16 research outputs found

    New Results on Triangulation, Polynomial Equation Solving and Their Application in Global Localization

    Get PDF
    This thesis addresses the problem of global localization from images. The overall goal is to find the location and the direction of a camera given an image taken with the camera relative a 3D world model. In order to solve the problem several subproblems have to be handled. The two main steps for constructing a system for global localization consist of model building and localization. For the model construction phase we give a new method for triangulation that guarantees that the globally optimal position is attained under the assumption of Gaussian noise in the image measurements. A common framework for the triangulation of points, lines and conics is presented. The second contribution of the thesis is in the field of solving systems of polynomial equations. Many problems in geometrical computer vision lead to computing the real roots of a system of polynomial equations, and several such geometry problems appear in the localization problem. The method presented in the thesis gives a significant improvement in the numerics when Gröbner basis methods are applied. Such methods are often plagued by numerical problems, but by using the fact that the complete Gröbner basis is not needed, the numerics can be improved. In the final part of the thesis we present several new minimal, geometric problems that have not been solved previously. These minimal cases make use of both two and three dimensional correspondences at the same time. The solutions to these minimal problems form the basis of a localization system which aims at improving robustness compared to the state of the art

    Computational Methods for Computer Vision : Minimal Solvers and Convex Relaxations

    Get PDF
    Robust fitting of geometric models is a core problem in computer vision. The most common approach is to use a hypothesize-and-test framework, such as RANSAC. In these frameworks the model is estimated from as few measurements as possible, which minimizes the risk of selecting corrupted measurements. These estimation problems are called minimal problems, and they can often be formulated as systems of polynomial equations. In this thesis we present new methods for building so-called minimal solvers or polynomial solvers, which are specialized code for solving such systems. On several minimal problems we improve on the state-of-the-art both with respect to numerical stability and execution time.In many computer vision problems low rank matrices naturally occur. The rank can serve as a measure of model complexity and typically a low rank is desired. Optimization problems containing rank penalties or constraints are in general difficult. Recently convex relaxations, such as the nuclear norm, have been used to make these problems tractable. In this thesis we present new convex relaxations for rank-based optimization which avoid drawbacks of previous approaches and provide tighter relaxations. We evaluate our methods on a number of real and synthetic datasets and show state-of-the-art results

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    Methods for Optimal Model Fitting and Sensor Calibration

    Get PDF
    The problem of fitting models to measured data has been studied extensively, not least in the field of computer vision. A central problem in this field is the difficulty in reliably find corresponding structures and points in different images, resulting in outlier data. This thesis presents theoretical results improving the understanding of the connection between model parameter estimation and possible outlier-inlier partitions of data point sets. Using these results a multitude of applications can be analyzed in respects to optimal outlier inlier partitions, optimal norm fitting, and not least in truncated norm sense. Practical polynomial time optimal solvers are derived for several applications, including but not limited to multi-view triangulation and image registration. In this thesis the problem of sensor network self calibration is investigated. Sensor networks play an increasingly important role with the increased availability of mobile, antenna equipped, devices. The application areas can be extended with knowledge of the different sensors relative or absolute positions. We study this problem in the context of bipartite sensor networks. We identify requirements of solvability for several configurations, and present a framework for how such problems can be approached. Further we utilize this framework to derive several solvers, which we show in both synthetic and real examples functions as desired. In both these types of model estimation, as well as in the classical random samples based approaches minimal cases of polynomial systems play a central role. A majority of the problems tackled in this thesis will have solvers based on recent techniques pertaining to action matrix solvers. New application specific polynomial equation sets are constructed and elimination templates designed for them. In addition a general improvement to the method is suggested for a large class of polynomial systems. The method is shown to improve the computational speed by significant reductions in the size of elimination templates as well as in the size of the action matrices. In addition the methodology on average improves the numerical stability of the solvers

    Homography-Based Positioning and Planar Motion Recovery

    Get PDF
    Planar motion is an important and frequently occurring situation in mobile robotics applications. This thesis concerns estimation of ego-motion and pose of a single downwards oriented camera under the assumptions of planar motion and known internal camera parameters. The so called essential matrix (or its uncalibrated counterpart, the fundamental matrix) is frequently used in computer vision applications to compute a reconstruction in 3D of the camera locations and the observed scene. However, if the observed points are expected to lie on a plane - e.g. the ground plane - this makes the determination of these matrices an ill-posed problem. Instead, methods based on homographies are better suited to this situation.One section of this thesis is concerned with the extraction of the camera pose and ego-motion from such homographies. We present both a direct SVD-based method and an iterative method, which both solve this problem. The iterative method is extended to allow simultaneous determination of the camera tilt from several homographies obeying the same planar motion model. This extension improves the robustness of the original method, and it provides consistent tilt estimates for the frames that are used for the estimation. The methods are evaluated using experiments on both real and synthetic data.Another part of the thesis deals with the problem of computing the homographies from point correspondences. By using conventional homography estimation methods for this, the resulting homography is of a too general class and is not guaranteed to be compatible with the planar motion assumption. For this reason, we enforce the planar motion model at the homography estimation stage with the help of a new homography solver using a number of polynomial constraints on the entries of the homography matrix. In addition to giving a homography of the right type, this method uses only \num{2.5} point correspondences instead of the conventional four, which is good \eg{} when used in a RANSAC framework for outlier removal

