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Abstract 

In this thesis we develop computational methods suitable for performing the sym- 
bolic calculations common to local singularity theory. For classification theory 
we employ the unipotent determinacy techniques of Bruce, du Plessis, Wall and 
complete transversal theorems of Bruce, du Plessis. The latter results are, as yet, 
unpublished and we spend some time reviewing these results, extending them to 
filtrations of the module m,,,. E(n, p) other than the standard filtration by degree. 
Weighted filtrations and filtrations induced by the action of a nilpotent Lie alge- 
bra are considered. A computer package called Transversal is developed. This 
is written in the mathematical language Maple and performs calculations such 
as those mentioned above and those central to unfolding theory. We discuss the 
package in detail and give examples of calculations performed in this thesis. 

Several classifications are obtained. The first is an extensive classification 
of map-germs (R2,0) -p (R4,0) under A-equivalence. We also consider the 
classification of function-germs (CP, O) -f (C, 0) under R(D)-equivalence: the 
restriction of R-equivalence to source coordinate changes which preserve a dis- 

criminant variety, D. We consider the cases where D is the discriminant of the 
A2 and A3 singularities, extending the results of Arnol'd. Several other simple 
singularities are discussed briefly; in particular, we consider the cases where D is 
the discriminant of the A4, D4, D5, D6, and Ek singularities. 

The geometry of the singularities (R2,0) -f (R4,0) is investigated by cal- 
culating the adjacencies and several geometrical invariants. For the given source 
and target dimensions, the invariants associated to the double point schemes and 
L-codimension of the germs are particularly significant. 

Finally we give an application of computer graphics to singularity theory. A 

program is written (in C) which calculates and draws the family of profiles of a 
surface rotating about a fixed axis in R3, the resulting envelope of profiles, and 
several other geometrical features. The program was used in recent research by 
Rycroft. We review some of the results and conclude with computer produced 
images which demonstrate certain transitions of the singularities on the envelope. 
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Chapter 1 

Introduction and Preliminary 
Material 

One of the central themes of local singularity theory is the classification of germs 
of smooth maps under various types of equivalence. This includes the study of the 
possible deformations of a map-germ using versal unfoldings. The main objective 
of this thesis is to develop algorithms suitable for implementation on a computer 
which perform such tasks. 

1.1 Introduction and Historical Background 

The foundational work of Mather in the 1960's defined the now standard equiv- 
alence relations central to local singularity theory and gave algebraic criteria for 
determinacy and stability. (We refer to Section 1.3 for an explanation of the 
terminology and a review of basic singularity theory. ) The work of Gaffney in 
the 1970's, [Ga2, Ga3] led to workable determinacy estimates which were used to 
perform classifications in several areas, e. g., [duP]. This deals mainly with the 
classification of map-germs under A-equivalence. However, at around the same 
time extensive lists of function-germs under R-equivalence were obtained. Many 

people can be attributed to this work but probably the most relevant are the Rus- 

sian school of singularity theorists under Arnol'd; a general reference is [AGV]. 
The subject of determinacy was essentially wrapped up by the definitive results 
of [BduPW] which discusses determinacy in terms of unipotent group actions 
and provides excellent determinacy estimates. The other major technical tool 

used to perform classifications is the `complete transversal' result of Bruce and 
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du Plessis, [BduP]. This work is, as yet, unpublished and we spend sometime 
reviewing it in Chapter 2. Another central topic is the calculation of versal un- 
foldings (a notion due to Thom), used to analyse the deformation of map-germs. 
Again, there are algebraic criteria for calculating versal unfoldings. A beautiful 

proof of the `fundamental theorem of versal unfoldings' may be found in [Mart2, 
Chapter XIV], [Marti, Section I]. For a review of all these results, at least up 
until the early 1980's, we refer to the survey article of Wall, [Wall. 

This is where our current research begins. The key point to all the afore- 
mentioned calculations is that the algebraic criteria may be reduced to finite 

symbolic problems (albeit very large ones occasionally) which may be performed 
by a computer. This is especially the case now we have the powerful deter- 

minacy and complete transversal results of Bruce, du Plessis and Wall at our 
disposal - the resulting classification method is very efficient when implemented 

on a computer. All the aforementioned algebraic criteria reduce to very simi- 
lar symbolic calculations on a computer and we have developed a `classification 

package' which performs all these calculations and related ones such as checking 
the hypotheses of the Mather Lemma, [MathIV, Lemma 3.1], (a useful tool in 

any classification). Indeed, most calculations in local singularity which may be 

reduced to the finite dimensional analogue of jet-groups acting on jet-spaces may 
be implemented. 

Our classification package (called Transversal) is written in the mathemat- 
ical language Maple and consists of a number of routines (or `Maple functions'). 
It supports the equivalence relations defined by the standard Mather groups R, 
G, A, C and k (plus several others, see Chapter 6). Its real utilisation comes from 

calculations involving the A-group. Here the tangent space to an A-orbit is very 
hard to work with, involving two separate module structures. Many of these cal- 
culations are just plain tedious and it is helpful to have a computer `churn out' the 

answers, while others are bordering on impossibility without computer aid. One 

must question the potential use of the computer package until substantial classifi- 
cations have been obtained. To achieve such a benchmark we perform a number of 
classifications in this thesis (such classifications are, of course, of immense interest 

within the field of singularity theory and its applications). We consider the classi- 
fication of map-germs (R2,0) -- p (R4,0) under A-equivalence. This is probably 
the most extensive and computationally involved A-classification carried out to 
date. The classification of functions germs under coordinate changes in the source 
which preserve a given discriminant variety, is a variant on 1Z-classification which 
is computationally more demanding. We perform such classifications using the 
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computer as well. 

Several important A-classifications have been performed in the past; for ex- 
ample the classification of map-germs (R2,0) -p (R2,0), see [Rie] (and [duP] 
for some of the earlier results); also the classification of map-germs (R2,0) -p 
(R3,0), see [Mo2, Mol]. Such classifications can now be performed in a rela- 
tively short amount of time using the computer (c. f., the original calculations 
needed, though one would expect things to be easier when the answers are al- 
ready known! ). We must stress that the existence of such classifications helped 

enormously in the development of our computer programs. The classification of 
map-germs (R2,0) -* (R4,0) has been considered by West at Liverpool, at least 
in its earlier stages, [We]. Similarly, these results provided an important inde- 

pendent check to the results found by the computer. Several other colleagues at 
Liverpool have put the classification package through its paces (or are presently 
doing so), in particular, Hawes is considering the classification of map-germs 
(R3,0) -* (R3,0) and its applications to robotics, [Haw]. We take this oppor- 
tunity to acknowledge all of the above work as helping toward the development 

of our classification package. Similar work by Ratcliffe dealt with the use of 
computational methods in the A-classification of map-germs (R2,0) -* (R3,0), 

significantly extending Mond's results, [Ratl]. The original program was written 
in Pascal and only dealt with this particular classification. However, we have 
learnt recently that the program has been re-written in Maple and deals with a 
lot more cases. The packages have not been directly compared, only discussed in 

personal communications, so we cannot really say much. We will be sufficiently 
vague and simply add that the underlying algorithms of the packages are similar 
but the overall goals seem to be quite different! 

There are many applications of singularity theory where tedious calculations 
are routine. Hopefully, our classification package will be of some aid in such 
areas. For example, in differential geometry, the study of the contact of a fam- 
ily of submanifolds with a curve or surface can be reduced to a problem in , - 
classification, [B6, Section 7]. The classification of the singularities which arise 
in rigid motions (a branch of robotics) can also be reduced, via transversality 

results, to an A-classification of map-germs up to a given codimension, [Hob]. 
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1.2 Thesis Overview 

In Chapter 2 we review the technical tools such as complete transversals, refining 
them slightly. For example, we formulate complete transversal theorems which 
work with unipotent group actions, this ties in with the determinacy theorems 
of [BduPW] - to obtain an efficient classification method it is convenient to use 
the same subgroup of 1C in the determinacy and complete transversal calculations. 
This also allows the use of a finer filtration of the module of map-germs than the 
standard filtration by degree. We make some attempt at generalising the complete 
transversal theorems to work with non-standard filtrations. Filtrations defined 
by a system of weights are considered. 

In Chapter 3 we consider the classification of map-germs (R2,0) -* (R4,0) 

under A-equivalence. This includes a list of all the simple singularities and a 
classification of the corank 1 singularities up to codimension 11. We give several 
examples of the calculations which give rise to series and include a comprehensive 
summary of the computer results which provide the resulting stratification of the 
jet-spaces (for those who feel the urge to read it! ). 

In Chapter 4 we study the geometry of the singularities discovered in Chap- 
ter 3. We give the adjacency diagrams of the simple singularities (verifying that 
these are indeed simple). Several geometric invariants (such as the those obtained 
from the multiple points schemes discussed in [MarMo]) are defined. We calcu- 
late these invariants for the simple singularities and remark on some relations. 
The calculation of these invariants can be extremely tedious, as can recognition of 
map-germs (needed when calculating the adjacencies). Our classification package 
Transversal was of help in both of these aspects. 

In Chapter 5 we consider the classification of function germs under diffeomor- 

phisms in the source which preserve a given discriminant variety. We review the 
corresponding determinacy results and formulate a classification method which 
uses weighted filtrations. We classify function-germs on the discriminants of the 
simple singularities: Ak, Dk and Ek; extending the lists found in [A2]. The clas- 
sification is performed by computer, as is the calculation of the Saito vector fields 

which generate the module of vector fields tangent to the given discriminant (this 

module is needed to so that we can perform the classification). 

The final two chapters describe our computer work. In Chapter 6 we describe 
the classification package, Transversal. We give a rather technical (though 

comprehensive) description akin to a reference manual. To make this more `user 
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friendly' a number of examples of the calculations performed in this thesis are 
given. These show the precise syntax, given response and appropriate interpre- 
tation. The chapter finishes with a description of the programming strategy and 
underlying algorithms. 

We change the theme from computer algebra to computer graphics in the 
final chapter, Chapter 7, using computers to investigate projections of surfaces. 
A program is developed for calculating and drawing the family of profiles of a 
surface which rotates about a fixed axis in 3-space. Is has been used to investigate 
the geometry and, in particular, the singularities of the envelope of profiles, in 

recent research by Rycroft, [Ryc]. We review some of the work and conclude with 
computer produced images which demonstrate the findings. 

The classification package and profile/envelope drawing program were demon- 

strated to several people at the European Singularity Project (ESP) Workshop 

on Applications of Singularity Theory held at Liverpool University, 29th March - 
2nd April 1993 and advertised in [GKMT]. The classification package was also 
demonstrated at the NSF Regional Geometry Institute held at Amherst, Mas- 

sachusetts, July 1992. The author would like to thank the Department of Pure 
Mathematics, University of Liverpool; and the SERC for financial support toward 

attending this conference. 

1.3 Basic Singularity Theory 

We will review the techniques and notation of basic singularity theory. We only 
consider the local case and work with germs of smooth maps (R''2,0) -f (RP, 0) 
(`smooth' will always mean C°°) or germs of analytic maps (Cn 

, 0) -+ (C', 0), 
depending on the context. Most of what follows deals with the real case, the 
definitions in the complex case are similar. As a standard reference we cite the 

survey article of Wall, [Wal]. In addition we refer to [MathIIl], [BduPW], for 
determinacy results and [Mart2], [Marti], for unfolding theory. Our notation will 
be based on these references. 

The R-algebra of smooth function-germs (Rn, 0) -p R will be denoted E.,,, 

the C-algebra of analytic function-germs (Cn, 0) -f C will be denoted Oma,. Both 

are local rings with maximal ideal, Mn) the germs with zero target. (See [BL, 
Chapters 1 and 4], for example. ) The set of map-germs (R11,0) -* RP (re- 

spectively, (C", 0) ) Cp) is an En-module (respectively, On-module) and will 
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be denoted 
. 

(n, p) (respectively, 0(n, p)). The manifolds R" and BY will be re- 
ferred to as the source and target of a map-germ (R", 0) -p (RP, 0) (analogously 
for the complex case). 

1.3.1 The Standard Mather Groups R, , C, A, C and k 

R. is defined to be the group of germs of diffeomorphisms (Rn, 0) -) (R'', 0), 
L the group of germs of diffeomorphisms (RP, 0) -* (RP, 0), and A the direct 
product A=fxL. We define actions `"' of IZ, G and A on mn. S(n, p) by 

h f= fo h-1, hE 1Z, 

h' .f= h' of, h' E G, 
(h, h') "f= h' ofo h-1, (h, h') E . A, 

where fEm,,.. F(n, p). R. (respectively, L) is often called the group of smooth 
coordinate changes in the source (respectively, target). 

C is defined to be the group of germs of diffeomorphisms (R' x RR, 0) -f 
(Rn x R'3,0) which project to the identity on Rn and leave fixed the subspace 
Rn x {0}. Thus HEC can be written in the form 

H(x, y) = (x, H(x, y)) 

where H: (R' x R", 0) -> (R", 0) and H(x, 0) =0 for xE R' near zero. We 
define an action `"' of C on m,,,. E(n, p) by 

(x, H. f (x)) = H(x, f (x)), HEC, fc m�. e(n, P)" 

C can be thought of as the group of germs of diffeomorphisms (RP, 0) -* (RP, 0) 

parametrized by xc R'. Define hx(y) = ft (x, y), for x near zero; hx is (nec- 

essarily) the germ of a diffeomorphism. The previous formula can be written 
as 

H"f (x) = h,: (f (x)). 

IC is defined to be the group of germs of diffeomorphisms (Rn x RP, 0) -ý 
(Rn x RP, 0) which can be written in the form 

H(x, y) = (h(x), H(x, y)) 

where h is a map-germ (Rn, 0) --+ (Rn, 0) (necessarily a diffeomorphism), Ha 

map-germ (Rn x RP, 0) -i (RV, 0) and H(x, 0) =0 for xE R" near zero. We 
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define an action `"' of 1C on m,,,. E(n, p) by 

(x, H. f (x)) = H(h-1(x), f (h-i(x))), HE JC, fE mn. E(n, P), 

that is 
H'f (x) = h� (f (h-i(x)))" 

IC is often called the contact group; we refer to [MathIIl, Section 2] for properties 
and geometrical interpretations of IC and C. 

C is a normal subgroup of 1C and R, L and A can be identified with subgroups 
of 1C by identifying hER, h' EL with the map-germs 

(x, y) '-' (h (x), y), (x, y) F-' (x, he(y)), 

of K. With these identifications, 1C becomes the semi-direct product of R. and 
C in the sense that C is a normal subgroup of k and each element of 1C can be 
written uniquely in the form hoc where hER. and cEC. 

The Mather groups are used to define the standard equivalence relations on 
mn. S(rt, p), they are all subgroups of K. By a group of equivalences we will mean 
a subgroup 9 of JC. 9 is often one of R, . 

C, A, C or IC but may be any subgroup 
of k. 

1.3.2 Tangent Spaces and Lie Algebras 

We define the `tangent space', Of, to E(n, p) at f to be the Ems-module of germs 
of smooth vector fields along f. So ýE Of if ý: (Rn, 0) -* T (RP) and irp oý=f 
where ire : T(RR) -* R1' is the natural projection from the tangent bundle T(RP) 

of RR, to R. We define On = 01R,, , Op = 01Rp where 1Rn and 1p, denote the (germs 

at 0 of the) identity maps on R', R", respectively. The Lie algebra of a group 
of equivalences 9C IC is defined in 2.7. We will just note that LIZ = Mn-On and 
LL = mp. 9p, for now. 

We define the e,,,, -homomorphism 
tf: Bn 

-) 
of 

0 t--+ df o0 
and the er-homomorphism (via f*: Ep -)S,,, aaof for a ESP) 

wf: O --ý of 
V) H V) o f, 
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The tangent spaces to the orbits of the standard Mather groups are then given 
by 

LIZ "f= tf (mn"en), LC "f=wf (mp. 9p), LC "f= f*(mp)"Of, 

LA"f=L7Z"f+Lr. f, LK"f=LIZ"f+LC"f. 

(Here we follow [BduPW] notationally this provides natural generalisations in 
contrast to the old notation T (G " f). ) 

The above notation is convenient for theoretical purposes but, in practice, 
we apply the following observations. 9f is a free En-module of rank p, for if 
(yi, 

... , yp) is a system of local coordinates on (RP, 0) then the vector fields 

(alayi) o f, ... , (a1ayp) 0f 
along f, form a free basis for Of . We can therefore identify 9f with E (n, p) and 
the above tangent spaces can be written as 

LR. f= mn. {af/axl,..., of/ax, ý} 
LC "f= f*(mp). {el.... 

, ep} 
LC "f=f *(mp). En. {ei, 

... , ep} 

where el, ... , ep are the standard basis vectors of R' (considered as elements of 
E(n, p)). 

Note that LA "f has a mixed module structure. We can, of course, think of 
it as an Er-module (via f *) but lose a lot of the structure in doing so. 

1.3.3 Finite Determinacy of Map-Germs 

One of the central ideas in singularity theory is to replace the space of germs 

mn. E(n, p) with the space of k-jets Jk(n, p) = mn. E(n, p)/mn+l S(n, p), for some 
k. This is a finite dimensional vector space which can be identified with the space 

of Taylor polynomials of such germs. For a given subgroup C9 of IC we define ck 

to be the subgroup of 9 consisting of all elements of C9 whose k-jet is equal to the 
identity. These are normal subgroups and we define the jet-groups Jig _ c/ck. 

The action of 9 on mn. E(n, p) induces an action of jkg on Jk(n, p) which is a 
Lie group action. The idea is to study the action of g on mn. E(n, p) using the 

action of Jk g on Jk (n, p) . 
This is discussed in detail in Chapter 2. Denote the 

projection of fE mn. e(n, p) into the jet-space mn. E(n, p)/mom+1. E(n, p) by jk f. 
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We say f is k-g-determined if any map-germ g with jkg = jk f is c-equivalent to 
f. Once we know a map-germ is k-determined for some k, it is sufficient to work 
in the k-jet-space to classify the 9-orbits. 

Mather gave a characterisation theorem for determinacy, [MathIIl, Theo- 

rem 3.5], [Wal, Theorem 1.2]. The theorems in [BduPW] can give excellent 
estimates for the determinacy degree (the least k for which a map-germ is k- 
determined) and we use these in practice. We refer to [BduPW] and Chapter 2 
for a detailed discussion on such determinacy theorems. 

In order for a computer to perform determinacy checks we need to reduce the 
criteria to finite problems in linear algebra. When Lg "f is an En-module (for 

example when 9=R or 1C) we can use the Nakayama Lemma. 

Lemma 1.1 (Nakayama) Let R be a commutative ring, M an ideal such that 
for xEM, 1+ x is a unit. Let C be an R-module, A and B R-submodules of C 

with A finitely generated. If ACB+M. A then ACB. 

Proof. See [BL, Lemma 4.15], [Wal, Lemma 1.4]. 0 

Example. R= En, M= Mn, C= Mn) A= Mn'+l, B= LR, " f, where f is a 
function germ f: (Rn, 0) -* (R, 0). To check the determinacy criterion 

mit+1cLR1"f 

we need only verify 
C LR + mk+2 Mn k+l f 

1n 

However, in the case G=A, LA f is not an E,, -module. We now use the following 

result due to du Plessis. 

Lemma 1.2 Let C be a finitely generated en-module, BCCa finitely generated 
S,, -submodule, ACf *(mp). C a finitely generated Er-submodule (via f *) and M 

a proper, finitely generated ideal ME, such that for xEM, 1+x is a unit. If 

M. C C A+B+M. (f*(mp)+M). C 

then 
M. CcA+B. 
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Proof. [BduPW, Lemma 2.6]. 0 

Example. C= S(n, p), A=L, C1 " f, where fE mn. S(n, p), B= L1Z1 f, 
M= mit+l. To check the determinacy criterion 

mit+l S(n, p) C LAS f 

we need only verify 

mit+l "S 
(n, 

P) C LA1 f+ rran+i " 
f* ýmp) 

"S 
(n, p) + m2k+2 9 (n, P) 

1.3.4 Versal Unfoldings 

An s-parameter unfolding of a map-germ fo E mn.. E(n, p) is a map-germ 

F: (R' x Rs, 0) 
(x, u) 

(R" x Rs, 0) 
H (f(x, u), u) 

such that fo(x) =f (x, 0). The notation f,, (x) =f (x, u) is often employed; ff 
can be thought of as a deformation of fo, parametrized smoothly by uE Rs. 

We will consider the case 9=A in what follows. The definitions and results 
for other subgroups of k are analogous. Two unfoldings F, G: (R' x R3,0) 
(RR x R3,0) of fo are isomorphic if there exists germs of diffeomorphisms 

0: (Rn x Rs, 0) -* (Rn X Rs, 0) 

: (RP x Rs, 0) -f (R' x Rs, 0) 

which are s-parameter unfoldings of the identity maps on R' and RP, respectively, 
and G =, 0 oFo q-1. So 00 = 1R, n, b0 = 1p and 0u, 0,, are (necessarily) germs 
of diffeomorphisms of Rn, RP, respectively, for small u. Thus gu = Ou o fu o OU 1 

and gu is A-equivalent to fu via diffeomorphisms in the source and target which 
are parametrized smoothly by uE Rs (for small u). 

Remark. The germs f., g,,,, cu, Ou cannot be considered as germs at 0 with 
target 0 (for u 0). This situation, where the origin is not fixed, is often called 
Ae-equivalence. If we need to keep the origin fixed then the map-germs 0, '0 
must satisfy 0(0, u) =0 and ''(0, u) = 0, in addition, for all (small) u. The terms 
Ae-unfolding and A-unfolding are sometimes used to clarify the context. 
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Given h: (Rt, 0) ---> (RS, 0) we define the pull-back of F by h, denoted h*F, 
to be the t-parameter unfolding 

(h*F)(x, v) = (f (x, h(v)), v). 

F and G are said to be equivalent if there exists a diffeomorphism h: (Rs, 0) 
(Rs, 0) such that G is isomorphic to h*F (this is an equivalence relation). If G is 
now some t-parameter unfolding of fo (so t does not necessarily equal s), we say G 
is induced from F if there exists a smooth map-germ h: (Rt, 0) -* (Rs, 0) such 
that G is isomorphic to h*F. The fundamental definitions of unfolding theory 
follow. 

Definitions. 

1. F is versal if every unfolding of fo is induced from F. 

2. F is trivial if it is isomorphic to the constant unfolding (in s parameters), 
(x, u) H (f0(x), u). 

3. fo is stable if all unfoldings of fo are trivial. 

To say F is versal means all other unfoldings of fo are described by F, up to 
isomorphism and a reparametrization of Rs. 

We now come to the fundamental existence theorem on versal unfoldings. 
The results here use the identifications of the `tangent spaces' discussed in Sec- 

tion 1.3.2. Given an unfolding F(x, u) = (f (x, u), u), the initial speeds, Pi E 
E(n, p), of F are defined by 

E(x) 
=o f/aui (x, 0), for i=1, ... , s. 

The As-tangent space of fo E E(n, p) is defined by 

LA " fo = e.. (afo/axl, ... , afo/ax") + eP. {el, ... , 
ep}, 

and the , 
Ae-codimension by 

, 
Ae-Codim(fo) = dimR (E(n, p)ILA, - fo) 

- 

Theorem 1.3 F is versal if and only if 

LAe " fo+R. {P1i..., E8} =E(n, p). 
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Suppose c= , 
Ae-Codim(fo) < oo and g1, ... , g, E E(n, p) form an R-spanning set 

for the complementary space to LAe "fo in S (n, p). Defining the unfolding 
C 

F(x, u) _ 
(1(x) 

+E uigi(x), u 
i-1 

we find that Pi = gi. 

Corollary 1.4 F(x, u) = (f (x) + >i uigi(x), u) is a versal unfolding of fo. 

Corollary 1.5 fo has a versal unfolding if and only if Ae-Codim(fo) < oo. 

We also recall the following. 

Theorem 1.6 fo is stable if and only if 
, 
Ae-Codim(fo) = 0. 

Define c= Ae-Codim(fo). The least number of parameters for a versal unfolding 
of fo is c. We call a c-parameter unfolding of fo a miniversal unfolding. 

Theorem 1.7 All miniversal unfoldings of fo are equivalent. 

For a proof of the above theorems and further discussion we refer to [Mart2, 

Chapters XIII and XIV], [Mart1, Section I], [Wal, Section 3]. The results in the 
A-case are the same, only we use the A-codimension 

A-Codim(fo) = dimR (m,, 
"S(n, p)/LA - fo) 

and require an R-spanning set g1,... , g, E m,,,. E(n, p) for the complementary 

space to LA " fo in mn.. F (n, p). 

1.3.5 Discriminants 

We will require one further concept related to unfoldings, that of a discriminant. 
For simplicity we will restrict to the specific setting used in this thesis, rather 
than embark on a general discussion. In what follows fo : (C", 0) -0 (C, 0) will 
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be the germ of an analytic function with an isolated singularity at 0. It follows 
that f is finitely R-determined and therefore has a versal 1Ze-unfolding 

F: (Cn X Cs, 0) ---; (C X Cs, 0) 
(x, u) H (f (X, u), u) 

(with FZ spanning the C-vector space O,, /L1Ze"fo =Can/(äfo/aýiý , 
afo/aýn)) 

The (germ of the) set 

EF ={ (x, u) : Of /ax1= ... = Of /ax, =0 at (x, u) 1 

is called the critical set of F. The discriminant of F, DF, is defined to be the 
(germ of the) set 

{uE Cs :3xE Cn with f (x, u) =0 and (x, u) E EF }. 

Note that any unfolding of fo has a well-defined discriminant, F need not be 

versal. 

Proposition 1.8 Any two versal unfoldings with the same number of parameters 
have diffeomorphic discriminants 

By the discriminant of a singularity fo we will mean the discriminant of a miniver- 
sal unfolding of fo. This is well-defined up to diffeomorphism. We will consider 
the discriminants of the simple singularities in Chapter 5. For example, the dis- 

criminant of the A2 singularity fo : (C, 0) -* (C, 0), fo(x) = x3, is the standard 
cusp 4ui + 27u2 =0 and the discriminant of the A3 singularity fo(x) = x4, is the 

swallowtail surface. 

1.3.6 Miscellaneous Results 

Further concepts and results from singularity theory and its neighbouring fields 

will be recalled throughout this thesis as they are required (most of the time, 

at least! ). We finish by giving a couple of results which are used extensively 
throughout the classifications in this thesis. 

In any classification of map-germs the simple singularities are extremely im- 

portant. We adopt the definition of Arnol'd, [AGV, p. 184]. Let X be a manifold 
and Ga Lie group which acts on X. The modality of a point xEX under the 
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action of G on X is the least number m such that a sufficiently small neigh- 
bourhood of x may be covered by a finite number of m-parameter families of 
orbits. The point x is said to be simple, if its modality is 0, that is a sufficiently 
small neighbourhood intersects only a finite number of orbits. The modality of a 
finitely determined map-germ is defined to be the modality of a sufficient jet in 
the jet-space under the action of the jet-group. Let 9 be one of R, C, A, C or C. 
The following unpublished result due to J. W. Bruce allows us to count moduli. 

Theorem 1.9 Let W be a smooth constructible subset of the jet-space Jk (n, p) 
and for wEW define 

d(w) = dim {(T(Jkg 
- w) +TWW)IT. (Jkg " W)}. 

Then, given an integer r>1, if the set {wEW: d(w) <r -1 } is a constructible 
subset of W of smaller dimension, then every germ f with jk fEW is of g- 

modality r or greater. 

In particular, to identify non-simple germs we have the following Corollary; this 

was noted in [135]. 

Corollary 1.10 Let W be a smooth constructible subset of the jet-space jk (n, p). 
Suppose that the set 

{wEW : T, ý(Jkcc"w) DTwW} 

is a constructible subset of W of smaller dimension. Then no germ f with jk fE 
W is c-simple. 

The above theorem and its corollary hold for the groups R (D) and weighted 
filtrations defined in Chapter 5 as well. 

The following proposition (more of a remark really) concerns `scaling' coordi- 
nate changes in A-equivalence. Let (x1 

i ... , xn) be a system of local coordinates 
on (Rn, 0) and (yi, 

... , yp) a system of local coordinates on (RP, 0). For a given 
k-jet jk f, say, the complete transversal theorems in Chapter 2 provide a family 

of jk+1 (n, p) orbits over j'` f. We attempt to reduce the parameters appearing in 

these families to a unit (usually ±1 in the real case and 1 in the complex case) 
by applying scaling coordinate changes: 

(x1,..., xn) '-' (alx1,..., anxn) 
(yi,... 

'yn) 
(b1yl,..., bnyn) 
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for ai, bi E R, ai, bi 0. The problem of simplifying the orbits using scaling is 

made easy by the following proposition. 

Proposition 1.11 Replacing ai by e, \i 

the problem to one in linear equations. 
and bi by eµi, where Ai, µi ER reduces 

This technique is best described by examples, we refer to Chapter 3 where it is 
used extensively. 
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Chapter 2 

Complete Transversals in 
Generalised Jet-Spaces 

2.1 Introduction and Preliminary Material 

Complete transversals provide an efficient method for obtaining the orbits when 
a Lie group acts on an affine space. We apply this to the action of jet-groups on 
jet-spaces, obtaining a classification technique which proceeds inductively at the 
jet-level. The method is due to Bruce and du Plessis and is a direct generalisation 
of the work of Dimca and Gibson in the K-case, [DG]. It can also be likened with 
the spectral sequence methods of Arnol'd for the classification of functions under 
1Z-equivalence, [A4], [AGV, Chapter 14]. Our main reference for the preliminary 
material is [BduP], but is as yet unpublished so we review the relevant material 
below. We omit the original proofs, though they may be found in [Wi]. The aim of 
this chapter is to generalise these results to jet-spaces other than those defined by 
the standard filtration by degree. In particular, this allows the use of `unipotent' 

groups and the associated ̀ nilpotent' filtration - this is a very powerful technique 

when used with the `unipotent' determinacy theorems of [BduPW], especially in 
A classification. We also discuss the use of complete transversals in weighted 
filtrations. Such filtrations are related to nilpotent filtrations (in a certain sense) 
but are more natural to use in specific applications. 

Complete transversals have been used in several classifications in the past, 
see for example [BG4], [Tar], [Hob], [GH], [Wi]. The theorems developed in this 

chapter have been used in the classification of map-germs (R2,0) -* (R4,0) 
(Chapter 3 and [We]) and in the classification of function germs on discriminant 
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varieties (Chapter 5). Similar methods have been developed by Bruce and in- 
dependently by Ratcliffe using `triviality theorems' (Thom-Levine) as the main 
technical tool, [BG5], [Ratl, Rat2]. The approach below, due to Bruce and du 
Plessis, is more general and uses Lie group actions and the Mather Lemma as its 

main technical tool. 

We start with a result due to Mather specifically concerned with Lie group 
actions and the calculation of the orbits. 

Lemma 2.1 (Mather Lemma) Let G be a Lie group acting smoothly on a fi- 

nite dimensional manifold V. Let X be a connected submanifold of V. Then X 

is contained in a single orbit of G if and only if 

1. for each xcX, TAX C Tý(G x) = LG x; 

2. dim TX(G " x) is constant for all xEX. 

See [MathIV, Lemma 3.1]. The basic complete transversal theorem is a corol- 
lary to the Mather Lemma. 

Theorem 2.2 Let G be a Lie group acting smoothly on an acne space A, and 
let W be a subspace of VA with 

LG. (x+ w) =LG -x 

for all xEA and all wEW. Then 

1. for all xcA we have 

x+{LG-xnW} c G-xn{x+W}; 

2. if x0 EA and T is a vector subspace of W satisfying 

W cT+LG xo 

then for any wEW there exists gEG and tET such that 

g (x0 + w) = xo + t. 

(2.1) 
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Proof. See [BduP]. Part 1 follows from the hypothesis 2.1 and the Mather 
Lemma; Part 2 is then a consequence of Part 1. Note that we are identifying the 
tangent space at xcA with the underlying vector space VA. Q 

Remarks 2.3 

(1). Theorem 2.2 Part 2 says that the transversal T to the orbit of x0 contains 
a representative for the G-orbits of every element in the affine subspace xo +W 
of A. T will therefore be referred to as a complete transversal. 

(2). The hypothesis 2.1 says that for all xEA the tangent space to the orbit 
of a point in x+W is the same for all points, being equal to the tangent space to 
the orbit G"x at x. This is the crucial condition for the theory to work. However, 
in practice we usually replace condition 2.1 by the sharper condition 

1. (x + w) =I. x (2.2) 

for all xcA, wcW and 1E LG. (This is the infinitesimal version of g" (x + w) = 
g"x+w for gcG, which is therefore a sufficient alternative. ) In fact, a sharper 
result can now be obtained, namely that there exists a closed connected Lie 

subgroup H of G such that for any xEA we have 

x+{LG"xnW}=H"x. 

This follows from [BduPW, Lemma 4.3], details can be found in [BduP]. 

(3). For a general definition and discussion of affine spaces we refer to [Por, 
Chapter 4]. In all our applications A will just be a vector space V say, with 
WC VA = V. The affine subspace x0 +W is therefore an affine subspace of a 
vector space obtained by translating the vector subspace W by x0. 

The classification result used in the aforementioned references now follows. We 

firstly develop the notation. The standard k-jet-space m,,. E(n, p)/mý+l. S(n, p) 
is denoted J" (n, p). Let 9 be a subgroup of IC and ck be the normal subgroup 

of consisting of those germs whose k-jet is equal to that of the identity. The 

standard k-jet-group is defined to be the quotient group c/ck and is denoted Jkg. 

This is a Lie group and acts on the affine space Jk (n, p); see [MathIIl, Section 

7] and Sections 2.2 and 2.3 below. Let He denote the image of mk,. E(n, p) in 

J'k (n, p), the vector subspace of Jk (n, p) consisting of the homogeneous jets of 
degree k. 

18 



Corollary 2.4 Let C9 be one of the standard Mather groups R, C, A, C or IC, 
and consider 991. Then given fE mn. S(n, p) and TC Hk+l a vector subspace of 
Hk+1 such that 

Hk+l C L(Jk+1g1) . jk+l f+T, 

we have for every (k + 1)-jet jk+lg (g E m,. E(n, p)) with jkg = jk f that jk+lg is 
in the same jk+1g1 orbit as 3 -k+l f+t for some tET. 

Proof. The proof is given in [BduP] in slightly more generality. Q 

Remark. We will not have cause to use the above corollary and have included 
it just to give a flavour of the results. The basic line of the proof is to set 
A= jk+l (n, p), W= Hk+1 and G= jk+lgl in Theorem 2.2. The condition 2.2 
follows from the standard approximation lemmas (a suitable version is [duP, 
Sublemma 2.2] with restriction to Nx {0}, and setting 1=k, k=2, R= mit 
(the symbols on the left-hand side of these equations refer to those which appear 
in [duP, Sublemma 2.2]); c. f., Lemma 3.4 of the same paper). This lemma gives 
l" (f + h) -1fE mit+2. E(n, p) for hE mit+l S(n, p), but only applies if 1E L91 

hence the need to use 91 above instead of 9. Thus, the corollary can be used to 

obtain representatives for all (k + 1)-jets with k-jet f up to 991 equivalence, and 
in practice this provides a powerful tool for g equivalence too. We obtain a list of 

representatives for the 9 orbits with possible (though usually few) redundancies. 
One can make this more efficient by using larger subgroups of 9 than Ci - we 
discuss this in Section 2.3. The complete transversal theorems do not work for 

the whole group 9 as the following counter-examples indicate. 

Examples 2.5 (Counter Examples for the 9 Case) 
Let g be one of R, L, A, C or K. We shall assume the complete transversal 
theorem holds for 9 and obtain an absurd determinacy result as a contradiction. 
Suppose the complete transversal theorem holds for !: then given fE mn. E(n, p) 

and TC Hk+l such that 

Hk+l C L(Jk+lg). j -k+l, f+T, 

we have for every (k+1)-jet jk+lg with jkg = jk f that jk+lg is in the same Jk+lc 

orbit as j k+l f+t for some tET. We pursue similar arguments to [BduPW] 

Theorems 1.9 and 2.1 to show a map-germ f: (R 1,0) -f (RP, 0) which satisfies 

mý+1. E(n, p) C L9 -f is k-9-determined. Indeed, by [MathIII] if this holds then 

f is finitely Cg-determined, and by the (assumed) complete transversal result for 
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any gEm,,,. S(n, p) such that j1g = jl f (any l> k) we have j1+lg is in the same Y+19 orbit as 31+1f. Thus jC g= jkf implies g is in the same 9 orbit as f, 
so f is k-determined. However, there are well-known counter-examples to this 
result. An obvious consideration is function-germs (R, 0) --ý (R, 0) under R 
equivalence - the statement `if mi+l C LR "f then f is k-7Z-determined' implies 
xk+l is k-determined which is absurd. 

2.2 Non-Standard Filtrations of mn. S(n, p) and the 
Associated Jet-Spaces 

In this section we develop the idea of generalised jet-spaces. We allow finer 
filtrations of m,,. S(n, p) and 9 than the standard one by degree, the idea be- 
ing to replace the action of 9011 mn. S(n, p) by the action of a Lie group on a 
smooth manifold by forming the quotient groups and modules. We impose fur- 
ther conditions so that a workable complete transversal theorem holds. The use 
of non-standard filtrations can give substantial improvements to the efficiency 
of the calculations; the jet-space can be partitioned into smaller spaces and the 
jet-group is generally larger than the 91 group required in the previous section. 
This generality incorporates the `nilpotent filtrations' introduced by Bruce and 
du Plessis, and the `weighted filtrations' introduced by Arnol'd, and allows us to 

give compact proofs for the corresponding complete transversal theorems - see 
Section 2.3 and Section 2.4. (In the standard case we can extend the definition 
to give jet-spaces for maps f: X)Y between manifolds X and Y. These jet- 

spaces are invariant under coordinate changes and this allows the construction 
of the jet bundles, as in [GG, Chapter II]. Generally, such a construction does 

not work for non-standard filtrations (for example, weighted filtrations). How- 

ever, we are concerned with local theory and need only work with map-germs 
(R'n, 0) -) (RP, 0) for suitable n and p (or equally well over C, depending on the 

context). Our definitions therefore only apply to the local case, using filtrations 

of the module mn. S(n, p), and there is no attempt at generalisation. ) 

As a preliminary we define a filtration of a module M to be a strictly decreas- 
ing chain of submodules M= Mo D Mi 3 M2 3""" and a filtration of a group 
G to be a strictly decreasing chain of subgroups G= Go G1 3 G2 3"" "- 

Definition 2.6 Given a subgroup of 1C acting on mn,. E(n, p), by a jet-filtration 

we mean a filtration {Mk} of the module mn. E(n, p) together with a filtration 
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{Gk } of the group 9 by normal subgroups Gk such that the following hold. 

1. Each Mk has finite codimension in m,,. E(n, p) (as a real or complex vector 
space, as appropriate). Thus, mn. E(n, p)/Mk is a finite dimensional vector 
space for all k. 

2. Each quotient group g/Gk is Lie group and there is a Lie group action 

g/Gk x mfl. E(n, p)/Mk --p mn. E(n, p)/Mk 

induced from the action of 9 on m,,. E(n, p). So that in the notation de- 
scribed next we have jkq .j kf = jk(q, " f) 

Notation. Given a jet filtration, which we will denote by F= ({Mk}, {Gk}), 
we define the k-jet-space to be the finite dimensional vector space mn. E(n, p)/Mk 
and denote this JF(n, p). For k >_ 1 we define HF to be the image of Mk-1 in 
JF(n, p), this is the subspace of `homogeneous jets of degree V. The k-jet-group 
is defined to be the Lie group g/Gk, which is denoted J. We denote the image 
of fE mn. E(n, p) in JF (n, p) by jF f and the image of 0EC; in JF9 by jk 0. In 
most applications the context is clear and we drop the subscript `F. The symbol 
r- will denote the equivalence of germs (jets) under the action of C9 (respectively 
JFg). 

If 9 is a subgroup of 1C we define LC by differentiating curves which lie in 
9; this corresponds to the finite dimensional situation where we obtain the Lie 

algebra of a Lie group (equivalently the tangent space to the Lie group at the 
identity). A precise definition follows. 

Definition 2.7 Let Mm be some m-dimensional manifold. A map-germ 
(MM, x) -p (1C, 1) is called CT if the induced map 

e: (Mme x) x (R`P, 0) -p (Rn+', 0) 

is of class CT in the usual sense. We define a curve in 1C by taking M=R with 
coordinate t and obtain a CT vector field germ on R'+p at 0, 

zH a1 (t, z) /at1t_o. 
The set of all such vector fields is denoted L1C. The set of all vector fields arising 
from CT curves 0 with image in ! is denoted Lg. We define Jk(L1C) (and JIc(Lg)) 
by taking such curves 0 and projecting into the jet-group before differentiating 
to give the vector field. 
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For the cases LIZ, LC, LA, LC and Lk and the standard filtration by degree 
these are Lie algebras (though this is not known for general 9) and there are 
standard coordinate versions. Also, the induced action of the Lie algebra LC9 on 
mn. E(n, p) carries over to an action of Jk(Lg) on Jk(n, p) (= LJ'C(n, p)) where 
we have jkl"jkf=jk (l " f) for 1E L9 and fEm,,. I (n, p) . 

All these follow from 
[MathIIl, Section 7.3,7.4] (the methods extend to jet-filtrations). 

Example 2.8 (The Standard Filtration by Degree) 
See [MathIIl, Section 7]. We filter m,,,., E (n, p) by the chain of submodules Mk = 
mý+1. S(n, p) and filter K by the normal subgroups Kk consisting of all HE 
K whose (standard) k-jet at 0E Rn x RP is equal to the k-jet at 0 of the 
identity; that is Kk = (1 

n+p + mit+p. S(n + p, n+ p)) f1 K. For subgroups C 

of K this generalises by setting ! 9k = Kk n g. Consider the case where g is 

one of R, L, A, C or K. Now Jkg _ ! 9lC9k is a Lie group and acts smoothly 
on Jk(n, p) = mn. S(n, p)/mý, +l. ý(n, p). (This also follows as a corollary to the 

results in Section 2.4 on weighted filtrations). We remark that since 9cKC 

mit+p. E(n + p, n+ p) one could form the jet-group by defining it as the image of 
C in the quotient module Jk (n + p, n+ p) - if fact this is often the case in the 
literature. In this example we can show that the two are equivalent. Although 

this definition is easier to formulate, the quotient group definition ensures that the 

resulting object is indeed a group and provides an easy criterion for the existence 
of a well-defined action on Jk(n, p) (see Section 2.4, for example). 

A classification using a jet-filtration can therefore proceed inductively. If at 
some k-jet-level jkf N jkg then at the (k + 1)-jet-level jk+lf ,.,, jk+lg + jk+lh for 

some j k+l hE Hk+l, so we need only work with a representative for each orbit at 
the k-level and determine the corresponding representatives at the (k + 1)-level. 
The process stops for determined germs. Given a jet-filtration F= ({Mk}, {Gk}), 

we say a map-germ fEm,,. E(n, p) is k-determined if any map-germ g with 
jkf=jkg is g-equivalent to f. That is, f+ Mk is contained in the a-orbit of 
f. (See [duP, Section 4], we are just asking if f is Mk-g-determined. ) Now for a 
k-determined germ it is easy to see that -k g, jkff'g. So the classification 
of a certain class of finitely determined germs (up to a given codimension, say) is 

equivalent to the classification of the associated class of orbits in the jet-spaces, 

and the problem is therefore reduced from the realm of F rechet manifolds to the 

action of Lie groups on affine spaces -a finite dimensional situation. 

Before generalising the complete transversal theorem we recall some useful 
technical conditions which many of the standard groups used in singularity theory 
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satisfy. 

Definition 2.9 Let C be a subgroup of K. We call C jet-closed if for each r>1, 
J' is a closed subgroup of TIC 

A jet-closed subgroup satisfies the following property which is extremely useful 
in practical applications of the complete transversal theorems: 

JS(LC) c L(J8g) for all s. 

In many cases (e. g., the standard Mather groups) we have equality, this is useful 
for determinacy results. If a jet-closed group satisfies JS(Lg) = L(Jsg) for 

all s then we call it fibrant. Using the standard filtration we find that R, G, A, 
C and 1C are all jet-closed and fibrant. Further examples for this filtration are 
given via the following concept. Let 7( be a subgroup of G, then ? -l is said to be 

strongly closed in C9 if 7s = !; S 
(the subgroups with s-jet the identity) for some s 

(equivalently Gs C 'H), and PR is closed in J8!;. (This definition applies to the 

standard filtration - we shall not have cause to generalise it. ) Now, a strongly 
closed subgroup i-l of a jet-closed group G is itself jet-closed. If, in addition, Cg is 
fibrant then so is R. See [BduPW, Section 4] for more details. 

We now come to a generalisation of the complete transversal theorem. 

Theorem 2.10 Let 9 be a subgroup of 1'C, LC L9, and ({MZ}, {Gi}) a jet 
filtration such that for all s>0 

1. J8L (a subset of JS(LC)) is a Lie subalgebra of L(Jsg); 

2. for all fEm,,. E(n, p), hc Ms and 1EL we have 1" (f + h) -1"fE Ms+l. 

Then for fEMnk>1 and Ta subspace of Hk+l C jk+l(n, p) such that 

Jk+l L. k+l f+ TD Hk+l I 

we have any k-jet jkg with jkg I jkg jkf has (k + 1)-jet jk+lg ti jk+lg jk+l f+t 

for some tcT. Such a space T will be referred to as a complete transversal. 

Proof. jk+lg is a Lie group and acts on the vector space Jk+1(n, p). Now, by 

hypothesis, Jk+1L is a Lie subalgebra of L(Jk+lg) so there exists a (unique, 
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connected) Lie subgroup G of Jk+1g with Lie algebra LG = Jk+1L; see [War, 
Theorem 3.19], for example. The assumption jkg ti jk f is equivalent to g 
f+h for some hc Mk, that is jk+lg ý. jk+lf + jk+lh where jk+lh z Hk+l. 
In the complete transversal theorem 2.2 take G as above, A= Jk+l (rß, p) and 
W= Hk+l Then the condition 2.1 (in fact the sharper condition 2.2) follows 
since any element of LG = Jk+1 L may be written as j k+11 for some 1E L9 so 

jk+il " (Ik+l f+3 -k+lh) -3 -k+il " (jk+lf) -I -k+l(l " (f + h) -1" f) 

which is equal to zero by hypothesis 2 above. Thus by Theorem 2.2 we have 
1-k+l f+ jk+lh 'G jk+i f+t for some tcT, but G is a subgroup of Jk+lg so the 
result follows. 13 

The condition `J8L is a Lie subalgebra of L(J89)' is presented in terms of jet- 
groups; it is more desirable to work directly with g and L9. However, for many of 
the cases which arise in applications it is already known that Lg is a Lie algebra 
and that Js(Lg) c L(Js9) for all s. Then, for some predetermined subalgebra L 
of LC it follows that JSL is a Lie subalgebra of L(Js9) for all s. (One often takes 
L= L9, for example, in the Ai complete transversal theorem. ) In particular we 
have the following. 

Corollary 2.11 In the complete transversal Theorem 2.10, condition 1 may be 

replaced by the requirements that is jet-closed and L9 is a Lie algebra with L 

a Lie subalgebra. 

Finally, we also note that condition 2 may be replaced by the weaker condition 
L" (f + h) -L"fc Ms+l . However, the stated (sharper) condition holds in 

practice. See also Remarks 2.3 part 2. 

2.3 Nilpotent Lie Algebras and the Associated 
Filtration 

In this section we show how the 91 complete transversal theorems described in 
Section 2.1 can be extended to, for example, unipotent subgroups of 1C. The jet- 
filtration is induced by the corresponding nilpotent Lie algebra and is generally 
a lot finer than the standard filtration by degree. 
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The ideas here are due to Bruce and du Plessis and will appear in the future 
alongside the important foundational work reviewed in Section 2.1. As yet the 
only reference for the results given below is the preprint [B5], although a similar 
version of these results appears in [BduPW, Section 2], essentially the proof of 
Theorem 2.1. We take this opportunity to introduce the ideas; review the basic 
results needed on nilpotent representations of Lie algebras; and provide proofs in 
the setting of Lie group actions using the ideas of Section 2.2. This also serves 
to introduce the natural faithful representation of the Lie algebra L(J11C). Not 

only is this an informative exercise (especially for persons unfamiliar with the 

results) but in our proofs we put the emphasis on `nilpotent' subspaces L of LK, 

providing a workable classification technique in practice. Usually we cannot use 
the whole Lie algebra L!; of a given subgroup of 1C (see Example 2.5) but need 
to restrict to some `nilpotent' subspace L. However, we do not need to concern 
ourselves with the existence of a (unipotent) subgroup C0 of 9 such that L9- = L. 

Throughout this section we will assume that mom, .E 
(n, p) and 1C are filtered 

using the standard filtration by degree. The contrast with the induced `nilpotent' 
filtration will be clear from the notation. 

Firstly we discuss the singularity theory. There is a natural faithful repre- 

sentation of the Lie algebra L(J1JC) on Rn+P. Recall that K is the semi-direct 

product of R and C and an element HE 1C can be written (via a representative 

of the germ) in the form 

H(x, y) = (h (x), H(x, y)) 

where h: (Rn, 0) -* (Rh, 0) is (necessarily) a diffeomorphism and 1 (x, 0) =0 
for xE R" near to zero. Necessarily hx : (RP, 0) -) (RP, 0) defined by hx(y) = 
H(x, y), for x near zero, is a germ of a diffeomorphism. (C can be thought of 

as the group of diffeomorphisms of (RP, 0) parametrized by xE RTh. ) Now since 
H(x, 0) = 0, writing H as (H1i 

... , 
Hp), we have Hj E mp. E,, +p for j=1, ... ,p 

(m,, being the subring of 46.,, +p of germs which vanish on R' x {0}). So we can 

write P 
Hj _L YkHjk, where Hak E Fes, +p, 

k=1 

and the 1-jet of Hj is just Ek=1 Hjk(0)yk. Thus, the 1-jet of H is naturally 

an element of GL(p, R). Now JPR "' GL(n, R) and it is not hard to show 
PC GL(p, R) and J1IC GL(n, R) ® GL(p, R). We summarise this and 
describe the natural representation at the Lie algebra level. 

Lemma 2.12 J11C GL(n, R)®GL(p, R). L(J'IC) R)®gl(p, R), where 
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gl(n, R) denotes the Lie algebra of GL(n, R) consisting of n by n matrices with 
Lie bracket [N1, N2] = N1N2 - N2Nj, and similarly for gl(p, R). The map 

gl(n, R) ®gl(p, R) -p gl(n + p, R) 
M0 (M, N) 
0N 

is a faithful representation of the Lie algebra L(J11C) on Rn+p 

Proof. The first part was discussed above; then taking Lie algebras and using 
the standard identifications gives the second part. It is easy to check the given 
map is a Lie algebra homomorphism; it is clearly faithful. Q 

Remark 2.13 There is another natural representation of L(J1K) induced by the 
action of the Lie group J1)C on J1(n, p). Generally, if a Lie group G acts linearly 

on a vector space V over R, then for each 1E LG the map vHl"v is a linear map 
V -- p V. In fact we have a representation of the Lie algebra LG on V, LG -p 
End(V), since, by assumption, we have a Lie group homomorphism 0: G ---ý 
Aut(V) and the assertion is then nothing more than the fact that the differential 
do : LG -* End(V) is a Lie algebra homomorphism (see, for example, [War, 
Chapter 3]). In our situation we have an action of J11C "' GL(n, R) ® GL(p, R) 

on J' (n, p) M(n, p) (the space on n by p matrices). This is just (G, H, X) H 
GXH-' for GE GL(n, R), HE GL(p, R) and XE M(n, p). The corresponding 
action of L(JPJC) on M(n, p) is (it turns out) given by (M, N, X) ý-- MX -XN 
for ME gl(n, R), NE gl(p, R) and XE M(n, p). This is in many ways a more 
natural representation of L(J'K); however, it is not faithful. The crucial point 
for constructing the finer filtrations, as will be seen below, is that we have a 
nilpotent representation. The nilpotency of this representation only works at the 
1-jet level. However, the nilpotency of the faithful representation described earlier 
carries over to the higher jet-levels and ensures we can construct the filtration. 

We will describe the exact correspondence between the vector field notation 
used for L(J11C) in practice, and the matrix notation used in the identification 

with gl(n, R) ® gl(p, R). A 1-jet 

j= (a11x1 + ... + anlXni 
... , a1 x1 + ... + anpxn) E Jl (n, p) 

is identified with the n by p matrix A= (aid) E M(n, p). An element of J'K is 

identified with an element of GL(n, R) ® GL(p, R) and acts thus 

(G, H, A) ý--* GAH-1 
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for GE GL(n, R), HE GL(p, R) and AE M(n, p). To begin with consider the 
action of the GL(n, R) part of J11C on M(n, p). G= (g2j) maps A= (aid) to 
(Ek_l gikakj); in terms of jets this map is 

nn 
iH1, 

((1kak1) 

x1 + 1: 
9(nkak1) Xni 

k=1 k=1 
nn 

E 9lkakp X1 + .... + 9nkakp x n k=1 k=1 

The 1-jet of the diffeomorphism (R''2,0) -* (R'1,0) corresponding to G= (gib) 
such that the actions are compatible is therefore 

(x1,... 
3Xn) HknXk (tii n 

k=1 

Now, at the Lie algebra level, given M= (rn 
3) E gl(n, R), ry(t) = 1, + tM is a 

path through In in GL(n, R) (for small t) such that ry'(0) = M. Using the above, 
the 1-parameter path F of diffeomorphisms corresponding to this is therefore 

given by 

nn 
r' (xi, 

... ' xn, t) _ X1 +t E 
mk1xk, ... i Xn +tE mknxk 

k=1 k=1 

and 'differentiating with respect to t' corresponds to forming the vector field 
dF(ä/ät) (c. f., [duP, Section 1]). Putting t=0 then gives the required vector 
field, an element of J' (LIZ) C J1O : 

dF 
a=n 0(x2 o F) a 

at t_o z-1 at taxi n)(n 
= 

1: 
Mklxk 

a+... 
+E Mknxk 

a (k=1 

ax, 
k=1 

axn 

In particular, this vector field corresponds to the matrix (mid) E gl(n, R) whose 

rth column consists of the coefficients of the a/axr term. A similar result holds 

for the correspondence between the vector fields in J' (LC) and matrices (mid) in 

gl(p, R). The vector field 

apa E mklyk mkpyk 
(k=1 

ayl 
k_1 

ayP 

corresponds to the matrix (mzj) whose rth column consists of the coefficients of 
the ä/äyr term. 
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Now we recall some of the basic definitions regarding nilpotent endomorphisms 
and representations of Lie algebras. 

Let V be a finite dimensional vector space over a field F (in our case R). An 
endomorphism aE End(V) is called nilpotent if an =0 for some n. If L is a Lie 
algebra, with V an L-module, and Sa subset of L, then we say S is nilpotent on 
V if SnV =0 for some n. That is we have a representation p: L -ý End(V) 
(i. e., a Lie algebra homomorphism into End(V)) of L on V and require p(S)n =0 
for some n. The two notions are related (in the case S= L) by the following 
version of Engel's theorem which says that L is nilpotent on V if (and only if) it 
is a Lie algebra of nilpotent endomorphisms; the latter being easier to check in 
practice. 

Theorem 2.14 Take L and V as above, together with a representation of L on 
V. Then L is nilpotent on V (LnV =0 for some n) if (the image under the 
representation of) every element of L is a nilpotent endomorphism. 

Proof. [Hoch, Section VII, 1.5]. Q 

Note the difference between L being nilpotent on some V and L being a nilpotent 
Lie algebra. Recall that L is nilpotent if its lower central series {Li}; a descending 

chain of ideals of L defined by L° = L, Li+' = [L, Li]; ends at 0, that is Ln =0 
for some n. We shall be interested in the case when the representation of L(Ji1C) 

on Rn+p, described above, is nilpotent for some subalgebra L of L(J11C). 

Remark. Since this representation is faithful it follows that L is a nilpotent Lie 

algebra. From [Hoch, Section XVI, 4.2], over a field F of characteristic 0, an affine 
algebraic group G is unipotent if and only if its Lie algebra LG is a nilpotent Lie 

algebra. More precisely, the category of unipotent affine algebraic F-groups and 
the category of nilpotent F-Lie algebras are naturally equivalent. The results 
can therefore be interpreted in terms of unipotent groups. This proved to be the 
key idea in determinacy, [BduPW]. It would be interesting to apply the theory 

of unipotent groups to the complete transversal theorems. In practice, however, 

it is sufficient to work with nilpotent Lie algebras, and we will restrict to this 

setting. 

The following will also be of use later. 
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Proposition 2.15 Let L be a subalgebra of gl(V), Va finite dimensional vector 
space. If L consists of nilpotent endomorphisms and V: 0, then there exists 
a flag {V } in V stable under L, with L(V) C Vi-1 for all i. In particular, 
there exists a basis of V relative to which the matrices of L are all strictly upper 
triangular. 

Proof. [Hum, Chapter I, Section 3.3]. Q 

Returning to the singularity theory, we are in a position to define the `nilpotent 
filtration' once we have the following. 

Proposition 2.16 Let LC LKC be such that J'L is a Lie subalgebra of L(J11C) 
which is nilpotent on Rn+r Then given an integer r>1 there is an integer 
kr >1 such that 

Lkr (m 
. 
e(n, p)) C m'+'. (n, ). 

