algorithm from 1965
by Edmonds [Edm65]. In 1980, Micali and Vazirani [MV80, Vaz20] presented an algorithm
with a running time of O(m

√
n), which is still the best algorithm known for general graphs.

A minor improvement for dense graphs was given by Goldberg and Karzanov [GK04] with an
algorithm running in time O(m

√
n log(n2/m)/ log(n)). Using Gaussian Elimination, Mucha

and Sankowski [MS04] developed a randomized algorithm with running time O(nω), where ω is
the matrix multiplication exponent.3.

There are several algorithms for maximum matching on special graph classes, e.g., an
O(n log n + m)-time algorithm on interval graphs, circular arc graphs [LR93], or co-interval
graphs [Gar03] and even linear-time algorithms for, e.g., cographs [YY93], strongly chordal
graphs (given the strongly perfect elimination order) [DK98], chordal bipartite graphs [Cha96],
or co-comparability graph [MNN16]. For planar graphs, there is a randomized algorithm running
in time O(nω/2) [MS06]. Yuster and Zwick [YZ07] showed that there is an algorithm for finding
a maximum matching in H-minor free graphs with a running time of O(n3ω/(ω+3)) ⊆ O(n1.326),
for every fixed graph H.

On the parameterized side, Fomin et al. [FLS+18] presented a randomized algorithm pa-
rameterized by the tree-width tw of a graph with a running time of O(tw4 ·n log n). Iwata
et al. [IOO18] described an O(td ·m)-time deterministic algorithm for graphs of tree-depth at
most td. This also implies an O(tw ·m log n)-time algorithm for the parameter tree-width, since
every graph of tree-width tw has tree-depth at most tw log(n) [BGHK95]. Parameterized by
the modular-width h of the graph, Coudert et al. [CDP19] presented a an algorithm running
in time O(h4 ·n + m). Recently, Ducoffe [Duc22a] developed an almost linear-time algorithm
on bounded clique-width graphs, assuming a corresponding k-expression is given. Since this
algorithms does use Courcelle’s theorem [CMR00] as a subroutine4, the achieved running time
is O(f(k) · (n + m)1+o(1)) for some computable function f and k denoting the clique-width
of the input graph. Mertzios et al. [MNN16] showed that one can solve maximum matching
in time O(k(n + m)) where k denotes the vertex cover number, the feedback vertex number,
the feedback edge number, the distance to chain graphs, or the distance to co-comparability
graphs. In a follow-up paper [MNN20] they also gave algorithms with a time complexity of
O(k3 + n+ m) for the vertex cover number, of O(kn +2O(k)) for the feedback vertex number, of
O(k1.5 + n + m) for the feedback edge number, and of O(k3 + n + m) for the distance to chain
graphs.

For several other parameters, Hegerfeld and Kratsch [HK19] showed that all algorithms for
maximum matching that follow the phase framework of Hopcroft and Karp [HK73] obliviously
adapt to the structure resulting in improved running times. For example, they showed that those
algorithms only take time O(m) on bounded tree-depth graphs, cluster graphs, or star forests,
and time O(km) with k denoting either the independence number, the neighborhood diversity,

3It is known that 2 ≤ ω < 2.3728639 due to Le Gall [Gal14]. By definition of ω the running time is in fact
O(nω+o(1)); adopting a common abuse of notation we use exponent ω for brevity.

4Note that one cannot express maximum matching in MSO1 logic and hence, Courcelle’s theorem cannot be
applied directly.

2.4 Considered Problems 25

or if it holds that the minimum degree is at most n−k. For graphs of modular-width at most mw
they additionally considered the modular-depth, i.e., the depth of the modular-decomposition
tree, and bound the running time of algorithms using the phase framework by O((c ·mw)mdm)
for a constant c. We point out that the algorithms by Micali and Vazirani [MV80], Blum [Blu90],
or Goldberg and Karzanov [GK04], all use the phase framework of Hopcroft and Karp.

For the more general maximum b-matching, Anstee [Ans87] developed an algorithm with
a running time of O(n2mb̂) where b̂ is the maximum b-value of any vertex in the graph. Re-
cently, this result was improved by Gabow [Gab18] by an algorithm with a running time of
O(min{b(V), n log n}(m + n log n)), where b(V) denotes the sum of all b-values. Note that by
this algorithm one can bound the running time independently of the actual b-values of the
vertices.

Independently of our work, Ducoffe and Popa [DP21a] also used the more general b-matching
problem to compute a maximum matching in time O((k log2 k)(n+m) log n) where k denotes the
split-width of the graph, a parameter that is slightly more general than the parameter modular-
width. To our best knowledge, this work and the presented work in Section 3.2 are the first
and only algorithms that use the computation of a b-matching on some (much) smaller graph
to compute eventually a maximum matching. Both algorithms can also be used to compute a
maximum b-matching in the same running time.

All-pairs shortest paths. In this thesis, we will solely consider the vertex-weighted vari-
ant of all-pairs shortest paths. For (edge-weighted) all-pairs shortest paths (APSP)
there is the textbook algorithm from 1962 of Floyd and Warshall [Flo62, War62] with a run-
ning time of O(n3). Following this work, Fredman [Fre76] achieved the first subcubic algo-
rithm, running in time O(n3 log1/3 log n/ log1/3 n). Chan [Cha10] and Han and Takaoka [HT16]
both achieved a running time of O(n3/ log2 n) (omitting poly(log log n) factors). Recently,
Williams [Wil18a] solved APSP in randomized time O(n3/2Ω(log n)1/2). For sparse graphs, Pet-
tie and Ramachandran [PR05, Pet04] get a running time of O(n2α(n, m) + mn) on undirected
and O(n2 log log n+nm) on directed graphs. It is conjectured [Wil18b, WW18] that one cannot
solve all-pairs shortest paths in O(n3−ε) time for some ε > 0 on graphs with edge weights
in {−nc, . . . , nc} and no negative cycles for large enough c.

For the vertex-weighted case, we stress that one can solve vertex-weighted all-pairs
shortest paths by any algorithm operating on edge-weights instead; by shifting the vertex
weights to the outgoing edges of each vertex in the directed case, cf. Section 4.2, or shifting
the vertex weights to all incident edges in the undirected case.5 Using fast matrix multipli-
cation, the currently fastest algorithm for the vertex-weighted variant runs in O(n2.842) time
by Yuster [Yus09], which slightly improves the O(n2.844)-time algorithm by Chan [Cha10]. All
subcubic algorithms for the vertex-weighted variant of APSP exploit fast matrix multiplication.
There is no truly subcubic combinatorial algorithm known for vertex-weighted all-pairs
shortest paths.

For unweighted and undirected graphs, Seidel [Sei95] was the first to show how to solve all-
pairs shortest paths in time O(nω log n), using the fact that for the adjacency matrix A of
a graph G it holds that Ak[i, j] = 1 if and only if there is a shortest path from i to j in G of
length at most k. For unweighted and directed graphs, Zwick [Zwi02] gave an algorithm with
time complexity of O(n2.53) using rectangular matrix multiplication.

5This means that each edge in the resulting graph has cost equal to the sum of the vertex costs of the two
incident vertices, and thus, in each s-t path the costs of the internal nodes are doubled. However, the original
costs can be retraced in constant time.

26 Preliminaries

There are some subcubic algorithms known for APSP on special graph classes. Atallah et
al. [ACL95] provided a linear-time algorithm for computing single-source shortest paths in a
weighted interval or circular-arc graph with non-negative weights, assuming that the model of
the graph is given, i.e, the actual weighted intervals or circular-arcs and the sorted list of the
interval endpoints. The running time of this algorithm is O(n) with n denoting the number of
intervals or circular-arcs in the graph, i.e., the number of vertices. This implies a quadratic-
time algorithm for vertex-weighted all-pairs shortest paths with non-negative vertex
weights, which is asymptotically optimal as the output of this problem is of size Ω(n2). Note
that the class of all interval graphs6 has unbounded clique-width [GR00] and thus, unbounded
modular-width. There are several other graph classes that allow algorithms with a running time
of O(n2), e.g., for unweighted strongly chordal graphs [BR96], unweighted chordal bipartite
graphs [CWC99], or planar graphs [Fre87].

For parameterized algorithms, all-pairs shortest paths got very little attention. For uni-
form disk graphs with non-negative vertex weights, induced by point sets of bounded density
within a unit square, Lingas and Sledneu [LS12] showed how to solve APSP on such graphs
in time O(

√
rn2.75), where r denotes the radius of the disk around the vertices in a unit

square. Following our O(cw2 n2)-time algorithm for vertex-weighted all-pairs short-
est paths on graphs of clique-width at most cw (cf, Section 4.2), Ducoffe [Duc22b] presented
an O(cw(n log n)2)-time algorithm, however, considering only non-negative vertex weights. On
graphs of twin-width at most tww, Bonnet et al. [BGK+21b] recently described an algorithm
running in time O(tww n2 log n) for solving unweighted APSP, by showing that every graph of
twin-width at most tww admit a so-called interval biclique partition of size O(tww ·n).

For the related problem of computing the diameter of an unweighted graph that is the
length of a longest shortest path, Ducoffe [Duc22b] developed an algorithm running in time
O(2O(cw)(n+m)1+ε) for any ε > 0 that is optimal under SETH. Bentert and Nichterlein [BN18]
also considered the problem of computing the diameter of a graph, parameterized by several
parameters. Shapira et al. [SYZ11] considered some variants of APSP, namely the all-pairs
bottleneck paths, where the cost of a path is defined by the bottleneck weight on a path, and
provided an algorithm of time O(n2.575) for vertex-weighted graphs. Iwata et al. [IOO18] have
considered in their work the problem negative cycle detection where one needs to test if
a given weighted graph admits a cycle of negative cost and obtained a O(k(m + n log n))-time
algorithm for negative cycle detection, where k denotes the tree-depth of the input graph.

Triangle Counting. For graph G with n vertices and m edges, the naive algorithms that
iterates over all triples of vertices can be easily realized in time O(n3). Another simple approach
is to iterate over all edges and check for each vertex if they form a triangle in G, which can
be done in time O(nm). For sparse graphs, one can also solve triangle counting in time
O(m1.5)[IR78]. Williams and Williams [WW18] showed that even for the simpler triangle
detection problem, where only (non-)existence of a single triangle needs to be reported, it is
unlikely to admit a combinatorial truly subcubic running time; they proved that if one could
detect if a graph has a triangle in time O(n3−ε) for ε > 0 then one could also solve the following
three problems in the same running time via combinatorial truly subcubic reductions: Boolean
matrix multiplication, listing up to n3−δ triangles in a graph for a constant δ > 0, or verifying
the correctness of a matrix product over the Boolean semiring, while for none of these problems
a truly subcubic combinatorial algorithm is known and would be a huge breakthrough.

6It is shown in [GR00] that even the class of unit interval graphs, in which each interval needs to have equal
length, is not of bounded clique-width.

2.4 Considered Problems 27

Using fast matrix multiplication, one can solve triangle counting in time O(nω) [AYZ97].
The fastest known algorithm for counting triangles in sparse graphs is the AYZ algorithm due
to Alon, Yuster, and Zwick [AYZ97], which runs in time O(m

2ω
ω+1) (O(m1.41) for ω < 2.373).

There is no algorithm with running time O(nω−ε) for ε > 0 known.
In the realm of parameterized algorithm, Chiba and Nishizeki [CN85] gave an O(m · d) time

algorithm for triangle counting, where d denotes the degeneracy7 of the graph. Kopelowitz
et al. [KPP16] showed that under the 3-SUM conjecture this running time is essentially optimal,
i.e., only savings by polylogarithmic factors are possible; which was also achieved by Kopelowitz
et al. [KPP15]. Coudert et al. [CDP19] gave a faster algorithm for graphs of bounded clique-
width cw, running in time O(cw2(n+m)). Bentert et al. [BFNN19] have studied triangle enu-
meration under various parameters including feedback edge number, distance to d-degenerate
graphs, and clique-width. The latter one outputs all triangles in time O(cw2 n + n2 + #T)
where #T denotes the number of triangles in G. For the parameters feedback edge number and
distance to d-degenerate they also provide so-called enum-advice kernels of at most 9k vertices
in time O(n + m) for graphs with feedback edge number k resp. with at most k + 2k + 3 vertices
in time O(n · d · (k + 2k)) for graphs with distance to d-degenerate at most k. Parameterized
by the size |C| of a vertex cover, Green and Bader [GB13] described an algorithm with running
time O(|C| · ∆2

C), where ∆C ≤ n denotes the maximum degree in G of vertices in the vertex
cover C.

Edge- and vertex-disjoint paths. The very recent breakthrough result of an almost linear
time algorithm O(m1+o(n) log U) for maximum s-t flow in a graph G with integral capacities
in [U] by Chen et al. [CKL+22] is not considered in this work.8 We will discuss at the end
of Section 3.8 the implications of this faster algorithm to our work. Previously, the currently
best maximum flow algorithm was due to Orlin [Orl13] and runs in time O(nm). Using a flow
algorithm, one can determine the number of edge- or vertex-disjoint s-t paths in a graph. In
the unweighted and undirected case, one can do a bit better and can compute the number of
edge-disjoint paths in time O(n 3

2 m
1
2) using an algorithm due to Goldberg and Rao [GR99a].

Finding a global minimum edge cut in an unweighted and undirected graph can be solved by the
simple randomized contraction algorithm by Karger [Kar93]. An extension of this algorithm
by Karger and Stein [KS96] achieves an error probability of O(1/n) with a running time of
O(n2 log3 n). This result was later improved by Karger [Kar00] by a randomized algorithm
running in time O(n2 log n) resp. O(m log3 n). A deterministic algorithm due to Gabow [Gab95]
runs in time O(m + λ2n log(n/λ)) where λ denotes the edge-connectivity of the graph (which is
upper-bounded by the minimum degree δ, so λ ≤ δ ≤ 2m/n) that coincide with the value of a
global minimum cut in unweighted graphs; this can be seen as a parameterized algorithms with
parameter λ. Finding a global minimum edge cut with weights on the edges in an undirected
graph can be done in time O(nm + n2 log n) due to Stoer and Wagner [SW97].

Via a standard reduction between edge-capacitated and vertex-capacitated flows9, one can
also solve vertex-capacitated s-t flow in O(nm) time. For the weighted global vertex cut,
Henzinger et al. [HRG00] gave an algorithm running in time O(κ1nm log(n2/m)), where κ1
denotes the vertex connectivity if vertex capacities are ignored.

7A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most d. The
degeneracy of a graph is the smallest d such that G is d-degenerate.

8At the time of this write-up, this publication is available as a preprint only and is not yet peer-reviewed.
9For the reduction, split every vertex v into two vertices vin and vout connected via an edge of capacity equal

to the original vertex capacity of v, and let all incoming vertices of v point to vin and let all outgoing edges
of v start at vout.

Part II

Parameterized Algorithms

3
Algorithms Parameterized by the

Modular-Width of the Input

In this chapter, we study the influence of the graph parameter modular-width on the time
complexity for optimally solving well-know tractable problems. The modular-width is the maxi-
mum number of children of a prime node in a modular-decomposition tree and roughly measures
(as clique-width and twin-width) the distance of a graph from being a cograph, which are exactly
those graphs whose modular decompositions do not have any prime nodes. Unlike most other
parameters, one can compute the unique modular-decomposition tree in linear time [TCHP08].
We stress that out of the considered parameters in Section 2.3, only the parameters modular-
width and neighborhood-diversity, a specialization of modular-width, can be computed in linear
time, while all other considered parameters are NP-hard to compute.

We will present efficient algorithms parameterized by the modular-width of the input for
fundamental problems such as maximum matching, vertex-weighted all-pairs short-
est paths, triangle counting, as well as several edge- and vertex-connectivity problems,
e.g., maximum s-t vertex-capacitated flow. For maximum matching, we improve the
running time from O(h4 n + m) to O(h2 log h n + m) with n, m, resp. h denoting the num-
ber of vertices, the number of edges, resp. the modular-width of the graph. We follow the
same natural recursive approach as in previous work, i.e., computing optimal solutions in a
bottom-up fashion on the modular decomposition tree. Unlike Coudert et al. [CDP19] (SODA
’18), however, we do not seek to use the structure of modules to speed up the computation
of augmenting paths, starting from an union of maximum matchings for the child modules.
Instead, we simplify the current graph, while retaining the same maximum matching size, such
that the found solutions can be encoded into vertex capacities in a graph with at most 3 h
vertices. This allows us to forget the maximum matchings for the modules and instead of aug-
menting paths it suffices to find a maximum b-matching subject to vertex capacities; using an
O(min{b(V), n log n} · (m + n log n)) = O(n3 log n) time algorithm due to Gabow [Gab18] then

32 Algorithms Parameterized by the Modular-Width of the Input

yields the claimed running time, where b(V) denotes the total capacity of all vertices.1 Our
algorithm for maximum matching easily generalizes to computing maximum b-matchings in
the same time O(h2 log h n + m). By a different summation of the running time, one can also
bound the time by O((h log h) · (m + n log h)). For large total capacity b(V), Gabow’s algo-
rithm runs in time O((n log n) · (m + n log n)), which matches our running time for graphs with
worst-case modular-width of h ∈ Θ(n). Thus, when capacities are large, our algorithm inter-
polates smoothly between linear time O(n + m) for h ∈ O(1) and the running time of the best
unparameterized algorithm for h ∈ Θ(n); i.e., it is an adaptive algorithm and already h = o(n)
gives an improved running time. Such adaptive algorithms (for other problems and parameter)
were also considered by Iwata et al. [IOO18]. For maximum matching, the comparison with
the O(m

√
n) time algorithm of Micali and Vazirani [MV80] is of course less favorable, but still

yields a fairly large regime for h where we get a faster algorithm. Throughout, we obtain efficient
parameterized algorithms of running times O(f(h)n+m), O(n+f(h)m), or O(f(h)+n+m) for
graphs of modular-width h and polynomial functions f , resp. with an additional addend +O(n2)
for vertex-weighted all-pairs shortest paths for which the output is already of quadratic
size. For several problems we give adaptive algorithms, e.g., for triangle counting that can
be solved in time O(hω−1 n + m) or for vertex-weighted all-pairs shortest paths for
which we present an O(h2 n + n2)-time combinatorial algorithm2 and an O(h1.842 n + n2)-time
algorithm using fast matrix multiplication; meaning that their running times match the best
unparameterized algorithms for worst-case modular-width of h ∈ Θ(n).

For the edge- and vertex-disjoint paths problems we obtain the following running times: max-
imum s-t vertex-capacitated flow in O(h3 + n + m) time; global vertex-capacitated
min cut in O(h2 log h n + m) time; edge-disjoint s-t paths in O(h3 + n + m) time; and
unweighted global min cut in O(h3 + n + m) time. Our results for vertex-disjoint paths
problems generalizes to vertex-capacitated flows and vertex-weighted global minimum cuts.
Again, as done for maximum b-matching, one can obtain different bounds for the running time
by slightly different summations. For example, the running time for maximum s-t vertex-
capacitated flow can also be bounded by O(h m + n), meaning that the algorithm is never
worse than the optimal unparameterized algorithm and outperforms it already for h = o(n).
To ease the computation of the running times, we will present a general running time theorem
that one can apply to all presented algorithms to analyze the running time.

It is easy to see that there is little use for modular-width for most edge-weighted/capacitated
problems because it suffices to solve them on cliques, which have modular-width equal to zero,
see also the remarks concerning this matter in Section 3.8. Note that standard transformations
between different variants of path- and flow-type problems do not apply here directly because
they affect the modular-width of the graph. The running times for edge- and vertex-disjoint
paths problems are linear in the graph size and only have an additive contribution in terms of the
modular-width, because at most one involved computation (on a prime node) is needed. These
also give rise to linear-time kernelization-like algorithms that return an equivalent instance of
size poly(h), which is the one instance that one would run some other algorithm on (i.e., the
only source of non-linear time). Such results (for other problems) have also been observed by
Coudert et al. [CDP19] or Giannopoulou et al. [GMN17]. We stress that any algorithm of
running time O(f(k) + n + m), for some parameter k, implies a linear-time kernelization: Run

1The obvious upper bound of O(h3 log h n + m) of applying Gabow’s algorithm on each prime node can be
improved by a slightly more careful summation; the same applies to the other results.

2The term “combinatorial” algorithms do not have a formal definition. Intuitively, a combinatorial algorithm
is also practically efficient, i.e, the hidden constants in the running time are low, cf. [WW18]. Thus, a
“combinatorial” algorithm especially forbids the use of fast matrix multiplication.

Algorithms Parameterized by the Modular-Width of the Input 33

Problem Best unparameterized Our result
maximum matching O(m

√
n) [MV80] O(h2 log h n + m)

maximum b-matching 3 O((n log n) · (m + n log n)) O((h log h) · (m + n log h))
[Gab18] or O(h2 log h n + m)

vertex-weighted all- O(n3) [Flo62, War62] or O(h2 n + n2) or
pairs shortest paths O(mn log α(m, n)) [Joh77] or O(m h log α(m, h)) or

O(n2.842) [Yus09] O(h1.842 n + n2)
triange counting O(nω) [SW05] or O(hω−1 n + m)

O(m
2ω

ω+1) = O(m1.41) [AYZ97]
edge-disjoint s-t paths O(n 3

2 m
1
2) [GR99a] O(h3 + n + m)

global min cut O(n2 log n) [Kar00] O(h3 + n + m)
max s-t vertex flow O(nm) [Orl13] O(h3 + n + m)
weighted global O(κ1nm log(n2/m)) [HRG00] O(κ1 h m log(h)) or
vertex min cut O(κ1 h2 n log(h) + m)

Table 3.1: Overview about our results, where n and m denote the number of vertices and edges, h
denotes the modular-width of the input graph, and κ1 denotes the vertex connectivity
if vertex capacities are ignored. The previous best result for maximum matching,
parameterized by modular-width h, was O(h4 n+m) [CDP19]. For all other problems
we present the first algorithms parameterized by the modular-width. Consequences
of the recent almost linear time algorithm for maximum flow are discussed at the end
of Section 3.8.

the algorithm for c(n + m) steps, for sufficiently large c relative to hidden constants in O; it
either terminates and returns the correct answer or allows the conclusion that n+m < f(k), i.e.,
the input instance itself is the kernel. For all considered problems except maximum matching,
there are no previous algorithms parameterized by the modular-width of the input graph known.
An overview of our obtained results is depicted in Table 3.1.

Overview. First, we will define the modular-width of a graph and the unique modular de-
composition tree in Section 3.1. In Section 3.2 we present our algorithm for maximum matching
that can be executed in time O(h2 log h ·n+m) for graphs with n vertices, m edges and modular-
width at most h and we extend this algorithm to the more general maximum b-matching
problem using the same running time bound. In Section 3.3, we generalize the analysis of
the running time for many algorithms that use the modular decomposition tree by stating a
general running time theorem in Section 3.3. We will use this running time theorem for the
analysis for all other algorithms in this chapter. For vertex-weighted all-pairs shortest
paths, we present a combinatorial algorithm running in time O(h2 n + n2) and an algorithm
using fast matrix multiplication running in time O(h1.842 n + n2) in Section 3.4, followed by an
O(hω−1 n+m) time algorithm for triangle counting in Section 3.5. The remaining problems
that we consider in this chapter are regarding edge- and vertex-disjoint paths. The problem

3In the overview we assume for maximum b-matching that b(V) ≥ n log n to simplify the concrete running
time of O(min{b(V), n log n} · (m + n log n))

34 Algorithms Parameterized by the Modular-Width of the Input

maximum edge-disjoint s-t paths and global minimum edge cut for unweighted graphs
are discussed in Section 3.6, for both problems we present an O(h3 +n + m) time algorithm.
The variants of those problems for vertex-disjoint paths are covered in Section 3.7. Here, we
consider vertex-capacitated graphs and present an O(h3 +n + m) time algorithm for maximum
s-t vertex flow and an O(κ1 h2 n log(h) + m) time algorithm for global minimum vertex
cut, where κ1 denotes the vertex connectivity if the vertex capacities are ignored. We conclude
this chapter in Section 3.8.

3.1 Definition of Modular-Width
In this section, we will define the graph parameter modular-width and the associated modular
decomposition tree. We first define the modular decomposition for undirected graphs G =
(V, E). The central structure that we will use in this chapter is called a module. A module is a
vertex set M ⊆ V such that all vertices in M have the same neighborhood regarding vertices
outside of the module.

Definition 3.1 (Module). Let G = (V, E) be an undirected graph. A module is a set M ⊆ V
such that for all u, v ∈M it holds that NG(u) ∩ (V \M) = NG(v) ∩ (V \M).

In other words, a vertex set M ⊆ V is a module in G if for every vertex x ∈ V \M outside
of the module it holds that either M ⊆ NG(x) or M ∩ NG(x) = ∅. Clearly, ∅, V , and every
singleton set {v} for every v ∈ V are modules of G; these are called trivial modules. If a graph
only admits trivial modules, we call G prime. Consider two modules M1, M2 ⊆ V that do
overlap, i.e., the sets M1 ∩M2, M1 \M2 and M2 \M1 are all nonempty. By the definition of
a module, it holds that in this case also M1 ∪M2, M1 ∩M2, M1 \M2, M2 \M1, and M1 ∆ M2
are modules in G.

Lemma 3.2. Let G = (V, E) be a graph and M1, M2 ⊆ V be two overlapping modules. Then
M1 ∪M2, M1 ∩M2, M1 \M2, M2 \M1, and M1 ∆ M2 are modules in G.

Proof. Since M1 and M2 do overlap, the sets M1 \M2, M1 ∩M2, and M2 \M1 are nonempty.
We show as an example that the set M1\M2 fulfills the definition of a module, for the other sets
similar argumentation hold: If |M1 \M2| = 1 there is nothing to show. Let v1, v′1 ∈M1 \M2 be
two different vertices in M1 \M2. For a vertex x ∈ V \M1 is holds that x is either adjacent to
both or none of v1 and v′1, since M1 is a module. We are left to show, that v1 and v′1 also have
a uniform neighborhood to the vertices in M1 ∩M2. Let x ∈M1 ∩M2 be arbitrary and assume
that {x, v1} ∈ E. We need to show that also {x, v′1} ∈ E. Let v2 ∈M2 be arbitrarily. Since M2
is a module and x ∈ M2, it holds that {v1, v2} ∈ E and since M1 is module, also {v2, v′1} ∈ E.
Finally, again due to M2 being a module, it holds that {v′1, x} ∈ E. An analog argumentation
shows that if x is not adjacent to v1, x is also not adjacent to v′1.

Consider a partition P = {M1, M2, . . . , Mt} of the vertices of G into modules with t ≥ 2,
called a modular partition. Consider two different modules Mi and Mj in P with i ̸= j. If there
exists v ∈ Mi and u ∈ Mj with {u, v} ∈ E, then, due to Definition 3.1, any vertex in Mi is
adjacent to every vertex in Mj , i.e., there is a full join between those two vertex sets. In this
case we call two modules Mi and Mj of P adjacent, and non-adjacent otherwise. This motivates
the following definition:

Definition 3.3 (Quotient graph). Let P = {M1, M2, . . . , Mt} be a modular partition of a graph
G = (V, E). Let qMi ∈ Mi an arbitrarily selected vertex in Mi for i ∈ [t]. The quotient graph

3.1 Definition of Modular-Width 35

(a) The input graph G. (b) A modular partition of V . (c) The quotient graph of G.

Figure 3.1: An example of a modular partition of the vertex set of a graph G = (V, E) and a
corresponding quotient graph.

G/P of G w.r.t. the modular partition P is defined as the induced subgraph of the vertex set
{qM1 , qM2 , . . . , qMt} in G.

This means that the quotient graph w.r.t. a modular partition P is the graph whose vertices
are in a one-to-one correspondence to the modules in P , with two vertices qMi , qMj in G/P being
adjacent if and only if the corresponding modules Mi and Mj in G are adjacent, i.e., G/P can
be seen as a compact representation of those edges in G with endpoints in different modules.
See Figure 3.1 as an example of a modular partition and the corresponding quotient graph.

Each subgraph G[Mi] for i ∈ [t] is called a factor. In a modular decomposition, each factor
will then be recursively decomposed as well until one reaches only trivial modules {v} for each
v ∈ V . We point out that if A ⊆ V is module in G and B ⊆ A, then B is a module in G if and
only if B is a module in G[A]. We call a set M ⊊ V with M ̸= V a maximal module if and
only if M is a module and for all modules M ′ ⊊ V with M ′ ̸= V and M ⊆ M ′ it holds that
M ′ = M . Gallai [Gal67] showed already in 1967 the following theorem.

Theorem 3.4 ([Gal67]). For any graph G = (V, E) with |V | ≥ 2. Then exactly one of the
following three conditions is satisfied:

• G is not connected,

• G is not connected,

• G and G are connected and the maximal modules in G form a partition P of V . Moreover,
the quotient graph G/P is a prime graph.

We briefly sketch that in the last case, the set of maximal modules are indeed a partition;
suppose for contraction that two maximal modules M1 and M2 do overlap. Then, by Lemma 3.2,
it holds that also M1∪M2, M1∩M2, M1\M2, and M2\M1 are modules in G. Either M1∪M2 ̸= V ,
thus, neither M1 nor M2 are maximal, or M1 ∪M2 = V , but then there is a modular partition
{M1 \M2, M1 ∩M2, M2 \M1} which implies that either G or G is not connected.

36 Algorithms Parameterized by the Modular-Width of the Input

MD(G) p

// // s //

s s

Figure 3.2: The modular decomposition tree MD(G) of the graph G in Figure 3.1. A prime
node in MD(G) is labeled p and the corresponding quotient graph is attached to
this node. A serial resp. parallel node is labeled by s resp. by //.

Note that a set A ⊆ V is a module in G if and only if A is a module in the complement
graph G. Using Theorem 3.4, we can now recursively define the unique modular decomposition
tree MD(G) for a graph G = (V, E) that is a rooted tree that implicit represents all modules in
G: If |V | = 1, the modular decomposition tree is a single leaf corresponding to V (base case).
If G is not connected, consider the modular partition P consisting of each minimal connected
component in G. To indicate that any union of modules in P forms itself again a module, we
label the root node as a parallel node with one child per module in P . The implicit quotient
graph corresponding to a parallel node is an isolated graph with |P | vertices. If G is not
connected, consider the modular partition P consisting of each minimal connected component
in G. Again, to indicate that every union in P forms a module, we label the root node as
a serial node with one child per module in P . The implicit quotient graph corresponding
to serial nodes is a clique with |P | vertices. Finally, if G and G are connected, we consider
the modular partition P consisting of the maximal modules in G. This modular partition is
unique due to Theorem 3.4. The root is labeled as a prime node with one child per module
in P and the corresponding quotient graph is attached to the root. We decompose all children
recursively until eventually reaching the base case. See Figure 3.2 as an example of a modular
decomposition tree. Note that Theorem 3.4 also implies that MD(G) is unique.

We call a module M1 that do not overlap with any other module M2 a strong module. E.g.,
all trivial modules are strong modules. By the above definition, the modular decomposition
tree MD(G) of a graph G corresponds to the Hasse diagram of the family of strong modules
with respect to the subset relation. We refer to such a Hasse diagram also as the inclusion tree
of all strong modules. This means, each internal node vM of MD(G) with the set of children
{vM1 , . . . , vMt} corresponds to a strong module M of G and P = {M1, . . . , Mt} is a modular
partition of G[M] into strong modules where Mi is the corresponding module of vMi , with
i ∈ [t]. Further, a vertex vA is an an ancestor of vB in MD(G) if and only if B ⊊ A for the
corresponding strong modules A and B of G.

We can now define the modular-width of a graph G as the minimum h ∈ N such that any
prime node in MD(G) has at most h children, i.e., the size of any quotient graph of a prime
node in MD(G) is at most h.

Definition 3.5 (modular-width). The modular-width of a graph G is the smallest h ∈ N such
that any prime node in the modular decomposition tree MD(G) has at most h children.

If the modular decomposition tree of a graph G consists only of parallel and serial nodes, the
modular-width of G is zero. The class of graphs with modular-width zero is exactly the class of

3.1 Definition of Modular-Width 37

all cographs.4 For any graph G with n vertices, the modular decomposition tree MD(G) have
exactly n leaves, each corresponding to singleton set {v} for v ∈ V (G). Since each internal node
in MD(G) has at least two children, the total number of nodes in MD(G) is at most 2n− 1.

We point out that although there may be up to exponential many modules in a graph, e.g., if
G is a clique, the modular decomposition tree MD(G) is a compact representation of all modules
in G only using linear space; either a module directly corresponds to a node in MD(G), i.e., it
is a strong module, or it is a union of some modules in a partition corresponding to a parallel
or serial node5 in MD(G).

It is known that MD(G) can be computed in time O(n+m) [TCHP08]. We refer to a survey
of Habib and Paul [HP10] for more information about modular decompositions.

Modular decomposition for directed graphs. We will only consider undirected graphs in
this chapter. In Chapter 6, we show how to define all graphs of modular-width at most h via
algebraic expressions defined on a set of operations. This equivalent definition via operations
can be naturally adapted to directed graphs.6 For completeness, we will shortly describe the
modular decomposition for directed graphs. For a directed graph G = (V, E), a set M ⊆ V
is called a module if for all u, v ∈ V it holds that N+(u) ∩ (V \M) = N+(v) ∩ (V \M) and
N−(u) ∩ (V \M) = N−(v) ∩ (V \M). Both, the modular decomposition of undirected graphs
and directed graphs can be seen as a special case of a decomposition of so-called (weak) partitive
sets [CHM81]. For a finite set X, let F ⊆ 2X be a family of subsets of X. If for every pair of
members A, B ∈ F that do overlap it holds that A ∪ B, A ∩ B, A \ B, B \ A ∈ F , the set F
is called a weak partitive set. If additionally it holds that also A ∆ B ∈ F , the set F is called
a partitive set. We call a member of F a strong member, if it does not overlap with any other
member of F . Note that the set of all modules in an undirected graph forms a partitive set,
cf. Lemma 3.2. One can show that the set of all modules in a directed graph forms a weak
partitive set [ER90]. Both, a partitive set and a weak partitive set, can be represented by a
decomposition tree corresponding to the inclusion tree of the strong members [MR84]. For the
decomposition of a partitive set, each internal node is either degenerate or prime, i.e., either
every arbitrary union of children are contained in F or just each child by oneself. For the
partitive set consisting of all modules in an undirected graphs, a degenerate node corresponds
either to a parallel or serial node in the modular decomposition tree. For the decomposition
of a weak partitive set, each internal node is labeled degenerate, linear, or prime, whereas for
a linear node it holds that there exists an ordering of the children such that each union of
consecutive children are contained in F . Applying this scheme to the modular decomposition
tree of a directed graph, the implicit quotient graph of a linear node with t children is a graph
G = (V, E) with V = {v1, . . . , vt} and E = {(vi, vj) ∈ V 2 | i ≤ j}, i.e, the transitive closure
of a directed path. The modular-width of a directed graph is again defined by the smallest
h ∈ N such that the size of any quotient graph of a prime node in the modular decomposition
is at most h. McConnell and Montgolfier [MdM05] gave an algorithm to compute the modular
decomposition of directed graphs also in linear time O(n + m).

4There are also definitions that define the modular-width as the smallest h ≥ 2 such that every quotient graph
does have at most h children, e.g.,[CDP19]. Here, we adapt a definition of [GLO13], especially due to our
purposes in Chapter 6. All definitions of modular-width coincide for graphs of modular-width at least two.

5The parallel and serial nodes in a modular decomposition are also subsumed under the term degenerate nodes.
6Using the (equivalent) definition via operations for directed modular-width, we extend the a algorithm for

vertex-weighted all-pairs shortest paths to directed graphs with possible negative vertex weights in
Section 6.4.3. We will either conclude that the input graph contains a cycle of negative weight or we compute
the shortest path distance for all pairs of vertices.

38 Algorithms Parameterized by the Modular-Width of the Input

3.2 Maximum Matching

In the maximum matching problem we are given a graph G = (V, E) and need to find a
maximum set X ⊆ E of pairwise disjoint edges. Each set X ⊆ E of pairwise disjoint edges is
called a matching of size |X|. The size of a maximum matching of a graph G is denoted by
µ(G). The fastest known unparameterized algorithm is due to Micali and Vazirani [MV80] and
runs in time O(m

√
n) on graphs with n vertices and m edges.

maximum matching

Input: An undirected graph G = (V, E).
Output: Set X ⊆ E of disjoint edges with maximum size.

A b-matching is a generalization of a matching that specifies in the input for each vertex a
capacity bound of how many edges in the matching may be incident with that vertex. Any edge
can be chosen any number of times. Formally, the capacity bounds are given by a function
b : V → N, and a b-matching is a function x : E → N that fulfills for every vertex v ∈ V the
constraint that ∑e∈δ(v) x(e) ≤ b(v). For the special case of b ≡ 1 this problem is the classical
problem of finding a maximum matching. Gabow [Gab18] showed how to find a b-matching
that maximizes ∑e∈E x(e) in time O((n log n) · (m + n log n)).

maximum b-matching

Input: An undirected graph G = (V, E) and a function b : V → N.
Output: x : E → N with maximum ∑

e∈E x(e), s.t. ∀v ∈ V : ∑e∈δ(v) x(e) ≤ b(v).

Coudert et al. [CDP19] gave an O(h4 n + m)-time algorithm for maximum matching, where
h denotes the modular-width of the input graph. In this section we will improve this result by
providing an algorithm for maximum matching that runs in time O(h2 log h ·n+m). The main
idea of our algorithm is to compress the computation of a matching in G to a computation of
a b-matching, instead of using the structure of modular decompositions to speed up the search
for augmenting paths (like in [CDP19]).

Theorem 3.6. For every graph G = (V, E) with modular-width h, maximum matching can
be solved in time O(h2 log h · n + m).

Algorithm. First, we compute the modular decomposition tree MD(G). We will traverse
the decomposition tree in a bottom-up manner. For each vM in MD(G), with M denoting the
corresponding module of G, we will compute a maximum matching in G[M]. Note that for the
root module vM of MD(G) it holds that G[M] = G. For any leaf node vM of MD(G), we have
µ(G[M]) = 0, since G[M] is a graph consisting of a single vertex. Let vM be a non-leaf vertex
in MD(G) with the set of children {vM1 , . . . , vMt}. This means that {M1, . . . , Mt} is a modular
partition of G[M], where Mi ⊆ M corresponds to the vertex vMi in MD(G) for i ∈ [t]. In
the following, we can always assume that we have already computed µ(G[Mi]) for i ∈ [t]. The
next lemma shows that the concrete structure inside a module is irrelevant for the maximum
matching size of the whole graph, in particular, only the number of vertices and the size of a
maximum matching is important. The following lemma is a more general version of [CDP19,
Lemma 5.1], but can be proven in a similar way.

3.2 Maximum Matching 39

Lemma 3.7. Let M be a module of a graph G = (V, E) and let G[M] = (M, EM). Let further
A ⊆

(M
2
)

be any set of edges on the vertices of M such that µ((M, A)) = µ((M, EM)). Then,
the size of a maximum matching of G′ = (V, (E \ EM) ∪ A) is equal to the size of a maximum
matching of G.

Proof. We first show that µ(G′) ≥ µ(G). Let us consider a maximum matching F ⊆ E in
G = (V, E). To get a maximum matching in G′ we replace all edges in F that are incident with
M : First, replace all edges in F ∩E(G[M]) by an arbitrary matching A′ ⊆ A of the same size;
such a matching must exist because F ∩ E(G[M]) is not larger than a maximum matching in
G[M] and µ((M, A)) = µ((M, EM)). Second, we replace all edges in F that have exactly one
endpoint in M as follows: Let Y ⊆M be the set of vertices in M that are endpoints of an edge
in F whose other endpoint is not in M . By assumption, |M \V (A′)| ≥ |Y | and since all vertices
in V \M that are connected to a vertex in Y in G are also connected to all vertices in M \V (A′)
in G′, we can replace all edges of F that have exactly one endpoint in M . Thus, µ(G′) ≥ µ(G),
i.e., replacing the edges in a module by an arbitrary set of edges with same maximum matching
size does not decrease the size of the maximum matching for the whole graph. Applying this
argument for A′ := EM to swap back to the original edge set yields µ(G) ≥ µ(G′) and completes
the proof.

We can now describe how to compute µ(G[M]) for a node vM in MD(G). Let {vM1 , . . . , vMt}
be the set of children of vM in MD(G), meaning that P = {M1, . . . , Mt} is a modular partition
of G[M]. We can assume that we have already computed µ(G[Mi]) for i ∈ [t]. Let G[M]/P

be the quotient graph of G[M] w.r.t. the modular partition P . First, suppose that vM is a
prime node. We will reduce the problem of computing a maximum matching in G[M] to the
computation of a maximum b-matching in an auxiliary graph closely related to the quotient
graph of vM that we will define next.