    Berechnung und Anwendungen Approximativer Randbasen

    Get PDF
    This thesis addresses some of the algorithmic and numerical challenges associated with the computation of approximate border bases, a generalisation of border bases, in the context of the oil and gas industry. The concept of approximate border bases was introduced by D. Heldt, M. Kreuzer, S. Pokutta and H. Poulisse in "Approximate computation of zero-dimensional polynomial ideals" as an effective mean to derive physically relevant polynomial models from measured data. The main advantages of this approach compared to alternative techniques currently in use in the (hydrocarbon) industry are its power to derive polynomial models without additional a priori knowledge about the underlying physical system and its robustness with respect to noise in the measured input data. The so-called Approximate Vanishing Ideal (AVI) algorithm which can be used to compute approximate border bases and which was also introduced by D. Heldt et al. in the paper mentioned above served as a starting point for the research which is conducted in this thesis. A central aim of this work is to broaden the applicability of the AVI algorithm to additional areas in the oil and gas industry, like seismic imaging and the compact representation of unconventional geological structures. For this purpose several new algorithms are developed, among others the so-called Approximate Buchberger Möller (ABM) algorithm and the Extended-ABM algorithm. The numerical aspects and the runtime of the methods are analysed in detail - based on a solid foundation of the underlying mathematical and algorithmic concepts that are also provided in this thesis. It is shown that the worst case runtime of the ABM algorithm is cubic in the number of input points, which is a significant improvement over the biquadratic worst case runtime of the AVI algorithm. Furthermore, we show that the ABM algorithm allows us to exercise more direct control over the essential properties of the computed approximate border basis than the AVI algorithm. The improved runtime and the additional control turn out to be the key enablers for the new industrial applications that are proposed here. As a conclusion to the work on the computation of approximate border bases, a detailed comparison between the approach in this thesis and some other state of the art algorithms is given. Furthermore, this work also addresses one important shortcoming of approximate border bases, namely that central concepts from exact algebra such as syzygies could so far not be translated to the setting of approximate border bases. One way to mitigate this problem is to construct a "close by" exact border bases for a given approximate one. Here we present and discuss two new algorithmic approaches that allow us to compute such close by exact border bases. In the first one, we establish a link between this task, referred to as the rational recovery problem, and the problem of simultaneously quasi-diagonalising a set of complex matrices. As simultaneous quasi-diagonalisation is not a standard topic in numerical linear algebra there are hardly any off-the-shelf algorithms and implementations available that are both fast and numerically adequate for our purposes. To bridge this gap we introduce and study a new algorithm that is based on a variant of the classical Jacobi eigenvalue algorithm, which also works for non-symmetric matrices. As a second solution of the rational recovery problem, we motivate and discuss how to compute a close by exact border basis via the minimisation of a sum of squares expression, that is formed from the polynomials in the given approximate border basis. Finally, several applications of the newly developed algorithms are presented. Those include production modelling of oil and gas fields, reconstruction of the subsurface velocities for simple subsurface geometries, the compact representation of unconventional oil and gas bodies via algebraic surfaces and the stable numerical approximation of the roots of zero-dimensional polynomial ideals

    Computational aspects of singularity theory.

    Get PDF
    In this thesis we develop computational methods suitable for performing the symbolic calculations common to local singularity theory. For classification theory we employ the unipotent determinacy techniques of Bruce, du Plessis, Wall and complete transversal theorems of Bruce, du Plessis. The latter results are, as yet, unpublished and we spend some time reviewing these results, extending them to filtrations of the module m,,,.E (n, p) other than the standard filtration by degree. Weighted filtrations and filtrations induced by the action of a nilpotent Lie algebra are considered. A computer package called Transversal is developed. This is written in the mathematical language Maple and performs calculations such as those mentioned above and those central to unfolding theory. We discuss the package in detail and give examples of calculations performed in this thesis. Several classifications are obtained. The first is an extensive classification of map-germs (R2,0) -p (R4,0) under A-equivalence. We also consider the classification of function-germs (CP, O) -f (C, 0) under R(D)-equivalence: the restriction of R-equivalence to source coordinate changes which preserve a discriminant variety, D. We consider the cases where D is the discriminant of the A2 and A3 singularities, extending the results of Arnol'd. Several other simple singularities are discussed briefly; in particular, we consider the cases where D is the discriminant of the A4, D4, D5, D6, and Ek singularities. The geometry of the singularities (R2,0) -f (R4,0) is investigated by calculating the adjacencies and several geometrical invariants. For the given source and target dimensions, the invariants associated to the double point schemes and L-codimension of the germs are particularly significant. Finally we give an application of computer graphics to singularity theory. A program is written (in C) which calculates and draws the family of profiles of a surface rotating about a fixed axis in R3, the resulting envelope of profiles, and several other geometrical features. The program was used in recent research by Rycroft. We review some of the results and conclude with computer produced images which demonstrate certain transitions of the singularities on the envelope

    A Column-Pivoting Based Strategy for Monomial Ordering in Numerical Gröbner Basis Calculations

    No full text
    This paper presents a new fast approach to improving stability in polynomial equation solving. Gröbner basis techniques for equation solving have been applied successfully to several geometric computer vision problems. However, in many cases these methods are plagued by numerical problems. An interesting approach to stabilising the computations is to study basis selection for the quotient space C[x]/I . In this paper, the exact matrix computations involved in the solution procedure are clarified and using this knowledge we propose a new fast basis selection scheme based on QR-factorization with column pivoting. We also propose an adaptive scheme for truncation of the Gröbner basis to further improve stability. The new basis selection strategy is studied on some of the latest reported uses of Gröbner basis methods in computer vision and we demonstrate a fourfold increase in speed and nearly as good overall precision as the previous SVD-based method. Moreover, we get typically get similar or better reduction of the largest errors
    corecore