Proof. We shall work with standard coordinates; then any 1E LJC can be written 
in the form 

1=E gza/axi ®E hzhia/ayi E LIZ ® LC 

where gi E m, hi ES and hi E mp (multiplication via f* in the latter case). 
Take fc m'. 46(n, p). If gi E mit then 

9za/axz (f) E m'n+l. E (n, p), 
and if hi c mit or hi E mp then 

hihzal ayi(f) = hihi(f )ei E mit+i S(n, p), 

so we need only consider gia/axi with gi E Mn \ m2 and hial ayz with hi E 
MP \ mp, that is the terms in J' L. By assumption J1 L is nilpotent on Rn+p, so by 
Proposition 2.15 the matrices in the representation (Lemma 2.12) are conjugate 
to strictly upper triangular matrices. We can assume these matrices are indeed 

strictly upper triangular in what follows. Writing l in vector field notation (see 

the earlier discussion) we have 

9ia/19xi (mli x1 + m2i x2 + ... + mi-l, i Xi-1)19/aXi 

hia a= (m Yl rn y+... + m. 
- ,y 

)a/ayi (2.3) / yi li 1 2i 2Z1i a-1 

for m23, rn1, E R. Now order the monomial vectors xi' ... Xn ei E mn. E(n, p) 
to produce a sequence {vi} as follows. Start with those of degree r: order the 
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vectors x11 ... xn el using lexicographic order (starting with vl = xnel); next 
order the vectors xi' ... xn e2 in the same way using lexicographic order; and 
so on, continuing with those of degree r+1 and higher. Then by 2.3 we have 
1" v2 = vi+ii for some i' > I. J'L is a finite dimensional vector space so we 
need only consider a finite number of (basis) vectors 1. Thus, for large enough 
t, any product 11 

... 
lt of elements of L must satisfy ll 

... 
lt "vE mr+1. S(n, p) for 

vE mn. S(n, p) and the result follows. Q 

Definition 2.17 (Nilpotent Filtration) Let LC L/C be such that J'L is a 
Lie subalgebra of L(PIK) which is nilpotent on R'+r. We define for integers 

r>1 and s>0 the nilpotent filtration 

Mr, s(L) => LZ . (mn"E(n, p)) +mr+l S(n, p)" 
i>s 

For r=0 we just define M0,0 to be m,,.. F (n, p) for consistency. The associated jet- 

space J', ' (n, p) is then defined to be mn. e(n, p) IM,,, (L), and by the homogeneous 
terms of degree (r, s) we mean the image of the space M,,, 

-, 
(L) in this quotient, 

and denote this HT'S 

Observe that M,,, (L) is just the standard filtration by degree, only refined by the 
addition of the > Li " (mr. E(n, p)) terms. 

Remarks. Firstly note that by the previous proposition the sum used to define 
M,,, (L) is finite. It also follows that for each r there is an integer kr such that 

r}1 Mr, k, = Mr, kr+1 = Mr, kr+2 = ... = mit . 
S(n, p) = Mr+l, O. 

So this filtration is not doubly indexed as might be thought at first, but can be 

thought of as a singly indexed sequence. This is therefore incorporated in the 

results of Section 2.2, only a more elaborate notation is required. The definition 

of H, S as the image of M,,, 
-, 

(L) in J ', s (n, p) should make sense for s=0 now 

as MT, o = M,. 
-i, k(r_l . 

It is worth qualifying the use of the faithful representation of Lemma 2.12 in- 

stead of the representation induced from the Lie group action as discussed in 
Remark 2.13. As a simple example consider the case n=p=2 and note that 
the vector field (xla/axl + x219/axe) ® (-y119/äy1 - y219/(9y2) acts nilpotently on 
1-jets but not so on higher jets. Thus the crucial result of Proposition 2.16 need 
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no longer hold. However, such a vector field is not nilpotent under the faithful 

representation on R'+P, being mapped to a diagonal matrix with 1's followed by 
(-1)'s along the diagonal - exceedingly `un-nilpotent' ! 

Examples 2.18 We give examples by listing the generators for the spaces Hr, s 

rather than describing the modules MT, s(L). 
Each (r, s)-jet-space is just a refine- 

ment of the standard r-jet-space (by degree), the generators for each successive 
Hr, s give the extra monomials which arise when passing from the (r, s- 1)-jet- 

space to the (r, s)-jet-space. We only consider the first few values of r, though 
there is an obvious pattern as one continues. 

(1). Function germs (R2,0) (R, 0) with (x, y) as coordinates in the source 
and using the nilpotent Lie subalgebra of LR 

Sp{xa/ay} ® LIZ1. 
In this example we achieve the finest filtration possible, obtaining a graded lexi- 

cographic order on the monomials. 

(r, s) Basis for HT, s 
(1,0) {0} 
(1,1) {y} 
(1,2) or (2,0) {x} 
(2,1) {y2} 
(2,2) {xy} 
(2,3) or (3,0) {x2} 
(3,1) {y, 1 
(3,2) {xy2} 
(3,3) {x2y} 
(3,4) or (4,0) {x3 } 

Generally such a fine filtration is not achieved, even for function germs, as the 

next example shows. 

(2). Function germs (R3,0) -* (R, 0) with (x, y, z) as coordinates in the 

source and using the nilpotent Lie subalgebra of LIZ 

Sp{xa/ay, xa/az, y0/0z1 ® LR1. 
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(r, s) Basis for Hr, S 
(1,0) {0} 
(1,1) {z} 
(1,2) {y} 
(1,3) or (2,0) {x} 
(2,1) {z2} 
(2,2) {yz} 
(2,3) {y2, xz} 
(2,4) {xy} 
(2,5) or (3,0) {x2 } 

In particular, note that there are two generators at the (2,3)-level. 

(3). Map-germs (R2,0) -* (R4,0); we refer to the chapter dealing with this, 
in particular, Section 3.2. 

We apply the results of Section 2.2 to obtain a complete transversal theorem 
for nilpotent filtrations. Firstly a couple of lemmas. 

Lemma 2.19 Let G be a connected Lie group acting smoothly on an of ne space 
A; let B be a vector subspace of VA. Then the action of G on A induces an action 

on A/B if and only if, for all aEA, bcB and 1E LG 

l"(a+b)-1 aEB. 

Proof. [BduPW, 2.2]. 11 

Lemma 2.20 Let Lc L)C be such that J'L is a Lie subalgebra of L(J1K) which 
is nilpotent on Rn+p, so that the nilpotent filtration M,,, (L) is defined. Let fE 

mn. E(n, p), hc Mr, s(L) and 1EL. Then 

l"(f+h)-l fE Mr, s+ý(L) 

Proof. Follows in exactly the same way as [BduPW, 2.3]. 0 

If LC LCg is such that J'L is a Lie subalgebra of L(J'K) which is nilpotent 

on R"+P then the nilpotent filtration M,,, (L) defined in 2.17 exists. We filter 

the group C9 using the subgroups G, used in the standard filtration by degree. 
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Explicitly, for all s we define !;,.,, to the subgroup (1"+P + Mr+P. E(n + p, n+ p)) n 
of G consisting of those elements whose (standard) r-jet is equal to that of 

the identity. Note: we therefore have jr,,!; = jr!; (the jet-group used in the 
standard filtration by degree) and Jr, SL = JT L, for all s. The idea is to obtain a 
jet-filtration ({M,,, (L)}, {Gr, 

s}), but this depends on the induced action of J'', sg 
on Jr, s (n, p) being well-defined. We do have the following. 

Proposition 2.21 If Cg is a fibrant subgroup of 1C and J'(Lg) is nilpotent on 
Rn+p then ({Mr, 

s(Lg)}, 
IG,,, 1) is a jet filtration. 

Following [BduPW] we will also denote Mr,, (Lg) by M,,, (9). 

Proof. Since Mr, 
s(c) contains m'+1. E(n, p) it follows that it is of finite codimen- 

sion in m,,. E(n, p) and J', s(n, p) is therefore a finite dimensional vector space. 
From [MathIIl, Section 7] the standard r-jet-group Jrc is a Lie group and acts 
on the standard r-jet-space mn. E(n, p)/m'+'. E(n, p), which we will denote by A. 
Let B denote the image of Mr, s(g) under the natural projection into A, and let 
ff denote the image of fE mn. E(n, p) in A and j''l the image of 1E L9 in 
Jr(Lg). Now, any element of L(JT G) may be written as 3` 1 for some 1E LG as 
C is fibrant, and any element of B may be written as j"h for some hE Mr, s(G). 
Then 

jrl . (jrf + jrh) - jT l'(. 7T . 
f) =I r(l . (f + h) -1" f) EB 

since, by Lemma 2.20 

1- (f + h) -1"fE MT, S+i(g) C Mr, s(G) 

Thus, by Lemma 2.19, the action of JT G on A induces an action on A/B. 

But mit+l c(n, p) C MT, 
s(g) C mn. S(n, p) and B= Mr, s(g)/m'n 

+1. E(n, p) so 
A/B '=' mn. S(n, p)/MT, s(g) 

by the (appropriate) isomorphism theorem for mod- 

ules. Hence the action of J? 'g on mn. E(n, p)/mn+l. E(n, p) induces an action on 
Jr's (n, p) "Q 

For a complete transversal theorem we can omit the requirement that G be fi- 
brant. We can no longer be sure that ({M,, 

s(C)}, 
{G,,, }) is a jet-filtration but 

can work with subgroups of Jr, s! g which act on JT°s(rz, p) instead, and this suffices 
for applications of the theorem. We summarise the results below. 

Theorem 2.22 Let 9 be a subgroup of 1C and LC LC such that 

33 



1. JTL (a subset of Jr(LCg)) is a Lie subalgebra of L(JTG) for all r>0; 

2. the subalgebra J1L of L(J1lC) is nilpotent on R'L+P 

Then the following complete transversal result holds. For fE Mn . 
E(n, p) and T 

a subspace of Hr, s+l C Jr, s+l (n, p) such that 

JTL . j-r, s+l f+T HT, s+l, 

we have any (r, s)-jet jr"sg j, g jT, S f has (r, s+ 1)-jet jT, s+lg ,, J, +, g jr s+1 f+t 
for some tET. T will be referred to as an (r, s+ 1) complete transversal. 

Remark. We cannot guarantee the whole of Jrg acts on J'', s(n, p). However, 
there is some subgroup G of Jrg which acts on Jr°s (n, p) and two jets are equiv- 
alent under this action, that is jT, sg 'G jr, s f, means that g '-c f+f for 
fEM,,, , 

(L), as required in a classification. This should clarify the (strictly 
incorrect) notation r Jrg and - Jr+1G used in the statement of the theorem. 

Proof. Jrg (= Jr°5+1g) is a Lie group and acts on m,,,. E(n, p)/mr+1. E(n, p), the 

standard r-jet-space. Now, by hypothesis, JrL (= JT, s+1L) is a Lie subalgebra 
of L(J'9) so there exists a (unique, connected) Lie subgroup G of Jrg with Lie 

algebra LG = JrL; see [War, Theorem 3.19]. As in the proof of Proposition 2.21, 

with A denoting mn. S(n, p)/mr+1. E(n, p) and B denoting the image of Mr, s+l(L) 
under the natural projection into A, we have 

,erl. 
(jrf+MTh) -jrl " (, -rf) =3r(l. (f+h) -l " f) EB 

for all j'l E J"L, 3, r fEA and jT hEB, so the action of G induces an action 
on J'r, s+l (n, p). The result now follows as in the generalised complete transversal 
theorem 2.10 once we have shown condition 2.2 holds. But for j r, s+l hE HT, s+l 
(that is hE Mr, s) 

jrl . (jr, s+l f+ jr, s+ih) - jrl " (CT's+l f) = 'r, s+l(l - (f + h) -1 - f) =0 

since l" (f + h) -1"fE Mr, s+l 
by Lemma 2.20, giving the required result. Thus 

any (r, s)-jet j', 'g with jr sg 'G jT°s f has (r, s+ 1)-jet jr, s+lg 'G jr°s+l f+t for 

some tcT. Now G is a subgroup of JrO whose action on Jr s+l (n, p) is induced 

from the action of 9 on mn. E(n, p) and the result follows. 0 
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In applications the above complete transversal theorem is used to enumerate the 
orbits up to a given (standard) jet-level. Determinacy is then given with re- 
spect to the standard filtration by degree as this is generally more convenient. 
The nilpotent methods can be exploited in determinacy calculations to give what 
proves to be excellent determinacy estimates. We give the following determi- 
nacy result for completeness. It is equivalent to results found in [BduPW], only 
formulated in terms of subspaces of Lg as in our previous theorems. 

Corollary 2.23 Let 9 be a subgroup of k and LC LC9 satisfying conditions 1 
and 2 of Theorem 2.22. Suppose further that g satisfies the Mather condition, 
that is the following are equivalent for fE mn. S(n, p): 

1. f is finitely c-determined - i. e., there exists N< oo such that for gE 
mn. E(n, p), f-gEm, ý 

. 
S(n, p) implies f, g are ! 9-equivalent; 

2. dimR. (Mn. E(n, P)/Lg - f) < oo' 

3. there exists N< oo such that L9 "f mý S(n, p). 

Then a map-germ fE mn.. E(n, p) is k-g-determined if 

mit+1 S(n, p) CL'f" 

Proof. From the Mather condition and the inclusion mý+1. S(n, p) CL"f it 
follows that f must be finitely g-determined, N-a-determined say. We can con- 
struct the nilpotent filtration Mr, s(L) and associated jet-spaces. Suppose g satis- 
fies f -g E mit+i ,F (n, p), thus g has the same (k+1,0)-jet as f. Now, for r> k+1, 

s>0 and any f with the same (r, s)-jet as f, since L"fi mom, +l. e(n, p) it follows 

that the (r, s+ 1)-transversal of f is empty and jr s+i f -g j r, s+l f Hence, by 
induction, f and g must have the same N-jet (f -gE mit +1. S(n, p)) and since 
a priori f is N-determined we see that g is ! g-equivalent to f. Q 

The Mather condition holds for all the usual cases, such as the standard Mather 

groups, of course; see [MathIIl], [Wal], [duP], for example. More generally, it 
holds for the `geometric subgroups' of Damon, these include subgroups which 

preserve varieties living in the source and target for example; see Chapter 5. We 

refer to [D] for more on geometric subgroups; also to [BduPW, Section 4] for 

further discussion on the Mather condition. 
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2.4 Weighted Filtrations 

Although the results of Section 2.3 provide powerful classification techniques, 
some classifications lend themselves more naturally to the use of weighted filtra- 
tions. We take this opportunity to review the basic results concerning weighted 
filtrations and the associated jet-spaces and jet-groups. The original ideas were 
introduced by Arnol'd for the R case, [Al]. These extend to the other subgroups 
of 1C, a concise treatment is given in [BduPW, Section 5]. We use these as our 
two basic references, filling in the details required by the complete transversal 
theorems. For the case of function-germs (under R) equivalent results were given 
in [Al]. For other subgroups of IC there has been much work on weighted deter- 

minacy but we do not know of any complete transversal theorems. So our results, 
together with the determinacy results, provide a workable classification method 
for weighted filtrations. 

We firstly recall the basics. 

Definition 2.24 Let a= (al, 
... , an) be a given sequence of positive integers 

referred to as weights. A function-germ f: (RTh, 0) -f (R, 0) is said to be 

weighted homogeneous of weight r (with respect to a) if 

f( al an r 
lt X1,..., t xn =t f x1,... 1Xn 

for all tER. For a monomial function xil " xnn an equivalent condition is that 

aiki +"""+ ankn = r. And a polynomial function is weighted homogeneous if 

and only if all its constituent monomials are. 

Remark. For theoretical considerations one often allows rational weights and 
can assume a weighted homogeneous polynomial is of weight 1. 

Definition 2.25 The ideal in generated by the monomials of weight r and 
greater is denoted FäE,,,, or just F', E,, short. The sequence of ideals {FaE,, }, 
for r>1, defines a filtration of the ring mn. Eý . 

Note that F'e = Mn (for all a). Also, when dealing with function-germs and 
R equivalence one sometimes works with E and the filtration {F,, En } for r>0. 
This was the case in the work of Arnol'd. 

For map-germs f: (Rn, 0) -) (Rn, 0) we must introduce weights for each 
target coordinate too. 
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Definition 2.26 For a as above, let 
,Q= 

(01 
i ... , 

ßr) be a sequence of non- 
negative integers, and let f= (fl, 

... , 
fr) be a map-germ (R n' 0) ) (RP, 0). 

Then f is said to be weighted homogeneous of weight r (with respect to (a, 
, 
Q)) if 

fi is weighted homogeneous of weight r+ßZ (as in definition 2.24), for i=1, 
... , p. 

Definition 2.27 The submodule of m,,,. S(n, p) generated by the map-germs f= 
(fig 

... ) 
fp) such that fi E Fýr+QiS for 1<i<p, is denoted Fý, Q, E (n, p), or ýý 

just Fe(n, p) for short. The sequence of submodules {F OS(n, p)}, for r>0, 
defines a filtration of the module Fý°, 0E(n, p). (Note that generally Fý°, ßS(n, p) ý 
mn. S(n, p) but this causes no problems. ) 

We recall the following results from [BduPW, Section 5]. 

Lemma 2.28 

I. fEF,,, Qe(n, p) if and only if, for all k and for all hE FpEp, ho fE Fý+kýn 

2. If f, gE Fý°,, 3E(n, p) with (f - g) E Fä, QE(n, p) and hE Fß, YE(p, q), then 
(h of-ho g) E Fi 8E(n, q). 

In this section we will take 9 to be one of the standard Mather groups R, G, 
A, C or IC, though the methods do extend to other subgroups of 1C. We begin 
by defining a filtration of such groups compatible with the weighted filtration of 
mn. S(n, p); not all elements of IC will respect the weighted filtration. For example, 
for function germs (R2,0) -+ (R, 0) with weights (2,3) we observe that x3 + y2 
is weighted homogeneous of weight 6, but the diffeomorphism (x, y) ý--> (y, x) in 
R. maps this to an element of F4E2 therefore not respecting the filtration. The 

required definition in the R. case is due to Arnol'd. 

Definition 2.29 For r>0 define 

F''1Z ={ q5 E 1Z :f 00-f E FT+te for all fE Fte and for all t }. 

(Arnol'd calls this the group of diffeomorphisms of filtration r. ) 

This can be put in more concrete terms. 
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Proposition 2.30 The above property in definition 2.29 characterises the set (a 
group in fact) 

(1n +Fes,,,, E(n, n)) n1Z. 

Proof. If 0 satisfies 2.29 then putting f= xi E F'iS,,,, i=1, ... ,n 
(the source 

coordinate functions) we have xi o0- xi E F''+a'S so 
0E (1,, +F,, (n, n)) f1 R. 

Conversely, suppose q5 E (1, + Fý,,, S(n, n)) n R. Then for f= ßi1 ... inn E Ftý'n, 
that is alkl +"""+ ank,, > t, we have 

f00-J= 
(X1 + 91)k1 

(X. + 976)kn - x11 
... 

x 

where gi E F'+'i e. So 
kl (ki) (kn k 

f0-f- x11-Z9i 
... 

n 
xnn-z9n _ mil ... inn o 

i=0 i=0 2 

which is therefore a sum of monomial terms of the form xil -il 91 "". 
Xkn -Zn 

9n 
where 117... , in are all strictly greater than zero. Now xk ' -Z has weight aj (kj -i; ) 

and gý' E Fig (T+«j)En sox -Z1 gýý E F«j kj +ij ' En and therefore 

xkC1-219i1 
... 

Xnn-Zn Zn 9n E Falkl+... +Ctnkn+(il+... +in)r En 

Now alkl +"""+ cankn >t and ii, ... , in are all strictly greater than zero so 

fo 0_ fE FT+tE, 
Finally, Ftez is, by definition, generated by such monomials f so the result holds 
for all elements of FtE, 1. Q 

Thus F'R = (1n, + Fa, 
a9(n, n)) fl 1Z. Likewise, we extend the definition to the 

group C and have F', C = (lp + Fý, ße(p, p)) n L. However, we will concentrate on 
the filtration of C. The filtrations of R, £ and C induce filtrations on A and K. 
Also, since £cC we need only establish the results for the cases 7 and C. 

Recall that C consists of diffeomorphisms of (R'+', 0) which project to the 
identity on R' and leave fixed the subspace Rn x {0}, that is 

C=l+p+mp. E(n+p, p), 

where we consider E (n + p, p) as a subspace of S (n + p, n+ p) (by associating fE 
9(n+p, p), (x, y) º--> f (x, y), with the germ (x, y) H (0, f (x, y)) in E(n+p, n+p)) 
and consider mp as an ideal of E, 

z+p 
(via lr* : Ep) En+p where 'jr : R"+p RP, 

(x, y) H y). We define F''C analogously to the R case. 
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Definition 2.31 For r>0 define 

FTC = (1n+p+FFUß, 
außE(n+p, n+P))nC, 

where aU0 denotes the sequence (al, 
... ) ate,, 0l, 

... , 
ßP). Note that if I n+p denotes the group of diffeomorphisms of Rn+P at 0 then 

FTC = FT %Zn+p n C. 

(Here we use the subscript `n + p' to distinguish lZn+r C E(n + p, n+ p) from the 
group of diffeomorphisms of Rn at 0, R. CE (n, n) .) 

We will need a characterisation for FTC analogous to that of F'1Z in 2.29. 

Proposition 2.32 

1. If f, gE Fa, QE(n, p) with (f - g) E Fa, QE(n, p) and 0E F'C, then the action 
(") of FC on FO, ßE(n, p) defined by (ia, q5 " f) _ 00 (1n, f) satisfies 

(0"f-f)-(0"g-9) E F'aQtýýnýp) 

2. We have 

FrC ={ 0EC: 0- f- fc Fý ßte(n, 17) 

for all fE FF, ßE(n, P) and for all t }. 

Proof. Part 1 follows from Lemma 2.28, part 2. We refer to [BduPW, Section 5] 
for more details. 
In part 2, to see that FTC satisfies the given property just use part 1 with g=0. 
Similarly one checks, if 0EC satisfies the given property then 0E F'rC. 11 

It is an easy matter to establish the Lie algebras of the above groups. 

Lemma 2.33 

1. The Lie algebra of F'R can be identified with Fr,,, aE(n, n); and that of FrL 

with FQ, ßE(p, p). 

2. The Lie algebra of F'C can be identified with Fauo, QE(n + p, p) . 
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3. The Lie algebra action satisfies the following approximation lemma. If 
f, g E F°, ßE(n, p) with f -gEF OE(n, p) and 1E L(F''C; ) then 

1'f -1-gEFäQtE(n, p). 

Proof. The details are standard and we omit them, making only the following 

comments. 1 and 2 follow directly from the definitions of the groups F''9.3 
follows as in the proofs of the approximation lemmas using standard coordinates 
and identifying vectors 1"f as elements of m,,,. E(n, p); see, for example, [duP, 
Sublemma 2.2] or [Wal, Section 1] . 

The 7Z case is straight forward, as is the C 

case via Lemma 2.28. Q 

From Lemma 2.33 part 3 it follows that the Lie algebra action of such groups 
respects the filtration, in that for fE Fa,, 3E(n, p) and 1E L(Frg) (9 one of 
the standard Mather groups) we have 1fE FaptE(n, p). (We say 1 is weighted 
homogeneous of weight r. ) 

We now discuss the quotient groups associated to a filtration {F'Cg}. The 
importance of `weighted filtrations' comes from the fact that the subgroups Frcc 

respect the filtration and there exists an induced action at the jet-level. We make 
this precise below. Firstly we note the following. 

Proposition 2.34 Each F' is a normal subgroup of F°9. 

Proof. We use the characterisation of F 'R and F'C given in Proposition 2.30 

and Proposition 2.32 part (2). Firstly show F'9 is a subgroup of F°C. Suppose 
01,02 E FT R and fEF,,, 3,6 (n, p) for some t then 

01 ' 
(c52 

' 
f) 

-f 

_ 01. (. f + fl) -f for fl E F'r ptE (n, p) 
=f+ fl + f2 

-f 
for f2 E Fr, +ßte(n, p) 

E Fr, ßtE(n, P). 

Thus c51 c2 E F'R, proving closure. The argument is the same in the C case. We 

now observe that for 0E F'R and for any t, 0" (Fa, QE(n, p)) = F. ' 
, OS (n, p). 

Firstly note that the action of 0 induces an automorphism ¢: 6,, - En 

and by the first isomorphism theorem we see that En/Fa, QE(n, p) is isomor- 

phic to E /q " (F,,,, QE(n, p)). Now consider the natural surjection p: En/0 

(F«, Q 9 (n, p)) -* En / F«, ße (n, p) induced by the identity map; this is well-defined 
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since 0" (F,,, OS(n, p)) C Fä, 3E(n, p). We have already established that these 
quotient spaces are isomorphic, and since E,,, /F,,, OS(n, p) is finite dimensional so 
is En/q " (F,,, ßE(n, p)). It therefore follows that p is an isomorphism and thus 
0" (F,,,, ßE(n, p)) = Fa, QE(n, p). In particular, if 0E F°1Z then q-1 E F°7Z. In the 
case 9=C recall from definition 2.31 that FTC = FrR, 

n+p n C. So if 0E F°C 
then 0-1 E F°7Zn+p (from the previous argument) and 0-1 EC so 0-1 E F°C. 

We now finish the proof that FT R. is a group, the argument holds for the case 
FTC too. Given 0E F'R, suppose fE Fa, ßE(n, p) for some t. Then 

O. (0-1.. f)-. f=(00-1).. f-. f=o. 
Now, 0E F''R C F°f so from the preceding comments 0-1 E F°IZ so 0-1 "fE 
F' (n, p) and 

' (0-1 ' f) -f= 0-1 "f+ fl -f for fl E FaßtE(n, p) 

Thus 0-1 "f-fE Fä ptE(n, p) and it follows that 0-1 E F'R. 

F'R and F'C are therefore subgroups of K. We now show they are normal 
subgroups of FOR and F°C, respectively. Suppose 0E F°1Z, 0E F' R and 
fE Fa, ße (n, p) for some t. Then 

(0-100) .f-f= 0-1 " (0 "f+ fl) -f for fl E FaQte(n, p) 

= 9-1 " fl (since R acts linearly) 
+t E FaT, Q E(n, p). 

This requires 0 and 0' belong to F°R. Now suppose 0E F°C, 0E F''C and 
fEF,,,, QE(n, p) for some t. Then 

(0 100) .f-f= e-1. (e .f+ fl) -f for fl E F�ßtE(n, P) 
= 0-1- (0. f+fl)-0-1. (0. f) 

From Proposition 2.32 part (1) we have 

(e-1. (9 .f+ fl) - e-1- (e . f)) - ((0 f+ fl) -9- f) e FaatE(n, p) 
so (8-'00) "f-fcF,, QtS(n, p). This requires 0 and 0-1 belong to F°C. The 

results now follow. Q 

It was noted in [BduPW] that the groups F'c are strongly closed subgroups of 
g- this is useful for applications to determinacy. It also follows that each group 
is jet-closed - this is helpful in the complete transversal theorems. 
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Proposition 2.35 

1. Each subgroup FTC; respects the filtration {F,, r,, Q4S(n, p)} of mn. E(n, p). 

2. For s, A, r>0 the action of F'9 on mn. S(n, p) induces an action on 
F',, ',, ßE(n, p) IF, ' ä'E(n, p). 

3. In addition, if t>0 and A<r+ ji then the action in part 2 induces an 
action of F'' g/FT+µg on F,,, S(n, P)/ F,, QAE(n, p) 

Proof. We need only consider the cases C9 = 7?. and 9=C. 
1. For E F'R or F'C and fE Fa, QE(n, p) we have 0"f-fE FsQrS(n, p) c 

F,, ',, QE(n, p). Thus ¢"fE Fa, QE(n, p). 
2. Consider f, gEF,,, ßE (n, p) with f-gEF,,, aA E (n, p) . Then for E Fr7Z 

we have 0"f-0"g=0" (f - g) E Fa QAE(n, p) by part 1 and the fact that R 
acts linearly. For E FTC we have (0 "f-0" g) - (f - g) e F,,, ýA+ý'E(n, p) by 
Proposition 2.32 part 1, thus 0"f-0"gEF, ' S(n, p). 

10 3. By part 2 there is an action of F''9 on FO (n, p)/Fa QAE(n, p). Consider 
F'g/F''+i, g and suppose 0,0' E Fr g define the same coset, so 0' = 00 for 0E 
F''+, "C'. For fc Fa, ß9(n, p) we have 0"f=f+f with fc Fa ß"", E(n, p) So 

(e0)'f - e"f = e. (. f+f)-e. f EFsQT+µE(n, P), 

(for both cases, R. and C, as in part 2). Now from the hypothesis A<r+p it 
follows that F,, pAS (n, p) D F,, +'+' f (n, p) and the action of the quotient group is 

113 
well-defined. n 

Corollary 2.36 In particular, for s=0, A=k+1, r>0 and p=k+1-r> 
0, there is an action of the quotient group (Lie group, in fact) FTC/Fk+lG on 
F«, ßE(n, p)/Fa Q1g. 

The complete transversal theorem requires r>0, the most significant case be- 
ing r=1 giving the group F1g/Fk+1! g. This is analogous to the 91 complete 
transversal theorem, Corollary 2.4, where the standard filtration by degree is 
used, only now we have the weaker criterion of respecting a weighted filtration 

and use a `larger' group, F19 (that is we use L= L(F'Cg)). To establish the 
complete transversal theorem for weighted filtrations it is simply a matter of 
putting together the above results. In the following C is one of the standard 
Mather groups; Jk(n, p) denotes the weighted jet-space F, °, OF(n, p)/Fä Q1.6 (n, p); 
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He denotes the subspace of weighted homogeneous jets of degree k, that is the 
projection of Fa, QE(n, p) into Jk(n, p); and Jkg denotes the weighted jet-group 
PCc/Fk+lg. 

Theorem 2.37 Let 9 be one of the standard Mather groups 7Z, 
, C, A, C or iC 

and a= (al, 
... , Cen), I= (ß1i 

... , 
ßp) be sequences of weights for m, n. E(n, p). 

Then ({F l S(n, p)}, IF, Q1g}) is a jet filtration. In addition, if fE Fa, QE(n, p), 
k>1 and Ta subspace of Hk+l C jk+l(n, p) such that 

Jk+l (L(Flg)) .J -k+l f+TD Hk+1, 

we have any (weighted) k-jet jkg with jCg ' Jkg jk f has (k + 1)-jet jk+lg ' jk+1G 
jk+lf +t for some tET. Such a space T will be referred to as a complete 
transversal. 

Proof. We will sketch the proof. J' (n, p) = F,,, °, ße(n, p)/F, äle(n, p) is a finite 
dimensional vector space since Fa ß'E(n, p) contains mit . 

e(n, p) for large enough 
N; this quotient is therefore just a `refinement' of the space of map-germs trun- 

cated by degree to one truncated by weight. Similarly Jcg = F1g/Fk+1C is a 
Lie group of weighted homogeneous dif eomorphisms truncated by weight (refer 

to definition 2.29 and definition 2.31). That J' g acts on Jk (n, p) follows from 
Corollary 2.36. This action is smooth, being described locally by the composition 
of polynomial map-germs truncated by weight. We omit the details of the above 
remarks; the case 0=R has already been dealt with by Arnol'd, [Al]. Since 
g is jet-closed we have JS(LCO) C L(J8C) for all s. (Earlier we stated that C9 is 
jet-closed with respect to the standard filtration by degree, however, the result 
holds for weighted filtrations. Alternatively, note that Js(LO) C L(Js0) is the 
important property and follows in the same way as Lemma 5.12. ) Define L to be 

the Lie algebra L(F1O) C LO. Now for all s, J8L C L(JsO) is a Lie subalgebra, 

and for fE Fa, QE(n, p), hEF,,, QE(n, p) and 1EL we have 

l' (f +h)-l" f EFaä'E(n, P) 

from the approximation lemma, Lemma 2.33 part (3). The hypotheses of the 

generalised complete transversal theorem 2.10 hold and the result follows. 11 

The following weighted determinacy result follows as a corollary. 

Corollary 2.38 Let 9, a and ,Q be as in Theorem 2.37. Then a map-germ 
fcF,,, QE(n, p) is (weighted) k-g-determined (i. e., Fa ß'S(n, p)-g-determined) if 

Fkß1E(rýý ý) c L(F1g) " f. 
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Proof. The proof follows along the same lines as that of Corollary 2.23. We 

merely observe the hypothesis implies f is finitely 9-determined (with respect to 

standard degree). Also that, with respect to the weighted filtration, the (k + 1) 

and higher complete transversals are all empty. The result therefore follows by 
induction on weighted degree. Q 
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Chapter 3 

Classification of Map-Germs from 
Surfaces to Four-Space 

3.1 Introduction 

In this chapter we are concerned with the classification of singularities (R2,0) 
(R4,0) under A equivalence. We use the `nilpotent' classification methods dis- 
cussed in [BduPW] and Chapter 2; that is the use of nilpotent Lie algebras in the 
determinacy and complete transversal calculations. The majority of the calcu- 
lations were done by computer using a package written in Maple. This package 
can deal with many different types of classification problem and is discussed in 
detail in Chapter 6. 

Our original aim was the classification of the simple singularities. This was a 
joint project with J. M. West who was responsible for most of the initial results 
in this area, performing the classification using the same methods, but by hand 
calculations, [We]. However, the complexity of the calculations became such that 
our computer techniques were more suitable, and it was then easy to extend the 
classification well beyond the simple singularities. To this extent it is hard to 
find a natural stopping point for the classification; our criterion is to discover 

stems and `series'. Such objects are well known in singularity theory and date 
back to Arnold, see [AGV] for a general reference; they are of great interest 

as the work of Ratcliffe on stems of map-germs (C2,0) -* (C3,0) has shown, 
[Ratl, Rat2]. So, once a non-simple jet was been discovered in the classification, 
we will continue and classify its orbits in higher jet-spaces in the search for series. 
Some jets are very amenable at providing series, while others give rise to an 
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extremely complicated structure of orbits at a higher jet level such jets are 
then excluded from further consideration once we know they are not simple. For 

example, there are fifteen J5A-orbits over the 4-jet (x,; y2,0,0), excluding factors 

of ±1 (an Al-5-transversal contains six terms). Having identified all these orbits 
it is easy to show they are non-simple, and we prefer not to investigate them 
further. 

Our classification provides a list of all the simple singularities; an extensive 
list of series; a complete stratification of the jet-space and a list of all the sin- 
gularities with corank 1 and codimension less than or equal to 11. Our general 
interest was in identifying the simple singularities and series. In several cases, 

where it was appropriate to halt the classification, the JkA-codimension was 
11 - this is where the number comes from. Although 11 is a general upper 
bound on the codimension, note that many of the cases were pursued to a lot 

higher value. The classification of the corank 1 singularities up to codimension 
11 gives a wealth of examples of series and stems (one of our main objectives) 

and includes a classification of strata up to codimension 9, taking into account 

modality. For completeness we also consider the corank 2 case. Taking the clas- 

sification beyond the 2-jet level leads to extremely complicated orbits and, with 

no specific applications to guide us, we do not discuss the classification past this 

stage. Overall we obtain a classification of map-germs (R2,0) --p (R4,0) up to 

codimension 8; this should be sufficient to cover most applications in geometry. 

It was decided to perform all of the calculations using the computer; this 

not only provides an independent check and comparison with the results of [We], 

but also demonstrates that the computer methods are suitable for performing 
the classification in its entirety. The results below just give a summary of the 

computer calculations and how the classification proceeds. We remark that when 

we obtain a series of singularities using the computer results, we actually just 

obtain specific members of the series. That is, the computer can only allow us 
to conjecture the existence of a general series. To prove the series exists we 

must resort to hand calculation; though the computer results allow us to guess 

at the form of the tangent space, making the hand calculations a lot easier. 
We reproduce some of these calculations below. Several of the calculations are 
due to West, when this is the case we simply refer there for the details. Since 

our classification mainly consists of a summary of computer results, such hand 

calculations are our only description of how the classification method works. For 

a more detailed description of the classification method we refer to [We] where 

all the calculations were done by hand. 
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3.2 Classification Techniques 

Consider map-germs (R2,0) -i (R4,0) where we shall denote the source coor- 
dinates by (x, y) and the target coordinates by (u1, u2, u3, u4). Throughout the 
classification we shall use the subgroup 9 of A with Lie algebra 

LA1 ® Sp{xO/3y} 
ED Sp{u2a/aul, u3a/aul, u4a/aul, u3a/au2i u4a/au2, u4a/aua} 

which we shall denote Lg. This Lie algebra is nilpotent and is unipotent (in 

the sense of Section 2.3) and we may apply the determinacy criterion of [BduPWI 

and the complete transversal techniques of Section 2.3. (Using these techniques 

we can work solely with the Lie algebra L and need not concern ourselves with the 

existence of the unipotent group 9. However, one can easily construct such a C;, 
hence the occurrence of the term Lg in place of L throughout these calculations. ) 

Theorem 3.1 A map-germ f: (R2,0) -* (R4,0) is k-a-determined if and only 
if 

m2+1. E(2,4) C L9 "f+ m2+i f*(m4). S (2,4) + m2k+2. S(2,4). 

Proof. This is just Lemma (2.6) applied to Theorem (2.1) of [BduPW]. See also 
Lemma 1.2 and Corollary 2.23 in this thesis. El 

The m2+1. f*(m4).. 6(2,4) terms allow us to reduce the degree of the jet-space 

needed for the determinacy calculation from 2k + 1; this is extremely important 

when using the computer. 

For the complete transversal techniques we apply Theorem 2.22 using the 

above Lie algebra L9 in the calculations. That is, we need to calculate Lg "f in 

the jet-spaces defined by the filtration 

(rra2. E(2,4)) + rra2+l. S(2,4). 
i>s 

Then, by the (r, s)-jet-space we mean the quotient m2. ß(2,4)/Mr, s(c); and by 

the space of homogeneous terms of degree (r, s) we mean the image of the space 
Mr, s_1(c) in this quotient, and will denote it HT's. A complete transversal is 

then a subspace of T of Hr, s satisfying JT'S(Lg) - jr's f+TD Hr's. An example 
for the lower degree jet-spaces should clarify this. Each (r, s)-jet-space is just a 
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refinement of the standard r-jet-space (by degree) and the best way to describe 
these spaces is to list the generators for each of the spaces H', ' (these just give 
the extra monomials which arise when passing from the (r, s -1)-jet-space to the 
(r, s)-jet-space). Calculation of Mr, s gives the following. 

(r, s) Basis for HT's Weightt 

(1,0) {0} 
(1,1) {(O, O, O, y)} 1 
(1,2) {(0,0, y, 0), (0,0,0, x)} 2 
(1,3) {(0, y, 0,0), (0,0, x, 0) } 3 
(1,4) {(y, 0,0,0), (0, x, 0,0)} 4 
(1,5) or (2,0) {(x, 0,0,0)} 5 
(2,1) {(0,0,0, y2)1 2 
(2,2) {(0,0, y2,0), (0,0,0, xy)} 3 
(2,3) {(0, y2,0,0), (0,0, xy, 0), (0,0,0, x2)} 4 
(2,4) {(y2,0,0,0), (0, xy, 0,0), (0,0, x2,0)} 5 
(2,5) {(xy, 0,0,0), (0, x2,0,0)} 6 
(2,6) or (3,0) {(x2,01010)1 7 

(t) The `weight' column refers to the use of weights to partition the monomial 

vectors into their (r, s)-levels; see Section 6.7.5. 
The pattern continues as one would expect for the higher degree jet-spaces, the 

generators for the HT, 3 spaces starting with { (0,0,0, yr) } for s=1 and finishing 

with { (XT, 0,0,0) } for large enough s. This table should be kept in mind in the 

classification as we will no longer explicitly refer to the Hr, s spaces and list their 

generators, but just state the (r, s)-transversal. 

Remark. In this and later chapters we will specify a complete transversal by 

listing a set of basis vectors for the transversal. 

A few other classification techniques will be required. The Mather Lemma, 

[MathIV, Lemma 3.1] or [BduPW, Lemma 1.1], can be applied to check equiv- 

alence of jets in a given family. The Mr, s filtration always proved fine enough, 
but sometimes applying the Mather Lemma provides a useful check. (The con- 
ditions of the Mather Lemma are hard to check by hand, but it is one of the 

functions of our Maple classification package to perform these checks. ) Explicit 

`scaling' coordinate changes in the source and target are often required to reduce 

a whole family of jets to one of a few possible normal forms. Sometimes these 

are trivial, while in many cases it is best to apply the technique discussed in 
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Proposition 1.11 which reduces the problem to a simple linear one. Finally, in 

some cases where it is impossible to reduce a family of germs to a finite number 
of normal forms using scaling coordinate changes, one suspects the presence of 
a modulus. To prove there is a modulus we use the moduli detection criterion, 
Theorem 1.9. Once again, the relevant conditions are hard to check by hand but 

can be checked using a function from our classification package. 

Note that our classification only determines a list of the possible simple sin- 
gularities; `simple' being in the sense of Arnol'd, see Section 1.3.6. Many of the 

singularities can be ruled out during the classification; but the question of which 
of the remaining are actually simple, and the search for invariants for these, is 

postponed until Chapter 4. 

3.3 Classification 

The notation used below will be as follows. We will denote a germ (R2,0) -* 
(R4,0) by f and use (x, y) as source coordinates. The jet-space JT (2,4) will be 

identified with the space of all quadruples of polynomials in R[x, y] truncated to 

degree r; the (r, s)-jet-spaces induced by the Mr, s 
(G)-filtration being identified 

with quadruples of polynomials similarly, only we now truncate at some sub-level 

within the homogeneous polynomials of degree r according to the value of s. We 

will often use the notation f to refer to both a germ, and its image in some 
jet-space, as the context should always be clear. 

Our tangent spaces will be subspaces of Of (the space of all germs at 0 of vector 
fields along f; [MathIIl]). In particular, we consider the group A, its subgroup 

consisting of germs with 1-jet the identify A1, and their tangent spaces LA and 
LA1. The tangent spaces to the orbit of f under these groups are denoted by 

LA "f and LA, "f (here we are adopting the notation of [BduPW], which places 

emphasis on the Lie algebras, instead of the older notation TA "f and TA, f ). 

In the notation of [MathIIl] we have 

LA- f= tf(m2.02)+wf(m4"04), 
LA1 "f= tf (m2 

. 
e2) + wf (m4"04)1 

where M2, m4 are the maximal iäeäls of the local rings S2, e4 respectively, and 
B21 04 denote the spaces 0182 , 

9184 of vector fields along the identity maps in the 

source and target respectively. However, referring to our remarks on the basics 

of singularity theory in Chapter 1, we see that in this local theory, 9f is a free 
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S2-module of rank 4 and we can (and will) identify 9f with S(2,4). In coordinate 
form our tangent spaces then become the following subspaces of e(2,4). 

LA "f= m2. of of 
(gý, =y + m4-{el, e2, e3, e4}, 

2 1of of LA1 "f= m2. a_, ay + m4. {ei, e2, e3, e4}, 

where the first summand is an S2-module, {e1, e2, e3, e4} denote the standard basis 
vectors in R4 (considered as a subspace of £(2,4)), and the second summand is 
an £4-module via f*: S4 ) e2. The tangent space L9 "f is calculated using 
the Lie algebra L9 given in Section 3.2 and is just an extension of the LA1 "f 
tangent space by vectors from LA. " f. 

The jet-groups are Lie groups and act smoothly on the jet-spaces. Project- 
ing the above tangent spaces onto the jet-spaces gives the corresponding tangent 
spaces to the orbits of the jet-groups. Since J'(2,4) is a vector space we can 
identify it with its tangent space and the above tangent spaces are then just 
subspaces of J'(2,4). We can (and will) identify these tangent spaces with sub- 
spaces of J'(2,4) and consider then as a subspace of quadruples of truncated 
polynomials in R[x, y]. 

The above remarks and identifications will be used without further quali- 
fication in the calculations below. Our computer package makes use of these 
identifications, essentially carrying out extensive polynomial manipulations. 

We will use the term `series' below loosely, the specific cases qualifying the 
situation. In each case we prove the existence of a stem f and give a list of all 
the jets over this jet (the exception is, of course, the set of all jets with the same 
oo-jet as f; these jets are of infinite codimension and are implicitly excluded from 
further consideration). 

The classification below generally applies to the A-classification of map-germs 
(C2,0) -p (C4,0). There is some collapsing of the orbits; in particular, many 
of the orbits which differ just by a± sign in a term become a single orbit (after 

simple `scaling' coordinate changes in the source and target). 

The following theorem summarises our classification. In particular, the extent 
to which the jet spaces have been stratified is described, together with a list of all 
the singularities (finitely determined jets) obtained. We would like to summarise 
the stratification using a `tree diagram' akin to those found in the classifications of 
[Mol, Mo2, Hob, Rie], etc.; however, the extent of our results make this infeasible 
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and we prefer to list the Jk (2,4)-orbits in a suitable tabular format for each 
successive k. 

Theorem 3.2 The following tables give, for each k, a list of A-invariant strata 
for the jet-space J"(2,4). These are the JkA-orbits, or unions of such orbits 
when moduli occur, which project down onto the Jk-1, A-orbits obtained at the 
previous level. For ease of reference between the J'-'A-orbits and the J'A-orbits 
we employ the following system. Each JIc-1, A-orbit is labelled with a capital letter, 
for example `A'. This label will appear in the first column of the table of J! ̀ A- 
orbits (this immediately follows the table of Jk-'A-orbits), thus highlighting the 
JkA-orbits over `A'. 

As well as for determined jets, there are several other occasions when we shall 
not list the JkA-orbits over a given (k - 1)-jet. These include cases where the 
jet is a stem and the orbits of higher degree form a natural `series' - we just 
state the series rather than including each individual jet in the succeeding tables. 
In several cases we choose to stop the classification for a jet at a given level. 
If the higher degree orbits for a given jet are not listed in the subsequent table 
the following notation is employed. Either the capital letter which labels the jet 

will be appended with the symbol * to refer the reader to comments immediately 
following the table; or the symbol - will appear in the `label' column to indicate 
that the classification was taken no further for the particular jet. 

Determined jets are indicated by the appearance of the determinacy degree in 
the column marked `det'. In the cases where the orbits over a jet form a series and 
are commented upon immediately after the table we indicate this with the symbol 
" in the `det' column. Looking down the `det' columns of the tables therefore 

provides a list of all the finitely determined jets obtained and we will not repeat 
such a list elsewhere. 

For each JkA-orbit we state the Jk. A-codimension; when the corresponding jet 
is k-determined this is the A-codimension of the singularity. The coefficients a, 
b, c, appearing in some jets are moduli (that these are genuine moduli is checked 
using computer calculation and Theorem 1.9). In such cases the Jk A-codimension 

of a representative of the stratum is given; the JkA-codimension of the stratum 
is just this stated codimension minus the number of moduli. 

The following tables provide a list of all the singularities of codimension less 

than or equal to 8, together with an A-invariant stratification of the space of all 
jets of codimension less than or equal to 8. If one restricts to the corank 1 case 

51 



this extends to codimension 11. 

1-Jets 
det" stratum codim label 
1 (X, y, 0,0) 0 - 
- (x, 0,0,0) 3 A 

- (0,0,0,0) 8 B 

2-Jets 
det stratum codim label 

A " (X, y2, xy, 0) 3 A* 

- (X, y2,0,0) 5 B 

- (X, xy, 0,0) 6 C 

- (X, 0,0,0) 9 D 
B - (y2, xy, , 0) 8 - 

- (y2, x2,0,0) 10 - 
- (y2, xy, 0,0) 11 - 
- (xy, 0,0,0) 14 - 
- (y2,0,0,0) 15 - 
- (0,0,0,0) 20 - 

A: classification of the jets over (x, y2, zy, 0) gives the series 

(XI y27 xy, y2k+1) (2k + 1)-determined, k>1, 

codim=k+2. 

3-Jets 
det stratum codim label 

B 3 (x, y ,y3 ,x2 y) 5 - 
" (x, y2, y3±x2y, 0) 6 A* 
" (x, y2, y3,0) 7 B* 

- (x, y2, x2y, 0) 7 C 

- (x, y2,0,0) 9 D 
C " (x, xy, y3, xy2) 6 E* 

- (x, xy, y3,0) 7 F 

- (x, xy + y3, xy2,0) 8 G 

- (x, xy + y3,0,0) 10 H 

- (x, xy, xy2,0) 9 I 

- (x, xy, 0,0) 11 1 
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3-Jets (continued) 

det stratum codim label 
D - (x, y, xy ,x y) 9 K 

- (x, y3 f x2y, xy2,0) 10 L 

- (x, y3, xy2,0) 11 - 
- (x, y3, x2y, 0) 11 - 
- (x, y3±x2y, 0,0) 13 - 
- (x, y3,0,0) 14 - 
- (x, xy2, x2y, 0) 12 - 
- (x, xy2,0,0) 14 - 
- (x, x2y, 0,0) 15 - 
- (x, 0,0,0) 18 - 

A: classification of the jets over (x, y2, y3 ±x2 y, 0) gives the series 

(X, y2, y3 ± x2y, x' y) (k + 1)-determined, k>3, 

codim =k+3. 

B: classification of jets over (x, y2, y3,0) gives the series 

(x, y2, y3, xky) 

(x, y2, y3 d x3y, xky) 

(k + 1)-determined, k>2, 

codim = 2k + 1, 
(k + 1)-determined, 

j>2, k>j+1, 

codim= j +k+1. 

E: classification of jets over (x, xy, y3, xy2) gives the series 

(x, xy, y3, xy2 + yak+1) 

(x7 xy, y31 xy2 + yak+2) 

(XI xy + yak+2I y3) xy2 ) 

(3k + 1) -determined, k>1, 

codim = 3k + 3, 
(3k + 2) -determined, k>1, 

codim = 3k + 4, 
(3k + 2) -determined, k>1, 
codim = 3k + 5. 
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4-Jets 
det stratum codim label 

C " (x, y, x2y, xy) 7 A* 

- (x, y2, x2y, 0) 8 B 
D " (x, y, xy ,x 

3y) 9 C* 
" (x, y2, xy3 ± x3y, 0) 10 D* 

- (x, y2, xy3,0) 11 E 

- (x, y2, x3y, 0) 11 F 

- (x, y2,0,0) 13 G 
F 4 (x, xy, y, 4) 7 - 

- (x, xy, y3,0) 8 H 
G " (x, xy+y xy , y) 8 I* 

- (x, xy + y3, xy2 + ay4, xy3) 10 J 

- (x, xy + y3, xy2 + ay4,0) 11 K 
H - (x, xy+y , y4, Xy3) 10 L 

- (x, xy + y3, y4,0) 11 M 

- (x, XY + y3, xy3)0) 12 N 

- (x, xy + y3,0,0) 14 - 
I - (x, xy, xy2,4) 9 0 

- (x, xy, xy2 + y4, xy3) 10 p 

- (x, xy, xy2 + y4,0) 11 Q 

- (x, xy + y4, xy2, xy3) 11 R 

- (x, xy, xy2, xy3) 12 S 

- (x, xy + y4, xy2,0) 12 T 

- (x, xy, xy2,0) 13 U 
J - (x, xy, y, xy) 11 - 

- (x, xy, y4,0) 12 - 
- (x, xy+y4, xy3,0) 13 - 
- (x, xy + y4,0,0) 15 - 
- (x, xy, xy3,0) 14 - 

- (x, xy, 0,0) 16 - 
K - (x, y , xy ,x y+y) 9 V 

- (x, y3, xy2 + y4, x2y) 10 W 

- (x, y3, xy2, x2y) 11 - 
L - (x, y fx y, xy ,y +ax y) 11 - 

- (x, y3 ± x2y, xy2 + y4, x3y) 11 - 
- (x, y3 ± x2y, xy2 + y4,0) 12 - 
- (x, y3 ± x2y, xy2, x3y) 12 - 
- (x, y3 ± x2y, xy2,0) 13 - 
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A: classification of jets over (x, y2, x2y, xy3) gives the series 

(X, y2, x2y ± y2k+1, xy3) (2k + 1)-determined, k>2, 

codim =k+5. 

ft 

C: classification of jets over (x, y2, xy3, x3y) gives the series 

(x, y21 xy3, x3y + y2k+1) (2k + 1)-determined, k>2, 

codim =k+7. 

D: classification of jets over (x, y2, xy3 ± x3 y, 0) gives the series 

(x, y2, xy3 ± x3yl y2k+1 + ax2ky) 
(x, y2, xy3 ± x3yl y2k+1 + ax2ky ± xi y) (ii), 
(x, y2, xy3 ± x3y, x21cy ± y2j+1) (iii), 
(x, y2, xy3 ± x3y, x2k+ly + y2j+1) (iv), 

where 

(i) (2k + 1) -determined, k>2, 

a- 1 (k even), a ±1 (+1 respective of ±x3y) (k odd), 

codim= 3k+5; 
(ii) (j + 1)-determined, k>2, j> 2k + 1, 

a=- 1 (k even), a= ±1 (±1 respective of ±x3y) (k odd), 

codim= k+j+4; 
(iii) (2j + 1)- determined, k>2, j>k+1, 

codim = 2k +j+4; 
(iv) (2j + 1)- determined, k>2, j>k+1, 

codim= 2lß+j+5. 

Note that in case (ii) the codimension is just (3k + 5) + (j - (2k + 1)) =k+j+4. 

I: classification of jets over (x, zy + y3, xy2, y4) gives the series 

(x) xy + y33 xy2 + y2k+1, y4) (2k + 1)-determined, k>2, 

codim= k+6. 
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5-Jets 
det stratum codim label 

B 5 (x, y2, x y, y5) 8 - 
" (x, y2, x2y±y5,0) 9 A* 

- (x, y2, x2y, 0) 10 B 
E 5 (x, y2, xy3, y5 + x4y) 11 - 

- (x, y2, xy3 + x4y, y5) 12 C 
(x, y2, xy3, y5) 13 D* 

" (x, y2, xy3, x4y) 12 E* 

- (x, y2, xy3 + x4y, 0) 13 F 

_ (x, y2, xy3,0) 14 G 

F 5 (x, y ,xy, y, +x y) 11 - 
5 (x, y2, x3y, y5) 12 - 
5 (x, y2, x3y+ y5, x2y3) 12 - 

(x, y2, x3y+ y5,0) 13 H* 

_ (x, y2, x3y, x2y3) 13 I 

_ (x, y2, x3y, 0) 14 J 
G 5 (x, y y5 +ax y, x y +x y) 14 - 

a 0, -1 
- 

(x, y2, y5, x2y3 ± x4y) 
14 - 

- (x, y2, y5 -YIX x2y3 ± x4y) 14 - 
5 (x, y2, y5 f x4y, x2y3) 14 - 

_ ( y2 y5 2y3) x ' 
15 - 

5 ± x2y3, x4y) (x, y2, y5 
14 

- 
(x, y2, y5±x2y3+ax4y, 0) 16 

- (x, y2, y5, x4y) 15 

- (x, y2, y5 ±x4y, 0) 16 

- (x y2 y5 0) 17 - 

- (x, y2, x2y3, x4y) 15 

- (x, y2, x2y3± x4y, 0) 16 

- (x, y2, x2y3,0) 17 - 

- (x, y2, x4y, 0) 17 - 

- (x ya 0 0) 19 - 
H 5 (x, xy, y , y) 8 - 

- (x, xy+y5, y3,0) 9 K 

- (x, xy, y3,0) 10 L 

J5 (x, xy + yo, xyh + ayý, xy- + dy.. ) ýý - 
for generic (a, b) - see Section 3.3.7 Part (14) 

K5 (x) xy+y , xy +ay , y5) 11 - 
for generic a- see Section 3.3.7 Part (15) 

_ (x) xy + y3, xy2 + ay4,0) 12 - 
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5-Jets (continued) 
det stratum codim label 

L - (x, xy + y3, y4, xy3 + ay) 11 M 
M 5 (x, xy+y y4 , y5±x y) 11 - 

5 (x, xy+y3, y4, y5) 12 - 
- (x, xy + y3, y4, x2y3) 12 N 

- (x, xy + y3 y4,0) 13 0 
N - (x, xy + y3, xy3 + xy4, y5) 12 - 

- (x, xy + y3, xy3, y5) 13 - 
- (x, xy+y3, xy3+ay5, xy4) 14 - 
- (x, xy + y3, xy3 + ay5,0) 15 - 
- (x, xy + y3, xy3 +6 y5 + xy4,0) 15 - 

O - (x, xy, xy + y5, y) 9 P 

- (x, xy, xy2, y4) 10 Q 
P - (x, xy, XY 2+y, xy + ay) 11 R 
Q - (x, xy, xy2 + y4, y5) 11 S 

- (x, xy, xy2 + y4,0) 12 - 
R - (x, xy+y4, xy2, xy3+y5) 11 T 

- (x, xy + y4, xy2 + ay5, xy3) 13 - 
a#-1 z 

- (x, xy + y4, xy2 -1 y5, xy3) 14 - 
S - (x, xy, xy2, xy3 + y5) 12 - 

- (x, xy, xy2 + y5, xy3) 13 - 
- (x, xy + y5, xy2, xy3) 14 - 
- (x, xy, xy2, xy3) 15 - 

T - (x, xy + y4, xy2, y5) 12 U 

- (x, xy + y4)xy2 + ay5, xy4) 14 - 
a -2 

- (x, xy + y4, xy2 -2 y5 3 xy4) 15 - 
- (x, xy+y4, xy2+ay5,0) 15 - 

a -2 
- (x, xy + y4, xy2 - 2y5,0) 16 - 

U - (x, xy, XY 2, y) 13 - 

- (x, xy, xy2 + y5, xy4) 14 - 

- (x, xy, xy2 + y5,0) 15 - 

- (x, xy + y5, xy2, xy4) 15 - 

- (x, xy, xy2, xy4) 16 - 

- (x, xy + y5, xy2,0) 16 - 
- (x, xy, xy2,0) 17 - 
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5-Jets (continued) 
det stratum codim label 

V 5 (x, y) xy, xy+y ±y5) 9 - 
5 (x, y3, xy2, x2y + y4) 10 - 

W 5 (x, y Xy2 +y ,X y+ay5) 11 - 
a: A 1 

- (XIy3, xy2+y4, x2y+y5) 12 - 

A: classification of jets over (x, y2, x2y ± y5) 0) gives the series 

(x, y2ý x2y ± y5ý xy2k+1 + ay 2k+3) 
(x, y2ý x2y ± y5 xy2k+1 + ay 2k+3 ± y2j+31 

(x, y2, x2y ± y5, y2k+1) 
1 ((iii), 

where 

(2k + 3)-determined, k>2, a2 ±10, 
codim = 2k + 6; 
(2j* + 3) -determined, k>2, j>k+1, a2 ±1=0, 
codim=k+j+5; 

(iii (2k + 1)-determined, k>3, 
codim = 2k + 4. 