Definition 3.8. Let G = (V, E) be a graph and P = {M1, . . . , Mt} be a modular partition
of G. Let ni = |V (G[Mi])| denote the number of vertices in G[Mi] and µ(G[Mi]) the size of
a maximum matching in G[Mi]. We define an auxiliary graph G∗ = (V ∗, E∗) together with
capacity bounds b : V ∗ → N as an instance (G∗, b) for the maximum b-matching problem as
follows:

• For every module Mi ∈ P , with i ∈ [t], we add three vertices v1
i , v2

i , v3
i to V ∗ and set

b(v1
i) = b(v2

i) = µ(G[Mi]) and b(v3
i) = ni − 2µ(G[Mi]).

• We add the edge {v1
i , v2

i } to E∗ for i ∈ [t].

• For each edge between vertices qi and qj in G/P that corresponds to modules Mi and Mj ,
we add the nine edges {vc

i , vd
j } with c, d ∈ {1, 2, 3} to E∗.

Lemma 3.9. Let G = (V, E) be a graph and P = {M1, . . . , Mt} be a modular partition of
G. Let (G∗, b) be the instance of a maximum b-matching problem as defined in Definition 3.8.
Then, the size of a maximum matching in G is equal to the size of a maximum b-matching of
(G∗, b).

Proof. Consider a graph G = (V, E) with a modular partition P = {M1, . . . , Mt}. For Mi ∈ P
let ni = |V (G[Mi])| and let µi = µ(G[Mi]). Due to Lemma 3.7, we can replace each G[Mi],
for i ∈ [t], by a graph consisting of a complete bipartite graph Kµi,µi together with ni − 2µi

single vertices without changing the size of a maximum matching. We do this for every module

40 Algorithms Parameterized by the Modular-Width of the Input

(a) The graph Ĝ. A bold edge represents a full
join between the encircled vertices.

3 3

2

4 4

2

1 1

3

2 2

4

3 3

4

(b) The graph G∗ as definied in Definition 3.8.
Each vertex is labeled by its b-value. A bold
edge represents a full join (9 edges) between
the encircled vertices.

Figure 3.3: The graphs Ĝ and G∗ as in the proof of Lemma 3.9.

Mi ∈ P and denote the resulting graph by Ĝ, see also Figure 3.3 for an example. Note that
µ(G) = µ(Ĝ). Now, each replacement of G[Mi] can be partitioned into three modules: Each
side of the complete bipartite graph Kµi,µi and the ni − 2µi remaining single vertices, giving
us a modular partition P ′ of Ĝ of size 3t with the property that for every module M ∈ P ′

the factor graph G[M] is an independent set. The quotient graph Ĝ/P ′ is exactly the auxiliary
graph G∗ of G and the capacity bound of a vertex v ∈ V (G∗) is equal to the number of vertices
in the corresponding module, cf. Figure 3.3. Since any maximum b-matching in (G∗, b) directly
corresponds to a maximum matching in Ĝ, this completes the proof.

Suppose now that vM is a serial or parallel node. Instead of computing µ(G[M]) directly, we
will modify the decomposition tree MD(G) (cf. [CDP19]). Let {vM1 , . . . , vMt} be the children of
a serial vM in MD(G). We will iteratively compute a maximum matching for Gi = G[∪1≤j≤iMj]
by using a modular partition of Gi consisting of the two modules ∪1≤j<iMj and Mi, for i ∈
[t]. This means that we replace a serial node with t children by t − 1 series nodes with only
two children. We will treat the newly inserted nodes as prime nodes (with a quotient graph
isomorphic to K2). After replacing the serial nodes of the modular decomposition tree MD(G),
every node still has at least two children; hence, we still have a most 2n− 1 nodes in MD(G).
The same approach can also be used to treat parallel nodes in MD(G); replace a parallel node
with t children by t−1 parallel nodes with only two children and treat the newly inserted nodes
as prime nodes (with a quotient graph isomorphic to graph with two isolated vertices).

Finally, note that after only computed the value of a maximum matching in G. However,
using the values of a maximum b-matching for each auxiliary graph of a node in the modular
decomposition tree, we can easily reconstruct a concrete maximum matching X ⊆ E in linear
time.

Running Time. Consider a graph G = (V, E) with modular-width h. Computing the mod-
ular decomposition tree MD(G) takes time O(n + m). As described above, we modify the
decomposition tree such that every serial node and every parallel node of MD(G) with t ≥ 3
children is replaced by t− 1 ‘pseudo-prime‘ nodes with exactly two children. This replacement
can be done in time O(n). Note that there are at most 2n − 1 nodes in MD(G), even after
the above replacement. Now, every node vM ∈ MD(G) has a set of children {vM1 , . . . , vMt}
with 2 ≤ t ≤ h. This means that P = {M1, . . . , Mt} is a modular partition of G[M] and the

3.2 Maximum Matching 41

quotient graph G[M]/P consists of t ≤ h vertices. Since we have already computed µ(G[Mi])
for all i ∈ [t], we can construct the auxiliary graph G∗ of G[M] as defined in Definition 3.8 in
time O(V (G∗)+E(G∗)) = O(t2). Recall that |V (G∗)| = 3t. Thus, we can compute a maximum
b-matching of G∗ subject to b in time O(t3 log t) using the algorithm due to Gabow [Gab18].
We have to do this for every prime and ‘pseudo-prime‘ node, but a slightly more careful sum-
mation of running times over all nodes gives an improvement over the obvious upper bound of
O(h3 log h · n + m): Let p be the number of nodes in MD(G), enumerate the nodes in MD(G),
and let ti denote the number of vertices in the quotient graph of the i-th node in MD(G),
i.e., the number of children of this node. Then, neglecting constant factors and assuming that
MD(G) is already computed, we can solve maximum matching in time:

p∑
i=1

t3
i log ti ≤

(p∑
i=1

ti

)
·max

i∈[p]

{
t2
i log ti

}
≤ 2n ·max

i∈[p]

{
t2
i log ti

}
≤ 2n ·

(
h2 log h

)
The second inequality holds since ∑p

i=1 ti counts each node in MD(G) exactly once, except for
the root node. As constant factors propagate through the inequality, the total running time of
the algorithm is O(h2 log h · n + m), which proves Theorem 3.6.

Generalization to b-matching We can easily generalize this result to the more general
maximum b-matching problem.

Theorem 3.10. For every graph G = (V, E) with modular-width h, maximum b-matching
can be solved in time O(h2 log h · n + m).

Again, the concrete structure inside a module will not be important. The only important
information is the size of a maximum b-matching and the sum of all b-values in a module. By
a slight abuse of notation, we denote by µ(G, b) the size of a maximum b-matching in G. We
naturally extend Definition 3.8 to b-matchings:

Definition 3.11. Let G = (V, E) be a graph with b : V → N and let P = {M1, . . . , Mt} be
a modular partition of G. Let ni = ∑

v∈Mi
b(v) and µ(G[Mi], b) be the size of a maximum

b-matching in G[Mi] for i ∈ [t]. We define an auxiliary graph G∗ = (V ∗, E∗) together with
capacity bounds b∗ : V → N as an instance (G∗, b∗) for the maximum b-matching problem as
follows:

• For every module Mi ∈ P , with i ∈ [t], we add three vertices v1
i , v2

i , v3
i to V ∗ and set

b∗(v1
i) = b∗(v2

i) = µ(G[Mi], b) and b∗(v3
i) = ni − 2µ(G[Mi], b).

• We add the edge {v1
i , v2

i } to E∗ for i ∈ [t].

• For each edge between vertices qi and qj in G/P that corresponds to modules Mi and Mj ,
we add the nine edges {vc

i , vd
j } with c, d ∈ {1, 2, 3} to E∗.

Lemma 3.12. Let G = (V, E) be a graph and P = {M1, . . . , Mt} be a modular partition of G.
Let (G∗, b∗) be the instance of a maximum b-matching problem as defined in Definition 3.11.
Then, the size of a maximum b-matching in (G, b) is equal to the size of a maximum b-matching
of (G∗, b∗).

Proof. Consider a graph G = (V, E) with a modular partition P = {M1, . . . , Mt}. For Mi ∈ P
let ni = ∑

v∈Mi
b(v) and let µi be the size of a maximum b-matching in Mi. Note that one can

solve b-matching by replacing every vertex v by b(v) many isolated vertices that are connected

42 Algorithms Parameterized by the Modular-Width of the Input

in the same way as v (i.e., substituting Ib(v) into v). After considering this replacement and due
to Lemma 3.7, we can replace G[Mi], for i ∈ [t], by a graph consisting of a complete bipartite
graph Kµi,µi together with ni − 2µi single vertices without changing the size of a maximum
matching. We do this for every module Mi and denote the resulting graph by Ĝ. As in the
proof of Lemma 3.9, we can subdivide every module in three parts. This yields to the instance
(G∗, b∗) as defined in Definition 3.11. Again, any maximum b-matching in (G∗, b∗) directly
corresponds to a maximum b-matching in (G, b), which completes the proof.

The running time can be bounded in the same way as before. However, to see that this
algorithm is also adaptive for sparse graphs (at least for large b-values), we can modify the
computation of the running time: Let again p be the number of nodes in MD(G), enumerate
the nodes in MD(G), let ti denote the number vertices in the quotient graph of the i-th node of
MD(G), and let mi the number of edges in the quotient graph of the i-th node of MD(G). Thus,
we can compute a maximum b-matching of G∗ subject to b∗ in time O((ti log ti) · (mi + ti log ti))
using the algorithm due to Gabow [Gab18]. Then, neglecting constant factors and assuming
that MD(G) is already computed, we can solve maximum b-matching in time:

p∑
i=1

(ti log ti) · (mi + ti log ti) =
p∑

i=1
miti log ti +

p∑
i=1

t2
i log2 ti

≤
(p∑

i=1
mi

)
max
i∈[p]
{ti log ti}+

(p∑
i=1

ti

)
max
i∈[p]
{ti log2 ti}

≤ m · h log h + 2n · (h log2 h)

Since constant factors propagate through the inequality, the total running time of the algorithm
is O((m + n log h) · (h log h)). Therefore, even for h ∈ Θ(n) our algorithm is not worse than the
(currently) best unparameterized algorithm with time complexity O((m + n log n) · (n log n)),
assuming b(V) ≥ n log n.

3.3 General Running Time Theorem
For many parameterized algorithms that make use of the structure quantified by the parameter
modular-width, the resulting running time is solely depending on the maximal time needed
to process any node in the modular decomposition tree, as seen for example in the previous
Section 3.2. Before we continue describing further algorithms, we will derive a general running
time theorem that is applicable to many algorithms that utilize the modular decomposition tree,
in particular, all algorithms in this chapter. Since we will focus on functions describing running
times, we will restrict ourselves to functions T : R≥1 → R≥1 that are superhomogeneous.

Definition 3.13 ([BS05]). A function T : R≥1 → R≥1 is superhomogeneous if for all λ ≥ 1 the
following holds:

λ · T (n) ≤ T (λ · n)

Lemma 3.14. Let T : R2
≥1 → R≥1 be a function that is superhomogeneous in the first component

and monotonically increasing in the second component. Then

max
1≤k≤n
1≤ℓ≤m

T (k, ℓ)
k

≤ T (n, m)
n

.

3.3 General Running Time Theorem 43

Proof. Since T is monotonically increasing in the second component, the maximum is reached
for ℓ = m. Pick k with 1 ≤ k ≤ n arbitrarily and set λ ≥ 1 so that λ · k = n. It follows directly
that

T (n, m)
n

= T (λk, m)
λk

≥ λT (k, m)
λk

= T (k, m)
k

.

This completes the proof.

We can now state the running time framework.

Theorem 3.15. Let G be a graph of modular-width equal to h, let MD(G) be the modular
decomposition tree of G, and let T : R2

≥1 → R≥1 be a function that is superhomogeneous in the
first component and monotone increasing in the second component. If the running time of an
algorithm for any prime node vi ∈ V (MD(G)) is upper bounded by O(T (ni, mi)), where ni and
mi denote the number of vertices and edges of the quotient graph corresponding to vi, then the
total running time can be upper bounded by

O
(

n

h · T (h, m) + n + m

)
and O

(
n

h · T (h, h2) + n + m

)
.

If, additionally, T is also superhomogeneous in the second component then the running time
can also be upper bounded by

O (T (h, m) + n + m) .

Proof. In a first step we compute the modular decomposition tree of the input graph G in linear
time [TCHP08]. First, we replace any serial resp. parallel node with t children by a sequence
of t− 1 ‘pseudo-prime‘ nodes each with a corresponding quotient graph isomorphic to K2 resp.
I2. Let p denote the number of prime nodes after this replacement. For any node vi of MD(G)
let ni and mi denote the number of vertices resp. edges in the quotient graph associated with
vi. Thus, it holds that ni ≤ h and mi ≤ h2. Then, the running time all nodes can be upper
bounded by

p∑
i=1

T (ni, mi) =
p∑

i=1
ni

T (ni, mi)
ni

≤
p∑

i=1
ni ·

 max
1≤ni≤h

1≤mi≤m

T (ni, mi)
ni

 (3.1)

≤ 2n · T (h, m)
h .

The last inequality holds due to Lemma 3.14 and since ∑t
i=1 ni counts each node in the modular

decomposition (except of the root) exactly once.
Since T is monotone increasing in the second component and each quotient graph has at most

h2 many edges, one can replace the value mi in Equation (3.1) by the value h2. Doing this, we
can also bound the running time for processing all nodes in the modular decomposition tree by
O(nT (h,h2)

h).

44 Algorithms Parameterized by the Modular-Width of the Input

If, additionally, T is also superhomogeneous in the second component then the running time
can also be upper bounded by

p∑
i=1

T (ni, mi) =
p∑

i=1
mi

T (ni, mi)
mi

≤
p∑

i=1
mi ·

 max
1≤ni≤h

1≤mi≤m

T (ni, mi)
mi


≤ m · T (h, m)

m
= T (h, m).

The second to last inequality holds using the argumentation from Lemma 3.14 and since ∑t
i=1 mi

counts every edge at most once.

Example. In Section 3.2 it was shown how to solve maximum matching and maximum b-
matching with a running time per prime node of O(mini log ni)+(n2 log2 n), where ni denotes
the number of vertices and mi denotes the number of edges in the quotient graph of node vi

in the modular decomposition tree. Thus, by using Theorem 3.15, one can bound the total
running time by O(min{h2 log h · n + m, (m + n log h) · (h log h)}).

3.4 Vertex-Weighted All-Pairs Shortest Path

We turn now our focus on studying the vertex-weighted all-pairs shortest paths prob-
lem, in which the task is to compute distG(u, v) for all u, v ∈ V for a graph G with vertex
weights ω : V → R≥0.

vertex-weighted all-pairs shortest paths

Input: An undirected graph G = (V, E), vertex weights ω : V → R≥0.
Output: The pairwise distances distG(u, v) for all u, v ∈ V .

In this chapter, we stick to undirected graphs and consider non-negative vertex weights. In
Section 6.4.3, we also consider this problem with arbitrary vertex-weights on directed graphs
without negative cycles. In this section, we obtain the following result.

Theorem 3.16. For every graph G = (V, E) with modular-width h and vertex weights ω : V →
R≥0, vertex-weighted all-pairs shortest paths can be solved in time O(h1.842 n + n2)
time using fast matrix multiplication or in combinatorial time O(h2 n + n2).

Let MD(G) be the modular decomposition tree of G. We will traverse MD(G) in a top-
down manner. For a node vM in the decomposition tree with children vM1 , . . . , vMt let M resp.
M1, . . . , Mt be the corresponding modules in G for t ≥ 2. We will compute for every pair of
vertices u, v ∈ M with u ∈ Mi and v ∈ Mj for i ̸= j the shortest path in the whole graph G.
Since every vertex of G corresponds to a leaf in MD(G), we eventually consider every pair of
vertices with this procedure. We start with some structural properties of shortest paths in a
graph that can be partitioned into modules.

3.4 Vertex-Weighted All-Pairs Shortest Path 45

Lemma 3.17. Let P = {M1, . . . , Mt} be a modular partition of a graph G = (V, E) with vertex
weights ω : V → R≥0. Let x, y ∈ V be two vertices with {x, y} ⊈ Mi for all i ∈ [t]. Then, there
exists a shortest x-y path that visits each module at most once.

Proof. Let Q = (x = v1, v2, . . . , vn = y) be a shortest x-y path in G regarding ω. Assume that
there exist i, j ∈ [n] with i ̸= j such that {vi, vj} ⊆ Mk for some k ∈ [t]. Let i be minimal and
j be maximal under this condition. We distinguish two cases: In the case j ̸= n, consider the
path Q′ = (v1, . . . , vi−1, vi, vj+1, vj+2, . . . , vn). Since j is maximal and vj ̸= vn, it holds that
vj+1 /∈ Mk, but vj+1 is adjacent to all vertices of Mk. Thus, the edge {vi, vj+1} exists and Q′

is indeed a x-y path with ω(Q′) ≤ ω(Q) = distG(x, y).
If vj = vn then it holds that vi ̸= v1 since otherwise {x, y} would be in a same module.

Consider the path Q′′ = (v1, . . . , vi−1, vj). Since i is minimal, it holds that vi−1 /∈ Mk, but
vi−1 is adjacent to all vertices of Mk, in particular, to vj . Thus, Q′′ is an x-y path with
ω(Q′′) ≤ ω(Q) = distG(x, y). We iterate this procedure for every pair of vertices that are in
a same module. Since the vertices in Q′ resp. Q′′ are a strict subset of the vertices in Q, the
number of pairs that are in a same module strictly reduces each time.

We will use this property to compute shortest paths between vertices in different modules.
To do so, we extend the quotient graph by vertex weights.

Definition 3.18. Let G = (V, E) be a graph with vertex weights ωG : V → R≥0, and let
P = {M1, . . . , Mt} be a modular partition of G. We define vertex weights for the quotient
graph G/P by ωG/P

(qMi) = minv∈Mi ωG(v).

Lemma 3.19. Let G = (V, E) be a graph with vertex weights ωG : V → R≥0, and let P =
{M1, . . . , Mt} be a modular partition of G. Let G/P be the quotient graph with vertex weights
ωG/P

as defined in Definition 3.18, and let u, v ∈ V be two vertices with u ∈ Mi and v ∈ Mj

for i ̸= j. Then, distG(u, v) = distG/P
(qMi , qMj)− ωG/P

(qMi) + ωG(u)− ωG/P
(qMj) + ωG(v).

Proof. Let u, v ∈ V be two vertices in G with u ∈ Mi and v ∈ Mj for i ̸= j. Every shortest
qMi-qMj path P ∗ in G/P corresponds to a u-v path P in G by first replacing each vertex in P ∗

by the minimum-weight vertex of the corresponding module, and afterwards, since Mi and Mj

are modules, replacing the first vertex by u and the last vertex by v.
Conversely, let P be a shortest u-v path in G with u ∈ Mi and v ∈ Mj for i ̸= j. Due to

Lemma 3.17, we can assume that no two vertices of P are in the same module. Thus, due to
the structure of modules, one can assume that each vertex of P , except of u and v, are vertices
of minimum weight in their respective module. Hence, there is a qMi-qMj path in G/P of cost
distG(u, v)− ωG(v) + ωG/P

(qMi)− ωG(u) + ωG/P
(qMj), which proves the claim.

Due to Lemma 3.19, one can compute the shortest path length for vertices in different modules
by solving the vertex-weighted all-pairs shortest paths problem on the quotient graph
G/P with vertex weights ωG/P

. The next lemma shows that for vertices that are in a same
module, either the entire shortest path between them is inside this module or it is a path of
length two.

Corollary 3.20. Let G = (V, E) be a graph with vertex weights ωG : V → R≥0. Let M ⊆ V be
a module in G and P = {M1, . . . , Mt} be a modular partition of G[M]. Let further u, v ∈ M
be two vertices with {u, v} ⊆ Mi for an i ∈ [t]. Then, every shortest u-v path in G is either
completely inside G[M] or there exists a shortest u-v path with exactly two edges.

46 Algorithms Parameterized by the Modular-Width of the Input

Proof. Assume that there is a shortest u-v path P in G that is not completely inside G[M], i.e.,
it uses at least one vertex in p ∈ V \M . Since M is a module in G and u, v ∈M , every vertex
x ∈ V \M is either connected to both u and v or to neither u nor v. Thus, one can shortcut
P = (u, . . . , p, . . . , v) to P ′ = (u, p, v) and since every vertex weight is non-negative, it holds
that ω(P ′) ≤ ω(P).

We define the slightly more general problem k-capped vertex-weighted apsp that takes a
vertex-weighted graph G as an input and asks for all pairs of vertices u, v for the value dk(u, v) =
min

{
distG(u, v), k

}
. This generalizes vertex-weighted all-pairs shortest paths if we

set k large enough, i.e., set k = ∑
v∈V ω(v). We can now describe the algorithm and prove

Theorem 3.16.

Algorithm. For an input graph G = (V, E) with vertex weights ω : V → R≥0, the algo-
rithm first computes the modular decomposition tree MD(G) and then processes MD(G) in
a top-down traversal, starting with the root node. For a node vM in MD(G) with children
vM1 , . . . , vMt , let M be the corresponding module and P = {M1, . . . , Mt} be the corresponding
modular partition of G[M]. We solve k-capped vertex-weighted apsp in G[M] as follows:

First, we construct the weighted quotient graph G/P with vertex weights ωG/P
as defined in

Definition 3.18, and solve vertex-weighted all-pairs shortest paths on G/P . Next, we
compute for all pairs of vertices in G[M] that are in different modules Mi the shortest distance
in G by utilizing Lemma 3.19. Afterwards, we compute for each module Mi ∈ P the minimum
weight of all vertices in adjacent modules using G/P , i.e, ki = minqMj

∈N(qMi
) ω(qMj). Finally,

we use Corollary 3.20 and recurse by solving for each module Mi ∈ P the Problem k-capped
apsp on G[Mi] with k = ki. For the root node, we set k = ∑

v∈V ω(v).

Running Time. For any prime node vMi in MD(G), vertex-weighted all-pairs short-
est paths can be solved in time O(n2.842

i) with an algorithm due Yuster [Yus09], where ni

denotes the number of vertices in the corresponding quotient graph. With the standard com-
binatorial algorithm one can solve vertex-weighted all-pairs shortest paths in time
O(n3

i). Thus, by Theorem 3.15, the total running time for this step is O(n h1.842 +m) if we use
fast matrix multiplication or O(n h2 +m) for the combinatorial algorithm. After we have solved
vertex-weighted all-pairs shortest paths on all nodes in the modular decomposition
tree, we use Lemma 3.19 to compute for each pair of vertices in G that are in different modules
the length of a shortest path in constant time. Since we do this for each pair of vertices in G
exactly once, this sums up to a total running time of O(n2). The computation of the values
ki can be done in time O(n2

i), which is dominated by the time of solving vertex-weighted
all-pairs shortest paths. In total, we obtain a combinatorial algorithm of time O(h2 n+n2)
and an algorithm using fast matrix multiplication with time complexity O(h1.842 n + n2).

3.5 Triangle Counting
In this section, we consider the triangle counting problem, in which one is interested in the
number of triangles in the input graph, i.e., the number of different K3 subgraphs.

triangle counting

Input: An undirected graph G = (V, E).
Output: The number of triangles in G.

3.5 Triangle Counting 47

The fastest known algorithm for triangle counting in terms of the number of vertices n
relies on fast matrix multiplication and runs in O(nω) time [SW05]. We present an algorithm
that runs in O(hω−1 n + m) time. Again, our running time smoothly interpolates between
linear time O(n + m) for h = O(1) and the best unparameterized time for h ∈ Θ(n), making it
adaptive for sufficiently dense graphs; else, the O(m

2ω
ω+1) = O(m1.41) time algorithm of Alon et

al. [AYZ97] is faster. We will prove the following theorem.

Theorem 3.21. For every graph G = (V, E) with modular-width h, triangle counting can
be solved in time O(n · hω−1 + m).

Algorithm First, we compute the modular decomposition tree MD(G) of a graph G =
(V, E). We will process MD(G) in a bottom-up manner. For each vM in MD(G), with the
corresponding module M ⊆ V , we will compute the following three values: the number of
vertices nM = |V (G[M])|, the number of edges mM = |E(G[M])|, and the number of triangles
△M in G[M]. For any leaf node vM in MD(G) we have nM = 1 and mM = △M = 0,
because G[M] consists of a single vertex. Let vM be a prime node in MD(G) with children
{vM1 , . . . , vMt}. This means that P = {M1, . . . , Mt} is a modular partition of G[M]. Since we
process MD(G) in a bottom-up manner, the values for G[Mi] are already computed for i ∈ [t].
We can compute the value nM by adding up the number of vertices of each Mi and we can
compute mM by traversing all edges in the quotient graph G[M]/P :

nM =
t∑

i=1
nMi

mM =
t∑

i=1
mMi +

∑
{qMi

,qMj
}∈E(G[M]/P)

nMinMj

For computing △M , we count triangles in G[M] of three types: Triangles using vertices in
exactly one module, in two (adjacent) modules, or in three different modules of P . We call a
triangle with vertices in three different modules a separated triangle. To compute the number
of separated triangles, we use the following lemma:

Lemma 3.22. Let G = (V, E) be a graph with a modular partition P = {M1, . . . , Mt} and
quotient graph G/P . Let nMi := |Mi| and consider the weight function w : E(G/P) → R+ with
w({qMi , qMj}) = √nMinMj . Let A be the weighted adjacency matrix of G/P with respect to w.
Then, the number of separated triangles in G is:

1
6

t∑
i,j=1

(
A2 ◦A

)
i,j

,

where A ◦B denotes the Hadamard product of the matrices A and B, i.e., (A ◦B)i,j = Ai,jBi,j.

Proof. To count all separated triangles in G we need to sum up the values nMinMj nMk
for each

triangle (qMi , qMk
, qMj) in G/P . We will show, that the value (A2 ◦A)i,j exactly denotes to the

number of separated triangles in G with one vertex in Mi and one vertex in Mj . We define
a wedge as a path on three vertices (and a wedge (qMi , qMk

, qMj) requires the presence of the

48 Algorithms Parameterized by the Modular-Width of the Input

edges {qMi , qMk
} and {qMk

, qMj}). It now holds the following:

(
A2
)

i,j
=

t∑
k=1

Ai,kAk,j

=
∑

k:(qMi
,qMk

,qMj
)

is a wedge in G/P

√
nMinMk

√
nMk

nMj

= √nMinMj

∑
k:(qMi

,qMk
,qMj

)
is a wedge in G/P

nMk

⇒
(
A2 ◦A

)
i,j

=
∑

k:(qMi
,qMk

,qMj
)

is a triangle in G/P

nMinMj nMk

Every separated triangle (qMi , qMk
, qMj) in G/P is counted a total of six times: Once for each of

the three edges {qMi , qMk
}, {qMk

, qMj}, and {qMi , qMj}; and for each edge {qi, qj} of the triangle
twice, i.e., by (A2 ◦A)i,j and by (A2 ◦A)j,i. Thus, the claim follows.

Using Lemma 3.22, we can now compute △M by

△M =
t∑

i=1
△Mi +

∑
{qi,qj}∈E(G/P)

(
mMinMj + nMimMj

)
+

t∑
i,j=1

1
6
(
A2 ◦A

)
i,j

,

where the three terms refer to triangles with vertices from only one module, triangles using ver-
tices of two adjacent modules, and separated triangles with vertices in three different (pairwise
adjacent) modules.

If vM is a parallel or serial node, we will use the same approach as in Section 3.2 and replace
vM by t − 1 nodes with only two children each and quotient graphs isomorphic to I2 (in the
case of a parallel node) or K2 (in the case of a serial node).

Running Time. Computing the modular decomposition tree MD(G) takes time O(n + m).
The replacement of each parallel or serial node with t ≥ 3 children by t − 1 ‘pseudo-prime‘
nodes can be done in O(n) time. Consider a node vM in MD(G) with children {vM1 , . . . , vMt}
with t ≤ h. Recall, that P = {M1, . . . , Mt} is a modular partition of G[M]. Computing nM

takes time O(t) and computing mM takes time O(|E(G[M]/P)|) = O(t2). The running time
for computing △M is dominated by the computation of A2, which takes time O(tω). Note that
2 ≤ t ≤ h. By Theorem 3.15, we yield a total running time of O(n · hω−1 + m), which proves
Theorem 3.21. Note that this algorithm is adaptive for dense graphs, meaning that even for
h ∈ Θ(n) our algorithm is not worse than O(nω).

3.6 Edge-Disjoint Paths

In this section, we first address the problem edge-disjoint s-t paths, in which one is interested
in the maximum number of edge-disjoint s-t paths (equivalently, finding an unweighted minimum
s-t cut) in a given graph G = (V, E) with s, t ∈ V . We denote the size of a maximum number
of edge-disjoint s-t paths in a graph G by λG(s, t).

3.6 Edge-Disjoint Paths 49

maximum edge-disjoint s-t paths

Input: An undirected graph G = (V, E), s, t ∈ V .
Output: The number λG(s, t) of edge-disjoint s-t paths in G.

Later, we focus on finding a global unweighted minimum cut, i.e., maxs,t∈V λG(s, t). The
weighted variants of these problems, in particular maximum s-t flow with edge capacities,
are unlikely to admit faster algorithms when the modular-width is low, cf. the remarks in
Section 3.8.

global minimum edge cut

Input: An undirected graph G = (V, E)
Output: The number λ(G) = min{λG(s, t) | s, t ∈ V }.

3.6.1 Maximum Edge-Disjoint s-t Paths

We first consider the maximum edge-disjoint s-t paths problem. Using a flow algorithm, one
can determine the number of edge- or vertex-disjoint s-t paths in a graph. For the unweighted
case there are specialized algorithms, e.g., computing the number of edge-disjoint s-t paths in
an undirected graph can be done in time O(n 3

2 m
1
2) using an algorithm due to Goldberg and

Rao [GR99a]. We will prove the following theorem.

Theorem 3.23. For every graph G = (V, E) with modular-width h and s, t ∈ V , edge-disjoint
s-t paths can be solved in time O(h3 + n + m).

Algorithm. Let G = (V, E) be a graph with s, t ∈ V . We assume that G is connected,
otherwise we consider the connected component with s and t as the new input graph or conclude
that λG(s, t) = 0 if s and t are in different connected components of G. First, we compute the
modular decomposition tree MD(G). Instead of traversing the decomposition tree completely,
we will only consider one modular partition of G.

Lemma 3.24. Let G = (V, E) be a graph, let s, t ∈ V , and let P be a modular partition of G.
If there exists a module M ∈ P with s, t ∈M and a module N ∈ P that is adjacent to M , then
λG(s, t) = min{degG(s), degG(t)}.

Proof. Obviously, it holds that λG(s, t) ≤ min{degG(s), degG(t)}. For the converse direction
assume, w.l.o.g., that degG(s) ≤ degG(t). For every vertex v ∈ NG(s)\M , we consider the path
(s, v, t). We stress that v is also a direct neighbor of t and that all these paths are clearly edge-
disjoint. Since we assume that degG(s) ≤ degG(t), it also holds that degG[M](s) ≤ degG[M](t).
Hence, |NG[M](s)| ≤ |NG[M](t)| and we can assign for every vertex v ∈ NG[M](s) a private
vertex v′ ∈ NG[M](t). Let w ∈ N be an arbitrary vertex in the neighboring module N . For all
v ∈ NG[M](s) we either choose the path (s, v, t), if v = v′, or the path (s, v, w, v′, t), if v ̸= v′.
For v = t ∈ NM (s), if it exists, we use the path (s, t). Overall this results in degG(s) many
edge-disjoint s-t paths. This implies that degG(s) = min{degG(s), degG(t)} ≤ λG(s, t).

Corollary 3.25. Let G = (V, E) be a graph, let s, t ∈ V , and let P be a modular partition of
G such that G/P is a complete graph. Then λG(s, t) = min{degG(s), degG(t)}.

50 Algorithms Parameterized by the Modular-Width of the Input

Proof. Corollary 3.25 directly follows from Lemma 3.24 if |G/P | ≥ 3; in this case there always
exists a modular partition P such that s and t are in a same module M ∈ P with an adjacent
module N ∈ P . If |G/P | = 2, the quotient graph G/P is isomorphic to K2 and the claim can be
verified similar to the proof of Lemma 3.24.

Consider the root vertex vM of MD(G) and let {vM1 , . . . , vMℓ
} be the children of vM , i.e.,

let P = {M1, . . . , Mℓ} be a modular partition of G[M] = G. Since we assume that G is
connected, vM cannot be a parallel node. If vM is a serial node, we can conclude that λG(s, t) =
min{degG(s), degG(t)} by Corollary 3.25. Let vM be a prime node. If s and t belong to the
same module, we again conclude due to Lemma 3.24 that λG(s, t) = min{degG(s), degG(t)},
since every quotient graph of a prime node is connected. It remains to solve the case that vM

is a prime node but s and t do not belong to the same module. We will reduce this case to
a single computation of a maximum edge-capacitated flow. For readability, we will denote in
the following the set of vertices of the quotient graph G/P by {q1, . . . , qℓ} while each vertex qi

corresponds to the module Mi ∈ P , for i ∈ [ℓ].

Definition 3.26. Let G = (V, E) be a graph, let s, t ∈ V , and let P = {M1, ..., Mℓ} be a
modular partition of G into ℓ ≥ 2 modules. Let s ∈M1, let t ∈Mℓ, and let G/P be the quotient
graph with vertex set {q1, . . . , qℓ}. We define a flow network N = (G′, q0, qℓ+1, c) as follows:

• The graph G′ is initiated as being equal to G/P .

• We add vertices q0 and qℓ+1 to V (G/P), each with the same neighbors as q1 resp. qℓ.

• We add the edges {q0, q1} and {qℓ+1, qℓ}.

• The ℓ + 2 vertices of G′ correspond to the sets of vertices in the partition
P ′ = {M ′

0, M ′
1, M ′

2, . . . , M ′
ℓ, M ′

ℓ+1} with M ′
0 = {s}, M ′

1 = M1 \ {s}, M ′
ℓ = Mℓ \ {t},

M ′
ℓ+1 = {t}, and M ′

i = Mi for i ∈ {2, 3, . . . , ℓ− 1}.

• The capacities on the edges of G′ represent the number of edges between the corresponding
vertex sets in G, i.e. c(qi, qj) = |M ′

i ||M ′
j | for {qi, qj} ∈ E(G′) \ {{q0, q1}, {qℓ, qℓ+1}} resp.

c(q0, q1) = degG[M1](s) and c(qℓ, qℓ+1) = degG[Mℓ](t).

Lemma 3.27. Let G = (V, E) be a graph, let s, t ∈ V , and let P = {M1, ..., Mℓ} be a modular
partition of G. Let s ∈ M1, t ∈ Mℓ and ℓ ≥ 2. Let N = (G′, q0, qℓ+1, c) be the flow network as
defined in Definition 3.26. Then, the maximum flow in N is equal to λG(s, t).

The graph G′ together with the capacities c is a compact representation of G, but without
the edges inside a module (except for incident edges to s or t). In order to prove Lemma 3.27,
we first observe that those edges inside modules are not helpful to get edge-disjoint paths in G.
To see this, we consider the following assignment problem.

Lemma 3.28. Let A = {a1, . . . , aℓ}, let B = {b1, . . . , br}, and let X = {x1, . . . , xk} be sets
of vertices and G be a graph with vertex set A ∪ B ∪ X. Let f : A ∪ B → N be a function
that denotes the demand of every vertex in A ∪ B, with the constraints f(ai) ≤ k = |X| and
f(bj) ≤ k for all i ∈ [ℓ] and j ∈ [r], and

∑ℓ
i=1 f(ai) = ∑r

j=1 f(bj). Then there is a set of
directed arcs E ⊆ (A ×X) ∪ (X × B) in G such that deg+

G(ai) = f(ai), deg−G(bj) = f(bj) and
deg+

G(xd) = deg−G(xd) for all i ∈ [ℓ], j ∈ [r] and d ∈ [k].

3.6 Edge-Disjoint Paths 51

Proof. We can solve this assignment problem with a flow computation. To do so, we construct
a directed graph G as follows: The vertex set consists of A, B, X and two vertices s and t. We
add edges (s, ai) of capacity f(ai) for each i ∈ [ℓ] and denote these edges with S. In almost
the same manner we add edges (bj , t) of capacity f(bj) for each j ∈ [r] and denote these edges
with T . At last, we add all edges A × X and X × B to the graph, each with capacity one.
Denote the resulting network by N = (G, s, t, c). To prove the lemma we only have to show
that the maximum flow in N is equal ∑ℓ

i=1 f(ai) = c(S) = c(T). To do so, we observe that
the minimum weighted s-t cut in N is equal to c(S) = c(T): Let C ⊆ E(G) be an arbitrary
minimum s-t cut in G. If S ⊆ C then it holds that c(S) ≤ c(C) and since S is an s-t cut there
is indeed equality. The same applies if T ⊆ C. Thus, assume that S \ C ̸= ∅ and T \ C ̸= ∅.
Let w.l.o.g. |S \ C| ≤ |T \ C|. Let D = C ∩ (S ∪ T) and let A′ ⊆ A, resp. B′ ⊆ B, be the set
of vertices of A, resp.B, that are not incident to an edge in D. Since |S \ C| ≤ |T \ C| it holds
that |A′| ≤ |B′|. It is easy to see that there are k · |A′| edge disjoint paths between A′ and B′.
Hence, to augment S ∩C to an s-t cut without taking edges in S ∪ T one needs to take at least
k · |A′| = k · |S \C| edges. Therefore, c(C) ≥ c(S ∩C) + k · |S \C| ≥ c(S ∩C) + c(S \C) = c(S).
Again, since S is an s-t cut in N , there is indeed equality.

Corollary 3.29. Let G = (V, E) be a graph, let s, t ∈ V , and let P = {M1, ..., Mℓ} be a
modular partition of G into ℓ ≥ 2 modules with s ∈ M1 and t ∈ Mℓ. Let further P ′ =
{M ′

0, M ′
1, M ′

2, . . . , M ′
ℓ, M ′

ℓ+1} be the partition of V (G) as defined in Definition 3.26. Then, there
exists a set of edge-disjoint s-t paths in G of size λG(s, t) with the property that no path used
edge inside a vertex set M ∈ P ′.

Proof. Consider a maximum set of edge-disjoint s-t paths in G. Assume that there is a path
that uses an edge inside a vertex set M ∈ P ′. Note that M ′

0 = {s} and Mℓ+1 = {t}, implying
M ̸= M ′

0 and M ̸= M ′
ℓ+1. Thus, every path traversing nodes in M visits a vertex before and

after M . Orient every path to a directed path from s to t (since the paths are edge-disjoint,
this is possible). Denote the set of those directed edges by D. We can apply Lemma 3.28 to
rearrange the paths, such that no edge inside M is used, by setting X = M , A = {v ∈ V |
(v, m) ∈ D∧m ∈M} and B = {v ∈ V | (m, v) ∈ D∧m ∈M}. Additionally, we set the demand
f(a) = |{m ∈M | (a, m) ∈ D}| for a ∈ A and f(b) = |{m ∈M | (m, b) ∈ D}| for b ∈ B.

Proof of Lemma 3.27. Let MF (N) denote the maximum flow value in N = (G′, q0, qℓ+1, c).
Let P ′ = {M ′

0, M ′
1, M ′

2, . . . , M ′
ℓ, M ′

ℓ+1} be the partition of V corresponding to the vertices in
G′. Any flow in N corresponds to edge-disjoint paths in G not using edges inside a set of P ′,
yielding MF (N) ≤ λG(s, t). Conversely, by Corollary 3.29 we can modify any maximum set
of edge disjoint s-t paths to a set of edge-disjoint s-t paths that does not use edges inside a
vertex set of P ′. Again, any such set of edge-disjoint path corresponds to a flow in N , proving
MF (N) ≥ λG(s, t).

Running Time. Consider a connected graph G = (V, E) with modular-width h and let
s, t ∈ V . Computing the modular decomposition tree takes time O(n + m). Let vM be the root
module of the decomposition tree MD(G) with children {vM1 , . . . , vMℓ

}, i.e., P = {M1, . . . , Mℓ}
is a modular partition of G[M] = G. If vM is a series node or s and t are in a same module in P ,
we can compute λG(s, t) by Lemma 3.24 in time O(m). Otherwise, we use the network defined
in Definition 3.26. Computing this network takes time O(|V (G′)|+ |E(G′)|) = O(ℓ2). Then, we
can compute λG(s, t) in time O(ℓ3) using the maximum flow algorithm by Orlin [Orl13]. Since
ℓ ≤ h we have proven Theorem 3.23. Note that we apply the O(nm) time algorithm by Orlin
only once on the quotient graph of the root node vM ∈MD(G), where h2 is only an upper bound

52 Algorithms Parameterized by the Modular-Width of the Input

on the number of edges in G[M]/P . For sparse graphs, we can also bound the number of edges
in G[M]/P by the number of edges in G, giving us the running time of O(min{h m, h3}+n+m).

Kernel. The algorithm with running time O(h3 +n + m) can be easily modified to compute
a kernel in linear time: We can compute in time O(n+m) an equivalent instance of a maximum
flow problem of size O(h2), which can be solved in time O(h3). Such results were also achieved by
Coudert et al. [CDP19] for eccentricities, hyperbolicity, and betweenness centrality
parameterized by modular-width. It is easy to see that this holds in general for any algorithm
with running time O(f(k) + n + m): The running time is either dominated by O(f(k)) or by
O(n + m); we run the algorithm for c · (n + m) steps (for c large enough), either it terminates or
we can conclude that f(k) ≥ c ·(n+m) and our input graph is already a kernel of size O(f(k)).7

3.6.2 Global Minimum Cut
Now, we turn our focus onto computing the global minimum (edge) cut for an unweighted graph
G = (V, E), i.e. λ(G) = min{λG(s, t) | s, t ∈ V }. We will reduce the computation of a global
(unweighted) minimum cut of G to a single computation of a global weighted minimum cut
in a graph closely related to the quotient graph of the root module. For this, we modify the
algorithm for finding a minimum s-t cut for fixed s, t ∈ V seen in Section 3.6.1. We will prove
the following theorem.

Theorem 3.30. For every graph G = (V, E) with modular-width h, global minimum edge
cut can be solved in time O(h3 + n + m).

Algorithm. Consider a graph G = (V, E). We can assume that G is connected, otherwise
it holds that λ(G) = 0. First, we compute the modular decomposition tree MD(G). Let
vM be the root node of MD(G). If vM is a serial node it follows from Corollary 3.25 that
λG(s, t) = min{degG(s), degG(t)} for all pairs of vertices s, t ∈ V ; therefore, if vM is a serial node
it holds that λ(G) = minv∈V degG(v). Assume that vM is a prime node and let {vM1 , . . . , vMℓ

}
be the children of vM in MD(G), i.e., P = {M1, . . . , Mℓ} is modular partition of G[M] = G.
Let (s∗, t∗) = arg min{λG(s, t) | s, t ∈ V }. Obviously, it holds that λ(G) ≤ minv∈V degG(v).
If s∗ and t∗ belong to the same module Mi ∈ P then it holds that λ(G) = minv∈V degG(v)
by Lemma 3.24. It is only possible that λ(G) < minv∈V degG(v), if s∗ and t∗ are in different
modules. The following lemma shows that s∗ and t∗ are necessarily vertices of minimum degree
in a module.

Lemma 3.31. Let G = (V, E) be a graph and P = {M1, . . . , Mℓ} be a modular partition of G
with ℓ ≥ 2. Let (s∗, t∗) = arg min{λG(s, t) | s ∈ Mi, t ∈ Mj , i ̸= j}. Then, it is possible to pick
s∗ and t∗ as vertices of minimum degree in their modules.

Proof. Let s and t be two arbitrary vertices with {s, t} ⊈ Mi for all i ∈ [ℓ]. After a possible
renaming of the modules, we can assume that s ∈ M1 and t ∈ Mℓ. As shown in Section 3.6.1,
one can compute λG(s, t) by computing a maximum flow in the network N = (G′, q0, qℓ+1, c)
as defined in Definition 3.26. The graph G′ will be the same for all s ∈ M1 and t ∈ Mℓ, but
the capacities on the edges {q0, q1} and {qℓ, qℓ+1} do change. These capacities are equal to
degG[M1](s), resp. degG[Mℓ](t). Thus, they are minimal if we choose s ∈ M1 and t ∈ Mℓ such
that s and t have minimum degree in M1 resp. Mℓ, which proves the claim.

7This can be generalized in an obvious way to running times of type O(f(k) + g(N)), where N denotes the
input size.

3.6 Edge-Disjoint Paths 53

Now, we can create an auxiliary graph that is similar to graph G′ in Definition 3.26, in order
to compute λ(G).

Definition 3.32. Let G = (V, E) be a graph and let P = {M1, ..., Mℓ} be a modular partition
of G into ℓ ≥ 2 modules. Let vi ∈ Mi denote a vertex of minimum degree in Mi for i ∈ [ℓ].
Let G/P be the quotient graph with vertex set {q1, . . . , qℓ}. We define a edge-capacitated graph
G∗ = (V ∗, E∗) with capacities c : E∗ → N as follows:

• The graph G∗ is initiated as being equal to G/P .

• We add vertices qℓ+i to V (G/P), each with the same neighbors as qi for i ∈ [ℓ].

• We add the edges {qi, qi+ℓ} to E∗ for i ∈ [ℓ].

• The 2ℓ vertices of G∗ correspond to the sets of vertices in the partition
P ′ = {M ′

1, M ′
ℓ+1, M ′

2, M ′
ℓ+2, . . . , M ′

ℓ, M ′
2ℓ} with M ′

i = {vi} and M ′
ℓ+i = Mi\{vi} for i ∈ [ℓ].

• The capacities on the edges of G∗ represent the number of edges between the corresponding
vertex sets in G, i.e.
c(qi, qj) = |M ′

i ||M ′
j | for {qi, qj} ∈ E(G′) \ {{qk, qk+ℓ} | k ∈ [ℓ]} with i, j ∈ [2ℓ] and

c(qi, qi+ℓ) = degG[Mi](vi) for i ∈ [ℓ].

Lemma 3.33. Let G = (V, E) be a graph and P = {M1, . . . , Mℓ} be a modular partition of G
into ℓ ≥ 2 modules. Let (G∗, c) be the weighted auxiliary graph defined in Definition 3.32. Then
λ(G) = λ((G∗, c)).

Proof. Let vi be a vertex of minimum degree in Mi. We know that λ(G) = min{λG(s, t) |
s, t ∈ V } is the lowest maximum s-t flow in G considering every pair of vertices s, t ∈ V . By
Lemma 3.31, we only need to consider vertices of minimum degree in each module. First, we
observe that a maximum vi-vj flow in G (with capacities all equal to one) has the same value as
a maximum qi-qj flow in G∗ (with the capacity function c as defined in Definition 3.32) by the
same argument as in the proof of Lemma 3.27. Therefore, λ(G) ≥ λ((G∗, c)). For the converse,
we observe that λ((G∗, c)) corresponds to a maximum flow between two vertices qi and qj with
i, j ≤ ℓ, because each pair (qi, qi+ℓ) has the exact same neighborhood, but the capacities on
incident edges of qi are smaller than the capacities on incident edges of qi+ℓ. Since every qi-qj

flow in G∗ with i, j ≤ ℓ has the same value as a vi-vj flow in G, we have proven the claim.

Running Time. Consider a graph G = (V, E) with modular-width h. Computing the modu-
lar decomposition tree MD(G) takes linear time O(n+m). Let vM be the root node of MD(G)
with children {vM1 , . . . , vMℓ

}, i.e, P = {M1, . . . , Mℓ} is a modular partition of G[M] = G.
If vM is a parallel node or a serial node, we can compute λ(G) in time O(m). Assume vM

to be a prime node. Generating the instance (G∗, c) according to Definition 3.32 takes time
O(|V (G∗)|+|E(G∗)|) = O(ℓ2). Note that |V (G∗)| = 2ℓ. Computing a weighted global minimum
edge cut in the undirected graph G∗ can be done in time O(ℓ3) by using the algorithm of Stoer
and Wagner [SW97]. Since ℓ ≤ h we have proven Theorem 3.30. Note that the running time
of this algorithm is actual only depending on the size of the quotient graph of the root node,
which is only upper bounded by the modular-width of the graph (but might be much smaller).
Again, since the algorithm by Stoer and Wagner has a time complexity of O(nm + n2 log n)
on graphs with n vertices and m edges, it is also possible to bound the running time of our
algorithm by O(h m + h2 log h).

54 Algorithms Parameterized by the Modular-Width of the Input

3.7 Vertex-Disjoint Paths
A connected graph G = (V, E) is said to be k-vertex-connected if one can delete up to k − 1
arbitrary vertices and G stays connected. The vertex-connectivity of G, denoted by κ(G), is
the largest k for which G is k-vertex-connected. In other words, κ(G) = min{κG(s, t)|s, t ∈
V, {s, t} /∈ E} and κG(s, t) denotes the minimum size of an s-t-vertex separator in G. By
Menger’s Theorem [Men27], for s, t ∈ V , the minimum size of an s-t-vertex separator is exactly
the size of the maximum number of vertex-disjoint s-t paths, denoted by ΠG(s, t). The latter
one is as well of independent interest. One can compute ΠG(s, t) by solving an s-t vertex
capacitated flow with capacities equal to one for every vertex. Instead of focusing on ΠG(s, t),
we directly solve the more general problem of computing a maximum s-t vertex-capacitated
flow with an arbitrary capacity function c : V \ {s, t} → R+.

maximum s-t vertex flow

Input: A Network (G, s, t, c) with G = (V, E), s, t ∈ V , c : V \ {s, t} → R+.
Output: A maximum s-t vertex-capacitated flow f .

Computing the maximum s-t vertex flow in a vertex-capacitated graph will be the focus
of Section 3.7.1. In Section 3.7.2 we will then focus on computing κ(G), but again in the more
general setting with vertex capacities.

global minimum vertex cut

Input: An undirected graph G = (V, E), capacity function c : V → R+.
Output: A set X ⊆ V of minimum capacity such that G−X is disconnected.

3.7.1 Maximum s-t Vertex Flow

By a simple reduction from vertex-capacitated flow to directed edge-capacitated flow one can
solve maximum s-t vertex flow in time O(nm) using an algorithm by Orlin [Orl13]. In this
section, we will prove the following theorem.

Theorem 3.34. Let N = (G, s, t, c) be a network with G = (V, E) be a graph with modular-
width h, s, t ∈ V , and c : V → R+. Then, we can compute a maximum s-t vertex-capacitated
flow in N in time O(h3 + n + m).

Algorithm. Consider a network N = (G, s, t, c) consisting of a graph G = (V, E) with
s, t ∈ V and a capacity function c : V \ {s, t} → R+. We want to compute a maximum s-t flow
in N . Assume that {s, t} /∈ E, otherwise the maximum s-t flow is unbounded. Our algorithm
will traverse the modular decomposition tree MD(G) in a bottom-up manner. Let vM be the
node in MD(G) that corresponds to the smallest module M with s, t ∈ M (that is the lowest
common ancestor of the two leaves in MD(G) corresponding to {s} and {t}). We distinguish
three cases to compute a maximum s-t flow in G[M]. If vM is a parallel node, the maximum
s-t flow in G[M] is zero. If vM is a serial node, s and t are adjacent (which we ruled out). For
the case of vM being a prime node in MD(G), let {vM1 , .., vMℓ

} be the set of children of vM .
This means that P = {M1, .., Mℓ} is a modular partition of G[M]. Let G[M]/P be the quotient
graph of G[M] with the vertex set {q1, . . . , qℓ}. We assume, w.l.o.g. , that s ∈M1 and t ∈Mℓ.
The following lemma shows that the maximum s-t flow in (G[M], s, t, c) can be computed as

3.7 Vertex-Disjoint Paths 55

the maximum q1-qℓ flow in G[M]/P where the capacity of qi is simply the sum of capacities of
the vertices of its corresponding module.

Lemma 3.35. Let N = (G, s, t, c) be a flow network with a graph G = (V, E), s, t ∈ V , and
c : V \ {s, t} → R+. Let P = {M1, . . . , Mℓ} be a partition of V into modules with s ∈ M1 and
t ∈ Mℓ. Then, the maximum flow in N is equal to the maximum flow in N ′ = (G/P , q1, qℓ, c′)
with the capacity function c′ : V (G/P) \ {q1, qℓ} → R+ defined by c′(qi) = ∑

v∈Mi
c(v).

Proof. Recall that for an undirected graph G = (V, E) we denote by ←→G = (V,
←→
E) the directed

graph with ←→E = {(u, v), (v, u) | {u, v} ∈ E}. Let f ′ : E(←−→G/P)→ R+ be a maximum flow in N ′.
Then, f ′ corresponds to a flow f in N not using any edges inside the modules. Therefore, the
size of maximum flow in N is at least the size of maximum flow in N ′.

Conversely, consider a maximum flow f : E(←→G) → R+ of N . We show that there is always
a maximum flow in N that does not use edges inside a module. Consider a maximum flow
f in N that does use edges inside a module. It is well known that a flow in a graph can be
decomposed into flows along paths in the graph. Thus, in any decomposition of f there must be
an s-t path Q = (s = v1, v2, . . . , vr = t) where some vi and vi+1, with i ∈ [r − 1], are contained
in the same module M . We can replace flow along Q by sending the same amount of flow along
any minimal subpath Q′ of Q, which can be obtained by repeatedly shortcutting Q along edges
between vertices that are not consecutive in Q. Clearly, this does not affect used capacity at
vertices in Q′ and only decreases used capacity at vertices that are in Q but not Q′. It is easy
to see that the shortcutting operation keeps at most one of vi and vi+1 in Q′ (that is, at most
one vertex from the subpath of Q in M is retained).

Applying the above method iteratively, we have modified the flow f such that the flow does
not use edges inside a module. Such a flow f in N directly corresponds to a flow f ′ in N ′ with
|f ′| = |f |.

After computing the maximum s-t flow in G[M], we can directly compute the maximum s-t
flow in G:

Lemma 3.36. Let N = (G, s, t, c) be a network with a graph G = (V, E), vertices s, t ∈ V , and
a capacity function c : V \ {s, t} → R+ and let M ⊆ V be a module of G with s, t ∈M . Let fM

be a maximum s-t flow in G[M]. Then the maximum flow value in N , denoted by MF (N), is
equal to:

MF (N) = |fM |+
∑

v∈NG(s)\M
c(v)

Proof. Since s, t ∈M , it holds that every vertex v ∈ NG(s) \M is also a neighbor of t. Hence,
we can augment the flow fM for every v ∈ NG(s) \M by the augmenting path (s, v, t) with
capacity c(v). Since M is a module, all vertices adjacent to a vertex in M are used with full
capacity, hence, there is no further augmenting path using vertices in V \M . However, since fM

is already a maximum s-t flow in G[M], there is also no further augmenting path completely in
G[M].

Running Time. Consider a graph G = (V, E) with modular-width h and a network N =
(G, s, t, c) with s, t ∈ V and c : V \ {s, t} → R+. Computing the modular decomposition tree
MD(G) takes time O(n + m). Determining the node vM in MD(G) that corresponds to the
smallest module M with s, t ∈ M (i.e. the lowest common ancestor of the two leaf nodes in
MD(G) that corresponds to the graph only consisting of vertex s resp. t) takes time O(n). We

56 Algorithms Parameterized by the Modular-Width of the Input

can compute the size of a maximum s-t flow in G[M] by either concluding that the flow is equal
to zero (if vM is parallel) or by using Lemma 3.35 (if vM is prime). The latter can be done in
time O(ℓ3) using the algorithm due to Orlin [Orl13] where ℓ ≤ h denotes the size of the quotient
graph of M . Note that M cannot be series, since we assume {s, t} /∈ E. Due to Lemma 3.36,
we can compute the maximum flow in N in additional O(n) time, which proves Theorem 3.34.
Again, one can also bound the computation of the maximum flow in G/P by O(h m), giving us
the adaptive running time of O(min{h m, h3}+ n + m).

3.7.2 Global Minimum Vertex Cut

In the global minimum vertex cut problem we are given an input graph G = (V, E) and
a capacity function c : V → R+ and need to compute a set X ⊆ V of minimum capacity
such that G − X is disconnected. This is equivalent to finding a pair of vertices s, t ∈ V
such that the maximum s-t vertex flow is minimized. We denote the minimum s-t vertex cut,
respectively the maximum s-t flow in G, with capacity function c by Π(G,c)(s, t) and omit c if
the capacity function is clear. We denote by Π((G, c)) the global minimum vertex cut, thus
Π((G, c)) = mins,t∈V (G) Π(G,c)(s, t) and again omit c if the capacity function is clear. We set
Π(G,c)(s, t) =∞, if s and t are adjacent. The naive approach to solve this problem is to calculate
for each pair of vertices the maximum vertex-capacitated flow. Henzinger et al. [HRG00] showed
how to solve this problem in time O(κ1nm log(n2/m)), where κ1 denotes the vertex connectivity
if vertex capacities are ignored (or equivalently, if all capacities are set to one). We will prove
the following theorem.

Theorem 3.37. For every graph G = (V, E) with modular-width at most h and vertex capacities
c : V → R+, global minimum vertex cut can be solved in time O(κ1 h2 n log(h) + m).

Algorithm. Consider a graph G = (V, E) and a capacity function c : V → R+. First, we
compute the modular decomposition tree MD(G). For every node vM in MD(G), we will
compute the total capacity of the corresponding module c(M) := ∑

v∈M c(v) and the size of
a minimum vertex cut Π(G[M]). Then, for the root node vM in MD(G), we have eventually
computed Π(G[M]) = Π(G). We traverse the decomposition tree in a bottom-up manner. We
set Π(G[M]) = ∞ for all leaf modules vM . In the following, for computing Π(G[M]) for any
module M corresponding to a node vM in MD(G), we can always assume that we have already
computed the size of a minimum vertex cut for all child nodes. The next lemma shows that
this information is enough to compute the minimum vertex cut in the parent node.

Lemma 3.38. Let G = (V, E) and M be a module of G. Let s, t, u, v ∈ M . If ΠG[M](s, t) ≤
ΠG[M](u, v) then also ΠG(s, t) ≤ ΠG(u, v).

Proof. By Menger’s Theorem, ΠG[M](s, t) and ΠG[M](u, v) both correspond to a maximum ver-
tex flow in G[M]. Due to Lemma 3.36, the maximum flow in G increases by the same amount
for both values.

Let vM be a node in MD(G) with children {vM1 , . . . , vMℓ
}. This means P = {M1, . . . , Mℓ} is

a modular partition of G[M]. If vM is a parallel node, it holds that Π(G[M]) = 0. Now, assume
that vM is a serial node. Again, we compute c(M) = ∑

i∈[ℓ] c(Mi). To compute Π(G[M]), we
first observe that for all s ∈Mi, t ∈Mj with i ̸= j we have ΠG[M](s, t) =∞, because they are
adjacent. Therefore, a minimum vertex cut in G[M] has to be an s-t vertex cut with s and t
being in the same module Mi. Hence, we can compute Π(G[M]) by extending every minimum

3.7 Vertex-Disjoint Paths 57

cut in a module by the summation of the capacities of the neighboring modules and taking the
minimum:

Π(G[M]) = min
i∈[ℓ]

Π(G[Mi]) +
∑

k∈[ℓ]\{i}
c(Mk)


= min

i∈[ℓ]
{Π(G[Mi]) + c(M)− c(Mi)}

Finally, assume that vM is a prime node. There are two different types of vertex cuts in G[M].
The first type of vertex cut is an s-t cut for vertices s and t in a same module, in the following
denoted by Π̂(G[M]). In this case, every vertex cut in G[Mi] has to be extended to a vertex
cut in G[M] by adding the capacities of neighboring modules, formally we have

Π̂(G[M]) = min
i∈[t]

Π(G[Mi]) +
∑

j:{qi,qj}∈E(G[M]/P)
c(Mj)

 .

The second type of vertex cuts in G[M] is an s-t vertex cut with s and t being in different
(and non-adjacent) modules. The following Lemma shows that in this case we can compute the
maximum vertex cut in G[M] by computing a maximum vertex cut in G[M]/P with a capacity
function c′ : V (G[M]/P)→ R+ defined by c′(qi) = c(Mi).

Lemma 3.39. Let G = (V, E) be a graph with a modular partition P and let s, t ∈ V with
{s, t} /∈ E. Let Ms, Mt ∈ P with Ms ̸= Mt, s ∈ Ms and t ∈ Mt. Let X ⊆ V be a minimum s-t
vertex cut in G. Then, for every module M ∈ P , either M ⊆ X or M ∩X = ∅.

Proof. Assume for contradiction that there is a minimum s-t vertex cut X in G and that there
is a module M ∈ P with M ∩ X = XM and ∅ ⊊ XM ⊊ M . We claim that in this case
X ′ = X \XM is an s-t vertex cut in G, contradicting the minimality of X.

Suppose X ′ is not an s-t vertex cut in G. Consider any s-t path Q that contains at most one
vertex in each module. Such a path exists by elementary properties of modules. There must be
a vertex p ∈ XM in Q as X = X ′ ∪XM is an s-t vertex cut. Clearly, replacing p by any vertex
q ∈M \XM ̸= ∅ yields another s-t path that also avoids X, a contradiction.

After computing the global minimum cut in the quotient graph with capacity function c′, we
simply need to compare this value with Π̂(G[M]) and choose the smaller value as the minimum
cut for G[M].

Running Time. Let G = (V, E) be a graph with capacity function c : V → R+ that is an
instance for the global minimum vertex cut problem and let h be the modular-width of G.
The modular decomposition tree MD(G) can be computed in linear time. For every node vM

in MD(G), computing c(M) takes total time O(n), since it will be iteratively computed from
the values of the child nodes and MD(G) has less than 2n nodes. By the same argument, the
total running time for all serial nodes is O(n). Let vM be a prime node in MD(G) with children
{vM1 , . . . , vMℓ

}, i.e., P = {M1, . . . , Mℓ} is a modular partition of G[M]. Note that ℓ ≤ h.
The value Π̂(G[M]) can be computed in time O(ℓ2). We can find a global minimum vertex
capacitated cut in G[M]/P in time O(κ′1nimi log(n2

i /mi)) due to Henzinger et al. [HRG00] where
κ′1 denotes the unweighted vertex connectivity in G[M]/P and ni ≤ h resp. mi ≤ h2 denotes
the number of vertices resp. edges in G[M]/P . Note that κ′1 ≤ min{κ1, h}. By Theorem 3.15,
this results in a total running time of min{O(κ1 h m log(h)),O(κ1 h2 n log(h)+m)} which proves
Theorem 3.37. In both running times one can also replace κ1 by h.

58 Algorithms Parameterized by the Modular-Width of the Input

3.8 Conclusion

We have obtained efficient parameterized algorithms for the problems maximum matching,
maximum b-matching, vertex-weighted all-pairs shortest paths, triangle count-
ing, and several path- and flow-type problems with respect to the modular-width h of the
input graph. All time bounds are of form O(f(h)n + m), O(n + f(h)m), O(f(h) + n + m), resp.
O(f(h)n+n2) for vertex-weighted all-pairs shortest paths, where running times of form
O(f(h) + n + m) can be seen to imply linear-time preprocessing to size O(f(h)). Throughout,
the dependence f(h) is very low and several algorithms are adaptive in the sense that their time
bound interpolates smoothly between the trivial lower bound of the problem when h = O(1)
and the best known unparameterized running time when h ∈ Θ(n). Thus, even if typical inputs
may have modular width Θ(n) (a caveat that all structural parameters face to some degree),
using these algorithms costs only a constant-factor overhead and already h = o(n) yields an
improvement over the unparameterized case. We stress that all running times in this chapter
also include the time to compute the modular-decomposition tree; a quality that do not many
structural parameters share.

As mentioned in the introduction, (low) modular-width seems useless in problems where
edges are associated with weights and/or capacities. Intuitively, these numerical values distin-
guish edges between adjacent modules M and M ′, which could otherwise be treated as largely
equivalent. For concreteness, consider an instance (G, s, t, w) of the shortest s-t path prob-
lem where G = (V, E) is a graph, s, t ∈ V , and w : E(G) → N denotes the edge weights.
Clearly, the distance from s to t is unaffected if we add the missing edges of G and let their
weight exceed the sum of weights in w. However, the obtained graph is a clique and has con-
stant modular-width. Similar arguments work for other edge-weighted/capacitated problems
like maximum s-t flow using either huge or negligible weights. In each case, running times
of form O(f(h)g(n, m)) would imply time O(g(n, m)) for the unparameterized case (without
considering modular-width), so the best such running times cannot be outperformed even for
low modular-width.

Apart from developing further efficient (and adaptive) parameterized algorithms relative to
modular-width there are other directions of future work. Akin to conditional lower bounds
via fine-grained analysis of algorithms it would be interesting to prove optimality of efficient
parameterized algorithms for all regimes of the parameters (e.g., like Bringmann and Künne-
mann [BK18]). Which other graph parameters allow for adaptive parameterized running times
so that even nontrivial upper bounds on the parameter imply faster algorithms than the unpa-
rameterized worst case? A way more general parameter than modular-width is the parameter
clique-width. The clique-width is always at most the modular-width, actual, the clique-width of
a graph G is the maximum clique-width of all quotient graphs of a prime node in a modular de-
composition tree. The clique-width is also bounded on graph of bounded tree-width or bounded
shrub-depth. For some of the considered problems in this chapter, we will give parameterized
algorithm regarding the clique-width of the input in the next chapter.

Recent result for flow computation. Very recently, Chen et al. [CKL+22] claimed in a
breakthrough result an O(m1+o(1) log U) time randomized algorithm for computing a maximum
s-t flow in a graph G with integral capacities in [U], where m resp. n denotes the number
of vertices resp. edges in G. Via standard reduction between edge-capacitated and vertex-
capacitated flows, this result also hold for vertex-capacitated flows. Li et al. [LP20] have proven
that one can compute a global edge min cut in undirected weighted graphs using polylog(n) calls
to any maximum flow subroutine, which proves that one can solve global minimum edge cut

3.8 Conclusion 59

in time O(m1+o(1)). In [LNP+21] it is shown that one can compute a global minimum vertex cut
in time Õ(mα) for any α ≥ 1 if there is a mα-time algorithm for maximum flow, which results in
a running time of O(m1+o(1)) for global minimum vertex cut. This improves the running
time of the best unparameterized algorithms for the problems in the four four lowermost rows
in Table 3.1 to O(m1+o(1)), assuming polynomially bounded vertex capacities for the latter two.

Using those algorithms as black box routines in the parameterized algorithm, we can improve
our results to O(h2+o(1) +n + m) for maximum edge-disjoint s-t paths, global minimum
edge cut, and maximum s-t vertex flow, resp. to O(m ho(1)) for global minimum vertex
cut, where h denotes the modular-width of the input graph. For the former three problems,
one can actually bound the running time by O(m1+o(1)

G/P
+ n + m) where mG/P

≤ h2 denotes the
number of edges in the quotient graph attached to the root node of the modular decomposition
tree, resp. in the quotient graph attached to the lowest common ancestor of the two leaf nodes
that corresponds to the graphs only consisting of vertex s resp. t.

Summarizing, we can still apply the linear-time preprocessing to get a kernel with at most
O(h) many vertices, and then using the improved algorithm due to Chen et al. to get adaptive
algorithms. However, since the computation of the modular decomposition does already take
O(n + m), the speedup even for graph with constant modular-width is marginal to the almost
linear time unparameterized algorithms.

4
Algorithms Parameterized by the Clique-Width

of the Input

Clique-width is one of the most studied parameters in theoretical computer science. As
modular-width (cf. Section 3.1), clique-width captures the closeness of a graph to a cograph,
with cographs being exactly the graphs of clique-width at most two. However, clique-width is
a strict generalization of modular-width. In fact, the clique-width of a graph G is equal to the
maximum clique-width of any quotient graph of a prime node in the modular decomposition
tree of G. On the other hand, modular-width cannot be bounded by a function of clique-width,
e.g., any path with n vertices has modular-width n, but clique-width three. Every graph with
bounded tree-width also has bounded clique-width as it holds that cw(G) ≤ 3 ·2tw(G)−1 for each
graph G [CR05]. The reverse implication does not hold since small clique-width does not imply
the sparsity of the graph, e.g., each complete graph Kn has clique-width two, but tree-width
n − 1 for each n ≥ 2. Also every graph of bounded shrub-depth does have bounded clique-
width [GHN+12]; but as the class of all cographs has unbounded shrub-depth, the shrub-depth
cannot be bounded by any function of the clique-width.

A famous algorithmic metatheorem by Courcelle et al. [CMR00] states that on graphs of
bounded clique-width one can solve any problem that can be expressed in MSO1 logic in linear
time. A caveat is that the running time depends non-elementarily on the clique-width of the
input graph and the size of the MSO1 formula, which is even provably unavoidable unless
P = NP [FG04]. Thus, this result is of less importance for our work in the framework of “FPT
in P”.

In this chapter, we will give efficient parameterized algorithms for tractable problems with
a polynomial dependency on the clique-width cw of the input graph. As our main result,
we present an O(cw2 n2)-time algorithm for vertex-weighted all-pairs shortest paths,
yielding a truly subcubic algorithm for cw ∈ O(n0.5−ε). This immediately allows to solve the di-
ameter problem, in which one is interested in the longest shortest path in an unweighted graph,

62 Algorithms Parameterized by the Clique-Width of the Input

in the same asymptotic time O(cw2 n2), even with vertex weights. This nicely complements the
lower bound for diameter that rules out algorithms with running time O(2o(cw) · n2−ε) for
any ε > 0 [CDP19]. Further, we present an algorithm for triangle counting with a time
complexity of O(cw2 n + cw m), which is a slight improvement over the O(cw2(n + m))-time
algorithm by Coudert et al. [CDP19].

The clique-width of a graph denotes the minimum number k that is needed to construct the
graph by a so-called k-expression. We refer to Section 4.1 for all formal definitions needed
in this chapter. Trivially, it holds that cw(G) ≤ n, i.e., the clique-width is bounded by the
number of vertices in an undirected graph. Actually, it holds that cw(G) ≤ n − k as long as
2k < n − kn [GWY16]. Also for directed graphs, one can slightly improve the trivial bound
dcw(G) ≤ n to dcw(G) ≤ n − k for 4k < n − k, where dcw(G) denotes the directed clique-
width of the graph G. Indeed, we will not use the parameter clique-width directly in this
chapter. Instead, we will work with a closely related parameter NLC-width1 introduced by
Wanke [Wan94]. The NLC-width and the clique-width of a graph differ at most by a factor of
two. Moreover, the corresponding NLC-width expression can be computed from a clique-width
k-expression in linear time.

However, neither the clique-width nor the NLC-width of a graph can be computed in poly-
nomial time, nor can it be approximated by a constant factor in linear time, unless P =
NP [FRRS09]. Thus, we need to assume that an instance is always given by a k-expression
of a graph G, witnessing that the clique-width of G is at most k.

On the positive side, the graphs of clique-width at most three can be recognized in polyno-
mial time [CHL+12] and for some other graph classes of bounded clique-width, one can even
compute a corresponding k-expression in linear time, e.g., for graphs of bounded modular-
width [CO00] (this includes all cographs), graphs of bounded tree-width [CR05] or bounded
split-width [Rao08b], or distance-hereditary graphs [GR00]. Thus, our result implies that on all
these graph classes can solve vertex-weighted all-pairs shortest paths in optimal time
O(n2) and triangle counting in optimal linear time O(n + m), even even if a k-expression
is not a part of the input.2

Overview. We first define the clique-width and NLC-width of undirected and directed
graphs in Section 4.1. In Section 4.2, we present the main result of this chapter, namely
the algorithm for vertex-weighted all-pairs shortest paths running in time O(cw2 n2)
where cw denotes the clique-width of the graph. The algorithm for triangle counting with
a time complexity of O(cw2 n + cw m) can be found in Section 4.3. We conclude in Section 4.4.

4.1 Definition of Clique-Width and NLC-Width

A k-labeled graph is a graph in which each vertex is assigned one out of k labels. Formally, a
vertex-labeled graph G is a triple (V, E, lab) where V is the vertex set, E denotes the set of
edges, and lab : V → [k] is a function that assigns a label to each vertex. For a k-labeled graph
G = (V, E, lab), by unlab(G) = (V, E) we denote the underlying unlabeled graph. We use this
notation for both directed and undirected graphs.

Informally speaking, a graph G has clique-width at most k, if it is the underlying graph
of some k-labeled graph that can be constructed by using four operations: (1) Introducing a

1The abbreviation NLC stands for node label controlled, a term originally defined for graph grammars.
2Since the output of vertex-weighted all-pairs shortest paths is an n×n distance matrix, every algorithm

for this problem does take time Ω(n2).

4.1 Definition of Clique-Width and NLC-Width 63

single labeled vertex, (2) redefining one label to another label, (3) taking the disjoint union of
two already created k-labeled graphs, and (4) adding all edges between vertices of label i and
vertices of label j. We first define clique-width of undirected graphs.

Definition 4.1 (undirected clique-width, [CO00]). Let k ≥ 1. The class Cwk consists of all
k-labeled graphs that can be constructed by the following operations:

• The nullary operation •i that returns a graph consisting of a single vertex of label i ∈ [k].
The resulting graph is in Cwk.

• Let G = (V, E, lab) ∈ Cwk be a k-labeled graph, and let a, b ∈ [k]. Then

ρa,b(G) = (V, E, lab′) with lab′(v) =
{

lab(v) if lab(v) ̸= a

b if lab(v) = a

is in Cwk.

• Let G = (VG, EG, labG) ∈ Cwk and H = (VH , EH , labH) ∈ Cwk be two k-labeled graphs
in Cwk with VG ∩ VH = ∅. Then the disjoint union, defined by

G⊕H = (VG ∪̇VH , EG ∪̇EH , lab′) with lab′(v) =
{

labG(v) if v ∈ VG

labH(v) if v ∈ VH

is in Cwk.

• Let G = (V, E, lab) ∈ Cwk be a k-labeled graph, and let a, b ∈ [k] with a ̸= b. Then

ηa,b(G) = (V, E′, lab) with E′ = E ∪
{
{u, v} ∈

(
V

2

) ∣∣∣∣∣ lab(u) = a, lab(v) = b

}

is in Cwk.

The clique-width of an undirected graph G, denoted by cw(G), is the smallest k such that
there is a labeled graph G′ ∈ CWk with unlab(G′) = G. An example for a clique-width 3-
expression for the path on four vertices as depicted in Figure 4.1b is

η2,3((ρ2,3(η1,2(•1 ⊕ •2))⊕ η1,2(•1 ⊕ •2))).

By modifying the operation ηa,b one can also define directed clique-width [CO00]. Instead
of inserting every possible edge between vertices labeled by a and b, the binary operation αa,b

inserts all possible arcs from vertices labeled by a to vertices labeled by b. The operations ρa,b

and ⊕ can be defined for directed graphs analogously to the undirected case, cf. Definition 4.1.

Definition 4.2 (directed clique-width, [CO00]). Let k ≥ 1. The class dCwk consists of all
k-labeled graphs that can be constructed by the following operations:

• The nullary operation •i that returns a graph consisting of a single vertex of label i ∈ [k].
The resulting graph is in dCwk.

• Let G = (V, E, lab) ∈ dCwk be a k-labeled graph, and let a, b ∈ [k]. Then ρa,b(G) is in
dCwk.

64 Algorithms Parameterized by the Clique-Width of the Input

•1 •2

•2 •1⊕

⊕η1,2

η1,2ρ2,3

⊕

η2,3

(a) A clique-width 3-expression tree
of G.

1

3

2

1

(b) The resulting
graph G.

•1 •2 •2 •1

×(1,2) ×(2,1)

×(1,1)

(c) An NLC-width 2-expression tree
of G.

Figure 4.1: An example of a clique-width 3-expression and an NLC-width 3-expression of a path
G with four vertices.

• Let G = (VG, EG, labG) ∈ dCwk and H = (VH , EH , labH) ∈ dCwk be two k-labeled
graphs in dCwk with VG ∩ VH = ∅. Then the disjoint union G⊕H is in dCwk.

• Let G = (V, E, lab) ∈ dCwk be a k-labeled graph, and let a, b ∈ [k] with a ̸= b. Then

αa,b(G) = (V, E′, lab) with E′ = E ∪ {(u, v) ∈ V × V | lab(u) = a, lab(v) = b}

is in dCwk.

The clique-width of a directed graph G, denoted by dcw(G), is the smallest k such that
there is a labeled graph G′ ∈ dCwk with unlab(G′) = G. Very similar to the parameter
clique-width, one can define the parameter NLC-width. The main differences are that the join
operation η resp. α and the disjoint union operation ⊕ are somewhat combined and consecutive
relabel operations are compressed into a single operation. We again first define NLC-width for
undirected graphs.

Definition 4.3 (undirected NLC-width, [Wan94]). Let k ≥ 1. The class NLCk consists of all
k-labeled graphs that can be constructed by the following operations:

• The nullary operation •i that returns a graph consisting of a single vertex of label i ∈ [k].
The resulting graph is in NLCk.

• Let G = (V, E, lab) ∈ NLCk and let R : [k]→ [k]. Then

◦R(G) = (V, E, lab′) with lab′(v) = R(lab(v))

is in NLCk.

4.1 Definition of Clique-Width and NLC-Width 65

• Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two k-labeled
graphs in NLCk. Let S ⊆ [k]2. Then G×S H = (VG ∪ VH , E′, lab′) with

lab′(v) =
{

labG(v) if v ∈ VG

labH(v) if v ∈ VH

and

E′ = EG ∪ EH∪
{
{u, v} ∈

(
VG ∪ VH

2

) ∣∣∣∣∣ u ∈ VG, v ∈ VH , and (labG(u), labH(v)) ∈ S

}

is in NLCk.

The NLC-width of a graph G, denoted by nlc(G), is the smallest k such that there is a labeled
graph G′ ∈ NLCk with unlab(G′) = G. To define directed NLC-width, we need to extend the
operation ×S . The new operation ×−→

S ,
←−
S

uses two relations −→S and ←−S over [k] to specify the
direction of the directed joins between the respective sets of labeled vertices. The operation ◦R
can be defined for directed graphs analogous to the undirected case, cf. Definition 4.3.

Definition 4.4 (directed NLC-width, [Wan94]). Let k ≥ 1. The class dNLCk consists of all
k-labeled graphs that can be constructed by the following operations:

• The nullary operation •i that returns a graph consisting of a single vertex of label i ∈ [k].
The resulting graph is in dNLCk.

• Let G = (V, E, lab) ∈ NLCk and let R : [k]→ [k]. Then ◦R(G) is in NLCk.

• Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two k-labeled
graphs in NLCk. Let −→S ,

←−
S ⊆ [k]2. Then G×−→

S ,
←−
S

H = (VG ∪ VH , E′, lab′) with

lab′(v) =
{

labG(v) if v ∈ VG

labH(v) if v ∈ VH

and

E′ = EG ∪ EH∪
{

(u, v) ∈ VG × VH

∣∣∣ (labG(u), labH(v)) ∈ −→S
}

∪
{

(v, u) ∈ VH × VG

∣∣∣ (labG(u), labH(v)) ∈ ←−S
}

is in dNLCk.

The directed NLC-width of a graph G, denoted by dnlc(G), is the smallest k such that there
is a labeled graph G′ ∈ dNLCk with unlab(G′) = G.

An expression consisting of the operations defined in Definition 4.1 or Definition 4.2 is called
a (directed) clique-width k-expression. An expression consisting of the operations defined in
Definition 4.3 or Definition 4.4 is called a (directed) NLC-width k-expression. For any k-
expression σ, we denote with val(σ) the resulting labeled graph and by tree(σ) the so-called
k-expression tree of σ, i.e., a rooted tree T in which each leaf is marked with •i for some i ∈ [k]
and each internal node is marked with an operation defined in Definitions 4.1 to 4.4 that is
applied to the children resp. child of the node, see also Figure 4.1 for an example. In particular,
in an expression tree T of an NLC-width k-expression, each leaf node of T is marked with •i
for some i ∈ [k] and each internal node is either marked with ◦R for some R : [k]→ [k] or with
×S for some S ⊆ [k]2 (resp. ×−→

S ,
←−
S

for some −→S ,
←−
S ∈ [k]2 for directed NLC-width), according

to the operations defined in Definition 4.3 (resp. Definition 4.4). Thus, a k-expression tree T
of a graph G with n vertices does have exactly n leaves, one for each vertex in G. Since each

66 Algorithms Parameterized by the Clique-Width of the Input

node marked with × resp. ×−→
S ,
←−
S

has exactly two children, there are n− 1 nodes of this kind in
any expression. Further, one can assume that there are no two consecutive relabel operations,
i.e., a child of a node marked with ◦R in the expression tree tree(σ) is either a leaf or a node
marked with ×S resp. ×−→

S ,
←−
S

. Thus, we may assume that the length of an NLC-expression is in
O(n). Note that the length of a clique-width expression can be in Ω(n + m).