Note that in case (ii) the codimension is just (2k + 6) + (j - (k + 1)) =k+j+5. 

D: classification of jets over (x, y2)xy3, y5) gives the series 

(x, y2, xy3, y5 ± xky) (k + 1)-determined, 

codim = 2k + 3, 
(x' y2, xy3 ± xky, y5 ± xk+ly) (k + 2)-determined, 

codim = 2k + 4, 
(x, y2, xy3 ± xky, y5 ± xk+2y) (k + 3)-determined, 

codim= 2k+5, 

(x, y2, xy3 ± xky, y5 ± x2k-3y) (2k - 2)-determined, 

codim = 3k, 
(x, y2, xy3 ± xky, y5 + ax2k-2y) (2k - 1)-determined, 

a -1, 
codim = 3k + 2, 

(x, y2, xy3 ± xky, y5 - x2k-2y ±x y) (j + 1)-determined, 
j> 2k - 1, 

codim=k+j+3, 
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where k>4. In the final case the codirnension is just (3k + 2) + (j - (2k - 1)) 
k+j+3. 

E: classification of jets over (x, y2, xy3, x4y) gives the series 

(X, y23 xy3, x4y + y2k+i) (2k + 1)-determined, k>3, 

codim= k+9. 

H: classification of jets over (x, y2, x3y + y5,0) gives the series 

(X, y21 x3y +y51 xy2k+1 ± y2k+3) (2k + 3)- determined, 

k>2, 
codim = 3k + 7, 

(I, y2, x3y + y5, xy2k+1) (2k + 3)- determined, 

k>2, 
codim = 3k + 8, 

(x, y2, x3y + y5, y2k+3 ± x2y2k+1) (2k + 3)- determined, 
k>2, 

codim= 3k+8, 
(X, y2, x3y + y5, y2k+3) (2k + 3)- determined, 

k>2, 
codim = 3k + 9, 

(X, y2, x3y + y5, x2y2k+1 ± xy2k+3) (2k + 4) -determined, 
k>2, 

codim = 3k + 9, 
(X, y2, x3y + y5, x2y2k+1) 

(2k + 4) 
-determined, 

k>2, 
codim= 3k+10. 
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6-Jets 
det stratum codim label 

B - (x, y2, x2y, xy5) 10 A 

- (x, y2, x2y, 0) 11 B 
C 6 (x, y2, Xy3 +X 4y, y+ x5y) 12 - 

- 
(x, y2, xy3 + x4y, y5) 13 C 

F " (x, y, xy +X 4y, x5y) 13 D* 
- 

(x, y2, xy3 + x4y, 0) 14 E 

CT " (x, y2, xy3, x5y) 14 F* 

- (x, y2, xy3 ± x5y, 0) 15 G 

- (x, y2, xy3,0) 16 H 
I - (x, y , x3y±xy5, x y) 13 I 

- 
(x, y2, YIX x2y3) 14 J 

J - (x, y, xy, xy5) 14 K 
- 

(x, y2, x3y±xy5,0) 15 
- 

- 
(x, y2, x3y, 0) 16 

- 

K - (x, xy+y , Y3, Xy5) 9 L 

- (x, xy + y5, y3,0) 10 M 
L - (x, xy, y3, xy5) 10 N 

- (x, xy, y3,0) 11 0 
M - (x, xy+y ,y , xy +ay) 11 p 

a -1,5 
- (x, xy + y3, y4, xy3 - y5) 12 P 

- (x, xy + y3, y4, xy3 +5 y5) 12 P 

- (x, xy + y3, y4, xy3 - y5 + y6) 11 - 
- (x, xy + y3, y4, xy3 + 6y5 + y6) 11 - 

N - (x, xy+y3, y ,xy +y) 12 Q 

- 
(x, xy + y3, y4, x2y3) 13 

- 

O " (x, xy+y3, y , y) 13 R* 

- (x, xy + y3, y4,0) 14 S 
P - (x, xy+ay , xy2+y5+y 4) 10 T 

- (x, xy ± y6, xy2 + y5, y4) 10 U 

- (x, xy, xy2 + y5, y4) 11 V 
Q - (x, xy+y , xy2+y6, y) 10 - 

- (x, xy, xy2 + y6, y4 11 - 
- (x, xy + y6, xy2, y4) 11 - 
- (x, xy, xy2, y4) 12 - 
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6-Jets (continued) 

det stratum codim label 
R - (x) xy, xy +y, xy 3+ ay5) 11 - 

a: A O, 4 
3 

- (x, xy, xy2 + y4, xy3) 13 - 
- (x, xy, xy2 + y4) xy3 +3 y5) 12 

- (x) xy, xy2 + y4, xy3 + y6) 11 - 
- (x) xy + y6, xy2 + y4, xy3) 12 - 
- (x, xy, xy2 + y4 ± y6, xy3 + 4y5) 11 - 

S - (x, xy, xy +y, y5) 11 W 
T - (x, xy + Y4, XY2 + ay , xy + y5) 12 - 
U - (x, xy + Y4, xy2 + y6, y5) 12 X 

- (x, xy + y4, xy2, y5) 13 - 

D: classification of jets over (x, y2, xy3 + x4y, x5y) gives the series 

(x, y2, xy3 +YIX x5y + y21+1) (2k + 1)-determined, 
k>3, 

codim =k+ 10. 

F: classification of jets over (x, y2) xy3, x5y) gives the series 

(X, y2, xy3, x5y + y2k+1) (2k + 1)-determined, k>3, 

codim=k+11. 

R: classification of jets over (x, xy + y3, y4, y6) gives the series 

(x) xy + y3, y4, y6 + y2k+1) (2k + 1)-determined, 
codim =k+ 10. 

k>3, 
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7-Jets 
det stratum codim label 

A 7 (x, y2, x2y, xy5 + y7) 10 - 
7 (x, y2, x2y + y7, xy5) 11 - 
" (x, y2, x2y, xy5) 12 A* 

B 7 (x, y2, x2y, y7) 11 - 
- (x, y2, x2y±y7,0) 12 - 
- (x, y2, x2y, 0) 13 - 

C 7 (x, y2, xy +xy, y+ ax y) 14 - 
a -1 

" (x, y2, xy3 + x4y, y5 - x6y) 14 B* 
E 7 (x, y xy +x y, y, ±x y) 14 - 

- (x, y2, xy3 +x 4 yly7) 15 C 

" (x, y2, xy3 +YIX x6y) 15 D* 

- (x, y2, xy3 + x4y, 0) 16 E 
G 7 (x, y , xy ±x5y, y ±x y) 15 - 

- (x, y2, xy3 ± x5y, y7) 16 F 
" (x, y2, xy3 ±YIX x6y) 16 G* 

- (x, y2, xy3 ± x5y, 0) 17 H 
H 7 (x, y, xy, y fxsy) 16 - 

- (x, y2, xy3 + x6y, y7) 17 - 
- (x, y2, xy3, y7) 18 - 
- (x, y2, xy3, x6y) 17 - 
- (x, y2, xy3 + x6y, 0) 18 - 
- (x, y2, xy3,0) 19 - 

I 7 37 (x, y ,x 
by7 

, x2y +ay) 15 - 
a3T- 2a2+b2+a 0 

J 7 (x, y ,x y+ay ,xy 
±y) 15 - 

a2±1 0 

" (x, y2, x3y+ay7, x2y3±y7) 15 1* 

a2±1=0 
7 (x, y2, x3y + y7, x2y3) 15 - 
- (x, y2, YIX x2y3) 16 J 

K 7 (x, y x x3y + , xy +y) 15 - 
a*1 

(x, y2, x3y + y7, xy5 + y7) 15 K* 
7 (x, y2, x3y + y7, xy5) 15 - 
" (x, y2, x3y, xy5) 16 L* 

L - (x, xy+y5, y3, xy5±y7) 9 M 

_ (x, xy + y5, y3, xy5) 10 - 
M - (x, xy+y , y3, y7) 10 N 

- (x xy + y5, y310) 11 - , 
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L 7-Jets (continued) 
det stratum codim label 

N - (x, xy, y, xy + y) 10 0 

- (x) xy, y3, xy5) 11 - 
0 - (x, xy, V3, Y7) 11 P 

- (x, xy, y3,0) 12 - 
P 7 (x, xy+y ,y , xy +ay5±y) 11 - 

a -1,5 
7 (x, xy+y3, y4, xy3-y5±y7) 12 - 
7 (x, xy + y3, y4, xy3 +5 y5 + y7) 12 - 
7 (x, xy + y3, y4, xy3 - y5 ± xy6) 13 - 
7 (x, xy + y3, y4, xy3 + ay 5) 12 - 

a 5, ±1 
7 (x, xy + y3, y4, xy3 +5 y5) 13 - 
- (x, xy + y3, y4, xy3 + y5) 12 - 
- (x, xy + y3, y4, xy3 - y5) 14 - 

Q 7 (x, xy+y ,y ,xy +y 6 +7) 13 - 
a54 -1 

- (x, xy + y3, y4, x2y3 + y6 - y7) 13 - 
S - (x, xy+y ,y ,y Xy6 14 - 

- (x) xy+y3, y4, y7) 15 - 
- (x, xy + y3, y4, xy6) 15 - 
- (x, xy + y3, y4,0) 16 - 

T 7 (x, xy + ay6 + by7, xy2 + y54: y6 + cy7, y) 12 - 
for all a, b, c 

U 7 y6 +ay , xy +y5+by , y) 12 - 
for all a, b 

V 7 (x, xy+ay , xy2+y ±y7, y) 12 - 
for all a 

7 (x, xy ± y7, xy2 + y5, y4) 12 - 
7 (x, xy, xy2 + y5, y4) 13 - 

W 7 (x, xy + ay7, xy2 + y4, y5 ± y7) 12 - 
for all a 

7 (x, xy ± y7, xy2 + y4, y5) 12 - 
7 (x, xy, xy2 +y 4 

ly5) 
13 - 

X 7 (x, xy + y4, xy2 + y6 + by7, y5 + ay7) 14 - 
for all a, b 

A: classification of jets over (x, y2) x2y, xy5) gives the series 

(X, y2, x2y± y2k+11 xy5) (2k+1)-determined, k>3, 

codim= k+8. 
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B: classification of jets over (x, y2, xy3 + x4y, y5 - x6y) gives the series 

(X, y23 xy3 + x4y, y5 - x6y ± xky) (k + 1)-determined, 
k>7, 

codim =k+7. 

D: classification of jets over (x, y2, xy3 + x4y, x6y) gives the series 

(X, y2, xy3 +YIX x6y ± y2k+1) (2k + 1)-determined, 
k>3, 

codim=k+11. 

G: classification of jets over (x, y2) xy3 ± x5y, x6y) gives the series 

(x, y2, xy3 ±YIX xsy ± y2k+1) (2k + 1)-determined, 
k>3, 

codim=k+12. 

I: classification of jets over (x, y2, x3y + ay7) x2y3 ± y7), where a2 ±1=0, gives 
the series 

(X, y2, x3y + ay7 ± y2k+1, x2y3 ± y7) (2k + 1)-determined, 

k>4, 

codim= k+11. 

K: classification of jets over (x, y2) x3y + y7, xy5 + y7) gives the series 

(X, y2, x3y + y7 ± y2k+1, xy5 + y7) (2k + 1)-determined, 

k? 4, 
codim =k+ 11. 

L: classification of jets over (x, y2, x3y, xy5) gives the series 

(X, y2, x3y+ yak+1 xy5) 
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8-Jets 
det stratum codim label 

C 8 (x, y2, xy3+x y, y ±x y) 15 - 
" (x, y2, xy3 + x4y, y7) 16 A* 

E " (x, y, xy +X 4y, x y) 16 B* 
" (x, y2)xy3 + x4y, 0) 17 C* 

F 8 (x, y2, xy ±x5y, y +x 7 y) 16 - 
" (x, y2, xy3 + x5y, y7) 17 D* 

H " (x, y , xy ±x5y, x y) 17 E* 

- (x, y2, xy3±x5y, 0) 18 - 
J - (x, y2, x3y±xy , x2y) 16 - 

- (x, y2, YIX x2y3) 17 - 
M 8 (x, xy+y ,y , xy +y +ay8) 10 - 

foralla 
N 8 (x, xy + y5, y3, y7 + y8) 10 - 

8 (x, xy+y5, y3, y7) 11 - 
O 8 (x, xy, y3, xy5 + y7 + y8) 10 - 

8 (x, xy, y3, xy5 + y7) 11 - 
P 8 (x, xy, y ,y +y) 11 - 

8 (x, xy, y3, y7) 12 - 

A: although this appears to be part of a series, it is interrupted at the 10-jet-level 

by the occurrence a nnimodnlar family. In total we obtain the singularities: 

(x, y2, xy3 + x4y, y7 ± x7y) 

(XI y2, xy3 + x4y, y7 ± x8y) 

(x, y2, xy3 + x4y, y7 + ax9y) 

8-determined, 

codim = 15, 
9-determined, 

codim = 16, 
10-determined, 
codim = 18, 

and the series: 

(x, y2, xy3 + x4y, y7 + x9y ± xky) 

ail, 

(k + 1)-determined, 
k> 10, 

codim =k+8. 

B: classification of jets over (x, y2)xy3 + x4y, x7y) gives the series 

(X, y2, xy3 + x4y, x7y ± y2k+1) (2k + 1)-determined, 
k>4, 

codim =k+ 12. 
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C: further classification of jets over (x, y2, xy3 + x4y, 0) indicates the existence 
of a more general series which includes the results of A and B as sub-branches. 
We have not investigated this fully but have found the following series 

(X, y2, xy3 +YIX x2k+ly ± y2j+l) 

(x, y2, xy3 + x4y, xaky ± y2j+l) 

(2j + 1)- determined, 
k>2, j? k+1, 

codim = 2k +j+6, 
(2j + l)- determined, 

k>3, j? k, 
codim= 2k+j+5, 

(the cases k=2 and k=3 occurred in earlier examples). However, there are 
other series over the 5-jet (x, y2, xy3 + x4y, 0). 

D: although this appears to be part of a series, it is interrupted at the 13-jet-level 
by the occurrence a unimodular family. In total we obtain the singularities: 

(x) y27 xy3 ± x5y, y7 + x7y) 

(x, y2, xy3 ± x5y, y7 ± x8y) 

(x, y2, xy3 ± x5y, y7 + xlly) 

(x, y2, xy3 ± x5y, y7 + ax12y) 

8-determined, 

codim = 16, 
9-determined, 

codim = 17, 

12-determined, 
codim = 20, 
13-determined, a ±1, 
codim = 22, 

(where a ±1 is respective of the term ±x5y in the jet). We do not investigate 
this further. 

E: classification of jets over (x, y2) xy3 ± x5y, x7y) gives the series 

(x, y2, xy3 ±YIX x7y ±y 2k+l) (2k + 1)-determined, 
k>4, 

codim =k+ 13. 

Proof. The proof will take up the rest of the chapter. It is easy to determine 

where a specific part of the classification is carried out. We refer to our number- 
ing system described at the end of Section 3.3.2. To verify the bounds on the 

codimension given in the statement of the theorem we observe the following. For 

a map-germ f consider the map 

7f : (Jk+'A) 
, jk+1 f (JkA) 

,j -k f 
1 

jk+19 i. jkg 9EA-f 
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from the Jk+1A orbit of f to the Jc, A orbit of f. Any jkg E (JkA) " j-k f may be 

written in the form jI q" 3kf for some 0EA. But 

, r(3 -k+io .3 -k+lf) - 3-k(o . f) = 3-ko . 3kf 

so 7r is surjective and ir-1((JCA) " jk f) is a submanifold of Jk+l (n, p) with codimen- 
sion equal to the codimension of (JkA) "jkf in Jk (n, p). But 7r-1((J/CA) "jk f) D 
(Jk+IA) .3 -k+l f and it follows that JkA-Codim(f) < Jk+IA-Codim(f ). Now if a 
map-germ f is k-A-determined then, by the determinacy theorems of [BduPW], 
there exists some unipotent subgroup of A such that 

rrz2+i E(2,4) C L9 - f, 

and in particular 
m2+i. E(2,4) C LA "f, 

hence, J'A-Codim(f) = A-Codim(f). Note that this last result also allows one 
to calculate A-Codim(f) using the computer, this was of course exploited. Q 

The question of determining the simple singularities will be postponed until 
Chapter 4, where a more detailed study of such map-germs will be carried out. 

3.3.1 The 1-Jets 

We will restrict our attention to germs of corank <1 at present. 

Lemma 3.3 (Rank Theorem) Let f: (R", 0) -p (RP, 0) be a smooth map- 

germ. 

1. If the rank of df at 0 is k then there exists germs of diffeomorphisms 0: 
(Rn, 0) -- f (R n, 0) and 0: (R', 0) -f (RR, 0) such that oofo0 is of the 
form 

x= (x1, 
... ' xn) H (x1, 

.... xk) fk+1(x), 
.... 

fpW) 

where fk+l, ..., 
ff c m, 2,. E(n, P). 

ý. If df has constant rank k on a neighbourhood of 0 then we can choose q5, 

so that the fi are identically zero. 
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We need part (1) of the Rank Theorem: assuming f is of corank 0 or 1 we see that, 
up to A-equivalence, it is of the form (x, y, f3, f4) or (x, f2, f3, f4) respectively. So 
the J'A-orbits of f are 

(x, y, 0,0) 1-determined, 
(x, 0) 0,0) (A) 

The reduction of f to these forms is obtained using the Ml,,, (g) filtration and 
is trivial in each case; though the computer also gives these orbits - the use of 
this filtration demonstrates the automation of our classification techniques. The 
determinacy calculation for the immersion is straight forward or can be seen from 
part (2) of the Rank Theorem, so we now consider the 1-jet (x, 0,0,0). 

3.3.2 The 2-Jets 

There are four J2A-orbits over (x, 0,0,0): 

(X, y2, xy, 0) (B), 
(x, y2,0,0) (C), 

(X, xy, 0,0) (D), 
(X, 0,0,0) (A). 

Remark. The above is easy to show. We can apply the A1-complete transversal 
methods, the resulting transversal giving the J3Ä-orbits to be of the form 

(x, aiy2 + blxy, a2y2 + b2xy, a3y2 + b3xy). 

Then, by standard linear algebra, if the rank of the matrix 

ai a2 a3 
bi b2 b3 

is 2 we can change coordinates to obtain (x, y2, xy, 0). If it is of rank 1 we may 
suppose (after change of coordinates) that either al 0 or bl # 0. Then, if 

al 0 we obtain (x, y2,0,0), and if bl 0 we obtain (x, xy, 0,0). Finally, if it is 

or rank 0 we have (x, 0,0,0). However, it is our intention to cut out such ad hoc 

calculations, no matter how trivial. Our computer methods are more automated 
but can give redundant jets if applied blindly. For example, at the (2,1)-level we 
obtain (x, 0,0, ay2), aER, as a family of jets; and then at the (2,3)-level obtain 
(x, 0, bxy, ay2). However, jets of this form are included in our `simpler' list of or- 
bits and are redundant. To get the list of orbits stated above consider (x, 0,0,0) 
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as a (2,2)-jet. Then the (2,3)-transversal gives the family of jets (x, aye, bxy, 0). 
Scaling gives: (i) (x, y2, xy, 0), (ii) (x, y2,0,0), (iii) (x, 0, xy, 0), or (iv) (x, 0,0,0), 
depending on whether a and b are non-zero. The (2, s)-transversals, for s>3, are 
empty for (i), (ii) and (iii) and we can now work with them as 3-jets. In (iv), the 
(2,4)-transversal gives (x, axy, 0,0) and scaling gives the orbits: (v) (x, xy, 0,0) 
and (vi) (x, 0,0,0); again the higher (2, s)-transversals are empty. However, (v) 
and (iii) are clearly in the same orbit and we need only consider (i), (ii), (v) and 
(vi) as 3-jets. (This demonstrates the redundant jets that can appear, as men- 
tioned above. ) These calculations are tedious but are easily handled, especially 
by computer. The method may be applied at all stages of the classification and 
is preferable to the ad hoc methods which are often employed (such as linear 
transformations, Tschirnhaus's transformation, completing squares, etc. ) which 
have limited scope. 

The numbering system used throughout the classification will be as follows. 
Each of the jets (A), (B), (C) and (D) above will be considered in its own sec- 
tion below. The jets which branch off at each higher jet-level will be numbered 
consecutively; this numbering only applies within the specific section, starting 
from (1) for each new section. Each branch will be pursued as far as necessary, 
that is until a non-simple jet arises, a series arises, or in some cases (for example 
where we choose to pursue the non-simples and families involving moduli) where 
the complexity of the higher orbit structures suggests a natural stopping point 
(further investigation should be dictated by future considerations with specific 
applications in mind). This method is preferred to the method sometimes em- 
ployed where all the 2-jets are considered, followed by all the resulting 3-jets, 

and so on. We feel it is easier for the reader to follow the classification though 
by pursuing each jet, in turn, until it is finished with. 

3.3.3 The 2-Jet (x, y2, xy, 0) 

A (3,1)-transversal for (x, y2, xy, 0) is {(0,0,0, y3)}; the higher (3, s)-transversals 
are empty. There are two J3A-orbits over (x, y2, xy, 0): 

(x, y2, xy, y3) 3-determined, 
(x, y2, xy, 0) (B). 
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The 4-transversal for (B) is empty. A (5,1)-transversal is {(0,0,0, y5)}; the higher 
(5, s)-transversals are empty. So there are two J5A-orbits over (x, y2, xy, 0): 

(X, y2, xy, y5) 5-determined, 
(X, y2, xy, 0) (B). 

Further calculation by the computer suggests the series of singularities: 

(X, y2, xy, y2k+1) (2k + 1)-determined, k>1. 

This is indeed the case. Since this is one of the easier examples we take this 
opportunity to demonstrate the calculations involved behind the classification 
method. The calculations needed to produce this series have also been carried 
out by West, [We]. 

Consider f= (x, y2, xy, 0) as a 2k-jet, for some k>1. Now 

al/ax = (1, o, y, o), of l ay = (o, 2y, x, O) 
The L 1-tangent space contains vectors of the form 

{x°'ybei: a+b=2k+1, a> 1, i=1,..., 4} 

and the vectors (y2k+l, 0,0,0), (0, y2k+1,0,0) follow (modulo mgr+2.9(2,4)) from 

Of lOx, Of lay, respectively. Finally, 

(0,01 y2k+i, 0) = y2kaf l aX - (y2)kel 

y2ka/ax(f) - '2a/au1(f)" 
(Note that for k= 1) u2ä/19ul E L9 but u25/äul V LA1, and the Al-transversal 

contains y3e3 as a redundant term - see the following Remark. ) Thus, a (2k + 

1)-transversal is {(0,0,0, y2k+1)}; strictly speaking a (2k + 1,1)-transversal is 

{(0,0,0, y2k+1) } but then all the (2k + 1, s)-transversals, for s>1, are found to 

be empty. So (after scaling) the two J2k+1. A. -orbits over f are 

(X, y2, xy, y2k+1) (2k + 1)-determined, 
(X, y2, zy, 0). 

For the second of these, consider f as a (2k + 1)-jet. We now have 

L9 "f m2k+2 E(2,4) 

and the (2k + 2)-transversal is empty. Thus, all germs over f are equivalent to 

one of the form (x, y2, xy, y21+1) for some 1>1, or have the same 1-jet as f for 

all 1>2. That is, f is a stem. 
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For the determinacy calculation we need to show that 

m2 22- 
k+2 S(2,4) C L9 f+ m2k+2 f*(m4) S(2,4) + m2k+4"E(2,4). 

for f= (x, y2, xy, y2k+1). Now, f*(m4). E2 = {x, y2}. S2 and m2k+2"f*(m4)"162 ID 
m2k+4 so we need only work modulo m2k+4 S(2,4); we also obtain every monomial 
of degree 2k +3 which involves x. Finally, 

y2k+3ei = u2u4ä/Ou (f) E LC1 - f. 

The monomials of degree 2k+2 can be obtained easily from the G1-tangent space. 

Remark. To stress further the power of our classification method and the pos- 
sible automation of the process, we compare it with the Al-complete transversal 
method. An Ai-3-transversal of (x, y2, xy, 0) is {(0,0, y3,0), (0,0,0, y3)} giving 
the family of 3-jets (x, y2, xy + ay3) by3). Clearly, if b0 then this is equivalent 
to (x, y2, xy, y3), and if b=0 then it is possible to find explicit changes of coor- 
dinates which reduce the jet to (x, y2, xy, 0). In more complicated examples this 

can be a problem and we must resort to use of the Mather Lemma to simplify 
the orbits. However, by extending the , 

A1 group to the unipotent group C9, we 
demonstrated above that such considerations were unnecessary. 

3.3.4 The 2-Jet (x, y2,0,0) 

The J3A-orbits over (x, y2,0,0) are: 

(x, y2, y3, x2y) 3-determined, 
(x, y2, y3 ± x2y, 0) (1), 
(x, y2, y3,0) (2), 
(x, y2, x2y, 0) (3), 
(x, y2,0,0) (C). 

This is straight forward using the same methods as for (x, 0,0,0) in Section 3.3.2. 
Either note that an , 

Ai-3-transversal is 

{(0,0,0, y3), (0,0, y3,0), (0,0,0, x2y), (0,0, x2y, 0)} 

and then use linear algebra to reduce to the stated forms, or use the M,,, (9)- 

filtration. In the latter case, considering (x, y2,0,0) as a (3,1)-jet gives the fol- 

lowing 3-jets: (x, y2, y3, x2y), (x, y2, y3 ± x2y, 0), (x, y2, y3,0), (the redundant jet 

(x, y2,0, x2y)), and finally, when we reach the stage of considering (x, y2,0,0) as a 
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(3,3)-jet, the (3,4) transversal gives (x, y2) x2y, 0) and (x, y2,0,0). The reason we 
need not consider (x, y2,0,0) as a (3,0)-jet is that the resulting jets are all equiv- 
alent to ones in the above `simpler' list. (The (3,1)-orbits are (x, y2,0, y3) and 
(x, y2,0,0). But continuing with (x, y2,0, y3) gives the 3-jets (x, y2, x2y, y3+x2y), 
(x, y2,0, y3 + x2y), (x, y2, x2y, y3) and (x, y2,0, y3); the first and third of these be- 
ing A-equivalent. Then each of these is A-equivalent to one in our previous list. ) 

(1) (x, y2, y3±x2y, 0) 

The only non-empty (4, s)-transversal of (x, y2, y3 ± x2y, 0) is {(0,0,0, x3y)} and 
the J4A-orbits over (x, y2, y3 ± x2y, 0) are: 

(X) y2, y3 ± x2y, x3y) 4-determined, 
(X, y2, y3±x2y, 0) (1)" 

Continuing with (1) we obtain the following series; the general calculation can 
be found in [We] : 

(X, y2, y3 ± x2y, xky) (k + 1)-determined, 

ý2ý (x, y2, y3, O) 

Working with the (4, s)-transversals of (x, y2, y3,0), the first 
J(070 

) 0, x3y)} giving the jets (x, y2, y3, x3y) and (x, y2, y3,0), 
empty in the former case and just {(0,0, x3y, 0)} in the later. 
J4A-orbits over (x, y2, y3,0): 

(x, y2, y3, x3y) 4-determined, 
(x, y2, y3 + x3y, 0) (4), 
(x, y2, y3,0) (2). 

k>3. 

non-empty one is 

and the rest are 
So there are three 

The only (5, s)-transversal of (4) is {(0,0,0, x4y)} giving the two J5A-orbits: 

(x, y2, y3 + x3y, x4y) 
(x, y2, y3 + x3y, 0) 

5-determined, 
(4). 

Continuing with (4) gives the series: 

(x, y2, y3 + x3y, xky) (k + 1)-determined, k>4. 
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Now consider (2) as a 4-jet. The J5. A-orbits over (x, y2, y3,0) are: 

(X, y2, y3, x4y) 5-determined, 
(x, y2, y3 ± x4y, O) (5), 

(X, y2, y3,0) (2). 

Then, (5) gives a series as (4) did and (2) extends similarly to the 6-jet-space. In 
summary, we obtain two series of singularities: 

(x, y2, y3, xky) (k + 1)-determined, k >_ 2, 
(x, y2, y3 ± xj YIX ky) (k + 1)-determined, 

j>2, k> j+1. 

The cases k=2 in the former and j=2 in the latter arose earlier. For these 
series, the general calculations can be found in [We]. 

(3) (x, y2, x2y, 0) 

The only non-empty (4, s)-transversal of (x, y2, x2y, 0) is {(0,0,0, xy3)} and the 
J4A-orbits are: 

(x, y2, x2y, xy3) (6), 
(X, y23 x2y, 0) (3)" 

ý6ý (x, y2, x2y, xy3) 

The only non-empty (5, s)-transversal of (x, y2, x2y, xy3) is {(0,0, y5,0)} and the 

J5A-orbits are: 

(X, y2, x2y ± y5, xy3) 5-determined, 
(X, y2, x2y, xy3) (6). 

Continuing with (6); the 6-transversal is empty, a 7-transversal is {(0,0, y7,0)} 

giving the J7A-orbits: 

(X, y2, x2y + y7, xy3) 7-determined, 
(X, y2, x2y, xy3) (6). 

This continues and gives the following series; refer to [We] for details, 

(x, y2, x2y± y2k+1, xy3) (2k + 1)-determined, k>2. 
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ý3) (x, y2, x2y, O) 

Now consider (x, y2) x2y, 0) as a 4-jet. A (5,1)-transversal is {(0,0,0, y5)} giving 
the two orbits: (x, y2) x2y, y5) and (x, y2, x2y, 0). For the first, the higher (5, s)- 
transversals are empty, while for the second a (5,2)-transversal is (0,0, y5,0) and 
the rest are empty. So, in total, the J5A-orbits over (x, y2, x2y, 0) are: 

(X, y2, x2y, y5) 5-determined, 
(X, y2, x2y ± y5, A) (7), 
(X, y2, x2y, 0) (3). 

ý7) (X, y2, x2y ± y5,0) 

The only non-empty (6, s)-transversal of (x, y2, x2y + y5,0) is {(0,0,0, xy5)} and 
J6A-orbits are: 

(x, y2, x2y ± y5, xy5) (8), 
(X, y2, x2y±y5,0) (7). 

(8) (x, y2, x2y±y57xy5) 

The only non-empty (7, s)-transversal of (x, y2, x2y± y5, xy5) is {(0,0,0, y7)} and 
we have a one parameter family of J7A-orbits over (x, y2, x2y ± y5, xy5): 

(x, y2, x2y ± y5, xy5 + ay7) 7-determined, a2 ±10. 

Here aER and the ±1 is respective of the ±y5 term in the jet. (So in the real 
case (x, y2) x2y+y5) xy5+ay7) is determined for all aER. ) Consider the `scaling' 

coordinate changes 
(x, y) F---> 

(eil 
x, e)2y) 

i 
(U1 

i 
Ü2 

i 
u3 

3 4) ý' (el 
1, e#U2 2, eµ3 31 e#U4 4) i 

for (fixed) )i, µi ER (c. f., Proposition 1.11). Then, reducing a to ±1 is equivalent 
to solving the linear system 

2A1 + i/2 + 113 = 03 Al + 5A2 + µ4 

5A2 + /i3 = 01 7 \2 + µ4 

that is, 

2A1 - 4A2 = 0, 

Al - 2A2 =- log(1/IaJ). 

= 0, 
= 1og(1/lal), 
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This is consistent only for a= ±1. So we cannot reduce a using `scaling'; this 
suggests it may be a modulus. However, to show a is a modulus we apply The- 
orem 1.9. Working with the group A in the standard 7-jet-space J7(2,4) with 
f= (x, y21 x2y ± y5, xy5 + ay7), we have 

(0,0,0, y7) V LA "f modulo 7n8 ., 
6(2,4), for all a, 

and it follows that a is a modulus. We remark that, in general, such calculations, 
where we must show that a vector is not in the tangent space, are extremely 
hard by hand. One of the functions of our computer package is to perform such 
calculations. 

Remark (Non-Simple Germs). We can rule out (8) and any jets above it 
(for example those which occur when the modulus a satisfies a2 ±1= 0) from 
being simple. In addition, the 6-jet (7) is non-simple and any higher degree 
jet over (7) can be excluded from the list of possible simple singularities. For 

consider working in some higher degree jet-space and suppose some jet j has 
6-jet (x, y2, x2y + y5) 0). Then any open neighbourhood of j must contain a jet 

with 6-jet (x, y2, x2y ± y5, Exy5) for some E 0. But from the previous complete 
transversal calculations, this jet is equivalent to (x, y2, x2y + y5) xy5 + ay7) for 

some aER. That is, any open neighbourhood of j contains a non-simple jet so, 
by definition, j is non-simple. Such arguments will be used several times in later 

sections to rule out simplicity. Note that the above argument proves that (3) is 

non-simple as a 6-jet (any neighbourhood contains (x, y2) x2y + 'Ely 5,62XY 5)), but 

we cannot rule (3) out as a non-simple 5-jet. However, the 6-jets above the 5-jet 
(3) are indeed non-simple, as will be seen in Section (3) below. 

Even though (7) and (8) can no longer provide examples of simple singular- 
ities, they do provide a rich supply of series. We firstly consider the degenerate 

values of the modulus a. 

Consider the 7-jet (x, y2, x2y ± y5) xy5 + ay7). This is 7-determined provided 
a2 ±10 (±1 respective of ±y5). If a2 ±1=0 then the 8-transversal is still 
empty, whereas a 9-transversal is {(0,0,0, y9)}. The J9A-orbits are: 

(X, y2, x2y±y5, xy5 +ay7±y9) 
(X, y2, x2y ± y5, xy5 + ay7). 

Continuing gives the series: 
(x, y23 x2y ±y51 xy5 + ay7 ± y2k+l) 

9-determined, 

(2k + 1)-determined, 
k>4, a2±1=0. 

This will be proved in a more general setting for (7) below. 
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ý7ý (x, y2, x2y+y5,0) 

The only non-empty (7, s)-transversal of (x, y2, x2 y± y5,0) is { (0,0,0, y7)1 and 
the J7A-orbits are: 

(x, y2, x2y ± y5, y7) 7-determined, 
(x, y2) x2y ± y5,0) (7). 

Continuing with (7) gives the following series: 

(x, y2, x2y± y5, xy2k+i + ay 2k+3) 
(x, y2ý x2y ± y5lxy2k+i + ayak+3 ± y2j+3) 
(X, y2 x2 y± y5 , y2k+i) (iii), 

where 

(i) (2k + 3)-determined, k>2, a2 ±10; 
(ii) (2j + 3)-determined, k>2, j>k+1, a2 ±1=0; 
(iii) (2k + 1)-determined, k>3. 

To see this consider f= (x, y2, x2y ± y5,0) as a (2k + 1)-jet for k>2. In the 

examples here, we can always obtain vectors of the form { xaybej :a>2} (modulo 

higher order terms) using the £1-tangent space. We therefore need only consider 
the vectors of the form {xybej} and { ybei } below. Now 

Of /äx = (1,0,2xy, 0), Of /äy = (0,2y, x2 f 5y4,0), 

and xy2k+lel, xy2k+1e2 follow from these, respectively. Also, 

2xy2k+ie3 = y2ka/ax(f) - Uta/aUj(f) 
and y2k+2ei c LL 1"f. A (2k + 2)-transversal is therefore {(0,0,0, xy2k+1)} and 
the J2k+2A-orbits are: 

(X, y2, x2y ± y5, xy2k+1), 
(X, y2, x2y±y5,0). 

Consider the first of these; put f= (x, y2, x2 y± y5, xy2k+1) . Now 

Of /äx = (1,0,2xy, yak+i), of lay = (0,2y, x2 ± 5y4, (2k + 1)xy2k), 

and y2k+3ei, y2k+3e2 follow from these, respectively. Also, modulo m2k+4. S(2,4) 

f4yak+se3 =yap-la/ay(f) - 2u2ä/N2(f) - u2-1 u3a/au3(f) 
76 



and xy2k+2ei E LL 1"f. However, we cannot obtain y2k+3e4 so a (2k + 3)- 
transversal is { (0,0,0, y2k+3) } and there is a one-parameter family of J2k+3. A- 
orbits: 

(X, y21 x2y ± y5) xy2k+1 + ay21+3) (2k + 3)-determined, 
a2±1#0. 

Trying to `scale' a to a unit leads to the same inconsistent linear system as 
encountered at the 7-jet-level. Indeed, with f= (x, y2, x2y ± y5, xy2k+i + ay2k+3) 

Of /ax = (1,0,2xy, yak+l)' 
Of /ay = (0,2y, x2 ± 5y4, (2k + 1)xy2k + a(2k + 3)yzk+2), 

and it is not hard to convince oneself (though we prefer to omit the full-blown 
calculations) that 

(0,0,0, y2' 3) ý LA "f modulo m2ý+4. S(2,4) 

so that a is a modulus. 

For the determinacy calculation we must check that all monomial vectors of 
degree 2k+4 and {y2k+5ei} are in Lg" f modulo rn2k+s E(2,4) (cf. the determinacy 

calculation in Section 3.3.3). Now, from earlier comments we need only check 
{y2k+4eil, {xy2k+3ei} together with {y2k+5ei}. The first is trivial. For the second 
note that 

xy2k+3 ei = 422640/Oui (f) 
- ay2k+5ei, 

so we need only check {y2k+5ei}. Now 

261U4a/&u (f) _ (X2y2k+1 + axy2k+3)ei, 

U2U3a/aUi(f) _ 

\(x2y2k+1 

± y2k+5)ei, 

so 

(axy2k+3T- y2k+5)ei c LC1 " 
f. 

But 
u2U419/19ui(f) = (xy2k+3 + ay2k+5)ei 

so 
rat ± 1ly2k+5ei E L. C1 

"f 

and f is (2k + 3)-determined for a2 ±10. 

Next, if a2 +1=0 then a (2k + 5)-transversal is {(0,0,0, y2k+5)}. Generally, 

if (x, y2, x2y ± y5, xy2k+1 + ay2k+3) is a (2j + 1)-jet for j>k+1, then from the 
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above calculations, we see that the (2j + 2)-transversal is empty. At the (2j + 3)- 
level: xy2j+2ei E LL, "f; y2j+3el and y2j+3e2 follow from a f/ax and af /ay, 

. 
E(2,4) respectively; and, modulo m2ý+4 

±4y2j+3e3 = y2'-'alay(f) - 2u2a/au2(f) - u2-lu3a/au3(f )" 

However, we cannot obtain y2j+3e4 so a (2j + 3)-transversal is {(0,0,0, y23+3)} 
and the J2j+3, A-orbits are: 

(x, y2ý x2y ± y5ý xy2k+1 + ay21 3± y2j+3 

(x, y2ý x2y ± y5ý xy2k+1 + ay2k+3). 
1 

The first is (2j + 3)-determined; the second is of the stated form. For the determi- 

nacy calculation we can work modulo m23+6. E(2,4) and, from earlier comments, 
need only check {y2j+4eil, {xy2j+3ei} and {y2j+5ei}. The first is trivial. For the 

second and third note that with 

f= (x, y27 x2y ± y5' 1y2k+1 + ay2k+3 + y2j+3) 

we have 

U2-k+lu4o/auiýfý = (xy27 +3 + ay2j+5)e2 modulo m2j+6 E(2,4), 

and the same trick as used above involving U1U4ö/aUi(f ), i2u3a/aui(f) and 

U2u4a/aUi(f) gives 
(±ay2j+5 ± xyaj+3)ei E LG1 - f, 

since a2 ±1=0. Combining these we obtain y2j+5ei, xy2j+3ei E LL1 f modulo 

m23+6 S(2,4), as a 0. 

It remains to consider (x, y2) x2y ± y5,0) as a (2k + 2)-jet. From of /ax 

and af lay we get y2k+3el and y2k+3e2; also y2k+3e3 follows (as in the (2k + 3)- 

transversal calculation for (x, y2, x2y ± y5) xy2k+1) above). We cannot obtain 

y2k+3e4 and a (2k + 3)-transversal is {(0,0,0, y2k+3)}. The J2k+3A-orbits are: 

(x, y2, x2y± y5, yak+s) 
(X, y2, x2y±y5,0). 

(2k + 3)-determined, 

The determinacy calculation is easy. 

y2k+5ei, but these clearly lie in LL 1 

We need only check xy2k+3ei, y2k+4ei and 

f. 
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ý3ý (x, y2, x2y, O) 

Consider the 5-jet (x, y2, x2y, 0). The only (6, s)-transversal is {(0,0,0, xy5)} and 
there are two J6A-orbits: 

(X, y2, x2y, xy5) (9), 

(x, y2, x2y, O) (3). 

As stated in Section (8), the 6-jet (3) is non-simple; the same argument shows 
the 6-jet (9) is non-simple. Any higher degree jet with 6-jet (3) or (9) can be 
excluded from our list of possible simple singularities. We will investigate briefly 
the behaviour of the higher degree jets over (9) and (3). 

The J7A-orbits over (9) are: 
(x, y2, x2y, xy5 + y7) 7-determined, 
(X, y2, x2y ± y7, xy5) 7-determined, 
(x, y2, x2y, xy5) (9). 

Continuing with (9) gives the series: 
(X, y2, x2y± y21+1, xy5) (2k+1)-determined, k>3. 

The J7A-orbits over (3) are: 
(x, y2, x2y, y7) 7-determined, 
(x) y2, x2y±y7, O), 
(x, y2, x2y, 0) (3)" 

Remark. Continuing with (3) gives series which resemble those discovered ear- 
lier. For instance, (9) can be likened with the 4-jet (6): (x, y2, x2y, xy3); and the 
J7A-orbits over (3) can be likened with the 5-jets (x, y2, x2y, y5), (7): (x, y2, x2y± 
y5,0) and (3): (x, y2, x2y, 0). This suggests the existence of a general, larger class 
of `series', starting from the 3-jet (x, y2, x2y, 0) and including the previous series 
as `sub-branches'. That is, the 3-jet (x, y2, x2y, 0) appears to be a stem. Al- 
though we have made some progress taking the classification further, there is no 
obvious stopping point and we choose to stop here. Further classification of jets 

over (x, y2, x2y, 0) is complicated by the fact that at each stage a finite number 
of extra branches occur. This behaviour is exhibited in (6) and (9) above. These 

are part of the branch (x, y2, x2y, xy2k+1) for k=1,2, respectively. Although a 
general series branches off in each case (involving the terms (0,0, y2i+1,0)), for 
(6) there are no `extra jets' but for (9) we obtain the extra 7-determined jet 
(x, y2, x2y, xy5 + y7). Similarly, for k=3 the extra jets (x, y2, x2y, xy7 + y9) and 
(x, y2, x2y, xy7+y11) crop up (these are 9- and 11-determined, respectively). Such 
behaviour is exhibited by all the cases, not just (x, y2, x2 y, xy2'+1) 
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3.3.5 The 3-Jet (x, y2,0,0) 

The J4A-orbits over (x, y2) 0,0) are: 

(X, y2, xy3, x3y) (1), 
(X, y2, xy3 ± x3y, O) (2), 
(X, y2, xy3A (3), 

(X, y2, x3y, 0) (4), 
(X, y2, O, O) (C). 

To see this use the same methods as Section 3.3.2 and Section 3.3.4: that is, 
either note that an Al-4-transversal is 

{(0,0,0, xy3), (0) 0, xy3,0), (0,0,0, x3y), (0,0, x3y, 0)} 

or use the Mr, 3(g)-filtration 
(starting with (x, y2,0,0) as a (4,2)-jet). 

(1) (x, y2, xy3, x3y) 

The J5A-orbits over (x, y2, xy3, x3y) are: 

(x) y2, xy3, x3y + y5) 
(x, y2, xy3, x3y) 

5-determined, 
(1), 

and continuing with (1) gives the series 

(XI yap xy3, x3y + yak+i) (2k + 1)-determined, k>2. 

Details of the calculation may be found in [We]. 

(2) (x, y2, xy3 ± x3y, 0) 

A (5,1)-transversal of (x, y2, xy3 ± x3y, 0) is {(0,0,0, y5)}; then, for all resulting 
(5,1)-orbits, the only higher non-empty (5, s)-transversal is the (5,5)-transversal: 

{(0,0,0, x4y)}. So the J5A-orbits over (x, y2, xy3 ± x3y, 0) are: 

(x, y2)xy3 ± x3y, y5 + ax4y) 
(x, y2, xy3 ± x3y, x4y) 
(X, y2, xy3±x3y, 0) 

5-determined, a -1, 
(5), 
(2). 

Trying to reduce a to a unit in the above 1-parameter family leads to an incon- 

sistent system of linear equations (cf. Section 3.3.4, Part (8)). Indeed, working 

with the group A in the 5-jet-space J5 (2,4) we find that 

(0,0,0, x4y) « LA - .f modulo m6. E(2,4), 
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so that by Theorem 1.9 a is a modulus. 

We now investigate the exceptional value of the modulus. Further calculation 
by computer predicts the series: 

(x, y2, xy3 ± x3y, y5 - x4y ± xky) (k + 1)-determined, 
k>5. 

Continuing with (5) we find that the 6-transversal is empty, so (5) represents 
the only J6A-orbit(s). Then the J7A-orbits are found to be: 

(x, y2, xy3 fYIX x4y ± y7) 7-determined, 
(x, y2, xy3 f x3y, x4y) (5). 

Further calculation by computer predicts the series: 

(X, y2, xy3 ±YIX x4y ± y2k+1) (2k + 1)-determined, 
k>3. 

Continuing with (2) we find that the J6A-orbits are: 

(x, y2, xy3 ± x3y, x5y) (6), 
(x, y2, xy3 ± x3y, 0) (2). 

For (6), further calculation by computer predicts the series: 

(x, y2, xy3 ±YIX x5y + y2k+1) (2k + 1)-determined, 
k>3. 

The three series predicted above occur as branches of the following, more 
general, series: 

(x, y2, xy3 ± x3yl y2k+1 + ax2ky) (1), 
(x, y2, xy3 ± x3yl y2k+1 + ax2ky f xiy) (11), 
(x, y2, xy3 ±YIX x2ky ± y2j+i) (iii), 
(x, y2, xy3 ±YIX x2k+iy + y2j+i) (iv), 

where 

(i) (2k + 1)-determined, k>2, 

a 54- -1 (k even), a0 ±1 (±1 respective of ±x3y) (k odd), 
(ii) (j + 1)-determined, k>2, j> 2k + 1, 

a= -1 (k even), a= +1 (±1 respective of ±x3y) (k odd), 
(iii) (2j + 1)-determined, k>2, j>k+1, 
(iv) (2j + 1)-determined, k>2, j>k+I. 
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We will describe the calculations for these four series. They were discovered by 

extending the above classification of (x, y2, xy3 ±x3 y, 0) into the 7-jet-space, and 
higher, using our computer classification package. 

Consider f= (x, y2, xy3 ± x3 y, 0) as a 2k-jet, for k>2. The following 

preliminary observations will be of use throughout the whole argument. Consider 

the monomial vectors of degree 1+1 for some 1; the cases 1 even and l odd will 
be considered separately. The monomials of degree 1+1 are 

y1+1 x2y1-1 x4y1-3 x6y1-5 

xyI x3y1-2 x5y1-4 

For 1 even the bottom row clearly lies in LC1 " f, and for 1 odd the top row 
clearly lies in LL 1"f. Now, by taking combinations of ula/aui(f ), Uta/aUi(f ) 

and U30/aUi (f ), we see that the following are in LL 1"f. 

1 even: (X2y1-1 ± x4y1-3)ei 
(X4y1-3 ± x6y1-5)ei 

(x6y1-5 ± X8y1-7)ei (t)" 

(X1-4y5 + xl-2y3)ei l(X1-2y3 
+ xly)ei 

So to obtain all monomial vectors of degree 1+1, it is sufficient to obtain x1 yei 

and yt+lei. 

1 odd: (xy1 ±X3 y 
1-2 )ei 

(X3y1-2 ± x5y1-4)ei 
(X5y1-4 ± x7y1-6)ei (+)" 

(X1-4y5 ± x1-2y3 )ei 

(X1-2y3 ± xly)ei 

So to obtain all monomial vectors of degree 1+1, it is sufficient to obtain x1yei. 

Now, f is a 2k-jet and 

Of/ox = (1,0, y3 ± 3x2y, 0), of /ay = (0,2y, 3xy2 ± x3,0), 
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so we can obtain (modulo mk+2. S(2,4)) X2/ýyel, y2k+le1, X2kye2 and y2k+le2 
2 

Also, 

±2x2kye3 = x2k-2alax(f) - uik-2a/aUl(f) -Pik-3a1aU3(f>, 
and then, from (t), we obtain x2y2k-le3i and since 

y2k-ZalaX(f) - U2-la/OUJ(f) - (0,0, y2k+i ± 3x2y21c-1,0) 

we obtain y2k+1e3 also. We cannot obtain y2k+1e4 or x2kye4 so the complete 

transversal theory gives the J2k+1A-orbits: 

(x, y2, xy3 ± x3y, y2k+i + ax2ky), 
(x, y2, xy3 ± x3y, x2ky), 
(x, y2, xy3 ± x3y, 0). 

Consider the first of these; put f= (X, y2, xy3 ± x3y, y2k+1 + ax2'y). Trying to 

`scale' a to a unit leads to the inconsistent system of linear equations 

2, \, - 2A2 = 0, 

2ka1 - 2k, \2 = log(1/IaJ). 

Now, 

Of lax = (1,0, y3 f 3x2y, 2kax2k-1y), 

of l ay = (0,2y, 3Xy2 ± x3, (2k + 1)y2k + ax2k), 

and working with the group A in J2k+1(2,4), it can be seen that 

(0,0,0, x2ky) V LA -f modulo m2k+2. E(2,4), 

though we prefer to omit the technical details. Thus, a is indeed a modulus. We 

now consider the determinacy calculation. Since 

m2k+2 f*(m2). E(2,4) D m2k+4 S(2,4) 
22 

we need only check the terms of degree 2k +2 and 2k + 3. From ($) we need only 
check x2k+lyei, and from (t) we need only check x2k+2yei and y2k+3ei. Now ($) 

gives 

(xy2k+1 
_ x5y2k-3)e. 1z 

(xy2k+1 ± x7y2k-5)ei 

(xy2k+1 
_ x9y2k-7) ei 1z 

E LL 1"f, and then 

E LL1 " f, 

E LGl " f, 
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and finally (there are k-1 such expressions) we obtain 

But, 

so 

(xy2k+1 + x2k+ly)ei E LL "f if k is odd, 
(xy2k+1 - x2k+ly)ej c L, C1 "f if k is even. 

U12G40/O2Gi(f) - 
(xy2' '+ ax2k+ly)ei 

(a T- 1)x2k+lyei E LL1 "f if k is odd, 
(a + 1)x2k+lyei E LC1 "f if k is even, 

and we have x2k+lyei E LL "f provided a ±1 (sign respective of ±x3y) for 
odd k, and provided a -1 for even k. Similarly (t) gives 

(a 1)x2k+2yei E LL "f if k is odd, 
(a + 1)x2k+2yei E LC1 "f if k is even, 

and we have x21+2yei E LL1 "f for the same conditions on a. Finally, 

U2U4Ö/&u (f) = (y2k+3 + ax2ky3)ei, 

and it follows that y1k+3ej E LL "f and that f is (2k + 1)-determined for the 
given conditions on a. 

Now suppose that a satisfies the degenerate conditions described above. This 

amounts to saying that the expression in xy2k+1 and x2k+1 y obtained above from 
($) is just 

(xy2k+1 + ax2k+ly)ei c LL, " f. 

Consider f= (x, y2, xy3 ± x3y, y2k+1 + ax2ky) as a j-jet, for j> 2k + 1. Then 

using (f) or ($) according to the parity of j, we find that a (j + 1)-transversal 
is { (0) 0,0, xi y) }. For example, when j is even we need x3* yei and yj+1ej. Now, 

x3 . yel, yj+lei, xjye2i yj+1e2, xýye3, and yj+le3 follow (modulo m2+2. x(2,4)) from 
af lax and af lay in the same manner as for the (2k + 1)-transversal calculation 
above. Note that using (t) as before, when we obtained x2k+2yei, gives 

(a 1)xiyei c LG1 "f if k is odd, 
(a+1)xjyeiELL, " f ifkiseven. 

The important point is that these hold for all values of j. That is, for the given 
conditions on a, we cannot obtain x yei in the same way that we could not obtain 
x2k+2 yei and x2k+1 yei, and this is the case for every j; we omit the full details. 
It now follows that {(O, 0,0, x3 y) } is a (j + 1)-transversal, since xaybe4 (where 
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a+b=j+1 and a> 1) then follows by (t), and if j= 2m then yý+le4 follows 
from 

u2 -ku4a/au4(f) = (y3+i +ax21cyj-2k+i)e4. 

The case j odd is similar. The Jj+1, A-orbits are of the form 

(x, y2, xy3 ± x, YI y2k+1 + ax2ky + bx y) 

where bER. Trying to scale b to a unit is equivalent to solving the linear system 

2) - 2A2 
jA1 

- 2kA2 

(3* - 2k)A1 

=0, 
= log(1/Ibl), 
= log(1/Ibl). 

This is consistent and we can scale b to ±1 provided it is non-zero. So the 
Jj+1. A-orbits are: 

(x, y2, xy3 ± x3y, y2k+1 + ax2ky ± xiy) (j + 1)-determined, 
(x, y2, xy3 ± x3y, yak+i + ax2ky). 

The second is of the previously considered form, so we need only consider the 
determinacy calculation. We can work modulo m2+4. S(2,4) and need only check 
xj+lyei, yj+2e,, xi+2yei and yi+3ei. Now, with f= (x, y2, xy3 ± x3y, yak+l + 
ax2ky ± x3y), 

2612 OMU (f) 
_ 

(xy2k+1 + ax2k+ly ± xj+ly)ei 

and, as noted above, from ($) we have 

(xy2k+i + ax2k+ly)ei E LL 1"f 

(since a satisfies the degenerate conditions) so xi+lyei E LL 1"f. If j is even then 
clearly yj+2ei E LL 1"f. For odd j, j= 2m +1 say, we have 

um -k+1U40/aUi(f) = (yi+2 + aX2kyj-2k+2)ei, 

modulo m2+3. S(2,4). But we already have xý+lyei so it follows from (t) (as j+1 
is even) that x2kyj-2k+2ei E L. C1 "f and therefore that yi+2ei E LG1 "f. The terms 

of degree j+3 follow similarly; now we start with iciu4öl äUi (f) and use (t). 

Now consider the (2k + 1)-jet f= (x, y2, xy3 ±YIX x2cy). Suppose this is a 
(2j + 1)-jet, for some j>k. Now, since x2j+lyei E LG1 - f, using ($) we see that 

the (2j + 2)-transversal is empty. So now consider f as a (2j + 2)-jet. We can 

85 



obtain x2j+2yei and y2j+3ei for i=1,2,3 in the same manner as for the (2k + 1)- 
transversal calculation; in fact, it is clear that x2j+2yei E L, C1 "f for all Z. So, 
from (t), a (2j + 3)-transversal is {(0,0,0, y2j+3)}. The J2j+3A-orbits are of the 
form 

(x, y2, xy3 ±X3 YI X x2ky + ay2j+3) 

where aER. Trying to scale a to a unit is equivalent to solving the linear system 

2A1 - 2)2 = 0, 

2kA1 - (2j'+ 2))2 = -1og(l/lal). 

This is consistent for the given j and we can scale a to ±1 provided it is non-zero. 
So the J2j+3. A-orbits are: 

(x, y2, xy3 ± x3y, x2ky ± y2j+3) (2j + 3)-determined, 
(x, y2, xy3 ± x3y, x2ky) 

The second is of the stated form, so we need only consider the determinacy 

calculation of the first. We can work modulo m2'+6. x(2,4) and need only check 
x2'ß+3yei, y2j+4ei, x2j+4yei and y23+5ei. Put f= (x, y2)xy3 ± x3y, x2ky ± y2j+3). 

'. E(2,4), Now, modulo m2+6 

x22+3yei = U2 -2k+3U409 auz(f 

and x2j+4yei is obtained similarly. Clearly y2j+4ei E LL1 f, and it remains to 

consider y2j+5ej. We have 

U2U4ö/3ui(f) = (x2ky3 ± y2j+5)ei, 

ulk-1u3a1 aui(f) = (x2ky3 ± x2k+2y)ei, 

Ui2L4Ö/(ý2Gi(f) _ 
(x 2k+2 y± x2y2j+3)ei. 