For a graph G and a positive integer k, the problem to decide whether G has (directed)
clique-width at most k, as well as the problem to decide whether G has (directed) NLC-width
at most k, is NP-hard. Johansson [Joh98] showed that the NLC-width of a graph with n vertices
is at most ⌈n/2⌉: Partition the vertex set arbitrary into two sets of size at most ⌈n/2⌉, create
the corresponding induced subgraphs by assigning each vertex a unique label, and combine the
two subgraphs via an operation ×S . The same holds for directed NLC-width.

In this chapter, we will solely focus on NLC-width k-expressions to design efficient parame-
terized algorithms. The following lemma shows that there is no drawback of doing so, since the
NLC-width of a graph is bounded by the clique-width of the graph.

Lemma 4.5 ([Joh98]). For any graph G it holds that nlc(G) ≤ cw(G) ≤ 2 · nlc(G).

Moreover, one can transform a clique-width k-expression into an equivalent NLC-width k-
expression in linear time O(n + m) as described for example in [Joh98]. The same relations
hold for the directed versions.

Lemma 4.6 ([GWY16]). For any graph G it holds that dnlc(G) ≤ dcw(G) ≤ 2 · dnlc(G).

Recall that for a directed graph G, with u(G) we denote the underlying undirected graph, and
for an undirected graph G = (V, E), with ←→G = (V, A) we denote the corresponding bidirected
graph (cf. Section 2.2 for the formal definitions). Then, for any directed graph G, it holds that
nlc(u(G)) ≤ dnlc(G) and cw(u(G)) ≤ dcw(G). This can be seen by replacing each occurrence
of ×−→

S ,
←−
S

in a directed NLC-width k-expression by ×←−
S ∪
−→
S

resp. by replacing each occurrence of
αa,b in a directed clique-width k-expression by ηa,b for ←−S ,

−→
S ⊆ [k]2 and a, b ∈ [k]. By a similar

observation, it also holds that nlc(G) = dnlc(←→G) and cw(G) = dcw(←→G).

4.2 All-Pairs Shortest Path Parameterized by Clique-Width

In this section, we present an algorithm parameterized by the clique-width of the input graph
for vertex-weighted all-pairs shortest paths. We consider the more general directed
clique-width on a vertex-weighted graph with possibly negative vertex weight. We will either
compute the shortest distance for each pair of vertices, or conclude that the graph contains a
cycle of negative weight.

vertex-weighted all-pairs shortest paths

Input: A directed graph G = (V, E), vertex weights ω : V → R.
Output: The pairwise distances distG(u, v) for all u, v ∈ V .

Since the output size of any vertex-weighted all-pairs shortest paths instance is in
Ω(n2), one cannot solve vertex-weighted all-pairs shortest paths in time f(cw)·n2−ε for
any function f and ε > 0. We will show how to solve vertex-weighted all-pairs shortest
paths in time O(cw2 n2).

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 67

Theorem 4.7. For every directed graph G = (V, E), given together with a directed clique-width
k-expression and vertex weights ω : V → R, we either can conclude that G contains a cycle
of negative weight, or we can solve vertex-weighted all-pairs shortest paths in time
O(k2n2).

For a directed input graph G = (V, E), given by a directed clique-width k-expression for
some k ≥ 2, in the first step we transform the directed clique-width k-expression to a directed
NLC-width k-expression in linear time as described for example in [GWY16]. For the rest of
this section, under a k-expression we always refer to a directed NLC-width k-expression instead
of a directed clique-width k-expression. We interpret the k-expression σ as a k-expression tree
T = tree(σ), in which each node x ∈ V (T) is marked with an operation of the k-expression
that is applied to the children of x. Accordingly, T has exactly n leaves, each marked with an
operation •i for i ∈ [k], and exactly n−1 nodes marked with an operation ×−→

S ,
←−
S

for some −→S ,
←−
S

⊆ [k]2. For the ease of presentation, we assume that there is always exactly one node marked
with an operation ◦R for some R : [k]→ [k] in between any two nodes marked with ×−→

S ,
←−
S

(using
R(i) = i when no actual relabeling is necessary). For a node x ∈ V (T), we denote by Gx the
labeled graph defined by the k-expression represented by the subtree of T rooted at x, and we
define by Lx

i = {v ∈ V (Gx) | lab(v) = i} the set of vertices in Gx with label i ∈ [k]. Note
that unlab(Gx) is an induced subgraph of G for any x ∈ V (T). For the root node r ∈ V (T) it
holds that Gr = G. For a node x ∈ V (T), we will use the shortcut distx(u, v) := distGx(u, v)
to denote the distance between two vertices u and v in Gx.

The algorithm consists of three phases. In the first phase, we traverse the k-expression tree
T in a bottom-up manner: For each node x ∈ V (T), we partition the vertex set of Gx into
the sets of same-labeled vertices and compute the shortest distance for every single vertex to
(the closest vertex in) each set of same-labeled vertices. Additionally, we compute the distance
between each pair of the same-labeled vertex sets, i.e., the shortest distance of any two vertices
of the respective sets. Note, however, that in the first phase we only consider for each node
x ∈ V (T) the distances in the graph Gx. In the second phase, we perform a top-down traversal of
the k-expression tree T and consider the whole graph G. Once we have computed the necessary
values in phases one and two, we traverse T one last time and finally compute the shortest path
distances between all pairs of vertices.

First Phase. We traverse T in a bottom-up manner and compute for each node x ∈ V (T)
and for all pairs (i, j) ∈ [k]2 of labels the shortest distance in Gx between some vertex in Lx

i and
some vertex in Lx

j . Additionally, we compute for every vertex v ∈ V (Gx) and every label i ∈ [k]
the shortest distance in Gx from v to some vertex in Lx

i . To be precise, for a node x ∈ V (T)
we compute the following values; recall that for readability we shortcut distx for distGx :

cx
i,j = distx(Lx

i , Lx
j) for i, j ∈ [k]

ax
v,i = distx(v, Lx

i) for v ∈ V (Gx), i ∈ [k]

For nodes x ∈ V (T) that are marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 we need to compute

some auxiliary values. Let y and z be the two children of x in T . This means that Gx consists
of the disjoint union of Gy and Gz together with a directed full join between vertices from Ly

i to
Lz

j for each (i, j) ∈ −→S and a directed full join between vertices from Lz
i to Ly

j for each (i, j) ∈ ←−S .
Thus, one can partition the vertex set of Gx into the 2k sets {Ly

1, . . . , Ly
k, Lz

1, . . . , Lz
k} =: Lx.

For each pair (A, B) ∈ Lx × Lx of vertex sets, we compute the shortest distance between some
vertex in A to some vertex of B. In addition, we compute the shortest distance between A and

68 Algorithms Parameterized by the Clique-Width of the Input

B with the constraint that either the first edge, the last edge, or the first and the last edge of
the shortest path is an edge of a newly inserted full join defined by ←−S or −→S . This achieves
the effect that we additionally compute the shortest distance from (1) all vertices of A to some
vertex of B, (2) from some vertex of A to all vertices of B, and (3) from all vertices of A to
all vertices of B. Doing this, one can for example combine a path that ends at some vertex
of A with a path that can start at any vertex of A. In the following, we will describe how to
compute the required values for each of the three different types of nodes in the k-expression
tree T .

For the base case, let x ∈ V (T) be a leaf of the k-expression tree T . Thus, the node x is
marked with •ℓ for some ℓ ∈ [k], i.e., Gx consists of a single vertex v with label ℓ. In this case
the following holds:

cx
i,j =

{
ω(v) if i = j = ℓ

∞ otherwise
for i, j ∈ [k]

ax
v,i =

{
ω(v) if i = ℓ

∞ otherwise
for v ∈ V (Gx), i ∈ [k]

Now, let x ∈ V (T) be an internal node of the k-expression tree T marked with ◦R for some
R : [k]→ [k]. Let y ∈ V (T) be the unique child of x in T . Since we traverse T in a bottom-up
manner, we have already computed the values ay

v,i for all v ∈ V (Gy) and i ∈ [k] and the values
cx

i,j for all i, j ∈ [k]. Note that unlab(Gx) = unlab(Gy), which, in particular, implies that
distances between vertices are identical in both graphs (this is not necessarily true for distances
between label sets though as these sets may be different).

Lemma 4.8. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ◦R for
some R : [k]→ [k] and let y ∈ V (T) be the child of x in T . Then cx

i,j = mini′∈R−1(i),j′∈R−1(j) cy
i′,j′

for all i, j ∈ [k].

Proof. The vertex sets of Gx resp. Gy can be partitioned into the label sets {Lx
1 , . . . , Lx

k} resp.
{Ly

1, . . . , Ly
k}. Note that some label sets Lx

i resp. Ly
i might be empty for some i ∈ [k] and it

holds that Ly
i ⊆ Lx

R(i) and Lx
i = ⋃

j∈R−1(i) Ly
j for all i ∈ [k]. It follows that

cx
i,j = distx

(
Lx

i , Lx
j

)
= disty

 ⋃
i′∈R−1(i)

Ly
i′ ,

⋃
j′∈R−1(j)

Ly
j′


= min

i′∈R−1(i),
j′∈R−1(j)

disty
(
Ly

i′ , Ly
j′

)
= min

i′∈R−1(i),
j′∈R−1(j)

cy
i′,j′ .

Here, it is crucial that the distances between vertices are the same in Gx and Gy, as noted
above.

Note that the computation of all cx
i,j can be realized in time O(k2) by updating for every cy

i,j

the corresponding value cx
R(i),R(j). The values ax

v,i can be computed similarly from the values at
the child node.

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 69

Lemma 4.9. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ◦R for
some R : [k]→ [k] and let y ∈ V (T) be the child of x in T . Then ax

v,i = minj∈R−1(i) ay
v,j for all

v ∈ V (Gx) and i ∈ [k].

Proof. Let {Lx
1 , . . . , Lx

k} resp. {Ly
1, . . . , Ly

k} be the partition in Gx resp. Gy of the vertex set
into sets of same-labeled vertices. Again, it holds that Ly

i ⊆ Lx
R(i) and Lx

i = ⋃
j∈R−1(i) Ly

j for all
i ∈ [k]. Thus, the following holds:

ax
v,i = distx (v, Lx

i)

= disty

v,
⋃

j∈R−1(i)
Ly

j


= min

j∈R−1(i)
disty

(
v, Ly

j

)
= min

j∈R−1(i)
ay

v,j

The running time for computing the values ax
v,i is O(nk) since we need to consider each value

ay
v,i for any v ∈ V (Gy) and i ∈ [k] exactly once.
Finally, let x ∈ V (T) be an internal node of the k-expression tree T marked with ×−→

S ,
←−
S

for
some −→S ,

←−
S ⊆ [k]2. Denote by y ∈ V (T) and z ∈ V (T) the two children of x in T , meaning that

Gx combines the two labeled graphs Gy and Gz by introducing for each (i, j) ∈ −→S a directed
full join from all vertices in Ly

i to all vertices in Lz
j and for each (i, j) ∈ ←−S a directed full

join from all vertices in Lz
i to all vertices in Ly

j . Thus, V (Gx) = V (Gy) ∪̇V (Gz) and one can
partition the vertices of Gx into the 2k vertex sets {Ly

1, . . . , Ly
k, Lz

1, . . . , Lz
k} and Lx

i = Ly
i ∪̇Lz

i .
See Figure 4.2 as an illustration. To compute the desired distances between the label sets
{Ly

1, . . . , Ly
k, Lz

1, . . . , Lz
k}, we construct an edge-weighted directed graph Hx that represents all

distances between the label sets in a graph with only 4k vertices.
For each label set La

i of Gx with i ∈ [k] and a ∈ {y, z} we create two vertices va
i and ua

i . Let
V a = {va

i | i ∈ [k]} resp. Ua = {ua
i | i ∈ [k]} for a ∈ {y, z}. We add a directed full join from V y

to Uy resp. from V z to U z with edge weights equal to the length of a shortest path between the
two corresponding label sets. Finally, we connect vertices in Uy with vertices in V z, if and only
if the corresponding pair is contained in −→S , resp. we connect vertices in U z with vertices in V y,
if and only if the corresponding pair is contained in ←−S , i.e., if there is a directed full join in Gx

between the two corresponding label sets. See also Figure 4.2 for an illustration. Formally, we
define the directed, edge-weighted graph Hx as follows.

Definition 4.10. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x. We define Hx as a

directed, edge-weighted graph on 4k vertices created as follows:

• For each label set La
i ∈ {L

y
1, . . . , Ly

k, Lz
1, . . . , Lz

k} we create two vertices va
i and ua

i for i ∈ [k]
and a ∈ {y, z},

• add edge (vy
i , uy

j) with cost cy
i,j for every i, j ∈ [k],

• add edge (vz
i , uz

j) with cost cz
i,j for every i, j ∈ [k],

• add edge (uy
i , vz

j) with cost zero for every (i, j) ∈ −→S ,

70 Algorithms Parameterized by the Clique-Width of the Input

Gx = Gy ×−→
S ,
←−
S

Gz

Gy Gz

Ly
k Lz

k

...
...

Ly
2 Lz

2

Ly
1 Lz

1

(a) Example of Gx = Gy ×−→
S ,
←−
S

Gz with −→S =
{(2, 1), (2, 2)} and ←−S = {(k, 1)}.

V y

Uy V z

U z

cy
i,j

−→
S

cz
i,j

←−
S

(b) The auxiliary graph Hx as definied in Defi-
nition 4.10.

Figure 4.2: (a): Example of Gx = Gy ×−→
S ,
←−
S

Gz. (b): Construction of the auxiliary graph Hx.
Each large node consists of k isolated vertices corresponding to one of the k label
sets in Gy resp. Gz. Between V y and Uy there is a full join, each edge between the
corresponding vertex of Ly

i and Ly
j is weighted by cy

i,j , analogously for V z and U z.
Vertices in Uy (resp. U z) are only adjacent (with edge cost zero) to those vertices
in V z (resp. V y) for which the corresponding label sets are connected via −→S (resp.
←−
S).

• add edge (uz
i , vy

j) with cost zero for every (i, j) ∈ ←−S .

Note that some edges may have cost∞, namely if there does not exist a path of the requested
type. Also note that cy

i,i corresponds to the minimum weight of any vertex in Ly
i for i ∈ [k].

Next, we will see that Hx exhibits all the desired distances from Gx in a compact way.

Theorem 4.11. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be the

graph as defined in Definition 4.10. Then the following holds:

(1) distHx(va
i , ub

j) = distx(La
i , Lb

j) for all a, b ∈ {y, z} and i, j ∈ [k].

(2) distHx(ua
i , ub

j) = minP∈P ω(P)−minv∈La
i

ω(v) where P is the set of all paths in Gx starting
in La

i , ending in Lb
j, and having the second vertex in V (Gx) \ V (Ga).

(3) distHx(va
i , vb

j) = minP∈P ω(P)−minv∈Lb
j

ω(v) where P is the set of all paths in Gx starting
in La

i , ending in Lb
j, and having the penultimate vertex in V (Gx) \ V (Gb).

(4) distHx(ua
i , vb

j) = minP∈P ω(P) − minv∈La
i

ω(v) − minv∈Lb
j

ω(v) where P is the set of all
paths in Gx starting in La

i , ending in Lb
j, and having the second vertex in V (Gx) \ V (Ga)

and the penultimate vertex in V (Gx) \ V (Gb).

We prove Theorem 4.11 in two steps. We first prove that every path in Hx corresponds to
some path in Gx with the correct cost. Later, we prove that also each optimal path between
two label sets in Gx corresponds to some shortest path in Hx. We start with statement (1) of
Theorem 4.11.

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 71

Lemma 4.12. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be

the graph as defined in Definition 4.10 and let P ∗ be an arbitrary vy
i -uz

j path in Hx for some
i, j ∈ [k]. Then, there exists an Ly

i -Lz
j path P in Gx with ω(P) = ωHx(P ∗).

Proof. Due to the circular structure of Hx, each vy
i -uz

j path in Hx will repeat the sequence
(vy

p , uy
q , vz

r , uz
s) for some p, q, r, s ∈ [k] until reaching uz

j at the end of a sequence. Thus, each
vy

i -uz
j path in Hx consists of 4ℓ vertices for ℓ ∈ N+ and can be written as

P ∗ =
(
vy

i = vy
p1 , uy

q1 , vz
r1 , uz

s1 , vy
p2 , uy

q2 , vz
r2 , uz

s2 , . . . , vy
pℓ

, uy
qℓ

, vz
rℓ

, uz
sℓ

= uz
j

)
.

One can construct a path P in Gx from P ∗ as follows: For each edge (vy
pi

, uy
qi

) in P ∗ of cost
cy

pi,qi
pick a shortest path in Gy of total cost cy

pi,qi
and for each edge (vz

ri
, uz

si
) in P ∗ of cost cy

ri,si

pick a shortest path in Gz of total cost cz
ri,si

for each i ∈ [ℓ]. Those paths always exist since
cy

pi,qi
resp. cy

ri,si
are defined as the cost of a shortest Ly

pi
-Ly

qi
path in Gy resp. as the cost of a

shortest Lz
ri

-Lz
si

path in Gz. Since each edge (uqi , vri) exists if and only if there is a directed
full join between the sets Ly

qi
and Lz

ri
, one can connect the last vertex of the path corresponding

to the previous edge in P ∗ (that ends in some vertex in Ly
qi

) to the first vertex of the path
corresponding to the following edge in P ∗ (that starts at some vertex in Lz

ri
). In the same

manner, one can argue that due to the edge (uz
si

, vy
pi+1) one can connect the last vertex of the

path corresponding to the edge (vz
ri

, uz
si

) with the first vertex of the path corresponding to the
edge (vy

pi+1 , uy
qi+1). In both cases, the costs of the two endpoints of the connecting edge are

already counted in the respective c··,· value. Thus, each vy
i -uz

j path in Hx corresponds to an
Ly

i -Lz
j path in Gx of the same cost.

Next, we generalize this argumentation to the following corollary.

Corollary 4.13. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be

the graph as defined in Definition 4.10. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following
holds:

(1) For any va
i -ub

j path P ∗ in Hx there exists an La
i -Lb

j path P in Gx with ωHx(P ∗) = ω(P).

(2) For any ua
i -ub

j path P ∗ in Hx there exists an La
i -Lb

j path P = (p1, p2, . . . , pℓ) in Gx with
the property that p2 ∈ V (Gx) \ V (Ga) and ωHx(P ∗) = ω(P)− ω(p1).

(3) For any va
i -vb

j path P ∗ in Hx there exists an La
i -Lb

j path P = (p1, . . . , pℓ−1, pℓ) in Gx with
the property that pℓ−1 ∈ V (Gx) \ V (Gb) and ωHx(P ∗) = ω(P)− ω(pℓ).

(4) For any ua
i -vb

j path P ∗ in Hx there exists an La
i -Lb

j path P = (p1, p2, . . . , pℓ−1, pℓ) in
Gx with the property that p2 ∈ V (Gx) \ V (Ga), pℓ−1 ∈ V (Gx) \ V (Gb), and ωHx(P ∗) =
ω(P)− ω(p1)− ω(pℓ).

Proof. With the same argumentation as in the proof of Lemma 4.12, one can prove that also
every vy

i -uy
j path in Hx corresponds to an Ly

i -Ly
j path in Gx with the same cost. The two

cases with a = z and b ∈ {y, z} now follow by swapping the roles of y and z. This proves
(1). Similarly, one can argue that any path P ∗ in Hx that starts at a vertex uy

i (resp. ends
at a vertex vz

i) for i ∈ [k], corresponds to a path P = (p1, p2, . . . , pℓ−1, pℓ) in Gx that starts

72 Algorithms Parameterized by the Clique-Width of the Input

in Ly
i (resp. ends in Lz

j) with the additional property (due to the directed edges in Hx) that
p2 ∈ V (Gx) \ V (Gy) (resp. pℓ−1 ∈ V (Gx) \ V (Gz)). The cost of P ∗ in Hx is exactly the cost of
P in Gx, minus the cost of the first (resp. last) vertex of P . In this regard, recall that all vertex
costs in Gx are represented by the edge weights in Hx. The remaining cases of Corollary 4.13
with a = z or b = y again can be shown analogously.

For any path in Hx that starts at some vertex ua
i (resp. ends at some vertex vb

j) one can find
a corresponding path P in Gx with the property that the second vertex (resp. the penultimate
vertex) is connected to all vertices of La

i (resp. Lb
j). Thus, one can extend any path that ends

at some vertex in La
i by such a path (resp. one can prepend any path that starts in Lb

j by such
a path). Hence, the cost of the first vertex (resp. last vertex) is neglected if the path starts in
some vertex ua

i or ends at some vertex vb
j for a, b ∈ {y, z}. In general, every path that one can

find in Hx corresponds to a path in Gx of essentially the same cost, possibly without the first
or last vertex (which can be chosen as the minimum of the label set). This proves “≤” in the
equations of Theorem 4.11.

For the other direction, we will show that every optimal shortest path between two label sets
in Gx is represented by a path in Hx.

Lemma 4.14. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be the

graph as defined in Definition 4.10. Let P be a shortest Ly
i -Lz

j path in Gx for some i, j ∈ [k].
Then there exist a vy

i -uz
j path P ∗ in Hx with ωHx(P ∗) = ω(P).

Proof. Let P be a shortest Ly
i -Lz

j path in Gx for fixed i, j ∈ [k] of length ω(P) = distx(Ly
i , Lz

j).
Since V (Gx) can be subdivided into the two vertex sets V (Gy) and V (Gz), we can split the path
P into maximal subpaths consisting of vertices completely in V (Gy) resp. completely in V (Gz).
Formally, let P = (P1, . . . , Pd) with V (P2q+1) ⊆ V (Gy) and V (P2q) ⊆ V (Gz) for 0 ≤ q ≤ d/2.
Let vi, ui ∈ V (G) such that Pi = P[vi,ui] for all i ∈ [d]. Thus,

P = (v1, . . . , u1︸ ︷︷ ︸
P1∈V (Gy)

, v2, . . . , u2︸ ︷︷ ︸
P2∈V (Gz)

, . . . , vd−1, . . . , ud−1︸ ︷︷ ︸
Pd−1∈V (Gy)

, vd, . . . , ud︸ ︷︷ ︸
Pd∈V (Gz)

).

Note that a path Pℓ could consist of a single vertex vℓ = uℓ for ℓ ∈ [d]. Define Ex
new =

E(Gx) \ (E(Gy)∪E(Gz)) as the set of newly created edges in Gx. I.e., Ex
new is the union of all

directed full joins between the vertex sets Ly
i and Lz

j for each (i, j) ∈ −→S and Lz
i and Ly

j for each
(i, j) ∈ ←−S . For the path P it holds by construction that {uℓ, vℓ+1} ∈ Ex

new for ℓ ∈ [d− 1] and,
since P is a shortest path, each Pℓ is a shortest vℓ-uℓ path in Gy (for ℓ odd) resp. in Gz (for ℓ
even) for all ℓ ∈ [d].

To complete the proof, we will show that for each ℓ ∈ [d] it holds that ω(Pℓ) = cy
lab(vℓ),lab(uℓ)

for ℓ even and ω(Pℓ) = cz
lab(vℓ),lab(uℓ) for ℓ odd, and thus that each path Pℓ corresponds to an arc

(vy
lab(vℓ), uy

lab(uℓ)) for ℓ even and to an arc (vz
lab(vℓ), uz

lab(uℓ)) for ℓ odd in Hx: Let w.l.o.g. ℓ be odd,
hence V (Pℓ) ⊆ V (Gy). Since Pℓ is an Ly

lab(vℓ)-L
y
lab(uℓ) path, it holds that ω(Pℓ) ≥ cy

lab(vℓ),lab(uℓ).
Assume for contradiction that ω(Pℓ) > cy

lab(vℓ),lab(uℓ) and let Q be an Ly
lab(vℓ)-L

y
lab(uℓ) path in Gy

with ω(Q) = cy
lab(vℓ),lab(uℓ). Replace Pℓ by Q in P to get P ′ = (P1, . . . , Pℓ−1, Q, Pℓ+1, . . . , Pd).

Since uℓ−1 is connected to all vertices in Ly
lab(vℓ), and vℓ+1 is connected to all vertices in Ly

lab(uℓ),
P ′ is an Ly

i -Lz
j path and since ω(Pℓ) > ω(Q) the total cost of P ′ is smaller than the total cost

of P , which is a contradiction.

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 73

Again, one can generalize the argumentation of Lemma 4.14 to the following corollary.

Corollary 4.15. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be

the graph as defined in Definition 4.10. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following
holds:

(1) For every shortest La
i -Lb

j path P in Gx, there exists a va
i -ub

j path P ∗ in Hx of cost
ωHx(P ∗) = ω(P).

(2) For every shortest La
i -Lb

j path P in Gx with the property that the second vertex is in
V (Gx)\V (Ga), there exists a ua

i -ub
j path P ∗ in Hx of cost ωHx(P ∗) = ω(P)−minv∈La

i
ω(v).

(3) For every shortest La
i -Lb

j path P in Gx with the property that the penultimate vertex is in
V (Gx)\V (Gb), there exists a va

i -vb
j path P ∗ in Hx of cost ωHx(P ∗) = ω(P)−minv∈Lb

j
ω(v).

(4) For every shortest La
i -Lb

j path P in Gx with the property that the second vertex is in
V (Gx) \ V (Ga) and the penultimate vertex is in V (Gx) \ V (Gb), there exists a ua

i -vb
j path

in Hx of cost ωHx(P ∗) = ω(P)−minv∈La
i

ω(v)−minv∈Lb
j

ω(v).

Proof. With the same argumentation as done in Lemma 4.14 one can show that also every
shortest Ly

i -Ly
j path in Gx corresponds to a shortest vy

i -uy
j path in Hx. The cases with a = z

follow analogously by renaming y and z. This proves (1). For the remaining cases we observe
that for i, j ∈ [k] and a, b ∈ {y, z}, every shortest La

i -Lb
j path P in Gx with the property that

the second vertex is in V (Gx)\V (Ga) (resp. the penultimate vertex in V (Gx)\V (Gb)), the first
(resp. last) vertex of P is a minimum cost vertex in La

i (resp. in Lb
j) and that it is not covered

in the cost of the corresponding path in Hx.

Corollary 4.15 shows that every shortest La
i -Lb

j path in Gx is represented in Hx for i, j ∈ [k]
and a, b ∈ {y, z}. Together with Corollary 4.13, this proves Theorem 4.11.

After the construction of the auxiliary graph Hx as defined in Definition 4.10, we solve (edge-
weighted) all-pairs shortest paths on Hx and store the shortest distances for all pairs of
vertices in Hx. Note that since we traverse the expression tree T from bottom to top, we can
assume that Gy and Gz do not admit a cycle of negative length. Hence, a negative path in Gx

would need to use vertices in Gy and Gz; and it follows from Theorem 4.11 that Gx contains
a cycle of negative weight if and only if Hx contains a cycle of negative length. Since Gx is
an induced subgraph of G, we either can conclude that G contains a cycle of negative weight,
or we can compute all pairwise distances in Hx. With those values one can now compute the
values cx

i,j and ax
v,i for i, j ∈ [k] and v ∈ V (Gx). Note that some of the values are only required

in the second phase of the algorithm.

Lemma 4.16. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be the

graph as defined in Definition 4.10. Then, for all i, j ∈ [k] it holds that

cx
i,j = min

{
distHx(vy

i , uy
j), distHx(vy

i , uz
j), distHx(vz

i , uy
j), distHx(vz

i , uz
j)
}

Proof. Since V (Gx) is the disjoint union of V (Gy) and V (Gz) it holds that Lx
i = Ly

i ∪̇Lz
i for

any i ∈ [k]. Thus, the shortest path between the vertex sets Lx
i and Lx

j for i, j ∈ [k] in Gx starts

74 Algorithms Parameterized by the Clique-Width of the Input

in either Ly
i or Lz

i and ends in either Ly
j or Lz

j and the following holds:

cx
i,j = distx(Lx

i , Lx
j)

= distx(Ly
i ∪̇Lz

i , Ly
j ∪̇Lz

j)

= min
{

distx(Ly
i , Ly

j), distx(Ly
i , Lz

j), distx(Lz
i , Ly

j), distx(Lz
i , Lz

j)
}

= min
{

distHx(vy
i , uy

j), distHx(vy
i , uz

j), distHx(vz
i , uy

j), distHx(vz
i , uz

j)
}

The last equation follows from Theorem 4.11.

Lemma 4.17. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let Hx be the

graph as defined in Definition 4.10. Then, for any v ∈ V (Gy) and i ∈ [k] it holds that

ax
v,i = min

j∈[k],
a∈{y,z}

{
ay

v,j + distHx(uy
j , ua

i)
}

and for any v ∈ V (Gz) and i ∈ [k] it holds that

ax
v,i = min

j∈[k],
a∈{y,z}

{
az

v,j + distHx(uz
j , ua

i)
}

.

Proof. Assume v ∈ V (Gy). Let P = (v = w1, w2, . . . , wℓ) be a shortest v-Lx
i path in Gx with

v ∈ V (Gy). Subdivide P into two parts P = P1, P2 such that P1 is the maximal subpath
of P with V (P1) ⊆ V (Gy). Let u1 be the last vertex of P1. Then, ω(P1) ≥ ay

v,lab(u1) and
ω(P2) ≥ distHx(uy

lab(u1), ua
i), thus ax

v,i = ω(P1) + ω(P2) ≥ minj∈[k],a∈{y,z}{a
y
v,j + distHx(uy

j , ua
i)}.

On the other hand, for each j ∈ [k] and a ∈ {y, z} there is a path in Gx of length ay
v,j +

distHx(uy
j , ua

i): Per definition there is a v-Ly
j path P1 in Gx with ω(P1) = ay

v,j and due to
Theorem 4.11, there is a Ly

j -Lz
i path P2 of cost ω(P2) = distHx(uy

j , ua
i)−minv∈Ly

j
ω(v) with the

property that the second vertex is connected to all vertices of Ly
j . Thus, one can combine the

path P1 with the path P2 except of the first vertex of P2. The resulting path is a v-La
i path of

the desired cost. The equation for v ∈ V (Gz) follows analogously.

Second Phase. In this phase, we process the k-expression tree T in a top-down manner and
use the local values computed in the first phase to determine the distances in the whole graph
G.

Consider an internal node x ∈ V (T) of the k-expression tree T marked with ×−→
S ,
←−
S

for some
−→
S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Let again Ly

i resp. Lz
i

denote the set of vertices with label i in Gy resp. Gz for i ∈ [k]. For an internal node x with
children y and z we will compute for every vertex set Ly

i resp. Lz
i and every vertex v ∈ V (Gx)

the minimum cost of all paths in G that start in v and end in Ly
i resp. Lz

i with the property
that the penultimate vertex is in V (G) \ V (Gy) resp. in V (G) \ V (Gz). Thus, the penultimate
vertex is connected to all vertices of the vertex set Ly

i resp. Lz
i . It will therefore be convenient

not to include the cost of the final vertex in these values (as done in the definition below). Note
that we consider the whole graph G in this step instead of just Gx.

Formally, for a node x ∈ V (T) marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 with children y and

z we compute for every v ∈ V (Gx) and i ∈ [k] the following values:

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 75

• dx
v,i,y = minP∈P ω(P) − minu∈Ly

i
ω(u) where P is the set of all paths in G starting in v,

ending in Ly
i , and having the penultimate vertex in V (G) \ V (Gy).

• dx
v,i,z = minP∈P ω(P) − minu∈Lz

i
ω(u) where P is the set of all paths in G starting in v,

ending in Lz
i , and having the penultimate vertex in V (G) \ V (Gz).

For a node x ∈ V (T) marked with ◦R for some R : [k]→ [k] and the child y, we only compute
dx

v,i,y. We start by computing those values for the root node. We can assume, w.l.o.g., that the
root node has label ×−→

S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2.

Lemma 4.18. Let r ∈ V (T) be the root node of the k-expression tree T marked with ×−→
S ,
←−
S

for
some −→S ,

←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of r in T . Let Hr be the

graph defined in Definition 4.10. Then, for every v ∈ V (Gy) and for every i ∈ [k] it holds that

dr
v,i,y = min

j∈[k]

{
ay

v,j + distHr (uy
j , vy

i)
}

and dr
v,i,z = min

j∈[k]

{
ay

v,j + distHr (uy
j , vz

i)
}

.

Analogously, for every v ∈ V (Gz) and for every i ∈ [k] it holds that

dr
v,i,y = min

j∈[k]

{
az

v,j + distHr (uz
j , vy

i)
}

and dr
v,i,z = min

j∈[k]

{
az

v,j + distHr (uz
j , vz

i)
}

.

Proof. We prove the first equation for the case that v ∈ V (Gy). The second equation as well as
both equations for v ∈ V (Gz) can be shown analogously.

We first show that dr
v,i,y ≥ minj∈[k]{a

y
v,j + distHr (uy

j , vy
i)}. Consider a shortest path P =

(p1, . . . , pn−1, pn) with p1 = v, pn ∈ Ly
i , and pn−1 ∈ V (G) \ V (Gy) = V (Gz). Let ℓ be the

maximal index such that pr ∈ V (Gy) for all 1 ≤ r ≤ ℓ and let j ∈ [k] such that pℓ ∈ Ly
j . It holds

that 1 ≤ ℓ ≤ n−2 since p1 ∈ V (Gy) and pn−1 /∈ V (Gy). Consider the subpaths P1 = (p1, . . . , pℓ)
and P2 = (pℓ+1, . . . , pn). By construction, P1 is a v-Ly

j path in Gy and hence ω(P1) ≥ ay
v,j .

Since pℓ+1 is connected to pℓ and pℓ+1 ∈ Gz, the vertex pℓ+1 is connected to every vertex in
Ly

j . We prepend P2 by p′ = arg minu∈Ly
j

ω(u) and denote the resulting path by P ′2. Since P is
a shortest v-Ly

i path and pn−1 ∈ V (Gz), it holds that pn = arg minu∈Ly
i

ω(u). The path P ′2 is
an Ly

j -Ly
i path in Gr = G with the property that the second vertex and the penultimate vertex

are in V (Gr) \ V (Gy) and hence, due to Theorem 4.11, ω(P ′2) ≥ distHr (uy
j , vy

i) + ω(p′) + ω(pn).
Note that ω(P) = ω(P1) + ω(P ′2)− ω(p′). Thus,

dr
v,i,y = ω(P)− min

u∈Ly
i

ω(u)

= ω(P1) + ω(P ′2)− ω(p′)− min
u∈Ly

i

ω(u)

≥ ay
v,j + distHr (uy

j , vy
i) + ω(pn)− min

u∈Ly
i

ω(u)

= ay
v,j + distHr (uy

j , vy
i)

≥ min
j∈[k]

{
ay

v,j + distHr (uy
j , vy

i)
}

.

For the other direction, we observe that for each j ∈ [k] there is always a path in G of cost
ay

v,j + distHr (uy
j , vy

i) + minu∈Ly
i

ω(u) that starts in v, ends in Ly
i , and that has its penultimate

vertex in V (G) \ V (Gy): For fixed j ∈ [k] let P1 be a shortest v-Ly
j path in Gy. By definition,

it holds that ω(P1) = ay
v,j . Let P2 be a shortest Ly

j -Ly
i path in Gr = G with the property

76 Algorithms Parameterized by the Clique-Width of the Input

that the second vertex and the penultimate vertex are in V (Gr) \ V (Gy). By Theorem 4.11 it
holds that ω(P2) = distHr (uy

j , vy
i) + minu∈Ly

j
ω(u) + minu∈Ly

i
ω(u). Since the second vertex of

P2 is connected to all vertices of Ly
j we can combine P1 and P2 by removing the first vertex of

P2 to get a v-Ly
i path P in G with the property that the penultimate vertex is in V (G) \

V (Gy) of cost ay
v,j + distHr (uy

j , vy
i) + minu∈Ly

i
ω(u). By definition of dr

v,i,y, it follows that
ay

v,j + distHr (uy
j , vy

i) ≥ dr
v,i,y. Because the argument works for all j ∈ [k], it follows directly that

dr
v,i,y ≤ minj∈[k]{a

y
v,j + distHr (uy

j , vy
i)}, which completes the proof.

Next, we show how to propagate those values downwards in the k-expression tree, starting
with a node marked with ◦R for some R : [k]→ [k].

Lemma 4.19. Let x ∈ V (T) be an internal node of the k-expression tree T marked with ◦R for
some R : [k]→ [k]. Let y ∈ V (T) be the unique child of x and w ∈ V (T) be the unique ancestor
of x in T . Then, for any v ∈ V (Gx) and i ∈ [k] it holds that dx

v,i,y = dw
v,R(i),x.

Proof. Since x ∈ V (T) is marked with ◦R for some R : [k] → [k] it holds that unlab(Gy) =
unlab(Gx) and that Lx

i = ⋃
j:R(j)=i Ly

j . Thus, all vertices in V (G) \ V (Gx) are either connected
to all vertices of Lx

i or to none. Consider a shortest v-Ly
i path P in G with the property that

the penultimate vertex is in V (G) \ V (Gy). Since V (Gy) = V (Gx), P is also a v-Lx
R(i) path

with the property that the penultimate vertex is in V (G) \ V (Gx). Hence, dx
v,i,y ≥ dw

v,R(i),x.
On the other hand, every shortest v-Lx

R(i) path in G with the property that the penultimate
vertex is in V (G) \ V (Gx) can be changed to a v-Ly

i path by possibly replacing the final vertex
with arg minu∈Ly

i
ω(u). Since the cost of this vertex is not included in d-values, it follows that

dw
v,R(i),x ≥ dx

v,i,y.

We now show the propagation of the values for nodes x ∈ V (T) that are marked with ×−→
S ,
←−
S

.
We start with one specific case and then conclude the general case as a corollary.

Lemma 4.20. Let x ∈ V (T) be an internal node of the k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2. Let y ∈ V (T) and z ∈ V (T) be the two children of x in T , let w ∈ V (T)

be the unique ancestor of x in T . Then, for any v ∈ V (Gy) and i ∈ [k] it holds that dx
v,i,y is the

minimum of the following three values:

• dw
v,i,x,

• min
j∈[k]

{
ay

v,j + distHx(uy
j , vy

i)
}

,

• min
j∈[k],

c∈{y,z}

{
dw

v,j,x + distHx(vc
j , vy

i)
}

.

Proof. We can assume, that w is marked with ◦R for some R : [k]→ [k] and that x is the only
child of w.

Let P = (p1, . . . , pn−1, pn) be a shortest v-Ly
i path in G with penultimate vertex in V (G) \

V (Gy), i.e., with p1 = v, pn ∈ Ly
i , and pn−1 ∈ V (G) \ V (Gy); thus, ω(P) − ω(pn) = dx

v,i,y. We
distinguish three cases:
Case 1: pn−1 ∈ V (G) \ V (Gx). In this case, P is also a v-Lx

i path such that the penultimate
vertex is in V (G) \ V (Gx); thus, dx

v,i,y ≥ dw
v,i,x.

Case 2: pn−1 ∈ V (Gz) and all vertices of P are in Gx. In this case, we can compute the
value in the same way as done in Lemma 4.18 for the root node and it holds that dx

v,i,y =

4.2 All-Pairs Shortest Path Parameterized by Clique-Width 77

minj∈[k]{a
y
v,j + distHx(uy

j , vy
i)}.

Case 3: pn−1 ∈ V (Gz) and at least one vertex in P is in V (G)\V (Gx). Let pℓ be the last vertex
of P that is in V (G)\V (Gx); clearly, pℓ+1 ∈ V (Gx). We split the path P into the two subpaths
P1 = (p1, . . . , pℓ) and P2 = (pℓ+1, . . . , pn). Let j ∈ [k] such that pℓ+1 ∈ Lx

j . Since pℓ is connected
to pℓ+1, the vertex pℓ is connected to every vertex in Lx

j . We extend P1 by p′ = arg minu∈Lx
j

ω(u)
and denote the resulting path by P ′1. Now it holds by definition that ω(P ′1)− ω(p′) ≥ dw

v,j,x, as
the penultimate vertex pℓ of P ′1 is in V \ V (Gx). Let further c ∈ {y, z} such that pℓ+1 ∈ Lc

j

(note that Lx
j = Ly

j ∪̇Lz
j). Then, ω(P2) − ω(pn) ≥ distHx(vc

j , vy
i) by Theorem 4.11, as P2 is a

path in Gx. Note that ω(P) = ω(P ′1) + ω(P2)− ω(p′). Thus, in this case it holds that

dx
v,i,y = ω(P)− min

u∈Ly
i

ω(u)

= ω(P ′1)− ω(p′) + ω(P2)− min
u∈Ly

i

ω(u)

≥ dw
v,j,x + distHx(vc

j , vy
i) + ω(pn)− min

u∈Ly
i

ω(u)

≥ dw
v,j,x + distHx(vc

j , vy
i)

≥ min
j∈[k],

c∈{y,z}

{
dw

v,j,x + distHx(vc
j , vy

i)
}

We have seen in the case analysis above that in each case dx
v,i,y is at least the value considered in

the case; in particular, it is at least equal to their collective minimum value. On the other hand,
for each case there is a path P fulfilling the definition of dx

v,i,y such that ω(P) −minu∈Ly
i

ω(u)
equals the value of the considered case. Thus, dx

v,i,y is also at most equal to the minimum taken
over all three cases. This completes the proof.

Lemma 4.20 shows how to compute the value dx
v,i,y for any v ∈ V (Gy). By a similar argu-

mentation one can also compute the value dx
v,i,β for any v ∈ V (Gα) for α, β ∈ {y, z}.

Corollary 4.21. Let x ∈ V (T) be an internal node of the k-expression tree T marked with
×−→

S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2. Let y ∈ V (T) and z ∈ V (T) be the two children of x in T , let

w ∈ V (T) be the unique ancestor of x in T , and let α, β ∈ {y, z}. Then, for any v ∈ V (Gα)
and i ∈ [k] it holds that dx

v,i,β is the minimum of the following three values:

• dw
v,i,x

• min
j∈[k]

{
aα

v,j + distHx(uα
j , vβ

i)
}

• min
j∈[k],

c∈{y,z}

{
dw

v,j,x + distHx(vc
j , vβ

i)
}

Third Phase. In the third phase, we traverse the k-expression tree T one final time; The
order in which the nodes are visited is immaterial. We go over all nodes x with label ×−→

S ,
←−
S

for
some −→S ,

←−
S ⊆ [k]2 and compute for each pair of vertices (u, v) with u ∈ V (Gy) and v ∈ V (Gz)

the shortest u-v path in G, with y ∈ V (T) and z ∈ V (T) denoting the two children of x in T .
Since the leaves of T are in one-to-one correspondence with single-vertex graphs, one for each
vertex of G, this procedure will consider every pair of vertices in G at some node x ∈ V (T).
In the second phase we have extended the local values ax

v,i to the values dx
v,i,z that can now be

78 Algorithms Parameterized by the Clique-Width of the Input

used to determine the cost of a shortest u-Lz
i path in the whole graph G. To get a u-v path in

G, we need to extend this path by a Lz
i -v path in Gz. That is exactly the value az

v,i if we flip
the direction of all edges in G. Formally, for each node x ∈ V (T) we define the value ax,←

v,i for
all i ∈ [k] and v ∈ V (G) as

ax,←
v,i = distx(Lx

i , v).

We can compute those values as done in the first phase by considering the edge-flipped graph
G← (with the same vertex weights). Eventually, we can compute the costs of a shortest u-v
path in G for u ∈ V (Gy) and v ∈ V (Gz).

Lemma 4.22. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×−→
S ,
←−
S

for some −→S ,
←−
S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Then, for

u ∈ V (Gy) and v ∈ V (Gz) it holds that

distG(u, v) = min
i∈[k]

{
dx

u,i,z + az,←
v,i

}
.

Proof. Let P = (u = p1, . . . , pn = v) be a shortest u-v path in G. Let ℓ be the largest index such
that pℓ ∈ V (G) \ V (Gz). Since p1 ∈ V (Gy) and pn ∈ V (Gz) this index must exist and it holds
that 1 ≤ ℓ ≤ n − 1. Split P into two subpaths P1 = (p1, . . . , pℓ) and P2 = (pℓ+1, . . . , pn). Let
i ∈ [k] such that pℓ+1 ∈ Lz

i . Since pℓ is connected to pℓ+1, the vertex pℓ is connected to every
vertex in Lz

i . We extend P1 by p′ = arg minu∈Lz
i

ω(u) and denote the resulting path by P ′1. Now,
P ′1 is a u-Lz

i path with penultimate vertex in V (G)\V (Gz) and, therefore ω(P ′1)−ω(p′) ≥ dx
u,i,z.

Similarly, P2 is a Lz
i -v path in Gz, implying that ω(P2) ≥ az,←

v,i . Thus

distG(u, v) = ω(P)
= ω(P ′1)− ω(p′) + ω(P2)
≥ dx

u,i,z + az,←
v,i

≥ min
i∈[k]

{
dx

u,i,z + az,←
v,i

}
.

Conversely, we show that for each i ∈ [k] there is a u-v path in G of cost dx
u,i,z + az,←

v,i : For
fixed i ∈ [k] let P ′ be a shortest u-Lz

i path in G with the property that the penultimate vertex is
in V (G)\V (Gz). By definition it holds that ω(P ′) = dx

u,i,z + minw∈Lz
i

ω(w). Let P1 be obtained
from P ′ by removing the last vertex. Now, ω(P1) = dx

u,i,z and P1 has the property that it starts
in u and that its last vertex is adjacent to all vertices of Lz

i . Let P2 be a shortest Lz
i -v path

in Gz. By definition, it holds that ω(P2) = az,←
v,i . Now, we can extend P1 by P2 to get a u-v

path in G of cost dx
u,i,z + az,←

v,i . This implies that distG(u, v) ≤ dx
u,i,z + az,←

v,i and, using that the
argument works for all i ∈ [k], that distG(u, v) ≤ mini∈[k]

{
dx

u,i,z + az,←
v,i

}
.

Running time. First, we need to transform the directed clique-width k-expression into a
directed NLC-width k-expression tree T , which can be done in linear time O(n + m) [GWY16].

In the first traversal, we compute for every node x ∈ V (T) marked with ◦R for some R : [k]→
[k], the values ax

v,i and cx
i,j for all v ∈ V (Gx) and i, j ∈ [k] using Lemma 4.9 and Lemma 4.8

in time O(k2) resp. O(nk) per node x. For a node x ∈ V (T) marked with ×−→
S ,
←−
S

for some
−→
S ,
←−
S ⊆ [k]2, we first compute the auxiliary graph Hx as defined in Definition 4.10 in time

4.3 Triangle Counting Parameterized by Clique-Width 79

O(|V (H)|+ |E(H)|) = O(k2) and solve (edge-weighted) all-pairs shortest paths on Hx in
time O(k3). After this, using Lemma 4.16 resp. Lemma 4.17, we compute each of the k2 many
values cx

i,j in constant time and each of the n · k many values ax
v,i in time O(k), resulting in a

running time of O(k3 + k2 · n) per node x ∈ V (T). The values ax,←
v,i can be computed in the

same time considering the edge-flipped graph.
In the second phase, we perform a top-down traversal of T to compute for each node x ∈ V (T)

the values dx
v,i,y and dx

v,i,z for all v ∈ Gx and i ∈ [k] using Lemma 4.18, Lemma 4.19, and
Corollary 4.21. For each node x, we compute at most 2n · k values, each in time O(k), which
results in a running time of O(nk2) per node of T . Since there are O(n) nodes in the k-expression
tree T , the total running time of the first and second phase is O(nk3 + n2k2) = O(n2k2).

In the last phase, we consider each pair of vertices u, v ∈ V (G) exactly once and compute for
each pair the shortest distance in time O(k) using Lemma 4.22. Thus, the running time of the
last phase is bounded by O(n2k). In total, we obtain the claimed bound of O(k2n2) and have
proven Theorem 4.7.

4.3 Triangle Counting Parameterized by Clique-Width
Coudert et al. [CDP19] showed how to solve triangle counting parameterized by the clique-
width cw of a graph G with n vertices and m edges in time O(cw2(n + m)). In this section,
using an equivalent NLC-width k-expression, we show how to solve triangle counting in
time O(k2n + km).

triangle counting

Input: An undirected graph G = (V, E).
Output: The number of triangles in G.

Note that the length of an NLC-width expression is O(n), whereas the length of a clique-
width expression can be Ω(n + m) and that one can transform any clique-width k-expression
into an equivalent NLC-width k-expression in linear time, cf. [Joh98]. In this section, we will
prove the following theorem.

Theorem 4.23. For every undirected graph G = (V, E), given together with a clique-width
k-expression, we can solve triangle counting in time O(k2n + km).

Algorithm. First, we transform the given clique-width k-expression into an equivalent NLC-
width k-expression. For the NLC-width k-expression σ, we consider the expression tree T =
tree(σ), i.e., each leaf in T is marked with •i for some i ∈ [k] and each internal node in T is
either marked with ◦R for some R : [k]→ [k] or by ×S for some S ⊆ [k]2. As done in the previous
section, we denote for a node x ∈ V (T) by Gx the labeled graph defined by the k-expression
represented by the subtree of T rooted in x and we define by Lx

i = {v ∈ V (Gx) | lab(v) = i} the
set of vertices in Gx with label i ∈ [k]. For the root node r ∈ V (T) it holds that Gr = G. We
will compute for each vertex x ∈ V (T) the number of triangles in Gx that we denote by △x.
Additionally, we will compute for each x ∈ V (T) and i, j ∈ [k] the following auxiliary values
mx

i,j and nx
i :

nx
i = |Lx

i |

mx
i,j =

∣∣∣{{u, v} ∈ E
∣∣∣ u ∈ Lx

i , v ∈ Lx
j

}∣∣∣

80 Algorithms Parameterized by the Clique-Width of the Input

We traverse the k-expression tree from bottom to top. First, consider a leaf x ∈ V (T) marked
with •ℓ for some ℓ ∈ [k], i.e., Gx consists of a single vertex v of label ℓ. For this node x it holds
for all i ∈ [k] that either nx

i = 1 if i = ℓ or nx
i = 0 if i ̸= ℓ. Moreover, mx

i,j = 0 for all i, j ∈ [k]
and △x = 0. Now, consider an internal node x ∈ V (T) marked with ◦R for some R : [k] → [k]
and let y ∈ V (T) be the child of x in T . Since unlab(Gy) = unlab(Gx) it holds that △x = △y.
The values nx

i and mx
i,j for i, j ∈ [k] can be computed in time O(k2) by the following lemma.

Lemma 4.24. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ◦R for
some R : [k]→ [k] and let y ∈ V (T) be the child of x in T . If the values ny

i and my
i,j are known

for i, j ∈ [k] then one can compute the values nx
i and mx

i,j in time O(k2).

Proof. Since it holds that Lx
i = ∪i′∈R−1(i)L

y
i′ , we can compute the values nx

i for each i ∈ [k] as
follows

nx
i =

∑
i′∈R−1(i)

ny
i′

Similarly, we can compute the values mx
i,j for i, j ∈ [k] as follows.

mx
i,j =

∣∣∣{{u, v} ∈ E
∣∣∣ u ∈ Lx

i , v ∈ Lx
j

}∣∣∣
=

∣∣∣∣∣∣
{u, v} ∈ E

∣∣∣∣∣∣ u ∈
⋃

i′∈R−1(i)
Ly

i′ , v ∈
⋃

j′∈R−1(j)
Ly

j′


∣∣∣∣∣∣

=
∑

i′∈R−1(i)

∑
j′∈R−1(j)

∣∣∣{{u, v}
∣∣∣ u ∈ Ly

i′ , v ∈ Ly
j′

}∣∣∣
=

∑
i′∈R−1(i)

∑
j′∈R−1(j)

my
i′,j′ (4.1)

Since R is a function and can be interpreted as a right-unique and left-total relation, each value
my

i,j appears in Equation (4.1) exactly once, namely in the computation of mR(i),R(j)). Thus,
to compute the values mx

i,j for all i, j ∈ [k], we can first initialize the values mx
i,j by zero and

later add the value my
i,j to the (current) value of mx

R(i),R(j) for each i, j ∈ [k]. Hence, we can
compute all values mx

i,j in time O(k2).

Next, we consider a node x ∈ V (T) that is marked with ×S for some S ⊆ [k]2. Again, we
can compute the auxiliary values nx

i and mx
i,j for i, j ∈ [k] in time O(k2).

Lemma 4.25. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×S for
some S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Then, for any i, j ∈ [k]
it holds that nx

i = ny
i + nz

i and

mx
i,j =


my

i,j + mz
i,j + ny

i nz
j + ny

j ny
i if (i, j) ∈ S and (j, i) ∈ S

my
i,j + mz

i,j + ny
i nz

j if (i, j) ∈ S and (j, i) /∈ S

my
i,j + mz

i,j + ny
j ny

i if (i, j) /∈ S and (j, i) ∈ S

my
i,j + mz

i,j if (i, j) /∈ S and (j, i) /∈ S

Proof. Since Lx
i = Ly

i ∪̇Lz
i it holds that |Lx

i | = |L
y
i |+ |Lz

i |. Further, it holds that

mx
i,j =

∑
a,b∈{y,z}

∣∣∣{{u, v} ∈ E(Gx)
∣∣∣ u ∈ La

i , v ∈ Lb
j

}∣∣∣

4.3 Triangle Counting Parameterized by Clique-Width 81

while the two summands for a ̸= b are equal to the number of edges in respective full join (if
present). This proves the claim.

Using the auxiliary values nx
i and mx

i,j , we can finally compute the number of triangles in Gx

as follows.
Lemma 4.26. Let x ∈ V (T) be an internal node of a k-expression tree T marked with ×S for
some S ⊆ [k]2 and let y ∈ V (T) and z ∈ V (T) be the children of x in T . Then, it holds that

△x = △y +△z (4.2)
+
∑

(i,j)∈S

my
i,i · n

z
j + mz

j,j · n
y
i (4.3)

+
∑

(i,j)∈S
(i,k)∈S

mz
j,k · n

y
i +

∑
(i,j)∈S
(ℓ,j)∈S

my
i,ℓ · n

z
j . (4.4)

Proof. We define Ex
new = E(Gx) \ (E(Gy) ∪ E(Gz)) as the set of newly created edges in Gx,

i.e., Ex
new is the union of all full joins between the vertex sets Ly

i and Lz
j for each (i, j) ∈ S.

First, we show that each triangle in Gx is counted in the sum above. Any triangle not using an
edge in Enew is either completely in Gy or Gz and thus, counted in Line 4.2. Since each edge in
Enew connects a vertex from Gy to a vertex in Gz, there is no triangle using exactly one edge
in Enew, and since the edge set Enew induces a bipartite graph, there is no triangle in Gx using
three edges in Enew. Hence, all remaining triangles consist of two edges in Enew and one edge
in E(Gy) or E(Gz). If both edges in Enew belong to a full join generated by one pair (i, j) ∈ S,
this triangle is counted in Line 4.3. If the two edges in Enew belong to full joins generated by
different pairs in S, it is counted in Line 4.4. Hence, the above sum is at least the number of
triangles in Gx. For the other direction, each summand in the above sum corresponds to a set
of unique triangles in Gx, thus, the sum is also at most the number of triangles in Gx.

Running time. Transforming the clique-width k-expression into an equivalent NLC-width
k-expression can be done in linear time. Denote by T = tree(σ) the expression tree of the
NLC-width k-expression σ. Initializing the values nx

i , mx
i,j , and △x for all leaves x ∈ V (T)

takes total time O(n). For an internal node x ∈ V (T) marked with ◦R for some R : [k] → [k],
we can update those values in time O(k2) due to Lemma 4.24. For any node x ∈ V (T) marked
with ×S for some S ⊆ [k], we can update the values nx

i and mx
i,j for all i, j ∈ [k] per node in

O(k2) due to Lemma 4.25. One can easily bound the computation of △x due to Lemma 4.26
by O(k3), however, we can analyze the total running time more carefully: For a node x ∈ V (T)
that is marked with ×Sx for Sx ⊆ [k]2, we first expand Sx into a k × k matrix in time O(k2);
thus, for arbitrary i, j ∈ [k] we can check in constant time if (i, j) ∈ Sx. Line 4.2 and Line 4.3 of
Lemma 4.26 can surely be computed in time O(k); for Line 4.4 we iterate over the set Sx and
check for each pair (i, j) ∈ Sx and each ℓ ∈ [k] if (i, ℓ) ∈ Sx resp. (ℓ, i) ∈ Sx in time O(|Sx|k).
Now, the total running time of the whole algorithm can be bounded by

∑
x∈V (T)

|Sx| k + k2 =

 ∑
x∈V (T)

|Sx|

 k +
∑

x∈V (T)
k2 ≤ mk + 3nk2

Note that it holds that ∑x∈V (T) |Sx| ≤ m and note that there are at most 3n nodes in T ,
namely n leaves, n − 1 nodes marked with ×S for some S ⊆ [k]2, each potentially followed
by a node marked with ◦R for some R : [k] → [k]. As constant factors propagate through the
inequality, we have proven Theorem 4.23.

82 Algorithms Parameterized by the Clique-Width of the Input

4.4 Conclusion
We extended the studies in the “FPT in P” framework and obtained efficient parameterized
algorithms with respect to the parameter clique-width for the problems vertex-weighted
all-pairs shortest paths and triangle counting. The parameter clique-width is a
generalization of the parameter modular-width, for which we got an adaptive algorithm for
vertex-weighted all-pairs shortest paths in Section 3.4. The algorithm parameterized
by the (much) stronger parameter clique-width cw of time O(cw2 n2) is truly subcubic for
cw ∈ O(n0.5−ε) for any ε > 0. Note that it also permits us to solve diameter in the same time,
complementing the lower bound ruling out any O(2o(cw) · n2−ε)-time algorithm for diameter
for any ε > 0, by Coudert et al. [CDP19]. Our algorithm applies to arbitrary vertex-weighted
directed graphs without negative cycles. Note that, like all efficient algorithms parameterized
by the clique-width, we necessarily assume to be given a suitable expression in general.3

We remark that it is important that small clique-width (as well as small modular-width) does
not imply the sparsity of the graph. For other parameters that do imply the sparsity of the
graph like tree-depth or tree-width (meaning that for parameter value k, the number of edges is
bounded by O(kn), where n denotes the number of vertices in the graph), the algorithm of Pettie
and Ramachandran [PR05] would directly yield a running time of O(kn2 + n2 log log n), which
is nearly optimal. For the same reason, as already mentioned for the parameter modular-width
in Section 3.8, it is hopeless to consider edge-weighted graphs with (low) clique-width for most
problems, as one could modify an arbitrary input graph by adding all the missing edges with
sufficiently large or small weights, depending on the specific problem. E.g., for edge-weighted
all-pairs shortest paths, after adding all missing edges with sufficiently large weights, the
shortest-path lengths do not change, but the resulting graph is a complete graph of constant
clique-width.

As a second result, we slightly improved the running time for the problem triangle count-
ing from O(cw2(n + m)) to O(cw2 n + m) mainly due to the use of an NLC-width k-expression
instead of a clique-width k-expression. Thus, we achieved an adaptive algorithm for the problem
triangle counting for dense graphs if one rules out the use of fast matrix multiplication, i.e.,
even in the worst-case of cw ∈ Θ(n) the running time of this algorithm is not worst than the
best combinatorial unparameterized algorithms on dense graphs, and even cw ∈ o(n) yields an
improvement. A natural further-reaching question regarding triangle counting is whether it
is possible to develop a parameterized algorithm that is also adaptive towards non-combinatorial
or sparse graphs, e.g., a parameterized algorithm utilizing fast matrix multiplication to count
the number of triangles.

3As mentioned in the beginning of this chapter, for some graph classes of bounded clique-width one can compute
the corresponding k-expression in linear time, e.g., distance-hereditary graphs, or graphs of bounded modular-
width, split-width, or tree-width.

5
Triangle Counting Parameterized by the

Twin-Width of the Input

Recently, the parameter twin-width was introduced by Bonnet et al. [BKTW20] over a series
of papers. The twin-width of a graph G, denoted by tww(G), also measures the distance of a
graph from being a cograph (alike modular-width and clique-width). As seen in Section 3.1, a
graph is a cograph if and only if the modular decomposition of G does not admit any prime
node. Cographs can also be characterized as those graphs that arise from an isolated vertex
by a sequence of augmentations to the graph in form of adding a true or false twin to any
vertex [MT16]. In other words, cographs are exactly those graph that can be contracted to a
single vertex by iterating contractions of twins [BKTW20]. Intuitively, a graph has bounded
twin-width if one can contract the graph into a single vertex by a sequence of contraction of
near-twins that are pairs of vertices whose neighborhood only differs by a bounded number of
elements. The key point for twin-width is now to keep track of the error by another type of
edges, called red edges; and one requires that the maximum number of incident red edges of
each vertex stays bounded, or, respectively, is at most the twin-width. See Section 5.1 for the
precise definition of twin-width.

Bonnet et al. [BKTW20] showed that every graph of boolean-width k has twin-width at most
2k+1 − 1, i.e., it holds that tww(G) ≤ 2boolw(G)+1 − 1 for every graph G. This implies that the
class of bounded twin-width graphs contains all graph that have bounded parameter value for
all introduced parameters in Section 2.3, e.g., bounded boolean-width, bounded rank-width,
bounded clique-width, bounded tree-width, or bounded branch-width.1 On the other hand, for
every positive integers d and n, the d-dimensional n-grid has twin-width at most 3d [BKTW20].
Since all above mentioned parameters are unbounded on 2-dimensional n×n-grids, one cannot
bound any of those parameters by a function depending on the twin-width. Furthermore, the
class of bounded twin-width contains several more graph classes such as unit interval, proper-

1We refer to Section 2.3 for a short definition of the mentioned parameters.

84 Triangle Counting Parameterized by the Twin-Width of the Input

minor closed, or H-minor free graphs [BGK+21b]. For some of those classes, e.g., proper minor
closed classes and bounded rank-width graph, it is possible to compute in polynomial time a
sequence of d-contractions, witnessing that the twin-width is at most d [BGK+21a]. In general,
determining the twin-width of a given graph can not be done efficiently, as even deciding if the
twin-width of a graph is at most 4 is NP-hard [BBD22]. Thus, we will assume that a graph is
given by a d-contraction sequence.

While bounded twin-width generalizes many other graph classes, Bonnet et al. [BKTW20]
showed that one can decide first-order (FO) formulas in fixed-parameter time (FPT) on graphs
of bounded twin-width, if a corresponding witness is given. I.e., given a d-contraction sequence
of a graph G with n nodes and a first-order sentences φ, one can decide G |= φ in time f(|φ|, d)·n
for some computable non-elementary function f . Moreover, various intractable problems like
independent set, dominating set, and clique can be solved in time 2O(d)n-time [BGK+21b]
on graphs with n vertices and twin-width at most d.

In this chapter, we show how to solve the triangle counting problem on graphs with
n vertices and m edges in time O(d2n + m), with d denoting the twin-width of the graph,
assuming that a d-contraction sequence is given in a compact way (as a naive representation of
a d-contraction sequence can be of length Ω(n(n + m))).

We stress that even though every graph of bounded clique-width also has bounded twin-width,
the twin-width of the graph can only be exponentially bounded, i.e., it holds that boolw(G) ≤
2tww(G)+1 − 1 with boolw(G) denotes the more general parameter boolean-width and it holds
that cw(G) ≤ 2boolw(G) [BTV11]. Thus, although the O(d2n+m) algorithm also implies a linear
time algorithm for solving triangle counting on bounded clique-width graph, this algorithm
does not generalize the algorithm for triangle counting parameterized by the clique-width
of the input graph (cf. Section 4.3), since the dependency on the clique-width of the presented
algorithm in this chapter might be much worse.

Overview. In Section 5.1, we formally define the twin-width of a graph G and define the d-
contraction sequence of a graph G. We will also discuss how to encode a d-contraction sequence
efficiently in linear space. The description of the algorithm for triangle counting running
in time O(d2n + m) follows in Section 5.2. We conclude in Section 5.3.

5.1 Definition of Twin-Width.

A trigraph G is a triple G = (V, E, R) where E ⊆
(V

2
)

and R ⊆
(V

2
)

are two disjoint sets of
undirected edges. We refer to an edge in E as a black edge and to an edge in R as a red edge.
By setting R = ∅, one can interpret any graph (V, E) as a trigraph (V, E, ∅). In that sense, we
will sometimes call a graph G = (V, E) a trigraph G and mean G = (V, E, ∅) by a slight abuse
of notation. For any trigraph G = (V, E, R) and any vertex v ∈ V , we denote by NR(v) the
vertices that are adjacent to v via a red edge, i.e., NR(v) = {u ∈ V | {u, v} ∈ R}. Analogously,
we define NE(v) = {u ∈ V | {u, v} ∈ E}. For a vertex v ∈ V , we denote by |NR(v)| the red
degree of vertex v. A trigraph G = (V, E, R) with maximum red degree at most d is called a d-
trigraph. For a trigraph G = (V, E, R) and two vertices u, v ∈ V , we define G/u, v = (V ′, E′, R′)
as the trigraph obtained from G by contracting u and v into a new vertex w and after updating
the edge sets in the following way: A vertex x is adjacent to the new vertex w in G/u, v by a
black edge if and only if x is adjacent to u and to v in G by a black edge in G. Moreover, x is
non-adjacent to w in G/u, v, if x is neither adjacent to u nor to v in G (via any edge). In all
other cases, x is adjacent to w by a red edge in G/u, v. Formally, V ′ = (V \ {u, v} ∪ {w}) with

5.2 Algorithm 85

the following edges being incident to w:

• {w, x} ∈ E′ if and only if {u, x} ∈ E and {v, x} ∈ E;

• {w, x} /∈ E′ ∪R′ if and only if {u, x} /∈ E ∪R;

• {w, x} ∈ R′ otherwise.

All edges that are not incident to u nor to v in G remain unchanged in G/u, v. We stress that
u and v do not need to be adjacent. We also say that the graph G/u, v is a contraction of
the graph G. For any integer d ≥ 0, if both G and G/u, v are d-trigraphs, we call G/u, v a
d-contraction of G. A trigraph G is d-collapsible if there exists a sequence of d-contractions
which contracts G to a single vertex. The twin-width of a a graph G denotes the smallest d
such that there exists a d-contraction sequence of G into a single vertex.

Definition 5.1 (twin-width, [BKTW20]). Let G = (V, E) be a graph. The twin-width of G,
denoted by tww(G), the the minimum integer d ≥ 0, such that (V, E, ∅) is d-collapsible.

In other words, for any graph G with tww(G) = d, there exists a sequence of trigraphs
Gn, Gn−1, . . . , G2, G1 with Gn = G, G1 = K1 and Gk is a d-contraction of Gk+1 for k ∈ [n− 1].
See Figure 5.1 for an example of a d-contraction sequence. To represent a d-contraction sequence
efficiently using only O(n) space, we just specify the vertices that get contracted in each step.
For this, we enumerate the set of vertices, while the new arising vertex after each contraction
is identified by the next greater index of this enumeration.

Definition 5.2 (Compact representation of a d-contraction). Let G = Gn, Gn−1, . . . , G1 = K1
be a d-contraction sequence of an n-vertex graph G = (V, E) with V = {v1, v2, . . . , vn}. Then,
we call (vik

, vjk
)n≥k≥2 with Gk−1 = Gk/vik

, vjk
a compact representation of a d-contraction

sequence. The graph Gk−1 results from Gk by contracting the two vertices vik
and vjk

into a
new vertex v2n−k+1 for k ∈ [2, n].

As additional notation, for a d-contraction sequence Gn, Gn−1, . . . , G2, G1 and a vertex v ∈
V (Gk) with k ∈ [n], we denote by v(G) the subset of vertices in G eventually contracted into v
in Gk and we denote Gv = G[v(G)].

5.2 Algorithm

In this section, we will show how to solve triangle counting parameterized by the twin-
width of the given graph. We denote the number of triangles in a graph by #T (G), i.e.,
#T (G) = |{{x, y, z} ⊆

(V
3
)
| {x, y}, {y, z}, {z, x} ∈ E}|.

triangle counting

Input: An undirected graph G = (V, E).
Output: The number of triangles #T (G) in G.

Theorem 5.3. Let G = (V, E) be an undirected graph with tww(G) = d, and let a compact
representation of a d-contraction sequence be given. Then, one can solve triangle counting
in time O(d2n + m).

86 Triangle Counting Parameterized by the Twin-Width of the Input

v1 v2 v3

v4 v5

v6

G = G6

v1

v7

v3

v5

v6

G5 = G6/v2, v4

v1

v7

v8

v6

G4 = G5/v3, v5

v9 v7

v6

G3 = G4/v1, v8

v9 v10

G2 = G3/v6, v7

v11

G1 = G2/v9, v10

Figure 5.1: Example of a 2-contraction sequence for the octahedron graph G with the compact
representation ((v2, v4), (v3, v5), (v1, v8), (v6, v7), (v9, v10)).

Using the compact representation of the d-contraction sequence as defined in Definition 5.2,
we gradually construct the graphs G = Gn, Gn−1, . . . , G1 = K1. Consider a trigraph Gk =
(Vk, Ek, Rk) of the contraction sequence of G for k ∈ [n] and a fixed triangle {a, b, c} in G with
a, b, c ∈ V (G). The vertices of the triangle can be in subgraphs corresponding to one, two, or
three vertices of Vk. More formally, we observe the following:

Observation 5.4. Let G = Gn, . . . , G1 = K1 be a contraction sequence of a graph G, let
Gk = (Vk, Ek, Rk) be a trigraph of the contraction sequence, and let {a, b, c} be a triangle in G
for a, b, c ∈ V (G). Then, exactly one of the following statements is true for x, y, z ∈ Vk (after
possibly reordering a, b, and c):

(i) a ∈ x(G), b ∈ y(G), c ∈ z(G) with {x, y}, {y, z}, {z, x} ∈ Ek

(ii) a ∈ x(G), b ∈ y(G), c ∈ z(G) with {x, y}, {y, z} ∈ Ek, {z, x} ∈ Rk

(iii) a ∈ x(G), b ∈ y(G), c ∈ z(G) with {x, y} ∈ Ek, {y, z}, {z, x} ∈ Rk (⋆)

(iv) a ∈ x(G), b ∈ y(G), c ∈ z(G) with {x, y}, {y, z}, {z, x} ∈ Rk (⋆)

(v) a ∈ x(G) and b, c ∈ y(G) with {x, y} ∈ Ek

(vi) a ∈ x(G) and b, c ∈ y(G) with {x, y} ∈ Rk (⋆)

(vii) a, b, c ∈ x(G) (⋆)

Let G = Gn, Gn−1, . . . , G1 = K1 be a d-contraction sequence of a graph G with n vertices
and let Gi = (Vi, Ei, Ri) for i ∈ [n]. Consider a fixed trigraph Gk in this contraction sequence
that will be contracted into Gk−1 = Gk/vik

, vjk
according to the contraction sequence for

5.2 Algorithm 87

(i)

(ii)

(iii)⋆

(iv)⋆

(v)

(vi)⋆ (vii)⋆

(a) Diagram of case transitions.

(i) (ii) (iii)⋆ (iv)⋆

(v) (vi)⋆ (vii)⋆

(b) Illustration of the different cases.

Figure 5.2: Possible case transitions of a triangle in G from Gk to Gk−1 for k ∈ [2, n] regarding
the cases described in Observation 5.4. The number of all triangles that correspond
to a case marked by a star will be stored throughout the algorithm. Self-loops are
omitted in the diagram. Transitions from an unmarked case to a marked case are
represented by thick arrows.

vik
, vj,k ∈ V (Gk). For simplicity, we define u := vik

and v := vjk
as the two vertices in V (Gk)

that get contracted into the new vertex w := v2n−k+1 of Gk−1. A fixed triangle T of G might
transition from a case in Gk to a different case in Gk−1 if T consists of vertices in u(G) or v(G).
If T consists of vertices in both u(G) and v(G), one vertex less is needed in Gk−1 to specify
T . If T does admit a non-empty cut with only one of the two sets u(G) or v(G), the incident
edges of u (resp. v) in Gk−1 might turn red. See Figure 5.2 for a full diagram of all possible
case transitions for a triangle in G from Gk to Gk−1.

Initially, each triangle of G is of Case (i), and eventually all triangles will be of Case (vii).
Over the course of the algorithm, we explicitly store the number of all triangles of G that appear
in Gk as a case marked by a star (⋆) in Observation 5.4. Since Case (vii) is a marked case, we
will eventually count all triangles in G. For algorithmic reasons, also Case (iii), (iv), and (vi)
are marked by a star and we will count a triangle once it first becomes a triangle of a marked
case. We point out that once a triangle in G is a triangle of a marked case in Gk, it will remain
a triangle of a marked case in all Gi for 1 ≤ i ≤ k.

Additionally to the number of triangles in G corresponding to a marked case, we keep track
of the number of vertices and the number of edges of those subgraphs of G that get contracted
into a vertex x in Gk, i.e., we compute the values nx = |V (Gx)| and mx = |E(Gx)| for each
vertex x ∈ V (Gk). Further, we store for each red edge {x, y} ∈ Rk the number of edges between
Gx and Gy, i.e., µx,y = |{{a, b} ∈ E(G) | a ∈ x(G), b ∈ y(G)}|. Note that each black edge
corresponds to a full join between the respective subgraphs in G.

For the vertex w ∈ V (Gk−1) that is the contraction of the two vertices u, v ∈ Vk, the number
of vertices in Gw is the sum of these numbers in Gu and Gv. For the number of edges, we also
need to add the number of edges between Gu and Gv. Thus, it holds that nw = nu + nv and

mw =


mu + mv + nu · nv if {u, v} ∈ Ek,
mu + mv + µu,v if {u, v} ∈ Rk,
mu + mv otherwise.

For every other vertex x ∈ V (Gk−1), x ̸= w, these values remain unchanged. Finally, for any
vertex x ∈ V (Gk−1), such that {w, x} ∈ R(Gk−1) the number of edges between Gw and Gx can

88 Triangle Counting Parameterized by the Twin-Width of the Input

Algorithm 1: TriangleCounting(G)
Input: A graph G = (V, E) and a compact representation of a contraction sequence

(vik
, vjk

)n≥k≥2
Output: The number of triangles t in the graph G

1 t := 0
2 R = ∅
3 for every vertex x ∈ V do
4 nx := 1 // number of vertices in Gx

5 mx := 0 // number of edges in Gx

6 for k = n down to 2 do
7 u := vik

8 v := vjk

9 w := v2n−k+1
10 UpdateAuxiliaryValues(G, u, v, w)
11 if {u, v} ∈ E then
12 t = t + nu ·mv + nv ·mu // Case (v) → Case (vii)
13 for each x ∈ NR(w) do
14 TriCountOneNeighbor(G, u, v, w, x)
15 TriCountTwoNeighbors(G, u, v, w, x)
16 UpdateGraph(G, u, v, w)
17 return t

be computed as follows:

µw,x =



nu · nx if {u, x} ∈ Ek and {v, x} /∈ (Ek ∪Rk),
nv · nx if {u, x} /∈ (Ek ∪Rk) and {v, x} ∈ Ek,
µu,x if {u, x} ∈ Rk and {v, x} /∈ (Ek ∪Rk),
µv,x if {u, x} /∈ (Ek ∪Rk) and {v, x} ∈ Rk,
µu,x + nv · nx if {u, x} ∈ Rk and {v, x} ∈ Ek,
µv,x + nu · nx if {u, x} ∈ Ek and {v, x} ∈ Rk,
µu,x + µv,x if {u, v} ∈ Rk and {v, x} ∈ Rk.

For every other vertex y ∈ V (Gk−1), y ̸= w, such that {x, y} ∈ R(Gk−1), the value µx,y remains
unchanged.

We can now describe the algorithm that takes a compact representation of a d-contraction se-
quence as an input. In each iteration k of the algorithm, the two vertices vik

and vjk
, given in the

compact representation of the contraction sequence, are contracted to form the trigraph Gk−1.
We then update the auxiliary values nx, mx, and µx,y that have changed for x, y ∈ V (Gk−1). Af-
ter this, we count those triangles that correspond to a marked case in Gk−1 but to an unmarked
case in Gk. More precisely, the transition from Case (v) to Case (vii) is dealt by the main Al-
gorithm. In addition, the procedure TriCountOneNeighbor focuses on the transitions from
Case (ii) and Case (v) to Case (vi) whereas the procedure TriCountTwoNeighbors handles
the transitions from Case (i) and Case (ii) to Case (iii) and from Case (ii) to Case (iv). See
Algorithm 1 for the pseudocode of the main algorithm. For algorithmic purposes, we assume
that we are given a graph G = (V, E) that will, over the course of the algorithm, be updated into

5.2 Algorithm 89

Algorithm 2: TriCountOneNeighbor(G, u, v, w, x)
1 if {u, x} ∈ E then
2 t = t + nu ·mx + nx ·mu // Case (v) → Case (vi)
3 if {u, v} ∈ E and {v, x} ∈ R then
4 t = t + µv,x · nu // Case (ii) → Case (vi)

5 else if {v, x} ∈ E then
6 t = t + nv ·mx + nx ·mv // Case (v) → Case (vi)
7 if {u, v} ∈ E and {u, x} ∈ R then
8 t = t + µu,x · nv // Case (ii) → Case (vi)

the successive trigraphs defined by the contraction sequence. The variable t in the algorithm
represents the number of triangles in G computed so far.

The procedure UpdateAuxiliaryValues is not given but will update the values nx, mw, and
µw,x as explained previously whereas the pseudocode of the procedures TriCountOneNeigh-
bor and TriCountTwoNeighbors are depicted in Algorithm 2 and Algorithm 3. Finally,
UpdateGraph performs the actual contraction of the graph G. The pseudocode of this proce-
dure is omitted. Note that although the set NR(w) in Line 13 is the set all those vertices that
will be adjacent to w via a red edge in Gk−1 = Gk/u, v, the graph itself is not updated until
Line 16. In the procedure TriCountOneNeighbor, we consider a single incident red edges
of the newly introduced vertex w to an adjacent vertex x ∈ NR(w). We then investigate the
different edges between u, v, and x to detect triangles in G that transition from Case (ii) or
Case (v) to Case (vi), see Algorithm 2.

Finally, in the procedure TriCountTwoNeighbors we focus on the edges between the
newly introduced vertex w and two of its neighbors x, y ∈ NR(w). We then consider the
different edges between u, v, x, and y to detect triangles in G that transitions from Case (i) or
Case (ii) to Case (iii) and from Case (ii) to Case (iv). See Algorithm 3 for the pseudocode of
this procedure. We have now described the algorithm and can prove Theorem 5.3.

Proof of Theorem 5.3. We first prove the correctness of our algorithm. Given the compact
representation of the d-contraction sequence (vik

, vjk
)n≥k≥2, the algorithm generates iteratively

the contraction sequence G = Gn, Gn−1, . . . , G1 = K1 with Gk−1 = Gk/vik
, vjk

using the
procedure UpdateGraph at the end of each iteration. The values nx, mx, and µx,y are updated
by the procedure UpdateAuxiliaryValues in each iteration as described previously.

To prove that the final value of t is equal to the number of triangles in G, we will prove
that the following invariant is true at the beginning of each iteration, i.e., for each graph
Gk = (Vk, Ek, Rk) in the contraction sequence for k ∈ [n]. Recall that we denote by #T (G) the
number of all triangles in G.

#T (G) = tk +
∑
{x,y},

{y,z},{x,z}∈Ek

nxnynz

︸ ︷︷ ︸
Case (i)

+
∑

{x,z}∈Rk

{x,y},{y,z}∈Ek

µx,zny

︸ ︷︷ ︸
Case (ii)

+
∑

{x,y}∈Ek

(nxmy + mxny)

︸ ︷︷ ︸
Case (v)

We denote by tk the current value of t at the start of iteration k (and t1 the final value after
iteration k = 2). For k = n, the value of tn is initialized to zero, Rn = ∅, mx = 0, and nx = 1

90 Triangle Counting Parameterized by the Twin-Width of the Input

Algorithm 3: TriCountTwoNeighbors(G, u, v, w, x)
1 for each y ∈ V such that {x, y} ∈ R and {w, y} will be black do
2 if {u, x} ∈ E then
3 t = t + µx,y · nu // Case (ii) → Case (iii)
4 else if {v, x} ∈ E then
5 t = t + µx,y · nv // Case (ii) → Case (iii)

6 for each y ∈ V such that {w, y} will be red do
7 if {x, y} ∈ E then
8 if {u, x} ∈ E and {u, y} ∈ E then
9 t = t + nu · nx · ny // Case (i) → Case (iii)

10 else if {v, x} ∈ E and {v, y} ∈ E then
11 t = t + nv · nx · ny // Case (i) → Case (iii)
12 if {u, x} ∈ R and {u, y} ∈ E then
13 t = t + µu,x · ny // Case (ii) → Case (iii)
14 else if {v, x} ∈ R and {v, y} ∈ E then
15 t = t + µv,x · ny // Case (ii) → Case (iii)
16 if {u, x} ∈ E and {u, x} ∈ R then
17 t = t + µu,x · nx // Case (ii) → Case (iii)
18 else if {v, x} ∈ E and {v, y} ∈ R then
19 t = t + µv,x · nx // Case (ii) → Case (iii)

20 else if {x, y} ∈ R then
21 if {u, x} ∈ E and {u, y} ∈ E then
22 t = t + µx,y · nu // Case (ii) → Case (iv)
23 else if {v, x} ∈ E and {v, y} ∈ E then
24 t = t + µx,y · nv // Case (ii) → Case (iv)

for all x ∈ Vn, cf. Line 1 to 5 of Algorithm 1. Therefore, the invariant simplifies to the second
summand only, which is indeed the desired number of all triangles in G. We will show that the
value of the invariant will never change. Thus, for i = 1, it will hold that #T (G) = t1 +0+0+0
and the correctness of Algorithm 1 follows.