Since we have already shown that x2j+4yei E LL1 f (modulo m2'+6 S(2,4)) it 

follows from (t) that we obtain x2y2j+3ei, and therefore y2j+5e2, as well. 

Finally we must consider the (2k+1)-jet f= (x, y2, xy3±x3y, 0). From ($) we 

need only check the terms x2k+l yei. For i=1,2 these easily follow from Of lax 

and from af lay, and 

±2x2k+1ye3 = x2k-la/axýfý - 
2k-la/aU, (f) 

- 2Gik-2u3a/au3(f)" 

So a (2k + 2)-transversal is 1 (0,0,0, x2k+1 y) } and the J2k+2A-orbits are: 

(x, y2, xy3 ± x3y, x2k+1y)ß 
(x, y2, xy3 ± x3y, 0) 

" 
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For the second we are back to our original consideration of (x, y2, xy3 ± x3y, 0) 
as a jet of even degree. Consider the first as a (2j + 2)-jet, for some j>k. 
From (t) we need only check x2j+2yei and y2i+3ei. The first clearly lies in Lf1 "f 
and for i=1,2,3 we obtain the second using the usual arguments, as in the 
previous calculations. A (2J+ 3)-transversal is { (0,0,0, y2j+3) } and after `scaling' 

coordinate changes we find that the J2j+3A-orbits are: 

(x, y2, xy3 ±YIX x2k+ly ± y2j+3) (2j + 3)-determined, 
(x, y2, xy3 ±YIX x2k+ly) 

Using ($) we see that the (2j + 4)-transversal of the second is empty so the result- 
ing J2j+4, A-orbits have already been considered. The determinacy calculation for 
the first is almost identical to the previous determinacy calculation. 

Remark (Non-Simple Germs). All the series obtained above from the 5-jet 
(2): (x, y2, xy3 ± x3 y, 0) are non-simple. To see this we use the same argument 
as Section 3.3.4, (8): that is, any open neighbourhood of the given jet contains 
a jet equivalent to one in the unimodular family (x, y2, xy3 ± x3y, y5 + ax4y). In 

addition, the jets (3): (x, y2, xy3,0), (4): (x, y2, x3y, 0) and (C): (x, y2,0,0) are 
non-simple as 5-jets. However, we cannot rule them out as 4-jets and consider 
this next. 

(3) (x, y2, xy3, O) 

The J5A-orbits over (x, y2, xy3,0) are 

(x, y2 , xy3, y5 ± x4y) 5-determined, 
(x, y2 , xy3 + x4y, y5) (7), 
(x, y2 , xy3, y5) (8), 
(x, y2 , xy3, x4y) (9), 
(x, y2 , xy3 + x4y, 0) (10), 
(x, y2 , xy3,0) (3) 

Consider (x, y2) xy3,0) as a (5,0)-jet. A (5,1)-transversal is {(0,0,0, y5)} giving 
(after scaling) the (5,1)-orbits (x, y2, xy3, y5) and (x, y2, xy3,0). Consider the first 

of these. The (5, s)-transversals are empty for 2<s<4 but a (5,5)-transversal 

is {(0,0,0, x4y)} giving the (5,5)-orbits (x, y2, xy3, y5 ± x4 y) and (X, y2' Xy3' y5). 
For the first, all higher (5, s)-transversals are empty; for the second, the only 
higher non-empty transversal is the (5,6)-transversal: {(0,0, x4y, 0)}. In total, we 

obtain the J5A-orbits (x, y2, xy3, y5±x4y), (x, y2, xy3+x4y, y5) and (x, y2, xy3, y5) 
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Now consider the (5,1)-jet (x, y2, xy3,0). In a similar fashion, the (5,5)- and 
(5,6)-transversals lead to the J5A-orbits (x, y2, xy3, x4y), (x, y2, xy3 +x4y, 0) and 
(x, y2, xy3,0). 

Remark (Non-Simple Germs). By comparing (x, y2, xy3, y5 + x4y) (8), (9) 
and (3) with the unimodular family (x, y2, xy3 ± x3y, y5 + ax4y) we can use the 
argument of Section 3.3.4(8) to show that these are non-simple. For (7) note 
that any open neighbourhood of the 5-jet (x, y2, xy3 + x4y, y5) contains a jet of 
the form (x, y2, xy3 + EX3y + x4y, y5) for c 0. Applying scaling coordinate 
changes we can write this as (x, y2, xy3 ±x3y+x4MY 5) But this jet has (5,1)-jet 
(x, y2, xy3±x3y, y5) so, by the complete transversal calculation in Section 3.3.5(2) 
above, must be equivalent as a 5-jet to a member of the unimodular family 
(x, y2, xy3 ± x3MY 5+ ax4y). A similar argument shows (10) is non-simple. 

ý7) (x, y2, xy3 + x4y, y5) 

The only non-empty (6, s)-transversal of (x, y2, xy3 + x4y, y5) is {(0,0,0 
, x5y)} 

and the J6A-orbits are: 
(x, y2, xy3 + x4y, y5 ± x5y) 6-determined, 
(x, y2, xy3 + x4y, y5) (7). 

The only non-empty (7, s)-transversal of (X, y2, xy3 + x4y, y5) is {(0,0,0, x6y)} 
and the J7A-orbits are: 

(x) y2, xy3 + x4y, y5 + ax6y) 7-determined, a -1. 

We cannot `scale' a to a unit; indeed, using Theorem 1.9 and computer calcula- 
tion, we verify that a is a modulus. For a= -1, further calculation by computer 
predicts the series: 

(X, y2, xy3 + x4y, y5 - x6y ± xky) (k + 1)-determined, 
k>7. 

This has been checked by hand calculation; the details are similar to those given 
below for the series over (8). 

(8) (X, y2, xy3, y5) 

A (6,6)-transversal of (x, y2) xy3, y5) is {(0,0,0, x5y)}. The resulting orbits are 
(X, y2, xy3, y5 + x5y) and (x, y2, xy3, y5). All higher (6, s)-transversals are empty 
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for the first. For the second, a (6,7)-transversal is { (0,0, x5y, 0) }; the higher 
(6, s)-transversals are then empty for all of the resulting orbits. So, the J6A- 
orbits are: 

(X, y2, xy3, y5 + x5y) 6-determined, 
(XIy2, xy3±x5y, y5) (11), 
(x, y2, xy3, y5) (8). 

(11) (x, y2, xy3 ± x5y, y5) 

Continuing gives the 7-, 8- and 9-determined jets: 

(x) y2, xy3 ± x5y, y5 ± x6y) 
(x, y2, xy3 ± x5y, y5 ± x7y) 
(x, y2, xy3 ± x5y, y5 + ax8y) 

7-determined, 
8-determined, 
9-determined, a -1. 

It is verified that a is a modulus, and that for a= -1 the following series arises: 

(x, y2, xy3 ± x5y, y5 - x8y + xky) (k + 1)-determined, 
k>9. 

The details are discussed in a more general setting next. 

(8) (x, y2, xy3, y5) 

Continuing with (x, y2, xy3, y5) we obtain the following series: 

(x, y2, xy3, y5 ± x'y) 
(x, y2, xy3 ± xky, y5 ± xk+ly) 
(x, y2, xy3 ± xky, y5 ± xk+2y) 

(k + 1)-determined, 
(k + 2)-determined, 
(k + 3)-determined, 

(x, y2, xy3 ± xky, y5 ± x2k-3y) 

(x, y2, xy3 ± xky, y5 + ax2k-2y) 

(XI y21 xy3 ± xky, y5 _ xak-2y ±x y) 

(2k - 2)-determined, 
(2k - 1)-determined, 

a -1, 
(j + 1)-determined, 

j>2k-1, 

where k>4 (the case k=4 occurred earlier). Consider f= (x, y2) xy3, y5) as a 
k-jet, for k>5. It is clear that all monomial vectors of degree k+1 lie in LG1 " f, 

except those of the form x'yei. Now 

Of IOX = (1, O, y3,0), of /ay = (0,2y, 3XY2,5y4), 
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so Skye, and xkye2 follow, modulo m2+2. S(2,4). We cannot obtain 5kye4 so a 
(k + 1, k+ 1)-transversal is {(0,0,0, xky)} giving the orbits (x, y2, xy3, y5 ± sky) 
and (x, y2, xy3, y5). Denoting the first by f we have 

u1u419/aui(f) - u2u3a/aui(f) = fx1`+lyej, 

so that all higher (k + 1, s)-transversals are empty. For the second the only non- 
empty transversal is the (k + 1, k+ 2)-transversal: {(0,0, xky, 0)}. The Jk+1. A- 

orbits over (x, y2, xy3, y5) are: 

(x, y2, xy3, y5 ± xky) 
(x, y2, xy3 ± xcy, y5), 
(x, y2, xy3, y5) 

(k + 1)-determined, 

(8) 

For the determinacy calculation we can work modulo m2+4 S(2,4) and need 
only check the terms xk+lyei and xk+2yei. This is straight forward using the 
G1-tangent space. 

Now consider f= (x, y2, xy3±xky, y5) as a j-jet, for j> k+1. As above, we see 
that the first non-empty transversal is the (j + 1, j+ 1)-transversal: { (0,0,0, x3 y) }. 

The resulting orbits are of the form 

(x, y2, xy3 + xky, y5 + axjy) for acR. 

We will address the question of `scaling' shortly. Let f denote this family, then 

a flax = (1,0, y3 ± kxk-iy, t axi-ly), 
aflay = (0,2y, 3xy2 ±xk, 5y4 +axi). 

Now, 
xj-k+la/ax(f) - Uj-k+la/au1 (f) = (0,0, xj-k+ly3 f kx y, 0) 

modulo m2+2. E(2,4), and 

u1-kU319/au3(f) - 
(xj-k+ly3 + xjy)e3 

so we have xjye3. It follows that all higher (j + 1, s)-transversals are empty and 
the J'+1. A-orbits are given by the above family. Trying to `scale' a to a unit is 

equivalent to solving the linear system 

(k - 1)Al - 2A2 
j Al 

- 
4A2 

= 0, 

= 1og(l/lal), 
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which is consistent (for a ±1) provided j 2k - 2. So, for k+1<j< 2k -2 
the orbits are: 

(x, y2 1 xy3 ± xky, y5 ± xk+ly) (k + 2)-determined, 

(X, y2 , xy3 ± xky, y5 ± 12k-3y) (2k - 2)-determined. 

For the determinacy calculation we can work modulo m2+4 S(2,4) and need only 
check x3+lyei and xj+2yei. Then, 

U1U419/49Ui(f) = (xy5 + xj+ly)ei, 
U2U3Ö/326i(f) = (xy5 ± Xky3)ei, 

Ui-1u3a1 aui(f) = (xky3 ± x2k-ly)ei, 

and since j< 2k - 2, x2k-1yei E m2+3. E(2,4) and xj+lyei follows modulo 
m'2+3 e(2,4). Similarly, xý+2yei follows modulo m2+4 S(2,4), and this completes 
the calculation. 

Now consider the case j= 2k - 2, and put f= (x, y2, xy3 ±xky, y5 +ax2k-2y). 
This is (2k - 1)-determined, for a -1, and a is indeed a modulus. (To prove 
the latter we must show that (0,0,0, x2k-2y) V LA "f modulo m2k. S(2,4) - the 
details are extremely tedious and are omitted). Now 

Of /äx = (1,0, y3 ± kxc-ly, (2k - 2)axak-3y), 

of lay = (0,2y, 3xy2 ± xk, 5y4 + axak-a), 

and, as above, u1u419/19hi(f ), u2u319/19ui(f ), U1-1U3a/aUi(f) give us 
(xy5 + ax2k-ly)ei, (xy5 f xky3)ei, 

(xky3 ± x2k-lylei, 

and it follows that (a + 1)x2k-lyei E LC " f. It is then clear that f is (2k - 1)- 

determined for a -1. Now suppose a= -1 and consider f as a j-jet, for 

j> 2k - 1. As before, we need only check the terms x4 yei. These follow for i=1 

and i=2 from Of l Ox and Of /öy, respectively. Also, 

xj-k+la/ax(f) - Uj-k+la/aui (f) = (0,0, xj-k+ly3 ± kx y, 0ý 

modulo m2+2. S(2,4), and 

ui-ku3a/au3(f) = (Xý-k+ly3 ± xýy)e3 

so x3 ye3 E L9 "f. A (j + 1) -transversal is therefore 1 (0,0,0, x y) } and the Ji +'A- 

orbits are: 
(X, y2, xy3 ± xky, y5 - x2k-2y ± x3y) (j + 1)-determined, 
(X, y2, xy3 ± xky, y5 _ x2k-ay) 
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We need only consider the determinacy calculation. Again, we can work modulo 
ßn2+4 S(2,4) and need only check xj+lyei and xj+2yei . 

But, 

u12L419/19Ui(f) - u2u3a/aUi(f) ± ui-1U3a/3Ui(f) = (a + 1)x2k-iyei ± xj+lye1, 

and then xj+1 yei E L9 "f since a= -1. Similarly xj+2 yei E L9 "f and it follows 
that f is (j + 1)-determined. 

ý9) (x, y2, xy3, x4y) 

The 6-transversal of (x, y2, xy3, x4y) is empty, and the only non-empty (7, s)- 
transversal is 1 (0,0,0, y7) 1. The J7A-orbits are: 

(x, y2, xy3, x4y ± y7) 7-determined, 
(x, y2, xy3, x4y) (9) 

Further calculation by computer for (9) predicts the series: 
(X, y25 xy3, x4y ± y2k+1) (2k + 1)-determined, k>3. 

This is indeed the case, as shown by West. 

(10) (x, y2, xy3 + x4y, 0) 

The only non-empty (6, s)-transversal of (x, y2, xy3 + x4y, 0) is { (0,0,0, x5y) } and 
the J6-orbits are: 

(x, y2, xy3 + x4y, x5y) (12), 
(x, y2, xy3 + x4y, 0) (10). 

(12) (x, y2, xy3 + x4y, x5y) 

The only non-empty (7, s)-transversal of (x, y2, xy3 + x4y, x5y) is {(0,0,0, y7)} 
and the J7A-orbits are: 

(x, y2, xy3 +YIX x5y ± y7) 7-determined, 
(x, y2, xy3 + x4y, x5y) (12). 

Further calculation by computer for (12) predicts the series: 
(x, y2, xy3 + x4y, x5y ± y2k+1) (2k + 1)-determined, 

k>3. 

Again, this calculation has been done by West. 
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(10) (x, y2, xy3 + x4y, 0) 

We merely summarise the findings in this case. The J7A-orbits over (x, y2, xy3 + 
x4y, 0) are: 

(x, y2, xy3 + x4y, y7 ± x6y) 7-determined, 
(x, y2, xy3 + x4y, y7) (i), 
(x, y2, xy3 + x4y, x6y) (ii), 
(x, y2, xy3 + x4y, 0) (10). 

Continuing with (i) gives the following singularities: 

(x, y2, xy3 + x4y, y7 + x7y) 
(x, y2, xy3 + x4y, y7 + x8y) 
(x, y2, xy3 + x4y, y7 + ax9y) 

and the series: 

(x, y2, xy3 + x4y, y7 + x9y ± xky) 

Continuing with (ii) gives the series: 

(XI y21 xy3 +YIX xsy ± yak+l) 

(The case k=3 occurred above. ) 

The J8A-orbits over (x, y2, xy3 + x4y, 0) are: 

(x, y2, xy3 + x4y, x7y) 
(X, y2, xy3 + x4y, 0) 

Continuing with (iii) gives the series: 

(x, y2 1 xy3 + x4y, x7y ± y2k+1) 

The J9A-orbits over (x, y2, xy3 + x4y, 0) are: 

(x, y2, xy3 + x4y, y9 ± x8y) 
(X, y2, xy3 + x4y, y9), 
(X, y2, xy3 + x4y, x8y), 
(X, y2, xy3 + x4y, 0) 

8-determined, 
9-determined, 
10-determined, a#1, 

(k + 1)-determined, 
k> 10. 

(2k + 1)-determined, 
k>3. 

(iii), 
(10). 

(2k + 1)-determined, 
k>4. 

9-determined, 

(io). 
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These extend analogously to the 7-jets over (x, y2, xy3 + x4y, 0). Generally we 
obtain four orbits (modulo a factor of ±1 in the terms) of degree 2k + 1, for 
k>3, over (x, y2) xy3 + x4y, 0), and the second extends to a unimodular family 
in a higher degree jet-space (cf. (i) above). Such complications make the general 
series over (x, y2, xy3 + x4y, 0) hard to obtain. However, we have obtained the 
two series: 

(X, y23 xy3 + x4y, x2k+ly y2j+1) (2j + 1)-determined, 
k>2, j>_k+1, 

(X, y2, xy3 +YIX x2ky ± y2j+l) (2j + 1)-determined, 
k>3, j? k, 

(the cases k=2 and k=3 were shown above) which occur naturally during 
further classification. The details are similar to previous calculations and are 
omitted. 

(3) (x, y2, xy33 O) 

The first non-empty (6, s)-transversal of (x, y2, xy3,0) is the (6,6)-transversal: 
{(0,0,0, x5y)}. The corresponding orbits are (x, y2, xy3, x5y) and (x, y2, xy3,0). 
The higher (6, s)-transversals are empty for the first; the only non-empty transver- 

sal for the second is the (6,7)-transversal: {0,0, x5y, 0)}. Altogether, there are 
four J6A-orbits: 

(X, y27 xy3, x5y) (13), 
(x, y2, xy3 ± x5y, 0) (14), 
(X, y2, xy33 0) (3)" 

(13) (x, y2, xy3, x5y) 

Further calculation by computer predicts the series: 

(xý y27 xy3, x5y + y2k+l) (2k + 1)-determined, k>3. 

This is indeed the case, as shown by West. 

(14) (x, y2, xy3 ± x5y, 0) 

A (7,1)-transversal of (x, y2, xy3±x5y, 0) is {(0,0,0, y7)}. For all the resulting or- 

bits, a (7,7)-transversal is 1 (0,0,0, xsy) }; all higher (7, s)-transversals are empty. 

94 



The J7A-orbits are: 
(x, y2, xy3 ± x5y, y7 ± x6y) 
(x, y2, xy3 ± x5y, y7) 
(x, y2, xy3 ± x5y, x6y) 
(x, y2, xy3 ± x5y, 0) 

(15) (x, y2, xy3 ± x5y, y7) 

Further calculation gives the singularities: 

(x, y2, xy3 ± x5y, y7 + x7y) 
(x, y2, xy3 ± x5y, y7 ± x8y) 

(x, y2, xy3 ± x5y, y7 + x11y) 

7-determined, 
(15), 
(16), 
(14). 

8-determined, 
9-determined, 

12-determined. 

However, this is interrupted at the 13-jet-level by the occurrence of the unimod- 
ular family 

(x, y2, xy3 ± x5y, y7 + ax12y) 13-determined, a ±1, 

(where a ±1 is respective of the term ±x5y in the jet) and we choose not to 
investigate this further. 

(16) (x, y2, xy3 f x5y, x6y) 

Further calculation by computer predicts the series: 

(XI y2) xy3 ± x5y, x6y ± y2k+l) (2k + 1)-determined, 
k>3. 

This is indeed the case; though we omit the details, they are similar to previous 

cases. 

(14) (x, y2, xy3 ± x5y, 0) 

The only non-empty (8, s)-transversal of (x, y2, xy3 ± x5y, 0) is { (0,0,0, x7y) } and 
the J8A-orbits are: 

(x, y2, xy3 ± x5y, x7y), 
(x, y2, xy3 ± x5y, 0) (14). 
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Further calculation with the first of these gives the series: 
(x, y2ý xy3 ±YIX x7y ± y2k+1) (2k + 1)-determined, 

k>4. 

Again, we omit the details. 

ý14) (X, y2, xy3 f x5y, 0) (3) (x, y2)xy3,0ý 

We still have to consider the J9A-orbits over (14) and the J7A-orbits over (3), 
but we choose to halt the classification for both of these. Further results suggest 
what has already gone by is just part of a more general series. For example, the 
J9A-orbits over (x, y2, xy3 ± x5y, 0) are: 

(X, y21 xy3 ± x5y, y9 ± x8y) 9-determined, 
(X, y2, xy3 f x5y, y9), 
(x, y2, xy3 f x5y, x8y), 
(x, y2, xy3 f x5y, 0) (14). 

Compare with the J7A-orbits over (x, y2, xy3 + x5y, 0). More generally, the J7, A- 
orbits over (x, y2, xy3,0) are: 

(x, y2, xy3, y7 ± x6y) 7-determined, 
(x, y2, xy3 + x6y, y7), 
(x, y2, xy3, y7), 
(x, y2, xy3, x6y), 
(x, y2, xy3 + x6y, O), 
(x, y2, xy3,0) (3) 

" 

Compare with the J5A-orbits over (x, y2, zy3,0). 

Remark. The above suggests that if we continue we will find that all our ear- 
lier series are incorporated in a larger, more general, series. That is, the 4-jet 
(x) y2, xy3,0) appears to be a stem. So there is no obvious stopping point with the 
classification of jets over (x, y2, xy3,0), but we prefer to stop here. We do remark 
that our computer methods are capable of pursuing the classification further, as 
future considerations, such as specific applications to geometry, dictate. 

We now return to our penultimate 4-jet. 
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ý4) (x, y2, x3y, 0) 

The J5A-orbits over (x, y2, x3y, 0) are: 

(x, y2, x3y, y5 ± x2y3) 5-determined, 
(X, y2, x3y, y5) 5-determined, 
(x, y2, x3y + y5, x2y3) 5-determined, 
(x, y2, x3y + y5, A) (17), 
(x, y2, YIX x2y3) (18), 
(x, y2, x3y, 0) (4). 

To see this note that a (5,1)-transversal of (x, y2, x3y, 0) is {(0,0,0, y5)} giv- 
ing the (5,1)-orbits (x, y2, x3y, y5) and (x, y2, x3y, 0). For the first, the only 
higher non-empty (5, s)-transversal is the (5,3)-transversal: {(0,0,0, x2y3)}, and 
we obtain the J5A-orbits (x, y2, x3y, y5 ± x2y3) and (x, y2, x3y, y5). For the sec- 
ond, a (5,2)-transversal is {(0,0, y5,0)} giving the (5,2)-orbits (x, y2, x3y + y5,0) 
and (x, y2, x3y, 0). The only higher (5, s)-transversal in both cases is the (5,3)- 
transversal: {(0,0,0, x2y3)}, and the resulting J5A-orbits are as listed above. 

Remark (Non-Simple Germs). The 5-jet (x, y2, x3y, y5) and all jets with 5- 
jet (x, y2, x3y, 0) are clearly non-simple. Any open neighbourhood of such a jet 

contains a jet equivalent to one in the unimodular family (x, y2, xy3 + x3y, y5 + 

ax4y). We can rule out the others as being non-simple as well. For example, 
any open neighbourhood of the 5-jet (x, y2, x3MY 5+ x2y3) contains a jet of the 
form (x, y2, x3y + Exy3, y5 ± x2y3) for e 0. Applying scaling coordinate changes 
we can write this as (x, y2) xy3 ± x3MY 5+ bx2y3) for some bER. But this jet 
has (5,1)-jet (x, y2, xy3 ± x3y, y5) so, by the complete transversal calculation in 
Section 3.3.5(2), must be equivalent as a 5-jet to a member of the unimodular 
family (x, y2, xy3±x3y, y5+ax4y). A similar argument shows the remaining 5-jets 

are non-simple. 

(17) (x, y2, x3y + y5,0) 

The only non-empty (6, s)-transversal of (x, y2, x3y + y5,0) is {(0,0,0, xy5)} and 
the J6A-orbits are: 

(x, y2, x3y + y5, xy5) (19), 
(x, 

y2, x3y + y5,0) 
(17). 
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(19) (x, y2, x3y + y5, xy5) 

The only non-empty (7, s)-transversal of (x, y2, x3y + y5, xy5) is {(0,0,0, y7)}. It 
is easily checked that the parameter in the resulting 1-parameter family of jets 
can be scaled to ±1 if it is non-zero (cf. earlier cases) and the J7A-orbits are: 

(X, y2, x3y + y5, xy5 ± y7) 7-determined, 
(X, y2, x3y + y5, xy5) 7-determined. 

(17) (x, y2, x3y + y5,0) 

A (7,1)-transversal of (x, y2, x3y + y5,0) is {(0,0,0, y7)} and the resulting (7,1)- 

orbits are (x, y2, x3y+y5, y7) and (x, y2, x3y+y5,0). In both cases the only higher 
(7, s)-transversal is the (7,3)-transversal: {(0,0,0, x2y5)}. The J7. A-orbits (after 

scaling) are therefore: 

(x, y2, x3y + y5, y7 + x2y5) 7-determined, 
(x, y2, x3y + y5, y7) 7-determined, 
(x, y2, x3y + y5, x2y5) (20), 
(x, y2, x3y+y5,0) (17). 

(20) (x, y2, x3y + y5, x2y5) 

The only non-empty (8, s)-transversal of (x, y2, x3y + y5, x2y5) is {(0,0,0, xy7)} 

and (after scaling) there are two J8A-orbits: 

(x, y2ý x3y + y5ý x2y5 ± xy7) 
(x, y2, x3y + y5, x2y5) 

8-determined, 
8-determined. 
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(17) (X, y2, x3y + y5,0) 

Continuing gives the rather intricate series: 
(x, y2 ) x3y + y5 , xy2k+1 ± y2k+3) 1 

(x, y2, X3y+ y5, xy2k+1) 

(x, y21 x3y + y5, y2k+3 + x2y2k+1) 

(x, y2, x3y + y5, y2k+3) 

(x, yap x3y +y51 x2y2k+i ± xy2k+3) 

(x, y2, x3y + y5, x2y2k+1) 

(2k + 3)- determined. 
k>2, 

(2k + 3)- determined, 
k>2, 

(2k + 3)- determined, 
k>2, 

(2k + 3)- determined, 
k>2, 

(2k + 4)- determined, 
k>2, 

(2k + 4)- determined, 
k>2. 

This series was first encountered by West; however, its full nature only became 

apparent after classification using the computer. The details have also been 

verified by hand calculation - the original calculation was due to West so full 
details appear in [We]. 

(18) (X, y2, YIX x2y3) 

The only non-empty (6, s)-transversal of (x, y2, x3y, x2y3) is {(0,0, xy5,0)} and 
the J6A-orbits are: 

(x, y2, x3y ± xy5, x2y3) (21), 
(x, y2, x3y, x2y3) (18). 

(21) (x, y2, x3y ± xy5, x2y3) 

The 7-transversal gives the J7A-orbits over (x, y2, x3y ± xy5, x2y3) as the bimod- 

ular family: 

(x, y2, x3y * xy5 + by7, x2y3 + ay7) 7-determined, 

a3: F 2a2+b2+a 0. 

Indeed, working with the group A in the 7-jet-space J7(2,4), it is verified by 

computer that { (0,0, y7,0), (0,0,0, y7) } forms an independent set to L, 4 "f, where 
f is the above family. That is, 

{ basis for LA - fin J7(2,4) }U{ (0,0, y7,0), (0,0,0, y7) } 
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is an independent set, so by Theorem 1.9 a and b are both moduli. The determi- 
nacy calculation was performed by computer and shows that f is 7-determined for 
generic a and b, that is, (a, b) not lying on the cubic curve a3 p 2a2 + b2 +a=0 
(where :: F2a2 is respective of +xy5 in f). For the obvious reasons we will not 
investigate the non-generic behaviour. 

(18) (X, y2, YIX x2y3) 

Pursuing this jet further gives the following singularities: 
(X, y2, x3y + ay7, x2y3 + y7) (i), 
(X, y2, x3y + ay7 + y2k+1, x2y3 + y7) (ii), 

23723 (x, y ,x y+y ,x y) (iii), 
(X, y2, x3y, x2y3) (18). 

where 

(i) 7-determined, a2 ±10 (±1 respective of ±y7), 
(ii) (2k + 1)-determined, k >_ 4, a2 ±1=0, 
(iii) 7-determined. 

The J8A-orbits over (x, y2, x3y, x2y3) are: 
(x, y2, x3y ± xy7, x2y3), 
(x, y2, x3y, x2y3) (18). 

We do not consider these further; compare with (21). 

ý4ý (x, y2, x3y, O) 

As noted in Section 3.3.5 Part (2), any jet with 5-jet (x, y2, x3y, 0) is non-simple. 
We will not consider this jet further, apart from remarking on the following two 

stems which are easily obtained. Further calculation gives the J6A-orbits over 
(XI y2, x3y, 0) as : 

(x, y2, x3y, xy5), 
(X, y21x3y±xy5, O), 
(x, y2, x3y, O) (4). 

We shall only consider the first of these. The J7A-orbits over (x, y2, x3y, xy5) are: 
(x, y2, x3y + ay7, xy5 + y7) 
(x, y2, x3y + y7, xy5) 
(x, y2, x3y, xy5)" 

7-determined, a 1, 
7-determined, 
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In the first the parameter a is a modulus. By considering the exceptional value 
of a and also continuing with the jet (x, y2, x3y, xy5) we then obtain the following 
two series: 

(X, y2, x3y + y7 + y2k+1, xy5 + y7) (2k + 1)-determined, 
k>4, 

(X, y23 x3y + y2k+l, xy5) (2k + 1)-determined, 
k>3. 

We prefer to omit the details of the calculations. 

3.3.6 The 4-Jet (x, y2,0,0) 

Previous calculations do not allow us to immediately say that any jet with 4- 
jet (x, y2,0,0) is non-simple. Further calculation shows the J4A-orbits over 
(x) y2,0,0) are of an extremely complex nature; an Al-5-transversal contains 
six terms (using the unipotent group does improve matters) and moduli are 
present immediately. However, this now allows us to rule out all such jets, with- 
out resorting to arguments on counting codimensions' of orbits and families as 
has often been employed in the past. By appealing to the complete transversal 

method we not only rule out the non-simples but also obtain the J5A-orbits over 
(x, y2) 0,0) and therefore extend the classification as a bonus! 

Using the MT, S 
(! )-filtration we proceed to to classify the (5, s)-orbits over 

the 4-jet (x, y2,0,0). As in Section 3.3.2 and Section 3.3.4 we must be care- 
ful and avoid redundant orbits (for example, all of the orbits over the (5,1)- 

jet (x, y2) 0, y5) are redundant; they are equivalent to orbits over the (5,2)-jet 
(x, y2, y5,0)). The calculation was performed by computer. Alternatively, we can 
resort to the A1-transversal techniques, but, as before, the simplification of the 

orbits must be performed by hand and is fairly tedious. For reference we note 
that an Al-5-transversal for (x, y2,0,0) is 

{(O, 0,0, y5), (0,0, y5,0), (0,0,0, x2y3), (0,0, x2y3,0), (0,0,0, x4y), (0,0, x4y, 0) }, 

and, with respect to the Mrs (g)-filtration method, the same vectors occur, being 

part of the (5,1)-, (5,2)-, (5,3)-, (5,4)-, (5,5)- and (5,6)-transversals, respec- 
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tively. In summary, the J5A-orbits over (x, y2,0,0) are: 

(x, y2, y5 + ax4y, x2y3 ± x4y), 5-determined, 
a 0, -1, (x, y2, y5 + x4y, x2y3), 5-determined, 

(x, y2, y5, x2y3), 

(x, y2, y5 ± x2 y3, x4y) 5-determined, 
(x, y2, y5 ± x2y3 + ax4y, 0), 

(x, y2, y5, x4y), 
(x, y2, y5±x4y, o), 
(x, y2, y5,0), 
(x, y2, x2y3, x4y), 
(x, y2, x2y3 ± x4y, 0), 
(x, y 

2 
x2y3 , 

0), 
(x, y 

2, 
x4y, 0), 

(x, y2, 0,0) (c) 
" 

Now, using the same argument as in Section 3.3.4 Part (8), say, it follows that 
any jet with 5-jet one of the above is non-simple. For example, any open neigh- 
bourhood of (x, y2) y5 ±x2 Y3) x4y) contains the 5-jet (x, y2, y5 ±x2 Y3, ex2y3 + x4y) 
for some f 0. The latter jet is J5A-equivalent to a jet of the form (x, y2, y5 + 

ax4y, x2y3 ± x4y) and is therefore not simple. 

We do not investigate the above jets further, but now turn our attention to 
the 2-jet (D). 

3.3.7 The 2-Jet (x, xy, 0,0) 

We now return to the 2-jet (D): (x, zy, 0,0). The classification of jets over this 
2-jet is far more intensive than the classification of jets over (x, y2,0,0) performed 
above. In particular, our computer package performed most of the work below. 
The search for series over (x, xy, 0,0) is not as fruitful as in the previous sections. 
In this section we mainly content ourselves with ruling out the non-simples over 
(x, xy, 0,0). The classification was taken a lot further using the computer than 

suggested below, looking for series at higher jet-levels. In most cases the results 
did not suggest series and were not of enough general interest to include below. 
When a non-simple is encountered we will often just say that this jet is not con- 
sidered further; the classification was taken further by computer and the results 
were used as our criterion for stopping. 
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There are six J3A-orbits over (x, xy, 0,0): 

(x, xy, y3, xy2) (1), 
(x, xy, y3,0) (2), 
(x, xy + y3, xy2,0) (3), 
(x, xy + y3,0,0) (4), 
(x, xy, xy2,0) (5), 
(x, xy, 0,0) (D). 

To see this use the same methods as in Section 3.3.2. An ., 41-3-transversal is 

{(0,0,0, y3), (0,0, y3,0), (0,0,0, xy2), (0, y3,0,0), (0,0, xy2,0)}, 

then use linear algebra and elementary coordinate changes to reduce the resulting 
family of jets to the given forms. Alternatively, use the M,., s 

(9) -filtration. Con- 

sider (x, xy, 0,0) as a (3,1)-jet. A (3,2)-transversal is {(0,0, y3,0), (0,0,0, xy2)} 
and the resulting (3,2)-orbits are (x, xy, y3, xy2), (x, xy, y3,0), (x, xy, 0, xy2) and 
(x, xy, 0,0). The higher (3, s)-transversals are empty in the first and second 
cases and we therefore obtain the corresponding J3A-orbits. The only non-empty 
transversal for the third is the (3,3)-transversal: { (0, y3,0,0) }, but all the result- 
ing orbits will be equivalent to ones stated above and we may therefore rule out 
this case. So now consider (x, xy, 0,0) as a (3,2)-jet. The only non-empty (3, s)- 
transversal is the (3,3) transversal: { (0, y3,0,0), (0,0, xy2,0) } and we obtain the 
(3,3)-orbits (x, xy + y3, xy2,0), (x, xy + y3,0,0), (x, xy, xy2,0) and (x, xy, 0,0). 
The higher (3, s)-transversals are empty in each case so we obtain the stated 
J3A-orbits. 

We remark that the above calculation, using the Mr, s 
(! )-filtration, can be 

performed in its entirety using the computer and is extremely slick. However, 
for the A1-transversal method we must resort to hand calculations and it is a lot 

more cumbersome to reduce the resulting orbits to those stated above. 

Remark (Determinacy Calculations Using the Computer). 
For fC m2. E(2,4), if 

m2+i S(2,4) C Lý .f+ m2 +i f*(m4). S(2,4) + m2k+2. E(2,4) 

then f is k-determined. The determinacy calculation can therefore be performed 
in the jet-space J2k+1 (2,4) - this is necessary for computer calculation. However, 

the calculations can be very intensive, and the smaller the degree of the jet-space 

needed, the better. In the earlier cases, where f had 2-jet (x, y2) 0,0), since 
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m2+1 f *(m4) E2 3 m2+3 we need only work in the jet-space Jk+2(2,4). This no 
longer applies to germs with 2-jet (x, xy, 0,0). However, for the 3-jets (1), (2), 
(3) and (4) above we can work in Jk+3(2,4); and the determinacy calculations 
performed below for the 4-jets over (5) may be done in Jk+4(2,4), as will be seen. 
The majority of the determinacy calculations below were performed by computer 
using these observations. 

(1) (x, xy, y3, xy2 ) 

The only non-empty (4, s)-transversal of (x, xy, y3, xy2) is {(0,0,0, y4)} and there 
are two J4A-orbits: 

(x) xy, y3, xy2 + y4) 4-determined, 
(x, xy) y3, xy2) (1) 

" 
Continuing with (1), we find that a (5,1)-transversal is {(0,0,0, y5)} and the 

resulting orbits are (x, xy, y3) xy2 + y5) and (x, xy, y3, xy2). The higher (5, s)- 
transversals are empty in the first case; for the second a (5,3)-transversal is 
{(0, y5) 0,0)} and the orbits are (x, xy+y5, y3, xy2) and (x, xy, y3, xy2). All higher 
(5, s)-transversals are empty and the J5A-orbits are: 

(x) zy, y3, xy2 + y5) 5-determined, 
(X, zy + y5) y3, xy2) 5-determined, 
(x) xy, y3, xy2) (1)" 

Next, the 6-transversal of (x, xy, y3, xy2) is empty, so this jet represents the only 
J6A-orbit. Continuing with (1) gives the following series: 

(x) xy, y3, xy2 + yak+1) (3k + 1)- determined, k>1, 
(x, xy, y3, xy2 + yak+2) (3k + 2)- determined, k>1, 
(x, xy + yak+2, y3, xy2) (3k + 2)- determined, k>1. 

To see this consider f= (x, xy, y3, xy2) as a 3k-jet, for some k>1. Using the 
£1-tangent space we can obtain the vectors xaybej of degree 3k + 1, where a>1 
(because the components of f include xyl, for 1=0,1,2, and yam, for m> 1). 

Now 

of /ax - (1, Y, O, y2), af/ay = (0, x, 3y2,2xy), 

and we can can obtain yak+lel modulo m2k+2. E(2,4). Also, 

y3k+1e2 = y3ka/ax(f) - Ukal aUi (f), 

3y3k+1e3 = yak-la/ay(f) - 2G3-1u4a/au2 (f) 
- 22612G3Ö/Öu4(f ), 
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again working modulo m2k+2. S(2,4). A little thought shows we cannot obtain 
yak+1 e4, so a (3k + 1)-transversal is 1 (0,0,0, yak+1) } and the J3k+1 A-orbits are: 

(x, xy, y3, xy2 + y3k+l) (3k + 1)-determined, 
(XI xy, y3, xy2) (1). 

For the determinacy calculation we can work modulo m3k+5. S(2,4). Put f= 
(x, xy, y3) xy2 + yak+1) . 

Firstly consider the terms of degree 3k +2 and work 
modulo m3k+3. E(2,4). As before we can obtain the vectors xaybei, for a>1, 
using the . 

C1-tangent space. Now 

of/ax = (1, y, 0, y2), Of lay = (0, x, 3y2,2xy + (3k + 1)y3k), 

and yak+2el follows from af /öx. Also, 

(,, 3k+1 00 0) _ -xy2a/ax(f) + u4a/19ul (f) + 
u1u3a/au2(f) + u2u30/au4(f), (y3k+1' o, o, y3k+3) = y3k+1a/ax(f ), 

so yak+2e2 E Lg "f modulo m2»+3. E(2,4). (Note that u4a/au1 E L9 but 

u49/Du1 ¢ LA1. ) Finally, 

3y3k+2e3 = y3kö/Dy(f) - 2G1263(/au2(f) - 2U22G3Ö/3u4(f ), 

and 

(0A y3k+1A0) = -xya/ax(f) + u2a/au1(f) + 

u4a/au2 (f) + uiu30/au4 (f ), 
(o, y3k+1, o y3k+2) = y3ka/ax(f) - U3a/aUl(f 

), 

so yak+2e3 and yak+2e4 are both in L9 " f. (Again it is worth noting that whereas 

u20/aul, 'a40/au2 and u ß/aul are contained in Lg they are not contained in 
LA1, for k=1. ) We now consider the terms of degree 3k +3 and work modulo 
m2k+4 E(2,4). As before we can obtain the vectors xaybei, for a>1, using the 
G1-tangent space. Clearly, yak+3ei E LL, f, so now consider the terms of degree 
3k + 4; again we need only consider the vectors yak+4ei. We can obtain yak+4e1 
from Of /äx, and 

yak +4e2 
= yak+3a/au(f) - 2d3-Fla/aUl (f 

modulo m3k+5 E(2,4). Now 

U3U419/oUi(f) = (xy5 + y3k+4)ei, 
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and 

(0,0,3xy5,0) = xy3a/ay(f) - u2 1U30/aU2 (f) - 
2u1u2u3a/au4(f) 

- 
(3k + 1)uiu3+l a/au4(f ), 

(0,0,0, xy5) = xy3a/ax(f) 

- u1u39/49ul (f) - u2u3a/au2(f 
), 

so we obtain yak+4e3 and yak+4e4. It now follows that f is (3k + 1)-determined. 

Next consider the (3k + 1)-jet f= (x, xy, y3, xy2) and compute the (3k + 2)- 
transversals. As before, we need only concern ourselves with the vectors yak+2ei. 
We cannot obtain yak+2e4 so a (3k + 2,1)-transversal is {(0) 0,0, yak+2)} giving 
the (3k + 2,1)-orbits (x, xy, y3, xy2 + y3k+2 ) and (x, zy, y3, xy2). Firstly consider 
f= (x, xy, y3, xy2 + yak+a). Then, 

äf /äx = (1, y, 0, y2), Of /(9y = (0, x, 3y2,2xy + (3k + 2)y3'ß+1), 

and, modulo m3k+3. S(2,4), 

3y3k+2e3 = y3ka/a2J(f) - 2G1263a/a262(f) - 2U22G3a/a2G4(, f ), 

y3k+2 e2 = -xya/ax(f) + u2a/aul(f) + u409/19u2(f) + ulu3a/au4(f 
), 

(note that u2D/3ul and u40/au2 are in L!; ) and finally yak+2el follows from 

of/Ox. So all the higher (3k + 2, s)-transversals are empty. Now consider the 
(3k + 2,1)-jet (x, xy, y3, xy2). We can obtain y3k+2 e3 and yak+2el as above, but 

not yak+2e2. A (3k + 2,3)-transversal is {(0, yak+2,0,0)}; for both of the resulting 
orbits the higher (3k + 2, s)-transversals are empty. So the Jak+2A-orbits over 
(x) xy, y3, xy2) are: 

(x) xy, y3) xy2 + y3k+2) (1), 
(XI xy + y3k+27 y31 xy2) (11) 
(x, xy, y37 xy2) (1)" 

Consider (i) and (ii), these are both (3k + 2)-determined. For the determinacy 

calculations we can work modulo m3k+6 E(2,4). Firstly consider the terms of 
degree 3k +3 and work modulo m3k+4. S(2,4). Then for both (i) and (ii), the 

vectors xt ybej, for a >_ 1, follow as before, and the vectors y3k+3ei clearly lie in 
L, C1 "f. Now consider the terms of degree 3k +4 and work modulo m2k+5. E(2,4). 
As before we need only consider the vectors y3k+4ei. For y3k+4el, y3k+4e2 and 
y3k+4e3i the following observations apply to (i) and (ii). The vector y3k+4el 
follows from af /äx and 

y3k+4e2 = y3k+3al ax(f) 
- U3+1a/aul (fl, 

3y3k+4e3 = yak+2a/8y(f) -u u419/au2(f) - 24114.43+la/au4(f)" 
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Then, for case (i) we have 

(-x y" y2 0,0, y3k+4) 

(xy2,0,0,0) 

and for case (ii) we have 

(-xy, 0,0, yak+4) 

(xy, 0,0,0) 

= yak+2a/au(f) - U3+1a/aU2(f) - u4a/aul(f), 
_ xy2a/ax(f) - ulu3a/au2(f) - u2u3a/9u4(f); 

= y3k+2a/au(f) - u3+la/au2(f) - u2a/aUl(f)) 
= xya/ax(f) - u4a/au2(f) - UIU3a/aU4(f); 

so that y3k+4 e4 follows in both cases. Finally consider the terms of degree 3k +5 
and work modulo m2k+6. E(2,4). As before we need only consider the vectors 
yak+5ei. For (i) and (ii) yak+5e1 follows from Of /ax. Now, for case (i) 

(xy5 + y3/c+5)e2 = u3U4a/au2 (f ), 

(0, Xy5,0,0) = Xy4a/au(f) 
- u2'a3a/aul (f) - u1u39/09u4(f 

), 

and for case (ii) 

(xy4 + y3k+5)e2 = u2u30/19a2 (f ), 

(0, xy4,0,0) = xy3a/ax(f) 
- uiu319/au1(f) - U3u4a/aN(A 

and we obtain yak+5e2 in both cases. Similarly, yak+5e3 and yak+5e4 follow from 

U04a/OUi(f) 
xy3al oy(f ) 
xy3alax(f) 

for case (i); and from 

U22G3DMUi(, f ) 

xy2O/ay(f) 
xy2a/ax(f) 

(xy5 + y3k+5)ei, 

(0, X2y3,3xy5,2X2y4 + (3k + 2)xy3k+4), 

= (xy3, xy4,0, xy5), 

_ (xy4 + y3k+5)ei, 

_ (0, X2y2 + (3k + 2)xy3k+31 3xy4,2x2y3), 

= (xy2, xy3,0, xy4), 

for case (ii). We can therefore deduce that (i) and (ii) are (3k + 2)-determined. 

It remains to consider the (3k + 2)-jet (x, xy, y3, xy2). In this case 

mrk+3. E(2,4) C L9 "f 

so that the (3k + 3)-transversal is empty. We are therefore back to our original 

consideration of (x, xy, y3, xy2) as a jet of degree a multiple of 3. 
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ý2) (X, xy, y3, O) 

The only non-empty 
J4A-orbits are: 

(2) (X, xy, y3,0) 

(4, s)-transversal of (X, xy, y3,0) is { (0,0,0, y4) 1 and the 

(x, xy, y3, y4) 4-determined, 
(x, xy, y3,0) (2) 

A (5,1)-transversal is {(0,0,0, y5)} and the resulting orbits are (x, xy, y3, y5) and 
(x, xy, y3,0). The higher (5, s)-transversals are empty in the first case; while in 
the second only the (5,3)-transversal contributes. In total, we obtain the J5A- 

orbits: 
(x, xy, y3, y5) 5-determined, 
(x, xy + y5, y3,0) (6), 
(X, xy, y3, A) (2). 

ý6ý (x, xy+y5, y3, O) 

The only non-empty (6, s)-transversal is {(0,0,0, xy5)} and the J6A-orbits are: 

(x, xy+y5, y3, xy5) 
(x, xy + y5, y3 A 

ý7ý (x, xy + y5, y3, xy5) 

Continuing we find that J7A-orbits are: 

(x) xy + y5y3xy5 + y7) 
(x) xy + y5, y3, xy5) 

Next, the J8A-orbits over (8) are: 

(x, xy+y5, y37xy5±y7+ay8) 

(7), 
(6). 

(8), 
(7). 

8-determined, 
for all aER. 

Computer calculation using the group A in J8(2,4) shows that a is indeed a 

modulus. It follows from the standard arguments (see Section 3.3.4) that any jet 

with 7-jet (7): (x, xy + y5, y3, xy5) is non-simple. The jet (x, xy + y5, y3, xy5) is 

not considered further. 
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ý6) (x, xy+y5, y3,0) 

The only non-empty (7, s)-transversal of (x, xy+y5, y3,0) is {(0,0,0, y7)} and the 
J7Ä-orbits are: 

(x, xy + y5, y3, y7) (9), 
(X)xy+y5, y3,0) (6). 

It now follows that any jet with 7-jet (x, xy + y5, y3, y7) or (x, xy + y5, y3,0) is 
non-simple since a neighbourhood of such a jet contains a jet equivalent to one 
from the unimodular family (x, xy + y5, y3, xy5 ± y7 + ay8). Further classification 
with (9) gives the singularities: 

(x, xy + y5, y3, y7 + y8) 8-determined, 
(x, xy + y5, y3, y7) 8-determined. 

Continuing with (6) suggests the existence of an intricate series involving moduli; 
however, (6) is non-simple as a 7-jet and we will not consider it further. 

ý2) (X, xy, y3,0) 

The only non-empty (6, s)-transversal of (x, xy, y3,0) is { (0,0,0, xy5) } and the 
J6A-orbits are: 

(x, xy, y3, xy5) (10), 
(x, xy, y3,0) (2). 

ý10ý (x, xy, y3, xy5 

The only non-empty (7, s)-transversal of (x, xy, y3) xy5) is {(0,0,0, y7)} and the 
J7A-orbits are: 

(x, zy, y3, xy5 + y7) (11), 
(x, xy, y3, xy5) (10). 

Comparison with the unimodular family (x, xy + y5, y3, xy5 ± y7 + ay8) shows that 

any jet with 7-jet (x, xy, y3, xy5 + y7) or (x, xy, y3, xy5) is non-simple. We will 

not consider these jets further, apart from noting that there are two J8A-orbits 

over (x, xy, y3, xy5 + y7), both 8-determined: 

(X)xy, y33xy5+y7+y8) 
(x, xy, y3, xy5 + y7) 

8-determined, 
8-determined. 
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(2) (X, xy, y3, O) 

The only non-empty (7, s)-transversal of (x, xy, y3,0) is {(0,0,0, y7)} and the 
J7A-orbits are: 

(XIxy, y3, y7) (12), 
(XIxy, y3,0) (2). 

Again, these jets are non-simple and we can rule them out from further consid- 
eration. We will just note that the J8A-orbits over (x, xy, y3, y7) are determined: 

(x, xy, y3, y7 + y8) 8-determined, 
(x, xy, y3, y7) 8-determined. 

Having dealt with the (2): (x, xy, y3,0), we now return to the 3-jet (3). 

ý3) (X, xy + y3, xy2, O) 

A (4,1)-transversal of (x, xy + y3) xy2,0) is { (0,0,0, y4) } giving the orbits (x, xy + 
y3, xy2) y4) and (x, xy + y3, xy2,0). In the first case, the higher (4, s)-transversals 
are empty so we may now consider this as a 5-jet. In the second case, the only 
non-empty (4, s)-transversal is the (4,2)-transversal: {(0,0, y4,0), (0,0,0, xy3)}. 
In total, we obtain the J4A-orbits: 

(x, xy + y3, xy2, y4) (13), 
(x, xy + y3, xy2 + ay4, xy3) (14), 
(x, xy + y3, xy2 + ay4,0) (15). 

For cases (14) and (15) we cannot scale a to a unit. Computer calculation verifies 
that a is a modulus in both of these cases. 

(13) (x, xy + y3, xy2, y4) 

The only non-empty (5, s)-transversal of (x, xy + y3, xy2, y4) is {(0,0, y5,0)} and 
the J5A-orbits are: 

(X, xy + y3, xy2 + y5, y4) 5-determined, 
(x, xy + y3, xy2, y4) (13). 

The 6-transversal of (x, xy + y3) xy2, y4) is empty. Continuing leads to the series: 

(x, xy + y3) xy2 + y2k+1, y4) (2k + 1)-determined, k>2. 

The details are similar to previous cases and we omit them. 

110 



(14) (X, xy + y3, xy2 + ay4, xy3) 

The only non-empty (5, s)-transversal is {(0,0,0, y5)}; this is the case for all 
values of a. The J5A-orbits form the bimodular family: 

(x, xy + y3, xy2 + ay4, xy3 + by5) 5-determined (t). 

(t) The conditions on the moduli a and b which are required for determinacy are 
given by the computer determinacy check and are pretty complicated. However, 
we can deduce from the computer calculation that the family is 5-determined 
for generic (a, b). To see this we merely observe that the computer determines a 
finite set of algebraic curves, and the condition that (a, b) does not lie on any of 
these curves, is sufficient for determinacy. Each curve determines a submanifold 
of R2 (or C2, depending on context) of codimension 1, except at a finite number 
of singular points. The complement is therefore open and dense (in fact, is the 
complement of a null set). We will not consider this jet further. 

(15) (x, xy + y3, xy2 + ay4,0) 

For a2,2 or 2, the only non-empty (5, s)-transversal of (x, xy + y3, xy2 + ay4,0) 
is { (0,0,0, y5) 1. For the exceptional values of a the J5A-orbits have a more 
complicated structure. We will not discuss these, but just note that for generic 
a (specifically, a not equal to the above values) the J5A-orbits are: 

(x, xy + y3, xy2 + ay4, y5) 5-determined (t), 
(x, xy + y3, xy2 + ay4,0) (15). 

(t) The remarks in (14) apply. The computer determinacy check gives com- 
plicated conditions on the modulus a, but allows us to say that the family is 
5-determined for generic a. (That is, for all a except for the roots of a finite 

number of algebraic equations. ) We will not discuss the exceptional values, nor 
the J6A-orbits over (15). Having dealt with the orbits over (3) we now return to 

the 3-jet (4). 

(4) (X, xy+y3, O, 0) 

The first non-empty (4, s)-transversal of (x, xy + y3,0,0) is the (4,1)-transversal: 
{(0,0,0, y4)}. However, the resulting J4A-orbits are redundant. Consider (x, xy+ 
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y3,0,0) as a (4,1)-jet; a (4,2)-transversal is {(0,0, y4,0), (0,0,0, xy3)}. The re- 
sulting (4,2)-orbits are (x, zy + y3, y4, xy3), (x, xy + y3, y4,0), (x, xy + y3,0, xy3) 
(which is redundant and need not be considered) and (x, xy+y3,0,0). The higher 
(4, s)-transversals are empty in all but the last case, where a (4,3)-transversal is 
{(0,0, xy3,0)}. All higher transversals are then empty and the J4A-orbits are: 

(x, xy + y3, y4, xy3) (16), 
(x, xy + y3, y4,0) (17), 
(x, xy + y3, xy3,0) (18), 
(x, xy+y3,0,0) (4)" 

Any open neighbourhood of such a jet will contain a jet equivalent to one in 
the unimodular family (14): (x, xy + y3, xy2 + ay4, xy3). So these four jets are 
non-simple. The full nature of the orbits above these is complicated; we will just 
look at each briefly. 

(16) (x, xy + y3, y4, xy3) 

The only non-empty (5, s)-transversal of (x, xy + y3, y4, xy3) is {(0,0,0, y5)} and 
the J5A-orbits form the family: 

(x) xy + y3, y4, xy3 + ay5). 

Computer calculations verify that a is a modulus. The 6-transversal for this 
family is empty provided a -1 and a5; for such values the only non-empty 
(6, s)-transversal is 1(0 

, 0,0, y6) }. The J6. A-orbits are therefore: 

(x, xy + y3, y4, xy3 + ay5), 
(x, xy+y3, y43xy3 - y5 +y6), 
(x, xy + y3, y4, xy3 +5 y5 + y6) . 

We will only consider the first; but even this one is complicated by the fact that 

the 7-transversal is { (0,0,0, y7) } only for a -1 and contains further terms 

otherwise. We just note that the following are the J7A-orbits: 

(x, xy + y3, y4, xy3 + ay5 ± y7) 7-determined, all aER, 
(x, xy + y3, y4, xy3 - y5 ± xy6) 7-determined, 
(x, xy + y3, y4, xy3 + ay5) 7-determined, a ±1. 

(17) (x, xy + y3, y4,0) 

A (5,1)-transversal for (x, xy+y3, y4,0) is {(0,0,0, y5)}. For both of the resulting 

orbits the only higher (5, s)-transversal is the (5,3)-transversal: {(0,0,0, x2y3)}. 
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The J5A-orbits are therefore: 
(x, xy + y3, y4, y5 ±X2 y 3) 5-determined, 
(x, xy + y3, y4, y5) 5-determined, 
(x, xy + y3, y4, x2y3), 
(x, xy + y3, y4,0) (17). 

The J6A-orbits over (x, xy + y3, y4, x2y3) are then: 

(x, xy + y3, y4, x2y3 + y6), 
(x, xy + y3, y4, x2y3), 

and the first determined jet arises from (x, xy+y3, y4, x2y3+y6) at the 7-jet-level: 
(x, xy + y3, y4, x2y3 + y6 + ay7) 7-determined, a -1. 

Here a is a modulus. We will not discuss the exceptional value of a nor the orbits 
over the 6-jet (x, xy + y3, y4) xzy3) 

Of more interest is (17); the J6A-orbits over (x, xy + y3, y4) 0) are: 
(x, xy+y3, y4, y6), 
(x, xy + y3, y410) (17). 

Then continuing with (x, xy + y3, y4, y6) gives the series: 

(x, xy + y3, y4I y6 +y 2k+l) (2k + 1)-determined, k>3. 

We omit the details of the calculation. The J7Ä-orbits over (17) are: 
(x)xy+y3, y4, y7+xy6), 
(x, xy + y3, y4, y7), 
(x, xy + y3, y4, xy6), 
(x, xy + y3, y410) (17). 

These are not considered further. 

(18) (X, xy+y3, xy3, O) 

Further calculation shows that the J5A-orbits over (x, xy + y3, xy3,0) are quite 
intricate: 

(x, xy + y3, xy3 + xy4, y5), 
(x) xy + y3, xy3, y5), 
(x, xy + y3, xy3 + ay5, xy4), 
(x, xy+y3, xy3+ay5,0), 
(x, xy + y3, xy3 +5 y5 + xy4,0), 

where the parameter a appearing in two of the above cases is a modulus. These 

must be taken into the 6- and 7-jet-spaces and even the first case leads to com- 

plicated structures for the orbits. We do not pursue these further. 
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ý4) (X, xy+y3, O, 0) 

We do not consider this 4-jet further. To hint at some of the difficulties now 
present, we just remark that if we were using the A1-complete transversal methods 
then the resulting 5-transversal has six terms. Even using the unipotent group 
C does not improve matters much. We now return to the 3-jets. 

(5) (x, xy, xy2,0) 

The rest of this section will just be a brief excursion, studying the jets over 
(x) xy, xy2,0). Our main aim is to show the remaining jets are non-simple so that 
they may be excluded from further consideration. 

Now, a (4,1)-transversal of (x, xy, xy2,0) is {(0,0,0, y4)} and the resulting or- 
bits are (x, xy, xy2, y4) and (x, xy, xy2,0). All higher (4, s)-transversals are empty 
in the first case. For the second a (4,2)-transversal is {(0,0, y4,0), (0,0,0, xy3)} 
and, after scaling, we obtain the orbits (x, xy, xy2 + y4, xy3), (x, xy, xy2 + y4,0), 
(x, xy, xy2, xy3) and (x, xy, xy2,0). For the first two cases the higher (4, s)- 
transversals are empty. For the latter two, only the (4,3) -transversal is non- 
empty: { (0, y4,0,0) }. The J4A-orbits over (x, xy, xy2,0) are therefore: 

(x, xy, xy2, y4) (19), 
(x, xy, xy2 + y4, xy3) (20), 
(x, xy, xy2 + y4,0) (21), 
(x, xy + y4, xy2, xy3) (22), 
(x, xy, xy2, xy3) (23), 
(x, xy + y4, xy2,0) (24), 
(x, xy, xy2,0) (5). 

The usual arguments show that, by comparison with the unimodular family (14): 

(x, xy + y3, xy2 + ay4, xy3), any jet with 4-jet (20), (21), (23) or (5) must be 

non-simple. We will briefly discuss the structure of the orbits over these jets and 

also rule out the others as being non-simple. 

(19) (x, xy, xy2, y4) 

The only non-empty (5, s)-transversal of (x, xy, xy2, y4) is { (0,0, y5,0) } and the 
J5A-orbits are: 

(X, xy, xy2 + y5, y4) (25), 
(x, xy, xy2, y4) (19). 
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(25) (x, zy, xy2 + y5, y4) 

The first non-empty (6, s)-transversal is the (6,2)-transversal: {(0,0, y6,0)}. For 
both of the resulting orbits the only other non-empty transversal is the (6,3)- 
transversal: { (0, y6,0,0) }. After scaling the J6A-orbits are therefore: 

(x, xy + ay6, xy2 + y5 + y6, y4), 
(x, xy±y6, xy2 +y5, y4), 
(x, xy, xy2 + y5, y4) (25). 

Computer calculation proves a is a modulus. It can now be seen that all of these 
jets are non-simple. Continuing, the J7A-orbits over the first and second form 

the trimodular and bimodular families: 

(x, xy + ay6 + by71 Xy2 + y5 + y6 + cy7, y4) 

(x) xy±y6+ay7, xy2+y5+by7, y4) 

7-determined, 
for all a, b, c, 

7-determined, 
for all a, b, 

respectively. The J7A-orbits over (25) are: 

(x, xy+ay7, xy2 +y5 ±y7, y4) 
(X) xy ± y7, xy2 + y5, y4) 
(x, xy, xy2 +y5, y4) 

7-determined, for all a, 
7-determined, 
7-determined. 

(19) (x, xy, xy2, y4) 

Further calculation gives the J6. A-orbits over (x, xy, xy2, y4) as follows: 

(x, xy + y6, xy2 + y6, y4), 
(X, xy, xy2 + y6, y4), 
(x, xy + y6, xy2, y4), 
(x, xy, xy2, y4) (19). 

Then, due to the unimodular family (x, xy+ay6, xy2+y5+y6, y4) obtained above, 

any jet with 6-jet one of the above four is not simple. 

(20) (x, xy, xy2 + y4, xy3) 

The only non-empty (5, s)-transversal is {(0,0,0, y5)} and the J5A-orbits over 

(XI xy, xy2 + y4, xy3) form the family: 

(x, xy, xy2 + y4, xy3 + ay5). 
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Computer calculations verify that a is a modulus. We will not consider this 
further, only note that the 6-transversal is empty for generic a, and that the 
exceptional values complicate the situation. In fact, the J6A-orbits are: 

(X, xy, xy2 + y4, xy3 + ay5), 
(x, xy, xy2 + y4, xy3 + y6), 
(X, xy + y6, xy2 + y4, xy3), 
(x, xy, xy2 + y4 ± y6, xy3 + 3y5), 

but then, even for the first, there are several J7A-orbits. 

(21) (x, xy, xy2 + y4,0) 

Again, the only non-empty (5, s)-transversal is {(0,0,0, y5)} and the resulting 
J5A-orbits are: 

(x, zy, xy2 + y4, y5), 
(x, xy, xy2 + y4, A), (21). 

We already know that any jet with 4-jet (x, xy, xy2 + y4,0) is not simple so these 
are both excluded from our list of simple singularities. We just note that the 
6-transversal of the first, (x, xy, xy2 + y4, y5), is empty, and then the J7A-orbits 

provide the following 7-determined jets: 

(x, xy + ay7, xy2 + y4, y5 ± y7) 
(x, xy ± y7, xy2 + y4, y5) 
(x, xy, xy2 + y4, y5) 

7-determined, for all a, 
7-determined, 
7-determined. 

(22) (x, xy + y4, xy2, xy3) 

The first non-empty (5, s)-transversal is the (5,1)-transversal: {(0,0,0, y5)}, and 
the resulting orbits are (x, xy + y4, xy2, xy3 + y5) and (x, xy + y4, xy2, xy3)" The 

higher (5, s)-transversals are empty in the first case, and in the second case only 
the (5,2)-transversal: { (0,0, y5,0) }, contributes. The resulting J5A-orbits are: 

(x, xy + y4, xy2, xy3 + y5), 
(x, xy + y4, xy2 + ay5, zy3). 

It is verified that a is a modulus in the second. We do not consider these further, 
just eliminate the first from being simple. A 6-transversal is { (0,0, y6, O) J and 
the J6A-orbits over (x, zy + y4, xy2, xy3 + y5) form the family: 

(x, xy + y4, xy2 + ay6, xy3 + y5), 

where a is a modulus (as usual, verified by computer). 
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(23) (X, xy, xy2, xy3) 

We already know that any jet with 4-jet (x, xy, xy2, xy3) is non-simple. We do 
not consider this jet further; the structure of the higher orbits is complicated by 
extreme branching. This is not surprising if one considers the terms present in 
the jet. For instance, the JSA-orbits form several branches: 

(x, zy, xy2, xy3 + y5), 
(x, xy, xy2 + y5, xy3), 
(x, xy + y5, xy2) xy3), 
(x, xy, xy2, xy3) (23), 

and such branching occurs for several higher levels. 

(24) (x, zy + y4, xy2,0) 

The first non-empty transversal is the (5,1)-transversal: {(0,0,0, y5)}, giving 
the (5,1)-orbits (x, xy + y4, xy2, y5) and (x, xy + y4, xy2,0). The higher (5, s)- 
transversals are empty in the first case. In the second case a (5,2)-transversal 
is {(0,0, y5,0), (0,0,0, xy4)}; all higher transversals are empty. The J5A-orbits 

over (x, xy + y4, xy2,0) are: 

(x, xy + y4, xy2, y5), 
(x, xy + y4, xy2 + ay5, xy4), 
(x, xy + y4, xy2 + ay5,0). 

In the second and third cases a is a modulus and we do not consider these further. 
To show the first is non-simple we note that a 6-transversal is { (0,0, y6,0) } and 
the resulting J6A-orbits are: 

(x, xy+y4, xy2 +y6, y5), 
(X, xy+y4, xy2, y5)" 

Then, further calculation gives the J7A-orbits over (x, xy + y4, xy2 + y6, y5) as: 

(X, xy + y4, xy2 + y6 + by7, y5 + ay7) 7-determined, 
for all a, b. 

The calculation to show a and b are moduli was performed by computer (to- 

gether with the determinacy calculation, noted on passing). Then, by the usual 

arguments, it follows that any jet with 6-jet (x, xy + y4, xy2 + y6, y5) or (x, xy + 

y4, xy2, y5) is non-simple, and we will not consider these further. 
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ý5) (X, xy, xy2,0) 

We already know that any jet with 4-jet (x, xy, xy2,0) is non-simple. Branch- 
ing occurs for several higher levels and we will just list the J5A-orbits over 
(X, xy, xy2,0) to give an indication of this: 

(x, xy, xy2, y5), 
(X, xy, xy2 + y5, xy4), 
(X, xy, xy2 + y5,0), 
(X, xy + y5, xy2, xy4), 
(x, xy, xy2, xy4), 
(X, xy + y5, xy2,0), 
(X, xy, xy2,0) 

3.3.8 The 3-Jet (x, xy, 0,0) 

We now return to the 3-jet (D): (x, xy, 0,0). There are six J4A-orbits over this 
jet: 

(x) xy, y4, xy3) (1), 
(x, xy, y4,0) (2), 
(x, xy + y4, xy3,0) (3), 
(X)xy+y4,0,0) (4), 
(X, xy, xy3A (5), 
(X, xy, 0,0) (D). 

To see this use the same methods as in Section 3.3.2. An Ä1-3-transversal is 

{ (0,0,0, y4), (0,0, y4,0), (0,0,0, xy3), (0, y4,0,0), (0,0, xy3,0) }, 

then use linear algebra and elementary coordinate changes to reduce the resulting 
family of jets to the given forms. Alternatively, use the Mr, s(9)-filtration; the pro- 
cedure is entirely analogous to the calculation of the J3A-orbits over (x, xy, 0,0) 

using the (3, s)-transversals - see Section 3.3.7. Continuing the classification 
leads to rather complex structures and we will just concentrate on showing that 
any jet with 4-jet one of the above is non-simple. 

Consider some jet j with 4-jet either (1), (2), (5) or (D). Then any open neigh- 
bourhood of j must contain a jet equivalent, as 4-jets, to (x, xy+y3) xy2+ay4, xy3) 

and by Section 3.3.7 Part (3) we see that j is therefore not simple. Whereas, if j 

has 4-jet either (3) or (4) then any open neighbourhood of j must contain a jet 

equivalent, as 4-jets, to (x, xy + y3, y4, xy3). But then, by Section 3.3.7 Part(16), 
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this jet must be equivalent, as 5-jets, to (x, xy + y3, y4, xy3 + ay5) and is therefore 
not simple. 

We do not consider these 4-jets further, but now return to the final 2-jet. 

3.3.9 The 2-Jet (x, 0,0,0) 

The J3A-orbits over (x, 0,0,0) are: 

(X, y3, xy2, x2y) (1), 
(X, y3 f x2y, xy2,0) (2), 
(x, y3, xy2,0) (3), 

(x, y3, x2y, 0) (4), 
(X, y3+x2y, 0,0) (5), 
(X, y3,0,0) (6), 

(x, xy2, x2y, 0) (7), 
(x, xy2,0,0) (8), 
(X, x2y, 0,0) (9), 
(X, 0,0,0) (A). 

This follows from the usual techniques, see, for example, Section 3.3.2. For 
reference we will state an Al-6-transversal; the same terms appear when we use 
the unipotent group 9, the corresponding (3, s)-level is indicated below too: 

(0,0,0, y3), (3,1), 
(0,0, y3,0), (0,0,0, xy2), (3,2), 
(0, y3,0,0), (0,0, xy2,0), (0,0,0, x2y), (3,3), 
(0, xy2,0,0), (0,0, x2y, 0), (3,4), 
(0, x2y, 0,0) (3,5). 

The details are similar to previous cases. Note that the (3,1)-jet (x, 0,0, y3) and 
the (3,2)-jets (x, 0, y3, xy2), (X, 0, y3,0) and (x, 0,0, xy2) are all redundant - they 

are equivalent to jets obtained at the (3,3)-, (3,4)- and (3,5)-levels. There is a 
slight abnormality in the proceedings which we include for completeness, however. 

Remark (Simplifying Families). Continuing the classification for the (3,1)- 

jet (x, 0,0, y3) we obtain, at the (3,5)-level, the jets 

(X, x2y, xy2 + ax2y, y3 + x2y) and (x, 0, xy2 + ax2y, y3 f x2y)" 

The first is equivalent to (x, x2y, xy2, y3) and poses no problems. However, in 

the second we cannot apply `scaling' type coordinate changes to reduce a to a 
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unit, yet it is not a modulus. Indeed, working with the group A in J3(2,4) with 
f= (x, 0, xy2+ax2y, y3+x2y) we find that the tangent space LA -f is of dimension 
26 and contains the vector (0,0, x2y, 0) provided 3a2 ±40 (the ±4 is respective 
of the sign of the x2ye4 term in the jet). When 3a2 ±4=0 this fails and the 
dimension drops to 25. Thus, by the Mather Lemma, this family collapses into a 
finite number of orbits. For example, consider the case (x, 0, xy2+ax2y, y3 -x2y). 
In the real case we obtain the orbits 

(x) 0, xy2, y3 - x2y), 
(x, 0, xy2 + x2y, y3 - x2y), , 73 
(X, 0, xy2 + 2x2y, y3 - x2y) 

In the complex case the first and the last are certainly equivalent. The above 
forms are rather cumbersome but this at least suggests that simplification is 
possible and motivates us to try and reduce (x, 0, xy2 + ax2y, y3 - x2y) to some 
normal form, in particular, one of the forms listed as the J3A-orbits above. Now, 
the source coordinate change 

(x, y) F--' (x, y -lax) 

reduces the xy2 + ax2y term to x(y2 - 4a2x2). So f is A-equivalent to 

(x 0, 
-1a2x33- 

Saxy 2+ 3a2 ±1 x2y + (ia3 la)x3) 
>> y41y2 (4 

-s 2 

which is equivalent to 

(x, 01 xy2, y3 + (4a2 ± 1)x2y)" 

So, we can reduce f to one of the stated normal forms, namely (x, y3±x2y, xy2,0) 
if 3a2 ±4 0 0, and (x, y3, xy2,0) otherwise. Apart from these extra considerations 
for the family (x, 0, xy2 + ax2y, y3 ± x2y), everything follows though smoothly to 

produce the list of J3A-orbits stated above. 

(1) (x, y3, xy2, x2y) 

A (4,1)-transversal for (x, y3, xy2) x2y) is {(0,0,0, y4)} and the resulting orbits 
are (x, y3, xy2, x2y + y4) and (x, y3, xy2, x2y). All higher transversals are empty 
in the first case, and just the (4,2)-transversal {(0,0, y4,0)} in the second. The 

resulting J4A-orbits are: 

(X, y3, xy2, x2y + y4), 
(x, y3, xy2 + y4, x2y), 
(X, y3, xy2, x2y) (1)" 
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The only non-empty (5, s)-transversal for the first two is { (0,0,0, y5) } and, in 
total, we obtain the J5A-orbits: 

(x, y3, xy2, x2y+y4+y5) 
(X, y3, xy2, x2y + y4) 
(X, y3, xy2 + y4, x2y + ay5) 

5-determined, 
5-determined, 
5-determined, a 1. 

The parameter a appearing above is a modulus. It now follows that any jet with 
4-jet (1) is non-simple. We do not consider these further. 

ý2ý (x, y3 ± x2y, xy2,0ý 

The J4A-orbits over (x, y3 ± x2y, xy2,0) are: 

(x, y3 ± x2y, xy2, y4 + ax3y), 
(x, y3 ± x2y, xy2 + y4, x3y), 
(x, y3 ±x2y, xy2 +y470), 
(x, y3 ± x2y, xy2, x3y), 
(x, y3 ± x2y, xy2,0) (2)" 

A (4,1)-transversal for (x, y3 ± x2y, xy2,0) is {(0,0,0, y4)} and the resulting or- 
bits are (x, y3 ±x2y, xy2, y4) and (x, y3 ±x2y, xy2,0). The only higher non-empty 
transversal for the first is the (4,4)-transversal: {(0,0,0, x3y)}, giving the uni- 
modular family (x, y3 ± x2y, xy2, y4 + ax3y). For the second, a (4,2)-transversal 
is {(0,0, y4,0)} giving the orbits (x, y3 ±x2y, xy2 + y4,0) and (x, y3 ±x2y, xy2,0). 
In both cases the only higher non-empty transversal is the (4,4)-transversal: 
{(0,0,0, x3y)}, and the resulting J4A-orbits are as listed above. This takes us to 

codimension 11 and we do not consider these further. 

Further calculations and the usual arguments show that any jet with 3-jet 
(2), (3), 

..., 
(9) or (A) is non-simple. We shall not reproduce the details. All 

that remains now is to investigate the corank 2 case. 

3.3.10 The Corank 2 Case 

A germ f: (R2,0) -* (R4,0) of corank 2 has 1-jet the zero-jet. Applying the 

usual classification techniques one finds that the J2A-orbits over (0,0,0,0) are: 

(y2, xy, x2,0), (y2 f x2, xy, 0,0), (y2, xy, 0,0), 

(y2, X2,0,0), (y2 f x2,0,0,0), (y2,0,0,0), 
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(xy, x2,0,0), (xy, 0,0,0), (X2,0,0,0), (0,0,0,0). 

Of these, the ones of equal J2, A-codimension are equivalent, namely 

(y2 f x2, xy, 0,0) and (y2, x2,0,0), 
(y2, xy, 0,0) and (xy, x2,0,0), 

(y2 ±x2,0,0,0) and (xy, 0,0,0), 

(y2,0,0,0) and (x2,0,0,0), 

as one can easily check. The J2A-orbits over (0,0,0,0) are therefore as given 
in Theorem 3.2. Since the J2, A-codimensions differ for all of these we have a 
minimal set. The higher orbits over these jets are extremely complicated and, 
with no specific applications to guide us, we stop the classification here. The 

overall result is a classification of all the singularities (R2,0) -f (R4,0) up to 

codimension 8; we feel that this should be easily sufficient for most applications. 
It remains to prove that none of the corank 2 singularities are simple. 

Proposition 3.4 Any germ f: (R2,0) -* (R4,0) with zero 1-jet is non-simple. 

Proof. (J. W. Bruce. ) The space X of 3-jets of such germs is of dimension 4(3 + 
4) = 28. We have a group action of J3. A = J37Z X J3L on X. However, some 
elements of J3A act trivially on X and, as a little thought shows, the orbits of 
this group coincide precisely with those of J2R. X J1G. The latter has dimension 
10 + 16 = 26, and so X has a 2-parameter family of moduli. 0 
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Chapter 4 

Geometry of Map-Germs from 
Surfaces to Four-Space 

For the geometrical considerations discussed in this section it is more natural to 

work over the field of complex numbers and consider singularities f: (C2,0) -º 
(C4,0). Our previous classification provides a list of such singularities, except 
that the orbits which split into several distinct cases due to ± terms now collapse 
into one. Although the concepts apply in general, we take the more plausible line 

of restricting to the simple singularities. We describe the possible deformations 

and prove the simplicity of the given map-germs using adjacency diagrams. One 

of the main concerns in Chapter 3 was to discover stems. The study of stems and 
their geometry is left for future work, though we show that the results of Chapter 3 

do provide an abundant supply of examples. We conclude the current chapter by 

considering several geometrical invariants associated with map-germs (C2,0) 

(C4,0) and the calculation of such invariants by computer. We remark that all 
the invariants are defined for real map-germs f: (R2,0) --p (R4,0), but they are 

only defined algebraically, not geometrically. If f is a polynomial or real analytic 

map-germ then these invariants take the same values as their complex counter- 
parts defined for the complexification fc of f. The geometrical interpretation 

of, say, the double point number D(f) defined in Section 4.3 does not apply in 

the real case, though one would expect it to reflect some information on the real 
double points; c. f., [Mo3, Section 6]. 
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Label Singularity Determinacy Degree 
I (x) y, 0,0) 1 
Ilk (x, y2, xy, y2k+1) 2k + 1, k>1 
IIIk (x, y2, y3, xky) k+1, k>2 
IVj, k (x) y2, y3 +YIX xky) k+1, j>2, k>j+1 
Vk (x, xy, y3 1 xy2 + y3k+1) 3k + 1, k>1 
VIk (x) xy, y3, xy2 + y3k+2) 3k + 2, k>1 
VIIk (x, xy + y3k+2I y3, xy2) 3k + 3, k>1 

VIIIk (x, y2, x2y+ y2k+i, xy3) 2k + 1, k>2 
IX (x, y2, xy3, x3 y+ y5) 5 
X (x, xy, y3, y4) 4 
XIk (x, xy + y31 xy2 + y2k+1, y4) 2k + 1, k>2 
XII (x, y2, x2y, y5) 5 
XIII (x, xy, y3, y5) 5 
XIV (x, y3, xy2, x2y + y4 + y5) 5 
XV (x, y3, xy2, x2y+ y4) 5 

Table 4.1: Simple Singularities (C2,0) -> (C4,0) 

4.1 The Simple Singularities and Stems 

Table 4.1 lists all the simple singularities (C2,0) -> (C4,0). Each singularity is 
labelled with a Roman numeral for reference in later sections. 

The fact that all of these are simple can be proved from the adjacencies 
calculated in Section 4.2. We will show that the list is exhaustive. If we follow 

the classification carried out in Chapter 3 carefully we rule out all map-germs 
(C2,0) -p (C4,0) from being simple, apart from those in the above table and 
the 4-jet 

(x, y2) xy3, x3y) see Section 3.3.5(1). 

This gives rise to the series 

(X, y23 xy3, x3y+, y2k+1) k>2. 

The member of the series corresponding to k=2 is simple as will be seen. 
In Chapter 3 it was easy to rule out certain germs from being simple - see 
Remark 3.3.4(8). To show the germs in the above series for which k>3 are non- 
simple is a bit more involved, requiring explicit coordinate changes. However, 
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the failure of simplicity becomes apparent on unfolding such germs to determine 
the adjacencies. To show simplicity fails we need only find one adjacency with a 
member of a modular family. Consider the 6-jet j= (x, y2, xy3, x3y). Any open 
neighbourhood of j must contain a jet of the form jE = (x, y2, xy3 + Ex2y, x3y) for 
c 0. Applying `scaling' coordinate changes we can write this as (x, y2, x2y + 
xy3, x3y). The source coordinate change (x, y) -* (x - 2y2, y) then gives 

1222153323 25 ýý - 2y ly3xy- 4y 'X Y- y+ 4xy ) 

^'J6A (x, y2, x2y + y5, xy5) 

after changes of coordinates in the target followed by further scaling. But referring 
to Section 3.3.4(8), any germ with 6-jet (x, y2) x2y + y5, xy5) is J7A-equivalent to 
a member of the unimodular family (x, y2, x2y + y5, xy5 + ay7). Thus, any germ 
with 6-jet j is non-simple. Note that at the 5-jet-level, with k=2, we do not 
encounter this problem. Applying the same coordinate changes we obtain 

(x -2 y2, y2, xy3 + Ex2y, x3y + y5) `J5A (x, y2, x2y -15, x3y - 
2x2y3 + y5) 

"225 'J5,4 (x, y ,xy, y 

after changes of coordinates in the target, and this is of type XII. 

The aim of Chapter 3 was to discover the simple singularities and stems for 

map-germs (C2,0) (C4,0). Recall that in the general scenario where we 
consider germs (C', 0) -* (CP, 0) with Ga subgroup of k, a map-germ f is 

said to be a g-stem if it is not finitely Cc-determined and there is an integer ko 

such that any map-germ g with the same ko-jet as f is either 9-equivalent to f 

or is finitely c-determined. Significant results on stems have been obtained by 
Ratcliffe, concentrating mainly on map-germs (C2,0) -* (C3,0), [Ratl, Rat2]. 
However, one general problem is that complete transversal classification tech- 

niques, such as those used in Chapter 3, provide us with examples of weak stems. 
A map-germ f is said to be a c-weak stem if it is not finitely c-determined and 
there is an integer ko such that any map-germ g with the same ko-jet as f is ei- 
ther Jk g-equivalent to f for all k or is finitely Cc-determined. Ratcliffe has made 
significant progress in showing weak stems are stems, but the problem is still 
open. However, for a `series' produced by the complete transversal theorems this 

problem does not arise. Formally, we have a map-germ f and an integer Igo such 
that any map-germ g with the same loo-jet as f either has the same oo-jet as f 
(that is jkg = 3k f for all k) or is finitely c-determined. If j°°g = j' f then the 
Taylor expansions of g and f at 0 agree, so for analytic map-germs we have g=f. 
It follows that f is a stem. For example, consider the simple singularity of type 
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Ilk and define f= (x, y2, xy, 0), ko = 2. The complete transversal calculations 
in Section 3.3.3 showed that any map-germ g with the same 2-jet as f is either 
equivalent to a jet of the form (x, y2, xy, y2k+1), for some k >_ 2, and is therefore 
finitely A-determined, or has the same k-jet as f for all k. We conclude this 
section by recording this formally. 

Remark 4.1 Given a map-germ f, suppose f is not finitely c-determined and 
there is an integer loo such that any map-germ g with the same ko-jet as f either 
has the same oo-jet as f or is finitely c-determined, then f is a 9-stem. In 
particular, Table 4.1 and the results of Chapter 3 provide a large number of A- 
stems for map-germs (C2,0) -p (C4,0). 

4.2 Adjacency Diagrams 

We recall the following definition. 

Definition 4.2 Let X and Y be two classes of germs (Cn, 0) -* (Cr, 0) under 
g-equivalence (9 some subgroup of IC). We say class X is adjacent to class Y, 

and denote this X -f Y, if for some representative f of X and some c-unfolding 

of f, F: (Cn X CS, 0) -f (CP x Cs, 0), F(x, u) = (f., (x), u), (so fo =f and 
f, 

ß(0) =0 for small u), the (germ of the) set {uE Cs : fu EY} contains {u = 0} 
in its closure. 

To calculate all the adjacencies of a class X we can take any representative f of 
X and need only work with a g-versal unfolding F of f. 

Remark. In such calculations one occasionally finds that for isolated values of 
u, fu belongs to some class Y. This does not constitute an adjacency X-Y 

since the deformation fu of f does not lie in Y for arbitrarily small values of u 
(the `closure' clause in the above definition). 

We have calculated the adjacencies for the map-germs in Table 4.1. In par- 
ticular, we see that each class in the table is adjacent to only a finite number of 
other classes; this is enough to prove the class is simple (in the sense of Chap- 

ter 1). These calculations were extremely involved and we omit the details. 
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XI 5 -X14 -X13 -X12 

... II 6 II 5 II4 113 --- 112 -n1 ý` 

N2 2,6 1V2,5 X2,4 
/ 

12,3-~ 1112 

VIII5 VIII4 VIII3 VIII2 

IV3,6- 1V3,5- 1V3,4- 1113 

... -º IV4,6 IV4,5- III4 

IV5,6- III5 

... -- 1116 

Figure 4.1: Adjacencies 

For each of the map-germs in question we must calculate an A-versal unfolding 
F(x, u) = (fu (x), u) and recognise the class of ff for the different possibilities 
of u. Our computer classification package Transversal helped in both of these 
tasks. If we were just concerned with proving simplicity then the calculations are 
greatly simplified. For the different possibilities of u we need only identify a finite 
number of possible adjacencies (and these are usually clear from the `stratifica- 
tion tree' obtained in the classification), as opposed to establishing exactly which 
of these adjacencies exist. However, adjacencies are important in understanding 
the geometry of the singularities and the possibilities under deformation. This 
is especially so for surface singularities in 4-space, where our geometric intuition 

can be somewhat lacking. 

The adjacencies diagrams for the map-germs given in Table 4.1 appear below. 
The first two diagrams, Figure 4.1 and Figure 4.2, show how the series are related. 
The full set of adjacencies, including all the sporadic classes, appears in the third 
diagram, Figure 4.3. 
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VI2 
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Figure 4.2: Adjacencies 
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XII 
/IV34 - 1113 

IX 

Figure 4.3: Adjacencies 
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iI 
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4.3 Geometrical Invariants from Multiple Point 
Schemes, Singular Algebras and the £ Group 

In geometrical considerations the stable singularities play an important role. For 
map-germs (C2,0) -- f (C4,0) there are no stable singularities except the immer- 
sion. This can be seen from the classification carried out in Chapter 3 where all 
the orbits (after the immersion) have 

, 
Ae-codimension >_ 1, or from the Whitney 

Immersion Theorem (see [GG, Theorem 11.5.6]). Considering multi-germs, we 
find there is only one stable multi-germ, the transverse double point 

(xi, yi, O, O; 070, x23y2). 

(Our classification package Transversal is not yet capable of dealing with multi- 
germs, though the calculations in low codimension are feasible by hand anyway. ) 
We recall some results on double point schemes and show that under generic 
deformation a singularity f: (C2,0) -f (C4,0) splits up into a finite number, 
D(f), of double points which we can count (for corank 1 maps at least). This 
can be thought of as the analogue of a `Morsification' of a function-germ. Double 

points provide the main geometric invariants, though triple points and singular 
algebras provide invariants which are not as trivial as one might at first expect. 
The geometrical interpretation of these latter invariants is somewhat vague for 

maps from C2 to C4, but they are perfectly good invariants so we include them 
below. Our final invariant is, essentially, the Ge-codimension of the given map- 
germ. The important point is that this number is finite for A-finite map-germs 
with the source and target dimension under consideration. We finish by noting 
some relations between the invariants. 

The results of the calculations are shown in the Table 4.2. We include the 

, Ae-codimension as well, this being a fundamental invariant for singularities. The 

. Ae-codimension and A-codimension are related so either may be used. For a 
finitely A-determined, non-stable multi-germ f: (C", S) -f (CP, 0), where S= 
{Si,..., S } we have 

Ae-codim(f) = A-codim(f) + r(p - n) - p. 

(The case r=1 was noted in [Wal]; a full proof due to Wilson appears in the 
unpublished notes [Wil]-) 
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Label Singularity 
, 
Ae-Codim D T C L 

I (x) y, 0,0) 0 0 0 0 0 
IIk (x, y2, xy, y2k+1) k k 0 1 k 
IIIk (x, y2, y3, xky) 2k -1 k 0 k k 
IVj, k (x, y2, y3 + xi YIX ky) 

.7+k-1 
k 0 j k 

Vk (x, xy, y3, xy2 + y3k+1) 3k +1 3k k 2 4k 
VIk (x, xy, y3, xy2 + y3k+2) 3k +2 3k +1 k 2 4k +1 
VIIk (x, xy + y3k+2, y3, xy2) 3k +3 3k +2 k 2 4k+2 
VIIIk (x, y2, x2y + y2k+1, xy3) k+3 k+2 0 2 k+2 
IX (x, y2, xy3, x3y+ y5) 7 5 0 3 5 
X (x, xy, y3, y4) 5 3 1 2 4 
XIk (x, xy + y3, xy2 + y2k+1, y4) k+4 k+3 k-1 3 k+4 
XII (x, y2, x2y, y5) 6 4 0 2 4 
XIII (x, xy, y3, y5) 6 4 1 2 5 
XIV (x, 

y3, xy2, x2y + y4 + y5) 7 5 1 3 6 
XV (x, y3, xy2, x2y + y4) 8 5 1 3 6 

Table 4.2: Geometric Invariants 

4.3.1 Multiple Point Schemes 

To begin with we recall some basic results and definitions for multi-point schemes. 
A comprehensive treatment can be found in [MarMo] where the emphasis is 

toward local singularity theory. Consider the general case where f: Cn --> CP; 

the basic notion of the double point locus D2 (f) is the closure in Cn x Cn of 
the set { (x, x') E C't x Cn :f (x) =f (x'), x x' }. This definition proves to be 

inadequate - it is more appropriate to give . 
6'(f) a scheme structure. 

Definition 4.3 Denote the diagonals in Cn X Ctm and Cp x CP by A,, and dp, 

respectively. Denote the sheaves of ideals defining them by In and -Ti,. We define 

the double point scheme D2(f) by means of one of the following two sheaves of 
ideals: 

1.12(f) = Annoc2,, I /(f x f)*Zj; 

2. ±2(f) = (f x f)*ZI+. Fo(I /(f x f)*Zp)" 

Here, we regard I /(f x f)*I as an 0c2n-module and F0 is its 0th Fitting ideal 

sheaf, (see [L, Section 4. D], [Tou, Chapter 1]). Ann denotes the annihilator of a 
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sheaf so 12(f ) is equivalently the quotient ideal sheaf ((f x f) *Ip : I) ={gE 
0C2n : g. Zn C (f x f)*Zp }, also known as the `transporter ideal'. 

This provides a general definition which we have included for completeness. For 
a large class of maps (including those whose germs are finitely A-determined) 
12(f ) and _12(f 

) coincide (they always coincide away from A, being equal to 
(f x f)*Zp). The following observation from [Mo3] provides an easy method for 
calculating 12(f) and is considerably more intuitive. For f= (fl, 

... , 
fr, ) and for 

each i the function germ (x, x') Hfi (x) - fZ (x') belongs to Zn so by the Hadamard 
Lemma there exists germs a2j E Cýc2n, 1<i<p, 1<j<n, such that 

Jý az7(XI x')(xj - Xi) = fi(x) 
- 

fi(x'). 

7 

Now, if f (x) =f (x') and x x' then the matrix a(x, x') = (a2j (x, x')) has 

non-zero kernel so every n by n minor must vanish. Denoting the ideal in (9C2n 

generated by the n by n minors of a by Minim, (a) one can show that b2 (f) is 
defined by means of the sheaf of ideals (f x f)*Zp + Minn(a). Indeed, Mond 

showed that 
12(f) = (f X f)*II + Min,,,, (a). 

He also showed that a is the Jacobian matrix of f so that away from A, b2(f) 

consists of the double points of f, while the point (x, x) ELi belongs to D2 (f ) 

precisely when f fails to be an immersion at x. 

The above sketches the general theory. Having dealt with this we now discuss 
the calculations for map-germs f: (C2,0) -* (C4,0). We are interested in germs 
of corank 1. (For such maps it can be shown that 12(f) and Z2 (f) coincide, see 
[Mo3, Remark 3.2. (i)]. ) Now, by the Rank Theorem (see Lemma 3.3, for example) 
f may be written in the form 

f (X, y) _ 
(X, fl (X, y) 3 

f2(x, y) , 
f3(x, y» 

after suitable coordinate changes. The matrix a can be taken to be 

1 0 
fi(x, y')-fi(x', y') fi(x, y)-fi(x, y') 

x-xI 
f2(x, y')-f2(x', y') 

-yI 
. 
f2 x, y -f2 x, y' 

x-xl 
f3(x, y')-f3(x''y') f(Y-Y 3 xi -. f3 x) 

x-xI y-y' 

so that 

12 (. f) = (. f x . 
f) *z4 + Mine (a) 

. fi(x,? i) - _f, 
(x, y') = Kx 

- x'i 
f2(x, y) - f2(x, y') f3(x, y) - f3(x, y')\ 

y_y' y_y' y_y' i 
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Moreover, since x- x' E 12(f) there is a natural embedding of D2 (f) in Cx C2 
given by 

C2xC2 -* CxC2 

(X, y, X', y') '-' (x, y, y')" 

For the corank 1 case we will consider this embedding, which we will also denote 
by b2(f); it is defined by the sheaf of ideals 

(91(X, y, y'), 92(X, y, y'), 93(X, y, y')>033 

where 
9i(XIY, yý) = 

ff(x, y) - fi(x, y 
y_y' 

and will be denoted by 12(f). Higher multiple point schemes Dk (f) may be 
defined inductively; for the corank 1 case they admit a natural embedding into 
C'i-1 X C' (for n< p). The sheaf of ideals used to define bk(f) is a subsheaf 
of (9Cn-l+k and is denoted Ik(f). We will just note that 13(f) is defined by the 
sheaf of ideals 

(9Z(x, y, yý), hi (x, y, y', y")) ,4 for %=1,..., 3 

where 
11 9i(XI yI y') - 9i (x, y, y") hi (x, y, y, y) = 

y. - y.. 
We refer to [Mo2, Section 3] and [MarMo, Section 1.2] for more details. These 
observations will be used throughout the rest of this section. 

Remarks. We note that there is a natural action of the symmetric group Sk 

on Dk(f) (via permutation of the coordinates on Ck) and that Ik(f) can be 
described in terms of Sk-invariant generators. This is useful for many techni- 

cal considerations but for our purposes the generators described previously (for 
12(f) and 13(f)) will suffice. For further details on all of these points we refer 
to [MarMo]. 

Our earlier remarks suggesting that the double point scheme of a finitely- 
determined map-germ f: (C2, O) -* (C4,0) carries most of the geometrical 
information is verified by the following theorems. Firstly we observe that D2(f) 

consists of isolated points, while the higher multiple point schemes are trivial. 
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Theorem 4.4 Let f: (C", 0) ----f (C', 0) (n < p) be a finite mapping of corank 
1. Then 

1. f is stable if and only if for each k>2, Dk(f) is smooth of dimension 
p- k(p - n), or empty; 

2. f is finitely determined if and only if for each k with p- k(p - n) > 0, 
Dk(f) is either an isolated complete intersection singularity of dimension 
p- k(p - n) or empty, and if, furthermore, for those k with p- k(p - n) < 0, 
D'(f) consists at most of the point {0}. 

Proof. [MarMo, Theorem 2.14] D 

This does not guarantee D2(f) is non-trivial (it too may just consist of the 
point {0} or be empty), but the following theorem shows that double points are 
exhibited in a generic deformation of f. 

Theorem 4.5 If f: (Ca, 0) -* (CP, 0) has corank 1 and k= p/(p - n) is a 
positive integer, then a generic deformation of f has 

1/k! dims C9cn-lick/Zk(f) 

ordinary k-tuple points. 

Proof. See [Mo3, Proposition 3.7] and the remarks which follow it. O 

Thus a generic deformation of a corank 1 germ f: (C2,0) --> (C4,0) has 

D(f) = 1/2 dims 0C3/Z2(f) 

ordinary double points. This number provides the main geometrical invariant for 

such map-germs. 

The triple point schemes provide non-trivial invariants. We define the triple 
point number 

T (f) = 1/6 dims 0c4 /13 (f) 
" 

From Theorem 4.5, a map-germ f: (C2,0) --f (C3,0) splits up into T (f) triple 

points under a generic deformation. For a map-germ f: (C2,0) -f (C4,0), T(f) 
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appears to be the minimum number of triple points T (f) among all map-germs 
f=7of where 7r : (C4,0) -f (C3,0) is a surjection onto C3. One would 
not expect T (f) to reflect the geometry of map-germs f: (C2,0) -f (C4,0) 
as well as D(f). The results of our calculations indicate this. However, T(f) 
does give a non-trivial invariant, whereas the algebras associated to the higher 
multiple point schemes (Ocn-IXck/Zk(f) for k> 4) all collapse to 0 (at least for 
the simple singularities). 

We have calculated D(f) and T (f) for many of the singularities arising in our 
classification, the results are given for the simple singularities in Table 4.2. The 

calculation of the above quotient ring can be fairly tedious in most cases. We 
have developed a way of performing these calculations using our Transversal 

classification package discussed in Chapter 6; see Section 4.4 (for series this only 
applies to specific members, but indicates the general result). We do not calculate 
the double point schemes f)2 (f ). Again, these may be obtained using symbolic 
algebra (Gröebner bases and elimination theory, for example). An investigation 
into the double point schemes of map-germs and their unfoldings promises to give 
useful geometric information but we content ourselves with the invariants D(f) 

and T (f) and postpone such work for the future. 

4.3.2 Singular Algebras 

Consider map-germs (Cn, 0) -p (CP, 0) and suppose WC Jk (n, p) is an , - 
invariant submanifold. Given a map germ f such that jkf (0) EW denote the 
ideal in OJk(n, 

p), jk f(o) consisting of germs which vanish on W by IW, jk f(o). We 

define the algebra of contact of jk f with W to be 

QWf (O) = onffikf *(IW3jkf(0))) 
- 

These algebras provide interesting A-invariants. We require the following result; 
see [Mo3, Lemma 2-2]. 

Lemma 4.6 If f -A g and then Qw f (0) is isomorphic to Qwg(O). 

Consider W= >k C J1 (n, p), the set of linear maps of corank k, and a map-germ 
f of corank k. Let L(n, p) denote the space of linear maps Cn -* CP, then 
df : (Ca, 0) -) L(n, p) and df (0) E Ek. The corresponding contact algebra is 

called the singular algebra of f: 

Qrkf (O) On/(df *(IEk, df(o)))" 
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In the present scenario f: (C2,0) -f (C4,0) is of corank 1 and we will look at 
the invariants QED f (0). We can write f in the form 

so 

f (X, y) = (x, fl (Xi y), f2 (Xi y) , 
f3 (Xi y)) 

10 

df (x, y) = 
afilax afilay 
aft/ax aft/ay 
(9f3/ax af3/ay 

The ideal of germs vanishing on E1 is generated by the 2x2 minors considered 
as functions L(2,4) -* C. For corank 1 map-germs f one sees that 

df*(IE1, df(o)) = (afl/ay, aft/ay, af3/ay) 
Using these observations we have calculated the dimension 

C(f) = dimcQsl f (0) 

for all the simple singularities f: (C2,0) -* (C4,0). The results are shown in 
Table 4.2. 

C(f) provides a non-trivial invariant but like T (f) it reflects the geometry 
of map-germs f: (C2,0) -* (C3,0). From [Mo2, Section 2] we see that C(f) 

counts the number of cross-caps in a generic deformation of f. The important 

point is that a cross-cap is characterised by being the only non-immersive germ 
(C2,0) -* (C3,0) whose 1-jet meets E1 transversally. In the C4 case there 

are no such map-germs; the following remarks provide our best geometrical in- 
terpretation. For a map-germ f: (C2,0) -* (C4,0), C(f) appears to be the 

minimum number of cross-caps C(f) among all map-germs f= 7r of where 
7r : (C4,0) -* (C3,0) is a surjection onto C3. Consider the simple singularity 
f= (x, y2, y3 + xj YIX ky), for example. Then 

df *(IE1, df(o)) = (y, 3y2 + Xj, Xk) = (y, xi) 

and C(f) = C(f) where f= (x, y2, y3 + xjy). 

4.3.3 The £ Group 

Our final invariant comes from the following observations. These results are due 

to Gaffney, [Gal, Chapters 3 and 5]; see also [Wal, Section 2]. 
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Theorem 4.7 Consider map-germs (Ca, 0) -p (Cr, 0). 

1. If 2n < p, any A-finite germ is L -finite. 

2. If map-germs f, g are A-finite and n<p, then f " A g if and only if the 
algebras f *(Op), g*(Qp) are isomorphic. 

Note that f *(Qp) is the subalgebra of O generated (as an algebra) by the compo- 
nents of f (and 1); this generally gives `finer' invariants than those associated to 
the ideal generated by the components of f, f *(mp). O . In standard coordinates, 
the , Ce-tangent space to the orbit of f is just p copies of this subalgebra 

lice 
.f=f 

*(Op)"lel, 
... , ep}, 

so 

£e-Codim(f) = dimc (0(n, p)/Lre " f) = Pdimc (Qn/f*(O ))- 

For 2n <p and any map-germ f we therefore define the invariant 

L(f) = dims (Qn/. f *(0p)) 
- 

The previous remarks ensure that this is indeed an invariant and is finite for 

A-finite map-germs. 

For map-germs f: (C2,0) --- p (C41 0) the above observations apply and L(f) 
is a natural invariant to work with. We have performed the calculations for the 

simple singularities, the results are shown in Table 4.2. 

4.3.4 Some Remarks and Relations 

Collectively, 
, 
Ae-Codim, D, T, C and L almost form a complete set of invariants 

for the simple singularities. One easily verifies that these invariants distinguish all 

of the normal forms in Table 4.2 except the pairs IV2, k+2, VIIIk and IV3,5 i IX. This 

can be resolved by looking at their A-orbits in the 3-jet-space. From Chapter 3 

we find that IV2, k+2 and VIIIk are of J3. A-codimension 6 and 7, respectively, 
demonstrating that they are not A-equivalent. Similarly, IV3,5 and IX are of 
J3. A-codimension 7 and 9, respectively. Our list of simple singularities therefore 

contains no redundancies. 

From the results in Table 4.2 we observe that 

L(f) = D(f) + T(f) 
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for all the simple singularities f except the series XIk. The exceptional case is 
not weighted homogeneous -a possible clue to this abnormality! Also note that 
for a pleasingly large proportion of the singularities 

Ae-codim(f) = D(f) + C(f) 
- 1. 

This is reminiscent of the codimension formula in [Mo2, Section 4] for map-germs 
(C2,0) -* (C3,0) where , 

Ae-codim(f) < 1/2N(f) +T(f) +C(f) -1 (bearing in 

mind D(f) in the C4 case is analogous to T (f) in the C3 case). The full relation 
may become clear with future work and the discovery of new invariants which 
reflect the geometry better (than C(f), for example). 

4.4 Computational Techniques for the Invariants 

Most of the invariants described above were calculated by computer. (In the case 

of series the computer was used to calculate the invariants for initial members, 
this indicates the general result. ) For D(f) and T (f) we need to calculate an 
ideal (gi, 

... , gT) in 0S for some s and germs gi, depending on the particular 

requirement. This can be performed by our Transversal package, in particular, 

using the function jetcalc to calculate (g1,..., gT) to a given degree k, (i. e., in 

the k-jet-space, working modulo mr') If 

k k+l 
ms c 9r)+ms 

(one of the main functions of the package is to carry out such checks) then the 

Nakayama Lemma implies 
k ms C (91, 

"", 9T) 

and the dimension 
dimc OS/(9i, 

... ' 9T) 

may be calculated by Transversal by working in the k-jet-space. In fact the 

(k - 1)-jet-space is sufficient but jetcalc will have already calculated a basis 

for the complementary space to (g1, 
... , g,. ) + ms+l in 0s during the previous 

calculation. 

The calculation of ideals (gl, 
... , g,. ) was not one of the original intentions for 

Transversal. We have to `customise' the process slightly. Technically, one must 

tell jetcalc to calculate the `R' group using a source Lie algebra (specified by 

a liealg routine) which is generated by the gi. These do not act on germs (as 
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the standard xialax; do, for example; c. f., the function stdjacobian) and any 
map-germ passed to the function jetcalc is just a dummy variable and plays no 
part. We refer to Chapter 6 for a detailed discussion of how the function jetcalc 
works. 

The invariant L(f) is calculated by jetcalc simply by calculating the re- 
codimension of f. This is not an inefficient process as jetcalc does not calculate 
the full £ -tangent space, just the ideal f* (CAP); we refer to Section 6.7.5 ('The 
Pre-Tangent Space') for details. Since jetcaic calculates dimc (O"/ f *(0p)) in 
a given jet-space we use Lemma 1.2 to check the result holds in Or, (just as the 
Nakayama Lemma had to be used in the previous calculation). 

Generally, the calculations described here are best suited to computational 
methods from commutative algebra, such as the Gröbner basis techniques used 
by computer packages like Macaulay or Singular. However, it should be noted 
that all the calculations above were dealt with easily using Transversal. We also 
remark that Transversal played a major role in identifying the adjacencies in 
Section 4.2. In many cases explicit coordinate changes were extremely difficult to 
find and we managed to identify the germ fti under consideration by calculating 
invariants or applying the Mather Lemma to show triviality in a family. 
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Chapter 5 

Classification of Function-Germs on 
Discriminant Varieties 

Up to now we have only considered the standard Mather groups 1Z, L, A, C and 
1C. We now turn our attention to another group of great interest in singularity 
theory, namely the subgroup R(X) of R consisting of germs of diffeomorphisms 

of (Ca, 0) which preserve a given variety X. Our main interest is when X is 

a discriminant variety D- we refer to Chapter 1 for a discussion on versal 
unfoldings and discriminants. For technical reasons it is best to work with the 

complex analytic case. In this case the module of vector fields tangent to D, O(D), 
is finitely generated as a module over (9, (indeed, it is a free module and there 
is an algorithm due to Saito, [Sai], for calculating the generators; see Section 5.1 
below. ) However, in the real smooth case O(D) is not finitely generated as a 
module over S and the techniques of singularity theory are not suitable; see [A2, 

p. 569]. Our results do provide a classification in the real smooth case (since the 
Saito vector fields still belong to O(D), they just do not generate it), that is, we 
obtain a list of normal forms up to R (D) equivalence. Classifications in the real 

smooth case are, of course, important in geometrical applications. 

In this chapter we classify function-germs on the discriminants of the sim- 
ple singularities: Ak, Dk and Ek; extending the lists found in [A2]. We need 
to calculate the basic vector fields of Saito, tangent to the given discriminant, 

and use the method described in [B2]. A classification method using weighted 
filtrations is developed and we demonstrate that such classifications can be per- 
formed efficiently using our computer classification package. An algorithm is 

developed which allows the Saito vector fields to be calculated by computer, thus 

automating the whole process and reducing the possibility of errors. 
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We begin by reviewing the results on Saito vector fields, determinacy and 
stability; these will be useful elsewhere too. Next the classification methods are 
developed, followed by a description of the computer calculations and a summary 
of the results. Such classifications have important applications in geometry. To 
date, the generic (stable) singularities have been studied in depth and the results 
applied to the generic evolution of wavefronts, [A2], for example. We do not 
consider map-germs (C", 0) -f (C", 0) where the target dimension p is greater 
than one. We note, however, that the classification methods easily generalise 
to such cases and our computer methods are capable of performing the relevant 
calculations. Stable map-germs on discriminants have already been considered in 
[B4], and the classification of such map-germs carried out in [BG1]. Again there 

are several applications; for example, classifying the outlines of smooth surfaces 
in R3 and their duals [BG2], and the bifurcation of plane caustics by reflection 
[BG3]. 

5.1 Vector Fields on Discriminants 

Throughout this section we will deal with the complex analytic case - this forms 

the natural setting for the results. Op will denote the algebra of germs of analytic 
functions on CP at 0. 

Let (X, 0) C (C', 0) be the germ of a reduced analytic subvariety of CP at 0. 

We shall consider analytic function germs (CP, 0) -f (C, 0) and say two germs 

are equivalent if one can be obtained from the other by source coordinate changes 

which preserve X. 

Definition 5.1 Let I denote the (radical) ideal in Op corresponding to X, that 

is the ideal of germs of functions vanishing on X. 

1. A diffeomorphism 0: (C', 0) -) (C', 0) is said to preserve X if O(X ) 

is equal to X as germs at 0, (O(X ), 0) = (X, 0); equivalently the induced 

isomorphism 0" : Cep -) Op satisfies 0* (Z) = Z. The group of such diffeo- 

morphisms preserving X is denoted R(X). 

2. Two function germs f, gE (9v are R(X)-equivalent if there exists E R(X) 

such that goo= f 

3. Let 6 be a germ of an analytic vector field on C' at 0. Then 6 is said to 

be logarithmic for (X, 0) if, when considered as a derivation 6: Cep --) CAP, 
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f ý--f 6- f, we have 6- fEI for all fEI (that is, 6- f vanishes on X). 
The Or-module of logarithmic vector fields is denoted O(X) (the notation 
Der(logX) is common too). 

Intuitively, an infinitesimal approach is given by integrating vector fields tangent 
to X to yield diffeomorphisms which preserve X. The following proposition 
confirms this and shows that the logarithmic vector fields are precisely those 

vector fields tangent to X. 

Proposition 5.2 

1. The germ at 0 of a vector field 6 lies in O(X) if and only if at each smooth 

point x (sufficiently close to 0) of each irreducible component Xi of X the 

vector field 6 is tangent to Xi at x. 

ss 

. 2. If X=U Xi is the irreducible decomposition of X then O(X) = no (xi) 
i=1 i=1 

3. Suppose SE O(X) vanishes at 0. Then the flow ct generated by S preserves 
(X, 0). Thus cbt E R(X) for all t. 

Proof. See [BR, Section 1]. El 

We now turn our attention to determinacy under 7Z(X )-equivalence. 

Definition 5.3 A germ h: (CP, 0) - ) (C, 0) is k-R(X) - determined if for all 
hi : (C", 0) --* (C, 0) with the same k-jet as h the germs h and hl are R(X )- 

equivalent. 

The group R(X) is one of Damon's `geometric subgroups' of A and the following 

determinacy theorem holds; see [D]. 

Theorem 5.4 A germ h: (Cr, 0) --ý (C, 0) is finitely IZ(X) -determined if the 

ideal 
Jx(h)={5. h: 6 19(X)} 

in Op contains some power of the maximal ideal m p. 
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The above determinacy theorem can also be derived from a slight modification of 
the usual proofs. For example, see [BG5, Chapter 11]; only now we replace 7 by 
R(X) and need R(X)-trivial families as our technical tool: the crucial difference 
being that the flows used preserve X- this follows from Proposition 5.2. In 
all our examples the vector fields 6E O(X) vanish at 0 (JX(h) D m, ) making 
the classification considerably easier. For instance, we obtain the following de- 
terminacy estimate: "if mit+l C mn. JX (h) then h is k-R(X )-determined" 

. 
This 

follows in the same way as "mn+1 C mn. J(h) implies h is k-R-determined" given, 
for example, in [BG5, Theorem 11.20], [G, Chapter IV, Section 3]. In this latter 

case the key point is that we are using the R-i group and working with vector 
fields in m2. {a/axe } which vanish to order 2; similarly in the R(X) case, only we 
now work with the module of vector fields mn. 0(X) since a vector field 6E O(X) 

already vanishes at 0. This gives a powerful determinacy criterion, though we 
can do better by introducing a weighted filtration and using `more' of the module 
O(X) in the calculation. We discuss this in Section 5.2.2. 

We are interested in the case Xa discriminant variety D and restrict our 
attention to this now. Let f: (Ca, 0) -* (C, 0) be a germ with an isolated 

singularity at 0. It follows that f is finitely R-determined and the quotient space 
(9,, /J(f) is a finite dimensional C-vector space (where J(f) denotes the Jacobian 
ideal (äf /Dxi, 

... , 
aflaxn)). Let g1, ... , gp form a basis for this vector space and 

define 

F: (Cn x C' 
, 

O) -> 
(C, O) 

3 
P 

(x) u) f (x) + uigi(x), 
i=1 

where (x, u) denote coordinates on C'z x C' . Then the map 

(x, u) H (F(x, u), u) 

is a versal unfolding of f. Let DC C' denote the discriminant of f. 0,,,, p is the 

algebra of analytic function germs in x, u; denote the ideal 

(aFlaxl, ... , aFIaXn C On, p 
by J(F) (the context being clear). Now, (9,, /J(f) is a finite dimensional vector 

space and 0,,,, P/J(F) a finitely generated 0,,, p-module, so that by the Preparation 

Theorem (a suitable version is [Marti, Theorem 0.2.1]) it follows that the germs 

g1,. .., gp generate 0,,,, P/J(F) as an Op-module via the natural projection map 
(Cn X C", 0) -- p (CP, 0). In fact, we have a stronger result. 
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Lemma 5.5 The germs g1,... , gp form a free Or-basis of 0,,, 
P/J(F). 

Thus, for 1<j<p we can define aid E C9, uniquely by 

F. gj _ aijgi mod J(F). 
i=1 

The main result for constructing vector fields tangent to the discriminant D now 
follows. 

Theorem 5.6 (Saito) The vector fields 

03 _ CLij ä/(9ui 

i=1 

are analytic vector fields and form a free Or-basis for O(D) (= Der(logD), the 
module of vector fields tangent to D). 

Self-contained proofs of these results can be found in the appendix of [B2]. 

We have already mentioned that the case `all vector fields SE O(D) van- 
ish at 0' is of importance in classification results. In [B2] it was shown that 
the vector fields O all vanish at 0ED if and only if f is right equivalent to 
a weighted homogeneous function. This has striking consequences on the ex- 
istence and number of stable singularities under R(D)-equivalence. The stable 
singularities are of immense importance in applications to generic geometry; we 
recall the following for completeness. Firstly note that the concepts of unfolding, 
R(D)-isomorphic unfoldings and R(D)-trivial unfoldings are defined in the usual 
way, but restricting the families of diffeomorphisms to germs which preserve the 
given variety D (see, for example, [BR, BG1, D]). Then following [BR] we de- 
fine a germ h: (CP, 0) -p (C, 0) to be R(D)-stable if H(u, t) = h(u) +t is an 
R(D)-versal unfolding of h. One then finds that h is R(D)-stable if and only if 1 

spans O,, /JX(h) as a C-vector space, that is, JX(h) = 0,,, or m,,,. We recall the 
following result from [B2]. 

Proposition 5.7 The vector fields Bj all vanish at 0ED if and only if f is right 
equivalent to a weighted homogeneous function. In this case, there is at most one 
stable function, and it is equivalent to its linear part. 
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The above limits the number of stable singularities; the existence of stable sin- 
gularities is answered in [B4, Theorem 1.4]. In the case of functions (that is, 
map-germs h: (CP, 0) -; (Ca, 0) with target dimension q= 1) the result is as 
follows. 

Theorem 5.8 Let f and D be as above, with f right-equivalent to a weighted 
homogeneous function of weight d, and consider germs h: (Cr, 0) -* (C, 0). Let 
gl,... , gp form a basis of monomials for the C-vector space Can/J(f ), as above, 
and define ai to be the weight of gi. Then there exists R(D)-stable germs if and 
only if ai :d for all i. 

A special case of this is ai <d for all Z. Equivalently, f must be one of the 
simple singularities Ak, Dk, E6, E7 or E8, [Al, Theorem 10.3]. In the subsequent 
classifications we take f to be one of the simple singularities and indeed find that 
there exists a unique stable germ in each case, namely h= ul. 

5.2 Classification Techniques 

In this section we discuss how to calculate the Saito vector fields 9j which generate 
O(D), in particular, producing an algorithm for use on a computer. We then 
formulate powerful determinacy and complete transversal theorems which will be 

used in the following sections. 