As described in Observation 5.4, we distinguish seven cases of a possible occurrence of a
triangle of G in Gk. In the beginning, all triangles in G are of Case (i) but some may change
from one case to another one whenever we contract vik

and vjk
in Gk to get Gk−1. For a fixed

triangle, all possible case transitions are depicted in Figure 5.2. Note that the triangles of G of
Case (i), (ii), or (v), are counted directly by the corresponding sums in the invariant. We are
left to show that the (current) value of tk is indeed the count of all triangles of G that appear
in Gk as Case (iii), (iv), (vi), or (vii). Recall that once a fixed triangle is of one of the latter
cases, this triangle can never transition back to an unmarked case.

By induction, we can assume that the invariant is true for Gk. To prove the invariant for k−1,
we keep track of all triangles whose case changes from Gk to Gk−1 regarding Observation 5.4.
Note that we only need to consider the triangles that are of a case that is not marked by a star
in Gk, but in a case that is marked in Gk−1. Let Gk−1 = Gk/u, v and let w be the new vertex of

5.2 Algorithm 91

Gk−1 in which u and v got contracted. In the following, we assume {a, b, c} with a, b, c ∈ V (G)
the be a triangle that is of an unmarked case in Gk but of a marked case in Gk−1. We consider
all possible transition from an unmarked case to a marked case, cf. Figure 5.2:

Case (i) to Case (iii): This implies that (after possibly reordering a, b, and c) there exists
x, y ∈ Vk−1 with a ∈ w(G), b ∈ x(G), c ∈ y(G), {w, x}, {w, y} ∈ Rk, and {x, y} ∈ Ek. Since w
is the contraction of u and v and {a, b, c} was a triangle of Case (i) in Gk, it holds that either
a ∈ u(G) with {u, x}, {u, y} ∈ Ek or a ∈ v(G) with {v, x}, {v, y} ∈ Ek. In the former case, it is
counted in the procedure TriCountTwoNeighbors, Line 9. In the latter case it is counted
in the same procedure in Line 11.

Case (ii) to Case (iii): This implies that (after possibly reordering a, b, and c) there exists
x, y ∈ Vk−1 with a ∈ w(G), b ∈ x(G), and c ∈ y(G). Let us first assume that {x, y} ∈ Rk−1.
Since {a, b, c} is a triangle of Case (ii) in Gk, it holds that either {u, x}, {u, y} ∈ Ek or
{v, x}, {v, y} ∈ Ek. In the former case, it is counted in the procedure TriCountTwoNeigh-
bors, Line 3, and in the latter case, in Line 5. Note that in Line 3 it necessarily holds that also
{u, y} ∈ Ek since {w, y} ∈ Ek−1, resp. that in Line 5 it necessarily holds that also {v, y} ∈ Ek.
Now assume that {x, y} ∈ Ek−1, i.e., {w, x}, {w, y} ∈ Rk−1. Since {a, b, c} is a triangle of
Case (ii) in Gk, it now holds that either {u, x} ∈ Rk and {u, y} ∈ Ek (counted in the procedure
TriCountTwoNeighbors, Line 13); {v, x} ∈ Rk and {v, y} ∈ Ek (Line 15); {u, x} ∈ Ek

and {u, y} ∈ Rk (Line 17); or {v, x} ∈ Ek and {v, y} ∈ Rk (Line 19). Note that since {w, x},
{w, y} ∈ Rk−1, it is not possible that the first two or the last two cases occur simultaneously.

Case (ii) to Case (iv): This implies that (after possibly reordering a, b, and c) there exists
x, y ∈ Vk−1 with a ∈ w(G), b ∈ x(G), c ∈ y(G) and {w, x}, {w, y}, {x, y} ∈ Rk−1. Note that
{x, y} ∈ Rk−1 implies that {x, y} ∈ Rk. Since {a, b, c} is of Case (ii) in Gk, it needs to hold
that either {u, x}, {u, y} ∈ Ek or {v, x}, {v, y} ∈ Ek. The former is counted in the procedure
TriCountTwoNeighbors, Line 22 and the latter in Line 24.

Case (ii) to Case (vi): This implies that (after possibly reordering a, b, and c) there exists
x ∈ Vk−1 with {w, x} ∈ Rk−1, a, b ∈ w(G), and c ∈ x(G). Since {a, b, c} is of Case (ii) in Gk,
it holds that {u, v} ∈ Ek (otherwise the edge {w, x} would not be in Rk−1) and that either
{u, x} ∈ Rk and {v, x} ∈ Ek (counted in the procedure TriCountOneNeighbor, Line 8), or
{v, x} ∈ Rk and {u, x} ∈ Ek (Line 4).

Case (v) to Case (vi): If {a, b, c} is a triangle of Case (v) in Gk, this black edge is either
incident to u (counted in the procedure TriCountOneNeighbor, Line 2) or to v (Line 6).

Case (v) to Case (vii): Finally, if a triangle {a, b, c} is of Case (v) in Gk and of Case (vii) in
Gk−1 it now holds that a, b, c ∈ w(G) and such a triangle is counted in Algorithm 1, Line 12.

Thus, the number of all the triangles of G that are of Case (iii), (iv), (vi), and (vii) in
Gk−1 is indeed computed and stored in the variable t after the iteration k. Since the algorithm
only increases t whenever a triangle transitions from an unmarked case to a marked case after
contraction, the value t is exactly the desired value.

We are left to show the desired running time. We store the graph in sorted adjacency lists,
which can be initially realized in time O(n + m) using a linear-time sorting algorithm to sort
the vertices v1, . . . , vn. To contract the two vertices u and v in each iteration, we can scan the
sorted adjacency lists of u and v to identify the red neighborhood and black neighborhood of
w. Since w has at most d incident red edges and since we decrease the number of total edges
by one for each neighbor that is connected to u and v via a black edge, the total running time
for every call of the procedure UpdateGraph, sums up to O(dn + m). Since the auxiliary
values only needs to be computed for the new vertex w and for the incident red edges of w,
they can be updated in time O(d) per iteration. Eventually, it takes O(dn) for every call of the
procedure UpdateAuxiliaryValues. Finally, the procedures TriCountOneNeighbor and

92 Triangle Counting Parameterized by the Twin-Width of the Input

TriCountTwoNeighbors are called at most d times per iteration, taking respectively O(1)
and O(d) time. Thus, the overall running time of Algorithm 1 is bounded by O(d2n + m) and
we have proven Theorem 5.3.

5.3 Conclusion
In this section, we have obtained an efficient parameterized algorithm for triangle counting
parameterized by the twin-width of the input graph, assuming that a d-contraction sequence
is given in a compact representation. Our algorithm is based on dynamic programming and
stores a few values that need to be updated at each contraction step. The presented algorithm
is adaptive on dense inputs regarding combinatorial algorithms as it runs in time O(d2n + m)
whereas the best unparameterized combinatorial algorithm for triangle counting on dense
inputs takes time O(n3). In particular, our algorithm runs in linear time on graphs of bounded
twin-width, which contains several other graph classes (given a compact d-contraction sequence).

Bonnet et al. [BGK+21b] gave an algorithm for solving unweighted single source short-
est paths in time O(dn log n) and hence unweighted all-pairs shortest paths in time
O(dn2 log n) on graphs of twin-width at most d assuming an ordered union tree of a d-contraction
sequence is given, which is also a compact way of representing a d-contraction sequence. To
show this result, they proved that every graph of twin-width at most d admit a so-called interval
biclique partition of size O(dn) that can be computed in time O(dn). Thus, one can solve un-
weighted APSP in time O(n2 log n) on bounded twin-width graph, assume a O(1)-contraction
sequence is given. In contrast, the related problem diameter in which one is interested in
the longest shortest path in an unweighted and undirected graph, cannot be solved, or even
3/2−ε′-approximate, in time O(n2−ε) on bounded twin-width graphs, even if a O(1)-contraction
sequence is given, for any ε′, ε > 0.

Apart from this, there are no further efficient parameterized algorithms known for tractable
problems when parameterized by the twin-width. In the realm of NP-hard problems, there
exists algorithms for independent set, dominating set, and clique, all running in time
O(2c·dn) for some constant c [BKTW20].

A natural possible direction of further research is to extend the set of problems that can
be solved faster utilizing low twin-width of a graph, such as maximum matching, or vertex-
weighted all-pairs shortest paths. Also for triangle counting, for which we presented
an algorithm that is only adaptive when compared to the best combinatorial algorithms, an in-
teresting open question is whether one can utilize fast matrix multiplication to lower the depen-
dency on the twin-width in the running time, e.g., is it possible to solve triangle counting
in time O(twwω−1 n+m), which would be an optimal adaptive algorithm, matching the running
time for triangle counting of O(nω) by Alon et al. [AYZ97].

Finally, due to the local and simple structure of a triangle, the problem triangle counting
seems to be a good toy problem to investigate if a given structure in a graph can be helpful
to obtain faster (at best even adaptive) algorithms. Since we have seen a (combinatorially)
adaptive algorithm for triangle counting parameterized by the twin-width of a graph, what
is a most general parameter for which an adaptive algorithm for triangle counting exists?

Part III

Heterogeneous Graph Classes

6
Heterogeneous Structure: Combining

Tree-Depth and Modular-Width

Many computational problems admit fast algorithms on special inputs, e.g., many graph
problems can be solved much faster on interval graphs, planar graph, bipartite graphs, cographs,
or on graphs where a specific parameter is small. In particular, parameterized algorithms are
a great success, with examples presented in the previous chapters of this thesis, but there are
also numerous examples in the literature for several parameters and different problems, see
e.g. [FLS+18, MNN16, BN18, FKM+19, IOO18, CDP19, DP21b, Duc22b] for a small fraction
of algorithms in the realm of “FPT in P” that leverage some kind of structure to obtain faster
algorithm. This holds for both, tractable and intractable problems (while the research done for
NP-hard problems is even more manifested and elaborated).

As a downside, the required structure is often not very general as well as many graph pa-
rameters are incomparable to one another, e.g., the class all subdivided stars is of bounded
tree-depth though of unbounded modular-width, in contrast to the class of all cliques Kn that
is of unbounded tree-depth but bounded modular-with; while for both parameters there are
efficient parameterized algorithms for many problems. Thus, for a specific problem, often there
just is no most general parameter for which this problem can be solved more efficiently, or there
is one, but the dependency on the parameter is much worse than on smaller and incomparable
parameters.

Considering the wealth of such algorithmic results, our motivation is to define graph classes
generalizing two or more parameters while still being able to use the beneficial structure to
obtain efficient algorithms. In this chapter, building on measures of the graph structure tree-
depth and modular-width, we show how to robustly define heterogeneous combinations of such
measures and how to (often optimally) use the corresponding graph structure for faster and
more general algorithms. To this end, we adopt definitions based on graph operations and
algebraic expressions such as are common for clique-width (cf. Chapter 4) and as were used by

96 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Table 6.1: Overview of our algorithmic results, where n and m denote the number of vertices and
edges of the input graph. negative cycle detection and vertex-weighted all-
pairs shortest paths are on directed, vertex-weighted graphs with arbitrary vertex
weights. The result for triangle counting on Mwh was shown in Section 3.5, the
result for negative cycle detection on Tdk was shown by Iwata et al. [IOO18].

Graph class triangle counting negative cycle detection v.-weight. apsp

Mwh O(hω−1n + m) [Ch. 3] O(h2n + n2) O(h2n + n2)

Tdk O(km) O(k(m + n log n)) [IOO18] O(kn2)

Mtdℓ O(ℓm) O(ℓ(m + n log n) + n2) O(ℓn2)

TdkMwh O(hω−1n + km) O(h2n + k(m + n log n) + n2) O(h2n + kn2)

TdkMtdℓ O((k + ℓ)m) O((k + ℓ)(m + n log n) + n2) O((k + ℓ)n2)

MwhMtdℓ O(hω−1n + ℓm) O(h2n + ℓ(m + n log n) + n2) O(h2n + ℓn2)

TdkMwhMtdℓ O(hω−1n + (k + ℓ)m) O(h2n + (k + ℓ)(m + n log n) + n2) O(h2n + (k + ℓ)n2)

Iwata et al. [IOO18] for tree-depth alone. By allowing richer sets of operations, stemming from
different types of beneficial structure, we robustly define a large range of heterogeneous graph
structure that admits faster algorithms than the general case.

Apart from algebraic expressions for clique-width and tree-depth, we also find motivation
through modular tree-width, introduced by Paulusma et al. [PSS16], which is the tree-width
of the graph after contracting all twin classes. In a similar (but more general) style we define
modular tree-depth to extend modular-width by allowing substitutions into (possibly large)
graphs of small tree-depth rather than graphs of small size.

Our conceptual contribution is a clean and robust way of formalizing classes of graphs with
(possibly beneficial) heterogeneous structure by using an operations-based perspective on forms
of homogeneous structure along with algebraic expressions. In the present work, these build
on operations used for constructing graphs of small tree-depth, modular-width, or modular
tree-depth, but the potential for encompassing a much greater variety of operations (and hence
greater variety structure) is evident. We show formally, how the arising graph classes relate to
one another, establishing for example that the combination of tree-depth and modular-width
is incomparable to modular tree-depth. Similarly, already for bounded parameter values, the
new forms of heterogeneous structure are incomparable to underlying forms of homogeneous
structure.

On the algorithmic side, we extend the framework of Iwata et al. [IOO18], which applies to
tree-depth via the operations union and addition of a vertex, to work for all required operations.
Building on the work of the running-time framework defined in Section 3.3 for modular-width
alone, we give a general running-time framework that simplifies the task of obtaining running
times that match the known bounds for the included homogeneous cases. To show its appli-
cability, we apply our framework to three example problems, namely triangle counting,
negative cycle detection, and vertex-weighted all-pairs shortest paths. For each
problem, using our framework, we give algorithmic results relative to heterogeneous measures
that throughout match the best running time known for the homogeneous case. See Table 6.1
for an overview of our results.

6.1 Graph Operations and Algebraic Expressions 97

Overview. In Section 6.1 we recall operations-based definitions for the parameters tree-
depth and modular-width. In Section 6.2 we introduce the parameter modular tree-depth and
use algebraic expressions to define graph classes with heterogeneous structure. The general
running-time framework for these heterogeneous classes is presented in Section 6.3 and the
applications to triangle counting, negative cycle detection, and vertex-weighted
all-pairs shortest paths can be found in Section 6.4. The relations between the obtained
graph classes and to other known parameters are explored in Section 6.5. We conclude in
Section 6.6.

6.1 Graph Operations and Algebraic Expressions

Recall that for two graphs H and G, by H[v ← G] we denote the substitution of G into
v ∈ V (H), i.e., the graph obtained by replacing v in H with the graph G and giving each of
its vertices the same neighborhood as v had. This extends up to complete substitution into a
t-vertex graph H, denoted H[v1 ← G1, . . . , vt ← Gt].

Graph operations. These graph operations that we will define now will be used in alge-
braic expressions. The nullary operations ◦ and • return the empty graph respectively the
graph with a single vertex. For t ≥ 2, the t-ary operations Uniont and Joint are defined
by Uniont(G1, . . . , Gt) := G1 ∪̇ . . . ∪̇Gt and Joint(G1, . . . , Gt) := G1 ⋊⋉ . . . ⋊⋉ Gt; we will
usually omit the subscript t and allow these operations for all t ≥ 2. For a vertex x and a set
Ex ⊆ {{x, v} | v ∈ V }, the unary operation Incx,Ex is defined by Incx,Ex(G) = (V ∪{x}, E∪Ex)
for all graphs G = (V, E) and a new vertex x /∈ V . For a graph H with V (H) = {v1, . . . , vt},
the t-ary operation SubstH is defined by SubstH(G1, . . . , Gt) := H[v1 ← G1, . . . , vt ← Gt],
with Gi being graphs for i ∈ [t].

Algebraic expressions. As is common especially for clique-width, we use algebraic expres-
sions over certain sets of operations to describe the structure or the construction of graphs. We
say that G has an algebraic expression if G is the result of evaluating the expression (possibly
followed by a single renaming of vertices). For an algebraic expression σ, we denote by val(σ)
the resulting graph and by tree(σ) = T σ we denote the corresponding expression tree, i.e., a
rooted tree in which each node corresponds to an operation of the expression that is applied to
its children. We define the nesting depth of an operation in an expression tree as the maximum
number of nodes in the expression tree corresponding to this operation that are on a root-to-leaf
path. We denote the nesting depth of an operation in an algebraic expression as the nesting
depth of this operation in the corresponding expression tree. We let the empty graph correspond
to the empty expression, irrespective of the set of operations.

Tree-depth. There are many equivalent definitions for the tree-depth of a graph, e.g., as
the minimum height of a rooted forest whose closure contains G as a subgraph or by a recursive
definition based on connected components and vertex deletion, cf. Section 2.3 for a detailed
definition. Here, we give an equivalent folklore definition via algebraic expressions.

Definition 6.1. The tree-depth of a graph G, denoted td(G), is the smallest k ∈ N such that G
has an algebraic expression over {◦, Union}∪{Incx,Ex} whose Incx,Ex operations have nesting
depth at most k. The class Tdk contains all graphs of tree-depth at most k.

98 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Modular-width. Like tree-depth, the modular-width has several concrete definitions, which
unfortunately do not all agree on what graphs have modular-width zero, one, or two; they are
equivalent for modular-width h, for all h ≥ 3, so there is no asymptotic difference between
them.1 See also Section 3.1 for a detailed definition of modular-width. For the purpose of
this chapter, we give a definition via algebraic expressions, which is a alight adaptation of a
definition due to Gajarský et al. [GLO13]. Note that this definition is equivalent to the one in
Section 3.1, e.g., Mw0 is the class of all cographs.

Definition 6.2 (adapted from [GLO13]). The modular-width of a graph G, denoted mw(G), is
the smallest h ∈ N such that G has an algebraic expression over {•, Union, Join} ∪ {SubstH |
|H| ≤ h}. The class Mwh contains all graphs of modular-width at most h.

An expression as defined in Definition 6.2 can be easily derived from a modular decomposition
tree by traversing the tree from bottom to top. On the other side, the vertex set of a graph
resulting from an operation SubstH with |H| ≤ h can be surely partitioned resp. decomposed
back into at most h modules, i.e., one can also easily derive a modular decomposition tree of
width at most h from any expression as defined in Definition 6.2. Thus, Definition 6.2 is indeed
equivalent to the definition presented in Chapter 3.

6.2 Heterogeneous Structure
Here we use the introduced graph operations to define classes of graphs with heterogeneous
structure that generalize both Tdk and Mwh. We will also use them to encompass and generalize
modular tree-depth, which we will introduce in a moment. In the following section, we then
show how to use such structure algorithmically (and optimally).

Definition 6.3. For k, h ∈ N, the class TdkMwh contains all graphs G that have an algebraic
expression over {◦, •, Union, Join}∪{Incx,Ex}∪{SubstH | |H| ≤ h} whose Incx,Ex operations
have nesting depth at most k.

The following propositions follow directly from the definition of TdkMwh; similar relations
are true for the other classes and we do not list all of them explicitly. The inequality in
Proposition 6.5 holds since all cliques are contained in the class Mw0 and therefore in TdkMw0,
but not in Tdk. The converse non-relations, even for bounded values of k and h, are showed in
Section 6.5.

Proposition 6.4. Tdk ⊆ TdkMwh and Mwh ⊆ TdkMwh.

Proposition 6.5. Td0Mwh = Mwh but TdkMw0 ̸= Tdk

Modular tree-depth. Modular tree-width was introduced and studied in several recent pa-
pers [PSS16, Men16, LM17, Lam20].2 In these works, the modular tree-width of a graph G is
the smallest ℓ ∈ N such that G can be constructed from a graph of tree-width at most ℓ by

1The only minor semantic difference in all definition is whether the class of cographs have modular-width zero,
one, or two. Note that since there is no prime graph with less than four vertices, the class of graphs of
modular-width at most three is equal to the class of graphs of modular-width at most two.

2The modular tree-width of a graph was first considered as a parameter for CNF formulas in several works
[PSS16, Men16, LM17] and was defined as the tree-width after the contraction of modules of the incidence
graph of the formula. On general graphs the modular tree-width was considered by Lampis [Lam20], defined
as the tree-width of the graph obtained from a graph if one collapses each twin class into a single vertex.

6.2 Heterogeneous Structure 99

substituting each vertex with an independent set or a clique of arbitrary size. In other words,
the modular tree-width is the width of the graph after collapsing each twin class to a single
vertex. Recall that two vertices are twins if they have the same sets of neighbors; clearly, this
is an equivalence relation. The twin classes are the equivalence classes of the twin relation.

An analogous definition for modular tree-depth would entail substituting cliques and inde-
pendent sets into a graph of tree-depth at most ℓ. In our definition of modular tree-depth we
deviate from this style, by instead extending modular-width to allow substitution into pattern
graphs H of arbitrary size but tree-depth at most ℓ. (We would similarly define (generalized)
modular tree-width but we do not study it in this work.) To avoid confusion, we will use
restricted modular tree-depth to refer to modular tree-depth defined in the above style. Note
that in many of the mentioned applications, restricted and generalized modular tree-width co-
incide because the considered graphs have a modular partition whose modules are cliques and
independent sets.

Definition 6.6 (modular tree-depth). The modular tree-depth of a graph G, denoted mtd(G),
is the smallest ℓ ∈ N such that G has an algebraic expression over {•, Union, Join}∪{SubstH |
td(H) ≤ ℓ}. The class Mtdℓ contains all graphs of modular tree-depth at most ℓ.

Further classes with heterogeneous structure. Now, we can define three natural combi-
nations of Mtdℓ with the classes considered so far. Note that Mtdℓ subsumes Tdk and Mwh

for ℓ ≥ k, h but, surprisingly perhaps, there is no ℓ ∈ N such that it fully contains Td1Mw0.
This also means that, e.g., MwhMtdℓ ⊆Mtdℓ when h ≤ ℓ but in general this is not the case.
Intuitively, substitution into a pattern H of small tree-depth is algorithmically more costly than
substitution into a small pattern H, hence the case h > ℓ is sensible. The relations between
these graph classes are explored in Section 6.5.

Definition 6.7. For k, h, ℓ ∈ N we define the three graph classes TdkMtdℓ, MwhMtdℓ, and
TdkMwhMtdℓ to contain all graphs that have an algebraic expression of the following type:

• TdkMtdℓ: algebraic expressions over the set {◦, •, Union, Join}∪{Incx,Ex}∪{SubstH |
td(H) ≤ ℓ} of operations whose Incx,Ex operations have nesting depth at most k

• MwhMtdℓ: algebraic expressions over the set {•, Union, Join} ∪ {SubstH | |H| ≤ h} ∪
{SubstH | td(H) ≤ ℓ} of operations

• TdkMwhMtdℓ: algebraic expressions over the set {◦, •, Union, Join} ∪ {Incx,Ex} ∪
{SubstH | |H| ≤ h} ∪ {SubstH | td(H) ≤ ℓ} of operations whose Incx,Ex operations
have nesting depth at most k

Remark 6.8. The sets of allowed operations are simply the unions of what is allowed in the
homogeneous case, while Incx,Ex operations keep their restriction on nesting depth.

Remark 6.9. In this work, we always implicitly assume that for the operations {SubstH |
td(H) ≤ ℓ} a tree-depth expression for H is given.

This concludes the introduction of new graph classes with heterogeneous structure. We
will now turn to showing how useful they are for designing more general algorithms for well-
structured graphs. Fortunately, this turns out to be just as robust as the simpler case of the
class Tdk, studied by Iwata et al. [IOO18], and comes down to designing a separate routine for
each allowed operation.

100 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

6.3 Running Time Framework
In this section, we combine the running time framework provided in Section 3.3 for graphs
parameterized by the modular-width with the divide-and-conquer framework proved by Iwata
et al. [IOO18] for graphs parameterized by the tree-depth. Since we will focus on functions
describing running times, we will restrict ourselves to functions T : R≥1 → R≥1 that are super-
homogeneous [BS05], i.e., for all λ ≥ 1 it holds that λ ·T (n) ≤ T (λ ·n), see also Definition 3.13.
As shown in Lemma 3.14, it holds for all functions f that are superhomogeneous in the first
component and monotonically increasing in the second component that

max
1≤x≤n
1≤y≤m

T (x, y)
x

≤ T (n, m)
n

. (6.1)

Inspired by the functional way of the divide-and-conquer framework by Iwata et al. [IOO18],
we extend this approach to cope with the operations defined in the previous sections.

Theorem 6.10. Let G be a graph such that G ∈ TdkMwhMtdℓ with a given expression for
some integers k, h, ℓ ∈ N and let f be a function defined on subgraphs of G such that f(◦) and
f(•) can be computed in constant time. Let further TInc, TSub, and TSubTd be functions that are
superhomogeneous in each component that bound the running times of the following algorithms
AInc, ASub, and ASubTd:

• AInc(G′, f(G′), x, Ex) 7→ f(Incx,Ex(G′)). Given a graph G′, its value f(G′), a vertex x /∈
V (G′), and Ex ⊆ {{x, u} | u ∈ V (G′)}, this algorithm computes the value f(Incx,Ex(G′))
in time TInc(|V (G′) ∪ {x}|, |E(G′) ∪ Ex|).

• ASub(H, (G1, f(G1)), . . . , (Gt, f(Gt))) 7→ f(SubstH(G1, . . . , Gt)). Given a t-vertex pat-
tern graph H and graphs Gi with their values f(Gi) for i ∈ [t], this algorithm computes
the value f(SubstH(G1, . . . , Gt)) in time TSub(|V (H)|, |E(H)|) = TSub(t, |E(H)|).

• ASubTd(H, (G1, f(G1)), . . . , (Gt, f(Gt))) 7→ f(SubstH(G1, . . . , Gt)). Given a t-vertex pat-
tern graph H and graphs Gi with their values f(Gi), this algorithm computes the value
f(SubstH(G1, . . . , Gt)) in time TSubTd(|V (H)|, |E(H)|, td(H)).

Then, one can compute f(G) in total time O(kTInc(n, m) + n
h TSub(h, m) + TSubTd(n, m, ℓ)).

Proof. Let σ be a corresponding algebraic expression of G ∈ TdkMwhMtdℓ, i.e., val(σ) =
G. Let T σ = tree(σ) be the corresponding expression tree. Clearly, one can replace each
occurrence of an operation Uniont or Joint in T σ for some t ≥ 1 by a sequence of t − 1
operations SubstH with a pattern graph H consisting of two adjacent or non-adjacent vertices,
i.e., H ∈ {I2, K2}. Thus, w.l.o.g. we can assume that σ does not consists of operations Uniont

nor Joint. Furthermore, we can assume that each pattern H for a SubstH operation is of size
at least two and that no argument of any SubstH operation is the empty graph. For a node
v ∈ V (T σ), let T σ

v denote the subtree of T σ with root node v. With a slight abuse of notation,
we denote by val(T σ

v) the subgraph of G corresponding to the subexpression tree T σ
v .

To compute f(G), we traverse the expression tree T σ in a bottom-up manner and compute for
each subexpression tree T σ

v of T σ the value f(val(T σ
v)) for each v ∈ V (T σ). See Algorithm 4 for

the divide-and-conquer algorithm that computes f(G) by traversing T σ. By induction over the
length of the expression it is easy to see that Algorithm 4 computes the function f(G) correctly.

6.3 Running Time Framework 101

Algorithm 4: Algorithm for computing f(G)
Input: Graph G with corresponding expression tree T σ

Output: f(G)
1 if G is the empty graph then
2 return f(◦)
3 if G is a single-vertex graph then
4 return f(•)
5 Let r be the root node of T σ and let v1, . . . , vc be the children of r in T σ.
6 Let G1, . . . , Gc be the graphs val(T σ

v1), . . . , val(T σ
vc

).
7 for i ∈ [c] do
8 f(Gi) = Compute(Gi, T σ

vi
)

9 Compute f(G) via the algorithm corresponding to the root node r.
10 return f(G)

We are left to show the desired running time for Algorithm 4. Note that all leaves of T σ

correspond to either ◦ or • operations, while in our setting an operation ◦ is necessarily followed
by an operation Incx,Ex . Thus, the number of leaves in T σ is at most n, i.e., at most one for
each vertex in V (G); the remaining vertices come via additional Incx,Ex operations. Since f(◦)
and f(•) can be computed in constant time, the total time for processing all leaves is bounded
by O(n).

All interior nodes of T σ correspond to either to Incx,Ex or SubstH operations. We denote
by V Inc

T σ , V Subst
T σ , resp. V SubstTd

T σ those nodes in V (T σ) that correspond to an operation Incx,Ex ,
SubstH with |H| ≤ h, resp. SubstH with td(H) ≤ ℓ. The total running time of the algorithm
can now be bounded by the sum of the running times needed to process each node in T σ.

For any node vH ∈ V Subst
T σ ∪ V SubstTd

T σ , let nH and mH denote the number of vertices resp.
edges in the pattern graph H associated with vH . Thus, a node vH ∈ V Subst

T σ ∪ V SubstTd
T σ has

exactly nH children. Note that nH ≥ 2 for each pattern graph of a node vH and since the
number of leaves in T σ is bounded by n, it holds that |V Subst

T σ ∪ V SubstTd
T σ | ≤ n− 1. Hence, the

sum of the values nH for all nodes vH ∈ V Subst
T σ ∪ V SubstTd

T σ can be bounded by 2n, i.e., the
number of leaves plus |V Subst

T σ ∪ V SubstTd
T σ |.

We can now bound the combined running time of all nodes in V Subst
T σ corresponding to an

operation SubstH with |H| ≤ h in a similar way as done in the proof of Theorem 3.15:

∑
vH∈V Subst

T σ

TSub(nH , mH) =
∑

vH∈V Subst
T σ

nH
TSub(nH , mH)

nH

≤
∑

vH∈V Subst
T σ

nH ·

 max
1≤nH≤h

1≤mH≤m

TSub(nH , mH)
nH


≤ 2n · TSub(h, m)

h

The final inequality holds due to Equation (6.1) and due to TSub being superhomogeneous.
For all nodes in V SubstTd

T σ corresponding to an operation SubstH with td(H) ≤ ℓ the running
time can be bounded in a similar way:

102 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

∑
vH∈V SubstTd

T σ

TSubTd(nH , mH , td(H)) ≤
∑

vH∈V SubstTd
T σ

nH
TSubTd(nH , mH , ℓ)

nH

≤
∑

vH∈V SubstTd
T σ

nH ·

 max
1≤nH≤n

1≤mH≤m

TSubTd(nH , mH , ℓ)
nH


≤ 2n · TSubTd(n, m, ℓ)

n
= 2 · TSubTd(n, m, ℓ)

Finally, consider all nodes in V Inc
T σ . We define for each node v ∈ V Inc

T σ a depth d(v) equal to
the maximum number of nodes in V Inc

T σ on a path from v to a leaf in T σ
v (including v), i.e., the

nesting depth of the operation Incx,Ex in T σ
v . It is easy to see that for two nodes v, u ∈ V Inc

T σ

with d(v) = d(u) and v ̸= u, the subtrees T σ
v and T σ

u are disjoint. Furthermore, the depth d(v)
of any node in V Inc

T σ is per definition at most k. For a node v ∈ V Inc
T σ , let nv resp. mv denote

the number of vertices resp. number of edges in val(T σ
v). We can now upper bound the running

time of all nodes v ∈ V Inc
T σ :

∑
v∈V Inc

T σ

TInc(nv, mv) =
k∑

i=1

∑
v∈V Inc

T σ

d(v)=i

TInc(nv, mv) ≤
k∑

i=1
TInc(n, m) ≤ k · TInc(n, m)

The penultimate inequality holds due to TInc being superhomogeneous (which implies that TInc ∈
Ω(n+m)). In total, the running time sums up to O(kTInc(n, m)+ n

h TSub(h, m)+TSubTd(n, m, ℓ))
and we have proven Theorem 6.10.

Theorem 6.10 describes the running time for graphs in the class TdkMwhMtdℓ if algorithms
AInc, ASub, and ASubTd are known. Similarly, one can state the running times for the other
subclasses of TdkMwhMtdℓ that are defined in Section 6.2.

Corollary 6.11. Let G = (V, E) be a graph with |V | = n and |E| = m. Let further f be a
function defined on subgraphs of G and let TInc, TSub, resp. TSubTd be as defined in Theorem 6.10.
Then, depending on a given expression σ with val(σ) = G, one can compute f(G) in the
following time:

Total running time to compute f(G)
G ∈Mwh O(n

h TSub(h, m)) Theorem 3.15
G ∈ Tdk O(kTInc(n, m)) [IOO18]
G ∈Mtdℓ O(TSubTd(n, m, ℓ))
G ∈ TdkMwh O(kTInc(n, m)) +O(n

h TSub(h, m))
G ∈ TdkMtdℓ O(kTInc(n, m)) +O(TSubTd(n, m, ℓ))
G ∈MwhMtdℓ O(n

h TSub(h, m)) +O(TSubTd(n, m, ℓ))

6.4 Applications
In this section, we give applications of Theorem 6.10. We present algorithms solving the prob-
lems triangle counting, negative cycle detection, and vertex-weighted all-pairs

6.4 Applications 103

shortest paths. For the latter two problems we restrict ourselves to vertex-weighted graphs,
since for edge-weighted graphs the problems all-pairs shortest paths and negative cycle
detection are as hard as the general case already on cliques (as mentioned in Section 3.8),
which are contained in Td0Mw0Mtd0. For each problem, we will describe the algorithms
AInc, ASub, and ASubTd for some sensible function f , and prove the running time applying
Theorem 6.10.

6.4.1 Triangle Counting
As a first and simple application of Theorem 6.10, we consider the problem triangle count-
ing. We will prove the following theorem:

Theorem 6.12. Let G be an undirected graph such that G ∈ TdkMwhMtdℓ with a given
expression for some k, h, ℓ ∈ N. Then one can solve triangle counting in time O(hω−1n +
(k + ℓ)m).

For a graph G, we define f(G) as the function that returns the values nG = |V (G)|, mG =
|E(G)|, and the number of triangles, denoted by tG.3 To use Theorem 6.10, we will describe
the algorithms AInc, ASub, and ASubTD in the following three lemmata. The first lemma was
already proven in Section 3.5.

Lemma 6.13. Let H be a t-vertex graph, let G1, . . . , Gt be graphs, and let f(Gi) be given for
each Gi. Then one can compute f(SubstH(G1, . . . , Gt)) in time O(tω).

Lemma 6.14. Let G be a graph, let x /∈ V (G), let Ex ⊆ {{x, u} | u ∈ V (G)}, and let f(G) be
given. Then one can compute f(Incx,Ex(G)) in time O(|E(G) ∪ Ex|).

Proof. Let nG, mG, and tG be the values returned by f(G). First, we compute the number
of vertices and edges in linear time. In order to update the number of triangles, we initialize
t = tG, iterate over all edges in Incx,Ex(G), and check if both endpoints are adjacent to x. If
so, we increment t by one. Since every triangle that is in Incx,Ex(G) but not in G needs to use
the vertex x together with exactly one edge in E(G), we have counted every triangle in time
O(|E(G) ∪ Ex|).

Lemma 6.15. Let H be a t-vertex graph, let G1, . . . , Gt be graphs, and let f(Gi) be given for
each Gi. Then one can compute f(SubstH(G1, . . . , Gt)) in time O(td(H) · |E(H)|).

Proof. Let G = SubstH(G1, . . . , Gt) for a t-vertex graph H with V (H) = {v1, . . . , vt} and let
ni, mi, and ti be the values returned by f(Gi). As shown in Section 3.5, for the number of
vertices in G it holds that nG = ∑

vi∈V (H) ni, for the number of edges in G it holds that mG =∑
vi∈V (H) mi +∑

{vi1 ,vi2}∈E(H) ni1 · ni2 , and finally tG = ∑
vi∈V (H) ti +∑

{vi1 ,vi2}∈E(H)(mi1ni2 +
ni1mi2)+∑{vi1 ,vi2 ,vi3}∈T (H) ni1 ·ni2 ·ni3 , where T (H) denotes the set of all triangles in H. Thus,
nG, mG, and the first two summands of tG can be computed in time O(|E(H)|). To compute
the final summand of tG, we use the tree-depth expression of H by adjusting the algorithm
for Incx,Ex (shown in Lemma 6.14), such that whenever we find a triangle {vi1 , vi2 , vi3} we
increment the number of triangles by ni1 · ni2 · ni3 (instead of by one). Using the tree-depth
running-time framework by Iwata et al. [IOO18],4 we have proven the lemma.

3For the algorithm AInc the value tG alone would suffice. The values nG and mG are only computed to potentially
use the algorithms ASub and ASubTd.

4The tree-depth running-time framework by Iwata et al. exactly corresponds to Theorem 6.10 applied only to
a expression for Tdk.

104 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Proof of Theorem 6.12. We use Theorem 6.10 to prove the claim. Lemma 6.14, Lemma 6.13,
resp. Lemma 6.15 provide the algorithms AInc, ASub, resp. ASubTd. Moreover, f(◦) and f(•)
can be computed in constant time. Thus, by Theorem 6.10, the claim follows.

6.4.2 Negative Cycle Detection
Before stating the algorithm for negative cycle detection and vertex-weighted all-
pairs shortest paths, we transfer the graph classes defined in Section 6.2 to directed graphs.
To do so, we require each pattern graph H to be directed and we define the operation Incx,Ex

for an edge set Ex ⊆ {(x, u) | u ∈ V } ∪ {(u, x) | u ∈ V }. In this section, we prove the following
theorem.

Theorem 6.16. Let G = (V, E) be a directed graph such that G ∈ TdkMwhMtdℓ with a
given expression for some k, h, ℓ ∈ N, and let w : V → R. Then one can solve negative
cycle detection combinatorially in time O(h2n + (k + ℓ)(m + n log n) + n2) resp. in time
O(h1.842n + (k + ℓ)(m + n log n) + n2) using fast matrix multiplication.

First, we need to recall some notations about (feasible) potentials. For a directed graph
G = (V, E) with edge weights c : E → R and a function π : V → R, we define cπ : E → R with
cπ((x, y)) := c((x, y)) + π(x)− π(y) as the the reduced costs with respect to c and π.

Observation 6.17. Let G = (V, E) be a directed graph with edge weights c : E → R, let
π : V → R be a function defined on the vertices of G, and let P be an u-v path in G for
u, v ∈ V . Then cπ(P) = c(P) + π(u)− π(v).

If for a function π : V → R it holds that cπ(e) ≥ 0 for all e ∈ E, we call π a feasible potential
for c. It is well known that an edge-weighted graph G has no negative cycle if and only if G
admits a feasible potential, see e.g. [Sch02]. To compute a feasible potential for a graph without
a negative cycle, one can use the following lemma.

Lemma 6.18 ([KVKV11]). Let G = (V, E) be a directed graph that has no negative cycles
relative to edge weights c : E → R. Let x /∈ V be a new vertex that is connected to all other
vertices with edges of weight zero. Then π : V → R with π(v) = distG,c(x, v) is a feasible
potential.

We call a feasible potential computed as in Lemma 6.18 a shortest-path feasible potential. To
define a feasible potential also for vertex-weighted graphs, we consider the edge-shifted weights
instead, i.e., where the vertex weight of a vertex is shifted to all outgoing edges.

Definition 6.19. Let G = (V, E) be a directed graph with vertex weights w : V → R. For any
edge (x, y) ∈ E, we define the edge-shifted weights by cw((x, y)) := w(x).

Note that for a vertex-weighted graph G with vertex weights w : V (G) → R, a path P is a
shortest path between two vertices u, v ∈ V (G) w.r.t. the vertex weights w if and only if it is a
shortest path w.r.t. the edge-shifted weights cw.

Observation 6.20. Let G = (V, E) be a directed graph with vertex weights w : V → R, let P
be a u-v path in G for u, v ∈ V , and let C be a cycle in G. Then cw(P) = w(P) − w(v) and
cw(C) = w(C).

In the following, if we speak about a potential for vertex-weighted graphs we implicitly con-
sider the edge-shifted weights. Alongside to a feasible potential we will compute the value of
a minimum shortest path of a subgraph in the algorithm, which we define next. Note that we
consider a single vertex as a path.

6.4 Applications 105

Definition 6.21. Let G = (V, E) be a graph and let w : V → R be vertex weights. We define
the minimum shortest path value as msp(G) = minP∈P w(P) where P denotes the set of all
paths (including single vertices) in G.

In a slight abuse of notation we also use G to stand for a weighted, directed graph, consisting
of a directed graph (V, E) and vertex weights w : V → R. For such a vertex-weighted, directed
graph G, we define f(G) as the function that either returns a negative cycle in G or that returns
a shortest-path feasible potential and the minimum shortest path value msp(G). (Formally
f(G) := f(G, w) and msp(G) := msp(G, w).)

Increment. Let G = (V, E) be a directed graph and let w : V → R be vertex weights. Note
that one cannot use Dijkstra’s algorithm directly to compute a shortest-path feasible potential
since there may be negative weights. However, in [IOO18] it was shown how to compute a
feasible potential for Incx,Ex(G) in time O(m + n log n) that is not necessarily a shortest-path
feasible potential. This can be used to compute msp(Incx,Ex(G)) and a shortest-path feasible
potential in the same running time.

Lemma 6.22. Let G = (V, E) be a directed graph, let x /∈ V , let Ex ⊆ {(x, u) | u ∈ V }∪{(u, x) |
u ∈ V }, let w : V ∪ {x} → R, and let f(G) be given. Then one can compute f(Incx,Ex(G)) in
time O(m + n log n) with n = |V | and m = |E ∪ Ex|.

Proof. If f(G) returns a negative cycle, we do so for f(Incx,Ex(G)). Let otherwise cw be the
edge-shifted weights in G. In [IOO18, Theorem 4], it was shown how to compute a feasible
potential π w.r.t. cw for Incx,Ex(G) in time O(m + n log n) if a feasible potential for G is
known. Let cw

π : E ∪ Ex → R be the reduced cost with respect to cw and π. Using Dijkstra’s
algorithm, one can compute the values distcw

π
(x, v) for all v ∈ V in the same running time

and, by reversing all edge directions, also the values distcw
π

(v, x). By Observation 6.17 and
Observation 6.20, we can then reconstruct the distances w.r.t. the edge weights cw and finally
w.r.t. the original vertex weights w in linear time.

A minimum shortest path in Incx,Ex(G) either does use the new vertex x or it does not,
thus, it holds that msp(Incx,Ex(G)) is the minimum of the two values minv∈V distw(v, x) +
minu∈V distw(x, u)− w(x) and msp(G), and can be determined in linear time.

Finally, the feasible potential π that is computed in [IOO18] does not need to be a shortest-
path feasible potential, however, using the corresponding non-negative edge weights cw

π and
Lemma 6.18, the problem of computing a shortest-path feasible potential reduces to the problem
of computing a shortest path to all vertices from a new vertex that is connected to every vertex
with an edge of weight zero in a graph with non-negative edge weights. This can be done, using
Dijkstra’s algorithm once again, in time O(m + n log n).

Substitution. Let H be an unweighted, directed t-vertex graph and let Gi be vertex-
weighted, directed graphs for i ∈ [t]. If the vertex weights are non-negative, we know by
Lemma 3.17 that for u, v ∈ V (SubstH(G1, . . . , Gt)) with {u, v} ⊈ V (Gi) for all i ∈ [t] it holds
that there exists always a shortest u-v path that visits each module at most once. The following
lemma generalizes Lemma 3.17 to arbitrary vertex-weighted and directed graphs.

Lemma 6.23. Let H be an unweighted, directed t-vertex graph and let Gi be vertex-weighted,
directed graphs such that SubstH(G1, . . . , Gt) does not contain a negative cycle. Let further
u, v ∈ V (SubstH(G1, . . . , Gt)) such that there exists a shortest u-v path and {u, v} ⊈ V (Gi)
for all i ∈ [t]. Then there exists a shortest u-v path P in SubstH(G1, . . . , Gt) in which the
occurrences of vertices in each Gi occur consecutively.

106 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Proof. Denote G = SubstH(G1, . . . , Gt) and let P = (u = p1, p2, . . . , pn = v) be a shortest
u-v path in G. Assume for contradiction that there exists indices α, α′, β, γ, γ′ ∈ [n] with
α ≤ α′ < β < γ ≤ γ′ such that pj ∈ V (Gi) for all α ≤ j ≤ α′ and γ ≤ j ≤ γ′, but pβ /∈ V (Gi)
for some i ∈ [t]. We distinguish between the two cases α ̸= 1 and α = 1.

If α ̸= 1 it holds that (pα−1, pα) ∈ E(G). Since V (Gi) is a module in G it also holds that
(pα−1, pγ) ∈ E(G). Thus, consider the path P ′ = (p1, . . . , pα−1, pγ , pγ+1, . . . , pn) and denote by
C ′ = (pα, . . . , pγ−1) the skipped path. It holds that ω(P) = ω(P ′) + ω(C ′). Since V (Gi) is a
module in G with pα, pγ ∈ V (Gi) and (pγ−1, pγ) ∈ E(G), it holds that also (pγ−1, pα) ∈ E(G).
Thus, C ′ is a cycle and it holds that ω(C ′) ≥ 0, since G has no negative cycle. Hence, it follows
that ω(P ′) ≤ ω(P).

If α = 1 it holds that γ′ ̸= n, since u and v are in different modules, and therefore (pγ , pγ+1) ∈
E(G). Since V (Gi) is a module, it also holds that (pα′ , pγ+1) ∈ E(G). Thus, consider the path
P ′′ = (p1, . . . , pα′ , pγ′+1, . . . , pn) and denote by C ′′ = (pα′+1, . . . , pγ) the skipped path. It
holds thats w(P) = ω(P ′′) + ω(C ′′). Since V (Gi) is a module in G with pα′ , pγ′ ∈ V (Gi) and
(pα′ , pα′+1) ∈ E(G), it holds that also (pγ , pα′+1) ∈ E(G). Thus, C ′′ is a cycle and it holds that
ω(C ′′) ≥ 0, yielding again that ω(P ′′) ≤ ω(P).

We iterate this procedure for every pair of maximal sequences of vertices that are in a same
module but interrupted by at least one vertex of a different module. Since the vertices in P ′

resp. P ′′ are a strict subset of the vertices in P , the number of vertices in the u-v path strictly
reduces each time.

Lemma 6.23 motivates the following definition.

Definition 6.24. Let H be an unweighted, directed graph with V (H) = {v1, . . . , vt} and let Gi

be vertex-weighted, directed graphs for i ∈ [t]. Define Hw as the graph H with vertex weights
w : V (H)→ R defined by w(vi) = msp(Gi).

Let Hw be the graph defined in Definition 6.24 for a t-vertex graph H and weighted graphs
Gi for i ∈ [t]. The next lemma shows that there is a negative cycle in SubstH(G1, . . . , Gt)
if and only if there is a negative cycle in Hw and that the minimum shortest path value in
SubstH(G1, . . . , Gt) and Hw coincide.

Lemma 6.25. Let H be an unweighted, directed t-vertex graph, let Gi be vertex-weighted,
directed graphs without negative cycles, and let Hw be the graph as defined in Definition 6.24.
Then there exists a negative cycle in SubstH(G1, . . . , Gt) if and only if there exists a negative
cycle in Hw. Moreover, if SubstH(G1, . . . , Gt) does not admit a negative cycle, msp(Hw) =
msp(SubstH(G1, . . . , Gt)).

Proof. Assume that SubstH(G1, . . . , Gt) has a negative cycle. Let C be a negative cycle in
SubstH(G1, . . . , Gt) of minimum weight. Since no Gi contains a negative cycle, C cannot be
completely inside a single Gi. Moreover, because C is chosen as a cycle of minimum weight,
each subpath of C is a shortest path and thus, by Lemma 6.23, C enters each Gi at most once.
Denote by Pi the maximal subpaths of C with vertices in V (Gi). Clearly, w(Pi) ≥ msp(Gi),
and in fact it even holds that w(Pi) = msp(Gi), since otherwise we could replace Pi by the
path P ′i with w(P ′i) = msp(Gi), because V (Gi) is a module in SubstH(G1, . . . , Gt), which
contradicts the choice of C as a cycle of minimum weight. Thus, there is a corresponding cycle
C ′ in Hw with w(C) = w(C ′). Conversely, each cycle in Hw directly corresponds to a cycle in
SubstH(G1, . . . , Gt) of the same length by replacing each vertex by a corresponding minimum
shortest path, hence there is a negative cycle in SubstH(G1, . . . , Gt) if and only if there is one
in Hw.

6.4 Applications 107

We are left to show msp(Hw) = msp(SubstH(G1, . . . , Gt)) if SubstH(G1, . . . , Gt) does not
contain a negative cycle. Clearly, msp(SubstH(G1, . . . , Gt)) ≤ msp(Hw), since every path in Hw

corresponds to a path in SubstH(G1, . . . , Gt) of the same length. For the other direction let
P be a path in SubstH(G1, . . . , Gt) with w(P) = msp(SubstH(G1, . . . , Gt)). We distinguish
three cases: (1) V (P) ⊆ V (Gi) for some i ∈ [t]. Then, the corresponding vertex vi ∈ V (Hw)
has weight at most w(P) and thus w(P) ≥ msp(Gi) ≥ msp(Hw). (2) P starts and ends in the
same vertex set V (Gi) for some i ∈ [t]. Let P ′ be the first part of P that is completely in V (Gi)
and let P ′′ be the remainder of P . Then it holds that w(P ′′) ≥ 0 since otherwise there would
be a negative cycle in SubstH(G1, . . . , Gt) on the same vertex set of P ′′ (V (Gi) is a module).
Thus, w(P) = w(P ′) + w(P ′′) ≥ w(P ′) ≥ msp(Gi) ≥ msp(Hw). (3) P starts in V (Gi) and ends
in V (Gj) for i, j ∈ [t] with i ̸= j. Then, by Lemma 6.23, P visits each Gi at most once. Let
P ∗ be the path that replaces each maximal subpath of P in some Gi by the minimum shortest
path in Gi. Now, it holds that w(P) ≥ w(P ∗) and since there is a corresponding path P ′ in Hw

with w(P ′) = w(P ∗) we have shown that w(P) ≥ w(P ∗) ≥ msp(Hw).

We can now prove the following lemma.

Lemma 6.26. Let H be an unweighted, directed t-vertex graph, let Gi be vertex-weighted, di-
rected graphs, and let f(Gi) be given for each Gi. Then one can compute f(SubstH(G1, . . . , Gt))
combinatorially in time O(t3 + n) or in time O(t2.842 + n) using fast matrix multiplication.

Proof. If any f(Gi) indicates a negative cycle, we report this negative cycle also for the graph
SubstH(G1, . . . , Gt). Let otherwise Hw be the vertex-weighted graph as defined in Defini-
tion 6.24, let πi be a shortest-path feasible potential for Gi, and let msp(Gi) be the minimum
shortest path value of Gi for i ∈ [t].

By Lemma 6.25, it suffices to solve vertex-weighted all-pairs shortest paths on Hw to
check if there is a negative cycle in SubstH(G1, . . . , Gt) and (if not) to compute the minimum
shortest path value of SubstH(G1, . . . , Gt). This can be done in time O(t2.842) by the algorithm
of Yuster [Yus09] resp. combinatorially in time O(t3) using a vertex-weighted variant of the
algorithm by Floyd and Warshall [Flo62, War62].

We are left to compute a shortest-path feasible potential for SubstH(G1, . . . , Gt). To do so,
we add a new vertex x to Hw of weight zero with directed arcs to all other vertices of Hw.
This corresponds to adding a new vertex x′ to the graph SubstH(G1, . . . , Gt) with directed
arcs to all other vertices of SubstH(G1, . . . , Gt). Now, we compute a shortest-path feasible
potential (regarding the edge-shifted weights) πH for Hw in time O(t2.842) resp. O(t3). We
define π : V (SubstH(G1, . . . , Gt)) → R by π(v) = πi(v) + πH(vi) for v ∈ Gi, and claim that π
is a shortest-path feasible potential for SubstH(G1, . . . , Gt).

To prove the claim, we show that for any vertex v ∈ Gi for some i ∈ [t], a shortest x′-v path
(regarding the edge-shifted weights) has weight πi(v) + πH(vi). Since x′ is connected to every
vertex in V (SubstH(G1, . . . , Gt)), the singleton set {x′} forms a module and thus we know by
Lemma 6.23 that there exists a shortest x′-v path that does not enter any Gi twice. Hence,
a shortest path from x′ to v can be split into a shortest path to reach V (Gi) and a shortest
path from some vertex in Gi to v. The latter part is exactly πi(v) and the former part can be
constructed by using a minimum shortest path in each Gj for j ∈ [t], i.e., is equal to πH(vi).
Consequently, after we have computed a shortest-path feasible potential πH for Hw, we can
compute a shortest-path feasible potential π for all vertices in V (SubstH(G1, . . . , Gt)) in total
time O(n), which proves the lemma.

108 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Lemma 6.27. Let H be an unweighted, directed t-vertex graph, let Gi be vertex-weighted,
directed graphs, and let f(Gi) be given for each Gi. Then one can compute f(SubstH(G1, .., Gt))
in time O(td(H) · (|E(H)|+ t log t) + n) with n = |SubstH(G1, .., Gt))|.

Proof. If any f(Gi) indicates a negative cycle, we report this negative cycle also for the graph
SubstH(G1, . . . , Gt). Otherwise, by Lemma 6.25, SubstH(G1, . . . , Gt) has a negative cycle if
and only if Hw does and msp(SubstH(G1, . . . , Gt)) = msp(Hw). Moreover, as seen in the proof
of Lemma 6.26, one can compute a shortest-path feasible potential for SubstH(G1, . . . , Gt) in
linear time after we have computed a shortest-path feasible potential for Hw. Thus, we can
exploit the tree-depth expression of Hw by using Lemma 6.22. Using the tree-depth running-
time framework by Iwata et al. [IOO18], we have proven the lemma.

Proof of Theorem 6.16. Let σ be the given expression with val(σ) = G. We use Theorem 6.10
to prove the claim. Lemma 6.22, Lemma 6.26, resp. Lemma 6.27 provide the algorithms AInc,
ASub, resp. ASubTd. Since |T σ| ≤ n, the linear portions of the running time of ASub and ASubTd
sum up to O(n2) time. Moreover, f(◦) and f(•) can be computed in constant time. Thus, by
Theorem 6.10, the claim follows.

We emphasize that for the algorithm AInc only a feasible potential is needed and for the algo-
rithm ASub the value of a minimum shortest path alone would suffice, but in the heterogeneous
case we need to compute both in all algorithms. We consider a shortest-path feasible potential
to ease the computation of a (shortest-path) feasible potential in ASub and ASubTD.

6.4.3 Vertex-Weighted All-Pairs Shortest Paths

In this section we will extend the algorithm of Section 6.4.2 and compute for all pairs of vertices
the shortest-path distance. We will prove the following theorem:

Theorem 6.28. Let G = (V, E) be a directed graph such that G ∈ TdkMwhMtdℓ with a
given expression for some k, h, ℓ ∈ N, and let w : V → R. Then one can either conclude that
G contains a negative cycle or one can solve vertex-weighted all-pairs shortest paths
combinatorially in time O(h2n+(k +ℓ)n2) resp. in time O(h1.842n+(k +ℓ)n2) using fast matrix
multiplication.

We will compute slightly different values f(G) depending on the operation. Most notably,
we will compute the shortest-path values between all pair of vertices only before and after an
operation Incx,Ex , whereas for operations SubstH we restrict the computation to auxiliary
values between modules and single vertices, until the next Incx,Ex operation appears or the
expression is fully processed.

Substitution. For a directed, unweighted t-vertex graph H with a vertex set V (H) =
{v1, . . . , vt} and directed, vertex-weighted graphs Gi, let Hw be the graph defined in Defini-
tion 6.24 and let G = SubstH(G1, . . . , Gt).

For u ∈ V (Gi) and v ∈ V (Gj) with i ̸= j, a shortest u-v path in G will consists of a shortest
path from u to some vertex in V (Gi) (possibly only u), followed by a shortest path from vi

to vj in Hw (i.e., using the minimum shortest path in all intermediate modules5), completed
by a shortest path from some vertex in V (Gj) to v (possibly only v). This motivates the
following definition: We define the function fS(G) as the function that returns the same values

5Hence, we do not consider the weights of the start- and endvertex.

6.4 Applications 109

Values returned by fS(G) Values returned by fI(G)
• shortest-path feasible potential π • shortest-path feasible potential π
• msp(G) = minu,v∈V (G) distG(u, v) • msp(G) = minu,v∈V (G) distG(u, v)
• minv∈V (G) distG(u, v) for all u ∈ V (G) • minv∈V (G) distG(u, v) for all u ∈ V (G)
• minv∈V (G) distG(v, u) for all u ∈ V (G) • minv∈V (G) distG(v, u) for all u ∈ V (G)
• distHw(vi, vj) for all vi, vj ∈ V (Hw) • distG(u, v) for all u, v ∈ V (G)

Table 6.2: An overview of the values returned by the functions fS resp. fI for the problem
vertex-weighted all-pairs shortest paths. All but the last bullet are identi-
cal. For the problem negative cycle detection the first two bullets are sufficient.

that we have computed in Section 6.4.2, i.e., a shortest-path feasible potential and the value
msp(G) of a minimum shortest path in G. Additionally, fS(G) returns for each pair of vertices
vi, vj ∈ V (Hw) the length of a shortest vi-vj path in Hw for i, j ∈ [t], and for each vertex
u ∈ V (G) the values minv∈V (G) distG(u, v) and minv∈V (G) distG(v, u). See also the left side of
Table 6.2 for the list of values returned by the function fS .

Lemma 6.29. Let H be an unweighted, directed t-vertex graph, let Gi be vertex-weighted, di-
rected graphs, and let fS(Gi) be given for each Gi. Then one can compute fS(SubstH(G1, .., Gt))
in O(t3 + n) combinatorially time or O(t2.842 + n) time using fast matrix multiplication.

Proof. If any f(Gi) indicates a negative cycle, we report this negative cycle also for the graph
SubstH(G1, .., Gt). Otherwise, let Hw be as defined in Definition 6.24 and denote G =
SubstH(G1, . . . , Gt). First of all, we solve the vertex-weighted all-pairs shortest paths problem
on Hw, check for a negative cycle, compute a shortest-path feasible potential, and compute the
minimum shortest path value msp(G) as done in Section 6.4.2 for negative cycle detec-
tion. We are left to compute for each vertex u ∈ V (G) the values minv∈V (G) distG(u, v) and
minv∈V (G) distG(v, u).

Let i ∈ [t] such that u ∈ V (Gi). If arg minv∈V (G) distG(u, v) /∈ V (Gi) we know due to
Lemma 6.23 that there exists a shortest u-v path in G in which the occurrences of vertices in
each Gi occur consecutively. Thus, in this case it holds that

min
v∈V (G)

distG(u, v) = min
u′∈V (Gi)

dist(u, u′) + min
vj∈V (Hw)

distHw(vi, vj)− w(vi). (6.2)

If arg minv∈V (G) distG(u, v) ∈ V (Gi), we observe that in this case it holds that the length
of a shortest u-v path is equal to minu′∈V (Gi) dist(u, u′); otherwise there would be a nega-
tive cycle in G, since w.l.o.g. one can assume that each shortest u-v path does start with
a path in V (Gi) of length minu′∈V (Gi) dist(u, u′). Thus, Equation (6.2) does hold in gen-
eral. To compute the value in Equation (6.2) for all u ∈ V (G), we first determine for each
vi ∈ V (Hw) the value minvj∈V (Hw) distHw(vi, vj) in time O(t2) and store them. Since the value
of minu′∈V (Gi) dist(u, u′) is known by f(Gi), we can compute the value in Equation (6.2) for
each u ∈ V (G) in constant time.

The value minv∈V (G) distG(v, u) can be computed analogously by executing the whole algo-
rithm at any time also for the edge-flipped graph.

Increment. For the operation Incx,Ex , we define fI(G) as a function that returns the same
values as fS(G) but instead of the pairwise distances in the graph Hw it returns the pairwise

110 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

distance for all pairs u, v ∈ V (G). See also Table 6.2 for an summary of the values returned by
the function fI . We compute fI(G) before and after the Inc-operation.

Recall that for an expression σ, as defined in Definition 6.7, we denote by T σ the corresponding
expression tree and for a node r ∈ V (T σ) we denote by T σ

r the subexpression tree of T σ with
root r. Further, we will denote by Gσ

r = val(T σ
r) the resulting graph after evaluating T σ

r .
Consider a node r ∈ V (T σ) labeled according to an operation SubstH whose parent node is
labeled according to an operation Incx,Ex .

To compute fI(Gσ
r) we will consider the maximal subtree of T σ

r that only admits nodes
labeled according to an operation SubstH . Considering this subexpression tree, one can prove
in a similar way as done in Section 3.4 the following lemma:

Lemma 6.30. Let T σ be an expression tree of an expression σ as defined in Definition 6.7,
let r ∈ V (T σ) labeled according to an operation SubstH whose parent node is labeled according
to an operation Incx,Ex , and let Gσ

r be the resulting graph after evaluating T σ
r . Let further the

function fS resp. fI be known for all graphs corresponding to nodes in V (T σ
r) labeled according

to an operation SubstH resp. Incx,Ex . Then, one can compute fI(Gσ
r) in time O(n2) with

n = |V (Gσ
r)|.

Proof. Since fS(Gσ
r) is known, we are left to compute distGσ

r
(u, v) for all u, v ∈ V (Gσ

r) in order
to compute fI(Gσ

r). For this, we traverse the expression tree of T σ
r downwards as long as one

encounters a node that is not labeled according to an operation SubstH . W.l.o.g. we can assume
that such a node is either labeled according to an operation Incx,Ex or • (a single vertex), since
one can assume that no argument of an operation SubstH is the empty graph and one can
replace the operations Union and Join by operations SubstH with pattern graphs of size two,
as seen in the proof of Theorem 6.10. We denote the vertex set of this part of the expression
tree (including the first nodes that are not labeled according to an operation SubstH) by Sr.
Note that for a vertex x ∈ Sr the corresponding vertex set V (Gσ

x) forms a module in Gσ
r . We

will determine for each such Gσ
x the value of a shortest u-v path in Gσ

r only using vertices in
V (Gσ

r) \ V (Gσ
x) with the property that u and v are adjacent to (all vertices of) V (Gσ

x). We
denote this value by cx and we set cr =∞.

Assume for now that one has computed the values cx for all x ∈ Sr in time O(n2) for
n = |V (Gσ

r)|. Consider a node x ∈ Sr labeled according to an operation SubstH and let
Gσ

x = SubstH(G1, . . . , Gt) be the corresponding graph with each Gi corresponds to a child of
x. Let Hw be the graph defined in Definition 6.24.

For two vertices u, v with u ∈ V (Gi) and v ∈ V (Gj) for i ̸= j, it holds that a shortest
u-v path in Gσ

r is either completely in Gσ
x or it does use vertices in V (Gσ

r) \ V (Gσ
x). Since

there is no negative cycle in Gσ
r and due to Lemma 6.23, a shortest u-v path completely in Gσ

x

has length minu′∈V (Gi) distGi(u, u′) + distHw(vi, vj)−w(vi)−w(vj) + minv′∈V (Gj) distGj (v′, v).
If a shortest u-v path does use vertices in V (Gσ

r) \ V (Gσ
x), we can determine the length by

minu′∈V (Gσ
x) distGσ

x
(u, u′) + cx + minv′∈V (Gσ

x) distGσ
x
(v′, v). Thus, for a node x ∈ Sr labeled

according to an operation SubstH , we can compute the shortest-path distance of two vertices
that are in different modules by taking the minimum of those two values.

For a node x ∈ Sr that is not labeled according to an operation SubstH , we have al-
ready computed fI(Gσ

x) and thus, distGσ
x
(u, v) is known for all u, v ∈ V (Gσ

x) and it holds that
distGσ

r
(u, v) = min{distGσ

x
(u, v), minu′∈V (Gσ

x) distGσ
x
(u, u′) + cx + minv′∈V (Gσ

x) distGσ
x
(v′, v)}.

Note that for a pair of vertices u, v ∈ V (Gσ
r) it either holds that u, v ∈ V (Gσ

x) for some x ∈ Sr

that is not labeled according to an operation SubstH or it holds that u, v ∈ V (Gσ
x) for some

x ∈ Sr that is labeled according to an operation SubstH and u and v are in different modules.

6.4 Applications 111

Since all the considered values are known, we can compute distGr (u, v) for all u, v ∈ V (Gr) in
time O(n2).

We are left to compute the values cx for each node x ∈ Sr. We do this in a top-down
traversal of the nodes in Sr. For the root r ∈ Sr it holds that cr = ∞. Let x ∈ Sr be a
node labeled according to an operation SubstH and let v1, . . . , vt ∈ T σ

r be the children of x,
i.e., Gσ

x = SubstH(Gσ
v1 , . . . , Gσ

vt
). Further, let Hw as defined in Definition 6.24 with vertex

set {v1, . . . , vt} and vertex weights ω. Inductively, we can assume that cx is know. Now, cvi

corresponds to a cycle that either only uses vertices in V (Gσ
x) or it uses vertices in V (Gσ

r)\V (Gσ
x).

Thus, cvi is the minimum of the two values:

• minC∈Cvi
ω(C)− ω(vi) with Cvi is the set of all cycles from vi to vi in Hw

• minvj∈V (Hw) distHw(vi, vj)− ω(vi) + cx + minvj∈V (Hw)(vj , vi)− ω(vi).

Since all considered values are known, we can compute the values cx for each x ∈ Ur by a
top-down traversal in time O(|Sr|) ⊆ O(n).

Lemma 6.31. Let G′ = (V ′, E′) be a directed graph, let x /∈ V (G′) , let Ex ⊆ {(x, u) | u ∈
V ′} ∪ {(u, x) | u ∈ V ′}, let w : V ′ ∪ {x} → R, and let fI(G′) be given. Then one can compute
fI(Incx,Ex(G′)) in time O(n2), with n = |V ′|.

Proof. Let G = Incx,Ex(G′). By Lemma 6.22, we can compute the value msp(G) of a minimum
shortest path and a feasible potential for G in time O(m + n log n). Apply Dijkstra’s algorithm
twice to compute the values distG(x, v) and distG(v, x) for all v ∈ V ′ in the same running time.
For u, v ∈ V ′, a shortest u-v path in G does either use the vertex x, or it does not use the vertex
x. Thus, we can update the shortest-path distance for each pair u, v ∈ V ′ by distG(u, v) =
min{distG′(u, v), distG(u, x) + distG(x, u)}, which can be done for each pair in constant time.
Additionally, for each v ∈ V (G), the values minu∈V (G) dist(v, u) and minu∈V (G) dist(u, v) can
be looked up in linear time, yielding a total running time of O(n2) to compute fI(G).

Lemma 6.32. Let H be an unweighted, directed t-vertex graph, Gi be vertex-weighted, directed
graphs, and fS(Gi) be given for each Gi. Then one can compute fS(SubstH(G1, . . . , Gt)) in
time O(td(H) · t2 + n) with n = |V (SubstH(G1, . . . , Gt))|.

Proof. Let G = SubstH(G1, . . . , Gt). Consider the graph Hw as defined in Definition 6.24 with
V (Hw) = {v1, . . . , vt}. Note that td(Hw) = td(H), i.e., Hw ∈ Tdtd(H), thus, by Lemma 6.31 and
Corollary 6.11, one can compute fI(Hw), especially vertex-weighted all-pairs shortest
paths, in Hw in time O(td(H) · t2). Since fS(Gi) is known, one can compute the values
minv∈V (G) distG(u, v) resp. minv∈V (G) distG(v, u) as done in the proof of Lemma 6.29 in time
O(n). Moreover, a shortest-path feasible potential for G and the value msp(G) can also be
computed as done in Section 6.4.2 for negative cycle detection in O(t2).

Proof of Theorem 6.28. Let σ be the given expression after replacing each occurrence of an
operation Join or Union by (possible multiple) operations SubstH with a pattern graph H of
size two. We traverse the expression tree T σ from bottom to top. The values fI(•),fS(•), fI(◦),
and fI(◦) can be trivially computed in constant time. For a node x ∈ T σ labeled according to
an operation SubstH , the algorithms ASub resp. ASubTd are as described in Lemma 6.29 resp.
Lemma 6.32 and compute fS(T σ

x). For each node x ∈ T σ labeled according to an operation
Incx,Ex , let y ∈ T σ be the unique child of x. If y is labeled according to an operation SubstH ,
the algorithm AInc first computes fI(T σ

y) using Lemma 6.30. Then, the algorithm computes
fI(T σ

x) using Lemma 6.31. The linear portions of the running time of ASub and ASubTd sum up
to O(n2) total time. By Theorem 6.10, we have proven the theorem.

112 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

6.5 Comparing the Graph Classes
In this section, we compare the graph classes defined in Section 6.2. It is well known that the
graph classes Tdk and Mwh are incomparable: For any k, h ∈ N it holds that Kk+1 ∈ Mw0,
but Kk+1 /∈ Tdk, for Kk+1 being the complete graph of size k + 1. Conversely, let G be a
subdivided star of degree h, i.e, the graph K1,h with a pendant vertex attached to each vertex
of degree one, cf. Figure 6.1. Then it holds that G ∈ Td3, but G /∈Mwh.

Naturally it holds that Mwh ⊆ Td0Mwh and Tdk ⊆ TdkMw0 for any k, h ≥ 0; in fact,
it can be observed that Mwh = Td0Mwh and Tdk ⊊ TdkMw0.6 Conversely, the following
lemma shows that for any k, h ∈ N there exist graphs that are neither in Tdk nor in Mwh, but
that are contained in Tdk′Mwh′ even for constant k′ and h′.

Lemma 6.33. For any k, h ∈ N, there exists a graph G such that G /∈ Tdk and G /∈Mwh, but
G ∈ Td1Mw0.

Proof. Let p = max{k, h, 2}. We construct a graph G with 2p + 1 vertices as follows: Consider
p pairs of non-adjacent vertices vi,1 and vi,2 for i ∈ [p] and one additional vertex called x, i.e.,
V = {v1,1, v1,2, v2,1, v2,2, . . . , vp,1, vp,2, x}. There is an edge between any vi,r and vj,s if and only
if i ̸= j for r, s ∈ {1, 2}. The vertex x is connected to each vi,1 for i ∈ [p]. See also Figure 6.1.
Now, in this constructed graph G the vertex set {vi,1 | i ∈ [p]} (as the set {vi,2 | i ∈ [p]}) is a
clique of size p, thus, td(G) ≥ p. On the other side, the graph G does not admit any non-trivial
module, since it is easy to see that every minimal extension of a two-vertex set results in the
whole vertex set V (G). Thus, h(G) = |V (G)| = 2p + 1.

At the same time, G \ {x} ∈ Td0Mw0 since G \ {x} is a cograph, implying that G ∈
Td1Mw0.

Clearly, also the notion of modular tree-depth generalizes both modular-width and tree-
depth: For a graph G, the modular tree-depth matches the tree-depth for the special case of
G being prime and since it holds that td(G) ≤ |V (G)| for any graph G, it also holds that
mtd(G) ≤ mw(G). The next lemma shows that in general neither the modular-width nor the
tree-depth can be bounded by a function depending on the modular-tree-depth of a graph.

Lemma 6.34. For any k, h ∈ N, there exists a graph G such that G /∈ Tdk and G /∈Mwh, but
G ∈Mtd3.

Proof. Let p ∈ N such that 2p + 1 > h. We construct a pattern graph H with 2p + 1 vertices
as follows: Let H be a subdivided star of degree p with 2p + 1 vertices, cf. Figure 6.1. Denote
V (H) = {v1, v2, . . . , v2p+1}, and let G = SubstH(Kk+1, . . . , Kk+1). Now, G /∈ Tdk since G
contains an clique of size k + 1 and G /∈ Mwh, since G contains an induced subdivided star
with more than h vertices.

At the same time, since td(H) = 3 and Kk+1 ∈Mtd0, it holds that G ∈Mtd3.

As a consequence of Lemma 6.33 and Lemma 6.34 it follows that also the classes MwhMtdℓ

and TdkMtdℓ are strictly more general then the classes Mwh and Tdk.
Next, we will compare the class Mtdℓ from Definition 6.6 with the class TdkMwh from

Definition 6.3. We will see that they are indeed incomparable. A simple extension of the proof
of Lemma 6.33 yields the following lemma.

Lemma 6.35. For any ℓ ∈ N, there exists a graph G such that G /∈Mtdℓ, but G ∈ Td1Mw0.
6Similar trivial relations are true for other classes, we do not state them explicitly.

6.5 Comparing the Graph Classes 113

x

Figure 6.1: Left: The graph constructed in the proof of Lemma 6.33 for p = 4. The bold edges
indicate a full join. Right: A subdivided star of degree six.

Proof. Let G be the graph constructed in the proof of Lemma 6.33 with p = ℓ, cf. left side of
Figure 6.1. As mentioned in the proof of Lemma 6.33, it holds that G ∈ Td1Mw0. However,
the constructed graph G is prime and td(G) ≥ p. Thus, mtd(G) ≥ p.

Conversely, for each k, h ∈ N, already the graph class Mtd3 contains graphs that are not in
TdkMwh.

Lemma 6.36. For any k, h ∈ N, there exists a graph G such that G /∈ TdkMwh, but G ∈Mtd3.

Proof. Let p ∈ N such that 2p + 1 > h. We construct G as done in Lemma 6.34, i.e., let
H be a subdivided star with 2p + 1 vertices with V (H) = {v1, v2, . . . , v2p+1}, and let G =
SubstH(Kk+1, . . . , Kk+1). Denote by Mi, for i ∈ [2p + 1], the 2p + 1 many modules in G. It
was already shown that G ∈Mtd3.

We claim that G /∈ TdkMwh: Due to the structure of G, for any two vertices u ∈ Mi,
v ∈ Mj , with i ̸= j, it holds that there is no module in G containing u and v. Thus, any
modular partition of G consists of at least 2p + 1 many modules, which implies that G cannot
be in Td0Mwj for j ≤ h < 2p + 1. Moreover, this statement holds even after deleting any k
vertices in G. Thus, G cannot be in TdiMwj for any i ≤ k and j ≤ h.

Although the modular tree-depth is always upper bounded by the modular-width, it is possible
that these two parameters only differ by a constant factor. Thus, depending on the application
and the input, it may be beneficial to consider the modular-width instead of the more general
modular tree-depth, since its (asymptotic) impact on the running time may be much lower.

Lemma 6.37. For any ℓ ∈ N with ℓ ≥ 2, there exists a graph G such that G /∈ Mtdℓ, but
G ∈Mw2ℓ.

Proof. Consider a graph G that is a clique Kℓ of size ℓ with a pendant vertex for each vertex in
Kℓ. Now, there is no non-trivial module in G and since G contains a clique of size ℓ it holds that
td(G) > ℓ, thus, G /∈Mtdℓ. However, since |V (G)| = 2ℓ it trivially holds that h(G) = 2ℓ.

Next, we show that the classes TdkMwh and MwhMtdℓ are incomparable.

Lemma 6.38. For any h, ℓ ∈ N, there exists a graph G such that G /∈ MwhMtdℓ, but G ∈
Td1Mw0.

114 Heterogeneous Structure: Combining Tree-Depth and Modular-Width

Proof. Consider the graph constructed in the proof of Lemma 6.33 for p = ℓ, cf. the left side
of Figure 6.1. Since G does not admit any non-trivial module and contains a clique of size ℓ it
holds that G /∈Mtdℓ, but G ∈ Td1Mw0 as shown in the proof of Lemma 6.36.

Corollary 6.39. For any k, h ∈ N, there exists a graph G such that G /∈ TdkMwh, but
G ∈Mw0Mtd3.

Proof. This claim follows directly from Lemma 6.36.

Finally, we compare the graph classes with the class TdkMtdℓ and obtain the following
relationships.

Corollary 6.40. For any h, ℓ ∈ N, there exists a graph G such that G /∈ MwhMtdℓ, but
G ∈ Td1Mtd0.

Proof. This claim follows directly from Lemma 6.35.

Clearly, for any graph G ∈ MwhMtdℓ it holds that G ∈ Td0Mtdmax{h,ℓ}. Thus, it is not
possible that for arbitrary k, ℓ ≥ 0 there exists graphs G /∈ TdkMtdℓ, but G ∈Mwh′Mtdℓ′ for
constants h′ and ℓ′. However, it is possible to make such a claim with ℓ′ being a constant.

Lemma 6.41. For any k, ℓ ∈ N with k, ℓ ≥ 2, there exists a graph G such that G /∈ TdkMtdℓ,
but G ∈Mw2ℓMtd0.

Proof. Let H be a clique Kℓ of size ℓ with a pendant vertex for each vertex in Kℓ and let
G = SubstH(Kk+1, . . . , Kk+1). Now, it holds that G /∈ TdkMtdℓ but h(G) = 2ℓ.

Corollary 6.42. For any k, h ∈ N, there exists a graph G such that G /∈ TdkMwh, but
G ∈ Td0Mtd3.

Proof. This claim follows directly from Lemma 6.36.

Clearly, for any graph G ∈ TdkMwh it holds that G ∈ TdkMtdℓ with ℓ = h. Thus, it is again
not possible that for arbitrary k, ℓ ≥ 1 there exists graphs G /∈ TdkMtdℓ, but G ∈ Tdk′Mwh′

for constants k′ and h′. However, it is possible to make such a claim with only k′ being a
constant.

Corollary 6.43. For any k, ℓ ∈ N with k, ℓ ≥ 2, there exists a graph G such that G /∈ TdkMtdℓ,
but G ∈ Td0Mw2ℓ.

Proof. This claim follows directly from Lemma 6.41.

Relationships to known parameters. A different way of combining tree-depth and modular-
width lies in the notion of shrub-depth, introduced by Ganian et al. [GHN+19], which, in
fact, is a tree-depth-like variation of clique-width. Graph classes of bounded tree-depth also
have bounded shrub-depth while also dense graph classes, e.g. the class of all cliques, have
bounded shrub-depth. Since cographs do not have bounded shrub-depth, all graph classes with
heterogeneous structure introduced in this work are incomparable to shrub-depth. Moreover,
to our best knowledge, there are not yet any dedicated efficient parameterized algorithms for
graphs of small shrub-depth.

Let us also point out that for any fixed values of k, ℓ, and h all classes introduced in this
chapter have bounded clique-width. In particilar, it holds that cw(G) ≤ cw(Incx,Ex(G)) ≤
2 · cw(G), i.e., the addition of a vertex at most doubles the clique-width of a graph (this also

6.6 Conclusion 115

holds for the NLC-width) and does not shrink [Gur17]. That said, the clique-width may be much
larger than these parameters defined in this chapter and the best running times relative to clique-
width can be worse (and they are for the examples provided in this work, cf. [CDP19, Duc22b]).
In other words, we obtain faster algorithms by making use of the specific (heterogeneous)
structure of the introduced graph classes, rather than considering them as graphs of bounded
clique-width.

Regarding tree-width and branch-width, we observe that the presented graph classes remain
incomparable to these (as modular-width and modular tree-depth alone), as there are no con-
stants k, h, ℓ ∈ N such that the class of all paths are contained in TdkMwhMtdℓ. Trivially,
there are always constants k, h, ℓ ∈ N such that a given H-minor free graph class is not contained
in TdkMwhMtdℓ since one can build any graph H with |V (H)| many increment operations.

6.6 Conclusion
Coping with the limited generality of graph structures for which we know fast algorithms, we
have presented in this chapter a clean and robust way of defining more general, heterogeneous
structure via graph operations and algebraic expressions. We gave a generic framework that
allows to design algorithms with competitive running times by designing routines for any subset
of the considered operations. As applications we showed algorithms for triangle counting,
negative cycle detection, and vertex-weighted all-pairs shortest paths.

The heterogeneous merge of the parameter tree-depth and modular-width can here only be
seen as an example as similar approaches for other parameters that can be defined via operations
are inevitable. Thus, in future work we aim to extend this approach so that further operations
and problems can be studied. We refer also to the discussion on combining further parameters in
a heterogeneous way in Section 7.2. This often touches upon concrete algorithmic questions for
well-studied parameters. For example, it is an open problem to design a non-trivial algorithm for
maximum matching relative to modular tree-depth or, equivalently, for maximum b-matching
relative to tree-depth. Such an algorithm would yield a fast algorithm for maximum matching
for all graphs in TdkMwhMtdℓ. As it stands, known algorithms for maximum matching
parameterized by the tree-depth [IOO18] and modular-width (Section 3.2) yield an algorithm
with time complexity O((h2 log h)n + km) for graphs in TdkMwh via Theorem 6.10 (with a
function f(G) that just returns a maximum matching in G). We want to highlight at this point
that such results does not hold inevitably. Even if there are separate algorithms AInc, ASub, resp.
ASubTd for the homogeneous case, each algorithm might use a different set of auxiliary values
that needs to be computed, defined by a function f . In the heterogeneous case, it does not hold
automatically that one can provide all those auxiliary values for all the different algorithms,
which often gives rise to interesting new algorithmic questions (as also seen in this chapter for
the algorithm for vertex-weighted all-pairs shortest paths).