5.2.1 Computer Calculation of the Saito Vector Fields 

Although the Saito vector fields can be calculated by hand using the results of 
the above section (see [B2], for example) such calculations can be at best tedious 

and at worst virtually impossible without the help of a computer to perform the 

symbolic algebra. As an indication we include some results of these calculations 
in Appendix A- note that some of the resulting vector fields span several pages. 
Not only do these need to be calculated, but they also need to be evaluated in 

complete transversal and determinacy calculations where they operate on a given 

germ - hence the advantages of our computer methods. 

To calculate the Saito vector fields we need to find the coefficients aid E Op dis- 

cussed in the last section. The preparation theorem assures us of their existence 
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but we need some algorithm for calculating them which takes into account the ap- 
propriate quotient ring structure. We summarise our choices of bases {gl, 

... , gp} 
and give the corresponding algorithms for calculating the aid, suitable for imple- 

mentation by computer. 

We first note that the normal forms used for the simple singularities are 
weighted homogeneous with respect to the following weights. 

Singularity Normal Form Weight Total Weight 

x y 
Ak x +1 1 - k+1 
Dk x2y + yk-i k-2 2 2k -2 
E6 x3 + y4 4 3 12 
E7 x3 + xy3 3 2 9 
E8 x3 + y5 5 3 15 

Theorem 5.9 For each of the cases Ak, Dk and Ek, the products F. gj defined in 

the previous section are polynomials. They can therefore be written in the form 

E ajjgj, modulo J(F), using the following monomial substitutions. 

Ak. Here f (x) = xk+l, J(f) = (x') and we take 

k-1 k-2 
9i=ý )92=X I... I9k=1, 

F(X, ul, ... , Uk) _ Xk+l + u1xk-1 + u2xk-2 + ... + Uk. 

Any polynomial in 0n, r may be written in the form aigi, modulo J(F), with 

ai E Op by using the following monomial substitutions repeatedly. Replace: 

xk by 
1k+1 ((k 

- l)uixk-2 + (k 
- 2)u2xk-3 + ... + Uk-1) . 

Dk. Here f (x, y) = x2y + yk-i7 J(fý = (Xy, X2 + (k - 1)yk-2) and we take 

91 = yk-21 92 = yk-s1... , 9k-2 = y, 9k-1 = 1,9k = Xi 

F(x, y, u1, ... 7 eck) = X2y + yk-1 + u1yk-2 + u2yk-3 + ... + Uk-2y + Uk-1 + UkX. 

In this case we apply the following monomial substitutions. Replace: 

zy by -2 Uk 

x2 by - 
((k 

- 1)yk-2 + (k - 2)u1yk-3 + (k 
- 

3)u2yk-4 + ... + Uk-2) 

yk-1 by -11 
(x2y + (k 

- 
2)ulyk-2 + (k 

- 
3)u2yk-3 + ... + Uk-2y) . 
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E6. Here f (x, y) = x3 + y4, J(f) = (x2, y3) and we take 

9i=xy2192=xy, 93=y2194=Xi 95=y, 9s=17 

F(x, y, u1,... IU6) =X3+y4+U1Xy2+U2X +lL3y2+U4X+u5y+U6. 

In this case we apply the following monomial substitutions. Replace: 

x 2y by -3 (uiy3 + u2y2 + u4y) 

x2 by -3 (uiy2 +'a2y + u4) 
y3 by 

-1 (2uixy + u2x + 2u3y + ßc5). 

E7. Here f (x, y) = x3 + xy3, J(f) = (3x2 + y3, xy2) and we take 

91 =y4192=Y3193=xy, 94=y2j95=X196 =y, 97=1, 

r'(x, y, u1i... ) u7) =x3+xy3+uly4+U2y3+u3xy+u422+U5x+u6y+u7. 

In this case we apply the following monomial substitutions. Replace: 

xy2 by -3 (4uiy3 + 3u2y2 + u3x + 2u4y + u6) 
x2 by 

-3 
(y3 + U3y + u5) 

y5 by -(3x2y2 + u3y3 + u5y2). 

E8. Here f (x, y) = x3 + y5, J(f) = (x2, y4) and we take 

9i = xy3,92 = xy2,93 = Y31 94 = xy, 95 = y2,96 = x, 97 = y, 98 = 1, 

F(x, y, ui, ... 7 u8) = x3+y5+uixy3+u2xy2+u3y3+u4xy+u5y2+U6x+U7y+ßc8. 

In this case we apply the following monomial substitutions. Replace: 

x2y by -3 (uiy4 + U2y3 + U02 + u6y) 

x2 by -3 (niy3 + U2 y2 + u4y + acs) 

y4 by -5 (3u1xy2 + 2u2xy + 3U3y2 + NX + 2u5y + u7). 

Note: in the event of more than one choice of monomial substitution being 

available, the first substitution (in the list of three) takes preference over the 

second, which takes preference over the third. 
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Proof. The proof follows a similar argument for all the cases. We observe 
that the given substitutions are valid in the quotient ring. We then show that, 
with the choice of weights given above, after a finite number of substitutions 
the monomial is replaced by monomials of strictly smaller weight or one of the 
generators gi. A monomial mE C[x, y, ul, ... , up] can be written in the form 
m= uxayb E C[ul,... 

, up] [x, y] (so uE C[ul.... 
, up] is a monomial and a and 

b are non-negative integers). We then verify that for such monomials m, none 
of the substitutions apply if and only if xayb is one of the gi. In this case the 
monomial m is eliminated from further consideration and added to a polynomial 
which stores the final (reduced) result. This guarantees the substitution process 
will terminate after a finite number of steps and when the process does terminate 
the resulting polynomial will be of the form > aigi with ai E Op. We shall give 
the proof for the cases Dk and E7, the rest being similar. 

Dk. In this case 

J(F) = (2xy + eck, x2 + (k - 1)yk-2 + (k - 2)ulyk-3 + (k 
- 3)U2 k-4 + ... + Uk-2) 

and modulo J(F) we have 

Xy ^, -2Uk (5.1) 

x2 ,., - 
((k 

- 1)yk-2 + (k - 2)ulyk-3 + (k 
- 3)u2yk-4 + ... + sek-2) (5.2) 

yk-1 ,,, _k11 
(x2y + (k - 2)ulyk-2 + (k - 3)U2yk-3 + ... + Uk-2y) (5.3) 

so that the substitutions are valid. Given a monomial mE C[x, y, u1,... ,u] 
write it in the form m= uxayb, as discussed in the preamble. If xy / xayb then 

substitution 5.1 will be applied, the weight of the resulting monomial being k less 

than that of of m. Otherwise m must be of the form UXa or Uyb. If m= UXa 
and a>2 then substitution 5.2 will apply. The weight does not decrease for all 
the resulting monomials, but they will either be divisible by xy and the weight 
will be decreased during the next substitution (5.1 takes preference and will be 

applied), or will be of the form ugi - the ultimate goal. The same applies if 

m= uyb using substitution 5.3. Hence, after a finite number of steps we reduce 
the weight of the monomials or produce generators. Finally, suppose none of the 

substitutions 5.1,5.2 and 5.3 apply. Then m must be of the form ux or uyb with 
0<b<k-2, that is of the form ugi for some gi, as required. 

E7. In this case 

J(F) = (3x2 + y3 + u3y + u5i 3xy2 + 4uly3 + 3u2y2 + u3x + 2u4y + u6) 
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and modulo J(F) we have 

xy2 ^' -3 (4uiy3 + 3u2y2 + u3x + 2u4y + u6) (5.4) 
x2 3 

(y3 + U3y + u5) (5.5) 

y5 - -(3x2y2 + u3y3 + u5y2) (5.6) 

so that the substitutions are valid. Write a monomial mE C[x, y, ul, ... , UP] 
in the form m= UXayb. If Xy2 / Xayb then substitution 5.4 will be applied, the 
weight of the resulting monomials being at least one less than that of m. Oth- 
erwise m must be of he form uxay, UXa or uyb. If m= uxay and a>2 then 
substitution 5.5 will apply. The weight decreases for all the resulting monomials 
except _3uxQ-2y4, but this will either be a generator (a = 2) or will be divisible 
by xy2 in which case the weight will be decreased during the next substitution 
(substitution 5.4 takes preference). Otherwise m= uxy or m= icy and m is of 
the form ugi for some gi, as required. Similarly, if m= axa or m= uyb, the 
substitutions will produce monomials of smaller weight or generators within a 
finite number of steps. They will fail to apply when m takes the form ux or uyb 
with 0<b<4, that is ugi for some gi. Q 

Remarks. 

(1). The given substitutions are clearly allowed, working in the quotient ring 
On, 

P/J(F). 
The important point is that such substitutions can be applied repeat- 

edly by a computer and will: (i) terminate after a finite number of substitutions, 
without developing into an infinite loop; (ii) will fail to apply only when the 

monomial under simplification is of the form agi with ac Op. (i) and/or (ii) do 

not necessarily hold for other `obvious' choices of substitutions (even for some of 
the above cases when applied in a different order to that stated). And in some of 
the longer calculations, in particular, we need to be certain that the choices will 
lead to a successful algorithm beforehand. 

(2). Several of the calculations may be performed by hand. In the cases 
where f is weighted homogeneous it is convenient to simplify F (modulo J(F)) 
to begin with (c. f., [B2] where F is replaced by F1). The resulting vector fields 
differ only by a scalar multiple from those calculated by computer. They will be 

used in the classifications for the A2 and A3 cases described below - these were 
done by hand, as well as by computer, to demonstrate the classification method. 

(3). The choices of the gi given above will be used in the Ak and Ek classi- 
fications below; however, a minor modification is made for the Dk's. The choice 
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made above was convenient for the notation but, in practice, we will order the gi 
(which are weighted homogeneous) so that 

wt(91)? wt(92)>... >wt(9k-1)>wt(9k)=0. 

In particular, we always choose gk =1 and as a result 0k is always the `Euler 
vector field' - the only Saito vector field of weight 0 (see below). This minor 
change has no consequence to the above proof; a permutation of the ui results. 
We will state the specific ordering of the gi for each case Dk - the resulting 
modifications to F and required substitutions should be clear. 

The Computer Program 

A major part of the work in this section was the writing of a program to calculate 
the Saito vector fields by implementing the above algorithm. The program was 
written in Maple; we shall not discuss the programming strategy nor the code 
itself - most of this was routine. We shall just describe what the program does. 

There are several routines, the most important being the reduction algorithm 
which carries out the substitutions described above. The user creates a `set-up' 
file which defines the unfolding F, the generators gi, and the allowed relations as 
a table of monomials (reli, say) and a table of the corresponding substitutions 
(re12, say). (This file must also specify the coordinates being used on R' so 
that these may be distinguished from those on R'. In our examples these are 
just (x) in the Ak cases, and (x, y) in the others. ) When a polynomial f, say, is 

passed to the reduction routine it is expanded to a sum of monomials. Then each 
monomial is checked to see if it is divisible by a monomial rell [i] in the table 

rell. If this is the case then the entry re12 [i] in re12 is substituted in and the 

result stored for the next pass through the substitution loop. Otherwise, if the 

monomial is divisible by none of the reli [i] then, by the theory, it must be of 
the form agi with aE Op and is added to the `reduced form' of f-a polynomial 
to be returned at the end when all of the monomials have been reduced. (In 

this instance, the variable which stores the polynomial to be reduced in the next 
pass through the substitution loop is then equal to the zero polynomial. ) Before 

terminating, the routine checks that the reduced form of f is indeed of the form 

> aigi with ai c Op and returns an error otherwise. This is a `safety check' to 

make sure the relations given by the user (in reli and re12) do indeed work. If 

an error is not spotted at this stage it is likely to be carried though to further 

calculations with little chance of being noticed. 
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Other routines perform functions such as extracting the coefficients ai in the 
reduced form > aigi and saving them to a file. There is a routine which incor- 
porates all these features, calculating the aid in F. gj => a1jgi for all j, forming 
the corresponding Saito vector fields, and storing these in a format suitable for 

use with our `Transversal' classification package (in particular, as a liealg rou- 
tine for use with wtcalc) - see Chapter 6. This therefore minimises human 
involvement in the whole calculation (including subsequent classifications using 
the results) hopefully eliminating errors. One must be careful when defining F, 
the generators gi, and the relations (rell and re12) in the `set-up' file, of course. 

Finally, we mention that a routine which calculates the vector fields tangent 
to the bifurcation varieties of the simple singularities has been written as well. 
This uses a similar algorithm, only due to Bruce, [B3]. 

5.2.2 Determinacy and Complete Transversal Theorems 

Suppose we define a weighted filtration of m,,, and R as in Section 2.4. Since 

R (D) is a subgroup of R this restricts to a filtration of R(D) and the results 
of Section 2.4 apply. (In the notation introduced there, we filter 1Z(D) by the 

normal subgroups (1n+Fr0(n, n))nR(D). ) We shall not reproduce all the details 

again; however, we do need to define an appropriate subspace L of L(F'R(D)) for 

which the complete transversal theorem holds. We then deduce, as a corollary, 

a determinacy result which is more powerful than that discussed in Section 5.1 

above. 

Proposition 5.10 Let f: (Cn, 0) -f (C, 0) be a finitely determined analytic 

germ. Suppose further that f is weighted homogeneous of weight d with respect to 

the system of weights (wi, 
... , wn). Let {gi, 

... , gr} be a basis of monomials for 

On/J(f) and ordered such that 

wt(9i) ? wt(92) > ... > wt(gp-i) > wt(gP) =0 

(so choose gp = 1). Define ai to be wt(gi). Let (ul, 
... , u) be coordinates on Cr 

and assign weights w= (w1, 
... , wp) where wi =d- ai. Let aid be defined by 

F. gj ajjgi mod J(F) 

and 03 be the Saito vector fields which generate O(D) 

e; _ aZ; a/aui, 
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as described above. Then 

1. the aid are weighted homogeneous and 

wt (aid) = wi + aj =d- ai + aj; 

2. the vector fields Oj are weighted homogeneous and 

wt(03) = cxi . 
(That is, 8j "gEF+a'Op for all geFFOp and all t. ) 

Proof. 1. F=f+> uigi E On, p is weighted homogeneous of weight d with 
respect to (w,, 

... , wn, w1, ... , wp). So Fgj is weighted homogeneous of weight 
d+ aj. Now F. gj can be written in the form 

F9; _ aj jgi +> b2jaF/ax 
, ii 

and since öF/öxi is also weighted homogeneous (of weight d- wi, in fact) it 
follows that the aid are weighted homogeneous of weight d- ai + cad. 

2. Observe that since aid is weighted homogeneous of weight d- ai + aj, 
ai; a/auj is weighted homogeneous of weight (d - ai + c) - (d - cxi) = aj. That is, 
for any monomial gEF, ' 

, 
Op we have aid al aui "gEF 

+a' (gyp. This is independent 
of i so 8j = >i aj a/aui is weighted homogeneous of weight aj. Q 

Remark. We will consider the cases where ai <d for all i (this implies f must 
be one of the simple singularities) so that the weights wi are positive. 

It is natural to formulate complete transversal and determinacy results using a 
weighted filtration. We will require the following technical lemmas, the proofs 
were supplied by J. W. Bruce. 

Lemma 5.11 Let (X, 0) C (Cr, 0) be the germ of an analytic variety, then 
L(R(X)) = O(X) (using definition 2.7). 

Proof. Let T: (Cr x C, 0) -+ (Cr, 0) be an analytic germ with ýP (x, 0) =x 
for all xE C' and (D (X, t) =X for small t. Consider the vector field xH 
Ný(x, t)/ötI t__o, also denoted a /ätjt=o. Clearly this is tangent to X, i. e., lies 

in O(X). Conversely, any vector field in O(X) can be integrated to give a flow 

4b as above. 13 
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Lemma 5.12 Let (D, 0) C (CP, 0) be the discriminant of a function-germ f. 
Suppose further that f is right equivalent to a weighted homogeneous function. 
Then for all s we have J8(LIZ(D)) C L(J37Z(D)). 

Proof. If ýE JS(L7Z(D)) then we can find some E LR(D) with js = ý. In 
other words for some flow oiD : (CP x C, 0) --- p (CP, 0) as in the preceding proof 
we have = öcJt/atjt_o. By Proposition 5.7 O(D) is a pointed space, that is 
all vector fields which belong to O(D) vanish at the origin. So for all small t, 
Ft : (C', 0) ----) (CP, 0) and ct (X) = X. That is t ý- + f() is a path in J8 R(D) 
so a(js't)/atI 

t-o lies in L(Js7Z(D)). But js(ö(. Dt/(9tjc=o) = a(jscc)/atjt=o so the 
result holds. 11 

Theorem 5.13 Assume the hypotheses and notation of Proposition 5.10. Ap- 
ply the definition of weighted filtration given in Section 2.4. Let {FFOp} be the 
weighted filtration of m p, which we will abbreviate to {F'Op}. The weighted fil- 
tration {F IZ} induces a filtration of R (D) and the results of Section 2.4 hold. 
Define 

L= (Or, 
... , ep-1) + F'Op. (O) C L1Z(D). 

Let hEmp, k>1 and T be a subspace of Hk+1 C jk+i (n, p) such that 

Jk+'L . k+lh +T Hk+l 

Then any (weighted) k-jet jkhi with jkhi -JA: 7z(D) jkh satisfies jk+ihl ,.,, Jk+l7 (D) 
jk+ih +t for some tcT. Note that here all `jet' notation refers to weighted 
jet-spaces with respect to the system of weights, w- we refer to Section 2.4 
for a summary of the notation. (The result can be paraphrased as `any hl with 
hl -? z(D) h+0 (0 E Fk+'OO) satisfies hl -7z(D) h+t+0 for some tET 
(0 E Fk+2Op) , as required in a classification with respect to IZ(D)-equivalence. ) 

Proof. The proof follows from Theorem 2.10 in a similar way to that of The- 
orem 2.37. Again we will only sketch the proof, highlighting the main points. 
We work with the Lie subalgebra L of LR(D). The way in which the general 
complete transversal result Theorem 2.10 was formulated means we do not need 
to concern ourselves with a corresponding subgroup of R(D). However, the main 
problem now is that for a given s, J8L is a subalgebra of J3(LRZ) and the resulting 
coordinate changes in C' may not preserve D. It is not clear if R (D) is jet-closed 

with respect to the weighted filtration, but either way, from Lemma 5.12 we have 
Js(LR(D)) C L(J3R(D)) for all s- this is the important result. It follows 

152 



that Jk+1L C Jk+l(L7Z(D)) is a Lie subalgebra of L(Jk+1R(D)) so there is a 
Lie subgroup G of Jk+17Z(D) with Lie algebra Jk+1L. This subgroup G is used 
in the proof of the complete transversal theorem 2.10 so the equivalence used in 
the conclusion to the theorem will preserve D. The result therefore follows from 
Theorem 2.10 once we have verified that for fE F1Op, gc FSOr and IEL 

l'(f+9)-l"f EFS+'O 

But this follows from the fact that the vector fields 6, are weighted homogeneous 
of positive weight for j=1, ... ,p-1 

(by Lemma 5.10) and they act linearly. Q 

The space L defined in the above theorem is used for complete transversal and 
determinacy calculations. We must multiply the Euler vector field Op by F'Op 
to obtain vector fields of positive weight. The following determinacy theorem 
is a corollary to the complete transversal theorem. The proof follows the same 
lines as Corollary 2.23. We just need to note that the hypotheses imply that h 
is finitely determined with respect to standard degree, but this follows as 7Z(D) 
is one of Damon's `geometric subgroups' - see Theorem 5.4. We remark that 
the following determinacy theorem is, in practice, an immense improvement over 
the determinacy results mentioned after Theorem 5.4 where one needs to use the 

space F1Op. (01 
i ... , 

O) in place of L. 

Corollary 5.14 With the notation of Theorem 5.13, a germ h: (C", 0) --ý 
(C, 0) is k-R(D)-determined if 

Fk+'COvCL"h. 

To perform determinacy calculations on computer we must reduce this to a finite 

dimensional situation (the function wtcalc described in Chapter 6 calculates 
tangent spaces in a given weighted jet-space). 

Corollary 5.15 Assume the notation of Theorem 5.13 and define Wmax to be 

the maximum of the weights w1,. .., wr. Then, a germ h: (Cr, 0) --ý (C, 0) is 

k-7Z(D)-determined if 

Fk+l(gyp CL"h+ Fk+l+wmnx Op 

Proof. Since Op is a local ring we can apply the Nakayama Lemma to see that 

the condition in Corollary 5.14 is equivalent to 

Fk+lOp c L" h+ mp. Fk+lop 
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Now, by definition, the ideal Fk+1+"'max C9p is generated by the monomials in Op 
of weight >k+1+ Wmax. Such monomials can therefore be written in the form 
uim for 1<i<k and ma monomial of weight >k+1. Thus uim E mp. Fk+1COp 
so Fk+l+wmax Cqp C mp. Fk+1(9 

p and the result follows. El 

To check determinacy we can therefore work in the (k + wma, x)-jet-space and 
perform the calculation using a computer. Indeed, suppose we consider h as a 
k-jet and calculate the complete transversals of weight k+1 to weight k+ Wmax 
using the computer. If these are all found to be empty then the condition in 
Corollary 5.15 holds and h is k-R(D)-determined. (We can, of course, improve 

matters by using mr. Fk+'Op instead of Fk+l+u'---Op, but this was found to be 

unnecessary in practice, and hard to implement on a computer. ) 

In a classification the standard `scaling' coordinate changes of the form 
ýu1, 

... up) H (A1u1,... 
, 

Ap26p), 

where Ai E C, Ai 0, are extremely useful for simplifying orbits. Such coordinate 
changes cannot be used in the present situation since they do not necessarily 
preserve the discriminant D. We have the following restricted version though. 

Proposition 5.16 Assume the hypotheses and conventions of Proposition 5.10. 
Then for tEC, t 0, the map-germ (Cr, 0) -p (C', 0) defined by 

up) H (twl 2Gi, ... , 
twP 26p 

is an element of the group R(D). 

Proof. The map-germ is a diffeomorphism so belongs to R. We will show that 

it preserves D. From Proposition 5.10 the versal unfolding F=f+> uigi E 0,,, p 
is weighted homogeneous of weight d with respect to (wl, 

... 7 wn, w1,... 7 wy). 
Hence 

F'(tw1x1i 
... 'twnx , 

tw1u1, 
... , 

t'PU) = tdF(x1, 
... 7 xn) u1, ... , up). 

Also note that OFl äxi is weighted homogeneous of weight d- wi (for 1<i< n) 

so that an analogous result holds for aF/äxi. Thus, since t0 

(Uli 
..., u)ED 3(x�..., x�): F'=aF/ax, =... =aF/axn=0 

at (x,,..., xn, ul,..., u ) 

3(xi,. .., x) :F= äF/öxl = ... = äF/ax,, 
wl wn wl wp at (t ý1,..., t ýn,, t 261i..., t 2GP) 

E D. (twlu1, 
... , 

twpup) 
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The diffeomorphism therefore belongs to R(D). Q 

Finally, for the A2 and A3 cases we list the monomials of a given weight. This 
will be a useful reference for the classifications in Sections 5.3 and 5.4 below. For 
the A3 case the monomials of a given weight include those in both the A3 column 
and the A2 column. 

Weight A2 Monomials A3 Monomials 
2 Ul - 
3 U2 - 
4 Ui U3 
5 u12 2 - 
6 32 u1, u2 u1u3 

7 Ui U2 U2U3 
8 42 U1, U1U2 22 U1U3, 'U3 
9 33 U1U2, 'U2 U1U2U3 

10 522 u1 , UlU2 32 '1u3, U2 2U3) u1u3 
11 43 u1 u2, U1U2 22 U U2U3, U2U3 

12 324 
'1, Ul U21 u2 42223 u1u3, U1U3, U1U U3, U3 

13 23 U1 U2) Ul U2 323 U U2U3, U U2U3, U 2U3 

14 u7 264262 U 264 li UI U21 12 U532U U326226224 16 263 262262 1 3i Ul1 3i 12 3) 1 3i U2 U3 

15 6335 uu 2, U1U2) U2 42233 U1U2U3, U1U2U3i UjU U3, U2U3 

16 268 Ul5 2 U2262264 li 1)12 u? u 42 U326324226 262263 2G 2621.2 4144E 4 
1 3, Ul1 112 3) 1 3i 12 3) 2 3) u3 

5.3 Classification of Function-Germs on the A2 
(Cusp) Discriminant 

In this section we classify all function-germs on the cusp (A2) discriminant vari- 
ety D under R(D)-equivalence and up to modality 2. This extends the results of 
[A2] where the same weighted filtration was employed. Some families of higher 

modality occur naturally in the classification and we include these too. The 

results are summarised in the following theorem; we only state the finitely deter- 

mined germs, the list is short and does not warrant a full stratification diagram 

of the jet-space. The classification was performed by computer. In comparison, 
it was possible, though very tedious, to perform the calculations by hand. We 

did this and reproduce the details to demonstrate how the classification method 

proceeds. Generally, we will not resort to hand calculations in such classifications 
if we can avoid doing so. In this and later sections, we will use a, b, c, ... to denote 

moduli. 
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Theorem 5.17 Every function-germ h: (C2,0) -) (C, 0) on the cusp discrim- 
inant variety D of 'R(D)-modality <2 is IZ(D)-equivalent to one of the following 
finitely determined germs. The first germs of modality >3 to occur during the 

classification are given in the second section of the table; they occur as the initial 

singularities in the stated series. The codimension refers to the dimension of 
Can/JX(h) as a C-vector space; ul is the only stable singularity. 

Singularity Determinacy Degree Codim 

ul 2 1 
U2 3 2 
ui + au2 3n, n>2, aý0 n+2 
ulu2 + aua 6 5 

ul + au2 + bulu2 22 8,4a 27, a#0 7 

ui +4 u2 + all U2+ bU +'u2 2n+5, n>2,2, a : AO 2n +4 

ui +4 u2 + aui + bni+1 2n+2, n>4,4, a0 2n +1 

u2+auf +bun+l 2n+2, n>4, a0 n+4 

ul+aulu2 +bUn+l +cu2+ 3n+6, n> 2, a, b 0(t) 2n+5 

ul+au2 +bulu2 3n+2, n>3, a =AO 2n+3 

ulu2 + a4 + bun + cue +1 3n+3, n>3, b : AO n+7 

(t) For the case n=2 the condition b0 needs to be replaced by 4a3 + 27b2 0. 

The proof will take up the rest of this section. 

The calculations from Section 5.2 show that the module of vector fields tangent 

to the cusp discriminant is generated by 

01= 9u219/19ul - 2u a/au2i 02 = 2u1a/aul + 3u2a/19U2, 
02 being the Euler vector field. Let M denote the ideal (01 " h) + F'02-(02- h) where 
h is some germ in 02 i this is used in the complete transversal and determinacy 

calculations. 

The classification starts at the (weighted) 2-jet-level. The 2-jets take the form 

aul for aEC. Applying Proposition 5.16 we can use `scaling' coordinate changes, 

namely 
(u1, u2) H (t2ui, t3u3), tEC, 

to give the J2-orbits 

ul 2-determined (stable), 
0 (1). 
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To show determinacy note that for h= u1 

01-h=9u2i 02"h=2u1, 

so (u2) CM and F'02. (ul) CM and therefore F302 CM+ F602. Thus, 
ul is (weighted) 2-determined by Corollary 5.15. Note that in this determinacy 
calculation, and several others, the result follows because we can use (B1 " h). 
This is allowed only because we are using a weighted filtration (and 01 `increases 
weight') . 

Since 1 spans O,,, /(91 " h, B2 " h) as a C-vector space, u1 is stable. From 
Proposition 5.7 we see that ul is the only stable singularity. 

(1) Continuing, a 3-transversal of 0 is {u2} and, after scaling, we obtain the 
J3-orbits 

U2 3-determined, 
0 (1). 

Determinacy follows as before (here we have F402 CM+ F702). 

(1) A 4-transversal of 0 is {u } and the J4 orbits are 

Ul (2), 
0 (1). 

(2) Putting h= ui gives 

ei -h =18U1u2,02 "h= 4u2 j, 

so F502 CM+ F602 and the 5-transversal is empty. However, a 6-transversal 
is U2 22 } and the 6-jets take the form ui + aut. The scaling coordinate changes 
referred to above will not reduce a to 1. Indeed, with h= ui + au2 we have 

01 "h= 18u1U2 - 4au 22 u2i 02 "h= 4u + 6au2, 

and LIZ(D) -h= (91 - h, 02 " h). Working with the group R (D) in the (weighted) 
6-jet-space we see that 

U2 ¢ LR (D) "h modulo F702, 

so that a is a modulus by Theorem 1.9. The J6-orbits over wi are therefore 

ui + au2 6-determined, a 0, 

ui 2 (2). 
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Continuing with (2) gives a series and we will consider the general case: 

ui + ant 3n-determined, n>2, a 0. 

Consider h=u, as a (3n - 2)-jet for n>2. Then from the previous calculations 
of 91 "h and 92 "h we see that the (3n - 1)-transversal is empty while a 3n- 
transversal is {ßc2 }. The Jan-orbits are therefore of the form ui + ant . 

As before 
one easily checks that a is a modulus. For determinacy we show that F3'ß+102 C 
M+ Fan+4O2 with h= ui + alle . 

Now 

01 "h= 18n1n2 - 2nanin2-1,02 "h= 4ui + 3nau2, 

so from 01 "h we see 18uiu2 - 2nauiu2-1 E M. But uiu2-1 is of weight 3n +5 
so (uiu2) CM+ Fan+402. Similarly we have 18uiu2 - 2nauiu2-1 EM so 
(ulu2) C M+F3"+402 and 18u1u2-2nauiu2 EM where ulu2 is of weight 3n +4 
so (ulu2) CM+ Fan+402. From 02 "h we have 4ui + 3nauiu2 EM so similarly 
(ui) CM+ Fan+402. Finally, 4U2 U2 + 3nau2+1 EM so (u2+1) CM+ Fan+402 

for a 0. It therefore follows that Fan+102 CM+ F3'ß+4(92 and that h is 3n- 
determined for a 0. If a=0 we see that the next non-empty transversal is 
{u2+1} and the series continues. 

(1) Continuing, a 5-transversal of 0 is {ulu2} and, after scaling, we obtain 
the J5-orbits 

UlU2 (3), 
0 (1). 

(3) Now, with h= ulu2 we have 

01 "h=9u2-2u , 92"h=5u1u2, 

and one sees that a 6-transversal is full giving the J6-orbits 

u1u2 + aua 6-determined, for all aEC. 

Putting h= uiu2 + au, gives 

0, "h= 9u2 -2U3 + 27au2U27 02 "h= 5u1u2 + 6aui, 

and it follows that a is a modulus as in the earlier case. For determinacy we show 

lEM, but ul is of weight that F702 C M+F1002. From 02"h we have 5u3 lu2+6au5 
10 so (uiu2) CM+ F1002 Also 5uiv, 2 + 6aýciu2 EM so (u1u2) CM+ F1002 

From 0l "h we have 9u2 - 2uiu2 + 27aýciu2 EM and it follows that (u2) C 
CM+ F1002. Finally, M+ F1002. Similarly, 9u1u2 - 2U1+ 27auiu2 EM so (U4) 
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from 02 "h we now have 5ýciu2 + 6a4 EM so (ui u2) CM+ F1°02. Referring to 
the table of monomials in Section 5.2.2 we observe that F702 CM+ F1°02 and 
that h is therefore 6-determined. 

(1) A 6-transversal of 0 is {u 
,u , 

'j and we obtain the J6-orbits 

ui + au 
2 U2 

0 

(4), 
(5), 
(1). 

(4) Consider h= ui + au 22, then 

01 "h= (27 - 4a)u2 lu2, 02 "h= 6u3 + 6au2. 

It follows that a is a modulus; in fact more moduli occur as we will show later. 
Now consider the calculation of a 7-transversal. If 4a 27 then the 7-transversal 
is empty; otherwise a 7-transversal is {uiu2}. (Note: this follows from the vector 
81 "h which we can use with the given weighted filtration. ) The J7-orbits are 
therefore 

ui + au2 4a 27, (4), 
ul +42 +' bu 2 (6). 

(4) Consider h= ui + au2; from the previous calculations of 91 "h and 02 "h 
we find that the tangent space M contains 6u1 + 6aulu2 so an 8-transversal is 
{ulu2} and the J8-orbits are 

+ bulu2 8-determined, 4a 27, a 0. ul + au2 22 

+ bulu2 gives Now putting h= ul + au2 22 

81 "h= (27 - 4a)uiu2 + 9bu2 - 4bulu2,02 "h= 6u1 + 6au2 + 8bulu2, 

so working with the group R(D) in the 8-jet-space we find that {u2, u1u2} forms 

an independent set to LIZ(D) " h. That is 

{basis forL'R(D)"hinJg}U{u2, u1u2} 

is an independent set, so by Theorem 1.9 a and b are both moduli. For determi- 

nacy we show F902 CM+ F1202. From 91 "h we have (27 - 4a)i1u2 + 9bu1u2 - 
4buiu2 E M, but u u2 and u u2 are of weight 13 so (u u2) CM+ F1202 since we 
have assumed 4a 27. Then using 02 h we obtain 6uiu2 + 6au1ýc2 + 8býcin2 E M, 
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and using the previous result and the fact that zý1 2 is of weight 13 we have 
(u1u2) CM+ F12C02 for a00. This deals with the monomials of weight 11, the 
monomials of weight 10, uiu2 and ui, follow in the same way. Having obtained 
these we find that (1 U2) CM+ F1002 using 0, " h, and then (u2) C Al + F1°02 
using 02 " h; that is we have F902 CM+ F12(92 and the determinacy result 
follows. 

The case 4a = 27 is dealt with under (6), yet we still have to consider the 
case a=0. From the above calculations we see that M+ F1°02 contains (U3U2) 
but not (u2). A 9-transversal is therefore {u2} and the J9-orbits are 

u+ bu1u2 + cut. 

The classification continues as follows; the details are similar to previous cases 
and we just provide a summary. The 10-transversal of Ui + bulu2 + cue is empty. 
The 11-transversal is empty for b 0, otherwise an 11-transversal is {u1u2}. We 

will consider the case b00 to begin with. A 12-transversal of ui + bu1u2 + ct2 
is {u2} and the J12-orbits are 

u1 + bu1u2 + cýc2 + due 12-determined, 
b 0,4b3 + 27c2 0. 

The determinacy result follows from the inclusion F`02 c M+F1602. Working 

with the group R (D) in the 12-jet-space, we find that b, c and d are moduli. We 

can therefore terminate this branch of the classification, having reached jets of 

modality greater than 2. Indeed, consider any higher jet j with 12-jet u 3+bu, u2+ 

cue + due and such that b=0 or 4b3 + 27c2 = 0. Then any open neighbourhood 

of j must contain a jet j whose 12-jet is of the form ui + bu, u2 + cue + d42 but 

where b0 and 4b3 + 27c2 0; j is therefore equivalent to such a trimodular jet. 

Thus, the modality of j is greater 2. The 12-determined jet ui + bul ßc2 + ci2 + due 

provides the first example of a trimodular singularity in this classification. 

We still have the case b=0 in the 10-jet ui + bulu2 + cue above. Using the 

preceding argument this case can be ruled out as well. Consider any higher jet j 

with 9-jet ui+cu2. Any open neighbourhood of j must contain a jet j whose 9-jet 

is of the form ui + bulu2 + cue for some b0 and by the complete transversal 

calculations the 12-jet of j must lie in the trimodular family ul+bulu2+cu2+du2. 
However, the classification can be continued easily; we obtain two series involving 

moduli and will summarise the findings. As mentioned above, an 11-transversal 

of ui + cue is {ulu2} and the J"-orbits are 

ui + cue + dulu 11-determined, cý0. 
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When c=0 this continues and gives the following trimodular and bimodular 
series: 

u+a, UlU + a2u2+1 + a3u2+2 (3n + 6)-determined, 

n>2, a1, a2 00 (t), 

ni + bin2 + b2nln2 (3n + 2)-determined, 

n>3, b1: ý- 0. 

(t) For the case n=2 the condition a2 0 needs to be replaced by 4a1 +27a2 0; 

see above. 
The above calculations have also been verified by computer. 

(6) Consider the 7-jet h= ui +4 262 + bu U2. Then 

01 -h= 18bu1u2 -2b 4,02 -h= 6u + 67U2 + 7bU2 

Working in the 8-jet-space 82 -h gives 6i4 + 21 u1u2 EM+ F902 and using 01 "h 
we obtain the two monomials of weight 8, ui and ulu2i provided b 0. If b=0 

we may take {ui} as an 8-transversal. The J8-orbits are therefore 

2Gi +4 2ý2 + b2G12ý2 b zh O, 

ui+ 
42LZ+C261. 

Consider the 8-jet h= ul +4 u2 + buiu2 with b 0. From the calculation of 
92 -h above we see that a 9-transversal is {u1u2} and the J9-orbits are 

u3 +4 U2 + buiu2 + CU3U2. 

One then verifies that F1002 CM+ F1302 so that the germ is 9-determined; 

also that b and c are moduli. 

Now, consider the 8-jet ul +4 U2 + c'4. Here one finds that the 9-transversal 

is empty provided c0 and a 10-transversal is {ui}, the resulting bimodular 

family ui + 24 U2 + cal + dul being 10-determined. If c=0 then a 9-transversal 

is {u u2}. 

Continuing in this way using computer calculations suggests the two series of 

singularities 

ui +4 U2 + au U2 + but+1u2 (2n + 5)-determined, 

n>2, a0, 

i4 + 4U2 + aui + bni+l (2n + 2)-determined, 

n>4, a0. 
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To see this consider h= ui +4 ßc2 as a 2r-jet for some r>3. Consider all 
monomials of weight 2r + 1. Since u1+l has weight 2r +2 any monomial of weight 
2r +1 must be of degree <r in u1. Such a monomial is therefore of the form 
Ur-s42 with s, t non-negative integers such that 2r - 2s + 3t = 2r + 1. That is 
s1 mod 3. The monomials of weight 2r +1 therefore take the form 

r-1 r-4 3 r-7 5 r-10 7 ý1 u2 1 u1 u2 , u1 u2 1 u1 U2 

and finishing with one of the monomials u 22', ulu or uiu2 for appropriate t. (For 
example, see the monomials of weight 9,11 and 13 respectively. ) Now 

01 
"h=o, e2 

"h= 6u1 + 21 u2, 

so from 82 "h we have 

626'-1U+ 81 Ur-4263 EM 12212I 

6u'-4u3 + 81 ur-7u5 EM 12212 

6uT-7u5 + s1 Ur-1ou7 EM 12212 

and so on. Thus, working in the (2r+1)-jet-space we see that a (2r+1)-transversal 
is {ui-1U2} and the J2r+1-orbits are 

ui +4 u2 + aui-lug 

Now consider the monomials of weight 2r + 2. Since ui+2 has weight 2r +4 any 

monomial of weight 2r +2 must be of degree <r+1 in u1. Such a monomial is 

therefore of the form u1+1-su2 with s, t non-negative integers such that 2r +2- 
2s + 3t = 2r + 2. That is s-0 mod 3. The monomials of weight 2r +2 therefore 

take the form 
r+1 r-2 2 r-5 4 r-8 6 

ý1 u1 U2, U1 U2, U1 U2, 

and finishing with one of the monomials u2, ulu2 or u2u2 for appropriate t. 

(For example, see the monomials of weight 12,14 and 16 respectively. ) Putting 

ug we have h=u1+ 4u2+aur-1 

Bl "h= 9(r - 1)au'-2u2 - 2au ', 

92"h = 6u3+ 21U2+(2r+1)aui-11.2 

Working in the (2r + 2)-jet-space, 02 "h gives 

6u 1+ 81 Ur-2ý2 EM+ F2r+3ý 
12122 
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which together with 01 "h gives the monomials ui+' and ui-2u2 i provided a 0. 
(Note: our weighted filtration does allow the use of the vector field 01 "h in a 
complete transversal calculation. ) Now 02 "h gives 

6ur-2u2 + 81Ur-5U4 
12212 E M+ F2r+3 (ý 2i 

6Ur- 5u2 +l Ur -8U6 EM+ F2r+302, 

and so on. It follows that F2r+2O2 CM+ F2r+3002 and the (2r + 2)-transversal 
is empty for a 54 0. 

Consider the case a00 to begin with. Now 2r +3= 2(r + 1) +1 and referring 
to the above comments concerning the calculation of a 2r + 1-transversal one 
similarly finds that a (2r + 3)-transversal is {uiu2} and the J2r+3-orbits are 

ui +4 u2 + aul-lug + buiu2. 

(Note: the monomials in 91 "h are of weight 2r +2 in this case, 01 "h does not 
contribute to the transversal, and we do require the term uiu2. ) Finally we show 
h= ui +4 U2 + all1-1u2 + b'iu2 is (2r + 3)-determined. We have 

Bl "h= 9(r - 1)au'-2u2 - 2au ' + 9rbuj-1u2 - 2bu'+2, 

B2 h = 6u + 21 2+ (2r + 1)au1 U2+ (2r + 3)bu1'U2. 

For determinacy we show that F"+'02 c M+F2r+702. Now 2r+6 = 2(r+2)+2 

and from above we therefore see that the monomials of weight 2r +6 take the 
form 

r+3 r2 r-3 4 r-6 6 
ý1 i ý1 ý2 ý1 ý2 ý ý1 X21 

but from 01 "h and 02 "h it follows that 

9(r - 1)au u2 - 2au1+3 EM+ F2T+70zi 

1E 
2r+7 + sluru2 M+F02) 62GT+3 

212 

so that u1+3, ulu2 E M+F2'+702 since a00. The rest of the monomials of weight 
2r+6 follow using 02"h as in previous calculations and F2r+602 C M+F2r+702. In 

a similar fashion we obtain the inclusions F2''+502 C M+F2T+6(92 and F2r+402 C 

M+ F2r+502 and together these give the required determinacy result. 

To finish off this part we note that a and b are indeed moduli. Working in 

the (2r + 3)-jet-space and referring to 81 " h, 02 "h calculated above, we see that 
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{ui-1u2, uiu2} forms an independent set to LR. (D) "h= (91 " h, 02 " h1 and the 
result follows. 

We now consider the case a=0 where h= ui + 4ßc2 is a (2r + 1)-jet. 
Referring to the calculations above we see that a (2r + 2)-transversal is {ui+l} 
(it was previously empty) and the J2r+2-orbits are 

Ui +4 2ý2 + au'+i 

Putting h= ul +4 262 + auf+' we have 

91 "h=9(r+1)aulu2i e2 "h=hui+ 21 u2+2(r+1)aui+l 

Consider the case a 0. Now 2r +3= 2(r + 1) +1 and we refer to the above 
calculation of the monomials of weight 2r + 1. Since a00 the monomial u1u2 
follows from 01 "h and then the rest follow from 02 "h as before. The (2r + 3)- 
transversal is therefore empty. One finds that a (2r + 4)-transversal is {Ui +2}, 

the rest of the monomials of weight 2r +4 following from 02 " h. The j2r+4 -orbits 
are therefore 

ui +4 u2 + au, + býci+2. 

In a similar fashion to the previous determinacy calculation one checks that this 
is (2r + 4)-determined (F2r+5(O2 CM+ F2''+802) and that a and b are moduli. 

Finally consider the case a=0 above. Then h= ul +4 U2 is a (2r + 2)-jet, 
that is a jet of weight a multiple of 2. This was our starting point and has already 
been dealt with. 

(5) We now return to the 6-jet h -"7u22 . Now 

01 - h=-4uu2 2 2,02-h=6u, 

so the 7-transversal is empty while an 8-transversal is {u 1 and the J8-orbits are 

u2 + au4. 

Putting h= u2 + aul we have 

81 "h= -4u2U2 + 36au3U21 B2 "h= 6u + Bau . 

The 9-transversal is empty while a 10-transversal is {ui } and the J1°-orbits are 

u2 + au + bui 10-determined, a*0. 
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For the determinacy calculation we note that the 11-, 12- and 13-transversals 
are empty for a 0. If a=0 then one still finds that the 11-transversal is 
empty, while a 12-transversal is {u6}. This is the start of the following series of 
singularities 

u2 + au + bui+l (2n + 2)-determined, n>4, a 0, 

and we shall discuss the calculations for the general case. 

Consider h =U2 as a 2r-jet, for some r>3. Recall from part (6) above that 
the monomials of weight 2r +1 take the form 

r-1 r-4 3 r-7 5 r-10 7 U1 'a2, 'U1 U2, U1 U2, 'U1 U2, 

finishing with one of the monomials u2, ulu' or uiu2 for appropriate t. Then 
from 91 "h and 82 "h (see above) we observe that the (2r + 1)-transversal is empty. 
Similarly, it was shown that the monomials of weight 2r +2 take the form 

r+l r-2 2 r-5 4 r-8 6 
U1 ' u1 U2, ul U2, U1 U2, 

so a (2r + 2)-transversal is {ui+l } and the J2T+2-orbits are 

u2 + au` 

If a=0 we are back to the initial consideration of u2 as a jet of weight a multiple 
of 2. Supp ose, therefore, that a 0. We apply the same arguments 
and (2r + 4)-levels. The (2r + 3)-transversal is empty while a (2r + 4)-transversal 

is { ui+2 } and the J2r+4-orbits are 
ý% ýýý 

u2 + au + bur+2 (2r + 4)-determined, a 0. 

Putting h= u2 + au'+l + but+2 gives 

81 "h= -4u u2 + 9(r + 1)au u2 + 9(r + 2)bu1+'u2, 

+ 2(r + 2)bui. 02 "h= 6u + 2(r + 1)aui+l +2 

The monomials of weight 2r +5 take the form 

r+l r-2 3 r-5 5 r-8 7 
ý1 u2, u1 u2, u1 u2) u1 u27 

and it follows that F2T+502 CM+ F2r+6002 The monomials of weight 2r +6 

take the form 
r+3 r2 r-3 4 r-6 6 

ý1 iu1ý2ýu1 ý2ýý1 X21 
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and from 02 " h, 01 "h we have 

6u1 2+ 2(r + 1)aui+a EM+ F2T+702i 

-4u u +9(r+1)auiu2 E M+F2T+7O2, 

respectively. But 02 
"h gives uiu2 EM+ F2r+7(72 so ui +3 EM+ F2T+702 

provided a 0. The other monomials of weight 2r +6 then follow easily and 
F2r+602 CM+ F2''+702. The inclusion F2r+702 cM+ F2r+802 follows in the 
same way as that at the 2r + 5-level. Thus F2T+502 CM+ F2T+802 and h is 
(2r + 4)-determined for a 0. Again, it is a routine matter to verify that a and 
b are moduli. 

(1) We now come to the final 6-jet. A 7-transversal of 0 is {uiu2} and we 
obtain the J7-orbits 

2 Ulu2 (7), 

0 (1). 

(7) Consider h= ßc1 U2; we have 

81 "h= 18u1u2 -2U4 02 -h= 7uiu2. 

So an 8-transversal is {'u }giving the J8-orbits 

u u2+aui. 

Putting h =U2 u2 + aui we obtain 

01 h= 18u1u2 - 2u4 + 36au3u2i 02 "h= 7u2u2 + 8au1, 

and a 9-transversal is {u2}. The J9-orbits are 

ulu2 + aui + but. 

Then h= uiu2 + aul + but gives 

91 h= 18u1u2 - 2u1 + 36au1u2 - 6bu1 2, 

82 "h= 7u u2 + 8aui + 9býc2. 

Now 02 -h gives u2u2 EM+ F1102 and it then follows from 01 "h that ui E 

M+F1102i so the 10-transversal is empty. Similarly, 02"h gives uiu2 E M+F1202 

and then ulu2 EM+ F'202 from 01 " h, so the 11-transversal is empty. Likewise, 

from 02 -h we obtain u3u2 and then u6 from 01 " h. A 12-transversal is {u2} and 

the J12-orbits are 

uiu2 + au' i+ but + cue 12-determined, b : gL 0. 
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Putting h= uiu2 + au4 + but + cu2i one verifies that {4i, u2, i4} forms an inde- 
pendent set to LR(D) "h in the 12-jet-space so that a, b and c are moduli. This 
example provides another trimodular singularity. The case b=0 can, of course, 
be ruled out as well. We do note, however, that continuing the classification leads 
to the following trimodular series 

nine + au, + but + cur' (3n + 3)-determined, 
n>3, b: AO. 

We prefer to omit the details (they were also verified by computer). 

(1) Consider any higher jet j with 7-jet 0. Any open neighbourhood of j 
must contain a jet 3 whose 7-jet is of the form ¬U U2i for some E 0. Then 
by the previous complete transversal calculation the 12-jet of j must lie in the 
trimodular family uiu2 + aýci + but + cue. That is, j has modality > 3; all such 
jets being excluded, this concludes the classification. 

5.4 Classification of Function-Germs on the A3 
(Swallowtail) Discriminant 

In this section we classify all function-germs on the swallowtail (A3) discrimi- 

nant variety under R(D) -equivalence and up to modality 2. This extends the 
results of [A2] where the same weighted filtration was employed. The results are 
summarised in the following theorem. 

Theorem 5.18 Every function-germ h: (C3,0) -* (C, 0) on the swallowtail 
discriminant variety D of R(D)-modality <2 is R(D)-equivalent to one of the 
following finitely determined germs. The first germ of modality >3 to occur dur- 

ing the classification is given in the second section of the table. The codimension 
refers to the dimension of On/JX(h) as a C-vector space; ul is the only stable 

singularity. 

Singularity Determinacy Degree Codim 

nl 2 1 
u2+aui 2n, n> 2, a0 n+1 
ßc3+au +bu1+1 2n+2, n> 2, a 0(t) n+3 

U3 - 4ui+all +bui+1 2n+2, n>3, a0 n+3 
U3 + i2n1 + alci ßc2 + bui+ln2 2n+5, n>1, a0 2n +4 

u3 +1 ni + aui + bni+l 19. 2n+2, n>3, a : AO 2n +1 
_ 
ui + býc2 + cu2n3 + dui + eu3 12, b, c, 4bd -c20 8 
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(t) For the case n=2 the extra conditions 12a -10 and 4a +100 are 
required. 

The proof uses the same techniques as for the cusp case. We omit a lot of the 
details - most of the classification was performed by computer. The calcula- 
tions needed for series are more involved than in the cusp case, mainly due to 
the appearance of an extra coordinate, u3. As an example we will discuss the 
calculations which lead to the series: 

U3 + aui + bui+1' 

u3 + 2261 + au? u2 + b261 
2, 

U3 + 12 ui + au + býli+l 

These indicate our approach to the problem. 

The calculations from Section 5.2 show that the module of vector fields tangent 
to the swallowtail discriminant is generated by 

01 = (16u3 
- 

4u)a/auf - 8u, U2a/au2 - 3u2a/aus, 

02 = 6u219/0u1+ (8U3 
- 

2ui)a/au2 - U1U29/9U3, 

03 = 2u1a/aul + 3u29/au2 + 4u3a/au3, 
03 being the Euler vector field. Let M denote the ideal 

(el - h, 02 " h) + F103. (03 - h) 
where h is some germ in 03; this is used in the complete transversal and deter- 

minacy calculations. 

Consider the 3-jet 0. A 4-transversal is {u1, U3} and, applying the `scaling' 

coordinate change 
Cý (u1, u2, u3) H (t2u1I t3 U21 t4u3) 

,t6 

discussed in Proposition 5.16, we obtain the J4-orbits 

U3 + auf, 
2 Uli 

0. 

We shall consider u3 + au below. The 5-transversal is empty for 12a -10; 

otherwise a 5-transversal is {u1u2}. The J5-orbits are therefore 

u3+au 12a-1 0, 
U3+ 

12u1+a2G12ý2. 
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Firstly consider u3 + auf .A 6-transversal is {Ui} giving the J6-orbits 

u3 + au + bni 6-determined, 

a=h 0,12a-1qý 0,4a+1 0. 

The 7-transversal is empty. The 8-transversal is empty provided 4a +10 and 
a0 (as are the 9- and 10-transversals, leading to the above determinacy result). 
For 4a +1=0 or a=0 an 8-transversal is {ui}. The J8-orbits are therefore 

u3 + bui + cui 8-determined, b 0, 
u3 -4 u2 + bui + Cul 8-determined, b*0. 

Continuing (where b= 0) we obtain the series stated in the theorem; we describe 
the calculations only for the first case. Consider h= u3 as a (2r+1)-jet for r>2. 
Then 

81 "h=-3u2i 92"h=-U1U21 03"h=4u3, 

so M contains all monomials except those of the form ui for some s. It follows 
that a (2r + 2)-transversal is {ßc1+1}. Then the (2r + 3)-transversal is empty 
giving the J2r+3-orbits of the form u3 + aul+l If a=0 we are back to the 
original situation so suppose a 0. Similarly, a (2r + 4)-transversal is {u1+2} 

and the J2r+4-orbits take the form 

U3+ au` + bur+2 (2r + 4)-determined, a*0. 

Now, putting h= u3 + aui+l + but+2 gives 

81 "h= -3u2 + (r + 1)a(16u3 - 4u1)ui + (r + 2)b(16u3 - 4ui)ui+l, 

02 "h= -u1u2 + 6(r + 1)auiu2 + 6(r + 2)bul+'u2, 

03 h= 4u3 + 2(r + 1)aui+l + 2(r + 2)bui+2 

Working modulo F2''+6O3 we obtain all of the monomials of weight 2r +5 as 
above (those of the form ul are of even weight) so F2''+503 CM+ F2''+6O3. 
Similarly all the of the monomials of weight 2r +6 follow modulo F2r'+703 once 

we have Ui+3 From 81 -h we have 

-3u1u2 + 16(r + 1)aul+lu3 - 4(r + 1)aui+3 EM+ F2''+703, 

but 82 "h gives 
+ 6(r + 1)aulu2 EM+ F2r+703i -ulu2 22 

and 01 h, 03 h give 'u 2, ui+1u3 EM+ F2'+7 03i respectively. Combining these 
it follows that ui +3 EM+ F2''+703 for a0 so F2'+603 CM+ F2'+7O3. 
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Continuing similarly, one eventually obtains F2r+503 CM+ F2i'+903 so that h 
is (2r + 4)-determined. Finally, working in the (2r + 4)-jet-space, we check that 
{ui+l, ui+2} forms an independent set to LIZ(D) "h so that a and b are indeed 
moduli. 

As our second example we return to the 5-jet u3 +2 ui + aulu2; in particular, 
we consider the two series stated above which stem from this. Consider h= 

u3 + 12 ui as a (2r + 2)-jet for r>1. Then 

0, "h=6 (16ýc3 - 4ui)u1 - 3u , 
82-h = 0, 

12 e3 
'h=3 261 + 4263 

i 

and combining 01 "h and 03 "h we obtain Sui + 3u2 E M. In any complete 
transversal calculation we can therefore replace any occurrence of u2 by ui, any 
occurrence of u3 by ui, and need only consider monomials of the form ui and 
ulu2. It follows that a (2r + 3)-transversal is {uiu2} and the J2''+3-orbits are 
u3 +12 ui + aui u2 .U2) 
above but with the addition of the following terms of higher weight 

ra(16u3 - 4u )u1-1u2 - 8aui+'u2, 
6raui-1ýc2 + a(8'u3 - 2ui)ui) 
(2r + 3)a'iu2, 

respectively. Using the above argument we need only consider the monomial 
u1+2 (modulo F2''+503) when calculating a (2r + 4)-transversal. From earlier 

calculations we see that 

8 rß-2 r-1 2 2r+5 1 r+2 r 2r+5 

9u1 + 3u1 u2 EM+F 03i 3u1 +4 u1u3 EM+F 03 

and it is then a routine matter to verify that ui+2 EM+ F2''+503 using 02 " h, 

provided a 0. We shall assume a 0, then the (2r + 4)-transversal is empty. 
Now consider. h as a (2r + 4)-jet. We need only consider the monomial ui+1u2 

when calculating a (2r + 5)-transversal. After further consideration we see that 

the monomial ui+1u2 cannot be obtained and a (2r + 5)-transversal is {ui+1u2} 

giving the J2r+5-orbits 

u3 + i2ui + au u2 + bu 1u2 (2r + 5)-determined, a 0. 

Putting h= u3 + 12 Ui + au u2 + bui+1u2 we see that the Oh are as above but 

with the addition of terms of higher weight which will be of no concern to us. As 

in the calculation for the (2r + 4)-transversal, we see that the (2r + 6)-transversal 
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is empty so F2r+603 CM+ F2T+7O3. When calculating a (2r + 7)-transversal 
we need only consider the monomial ui+2u2. From 92 "h we have 

6rau1 2+ 8aýciu2u3 - 2aui+zu2 EM+ FZT+803 

and from earlier calculations 

88 r+2 -1 3 2r+8 1 r+2 2r+8 gUl r U2+ 3u, - u1 u2 EM+F 03i 3u1 u2 + 4u1u2u3 EM+F 03 

and we find that ui+2u2 EM+ F2r+803i provided a#0. Hence, the (2r + 7)- 
transversal is empty and F2r+703 CM+ F2''+803. The calculation continues 
in this way and we obtain F2''+6O3 CM+ F2T+1003 proving that h is (2r + 5)- 
determined. 

It remains to consider the case a=0. From the previous calculation we see 
that a (2r + 4)-transversal for u3 + 2Ui is {ui+2}. Continuing we obtain the 
singularity 

U3 +2 ui + auf+2 + bul+3 (2r + 6)-determined, a 0. 

The calculation follows similar lines to those just described and we omit the 
details. If a=0 we are back to the original consideration of u3 +-1- 2 u1 as a jet 
of even weight. Finally, we remark that further calculations verify a and b are 
moduli in both of these series. 

5.5 Classification of Function-Germs on the Ak, 
Dk and Ek Discriminants 

Having dealt with the A2 and A3 cases above, we now consider extending the 

classification to function-germs on discriminants of the other simple singularities. 
We restrict to the first few cases of each series, namely A4, D4, D5, D6, E6, E7 

and E8. In each case the first singularity to occur after the stable singularity 
is of high modality. Continuing is viable in each case, though difficult - there 
being many degeneracy conditions on the moduli to consider. With no motiva- 
tions such as specific applications to geometry we pursue the classifications no 
further. Our results demonstrate the scope of the computer classification package 
(all the calculations were performed by computer, including the far from trivial 

calculation of the vectors fields tangent to the given discriminant). These results 
also indicate the complexities involved in pursuing such classifications should one 
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need to extend these lists in the future. One disturbing feature which comes out 
of this is that there is only one simple singularity in each case - the stable one! 

The germs g1,... , gp which form a free Or-basis of 0,, 
p/J(F) are chosen as 

in Section 5.2.1. For the Dk cases we must reorder these gi so that their weight 
is decreasing. This specific ordering is as follows. 
D4- 

91 =y2192=X393=y394=1. 
D5- 

91 =y3192=Y2193=X1 94= y, 95=1. 

D6. 
9i= y41 92 Y31 93 = X1 94 = y21 95 = y, 96 = 1. 

Using the techniques of Section 5.2.2 we assign weights to the coordinates on CP, 
(ui,... 

, up), as follows. 

Discriminant Weights Total Weight 
X y U1 U2 U3 U4 U5 U6 U7 U8 

A4 1 - 2 3 4 5 - - - - 5 
D4 1 1 1 2 2 3 - - - - 3 
D5 3 2 2 4 5 6 8 - - - 8 
D6 4 2 2 4 6 6 8 10 - - 10 
E6 4 3 2 5 6 8 9 12 - - 12 
E7 3 2 1 3 4 5 6 7 9 - 9 
E8 5 3 1 4 6 7 9 10 12 15 15 

Theorem 5.19 The following table shows the beginning of the classification of 
function germs h: (C°, 0) -ý (C, 0) on the discriminant varieties D of the simple 
singularities Ar, Dp, and Ep under R(D) -equivalence. The A2 and A3 cases 
were dealt with in earlier sections. The codimension refers to the dimension of 
(9n/JX(h) as a C-vector space; in each case ul is the only stable singularity. The 

ai denote moduli and the determinacy degree for the non-simple cases holds for 

generic values of the moduli (more precisely, on the complement of an algebraic 

variety, Le., the complement of a null set). The classification in the Ek cases 

was extremely complicated and was terminated just past the level shown below. In 

particular, the germs already have a high modality but are not determined at the 

given jet-level (because, for example, further moduli occur at higher levels). 
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Discriminant Singularity Det Codim 
A4 U1 2 1 

u2+ alai 4 3 
U3+ alui + a2u1u2 + a3u3 I+ a44 8 7 

D4 u1 1 1 
U2+a1u3+a2u2 l+a3u3 I+a4u1 

4 6 

D5 U1 2 1 
U2+ a1ui + a2u3 + a3u1 + a4u4 + a5u5 10 7 

D6 Ul 2 1 
U2+ alu2 + a2u3 + a3u3 + a4u4 + a5u5 + a6 U6 12 8 

E6 U1 2 1 
ui + alu2 + a2u3 + a3u4 + a4u5 + a5u6 + a6u3+ - - 

a7u3u5 

E7 Ul 1 1 
ui+a1u2+a2u3+a3u4+a4u5+a5u6+agu3+ - - 

a7u7 + agu3u5 

E8 U1 1 1 
ui + a1u2 + a2u3 + a3u4 + a4u5 + a5u6 + a6u7+ - - 

a7u3 + agog + agu3u5 

Conjectures. From the above results we make the following natural conjectures. 
The first one, at least, seems pretty safe! 

1. For functions germs h: (CP, 0) (C, 0) on the discriminant varieties D 

of the simple singularities under R(D)-equivalence there is only one simple 

germ, the stable one ul. (The exception being the first example, A2, where 
there are two simples, namely ul and u2. ) 

2. For the Dk discriminant the singularity which follows the stable singularity 

ui, that is, the singularity with non-zero u2 coefficient, takes the form 

u2+a1u3+a2u2 l+a3U +... +akui 2k-determined, 
codim=k+2. 
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Chapter 6 

Transversal: A Maple Package for 
Singularity Theory 

The package consists of a collection of Maple procedures, the main purpose of 
these being to perform the symbolic algebra needed for classification problems in 

singularity theory. We will just describe the applications here, with only a brief 

reference to the technical machinery needed. (We shall use F to denote either of 
the fields R or C. ) 

6.1 Description 

The basic scenario is of some group 9 (usually one of the standard Mather groups 
R, , C, A, C or K) acting on the space of germs m,,. E(n, p). We need to (i) list 

orbits of finitely determined germs and, (ii) calculate versal unfoldings of the 

normal forms of such germs. The crucial point is that we can reduce these 

problems to ones in linear algebra by working in suitable jet-spaces; the main 

objective being to calculate the tangent space to the orbit of the germ in the 

jet-space. 

(i) Classification is done inductively at the jet-level via the method of com- 

plete transversals. That determinacy questions can be reduced to ones in 

terms of jet-spaces was shown in the work of Mather, [MathIIl], but to 
form an efficient method we must also employ the `unipotency' techniques 

of [BduPW]. 
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(ii) Exactly the same (symbolic) methods can be used to calculate the versal 
unfolding of a finitely determined germ. We essentially just use the funda- 
mental theorem for versal unfoldings, c. f., [Mart2] or [Wal]. 

We summarise the basic method below. 

(a) For a given fEm,,,. E(n, p), jet-space degree k and group C, calculate the 
tangent space to the orbit of f in the jet-space of degree k, that is 

L(Jkc) . (jkf) in Jk(rt, p)" 

Specifically, calculate a spanning set for this tangent space. 
(b) Reduce this spanning set to echelon form (after ordering the monomial vec- 

tors in P (n, p)) using Gaussian elimination. This gives a basis for the 
tangent space. 

(c) Calculate a basis for the complementary space to the tangent space. 

(d) Output the required results. 

The function jetcalc does the main bulk of the work, namely parts (a)-(c), 
and stores the results for global access by other routines. There are a number of 
functions associated with (d), these act on the results of (b) or (c) as appropriate. 
For instance, a complete transversal can be obtained from (c), as can a versal 
unfolding and the appropriate codimension of f. Part (b) allows the hypotheses 
of the Mather Lemma ([MathIV, Lemma 3.1] or [BduPW, Lemma 1.1]) to be 
checked, as well as determinacy criteria. A method for detecting the presence of 
moduli also uses the results from (b). 

All the user functions of the package will be described below, together with the 
global variables used to specify the action of the group 9. The following sections 
provide a document akin to a refence manual and, as a result, are somewhat 
technical in nature. Section 6.6 describes calculations for specific examples and 
provides and a gentler introduction. 

6.2 Getting Started 

The Transversal package is written in Maple V and can be run from Maple 

or X-Maple, whichever you prefer. (It will also run on the latest release, Maple 
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V. 2., although modifications are required if it is to be installed as a library pack- 
age since the Maple variable _liblist is now obsolete. ) The Maple procedures 
which make up the package are (currently) stored on the Liverpool University 
Computer Laboratory's Sun system and on the Liverpool Singularities Group's 
Iris and Indigo workstations (`Whitney' and 'Thom'! ). The library paths must 
be included in your Maple initialisation file. For example, if HOME denotes the 
full (absolute) path name of your home directory and the Transversal library 
has been installed in the subdirectory maple/lib then the following lines (or 
something equivalent) must be added to your mapleinit file which is stored in 
your home directory. (Note the use of different types of quotes, this is important. 
HOME should be replaced by the absolute pathname of your home directory. ) 

neilslib `HOME/maple/lib`: 

_liblist :_ [' libname' , neilslib] : 

Here the first line should give the full directory path-name of the Transversal 
library, depending on where it is installed on your machine. The package can 
then be loaded by going into Maple in the usual way and entering the command: 

with(transversal): 

Alternatively, this command may be placed in your mapleinit file so that 
Transversal is automatically loaded every time you use Maple. 

If Transversal is not installed as a library package in this way the individual 

programs can be read into Maple using the read function instead. 

6.3 Global Variables 

The following global variables need to be set by the user. Their main purpose is 

to specify the action of the group !;. The procedures do not need the group 9 

itself, rather a way of calculating the tangent space L(Jkg) . (jk f) for a given f 

and k. The global variables allow us to specify a large class of groups, as will be 

described below. 
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6.3.1 Brief Description 

The global variable equiv may take the values R, L, A, C or K to specify the 
`type' of equivalence (these correspond to R, C, A, C and 1C). Its value just tells 
jetcalc how to calculate L(Jkgg) . (jk f); the actual group obtained depends on 
the other global variables. For example, if equiv =R then it is possible to obtain 
the groups R, R, R1, R2i 

..., as well as non-standard source coordinate change 
groups, as described next. 

In many applications we have considered, the source coordinate changes are 
restricted (to preserve some variety in the source, say) so that the Lie algebra is 
not the standard one (here the module of vector fields tangent to the variety). 
We therefore allow the source coordinate changes to be user specified. The global 
variable liealg is a pointer to a Maple procedure which defines the Lie algebra 
of our required source group. Specifically, it must give a generating set of vector 
fields of the form 

aa 91 + .+g with 9Z E Sn 
i 09X 1 aXn 

for the Lie algebra. The exact Maple syntax for these vector fields is discussed 
below, together with the other functions of the liealg procedures. 

Several liealg procedures already exist. The standard one which specifies 
the `pseudo right group', 1Z,, is called stdjacobian and defines a generating set 
for the En-module tf (en); in coordinate form this is just the set of columns of the 
Jacobian matrix (äf2/öxj). Others include cusp, swallowtail and d4discrim 
for the module of vector fields tangent to the respective discriminant varieties. 

In many cases we can modify the group 9 without having to change the 

generating set specified by liealg. For instance, liealg := stdjacobian and 
equiv :=R gives the 1Ze tangent space - not the usual R tangent space. This is 

needed for unfolding calculations but not for classification problems. We therefore 

modify the tangent space L9 "f by `multiplying' its source and target components 
by powers of the maximal ideals m,, and mp. The global variables source-power 

and target-power are used for this; a precise definition of the tangent space in 

terms of these variables, and how to obtain the standard groups, being given 
in the section below. For example, using liealg, equiv, source-power and 
target-power we can easily obtain the (tangent spaces for the) groups 

%Ze7 iZ' R1 
l ... 1 

Ae, A, Al, 
... ' 

Ke, K, K1, 
... , etc. 
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One final point concerning g is that in standard classifications we must use 
the unipotency methods of [BduPW]; specifically we give a list of the `nilpotent 
vectors' which must be added to the Lie algebra L. (Note: although referred 
to as the Lie algebra of 9, L9 in general, may not be a Lie algebra. There 
are no known counter-examples at present; in all the standard cases Lg is a 
Lie algebra. ) The appropriate globals are R nilp and L-nilp, together with the 
`pseudo' Boolean variable nilp which tells jetcalc to include the nilpotent terms 
when set to true, and to ignore them when false. This allows us to perform 
calculations which do not require the nilpotent terms without having to reset 
them. It may also be set to a third value of true-order which will be discussed 
next. 

To use unipotent groups in the complete transversal classification method we 
must add the nilpotent vectors to the Lie algebra as just described, but then must 
also tell jetcalc how to order the homogeneous jets of degree k; the required 
order being that induced by the `nilpotent filtration', MT, S(C). We must use 
this order so that the basis for the complementary space calculated by jetcalc 
can be directly refined to give a complete transversal for the M,,, (! 9) filtration. 
In the particular case of A classifications, there are four canonical choices for 
the `nilpotent vectors' which are added to the Lie algebra. It has been shown 
(see Section 6.7.5) that the required order can then be achieved by assigning 
weights to the source and target variables. For this we use the global variables 
nilp_source_wt and nilp_target_wt - each a list of weights dependent on the 

values of R_nilp and L-nilp. i Note that we have not developed a method for 

giving the order induced by the Mr, s 
(9) filtration for general!;. This is a problem 

for future consideration - however, the use of weights gives the four standard 
`, A nilpotent Lie algebras' and this has proved to be sufficient in this work (of 

course, this applies to 1Z and G classifications too). To tell jetcalc to include 

the nilpotent terms and to order the homogeneous jets of degree k using the 

weights just described we set nilp equal to true-order. 

6.3.2 The Individual Global Variables 

We now describe all the user-defined global variables individually; their function, 

Maple data type, and so on. 

'For the important case of A classifications, there is a procedure which defines all the global 
variables; in particular, all the nilpotent variables are assigned appropriately. See setup_classn 
in the next section. 
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liealg 

This is a name (pointer) to another Maple procedure called from within jetcaic. 
Its main purpose is to define a generating set for the source Lie algebra together 
with the names to be used for the source coordinates. The latter is important so 
that these coordinates can be distinguished from any `unfolding' or `moduli' type 
parameters the user may wish to introduce into the germ f. In certain cases we 
always use a fixed set of nilpotent global variables and it is then convenient, from a 
users point of view, to assign these in the liealg procedure also. See the examples 
which define liealg procedures for the discriminant varieties (Appendix B). We 

remark on the following. 

" The coordinate names defined in a liealg procedure must always be used 
when calling jetcalc with that particular setting of liealg. For instance, 

stdjacobian uses x1 ,-.. , x,.,, as source coordinates and their actual Maple 

names are defined as x1, ... , xn, that is juxtaposition of x with a number 
(technically speaking we are using the Maple concept of concatenation of 

names). When called, jetcalc prints out the coordinate names it is using 
to clarify this. 

" In the case liealg = stdjacobian, the source dimension n must also be 

specified. This is done by the global variable source-dim, a positive inte- 

ger. 

The rest of this section describes the technical details behind the liealg proce- 
dures and need only be read should the user want to write their own procedures. 

A liealg procedure is defined with four formal parameters thus 

liealg_example := proc(f , p, tgtspace); 

where f, a list, stores the given jet passed to jetcalc and p, a positive integer, 

the target dimension deduced from the number of components of f. These are 

pre-determined in jetcalc before it calls the liealg procedure. The parameter 

tgtspace is of type `table' and is assigned within the procedure. 

The source coordinates must be specified by assigning a Maple name to each 

entry in the global list coords. This is another function which must be carried 

out by the liealg procedure. It is a good idea at this stage to check the required 

names are unassigned as Maple expressions and return an error otherwise (see 

the Maple code for syntax). 
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Next a generating set for the source Lie algebra must be specifiea using the 
table tgtspace. Each entry of tgtspace is itself of type `table' with p compo- 
nents, and corresponds to a tangent vector v from the generating set. They are 
given in coordinate form, using the coordinates just defined, by specifying how v 
acts on the germ f. The precise syntax is as follows. Suppose the i-th vector in 
the generating set is of the form 

a v=glax +... +gn a 
a9 with gj Ee, 

then the i-th entry of tgtspace specifies the p components of v(f) and is defined 
in Maple by 

tgtspace[i][1] := gl*difi(f [1], coords[1]) +"""+ gn*diff(f [1], coords[n]); 

tgtspace[i][p] := gl*dif(f [p], coords[1]) +"+g,, *dif(f [p], coords[n]); 

where f is given in Maple by a list of p entries, f := [fl, 
... ,f p] . 

A warning is needed on the special case when the target dimension p is one. 
Since each entry tgtspace[i] must itself be of type `table', we must use expressions 
of the form 

tgtspace[i][1] :_... ; and not 
tgtspace[i] :=... ; 

Though the convenient shorthand 

tgtspace[i] .-[... 
]; 

where the entry on the right hand side is of type `list', works as well. 

Finally, the global variables which define the nilpotent terms may be assigned, 
if required. We refer to the sections below for the description of the various 

nilpotent variables and the required syntax. 

equiv 

This specifies which `type' of equivalence to use by taking a value from one of R, 

L, A, C or K. (Note that capitals must be used, and that if any of these letters 
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are assigned Maple expressions then they must be evaluated to actual Maple 
names using single right-quotes. That is, using equiv :_ 'R' instead of equiv 

.=R, 
in the R case, say. ) A spanning set for the vector space L(Jkg) . (jkf) 

is calculated by taking a generating set for the source and target components of 
LG " f, and then all non-zero k-jets which result from this using the appropriate 
module structure(s). This is done automatically by jetcalc, and equiv just tells 
jetcalc which module structure(s) to use. Any equivalence which uses source 
coordinate changes will use the liealg procedure to define the corresponding 
tangent space. However, any target coordinate changes are just the standard 
ones of C or C and can only be altered through the use of target-power. 

source_power/target_power 

These are non-negative integers which specify the power by which the appropriate 
maximal ideal, Mn or mp, is to be raised. Note that the source component of 
the tangent space is always multiplied by a power of the ideal Mn, whereas the 

target component of the tangent space is multiplied by a power of the ideal mr 
in the L and A cases, and by a power of Mn in the C and 1C cases. For example, 

consider the A case. Setting equiv :=A; liealg := stdjacobian; gives the 

tangent space L! 9 -f (in the notation of Mather) as 

tf (msource_power e)+ wf (mtarget_power e) 
np P) 

The standard examples are therefore given by the following settings: 

equivalence source-power target-power 

, 
Ae 0 0 
A 1 1 
Al 2 2 
A2 3 3 

Now consider the /C case. Setting equiv :=K; liealg := stdjacobian; gives 

the tangent space LC "f as 

tf (msource_power e)+ mtarget_power f* (m )e" 
n"nnlp 

Of 

We can therefore obtain the following: 
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equivalence source-power target power 
Ke 0 0 
1C 1 0 
IC, 2 1 
1C2 3 2 

compltrans 

This is a Boolean variable. The function pcomp, described below, prints out the 
basis for the complementary space calculated by jetcaic. A complete transversal 
can be obtained from this basis just by extracting the terms of degree k. The 
fact that this works depends on the way jetcalc orders the monomial jets. The 
user need not concern themselves with the method -j etcalc does everything 
automatically. (Though the theory is discussed in Sections 6.7.3 - 6.7.5. ) Setting 
compltrans := true causes pcomp to extract the complete transversal from the 
basis and then print it out. For the full complementary basis, say in unfolding 
theory, we set compltrans := false before calling pcomp. 

nilp 

This is a `pseudo' Boolean variable. When set to true this tells jetcalc to 
include the `nilpotent vectors' given by R nilp and Lnilp; this would be the case 
for determinacy calculations. However, when set to false this tells jetcalc to 
ignore these variables; this would be the case for standard unfolding calculations, 
say, where the tangent space naturally contains all nilpotent terms anyway, and 
it would be wasteful to consider such terms twice. For complete transversal 

calculations using nilpotent terms the homogeneous jets of degree k must be 

ordered using the MT, 
S 
(C) filtration. We only employ methods for giving the 

four standard A orderings. To achieve this we set nilp equal to true-order, 
the `nilpotent weights' nilp_source_wt and nilp_target_wt then being used to 
define the ordering. It is up to the user to make sure these weights are the correct 

weights to use with the `nilpotent vectors' given by R nilp and L. nilp; however, 

the function setup_classn discussed in Section 6.5 may be helpful. 

Note that if nilp is set to true-order then jetcalc will include the `nilpo- 

tent vectors' given by R_nilp and Lni1p, and use the `nilpotent ordering' given 
by nilp_source_wt and nilp_target_wt. However, if nilp is set to true then 

jetcalc will include the `nilpotent vectors' and use the default ordering, and the 
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user need not worry about defining the lists nilp_source_wt and nilp_target_wt. 

R-nilp/Lnilp 

These are two variables of type `list'; each entry in the lists being a list with 
two entries. These variables specify the extra `nilpotent vectors' which we must 
include in the Lie algebra. `Nilpotent vectors' in the source Lie algebra will 
take the form gv, where gE En and v is in the source Lie algebra generating 
set. (For example, in the A case we will require some of the vectors of the form 

xia/ax; to be included; but in general v will be some combination of the standard 
vectors ö/äxß 

.) 
`Nilpotent vectors' in the target Lie algebra will always be of the 

form yZ9/äyß, 2 where {yl,... 
, y, } are coordinates in F'. The precise syntax is 

as follows. For gEE,,, and v2 the i-th vector specified by the table tgtspace 
(c. f., liealg above), the entry [g, i] in the list R-nilp indicates that the vector 

gvj is to be included in the source Lie algebra. (For example, with liealg = 
stdjacobian, to include xialax; in the source Lie algebra we have the entry 
[xi, j] included in R_nilp. ) Similarly, the entry [i, j] in the list L nilp indicates 

that the vector yZO/Oyj is to be included in the target Lie algebra. 

We need only invoke the nilpotent variables for complete transversal or de- 

terminacy calculations. In this case the Lie algebra to work with takes the form 

Lc1 + `nilpotent vectors'. Thus, it is only the scalar multiples of the `nilpotent 

vectors' which are not already included in L91i and jetcalc need only extend 
the tangent space L91 f by considering the F-span of all the `nilpotent vectors' 

when they act on f; that is it does not need to invoke the whole of the module 

structure(s). 

As an example consider the A classification of map-germs (F2,0) -+ (F3,0). 

We will use the unipotent subgroup of A with Lie algebra 

LA1 ® SP{x119/axe }® Sp{yea/ayl, y3a/ayl, Y3a/aye } 

for the calculations. Only the scalar multiples of the `nilpotent vectors' 

(xla/axe) ' f, (yea/aye) * f, (y3a/ayi) * f, (y3a/aye) " f, 
are not already present in LA1 " f. We must therefore specify Al and then add 

the `nilpotent vectors' as follows. (Recall that we must also specify the source 

dimension when we are using liealg = stdjacobian. ) 

2In coordinate form this can be written yi. ej where lei,. 
.., ep} are the canonical basis 

vectors of F. 
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equiv :=A; 
liealg := stdjacobian; 
source-dim :=2; 
source-power 2; 
target-power 2; 

nilp := true; 
R_nilp [[x1,2]]; 

L_nilp [[2,1], [3,1], [3,2] ]; 

nilp-source _wt/nilp_target_wt 

These are two variables of type `list'; each entry in the lists being an integer. 
When using the `nilpotent vectors' described above for complete transversal meth- 
ods we must use the order induced from the `nilpotent filtration' M,,, (9) on the 
homogeneous jets of degree k. The main point is that jetcalc always orders 
the jets so that a complete transversal is given by taking the vectors of degree k 
from the basis for the complementary space. By ordering the homogeneous jets 
of degree k using the order induced by Mr, s 

(g) the user can, if necessary, use 
the `unipotent complete transversal methods'. Even though jetcalc produces a 
complete transversal of degree k, we can obtain the appropriate M,,, (!; ) transver- 
sal by truncating the jets at that level - explicitly we just take the degree k terms 
in the complete transversal which belong to the required MT, S(Cg) jet-space; all 
the other degree k terms being ignored. (The modified germ f must then be fed 
back into jetcalc using the same value of k, but then truncating the resulting 
transversal at a higher MT, s(g) level than before. ) 

That we can construct complete transversals from the basis for the comple- 
mentary space relies on how we order the monomial jets. This is discussed in 
Section 6.7.4. For the standard cases, the ordering required by the `nilpotent fil- 
tration' can be achieved via a system of weights. We discuss this in Section 6.7.5. 

The specific ordering related to given choices of R nilp and L nilp is defined 
by weights given by the lists nilp_source_wt and nilp_target_wt. (It is up 
to the user to make sure these weights are compatible with R-nilp and L nilp; 
however, the function setup_classn discussed in Section 6.5 may be helpful. ) 

For the example (F2,0) -> (F3,0) above, the choice of R-nilp and L-nilp 

requires the weights (see Section 6.7.5): 
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nilp := true order; 
nilp_source_wt :_ [2,1]; 

nilp_target_wt :_ [-21 
-l, 0]; 

6.4 Weighted Jet-Spaces 

The function j et c al c calculates the tangent space to the orbit of a germ by 
working in a jet-space of some given degree. This uses the standard filtration 
of mn. E(n, p) by degree, that is by the submodules {mk+1E(n, p)} for k>0, 
and amounts to using truncated polynomials. A modified version of jetcaic, 
called wtcalc, implements filtrations given by weights and allows us to work 
with weighted jet-spaces. (Note that jetcalc always uses the standard filtration 
by degree. The methods which use the M,,, (!; ) filtrations may be implemented, 
but these just reorder the monomial terms in standard polynomials to allow 
us to calculate M,., s(g) complete transversals - the algorithm still truncates 
polynomials to the given (standard) degree. ) 

Let a= (a,, 
... ,o) 

be a sequence of positive integers, ß= (01 
i ... , , 

Qv) 
be a sequence of non-negative integers, and {F,, O., F (n, p)} be the corresponding 
filtration of m,,. E(n, p) by weight, which we will denote {F'}. The function 

wtcalc then works in the same way as jetcalc except that it uses the filtration 
{F'} to define the (weighted) jet-spaces. That is, for a germ f and given weight it 
takes a generating set for the source and target components of L9"f; calculates all 
the non-zero weighted jets which result from this using the appropriate module 
structure(s); applies Gaussian elimination to produce a basis for the tangent 

space; and finally calculates a basis for the complementary space. This is the 

same algorithm that jetcalc follows, except now all polynomials are truncated 
by weight and not by standard degree. 

The global variables which define G are used in exactly the same way as 
described in Section 6.3. As yet the MT,, (g) filtration has not been imple- 

mented; however, this is no problem in the applications considered so far where 
the weighted filtration is finer than the MT, s(g). So, in particular, the global vari- 
ables nilp_source_wt and nilp_target_wt are not used by wtcalc, and nilp is 

a real Boolean variable, only taking the values true or false. 

In addition to this we must specify the source and target weights, a and 0. 
This is done with the global variables source-wt and target-wt, both of Maple 
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data type `list'. 

As an example consider the classification of function-germs using a subgroup 
of the standard R. group which preserves a given discriminant variety. For ex- 
ample, the classification of germs (F3,0) -> (F, 0) using coordinate changes in 
the source which preserve the swallowtail discriminant, D. This is commonly de- 
noted R(D)-equivalence. Suppose {81,02,03 } is a generating set for the module 
of vector fields tangent to D; 03 being the Euler vector field. We refer to [B2] 
and Chapter 5 for the calculation of these. It is found that a natural system 
of weights is given by a= (2,3,4) (with Q= (0) as is standard in the case of 
functions). Now the Lie algebra is given by 

LIZ(D) _ (el, e27 03) 

We recall that the Oi vanish at 0; this explains why the above module is not 
multiplied by m, and for the coordinate changes which have 1-jet the identity, 
R(D)I, we need only multiply by m, and not by m' ; the tangent space being 
given by 

LR(D) 'f=mit. (e1 * f, 02. f, e3*f) 
For determinacy and complete transversal calculations we will use the `nilpotent 

vectors' 91 "f and 92 f, and only the scalar multiples of these are not already 
present in LIZ(D)1 " f. We therefore specify 7Z(D)1 and then add the `nilpotent 

vectors' as follows. (The value given to target-power is irrelevant in this example 
as we are just using coordinate changes in the source, but it must be assigned a 
non-negative integer. ) 

equiv :=R; 
liealg := swallowtail; 
source-power :=1; 
target-power :=0; 
nilp := true; 
R nilp [1,2] ]; 

L nilp "_ 
[ ]; 

source-wt [2,3,4]; 

target-wt := [0]; 

The results produced by wtcalc may be inspected using various `output' 
functions, in just the same way as for jetcalc. The same functions apply to 

wtcalc and jetcalc since both store their results (and other data needed by the 
functions, such as monomial reference tables) in common global variables. 
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6.5 Package Functions 

Here we describe all the user functions; the standard Maple format for `help' is 
used, except that examples will be given in a later section. The synopsis for each 
function is intended for reference, so there is inevitably some duplication of the 
notes for different functions. 

Function: intangent - test if a set of vectors is in the tangent space 
calculated by jetcalc (or wtcalc) 

Calling Sequence: 

intangent(vi, v2, ... 
) 

Parameters: 

v1, v2, ... - lists of expressions 

Synopsis: 

" Each parameter v2 specifies a jet in Jk(n, p); its p entries being the components 
of the jet. The function tests to see if the set of vectors {v1, v2, ... 

} together 
with the basis for the tangent space to the orbit of a germ (calculated by 
jetcalc or wtcalc) form a dependent set of vectors. It returns true when a 
dependent set results and false when an independent set results. 

" For a single parameter v the function therefore returns true if v is in the 
tangent space, and false if not. This is useful for remembering which way 
round intangent works - that is true for `in tangent space' (or `dependent'). 
Also, in the case of a single va simple method is sometimes worth exploiting. 
If v is in the basis for the complementary space, as given by pcomp, then v 
cannot be in the tangent space. However, if v is not in the basis this does not 
necessarily mean that v is in the tangent space - in this case intangent must 
be used. 

" The function jetcalc (or wtcalc) must always have been called before using 
this function. Only the most recently calculated tangent space is used. 

"A set of vectors by which the tangent space basis must be extended to give a 
basis for the whole space (spanned by the tangent space basis and the vi) is 

calculated. To be precise, a matrix is calculated whose rows give these `exten- 

sion' vectors in coordinate form; this matrix is stored as the global variable 
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ext_tangent. (Thus, if the rank of ext_tangent is less than the number of 
parameters vi then true is returned; if these numbers are equal then false is 
returned. ) In particular, ext_tangent may contain non-numeric elements (say, 
if the original germ passed to jetcalc involved `moduli-type' parameters) and 
the rank may drop for certain values. In such cases, intangent prints a warn- 
ing and outputs the matrix ext_tangent to allow the user to determine the 
degenerate situations. Since ext_tangent is a global variable it may be in- 
spected at any later stage with the standard Maple commands for printing 
matrices. Note that printing ext_tangent will only give the vectors in coordi- 
nate form (and this depends on how j etcalc decided to order the monomial 
vectors in Jk (n, p) ); however, this suffices for the above considerations. 

Function: jetcalc - calculate the tangent space and complementary 
space to the orbit of a germ in a given jet-space 

Calling Sequence: 

jetcalc(f, k) 

Parameters: 

f-a list of expressions 
1ý -a positive integer 

Synopsis: 

" The parameter f specifies a map-germ (Fa, 0) -* (Fr, 0) by f :_[fi, ... , ff] 

where f2 are Maple expressions in the source coordinates as given by coords. 
The parameter k specifies the jet-space degree. 

" The equivalence is described by the appropriate global variables; as are the 

nilpotent terms. This is discussed fully in Section 6.3. 

" The tangent space to the orbit of f in the jet-space of degree k is calculated, 
together with the complementary space. Specifically, a basis for each of these 

spaces is obtained; these can be inspected by the various `print' routines de- 

scribed in this section. (The actual data is stored in a specific format as the 

global variables coeffarray and compbasis respectively. ) The `See also' note 

found at the end of this synopsis includes all the `print' functions which may 

be used. 
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" When the tangent space spanning set is reduced to echelon form using Gaussian 

elimination (specifically, the vectors are ordered and a matrix of coefficients 
extracted; this matrix is then reduced to echelon form) some of the pivotal 
elements may not be numeric but polynomial expressions involving `unfolding' 

or `moduli' type parameters. For specific values of the parameters the pivotal 
elements will vanish and the tangent space degenerates 

. 
The calculation fails 

for such values and jetcalc must be called again using these values. A `check 
list' of all non-numeric pivotal elements is created by jetcalc and may be 

accesed later. (The check list data is stored as the global variable checklist. ) 

A warning is printed by jetcalc when the check list is non-empty. 

" The dimension of the complementary space is given by the global variable 
codim; while the dimension of the tangent space is given by basis dim. The 

jet-space degree used in the last call to jetcalc is given by jetspace_deg. 

" The source and target dimensions are both calculated by jetcalc from the 

number of components of coords and of f respectively. They do not need to 
be user defined. 

" See also: intangent, pcomp, plist, ptangent, wtcalc. 

Function: pcomp - print basis for complementary space calculated 
by jetcalc (or wtcalc) 

Calling Sequence: 

pcomp() 

Synopsis: 

" Outputs a basis for the complementary space to the tangent space to the orbit 

of a jet. 

" The function jetcalc (or wtcalc) must always have been called before using 

this function. Only the most recently calculated basis is stored. 

" The dimension of the complementary space is given by the global variable 

codim. 

" If the global variable compltrans is set to false the whole basis is output; if 

set to true only the degree k terms are output, where k was the degree passed 

to jetcalc (or wtcalc). 
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Function: pdetterms - print terms which failed the determinacy cri- 
terion as calculated by Adetermined 

Calling Sequence: 

pdetterms() 

Synopsis: 

" Outputs the terms which failed the determinacy criterion in the function Adet- 
ermined. For a full description see Adetermined. 

9 The function Adetermined must always be called before using this function. 

Function: plist - print check list calculated by jetcalc (or wtcalc) 

Calling Sequence: 

plist() 

plist(f lag) 

plist(f lagl, f lag2) 

Parameters: 

f lag, f lagt, f lagt - (optional) flags which may take the values 'P' or 'F' 

Synopsis: 

" Outputs the `check list' calculated by jetcalc (or wtcalc). The `check list' 

contains all the non-numeric pivotal elements which were formed when jetcalc 

performed Gaussian elimination. For a full description see jetcalc. 

" The function jetcalc (or wtcalc) must always be called before using this 
function. Only the most recently calculated check list is stored. 

" The data is stored globally as the table checklist. Each element in checklist 

represents a monomial vector in Jk (n, p), that is a monomial term with inde- 

terminates given by the list coords, multiplied by some coefficient. The precise 
format is as follows. For each entry in the table checklist the index num- 
ber, coefficient and monomial term are output. The index number (which is 

proceeded by a `#') is output so that the corresponding entry in checklist 

may be explicitly obtained by the user at a later time. The most important 
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part is the coefficient which, by the definition of the check list, will be a non- 
numeric Maple expression. It will be desirable to, say, factor this expression 
to determine if it has any roots. Now each element of checklist is itself a 
table with two entries, the first giving the coefficient. Thus, to obtain the co- 
efficient of the i-th term in checklist we use checklist [i] [1]. Note that 
the coefficients checklist [i] [1] are just the non-numeric pivotal elements in 
the echelon matrix coeff array produced by jetcalc (or wtcalc). The en- 
try checklist [i] [2] just gives the corresponding monomial term for the i-th 
entry. 

"A flag may be passed as a parameter to plist; this may take the values P or 
F or both (the later by passing P and F as two parameters flag 1 and f lag2). 
It may be necessary to use single right-quotes thus: 'P' or 'F; if P or F is an 
assigned Maple expression then the use of quotes evaluates P and F to actual 
Maple names. If P is passed then the entries of the check list are printed out 
in turn with plist waiting for the user to type C; [RETURN] (C followed by a 
semi-colon followed by the [RETURN] key - for Continue) before proceeding 
with the next entry. Alternatively typing E; [RETURN] (for Exit) terminates 
the function. (Again right quotes may be required thus: 'C' or 'E'. ) If the 
flag F is passed to plist then the coefficient entries in checklist (that is the 

entries checklist [i] [1]) are factored by Maple before being output. 

Function: pmons - print monomial vectors 

Calling Sequence: 

pmons(k) 

pmons(ki, k2) 

Parameters: 

k, k1, k2 - non-negative integers (k2 optional) 

Synopsis: 

" Outputs the homogeneous monomial vectors of degree k. If two parameters, kl 

and k2, are passed then all homogeneous vectors of degree k1 to degree k2 are 

output. The vectors are output in order of increasing degree, with the actual 

order (for monomial vectors of the same degree) being that used by jetcalc 

when creating the matrix of coefficient vectors, coeffarray. 
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" If the global variable nilp is set to true-order then the order induced by 
the nilpotent filtration is used. This order is determined by the global lists 
nilp_source_wt and nilp_target_wt, with the homogeneous monomial vec- 
tors of each degree r (where r=k or kl <r< k2) being partitioned into their 
appropriate Mr, 

s 
(9) jet-level, this level being output too. (Note that the possi- 

ble `nilpotent orders' are restricted to the standard ones obtained by weights, 
as mentioned in Section 6.7.5. ) If the global variable nilp is set to false (or 

true) then the default order is used. 

" This function requires no preliminary function calls or assigned global variables 
except those mentioned above and the use of coords to specify the coordinates. 
The global list coords may be assigned by the user; alternatively the liealg 

procedures will set coords when they are called (they are usually called by 

jetcalc but this requires all the global variables to be assigned). 

Function: ptangent - print 
jetcalc (or wtcalc) 

basis for tangent space calculated by 

Calling Sequence: 

ptangent () 

ptangent(v) 

Parameters: 

v- an (optional) list of expressions 

Synopsis: 

" Outputs a basis for the tangent space to the orbit of a germ. The basis is 

canonical in the sense that the coordinate form of each vector is just a row 
from the echelon matrix produced by jetcalc (or wtcalc), that is the matrix 

of coefficients, coeffarray. 

" The function jetcalc (or wtcalc) must always have been called before using 

this function. Only the most recently calculated basis is stored. 

" The dimension of this vector space is given by the global variable basis-dim. 

" Each vector in the basis is output as a collection of monomial vectors together 

with a scalar coefficient. The vector is then given by the sum of such vectors. 
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" If the optional parameter v is given it must be a monomial vector; more pre- 
cisely, v must be a list with one entry a monomial, the rest being zero. Vectors 
in the basis which contain v as a term are output. This is useful for a closer inspection of the tangent space. Note that v must be a monomial vector (oth- 
erwise nothing will be output). 

Function: pvars - print global variables 

Calling Sequence: 

pvars() 

Synopsis: 

" Outputs all the user defined global variables which define the group Cg. These 
are discussed fully in Section 6.3. 

Function: pwtmons - print weighted monomial vectors 

Calling Sequence: 

pwtmons(w) 

pwtmons (wl, w2 ) 

Parameters: 

w, w1, w2 - non-negative integers (w2 optional) 

Synopsis: 

" Outputs the weighted homogeneous monomial vectors of weight w. If two 

parameters, wl and w2, are passed then all weighted homogeneous vectors 
of weight wl to weight w2 are output. The vectors are output in order of 
increasing weight, with the actual order (for monomial vectors of the same 
weight) being that used by wtcalc when creating the matrix of coefficient 
vectors, coeff array. 

" The weights must be specified for the source and target using the global lists 

source-wt and target-wt. In the case of weighted homogeneous functions 
(that is, where the target has dimension one) the standard `source only' weights 
may be specified by source-wt with target-wt equal to the list [0]. 

193 



" This function requires no preliminary function calls or assigned global variables 
except source-wt, target-wt and the use of coords to specify the coordinates. 
The global list coords may be assigned by the user; alternatively the liealg 
procedures will set coords when they are called (they are usually called by 
wtcalc but this requires all the global variables to be assigned). 

Function: setup_classn - set up global variables for A classification 

Calling Sequence: 

setup_classn(n) 

setup_classn(n, p, 1) 

Parameters: 

n, p- positive integers (p optional) 

1- an (optional) list with two entries 

Synopsis: 

" This function provides an easy way of assigning the global variables. The 

actual settings are suitable for an A classification problem (determinacy and 
complete transversals) and specifically set up the group A1. The exact values 
used can of course be inspected with the pvars function. 

9 The parameter n specifies the source dimension to be used. 

" The nilpotent variables R-nilp, L-nilp, nilp_source_wt and nilp_target_wt 
are not assigned unless the optional parameters p and 1 are given. 

" The optional parameter p specifies the target dimension and is only needed if 

the nilpotent variables are to be assigned. Then the parameter 1 is required 
also - it provides an easy way of assigning the nilpotent variables, a choice 
of four standard possibilities being available. I may take the values [xl, 0], 
[0, xl], [xn, 0] or [0, xn]. These symbols specify the first element in the required 

nilpotent ordering; the precise meaning being to give the orderings which start 

as: 

[xlk 0 .. 0] .. " 
[0 

.. 0 xlk] .. " 
[xnk 0 .. 0] .. " or [0,... 0 xnk] .. " 
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respectively. From this the function works out the standard nilpotent vectors 
and weights which give rise to such an order. For example, 1 := [x1,0] requires 
the Lie algebra 

LA1 ® Sp{ xiä/äxß :1>31® Sp{ yzö/äyß :1<3} 

and so 

nilp := true-order; 
Rnilp [[x2,1],..., [xn, 1], [x3,2],..., [xn, 2],..., [xn, n-1]]; 
L-nilp [1,2], [1,3], [2,31, [1,4], [2,4], [3,41,... 

1 
[11p], 

... I[ i1 p] 
nilp_source_wt [1,2, 

... , n]; 
nilp_target_wt :_ [0, -1, ... , -p + 1]; 

Function: setup_unf - set up global variables for A unfolding 

Calling Sequence: 

setup_unf (ii) 

Parameters: 

n-a positive integer 

Synopsis: 

" This function provides an easy way of assigning the global variables. The 

actual settings are suitable for an A unfolding problem and specifically set up 
the group A. The exact values used can of course be inspected with the pvars 
function. 

" The parameter n specifies the source dimension to be used. 

Function: wtcalc - calculate the tangent space and complementary 
space to the orbit of a germ in a given weighted jet-space 

Calling Sequence: 

wtcalc(f, k) 

Parameters: 

f-a list of expressions 
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lý -a positive integer 

Synopsis: 

" The parameter f specifies a map-germ (Fa, 0) -+ (FP, 0) by f := [fl, 
... , 

fp] 
where fi are Maple expressions in the source coordinates as given by coords. 
The parameter k specifies the weighted degree of the jet-space. 

" The g equivalence is described by the appropriate global variables; as are the 
nilpotent terms. This is discussed fully in Section 6.3. The source and target 
weights which define the weighted filtration of m,. E(n, p) are given by the 
global lists source-wt and target-wt. 

" The tangent space to the orbit of f in the jet-space of weighted degree k is 
calculated, together with the complementary space. Specifically, a basis for 

each of these spaces is obtained; these can be inspected by the various `print' 

routines described in this section. (The actual data is stored in a specific 
format as the global variables coeffarray and compbasis respectively. ) The 
`See also' note found at the end of this synopsis includes all the `print' functions 

which may be used. Note that wtcalc and j etcalc store all the data required 
by the `print' routines in common global variables so that the same routines 
can be used by both. 

9 More detailed information can be found under jetcaic. The synopsis there 
also applies to wtcalc. 

" See also: intangent, pcomp, plist, ptangent, jetcalc. 

Function: Aclassify - apply the method of complete transversals and 
find the first non-empty transversal for a given germ (this 
function is intended for A-equivalence calculations) 

Calling Sequence: 

Aclassify(f, k) 

Aclassify(f, k, 1) 

Parameters: 

f-a list of expressions 

k, l- positive integers (1 optional) 
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Synopsis: 

" The parameter f specifies a map-germ (Fa, 0) -4 (F", 0) by f := [fl, 
... , fr] 

where fi are Maple expressions in the source coordinates as given by coords. 

" The group Al and appropriate nilpotent terms must be defined via the global 
variables prior to calling this function. 

" The function decides whether f is k-A-determined and failing this outputs the 
first non-empty complete transversal. It essentially uses jetcalc repeatedly 
and is extremely useful in complicated cases where a number of lengthy calcula- 
tions are required in order to check A-determinacy. The determinacy criterion 
used is: if 

mit+1. e(n, p) cL-f+ mnk+2"ý(n, p), 

where L is a Lie subalgebra of LA and J1 L is nilpotent on Fn+P, then f is 
k-A-determined, [BduPW]. The complete transversals of degree k+1 up to 
degree 2k +1 are calculated in succession using jetcalc. If any of these are 
non-empty the calculation terminates and the transversal and jet-space degree 

are output, thus giving the first non-empty transversal for f. However, if all 
transversals are empty then the determinacy criterion holds and the function 

returns that f is k-A-determined. 

" All the usual functions which access the results of jetcalc may be used. The 

results only apply to the jet-space being used when the function terminated, 

the degree of this is stored as jetspace_deg. 

" An important feature is the implementation of the `extended' determinacy 

criterion. With reference to [BduPW]: if 

mit+l E(n, p) CL'f+ mit+l. f* (mp) 
"9(n, p) + mnk+2 E(n, p), 

then f is k-A-determined. The mit+l. f *(mp). e(n, p) terms usually allow us to 

reduce the upper degree of the transversals from 2k + 1. For suppose that 

mit+l. f *(mp) J mlt 1 for some 1, then the extended extended determinacy 

criterion reduces to 

mkL+l e (n, p) CLf+ ml +l e (n, P) 

So only the complete transversals of degree k+1, k+2, ... ,1 need to be cal- 

culated, and if all are empty then f is k-A-determined. For example, if fE 

mn.. F (n, p) has as two of its coordinate functions x and y2, then mit+i f*(mp) D 

mit+3 and only the complete transversals of degree k+1 and k+2 need to be 
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calculated. As a default, Aclassify will calculate all the complete transversals 
of degree k+1 up to degree 2k + 1. However, if a third (optional) parameter 
1 is given, with l an integer, k+1<1< 2k + 1, then Aclassify will only 
calculate complete transversals up to degree 1 allowing the above method to 
be implemented. 

" If either of the two methods mentioned above fails then the extended deter- 

minacy criterion may be applied in the following sense to test further for de- 

terminacy. Let 1 be either a third parameter passed to Aclassify (as just 
described) or the default value of 2k + 1. Suppose Aclassify produces a non- 
empty complete transversal of degree r<1 but all the terms in the transversal 
belong to mit+l f*(mp). S(n, p) (this being easy to check). Using jetcalc the 

complete transversals of degree r+1 to degree 1 may be calculated. If they 

prove to be empty or contain terms in mit+l. f* (mp). S(n, p) then 

mn. E(n, p) C L9 "f+ mit+i f*(mp). E(n, P) + m" '. E(n, P), 

holds for s where k+1<s<1. Hence, the `extended' determinacy criterion 
holds proving f is k-A-determined. If this method is used and the `extended' 

criterion fails for some transversal of degree between r+1 and 1 then the clas- 

sification may proceed by trying alternative determinacy criteria or (probably 

more appropriately) using the function Adetermined to check for determinacy. 

If the jet is thought, or known, not to be determined, the classification must 

proceed to the next jet-level using the first non-empty transversal for f. The 

appropriate transversal is the one obtained back at the degree r level and out- 

put by Aclassify. In many cases this `extended' determinacy criterion proves 

to be useful. However, it may, in such circumstances, prove more efficient to 

use the Adetermined function. For instance, the choice of complete transver- 

sal used above is just one of many, and if some of the terms do not belong 

to mn, +l. f *(mp). E(n, p) this does not necessarily mean that the determinacy 

criterion fails. 

" See also: Adetermined. 

Function: Adetermined - test for A-determinacy of given germ 

Calling Sequence: 

Adetermined(f, k) 

Adetermined(f, k, 1) 
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Parameters: 

f-a list of expressions 
1- positive integers (1 optional) 

Synopsis: 

" The parameter f specifies a map-germ (Fn, 0) -* (FP, 0) by f := [fl, 
... , fp] 

where f2 are Maple expressions in the source coordinates as given by coords. 

" The group Al and appropriate nilpotent terms must be defined via the global 
variables prior to calling this function. 

9 The function uses the following determinacy criterion: if 

Mn 
k+l 

. 
9(f CL-f+ mnk+2"9(n, p), 

where L is a Lie subalgebra of LA and J1L is nilpotent on F'+P, then f 
is k-A-determined, [BduPW]. This condition is checked directly by working 
in the (2k + 1)-jet-space with jetcalc. If it holds the conclusion that f is 
k-A-determined is returned, otherwise the terms which fail the criterion are 
returned (these will be monomial vectors in mit+l .. 

F (n, p)) 

" All the usual functions which access the results of jetcalc may be used. In 

addition, any terms which fail the determinacy condition may be recalled with 
the function pdetterms. (The data is stored as the global variable det_store. ) 

" The following `extended' determinacy criterion may be applied; with reference 
to [BduPW]: if 

k+l k+1 * 2k+2 
m» ., 

F (n, p) CLf+ Mn .f 
(mp). E(n, p) + mit L, (n, p), 

then f is k-A-determined. This can be used to significantly reduce the length 

of the calculation. The first point is that the required jet-space degree can be 

reduced from the general value of 2k+1. For suppose that mý+l .f *(m P) D mit+1 
for some 1, then the extended extended determinacy criterion reduces to 

mý+l E(n, P) CL"f+ 7I2ý+1 E(ýý P) 

This condition may now be checked (using jetcalc) by working in the 1-jet- 

space, instead of the (2k + 1)-jet-space. For example, if fcm,,. E(n, p) has as 
two of its coordinate functions x and y2, then mk+l. f *(mp) D mk+3 and the 

calculation can be done in the (k+2)-jet-space instead of the (2k+1)-jet-space. 
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This is a clear improvement and reduces the computation time significantly, 
especially for large values of k. As a default Adetermined will work in the 
(2k + 1)-jet-space (assuming the standard determinacy criterion). However, if 
a third (optional) parameter 1 is given, with l an integer, k+1<l< 2k + 1, 
then Adetermined will work in the 1-jet-space allowing the above improvement 
to be implemented. The second point to note with the extended determinacy 
criterion is that Adetermined just checks that all the terms in mk, +l. E(n, p) are 
contained in Lg "f by working in the 1-jet-space (where l is the third parameter 
passed to Adetermined or the default value of 2k + 1, as appropriate). Any 
terms which fail this test are output, but it is easy to decide if they belong to 
mý, +l. f *(mp).. 6 (n, p) as the failed terms will be monomial vectors; this provides 
a full implementation of the extended determinacy criterion. (It is preferable 
to output these terms and let the user do the checking. If the computer were 
asked to do the checks the linear algebra it must perform becomes considerably 
more extensive. ) 

" In comparison with the Aclassify function, Adetermined is much more ef- 
ficient for checking the determinacy criterion discussed above. For exam- 
ple, Adetermined is especially useful if it is already thought that f is k-A- 
determined (say from rough calculations by hand) but with some terms in 

mit+l S(n, p) proving hard to check. However, if f fails the determinacy crite- 
rion then the results of Adetermined are of little use in comparison to those of 
Aclassify which then provide the next non-empty complete transversal for f. 

" See also: pdetterms, Aclassify. 

6.6 Examples 

The following describes some standard calculations in singularity theory and how 
they may be carried out using the Transversal package. The appropriate Maple 

commands will be given together with the Maple response. However, for brevity, 
the full Maple response is not always indicated, just the final result. 

To begin with run Maple or X-Maple; X-Maple is preferable, where possible, 
so that one may take advantage of the X-Windows environment. Now load the 
Transversal package by issuing the command with(transversal). We will 
consider the classification of map-germs (R2,0) -f (R4,0) under A-equivalence. 
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6.6.1 Complete Transversals and Determinacy 

In this example we consider the J3A-orbits over the 2-jet (x, y2,0,0). We use the `unipotent' group Cg described in Section 3.2. The following command sets 
up the global variables with the corresponding `nilpotent' Lie algebra and Maple 
responds by printing out the values. 

> setup_classn(2,4, [0, x2]) ; 
liealg = stdjacobian 

equiv =A 
compltrans = true 

source-dim =2 
source-power =2 
target-power =2 

nilp = true-order 
R-nilp: 

[[xl, 2]] 
L_nilp: 

[[2,11, [3,11, [4,11, [3,21, [4,21, [4,311 
> 

Recall that the function setup_classn assigns the global variables so that the 
Al group is specified. The source dimension is a compulsory argument; while the 
target dimension and the `Lie algebra flag' ([0 

, x2] above) are optional - in the 

above case the global variables nilp, R. nilp, L nilp (and nilp_source_wt and 
nilp_target_wt, which are not printed out) are assigned and specify the required 
nilpotent Lie algebra. We now specify the germ f= (x, y2) 0,0) and calculate the 

orbit in the 3-jet-space J3(2,4). 

>f :_ [xl, x2"2,0,0] ; 
>j etcalc (f 

, 3) ; 

Maple responds with several lines reporting on the state of the calculation (which 

takes very little time in this case, of course) and finishes by displaying Ready. 
The matrix dimensions output should not raise too much concern; they give a 

good indication to the user about the complexity of the calculation in relation to 

other calculations performed by jetcaic; however, the matrices are very sparse 

and do not take long to reduce compared to usual matrices of such dimensions. 
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Important: jetcalc prints the map-germ it is using; it is always worthwhile 
checking this is the intended map, especially when several different maps have 
been defined, as it is a common mistake to pass the wrong one to jetcalc. All 
the data will now have been calculated and stored and may be viewed using the 
various `print' routines. For example, to display a complete transversal we type 

> pcompO ; 

3 
[0,0,0, x2 ] 

3 
[0,0, x2 , 0] 

2 
[0,0,0, x1 x2] 

2 
[0,0, xl x2,0] 

> 

This is just the set of homogeneous terms of degree 3 from the basis for the com- 
plementary space to the orbit; since compltrans = true the basis is truncated to 
produce a complete transversal. Recall that we are using the `nilpotent filtration' 
induced by Lg so that a (3,1)-transversal for (x, y2,0,0) is {(0,0,0, y3)}, while 
a (3,2)-transversal is {(0,0, y3,0)}, a (3,3)-transversal is {(0,0,0) x2y)}, and a 
(3,4)-transversal is {(0,0, x2y, 0)}. Note that the partition of monomial vectors 
into their various (3, s)-levels can be displayed using the command 

> pmons(3); 

(This would not have worked before calling jetcalc unless the user specified the 

source coordinates by assigning the variable coords for themselves - this was 
done by the liealg routine, stdjacobian, called from within jetcalc. ) 

Although all of the degree 3 terms in the complete transversal are output, 
we should consider each separately at its own (3, s)-level. (This is fine since 
the degree 3 terms have been ordered according to their (3, s)-level - it is just 

more convenient to output the whole lot. ) Thus, at the (3,1)-level we obtain 
the orbits (x, y2,0, ay3) for aER and, after scaling, these reduce to (x, y2,0, y3) 
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and (x, y2,0,0). Continuing with the first gives the orbits (x, y2, x2y, y3) and 
(x, y2,0, y3) but these are equivalent to ones obtained from the orbit (x, y2,0,0) 
as we shall now see - the details are therefore omitted. Note: one often finds 
that such redundancies occur; we have still to find a way of eliminating them 
without the need to consider every (r, s)-orbit like the (3,1)-orbit in this case. 

Consider the (3,1)-jet (x, y2,0,0). From the earlier calculation, the (3,2)- 
transversal gives, after scaling, the orbits (x, y2, y3,0) and (x, y2,0,0). Consider 
the first; we calculate the higher (3, s)-transversals by calling jetcalc again and 
specifying the same degree, 3. 

>f :_ [x1, x2"2, x2-3,0] ; 
>j etcalc (f 

, 3) ; 

Once jetcalc has finished we display the complete transversal using the function 

pcomp. Exactly the same vectors as before are output. We only consider the 
homogeneous (3,3) terms; the only one is (0,0,0, x 2 y) giving, after scaling, the 
(3,3)-orbits (x, y2, y3, x2y) and (x, y2, y3,0). Continuing with the first: 

>f := Cx1, x2"2, x2"3, x1-2*x2]; 
> jetcalc(f, 3) ; 
> pcompO ; 

3 
[0,0,0, x2 ] 

3 
[0,0, x2 , 0] 

2 
[0,0,0, xl x21 

> 

This indicates the all the higher (3, s)-transversals for the (3,3)-jet (x, y2, y3, x2y) 

are empty and we have obtained a J3A-orbit. Returning to the other (3,3)-jet 

(X, y2, y3,0), from the previous jetcalc calculation using this jet we see that the 

only higher non-empty (3, s)-transversal is the (3,4)-transversal, {(0,0, x2y, 0)}. 

We obtain the (3,4)-orbits (x, y2, y3 ± x2 y, 0) and (x, y2, y3,0). We already know 

the higher (3, s)-transversals are empty in the latter case, while in the former this 
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is easily checked by a further call j etcalc (f , 3) with f= (x, y2, y3 ±X2 y, 0). We 
therefore obtain two more J3A-orbits. 

We now return to the (3,2)-jet (x, y2,0,0). From the original calculation for 
(X, y2,0,0) we see that a (3,3)-transversal is {(0,0,0, x2y)}. For f= (x, y2,0, x2y) 
the higher (3, s)-transversals are empty. However, this J3. A-orbit is redundant, 
for consider the other (3,3)-jet, (x, y2,0,0). The only higher transversal is the 
(3,4)-transversal, {(0,0, x2y, 0)}. For both (3,4)-orbits the higher transversals 
are empty so, in total, we obtain the J3A-orbits: 

(x, y2, y3, x2y), 
(x, y2, y3±x2y, 0), 
(x, y 2 

,y3 , 
0), 

(XI Yz, xaY, 0), 
(x, y2,0,0). 