Another important spin-off question is to determine the complexity of finding for a given
graph, a set of operations, and suitable parameters, e.g., k, h, ℓ ∈ N, an equivalent algebraic
expression, i.e., a decomposition of the heterogeneous structure of the graph. Nevertheless,
because algebraic expressions over some set of graph operations are also graph constructions,
we already learn what processes create graphs of beneficial heterogeneous structure.

Part IV

Conclusion

7
Concluding Remarks and Open Problems

In this thesis, we carried forward the study of several popular problems in the “FPT in P”
framework for well-studied parameters (and the much older programs of adaptive algorithms
and faster algorithms for restricted settings). In the first main part of this thesis, we obtained
efficient parameterized algorithm with respect to the parameters modular-width, clique-width,
and twin-width for several fundamental problems as maximum matching, vertex-weighted
all-pairs shortest paths, or triangle counting.

The second main part of this thesis was motivated by the great success of parameterized
algorithms and the wealth of algorithms benefiting from different structures in the input, both
for problems in P and NP. While each of the parameterized algorithms utilize a different
specific structure, we discussed how to combine two or more parameters to much more general
and heterogeneous graph classes, while still being able to solve a problem efficiently. We have
shown how to define such heterogeneous graph classes in a clean and robust way and presented
a general running-time framework for such classes.

In this chapter, we will give concluding remarks to both parts of this thesis and present
various interesting open questions and directions for further research.

7.1 Algorithms Parameterized by a Single Parameter

For the parameter modular-width, we achieved in Chapter 3 several algorithms that are adap-
tive, i.e., they match the trivial lower bound of the problem for constant parameter size, and
match the running time of an optimal unparameterized algorithm for worst-case parameter
value mw ∈ Θ(n). Thus, already for slightly non-trivial parameter value mw ∈ o(n) our algo-
rithm outperforms the optimal unparameterized algorithm. Broadly speaking, each algorithm
parameterized by the modular-width traversed the modular-decomposition tree, simplified and
compressed the current graph, and encoded all necessary information in the quotient graph;
either by using weights resp. capacities in the quotient graph, by slightly extending the quotient

120 Concluding Remarks and Open Problems

graph, or both. Solving a weighted variant of the considered problem on the quotient graphs
then yielded the desired result. E.g., for maximum matching we could compress all impor-
tant information into a vertex-capacitated graph with at most 3 mw many vertices and could
compute the size of a maximum matching by solving a weighted variant of maximum match-
ing, namely maximum b-matching, on this smaller graph; or we have reduced the problem
of finding a maximum number of edge-disjoint s-t in an unweighted graph to the computation
of an edge-capacitated maximum s-t flow on a graph closely related to the quotient graph.
While for most problems, the weighted variant require a higher running time as the unweighted
variant,1, we could not achieve adaptive running times for maximum matching, maximum
edge-disjoint s-t paths, and global minimum edge cut, while the achieved running times
still yield a large regime for mw where we achieve faster algorithm.

Considering the vertex-weighted variant in the first place, we achieved adaptive running
times for maximum b-matching, vertex-weighted all-pairs shortest paths, maximum
s-t vertex flow, weighted global vertex min cut, and triangle counting. This
immediately motivates the following question.

Open Problem. For which other combinations of problems and parameters exist adaptive
algorithms?

We have partially answered this question for the problem triangle counting by giving
adaptive algorithms for triangle counting with regard to the parameters clique-width, twin-
width, tree-depth, and modular-tree-width, if we restrict ourselves to combinatorial algorithms
on dense graphs. In this context, it would be interesting to see if one could leverage fast matrix
multiplication in those parameterized algorithm to speed up the running time, such that one
gets adaptive algorithms against the classic O(nω)-time algorithm for triangle counting.
We stress that adaptive algorithms are particularly appealing for graph parameters for which
one can compute the beneficial structure faster than the optimal unparameterized running time
of the problem. However, such structures tend to be not very general.

On the other side, one always strives to consider parameters that are as general as possible,
i.e., to capture a wider class of graphs for which we get improved algorithms. In this respect,
we have considered in Chapter 4 the parameter clique-width which is much less restrictive than
the parameter modular-width. Our main result here was the O(cw2 n2)-time algorithm for the
problem vertex-weighted all-pairs shortest paths when parameterized by the clique-
width cw of the input. This is the first algorithm parameterized by the clique-width for this
problem. For this we considered the closely related parameter NLC-width and the corresponding
expression tree. In three phases, we have first computed some local auxiliary values, extended
those with more global auxiliary values in the second phase, and eventually used those values
to compute for each pair of vertices in a final traversal the actual shortest distance. A natural
further-reaching question regarding vertex-weighted all-pairs shortest paths is whether
one can improve the result towards an adaptive algorithm parameterized by the clique-width of
the input.

Open Problem. Is there an adaptive parameterized algorithm for vertex-weighted all-
pairs shortest paths when parameterized by the clique-width of a graph.

In the presented algorithm, we computed edge-weighted all-pairs shortest paths on the
auxiliary graph Hw using simply the algorithm due to Floyd and Warshall. However, this graph

1The problem triangle counting is an exception here, as one can compute the capacitated variant of triangle
counting also in time O(nω), as seen in Section 3.5

7.1 Algorithms Parameterized by a Single Parameter 121

does itself admit quite some structure due to the circular structure, e.g., Hw is bipartite. It
is not known if one can solve all-pairs shortest paths faster on bipartite graph; Torgasin
and Zimmermann [TZ13] presented an algorithm for all-pairs shortest paths on directed
and bipartite graphs with real-weighted weights without negative cycles that reduces the size
of matrices used in the computations to 1/4 of the size of the original adjacency matrix, while
the running time becomes at least seven times faster for large graphs when compared to the
standard algorithm; while also other heuristic algorithms for all-pairs shortest paths on
bipartite graphs exists, e.g., [HZA22]. However,in the presented algorithm there would still
be the bottleneck of computing the dx

v,i,y-values in the second phase. After the present work,
Ducoffe [Duc22b] advanced in this direction by giving an almost adaptive algorithm of time
O(cw(n log n)2) for vertex-weighted all-pairs shortest paths. A caveat here is that this
algorithm considers only undirected graphs with non-negative vertex weights.

As a second result, we presented an O(cw2n+cw m)-time algorithm for the problem triangle
counting when parameterized by the clique-width of the input, which is a slight improvement
over the previous algorithm with a time complexity of O(cw2(n + m)). This algorithm is only
adaptive, if we restrict ourselves to combinatorial algorithms on dense graphs.

Open Problem. Is there a non-combinatorial adaptive algorithm for TC when parameterized
by the clique-width of a graph.

Concerning further tractable problems, very recently Ducoffe [Duc22a] was able to solve max-
imum matching when parameterized by the clique-width cw of the graph in time O(f(cw) ·
(n + m)1+o(1)) using among other techniques Courcelle’s theorem [CMR00], where f is a com-
putable function.2 While this algorithm yields a almost linear time for maximum matching on
graphs of bounded clique-width, the actual dependency on the clique-width is non-elementarily.
It would be interesting to know, if there exists also a combinatorial algorithm for maximum
matching parameterized by the clique-width, e.g., an algorithm where the dependency on the
clique-width is only exponential.

Open Problem. Is there an combinatorial algorithm for maximum matching when param-
eterized by the clique-width of a graph.

Finally, we have turned our focus to the parameter twin-width, the most general parameter
considered in this thesis. We presented an algorithm based on dynamic programming to com-
pute the number of triangles in a graph in time O(d2n + m), assuming that a d-contraction
sequence is given in a compact way. For several NP-hard problems, e.g., k-independent set,
k-clique, k-vertex cover, k-dominating set, or k-subgraph isomorphism it was shown
that one can solve them in fpt-time O(f(k, d) · n), assuming that a d-contraction sequence is
provided [BKTW20].

In the realm of “FPT in P”, Bonnet et al. [BGK+21b] solved unweighted unweighted all-
pairs shortest paths in time O(dn2 log n) on graphs of twin-width at most d assuming a
given d-contraction sequence in a compact way. For this, they used a so-called interval biclique
partition and showed that one compute a interval biclique partition of size O(dn) in time O(dn)
using the d-contraction sequence. Apart from this, the (recently introduced) parameter twin-
width got little attention regarding tractable problems. Next to generalizing the result of Bonnet

2Note that one cannot express a matching in MSO1 logic and thus, Courcelle’s theorem cannot be applied
directly. However, using a Counting MSO1 formula one can evaluate via the Tutte-Berge formula [Ber01]
the size of a maximum matching. Evaluating this formula on various subgraphs then also lead to the actual
maximum matching [Duc22a].

122 Concluding Remarks and Open Problems

et al. to vertex-weighted graphs, it is an open problem if one can solve maximum matching
faster on graphs of bounded twin-width.

Open Problem. Is there a parameterized algorithm for maximum matching when parame-
terized by the twin-width of a graph.

7.2 Heterogeneous Structure

Considering the wealth of parameterized algorithms for many computational problems and many
(incomparable) parameters, we have formalized in Chapter 6 how to combine two or more differ-
ent parameters into much more general graph classes of heterogeneous structure. We presented
a framework for designing operation-based algorithms and extended our running-time frame-
work from Theorem 3.15 to cope with all presented heterogeneous graph classes. We show-cased
this approach combining the parameters tree-depth, modular-width, and the natural notion of
modular tree-depth. We presented algorithms for triangle counting, negative cycle de-
tection, and vertex-weighted all-pairs shortest paths relative to the heterogeneous
graph classes with running times that match the running times for the homogeneous cases.

The applicability of this framework to other parameters is evident. Consider as an example
the parameter path-width (cf. Section 2.3 for a standard definition). One can define graphs of
path-width at most k via operations in the following way: Similarly to the definition of clique-
width, we consider labeled graph where each vertex is either labeled “active” or “inactive”. We
then define an operation deactv(G) that sets the label of a vertex v ∈ V (G) to “inactive”, and
an operation Incx,Ex(G) with lab(x) = “active” and Ex ⊆ {{x, v} | v ∈ V ∧ lab(v) = “active”}
that adds a new vertex with a neighborhood only consisting of “active” vertices. If we now
restrict the number of “active” vertices at each time to be at most k + 1, this exactly defines
the graphs of path-width at most k. The heterogeneous combination with, e.g., modular-width
can be done with the same approach presented in this chapter. If we denote the resulting graph
class by PwpMwh where p ∈ N denote the maximum number of simultaneous “active” vertices
and h denotes the maximum size of an operation SubstH , one can show that the problem
triangle counting can be solved in time O(p2n + hω−1n).

Open Problem. Which combinations of parameters allow efficient parameterized algorithms
for the problems maximum matching or vertex-weighted all-pairs shortest paths.

The set of operations used the presented framework was motivated by the operations needed
to define specific graph parameters. However, it is also possible to simply define a set of
operations, some of them are limited by a parameter, e.g., defining the maximum nesting depth
of an operation of the size of a pattern. By considering all algebraic expressions over the set of
operations, we can simply define the corresponding graph class.

As a simple example, we can extend the set of operations in the definition of clique-width
(cf. Chapter 4) by an operation that adds a pendant vertex and an operation that adds a
dominating vertex (each with an arbitrary label). Interestingly, the graph class consisting
of all graphs that get created using only the latter two operations, is of unbounded clique-
width [Rao08a]. However, it is easy to extend the algorithm for triangle counting param-
eterized by the NLC-width to cope with the latter two operations, immediately extending the
class of graph for which this algorithm yield a faster algorithm for triangle counting.

Such one-vertex extensions were also considered by Ducoffe and Popa [DP21b] for maximum
matching on modular-decomposition trees. With the cost of an additionally sum of Om log n

7.2 Heterogeneous Structure 123

in the running time, they showed that one can prune every quotient graph by the one-vertex ex-
tensions pendant, anti-pendant, twin, universal and isolated vertex (while universal and isolated
vertices can only occur after the removal of other one-vertex extensions), i.e., that parameter
value is defined as the maximum size of any quotient graph after the removal of all one-vertex
extensions.

to define a heterogeneous graph class parameterized by several

Open Problem. What is a maximum set of operations such that there exists an efficient
parameterized algorithm for triangle counting.

Generalize Incx,Ex to IncMod
We have generalized modular-width to modular tree-depth by allowing pattern graphs for

which the tree-depth of the pattern is bounded instead of the size. In principle, as long
as the pattern graph H might be “easy”, there is hope that one can also solve problems in
SubstH(G1, . . . , Gt), assuming that the graphs Gi are also capable of being solved efficiently.
Since we postulate that every algebraic expression over the given set should be “easy”, one
interesting idea would be to create the pattern graph H for an operation SubstH by using the
same set of operations, i.e., we generalize SubstH(G1, . . . , Gt) to Subst(G1, . . . , Gt, H) that
still returns H[v1 ← G1, . . . , vt ← Gt], however the last argument defines the pattern graph
H. I.e., in a suitable expression tree, the node corresponding to such an operation admits
t + 1 children, where the subexpression tree of the first t children define Gi for i ∈ [t] and the
subexpression tree of the last child defines H.

Doing this, the number of parameters would shrink to only the maximum number of
One can show that the size of such an expression tree would still be O(n), thus the increment

trick still works

Open Problem. What is the complexity of fining for a given set of operations and a given
graph, a suitable expression

Ideally, each problem then might have their own set of operations that are efficiently process-
able, which can be seen as a first step of what structure might be beneficial, and what structure
not.

For tree-depth, one can decide in linear time for a fixed k, if a graph has tree-depth k, actual
time is 2O(t2) · n [RRVS14] (NP-hard in general [Pot88])

Bibliography

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness
results for LCS and other sequence similarity measures. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59–78, 2015. (Cited on page 8.)

[ACL95] Mikhail J. Atallah, Danny Z. Chen, and D. T. Lee. An optimal algorithm for
shortest paths on weighted interval and circular-arc graphs, with applications. Al-
gorithmica, 14(5):429–441, 1995. (Cited on pages 8 and 26.)

[Ans87] Richard P. Anstee. A polynomial algorithm for b-matchings: An alternative ap-
proach. Inf. Process. Lett., 24(3):153–157, 1987. (Cited on page 25.)

[AWY18] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching trian-
gles and basing hardness on an extremely popular conjecture. SIAM J. Comput.,
47(3):1098–1122, 2018. (Cited on page 7.)

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997. (Cited on pages 27, 33, 47, and 92.)

[BBCG10] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algo-
rithms for large-scale local triangle counting. ACM Trans. Knowl. Discov. Data,
4(3):13:1–13:28, 2010. (Cited on page 12.)

[BBD22] Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4
is np-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. (Cited on
page 84.)

[Ber88] Alan A. Bertossi. Parallel circle-cover algorithms. Inf. Process. Lett., 27(3):133–
139, 1988. (Cited on page 8.)

[Ber01] Claude Berge. The theory of graphs. Courier Corporation, 2001. (Cited on
page 121.)

[BFNN19] Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Param-
eterized aspects of triangle enumeration. J. Comput. Syst. Sci., 103:61–77, 2019.
(Cited on pages 8 and 27.)

126 Bibliography

[BGHK95] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Al-
gorithms, 18(2):238–255, 1995. (Cited on page 24.)

[BGK+21a] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi
Watrigant. Twin-width II: small classes. In Dániel Marx, editor, Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 1977–1996. SIAM, 2021. (Cited on
page 84.)

[BGK+21b] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi
Watrigant. Twin-width III: max independent set, min dominating set, and coloring.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,
2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1–
35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (Cited on pages 26,
84, 92, and 121.)

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 79–97, 2015. (Cited on page 8.)

[BK18] Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of
longest common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1216–1235, 2018. (Cited on pages 8 and 58.)

[BKTW20] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-
width I: tractable FO model checking. In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 601–612. IEEE, 2020. (Cited on pages 22, 83, 84, 85,
92, and 121.)

[Blu90] Norbert Blum. A new approach to maximum matching in general graphs. In Mike
Paterson, editor, Automata, Languages and Programming, 17th International Col-
loquium, ICALP90, Warwick University, England, UK, July 16-20, 1990, Proceed-
ings, volume 443 of Lecture Notes in Computer Science, pages 586–597. Springer,
1990. (Cited on page 25.)

[BN18] Matthias Bentert and André Nichterlein. Parameterized complexity of diameter.
CoRR, abs/1802.10048, 2018. (Cited on pages 26 and 95.)

[BR96] V. Balachandhran and C. Pandu Rangan. All-pairs-shortest-length on strongly
chordal graphs. Discret. Appl. Math., 69(1-2):169–182, 1996. (Cited on page 26.)

[Bri14] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 661–670. IEEE Computer Society, 2014. (Cited on page 7.)

Bibliography 127

[BS05] Pál Burai and Arpád Száz. Relationships between homogeneity, subadditivity and
convexity properties. Publikacije Elektrotehničkog fakulteta. Serija Matematika,
pages 77–87, 2005. (Cited on pages 42 and 100.)

[BTV11] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of
graphs. Theor. Comput. Sci., 412(39):5187–5204, 2011. (Cited on pages 21, 22,
and 84.)

[CDP19] David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT
algorithms for some classes of bounded clique-width graphs. ACM Trans. Algo-
rithms, 15(3):33:1–33:57, 2019. (Cited on pages 8, 24, 27, 31, 32, 33, 37, 38, 40, 52,
62, 79, 82, 95, and 115.)

[CEN12] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology
cuts. SIAM J. Comput., 41(6):1605–1634, 2012. (Cited on page 8.)

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. (Cited on page 8.)

[Cha96] Maw-Shang Chang. Algorithms for maximum matching and minimum fill-in on
chordal bipartite graphs. In Tetsuo Asano, Yoshihide Igarashi, Hiroshi Nagamochi,
Satoru Miyano, and Subhash Suri, editors, Algorithms and Computation, 7th Inter-
national Symposium, ISAAC ’96, Osaka, Japan, December 16-18, 1996, Proceed-
ings, volume 1178 of Lecture Notes in Computer Science, pages 146–155. Springer,
1996. (Cited on page 24.)

[Cha10] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs.
SIAM J. Comput., 39(5):2075–2089, 2010. (Cited on page 25.)

[CHL+12] Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi
Rotics. Polynomial-time recognition of clique-width ≤3 graphs. Discret. Appl.
Math., 160(6):834–865, 2012. (Cited on page 62.)

[CHM81] M. Chein, Michel Habib, and M. C. Maurer. Partitive hypergraphs. Discret. Math.,
37(1):35–50, 1981. (Cited on page 37.)

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear
time. CoRR, abs/2203.00671, 2022. (Cited on pages 27 and 58.)

[CLB81] Derek G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible
graphs. Discret. Appl. Math., 3(3):163–174, 1981. (Cited on page 9.)

[CMR00] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125–150, 2000. (Cited on pages 24, 61, and 121.)

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 14(1):210–223, 1985. (Cited on page 27.)

[CO00] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77–114, 2000. (Cited on pages 62 and 63.)

128 Bibliography

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12–75, 1990. (Cited on page 20.)

[CR05] Derek G. Corneil and Udi Rotics. On the relationship between clique-width and
treewidth. SIAM J. Comput., 34(4):825–847, 2005. (Cited on pages 21, 61, and 62.)

[CWC99] Ho Chin-Wen and Jou-Ming Chang. Solving the all-pairs-shortest-length problem
on chordal bipartite graphs. Information processing letters, 69(2):87–93, 1999.
(Cited on page 26.)

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999. (Cited on page 8.)

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012. (Cited on page 15.)

[DK98] Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching
in chordal and strongly chordal graphs. Discret. Appl. Math., 84(1-3):79–91, 1998.
(Cited on page 24.)

[DP21a] Guillaume Ducoffe and Alexandru Popa. The b-matching problem in distance-
hereditary graphs and beyond. Discret. Appl. Math., 305:233–246, 2021. (Cited on
page 25.)

[DP21b] Guillaume Ducoffe and Alexandru Popa. The use of a pruned modular decom-
position for maximum matching algorithms on some graph classes. Discret. Appl.
Math., 291:201–222, 2021. (Cited on pages 95 and 122.)

[Duc22a] Guillaume Ducoffe. Maximum Matching in Almost Linear Time on Graphs of
Bounded Clique-Width. Algorithmica, 2022. (Cited on pages 8, 24, and 121.)

[Duc22b] Guillaume Ducoffe. Optimal Centrality Computations Within Bounded Clique-
Width Graphs. Algorithmica, 2022. (Cited on pages 8, 26, 95, 115, and 121.)

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965. (Cited on pages 11 and 24.)

[EKM+04] Stephen G. Eubank, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan,
and Nan Wang. Structural and algorithmic aspects of massive social networks. In
J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 718–727. SIAM, 2004. (Cited on page 12.)

[ER90] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Theory of 2-structures, part II:
representation through labeled tree families. Theor. Comput. Sci., 70(3):305–342,
1990. (Cited on page 37.)

[EW92] Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms.
ACM Comput. Surv., 24(4):441–476, 1992. (Cited on page 9.)

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004. (Cited on page 61.)

Bibliography 129

[FKM+19] Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf
Niedermeier, and Nimrod Talmon. When can graph hyperbolicity be computed in
linear time? Algorithmica, 81(5):2016–2045, 2019. (Cited on pages 8 and 95.)

[FKN69] M Fujii, T Kasami, and K Ninomiya. Optimal sequencing of two equivalent pro-
cessors. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969. (Cited on
page 11.)

[Flo62] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962. (Cited on pages 25, 33, and 107.)

[FLS+18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and ma-
trices of low treewidth. ACM Trans. Algorithms, 14(3):34:1–34:45, 2018. (Cited on
pages 8, 24, and 95.)

[Fre76] Michael L. Fredman. New bounds on the complexity of the shortest path problem.
SIAM J. Comput., 5(1):83–89, 1976. (Cited on page 25.)

[Fre77] Linton C Freeman. A set of measures of centrality based on betweenness. Sociom-
etry, pages 35–41, 1977. (Cited on page 11.)

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput., 16(6):1004–1022, 1987. (Cited on page 26.)

[FRRS09] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-
width is np-complete. SIAM J. Discret. Math., 23(2):909–939, 2009. (Cited on
page 62.)

[Gab95] Harold N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. Syst. Sci., 50(2):259–273, 1995. (Cited on page 27.)

[Gab18] Harold N. Gabow. Data structures for weighted matching and extensions to b-
matching and f -factors. ACM Trans. Algorithms, 14(3):39:1–39:80, 2018. (Cited
on pages 25, 31, 33, 38, 41, and 42.)

[Gal67] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-
2):25–66, 1967. (Cited on page 35.)

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke
Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe,
Japan, July 23-25, 2014, pages 296–303. ACM, 2014. (Cited on page 24.)

[Gan11] Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In
Dániel Marx and Peter Rossmanith, editors, Parameterized and Exact Computation
- 6th International Symposium, IPEC 2011, Saarbrücken, Germany, September
6-8, 2011. Revised Selected Papers, volume 7112 of Lecture Notes in Computer
Science, pages 259–271. Springer, 2011. (Cited on page 19.)

[Gar03] Frédéric Gardi. Efficient algorithms for disjoint matchings among intervals and
related problems. In Cristian Calude, Michael J. Dinneen, and Vincent Vajnovszki,

130 Bibliography

editors, Discrete Mathematics and Theoretical Computer Science, 4th International
Conference, DMTCS 2003, Dijon, France, July 7-12, 2003. Proceedings, volume
2731 of Lecture Notes in Computer Science, pages 168–180. Springer, 2003. (Cited
on page 24.)

[GB13] Oded Green and David A. Bader. Faster clustering coefficient using vertex cov-
ers. In International Conference on Social Computing, SocialCom 2013, Social-
Com/PASSAT/BigData/EconCom/BioMedCom 2013, Washington, DC, USA, 8-
14 September, 2013, pages 321–330. IEEE Computer Society, 2013. (Cited on
page 27.)

[GHN+12] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, Patrice Ossona
de Mendez, and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1.
In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathemati-
cal Foundations of Computer Science 2012 - 37th International Symposium, MFCS
2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lec-
ture Notes in Computer Science, pages 419–430. Springer, 2012. (Cited on pages 22
and 61.)

[GHN+19] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, and Patrice Ossona
de Mendez. Shrub-depth: Capturing height of dense graphs. Log. Methods Comput.
Sci., 15(1), 2019. (Cited on pages 22 and 114.)

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. (Cited on page 7.)

[GK04] Andrew V. Goldberg and Alexander V. Karzanov. Maximum skew-symmetric flows
and matchings. Math. Program., 100(3):537–568, 2004. (Cited on pages 24 and 25.)

[GLO13] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algo-
rithms for modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Pa-
rameterized and Exact Computation - 8th International Symposium, IPEC 2013,
Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume
8246 of Lecture Notes in Computer Science, pages 163–176. Springer, 2013. (Cited
on pages 20, 37, and 98.)

[GMN17] Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polyno-
mial fixed-parameter algorithms: A case study for longest path on interval graphs.
Theor. Comput. Sci., 689:67–95, 2017. (Cited on pages 8 and 32.)

[GR99a] Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks.
SIAM J. Discret. Math., 12(1):1–5, 1999. (Cited on pages 27, 33, and 49.)

[GR99b] Martin Charles Golumbic and Udi Rotics. The clique-width of unit interval graphs
is unbounded. CONGRESSUS NUMERANTIUM, pages 5–18, 1999. (Cited on
page 22.)

[GR00] Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect
graph classes. Int. J. Found. Comput. Sci., 11(3):423–443, 2000. (Cited on pages 26
and 62.)

Bibliography 131

[Gue07] Frank Guerin. Tractable combinatorial auctions via graph matching. 2007. (Cited
on page 11.)

[Gur17] Frank Gurski. The behavior of clique-width under graph operations and graph
transformations. Theory Comput. Syst., 60(2):346–376, 2017. (Cited on page 115.)

[GWY16] Frank Gurski, Egon Wanke, and Eda Yilmaz. Directed nlc-width. Theor. Comput.
Sci., 616:1–17, 2016. (Cited on pages 62, 66, 67, and 78.)

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. (Cited on page 24.)

[HK79] Frank Harary and Helene J Kommel. Matrix measures for transitivity and balance.
Journal of Mathematical Sociology, 6(2):199–210, 1979. (Cited on page 12.)

[HK19] Falko Hegerfeld and Stefan Kratsch. On adaptive algorithms for maximum match-
ing. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs,
pages 71:1–71:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited
on page 24.)

[HP10] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular
decomposition. Comput. Sci. Rev., 4(1):41–59, 2010. (Cited on page 37.)

[HRG00] Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex
connectivity: New bounds from old techniques. J. Algorithms, 34(2):222–250, 2000.
(Cited on pages 27, 33, 56, and 57.)

[HT16] Yijie Han and Tadao Takaoka. An o(n3loglog n / log2 n) time algorithm for all
pairs shortest paths. J. Discrete Algorithms, 38-41:9–19, 2016. (Cited on page 25.)

[HW07] Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(k3n
log n) time. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 843–847. SIAM,
2007. (Cited on page 8.)

[HZA22] Muhammad Kashif Hanif, Karl-Heinz Zimmermann, and Asad Anees. Accelerating
all-pairs shortest path algorithms for bipartite graphs on graphics processing units.
Multim. Tools Appl., 81(7):9549–9566, 2022. (Cited on page 121.)

[IOO18] Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On the power of tree-depth
for fully polynomial FPT algorithms. In Rolf Niedermeier and Brigitte Vallée,
editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 41:1–
41:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. (Cited on pages 8,
9, 13, 24, 26, 32, 95, 96, 99, 100, 102, 103, 105, 108, and 115.)

[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J.
Comput., 7(4):413–423, 1978. (Cited on page 26.)

132 Bibliography

[Joh77] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J.
ACM, 24(1):1–13, 1977. (Cited on page 33.)

[Joh98] Öjvind Johansson. Clique-decomposition, NLC-decomposition, and modular de-
composition - relationships and results for random graphs. In Congr. Numer.
Citeseer, 1998. (Cited on pages 66 and 79.)

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-
cut algorithm. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, pages 21–30. ACM/SIAM, 1993. (Cited on page 27.)

[Kar00] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.
(Cited on pages 27 and 33.)

[KN18] Stefan Kratsch and Florian Nelles. Efficient and adaptive parameterized algo-
rithms on modular decompositions. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018,
August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 55:1–55:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. (Cited on page 12.)

[KN20] Stefan Kratsch and Florian Nelles. Efficient parameterized algorithms for comput-
ing all-pairs shortest paths. In Christophe Paul and Markus Bläser, editors, 37th In-
ternational Symposium on Theoretical Aspects of Computer Science, STACS 2020,
March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 38:1–38:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. (Cited on page 12.)

[KN22] Stefan Kratsch and Florian Nelles. Efficient parameterized algorithms on graphs
with heterogeneous structure: Combining tree-depth and modular-width. CoRR,
abs/2209.14429, 2022. (Cited on page 13.)

[KNS22] Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting pa-
rameterized by twin-width. CoRR, abs/2202.06708, 2022. (Cited on page 13.)

[Kön31] Dénes König. Graphen und matrizen, mat. Lapok, 38:116–119, 1931. (Cited on
page 11.)

[KPP15] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic set intersection. In Frank
Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors, Algorithms and Data Struc-
tures - 14th International Symposium, WADS 2015, Victoria, BC, Canada, August
5-7, 2015. Proceedings, volume 9214 of Lecture Notes in Computer Science, pages
470–481. Springer, 2015. (Cited on page 27.)

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum
conjecture. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1272–1287. SIAM, 2016. (Cited on page 27.)

[KS96] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
J. ACM, 43(4):601–640, 1996. (Cited on page 27.)

[KVKV11] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization,
volume 1. Springer, 2011. (Cited on pages 15 and 104.)

Bibliography 133

[Lam12] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algo-
rithmica, 64(1):19–37, 2012. (Cited on page 19.)

[Lam20] Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret.
Math., 34(3):1538–1558, 2020. (Cited on page 98.)

[LM17] Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation re-
visited. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International
Symposium on Parameterized and Exact Computation, IPEC 2017, September 6-8,
2017, Vienna, Austria, volume 89 of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. (Cited on page 98.)

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-
flows. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pages 317–329. ACM, 2021. (Cited on page 59.)

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-
flows. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 85–92. IEEE, 2020. (Cited on page 58.)

[LR93] Y. Daniel Liang and Chongkye Rhee. Finding a maximum matching in a circular-
arc graph. Inf. Process. Lett., 45(4):185–190, 1993. (Cited on page 24.)

[LS12] Andrzej Lingas and Dzmitry Sledneu. A combinatorial algorithm for all-pairs
shortest paths in directed vertex-weighted graphs with applications to disc graphs.
In Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and
György Turán, editors, SOFSEM 2012: Theory and Practice of Computer Science
- 38th Conference on Current Trends in Theory and Practice of Computer Science,
Špindlerův Mlýn, Czech Republic, January 21-27, 2012. Proceedings, volume 7147
of Lecture Notes in Computer Science, pages 373–384. Springer, 2012. (Cited on
page 26.)

[MdM05] Ross M. McConnell and Fabien de Montgolfier. Linear-time modular decomposition
of directed graphs. Discret. Appl. Math., 145(2):198–209, 2005. (Cited on page 37.)

[Men27] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927. (Cited on page 54.)

[Men16] Stefan Mengel. Parameterized compilation lower bounds for restricted cnf-formulas.
CoRR, abs/1604.06715, 2016. (Cited on page 98.)

[MNN16] George B. Mertzios, André Nichterlein, and Rolf Niedermeier. Fine-grained algo-
rithm design for matching. CoRR, abs/1609.08879, 2016. (Cited on pages 8, 24,
and 95.)

[MNN20] George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-
time data reduction for maximum matching. Algorithmica, 82(12):3521–3565, 2020.
(Cited on page 24.)

134 Bibliography

[MR84] Rolf H Möhring and Franz J Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. In North-Holland
mathematics studies, volume 95, pages 257–355. Elsevier, 1984. (Cited on page 37.)

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimina-
tion. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 248–255. IEEE Computer Society,
2004. (Cited on page 24.)

[MS06] Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs via
gaussian elimination. Algorithmica, 45(1):3–20, 2006. (Cited on page 24.)

[MT16] Ali Mohammadian and Vilmar Trevisan. Some spectral properties of cographs.
Discret. Math., 339(4):1261–1264, 2016. (Cited on page 83.)

[MV80] Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding max-
imum matching in general graphs. In 21st Annual Symposium on Foundations of
Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27.
IEEE Computer Society, 1980. (Cited on pages 24, 25, 32, 33, and 38.)

[NdM06] Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring
and homomorphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. (Cited on
page 20.)

[NdM12] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures,
and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. (Cited
on page 21.)

[OMSW10] James B. Orlin, Kamesh Madduri, K. Subramani, and Matthew D. Williamson.
A faster algorithm for the single source shortest path problem with few distinct
positive lengths. J. Discrete Algorithms, 8(2):189–198, 2010. (Cited on page 8.)

[Orl13] James B. Orlin. Max flows in o(nm) time, or better. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM,
2013. (Cited on pages 27, 33, 51, 54, and 56.)

[OS06] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width.
J. Comb. Theory, Ser. B, 96(4):514–528, 2006. (Cited on page 21.)

[Oum08] Sang-il Oum. Rank-width is less than or equal to branch-width. J. Graph Theory,
57(3):239–244, 2008. (Cited on pages 21 and 22.)

[Pet04] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theor. Comput. Sci., 312(1):47–74, 2004. (Cited on page 25.)

[Pot88] Alex Pothen. The complexity of optimal elimination trees. Technical Report, 1988.
(Cited on page 123.)

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398–1431, 2005. (Cited on pages 10,
25, and 82.)

Bibliography 135

[PSS16] Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF
formulas of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016. (Cited
on pages 96 and 98.)

[PW10] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms.
In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 1065–1075. SIAM, 2010. (Cited on page 7.)

[Rao08a] Michaël Rao. Clique-width of graphs defined by one-vertex extensions. Discret.
Math., 308(24):6157–6165, 2008. (Cited on page 122.)

[Rao08b] Michaël Rao. Solving some np-complete problems using split decomposition. Dis-
cret. Appl. Math., 156(14):2768–2780, 2008. (Cited on page 62.)

[Ren15] Yihui Ren. Betweenness Centrality and Its Applications from Modeling Traffic
Flows to Network Community Detection. PhD thesis, University of Notre Dame,
Mar 2015. (Cited on page 11.)

[RRVS14] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar.
A faster parameterized algorithm for treedepth. In Javier Esparza, Pierre Fraig-
niaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Com-
puter Science, pages 931–942. Springer, 2014. (Cited on page 123.)

[RS91] Neil Robertson and Paul D. Seymour. Graph minors. x. obstructions to tree-
decomposition. J. Comb. Theory, Ser. B, 52(2):153–190, 1991. (Cited on page 21.)

[RSÜ04] Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Kidney exchange. The Quar-
terly journal of economics, 119(2):457–488, 2004. (Cited on page 11.)

[RSÜ05] Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Pairwise kidney exchange.
Journal of Economic theory, 125(2):151–188, 2005. (Cited on page 11.)

[Sch02] Alexander Schrijver. Combinatorial optimization. preprint, page 58, 2002. (Cited
on page 104.)

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected
graphs. J. Comput. Syst. Sci., 51(3):400–403, 1995. (Cited on page 25.)

[SGDJ04] Jonatan Schroeder, André Guedes, and Elias P Duarte Jr. Computing the minimum
cut and maximum flow of undirected graphs. Technical report, Federal University
of Paraná, 2004. (Cited on page 18.)

[SP15] Susmita Susmita and Manish Pandey. Algorithms of all pair shortest path prob-
lem. International Journal of Computer Applications, 120(15):1–6, 2015. (Cited
on page 11.)

[SW97] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM,
44(4):585–591, 1997. (Cited on pages 27 and 53.)

136 Bibliography

[SW05] Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in
large graphs, an experimental study. In Sotiris E. Nikoletseas, editor, Experimental
and Efficient Algorithms, 4th InternationalWorkshop, WEA 2005, Santorini Island,
Greece, May 10-13, 2005, Proceedings, volume 3503 of Lecture Notes in Computer
Science, pages 606–609. Springer, 2005. (Cited on pages 33 and 47.)

[SYZ11] Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex
weighted graphs. Algorithmica, 59(4):621–633, 2011. (Cited on page 26.)

[TCHP08] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-
time modular decomposition via recursive factorizing permutations. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdót-
tir, and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th
International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume
5125 of Lecture Notes in Computer Science, pages 634–645. Springer, 2008. (Cited
on pages 31, 37, and 43.)

[TZ13] Svetlana Torgasin and Karl-Heinz Zimmermann. An all-pairs shortest path al-
gorithm for bipartite graphs. Central Eur. J. Comput. Sci., 3(4):149–157, 2013.
(Cited on page 121.)

[Vaz20] Vijay V. Vazirani. A proof of the MV matching algorithm. CoRR, abs/2012.03582,
2020. (Cited on page 24.)

[Wan94] Egon Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathe-
matics, 54(2-3):251–266, 1994. (Cited on pages 62, 64, and 65.)

[War62] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.
(Cited on pages 25, 33, and 107.)

[Wil18a] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J.
Comput., 47(5):1965–1985, 2018. (Cited on page 25.)

[Wil18b] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018, pages 3447–3487. World Scientific, 2018. (Cited on page 25.)

[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world net-
works. nature, 393(6684):440–442, 1998. (Cited on page 12.)

[WW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences be-
tween path, matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. (Cited
on pages 25, 26, and 32.)

[Yus09] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and
real-weighted APSP. In Claire Mathieu, editor, Proceedings of the Twentieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, 2009, pages 950–957. SIAM, 2009. (Cited on pages 25, 33, 46,
and 107.)

[YY93] Ming-Shing Yu and Cheng-Hsing Yang. A linear time algorithm for the maximum
matching problem on cographs. BIT, 33(3):420–432, 1993. (Cited on page 24.)

Bibliography 137

[YZ07] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded
minor. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, Louisiana, USA, January 7-9, 2007, pages 108–117. SIAM, 2007.
(Cited on page 24.)

[Zwi02] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM, 49(3):289–317, 2002. (Cited on page 25.)

Selbstständigkeitserklärung

Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir
gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät,
veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42/2018
am 11.07.2018 angegebenen Hilfsmittel angefertigt habe.

Berlin, 2023

Florian Nelles

	Abstract
	Acknowledgements
	I Fundamentals
	1 Introduction
	1.1 Parameterized Algorithms
	1.2 Towards Heterogeneous Structure
	1.3 Motivation of the Considered Problems
	1.4 Thesis Overview

	2 Preliminaries
	2.1 General Notation
	2.2 Graph Theory
	2.3 Parameters
	2.4 Considered Problems

	II Parameterized Algorithms
	3 Algorithms Parameterized by the Modular-Width of the Input
	3.1 Definition of Modular-Width
	3.2 Maximum Matching
	3.3 General Running Time Theorem
	3.4 Vertex-Weighted All-Pairs Shortest Path
	3.5 Triangle Counting
	3.6 Edge-Disjoint Paths
	3.6.1 Maximum Edge-Disjoint s-t Paths
	3.6.2 Global Minimum Cut

	3.7 Vertex-Disjoint Paths
	3.7.1 Maximum s-t Vertex Flow
	3.7.2 Global Minimum Vertex Cut

	3.8 Conclusion

	4 Algorithms Parameterized by the Clique-Width of the Input
	4.1 Definition of Clique-Width and NLC-Width
	4.2 All-Pairs Shortest Path Parameterized by Clique-Width
	4.3 Triangle Counting Parameterized by Clique-Width
	4.4 Conclusion

	5 Triangle Counting Parameterized by the Twin-Width of the Input
	5.1 Definition of Twin-Width.
	5.2 Algorithm
	5.3 Conclusion

	III Heterogeneous Graph Classes
	6 Heterogeneous Structure: Combining Tree-Depth and Modular-Width
	6.1 Graph Operations and Algebraic Expressions
	6.2 Heterogeneous Structure
	6.3 Running Time Framework
	6.4 Applications
	6.4.1 Triangle Counting
	6.4.2 Negative Cycle Detection
	6.4.3 Vertex-Weighted All-Pairs Shortest Paths

	6.5 Comparing the Graph Classes
	6.6 Conclusion

	IV Conclusion
	7 Concluding Remarks and Open Problems
	7.1 Algorithms Parameterized by a Single Parameter
	7.2 Heterogeneous Structure

	Bibliography