We will demonstrate determinacy calculations by considering the first and 
second cases above. If a germ f has 2-jet (x, y2,0,0) we can appeal to the fact 
that m2+1. f*(m4). E2 D m2+3 and can work in the jet-space Jk+2(2,4) to prove 
determinacy. Now (x, y2, y3, x2y) is 3-determined. Even if we do not suspect this 

we still have to calculate the higher transversals, so may as well check determinacy 
in the process using the Aclassify procedure. This procedure simply calculates 
higher transversals, stopping if a non-empty transversal is produced or a given jet- 
level is reached. To check determinacy we must give Aclassify the determinacy 
degree k together with the jet-level it must proceed to, in this case k+2. If 

no limit degree is given Aclassify will use the default value of 2k + 1, which is 

always enough, and calculate the (k + 1), (k + 2), ... , 
(2k + 1)-transversals. Such 

a calculation is very intensive and, in practice, we always try and reduce the limit 

from 2k + 1. For (x, y2, y3, x2y) the appropriate commands are 

>f := [x1, x2"2, x2-3, x1"2*x2] ; 
> Aclassify(f, 3,5) ; 

Maple responds by calculating the 4- and 5-transversals; the state of the calcula- 
tion is reported as for jetcalc. Both transversals are empty and Maple returns 
the conclusion 

232 
[xl, x2 , x2 , xl x2] 
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germ is 3-A-determined 
> 

We could equally well use the Adetermined procedure. This checks the deter- 
minacy condition directly and can, in theory, show the condition holds even 
if Aclassify failed by producing a non-empty transversal. However, in prac- 
tice, this have never been the case, and since Aclassify is faster and pro- 
duces a useful result when the given germ is not finitely determined (namely 
the next non-empty transversal) it is the preferred procedure. If one wishes to 
use Adetermined the arguments are the same as for Aclassify, so in the previ- 
ous case use Adetermined(f 

�3,5). 
Once the tangent space has been calculated 

and the determinacy condition checked, the same conclusion is returned. 

We now consider the 3-jet (x, y2, y3 ± x2y, 0). Using j etcalc we calculate the 
4-transversal in the usual manner. The cases (x, y2, y3 + x2y, 0) and (x, y2, y3 - 
x2y, 0) must, of course, be considered separately; they produce identical results 
so we only discuss the first. 

>f :_ [x1, x2"2, x2"3+x1-2*x2, O]; 

> jetcalc(f, 4) ; 
> pcompO ; 

3 
[0,0,0, xl x2] 

> 

This demonstrates why j etcalc outputs all the homogeneous terms rather than 

restricting to each (4, s)-level individually. In the above case we see that all 
(4, s)-transversals are empty except the (4,4)-transversal, {(0,0,0, x3y)}. So we 

immediately obtain the J4A-orbits (x, y2, y3 + x2y, x3y) and (x, y2, y3 + x2y, 0). 

We could have used Aclassify to obtain this (Aclassify(f, 3,5)), though it 

is clear that all the 4-transversals could not have been empty, anyway. It is 

appropriate to use Aclassify to investigate (x, y2, y3 + x2y, x3y); this shows it is 

4-determined. We then proceed with (x, y2, y3 + x2y, 0). 

>g := [f[1], f[21, f[31, xl-3*x2); 

> Aclassify(g, 4,6); 
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2323 
[xl, x2 , x2 + xl x2, xl x2] 

germ is 4-A-determined 

> jetcalc(f, 5); 

> pcompO; 

4 
[0,0,0, xl x2] 

> 

Further calculation shows that (x, y2, y3 + x2y, x4y) is 5-determined, and pro- 
ceeding further gives the first few germs in the series (x, y2, y3 + x2y, xky). We 
conjecture that this is indeed a series the general proof now follows easily but 
we have to resort to hand calculations. 

Remark (A1-Complete Transversals). If the Al-complete transversal meth- 
ods are preferred, just follow the above but with the global variable nilp set 
equal to false. The command 

> setup_classn(2); 

will set up the global variables accordingly. Note, however, that the use of the 
Al group occasionally gives redundant terms in the transversal; requires more 
work to simplify the resulting family of jets; and means that the determinacy 

calculations (for instance, if one were using the Aclassify procedure) will not 
incorporate the unipotent methods either. 

6.6.2 Moduli Detection and the Mather Lemma 

In this example we consider the 7-jet f= (x, y2, xy3 + x4y, y5 + ax6y). This 

was obtained by calculating the 7-transversal for the 6-jet (x, y2, xy3 + x4y, y5); 
the only non-empty (7, s)-transversal was {(0,0,0, x6y)} giving rise to the above 
family. We cannot `scale' a to a unit using simple `scaling' coordinate changes 
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and suspect it is a modulus. To prove a is a modulus we have to use the group 
A and work in the 7-jet-space to show 

(0,0,0, x6y) LA "f modulo m2. E(2,4); 

see Theorem 1.9. To begin with we must set up the global variables to define the 
A group. 

Warning: if this done during a classification session where the group G is being 

used, it is easy to return to the complete transversal calculations while forget- 

ting to reset the global variables to define g. If the user is running X-Maple it 
is advisable to carry out these calculations, where we have changed the global 

variables to specify A instead of 9, by running a second version of Maple in a 

separate window. 

Having entered Maple and loaded the Transversal package we can set up the 
A group as follows. Firstly set up the Ae group using the setup_unf procedure. 

> setup_unf (2) ; 
liealg = stdjacobian 

equiv=A 
compltrans = false 

source-dim =2 
source-power =0 
target power =0 

nilp = false 

R nilp: 
R nilp 
L nilp: 
L nilp 

> 

Then change this to the A group by setting the powers of the maximal ideals 

equal to 1. 

> source-power :=1; target-power :=1; 

It is extremely advisable to double check these settings by printing out the global 

variables. 
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> pvars(); 

(We have omitted the Maple response. ) Now we calculate the tangent space LA "f in J7(2,4) and determine whether the vector (0,0,0, x6y) belongs to this 
space. 

>f :_ [xl, x2"2, x1*x2"3+x1"4*x2, x2"5+a*xl"6*x2]; 
> jetcalc(f, 7) ; 
> intangent([0,0,0, x1-6*x2]) ; 

false 

The Maple response false indicates that a is a modulus. 

Remark (Families of Higher Modality). To show that a and b are moduli 
in the family 

g= (x, y2, x3y ± xy5 + by7, x2y3 + ay7) 

we use the same Theorem and have to show that {(0,0, y7,0), (0,0,0, y7)} forms 
an independent set to LA "g in J7(2,4). 

>g := [xi, x2"2, x1"3*x2+x1*x2"5+b*x2"7, x1"2*x2"3+a*x2"7]; 
> jetcalc(g, 7); 
> intangent([O, O, x2-7,0], [0,0,0, x2-7]) ; 

false 
> 

Again, the Maple response false indicates a and b are moduli. 

We now return to determinacy calculations, in particular determinacy calcu- 
lations for families. Remember to reset the group to (using the setup_classn 
procedure as in Section 6.6.1) or move to an X-Maple window where C9 has been 

set up (cf. earlier remarks). Using Aclassify will show that f is 7-determined, 
but this only holds for generic a and does not indicate the exceptional values. For 
families it is more convenient to check determinacy by calculating each transversal 

separately using jetcalc. 

>f :_ [x1, x2"2, x1*x2"3+x1"4*x2, x2"5+a*x1"6*x2]; 
> jetcalc (f , 8) ; 
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Observe that when jetcalc has finished the calculation it responds with the 
warning: 

WARNING: global variable 'checklist' is non-empty !!! 

The Gaussian elimination routines in jetcalc try to choose the best pivotal 
elements. They give preference to numeric (non-symbolic) pivots but this is 
not always possible and the global variable checklist is used to store the non- 
numeric pivots. To display these we use the command plist. 

> plistO; 

7 
#1,1 + a, [ 0,0,0, xl x2 ] 

7 
#2,1 + a, [ 0,0, xl x2,0 ] 

7 

#3,1 + a, [ 0, xl x2,0,0 ] 
7 

#4,1 + a, [ xl x2,0,0,0 ] 

> 

The first column indicates the index number of the pivotal element as an entry 
in the table checklist; the second column the actual pivotal element (this is 
the important bit); and the third column the monomial vector associated to this 

particular pivot (as an entry in the matrix of all coefficients of monomial vec- 
tors). In more complicated examples we can therefore access the pivotal element 
#i (for example, to factorise it and find the exceptional values - this is not 
necessary here, of course) using checklist [i] [1]. (checklist [i] [2] gives the 

monomial vector, but as a table, so the Maple command eval would have to be 

used. ) Alternatively the command plist (F) will try and factorise all the pivotal 

elements as it displays them. Then, 

> pcompO ; 
*** TRANSVERSAL EMPTY *** 

> 
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shows that the 8-transversal is empty, but only provided I+ a 0. To investigate 
the exceptional value we must re-run jetcalc: 

>h := subs(a=-1, f); 
> jetcalc(h, 8); 
> pcomp(); 

7 
[0,0,0, xl x2] 

> 

So we must consider the case a= -1 separately; we will return to this shortly. 
Continuing with the determinacy calculation: 

>j etcalc (f 
, 9) ; 

WARNING: global variable 'checklist' is non-empty !!! 
> 

Again, we must use plist() and display the non-numeric pivots. We find the 
conditions on a are the same as before, and then using pcomp() shows that the 
9-transversal is empty. Thus, f is 7-determined for a -1. 

Note: sometimes the conditions on parameters such as a which are displayed 
by plist are redundant; re-running jetcalc with the `exceptional' values sub- 
stituted in causes no change to the complete transversal. The conditions only 
appeared in the first place because jetcalc had no other choice for the corre- 
sponding pivotal elements. 

We now consider the 7-jet h= (x, y2, xy3 + x4y, y5 - x6y). From above, an 
8-transversal is {(0,0,0, x7y)} giving the family of 8-jets 

f= (x, y2, xy3 + x4y, y5 - x6y + ax7y)" 

We can apply `scaling' coordinate changes to reduce this to (x, y2, xy3 + x4y, y5 - 
x6y ± x7y) and (x, y2, xy3 + x4y, y5 - x6y). Alternatively, this follows from the 
Mather Lemma and we take this opportunity to demonstrate the method. There 

are situations where the use of the Mather Lemma is more important, for instance, 
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where `scaling' will not work and applying the Mather Lemma shows triviality for the whole family. Such situations did not occur in our classification, however, 
so we use this example to demonstrate the general procedure. 

Remember to begin by setting up the A group as described above, or using 
the X-Maple window which was reserved for such calculations, as appropriate. 
Next we calculate the tangent space LA f in J8(2,4), determine whether the 
vector (0,0,0, x7y) belongs to this space, and display the dimension of the space. 

>f := [h[11 
, h[21 , h[31 ,h [4] +a*x1 -7*x2] ; 

> jetcalc(f, 8); 
WARNING: global variable 'checklist' is non-empty !!! 

> plist(); 

7 
#1,2/3 a, [ 0,0,0, xl x2 ] 

> intangent([0,0,0, x1-7*x2]); 
WARNING: original matrix contains non-numeric elements, check 

checklist !!! 

true 
> basis-dim; 

162 
> 

This tells us that LA "f is of constant dimension 162 and contains (0,0,0, x7y) 
provided a 0. The warning output from intangent also reminds us that non- 
numeric pivotal elements exist. On some occasions non-numeric terms are intro- 
duced by the elimination routine in intangent. When this happens intangent 
outputs a vector containing the offending term. This vector is a coordinate vec- 
tor of coefficients but the specific interpretation does not matter. The important 

point is that the non-numeric terms should be treated in the same manner as 
those given by plist - the values for which they vanish should be investigated. 
Substituting a=0 into f and following the above procedure shows LA "f is of 
dimension 161 and does not contain (0,0,0, x7y). Thus, by the Mather Lemma, 
the family can be reduced to the orbits 

(x, y2, xy3 + x4y, y5 - x6y ± x7y), 
(x, y2, xy3 + x4y, y5 - x6y)3 
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and in the complex case the two orbits (x, y2, xy3 + x4y, y5 - x6y + x7y) and 
(x, y2, xy3 + x4y y5 - xsy - x7y) reduce to one. Further calculation gives de- 
terminacy and continuing with (x, y2, xy3 + x4y, y5 - x6y) produces the series 
(x) y21 xy3 + x4y, y5 _ xsy + xky), which is (k + 1)-determined for k>7. 

Remark (The `Checklist' and Moduli Detection). We ignored the possi- 
bility of the global variable checklist being non-empty in moduli-detection cal- 
culations above. However, in such an eventuallity, the computer result (false 
returned by the function intangent) applies for all values of the parameters a2, 
except those lying on a finite set of algebraic varieties (defined by the polynomial 
entries in checklist). So the result holds for all values of the a2 except those on 
a subset of stricly smaller dimension and by Theorem 1.9 the ai are moduli. 

6.6.3 Unfoldings and Codimension 

We finish by showing how to calculate a versal unfolding for a finitely-determined 

map-germ. We shall consider the germ f= (x, y2, y3) x2y) discussed in Sec- 

tion 6.6.1. The same methods apply to more complicated examples. For instance, 
if we were to consider a family then we apply the same procedure but must in- 

spect any non-numeric pivotal elements which arise using plist, and consider 
the exceptional values, as in Section 6.6.2. 

We begin by setting up the Ae group using the setup_unf procedure as in 

Section 6.6.2. Next we calculate LA, f in j3(2,4) and output the basis for its 

complementary space, this gives us the unfolding terms since f is 3-determined. 

Generally, if a germ f: (Rn, 0) -* (RP, 0) is k-A-determined then, by the 

determinacy theorems of [BduPW], there exists some unipotent subgroup 9 of A 

such that 
mk+l E(n, P) C L9 - f, 

and, in particular, 

mit+l. E(n, p) c LA f and mit+1. S (n, P) C LAe ' f, 

so that we can calculate . 
A, - (and A-) unfoldings using jetcalc by working 

in the k-jet-space. Note that since compltrans = false, when we call the 

pcomp procedure the whole basis for the complementary space will be output, as 

required. 
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I 

>f :_ [x1, x2"2, x2-3, x1"2*x2]; 
> jetcalc(f, 3); 
> pcomp(); 

[0,0, x2,0] 
[0,0,0, x2] 

[0,0, xl x2,0] 

> codim; 
3 

> 

Thus, f has 
, 
Ae-codimension 3 and a versal unfolding is 

(x, y, u1, u2, u3)'-* (X, y2, y3 +u1y+u2xy, x2y+U3y, U13U21U3)" 

To consider, for example, adjacencies of finitely determined map-germs or 
use the codimension as an invariant at the jet-level (that is to consider non- 
sufficient strata as well as sufficient strata) we must use A-unfoldings and the 
A-codimension. Firstly modify the global variables to change the , Ae group to 
the A group. 

> source-power :=1; target-power :=1; 

Again, it is always a good idea to re-check the settings with the pvars procedure 
before continuing. Now calculate the tangent space and print out the unfolding 
terms as before. 

> jetcalc(f, 3); 

> pcomp(); 

[1,0,0,0] 
[0,1,0,0] 
[0,0,1,0] 
[0,0,0,1] 

[0, x2,0,0] 
[0,0, x2,0] 
[0,0,0, x2] 

[0,0, xl x2,0] 
[0,0,0, xl x2] 
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> codim; 
9 

> 

This highlights the fact that jetcalc always calculates the complementary space 
in E(n, p) and not mn. E(n, p), so here we must ignore the constant terms. Thus, 
f has Ä-codimension 5 and an Ä-versal unfolding is 

(x, y, Uli U21 U3, U41 U5) ý_+ (x, y2 + uly, y3 + u2y + u3xy, X2y + u4y + u5xy, 
u1, u2, u3, u4, u5)" 

If one wishes to calculate the A-codimension for a large number of examples 
then defining a Maple function to do this helps avoid silly arithmetic errors, and 
promotes the utmost in laziness! 

> cod :_ () -> codim-4; 
> cod(; 

5 
> 

6.7 The Program Structure and Code 

The algorithms presented in the section will be described using a `pseudocode'. 
The syntax is based on that used by Maple (in particular, the symbol `#' is 

used to denote a comment). Many of the statements are self-explanatory and in 

several cases we use English descriptions in favor of following the precise syntax 
(which is often language specific and not the place in pseudocode). To achieve 
utmost clarity, bearing in mind the package is likely to be developed for future 

applications, we give a fully documented listing of the Maple code in Appendix B. 
The theory is described below for the real case, though the results apply equally 

well to the complex case. 

We begin by describing the basic structure of the program. The algorithm 
is essentially the same as that followed if one were doing the calculation by 

hand, except that everything is calculated in full. For example, in a standard A 

classification we first obtain the generators for the R tangent space and multiply 
them by all monomials until we reach jets of degree greater than the given degree 

k, that is, zero k-jets. Similar observations apply to the G tangent space. We 
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then look for the `missing monomials' of the appropriate degree. In practice we 
usually spot whole families of monomials which are available very quickly; which 
tangent vectors will not really help us (and ignore them); and which will be the 
difficult monomials to find. The computer cannot do this and just grinds away 
producing every possible tangent vector in the jet space, that is, a spanning set 
for the tangent space as an R-vector subspace of the jet-space. The problem then 
reduces to taking real linear combinations of the tangent vectors. We therefore 
extract the monomial coefficients of the tangent vectors and create a matrix 
which is reduced to echelon form using Gaussian elimination (the order of the 

coefficients in the matrix is of significance and will be discussed later). Once we 
have an echelon matrix (not necessarily in row reduced echelon form) we have a 
basis for the tangent space and can generate a basis for the complementary space 
algorithmically. This is translated back into a jet format and the results stored 
for future access. 

Remark. A vector (representing, say, a jet in Jk (n, p) which is identified with 
the space of p-tuples of truncated polynomials in n indeterminates over R) will 
be of Maple data type `table' (or occasionally an `array', the difference here 

being unimportant) with indices 1 to p, where p is the target dimension and is 

determined from the number of components of f. The global variable tgtspace 

is a table of the tangent vectors (which grows as the program proceeds) and, 

explicitly, is therefore a table of tables! An exception to this is the original jet 

f= (fl,... 
, 
fr). It is more convenient from a user's point of view to use the data 

type `list' here. 

We start by discussing how to generate, and store in a suitable format, the 

monomials up to degree k. 

6.7.1 The Index and Degree Reference Tables 

There are several occasions in the program where we need to access multivari- 

ate monomials with the source coordinates as indeterminates; sometimes all the 

monomials up to degree k are needed, other times just the monomials of a given 

degree. For instance, all the generators of the R tangent space need to be mul- 

tiplied by all monomials of degree source-power and higher until a zero k-jet 

results. We need to know all the monomials in the k-jet space when extracting 

coefficients and forming the coefficient matrix. Likewise, monomials with the tar- 
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get coordinates as indeterminates are needed when calculating the left tangent 
space. 

It is therefore necessary to have a procedure which calculates all the appropri- 
ate monomials and stores them as a table. In fact, it is more useful just to store 
the integers which represent the monomial indices rather than the monomials 
themselves. We therefore have a table, each entry of which is a table of indices. 
The relevant procedure is called get_ref_tables and is discussed below. 

We have two tables, namely index-ref used to store the indices, and deg-ref 
used to reference a given index degree in index-ref. More precisely, the index 
reference table contains all the indices (each given as a table) up to degree k for 

monomials in the source coordinates. (The order used to store them is graded 
lexicographic. ) The ith entry in the degree reference table tells us whereabouts 
in the index reference table the indices of degree i begin. An example should 
clarify things. 

Example. Consider monomials in the indeterminates x, y and z up to degree 
k=2. The index (il, i2 i i3) represents the monomial xil yýz zý3 

i index-ref [i] monomial degree 
0 (0,0,0) 1 0 
1 (0,0,1) z 1 
2 (011,0) y 1 
3 (1,0,0) x 1 
4 (0,0,2) z2 2 
5 (0,1,1) yz 2 
6 (0,2,0) y2 2 
7 (110,1) xz 2 
8 (1,110) xy 2 
g (2,0,0) x2 2 

deg-ref [0] =0 
deg-ref [1] =1 
deg-ref [2] =4 

It is also desirable to set degsef [k+1] so that we have a pointer to the end of 
the index reference table. So in this example: deg-ref [3] = 10. 

Remark. For any 0<d<k we can therefore access all the indices of degree d 

by a statement of the form 

for i from deg-ref[d] to (deg_ref [d+1] - 1) do 
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index := index_ref [i] ; 

od 

Similarly, some index index-ref [i] is of degree d if and only if 

deg ref [d] <i< deg-ref [d + 1]. 

Such statements will be common place in the code. 

Now, before we can create the full reference tables we must be able to construct 
all indices of degree deg in lexicographic order. There is a big problem here in that 
the number n (the source dimension) of indeterminates is not predetermined. One 
possible answer is to use a recursive procedure. A simpler and probably neater 
solution is as follows. 

Acknowledgement. The method was suggested by Bruce Stephens of the Liv- 
erpool University Centre for Mathematical Software Research and Parallel Pro- 
gramming. We take this opportunity to express our warmest thanks. 

The point to note is that the n-th index is essentially irrelevant to the problem, 
being determined by the 1, ... , 

(n-1) indices and the required degree. Restricting 
to these indices, the problem is simply to count from 0 upwards, in base deg + 1, 

using n-1 digit numbers, until the left-most digit has reached the value deg. 
Thus, the method is to always try and increase the (n - 1) index (i. e., the right- 
most index) by one first. If this takes it past the value deg then we reset it to 

zero and try and increase the next index down (the (n - 2) index), and so on. 
We therefore obtain every index in n-1 indeterminates of degree < deg and for 

each assign the n-th index accordingly to obtain indices in n indeterminates of 
degree exactly deg. 

We create all the indices of degree deg as follows. Set the table index with 
the initial index (0,0.... 

, 
0, deg), then store this in the table index-ref . 

Now 

call a separate procedure named increment which takes the table index as a 
parameter and tries to increase the index by one in the aforementioned fashion 

to obtain the next index of degree deg. When this is possible increment returns 
the Boolean value true . 

When this is not possible (i. e., the index of component 
1 has passed the maximum value of deg) all the indices of degree deg will have 

been created and the Boolean value false is returned. The algorithm takes the 

simple form: 
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index ._ (0,0,..., 0, deg); 
store index in the table index-ref; 
while increment(index, deg, n) = true do 

store new value of index in table index-ref; 
od; 

The increment procedure is called with the parameters index, deg and the source 
dimension n. It takes the form: 

# first try to increase (n-1) st. index 
i := n-1; 

while i>0 do 
index [i] := index[i]+i; 
if (total degree of indices 1 to (n-1)) > deg then 

# reset to zero 
# try to increase next index along to the left instead 

for j from i to n-1 do 

index[j] :=0; 
od; 
i 

else 
# increment worked ok so leave the while loop 

i 
fi; 

od; 
# i=0 means all indices of given degree obtained 
# so return 'false' 

if i=0 then 
RETURN(false) ; 

fi; 
# otherwise set the nth index to give indices of the required 
# total degree deg and return 'true' 

index[n] := deg-(total degree of indices 1 to (n-1)); 

true; 

We can now create indices of any degree deg and therefore form the reference 
tables. The place where a `new' value of deg begins in the index-ref table 

is stored in deg-ref [deg] . 
We refer to the Maple code for full details. The 

procedure is named get_ref_tables and is called with four parameters thus: 
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get-ref _tables 
(k 

, num_indets , index-ref 
, deg-ref); 

where k specifies the degree to go up to; num_indets the number of indeterminates 
(n above); and index-ref, deg-ref the two tables which are to be assigned the 
indices and degree reference points. 

6.7.2 The Tangent Space Routines 

We now describe how the source and target tangent spaces are created. Which of 
the following routines is invoked is dependent on the setting of the global variable 
equiv. 

The Right Tangent Space 

Recall that the liealg procedure will have given us a generating set for the 

right tangent space as an F,, -module. We now multiply each generator by the 

monomials stored in the table index-ref (starting at degree source-power) until 
a zero k-jet is obtained. The resulting vectors are stored in the table tgtspace, 
this is a global variable. 

copy liealg generating set into the table tgtcopy; 
for i from 1 to (number of vectors in tgtcopy) do 

# check m(n)-source_power*tgtcopy[i] gives non zero k-jets 

least-deg := (least degree of all components of the 

polynomial vector tgtcopy[i]); 
if source_power+least_deg <= k then 

for deg from deg_ref [source_power] to 
deg_ref [k-least_deg+1] -1 do 

multiply tgtcopy[i] by the monomial with indices given 
by index_ref [deg] ; 

store result in the table tgtspace; 

od; 
fi; 

od; 
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The Left Tangent Space 

In standard coordinates the left tangent space is given by 

* (target_power f fP 
lelý ... epi 

where the ei are the canonical basis vectors of RP. (Note that the right operand 
in this product is a set not an ideal. ) Now use the fact that the left tangent 
space is an ep-submodule of Of and create monomials with the target coordinates 
as indeterminates. (Specifically, we create a reference table of indices as before. ) 
The indeterminates are then substituted for the coordinate functions fi of f. We 

start by using monomials of degree target-power and increase the degree until a 
zero k-jet results. We obtain polynomial jets in Jk(n, 1). For each non-zero jet we 
should multiply it by each of the canonical vectors ei to get an G tangent vector in 
Jk(n, p). For simplicity assume this is the case for now - the resulting jets being 

added to the table tgtspace - this will aid the description of the `simplification 

algorithm' described in the next section. In practice, however, we will exploit the 

symmetry of the L tangent space when performing Gaussian elimination later and 
need only store the polynomial jet, a member of J'(n, 1), at this stage. (Note 

that the index and degree reference tables for monomials with target coordinates 

as indeterminates are named left_index_ref and left_deg_ref. ) 

# calculate the maximum degree required for the left indices 

left_deg_lim :_ (integer quotient of k by (least degree of 
the components of f)); 

# check that the left tangent space gives non zero jets 

if target-power <= left_deg_lim then 
# create left index and degree reference tables 

get_ref _tables(left_deg_lim, 
target_dim, 

left_index_ref, left_deg_ref) ; 
for deg from left_deg_ref [target_power] to 

left_deg_ref [left_deg_lim+1] -1 do 

# substitute indeterminates for the components of f 

poly :=f [1] "left_index_ref [deg] [1] * ... * 

f [target_dim] "left_index_ref [deg] [target_dim] ; 

if (poly is a non-zero k-jet) then 

for i from 1 to target-dim do 

store poly*e_i in table tgtspace; 

od; 
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fi; 

od; 
fi; 

The C (Left Contact) Tangent Space 

In standard coordinates the C tangent space is given by 

Mn target_power f*(mp/ ) (n 

We now have an E,, -module again and the methods of the right case apply. Each 
component function f2 of f is multiplied by monomials of degree source power 
and higher. As in the L tangent space routine, in practice we just store the 
polynomial jets not the C jets themselves which are obtained by multiplying by 
the vectors ei. Though, for simplicity, one may assume this to be the case, with 
the resulting C tangent vectors being added to the table tgtspace. 

The code is similar to the 1Z case. For all cases we refer to the Maple code for 
full details (the routine jetcalc; Appendix B) - it has been fully documented. 

6.7.3 The Coefficient Matrix 

We will continue to assume, for simplicity, that we have all the tangent vectors 
stored in the table tgtspace. That is, we have an R-spanning set for the tangent 

space L9 "f in Jk (n, p) and now proceed to reduce it to a basis using linear algebra 
techniques. Firstly, each vector in Jk (n, p) is converted to coordinate form - we 
extract the coefficient of each constituent monomial vector to form a row vector 
of coefficients. This is done for each tangent vector to form a matrix coeffarray, 

say, which is subsequently reduced to echelon form using Gaussian elimination. 

This description is helpful but, in practice, it is wasteful to physically create 
such a (huge) matrix and we have developed a method called Indexed Gaussian 
Elimination instead. This is fairly technical and it is advantageous to describe 

the general algorithm in terms matrices and use coeffarray. We will describe 

the indexed method and other technical points separately in Section 6.7.5. 

The matrix co of f array has dimensions 

`number of vectors in tgtspace' by `p * deg-ref [k+1]', 
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where p in the target dimension. Each entry coeffarray [i, j] is a coefficient, 
where the row i gives the tangent vector tgtspace [i], and the column j repre- 
sents the monomial vector to which the coefficient belongs. The specific ordering 
of the monomial vectors is extremely important in relation to the calculation of 
complete transversals, as will be discussed in the following section. With this 
ordering the column value j represents the following monomial vectors. (Recall 
that there are deg-ref [d] to deg-ref [d+1] -1 monomials of degree d. ) 

First set of p entries the constant coefficients of succes- 
sive components (1 to p) of the 
vector. 

Next set of 
(deg-ref [2] - deg-ref [1]) *p en- 
tries 

the linear coefficients of the suc- 
cessive components. 

Final set of - coefficients for the degree k mono- 
(deg-ref [k + 1] - deg-ref [k]) *p mials of successive components. 
entries 

The important point is that the degree does not decrease as we move along the 
row. In particular, all the coefficients for the degree k monomial vectors appear 
at the end of the row. This is required if we were calculating, say, Ai complete 
transversals. If a nilpotent filtration is to be used then the `degree k coefficients' 
must still appear at the end of the row but must be ordered further, amongst 
themselves. This technical point is discussed in Section 6.7.5. 

Remark (Fraction-Free Gaussian Elimination). Generally the coefficients 
of a jet will be integers. However, if the jet f is given as a family then the pro- 
cedure above will give some coefficients as symbolic Maple expressions in further 
(that is, non-source) variables. (The program knows which variables are source 
coordinates - we told it in the liealg procedure. ) We must therefore employ 
a type of fraction-free Gaussian elimination whereby no division is performed 
on the pivotal elements to reduce them to 1. However, if standard `fraction-free 

techniques' (see, for example, [F, pp. 82-87] for the case of working over Z) are 

used then the entries in the matrix rapidly `blow-up' to large expressions causing 
inefficient memory usage and increasing the performance time. Instead, we can 

get by using standard Gaussian elimination (now working over the field of real ra- 
tional functions) except that no division is performed on a chosen pivotal element 
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to reduce it to 1, but division is performed when using the pivot to reduce the 
rest of the column to zero (in contrast with fraction-free Gaussian elimination). 
So, if we have a row 

(0,0,..., 0, ai, ai+i,..., am), 

where ai is chosen to be a pivot (so is non-zero as a polynomial over R), then we 
do not divide this row by ai but reduce higher rows using the operation 

(0,01.... 0, bi, bi +1,..., brn) I" 
(0,0,... 

'0, 
bi, bi+i,..., bm) - (bi/ai)(0,0,. 

.., 0, ai, ai+�..., a, ). 

We then make a list of all the non-numeric pivotal elements; this is stored as 
the global table checklist, a table of rational functions. For most members of 
the family f, each corresponding to specific values of the unfolding parameters, 
the rational functions do not vanish and the elimination is valid. However, we 
must inspect each rational function in turn obtaining conditions on the unfolding 
parameters for which the elimination breaks down. To investigate the exceptional 
behaviour the solutions to these conditions must be substituted back into the 
family. The checklist is actually created by the `complementary space' routine 
discussed next. 

We employ a pivoting strategy where preference is given to numeric (non- 

symbolic) pivots where possible, otherwise to symbolic expressions of least length 

as a Maple expression. The sparse nature of the matrices is exploited by checking 
for a non-zero entry before trying to reduce a given row. Refer to the Maple code 
for full details of the pivoting technique (the routine jetcaic; Appendix B). 

6.7.4 The Complementary Space and Complete Transver- 

sals 

We currently have a basis for the tangent space stored in coordinate form as 

an echelon matrix. It is a simple matter to convert each coordinate/coefficient 

vector back to jet format when required - the result being a sum of monomial 

vectors. Next we calculate a basis for the complementary space to the tangent 

space LG "f in Jk (n, p). (For this we always work in the space of all jets at 0 and 

therefore include the constant jets). Specifically, we calculate a canonical basis 

consisting of monomial vectors. 

The scenario, in general, is that of a finite dimensional (real) vector space V 

and a subspace W with a given basis. We extend this basis to a basis of V and in 
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the process obtain a basis for the complementary space V/W to til in %". So far 
we have an echelon matrix whose rows form a basis for W. The complementary 
basis can be obtained algorithmically by `scanning' through the echelon matrix looking for the pivotal elements and `filling in the gaps'. For suppose we have an 
echelon matrix 

00 all ... air, 
0 0 a272 ... a2n 

(ai; ) 00 arjr aTn 
00 

00 

with pivotal elements all, a2j2, ... , a,. jr (so these are non-zero elements and we 
have 1< jl < j2 <. < jT < n), where n= dim(V) and r= dim(W). Then the 
canonical vectors 

ýel,... 
ýejl, ... , eh ,... 9 eirl... 2eß, 

(where ej denotes the exclusion of ej from this sequence of vectors) form a basis 
for the complementary space of W, since these vectors extend the basis of W to 
a set of n independent vectors in V. 

It is easy to produce these vectors ej algorithmically. Start with i=j=1. 
If a2j is zero then we include ej in the complementary basis and increase j by 

one, thus moving to the next element in the given row. But if a2j is non-zero 
(i. e., is a pivotal element) then we increase both the row i and column j by one, 
the vector ej not being required. We continue in this way until either j>n or 
i>r. If this loop terminates due to j>n then we have obtained a basis for the 

complementary space. However, if i>r then the last row of the echelon matrix 
(a2j) must be of the form (0,0, 

... , 0, arjr , .... a,. n) and the remaining vectors 
{ehr+i, 

... 7 en } must also be included in our basis. 

Now, going back to V= Jk (ri, p), the algorithm follows the same method but 

we must keep track of the column value a little more carefully, bearing in mind 
that the column number references both a vector component and a monomial 
index, as described in the previous section. Complications also arise in that, in 

practice, we do not actually create a matrix (aid) - see Section 6.7.5. 

The above process of `scanning' through (a2j) looking for the pivotal elements 

gives us an ideal opportunity to pick off the non-numeric pivots and store them 
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in checklist. For full details of the elimination algorithm we refer to the Maple 
code (the routine jetcalc; Appendix B). 

Remark (Complete 'Transversals). The above algorithm will give a basis for 
the complementary space but in the `complete transversal theory' we need all 
these basis terms to be contained in Hic, the space of homogeneous jets of degree 
k. More precisely, working with some group of equivalences 9, we are given a 
(k - 1)-jet f and calculate a k-complete transversal TC Hk satisfying 

HkCT+JkL. f, 

where L is a Lie subalgebra of L9 and J'L is nilpotent on F"P. We may therefore 
obtain a complete transversal using the above algorithm as follows. We `scan' 
through (a2j) in the same fashion until we reach the column corresponding to 
the start of the degree k terms. We then fill in the gaps for the final `degree 
k' block in the above manner - including a vector in the complete transversal 
for every non-pivotal entry encountered. Since the monomial vectors in jk (n, p) 
were ordered so that those of degree k are represented by the latter columns of 
the matrix (a2j) we do indeed obtain a complete transversal. In practice, all that 
is necessary is to calculate the whole basis for the complementary space, but to 

assign a flag to each basis element which indicates if it is of degree strictly less 

than k or of degree equal to k. The pcomp procedure which is used to print out 
this basis, outputs either all of the vectors or just those of degree k (and hence a 
complete transversal) according to the global Boolean variable compltrans being 

set to false or true, respectively. Of course, for this to work for a filtration Mk, s 
induced by a nilpotent Lie algebra we must order the degree k terms according 
to the filtration, starting with the H' terms, followed by the Hk, 2 terms, etc. 
This is discussed in more detail in Section 6.7.5. 

6.7.5 Indexed Gaussian Elimination, Nilpotent Filtrations, 
the Pre-Tangent Space and Other X-Rated Features 

of Jetcalc Version GTi 1.9 

The above procedure performs the required calculations fine. However, the ma- 
trices it produces can be large and the execution time somewhat larger than 

satisfactory - as discovered using earlier versions of jetcalc. We now describe 

improvements to the algorithm which are incorporated in the latest `turbo' ver- 

sion of jetcalc. We also discuss a way of incorporating filtrations induced by 
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nilpotent Lie algebras. The details below are of a more technical nature than be- 
fore but the basic principles of the `elimination algorithm' are as described in the 
previous sections; in particular, it is useful to keep the concept of the coefficient 
matrix in one's mind. 

Indexed Gaussian Elimination 

Physically creating the matrix of coefficients (coeffarray in the previous sec- 
tions) is wasteful on memory and takes a long time relative to other routines. The 
data is already stored in a compact form as a table of tangent vectors tgtspace; 
each entry is just a table of polynomials and therefore stores the sparse data (the 

non-zero coefficients) in a minimalist way. We still use the concept of a matrix 
of coefficients so that Gaussian elimination (which, for our applications, is a very 
efficient numerical algorithm) can be used to produce a basis. 

The idea is to use reference tables which, for a given row and column (i, j), 
point to the appropriate coefficient in the table tgtspace. The row i simply 
points to the ith entry of the table tgtspace, namely tgtspace [i] 

. 
The col- 

umn j points to a coefficient of this tangent vector using a reference table called 
coeffarray-ref . 

For each j, coeffarray-ref [j] is itself a table with two en- 
tries. The first entry coef f array-ref [j ][ 1] is an integer between 1 and p which 

specifies the vector component; whereas the second entry coeffarray-ref [j] [2] 

gives the monomial index by pointing to an entry in the table index-ref. Thus, 

the entry (i, j) of our (would be) matrix contains the coefficient of the monomial 

with indices index-ref [coeffarray_ref [j] [2]] in the coeffarray-ref [j] [1] 

component of the tangent vector tgtspace [i]. So every occurrence of an entry 

of the coefficient matrix, coeff array [i, j 1, as in previous sections, will now be 

replaced by the indexed version: 

poly := tgtspace [i] [coeffarray_ref [j] [1] ]; 

coefficient := get coefficient of the monomial in poly 

with indices index_ref [coeffarray_ref [j] [2]] ; 

(In the code, this process of extracting the coefficient from a table such as 

tgtspace is performed by the procedure coeff_table. This takes the table 

and the row and column (i, j) as parameters. ) 

This appears to be inefficient in that we must calculate each coefficient as it 

is required. However, in practice, this method proved to be two to three times 
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faster, using three to four times less memory than methods which obtained the 
full matrix coeffarray. Also note that the row reduction operations performed 
in Gaussian elimination are now achieved by polynomial manipulations -a very 
efficient process in Maple which uses the internal functions (and replaces a large 
number of `get coefficient' and `0 - (scale factor) *0= 0' operations which in- 
evitably occur during row reduction of a sparse matrix). 

The use of reference tables will make the implementation of filtrations in- 
duced by nilpotent Lie algebras easy. A system of weights is used, as described 
later. Setting up the default version of coeffarray_ref so that the `degree k 
coefficients' appear at the end of a row (but in lexicographic order, for example) 
is straightforward and we refer to the Maple code for more details. 

The Pre-Tangent Space 

Now we discuss a way of exploiting the symmetry present in the left tangent 
space. This applies to both the £ and C cases; we will concentrate on the C case. 
In standard coordinates the left tangent space is given by 

f* target_power 

and once we have an R-spanning set consisting of non-zero polynomial k-jets for 
the Ep-ideal f *(mýaxget_power), we repeat this set p times, once for each canonical 
vector, and obtain a spanning set for the left tangent space in Jk(n, p). So the 

coefficient matrix for the left tangent space is just a block matrix, the non-zero 
blocks being the coefficient matrix for the aforementioned ideal, repeated p times. 

We begin by creating an R-spanning set for the ideal f *(mtarget_power) in 
Jk(n, 1), in practice this is what the left tangent space routine performs, storing 
the set of polynomials in the table poly-table. Gaussian elimination is then per- 
formed to reduce this to echelon form. As before, one can visualise this through 

the use of a matrix of coefficients whose rows correspond to the polynomial en- 
tries in the table poly-table, and whose columns correspond to each monomial 
index up to degree k (the entries 0 to deg-ref [k+11-1 in the table index-ref ). 

Suppose the resulting echelon matrix is (a2j), then the sort of argument we have 

in mind is as follows. If we were to `stack' p copies of (aid) together diagonally, 

filling in the remaining upper and lower halves of the matrix with zeros then the 

resulting matrix represents the full left tangent space in Jk (n, p) and is clearly 
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still in echelon form, as required. 

all ... a18 

a,. l ... ars 
all " .. als 

a,, ... ars 

0 

0 

all ... a,, 

a., a., 

(r and s being appropriate, postitive integers). However, this corresponds to 
ordering the monomial vectors in Jk (n, p) starting with the all the monomials 
(from degree 0 up to degree k) of the el component, followed by all the monomials 
of the e2 component, and so on. This is fine if we were only interested in finding 

a basis, but for complete transversal calculations we require all the coefficients 
for the degree k monomial vectors to appear at the end of the row and use the 
ordering described in Section 6.7.3. However, using this ordering we can still put 
together a matrix for the full left tangent space which is in echelon form. For 

each polynomial poly, say, in poly-table we include the jet poly * el in the full 

matrix, followed by the jet poly * e2, and so on, finishing with the jet poly * ep. 
Now, using the ordering just described, the resulting coefficient matrix for the 
full left tangent space would then take the following form. 

all 0 0 a12 0 ... 0 als 0 ... 0 

0 all 0 a12 0 als 

0 " 0 0 
0 ... 

0 all 0 0 a12 0 
... 

0 als 
a21 0 

... 
0 a22 0 0 als 0 

... 0 

0 a21 0 a22 0 als 

0 " 0 0 
0 .. 

0 a21 0 ... 
0 a22 0 

... 
0 als 

arl 0 ... 0 are 0 ... 0 ars 0 ... 0 

0 arl 0 are 0 ars 

0 0 " 0 
0 0 arl 0 0 art 0 

... 
0 ars 
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If the coefficient matrix (aid) of poly-table has already been reduced to echelon form (so `the number of zeros preceding the first non-zero entry of a row increases 
row by row until only zero rows remain') then the above coefficient matrix for 
the full left tangent space is in echelon form as well. 

The advantage of the above method is now obvious. We can create the full 
left tangent, in echelon form, simply by creating the table poly-table (which 
stores an R-spanning set for the ideal f *(mtarget_power in jk (n 1)), reducing this 
to echelon form, and finally stacking together the result in the aforementioned 
fashion (the order in which the vectors are stored is crucial) to create the full 
echelon matrix. If the number of vectors in poly-table is x and the number of 
monomials of degree less than or equal to k is y, then the matrix corresponding 
to poly-table ((a2j) above) is of dimensions (x, y). Whereas the full coefficient 
matrix for the left tangent space is of dimensions (px, py). Reducing poly-table 
to echelon form instead of reducing the full coefficient matrix (this is the intensive 
part of the calculation) therefore reduces the problem by an order of magnitude 
of p2. Since the dimensions (x, y) involved can become large this is a major gain 
in efficiency; for example, the time taken for specific trial calculations has been 
reduced from hours to minutes using this technique. 

A few more technical points need to be mentioned. We will only discuss these 
briefly - the full details can only be conveyed by referring to the Maple code. 
Firstly, it should be clear by now that we do not create the matrices such as 
(a2j) mentioned above, but use the indexed techniques discussed in the previous 
section. 

The resulting echelon matrix for the full left tangent space needs to be mod- 
ified if we are using a nilpotent filtration. All the entries up to and including 
the degree k-1 coefficients are fine as they stand, but the last block of degree 
k coefficients must be reordered as dictated by the nilpotent filtration - see the 
following section. The last block may not be in echelon form any longer and 
must be reduced separately; this takes very little time however. (One can argue, 
heuristically, that this is due to the sparsity and the fact that the block is already 
a row permutation of an echelon matrix. ) 

Finally, we mention how to adjoin the left and right tangent spaces to create 
an echelon matrix for the whole tangent space in Jk (n, p). The right tangent 

space matrix M2, say, needs to be reduced to echelon form. However, we exploit 
the fact that the left tangent space matrix M1, say, is already in echelon form, 
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adjoining the matrices thus 

\Ms) 
The following efficiency improvements can then be made to the Gaussian elimi- 
nation algorithm. Keep the current row and column pointer in the matrix 1111. If 
the corresponding entry is a pivot then reduce as usual; only the column in M2 
needs to be reduced to zero as the column in Ml will already be zero. Otherwise, 
(if the entry in Ml is zero) try and find a pivot in M2. If this is possible, again 
only the column in M2 needs to be reduced. Important: if we need to use M2 
to obtain a pivot then we do not swap the rows of Ml and M2 as in standard 
Gaussian elimination, but rather insert the row of M2 into Ml thus reserving the 
fact that Ml is echelon. This is the basic idea at least. In the code it is more 
efficient to create a separate matrix which stores the final result: when a pivot is 
found the corresponding row is added to this `result matrix' thus eliminating the 

need to physically insert a row of M2 into Ml (moving all the remaining rows of 
Ml down). The table tgtspace is set aside to store the final (echelon) matrix as 
a table of polynomial vectors. This is a global table which will be used by several 
other procedures once jetcalc has terminated. 

Nilpotent Filtrations 

When the global variable nilp is set to true-order this tells jetcalc to include 

the `nilpotent vectors' given by Rmilp and L_nilp and to order the monomial 

vectors of degree k according to the associated nilpotent filtration. The `nilpotent 

vectors' are simply included at the end of the right tangent space table before 

Gaussian elimination is performed - there is nothing special here. One way to 

implement the nilpotent filtration is to order the degree k monomial vectors using 

a system of weights. This allows the use of the standard nilpotent Lie algebras, 

as we will describe. We use weights only as a means of telling the computer how 

to order the vectors; these weights do not satisfy the usual requirements in that 

the target weights may be negative integers. The usual notation is employed (see 

Section 2.4); a= (cxl, 
... ,c 1) and ,Q= 

(01, 
... , , 

üv) will denote the source and 

target weights respectively. The monomial vector xil xkn ei is homogeneous of 

weight kla, +"" +knan -, 3Z. The Ste, -submodule of rn . 
E(n, p) generated by such 

monomial vectors of weight >k is denoted Fa, OE(n, p). 

For classification purposes one would prefer to use some nilpotent Lie algebra 
LC LGG (9 a subgroup of IC) which contains as many of the `extra' vectors from 
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Lc \ L91 as possible. We require the natural faithful representation of J1 L on 
R"+p 

p: J'L C gl(n, R) ® gl(p, R) -f gl(n + p, R) 
to be nilpotent (see Section 2.3). Then the maps 

7r, : J1L -- gl(n, R), 7r2: JlL -- p gl(p, R), 

can be considered as maps into the spaces of all strictly upper triangular n by n 
and p by p matrices, and as such the best possible scenario is when these maps are 
surjective. For our applications we can restrict to the four natural cases and make 
a formal definition along these lines. (There are many more examples, but the 
choice is not obvious and the following tend to be used exclusively in practice. ) 

Definition 6.1 Suppose L is a subalgebra of LX such that J1L is nilpotent on 
Rn+P. We will call this Lie algebra canonical if it is spanned by the vectors 

xia/ax, E L(J1RZ) for i-j, 

y2ä/öyj E L(J'r) for i-j, 

where (x1, 
... , xn) denote source coordinates, (yi, 

... , yr) denote target coordi- 
nates and - denotes either of the two order relations < or > (there being a total 
of four possibilities). In the R. and L cases, L is a subalgebra of LIZ or LL and 
the definition is restricted to the appropriate vectors. 

Now, for such Lie algebras we can assign source and target weights such that 
the partition of the monomial vectors of degree k via their weight corresponds to 
their partition into the (k, s)-jet-levels using the nilpotent filtration. 

Example. In the classification of map-germs (R2,0) --* (R4,0) we used the 

canonical nilpotent Lie algebra 

LA1 ® Sp{xa/ay} 

® Sp{u28/c9ui, u3Ö/5u1, u4Ö/auf, u33/3u2, U4C9/Öu2, u4Ö/Öu3}; 

see Section 3.2. The partition of the monomial vectors into the (k, s)-levels can 
be achieved using the weights a= (2,1) and 0= (-3, -2) -1,0). (This partition 

was shown for k=1 and k=2 in Section 3.2. ) Note that the partitions only 

agree for fixed k and not for different levels (kj, Si) and (k2,82) where k1 : k2; 

however, we only need to partition a given k-level. The general theory follows 

from the following proposition. 
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Proposition 6.2 Suppose L is a canonical nilpotent Lie algebra, as in defini- 
tion 6.1. Assign source and target weights, according to the case in question, as 
follows. 

Vectors Weight 

xia/axe E L(J'R) for i<j ci= (n, 
... )2,1) 

xia/ax; E L(J'R) for i>j a= (1,2, 
... , n) 

yia/aye c L(J'L) for i<j ß= (0, -1, ... , -p + 1) 

yia/ay j E L(J'L) for 1>j 0= (-P + 1, ... , -1,0) 
That is, assign xi weight n-i+1 and i, respectively; assign y2 weight 1-i and 

-p + i, respectively. Then 

LZ ' (mn"ý(n, p)) + m'+l 9(n, p) _ 
i>s 

(FS(n, p) n Mk . 
E(n, P)ý + mn+l E(n, p) 

So for fixed k, the Mk, s(L) filtration can be replaced by the weighted filtration 

modulo mk+'S(n, p), that is the filtration on the right-hand side of the above 

expression. Recall that the space of `homogeneous terms' of degree (k, s), H'°S, 

is the image of Mk, s_l(L) in the jet-space mn. E(n, p)/Mk, s(L). 
In particular, the 

homogeneous monomial vectors of degree (k, s) are just those of degree k with 

weight k+s-1. 

Proof. The proof is similar in all four cases. We shall consider the second 

and third combinations in the table, that is where a= (1,2, 
... , n) and ,Q= 

(0)-1,..., -p+l). 
The c inclusion is almost trivial. Observe that with the choice of weights, 

mn. E(n, p) C Fa ße(n, p) for any r>1, also that the action of L increases weight, 

that is L (mý,. E(n, p)) C mT, +1. E(n, p). Thus 

E LZ " (mn"E(n, p)) C F,, ä'9(n, p) n mn. E(n, p)" 
i>S 

For the reverse inclusion we need only consider monomial vectors of degree k in 

Fa ßsE(n, p) f1 mk. S(n, p); let xil . xk"ej be such a vector. Thus 

k1+2k2+313+"""+nkn,! k+s+(1-ý) (6.1) 

Now 
(x23/8x1) k-kl 

. 
rail = x1 

k-ki 

(X3a/19x2 )k-k1-k2 
, 

(Xklxk-ki1 = xki 
k2xk-k1-k2 

x12123 
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and continuing in this fashion up to 

(Xna/aXn)k-kl-k2-... _k, i-1 -1 / .( 
k1 

lX1 
k2 kn-2 k-kl- 

x2 ýn-2 Xn-1 
k2-... _kii_2 

1= 
k1 

ý1 
k2 

x2 
kn 

xn- -2 kn-1 k-kl 
2 xn-1 xn -k2-... -kn-1 

But k= k1 +"""+ kn and xi+1a/axi cL as L is canonical so 

x1... xnn el c Lr . (mk E (n, p) ) 

where 1=1, 
... ,p and 

r= (n-1)k-(n-1)11-(n-2)k2-(n-3)13-... 
-kom. -1 

= k2+2k3+3k4+... +(n-2)kn-1+(n-1)kß, 
" 

In particular, taking 1=1 and applying the j-1 vector fields 

Y1a/OY2, yea/5Y3, ... yj_la/aye 

in sequence to x ... xnnel shows that xi' ... xnnej E L''+j-1 (mn E(n, p)). But 
the original assumption on weights lead to 6.1 so 

k2+213+314+"""+(n-1)kn+j -1 >8 

and 
xil ... xnnej E LZ . (Mk. E(n, P))" 

i>s 

El 

Note: the full properties of a canonical nilpotent Lie algebra were not needed in 
the above proof and we could have weakened the hypotheses of the proposition 
accordingly. Though, in practice, one tends to work with such Lie algebras. 

Using the above theory we order the degree k monomial vectors starting with 
those of weight k and finishing with those of weight kn +p-1 (the maximum 
weight, corresponding to the final Mk,, jet-level). The specific ordering for vectors 
of equal weight is, of course, not important and is set by the computer. The 

entries coeffarray_ref [col] [1] and coeffarray_ref [col] [21, where col runs 
through the last block of columns corresponding to the coefficients of the degree 

k monomial vectors, are assigned so that these monomial vectors are grouped 
in order of increasing weight. This means the correct ordering is automatically 

specified during Gaussian elimination by using coeffarray-ref to reference the 

coefficients and we need not worry further about this order. 
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Finally, suppose the jet f passed to jetcalc was a (k, s)-jet and the jet- 

space degree given was k. Although all of the degree k vectors in the basis for 

the complementary space are output when pcomp is called, since these vectors 
are ordered according to the nilpotent filtration, those in Hk, s, fors > s, are 
represented by the later columns of the matrix. The vectors which belong to 
Hk, s+l must therefore form a (k, s+ 1)-transversal, as required. 
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Chapter 7 

Profiles of Rotating Surfaces 

We change the theme in this final chapter, considering the use of computer graph- 
ics to investigate projections of surfaces. The projection of a surface in R3 to 
a view plane can be considered locally as a map-germ (R2,0) -> (R2,0). The 
resulting profiles have been studied in great detail. Whitney [Wh] showed the 
only stable singularities are the fold (x, y2) and the cusp (x, xy + y3) so, gener- 
ically, we only expect the profiles to be smooth or have cusps. (There is a far 
stronger version of this result due to Mather, [Math]. ) This work has been taken 
further (for example, by allowing the view direction to vary to give a 2-parameter 
family of projections); see [A3, BG2, Ga4]. For a general discussion on profiles 
of surfaces we refer to [B1]. 

Instead of considering each profile in a family of projections separately, the 

approach we now follow is to consider a rigidly moving surface, the whole fam- 
ily of profiles and the resulting envelope. Such considerations are important in 

computer vision and in the reconstruction of the original surface from its profiles. 
This is because conventional reconstruction methods (see [GW, BC]) fail along 
the frontier. The geometry of such envelopes is hard to analyse - this is where 
the computer comes in, allowing us to conjecture results. We have developed 

programs which calculate and draw the family of profiles of a surface rotating 

about a fixed axis in R3, the envelope then becomes apparent - it is the curve 
`picked out' by the eye; see the pictures in Section 7.3. For clarity, the envelope 
is also explicitly calculated by the computer and drawn in a separate window to 

the profiles. Several other geometrical objects associated to the surface are also 
displayed, via projection, in this window; we describe these below. Two versions 

of the program have been written. One takes a parametrized surface patch (spec- 
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ified by the user) as the original surface, while the other takes an ellipsoid in 
general position. In the ellipsoid case there is a method (due to P. J. Giblin) for 
parametrizing the critical set of the projection map and this leads to pictures of 
higher quality than in the general case. 

The program has been used in recent research by Rycroft into the projection 
of surfaces, [Ryc]. We describe the basic algorithm used by the program below. 
Some of the results of [Ryc] are then recalled, in particular, the transitions of 
singular points on the envelope. We illustrate such transitions using the program. 
To begin with we shall review some of the geometrical features incorporated by 
the program. For more details we cite [Ryc] as a general reference, see also [GRP]. 

7.1 The Envelope of Profiles of a Rotating Surface 

We restrict to the case of orthogonal (or parallel) projection onto the view plane. 
If the view plane is spanned by the orthonormal vectors u and v (which will be 

orthogonal to the view/projection direction), then the projection map is 

7r: R3 -) R2 

((x, y, z) - u, (x, y, z) " v). 

Let M be the surface under consideration with pa point on M. M can be 

written locally as an immersion f: (R2,0) -f (R3, p). The composite map 7r of 
is sometimes called the visual mapping. The critical set of 7r, considered as a 

map from M to R2, will be denoted by E. This is just the set of critical points 

of the visual map it o f, mapped onto M by f. Equivalently, E consists of points 

pcM such that the tangent plane at p, TTM, contains the view direction. The 

projection of E onto the view plane gives the profile of M (also known as the 

apparent contour, outline or occluding contour of M). Note that the profile is 

just the discriminant of it of (that is, the image of the set of critical points). 

We now rotate M about a fixed axis in R3 by an angle 0. This gives a family 

of profiles E0, parametrized by 0, in the view plane and we can consider the 

envelope of this family. The standard way of defining an envelope applies to a 

family of submanifolds defined implicitly by a smooth map F: Rx R' -) R. 

For each t c- R we define Ft (x) = F(t, x) and assume 0 is a regular value of Ft. 

Thus Ft '(O) defines a family of (n - 1)-submanifolds of R. In our situation 

n=2 and we have a family of curves. The assumption on Ft implies 0 is a 

regular value of F so that F-1(0) is an n-submanifold of R"+1. The envelope of 
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the family F is then defined to be the profile of F-1(0); see [BG5,5.1 - 5.3]. The 
formal definition is as follows. 

Definition 7.1 The envelope of the family F is the set 

{xER': 3tER with F(t, x)=aF/at(t, x)=0}. 

We refer to [BG5, Chapter 5] for other interpretations of the envelope. The above 
definition is too restrictive for a family of profiles in that the profiles Ft 1(0) have 
isolated singularities and are therefore not submanifolds of R2. However, if we 
apply definition 7.1 the resulting set is the envelope of the smooth parts of the 
curves Ft 1(0) together with the set of all singular points. We define the envelope 
to be the set given by definition 7.1 minus the set of singular points; see [Ryc, 
Remarks 3-2.2]. 

It is natural to ask which points of M contribute to the envelope of profiles. 
We define a curve on M consisting of the points whose normal line to M is 
coplanar with the axis of rotation. This curve will be called the S curve, it is 
independent of the view direction. Other characterisations of S are given in [Ryc, 
Proposition 3.4.5]. The importance of S is shown in [Ryc, Proposition 3.4.2]; we 
find that it is the points of S which contribute to the envelope of profiles. 

As the surface M rotates we only see (as an outline) the part of the surface 
which is swept out by the critical sets. This leads to a very useful geometrical 
notion. We define a point pEM to be a visible point if it lies on a critical 
set EO for some value of 0, and define it to be a non-visible point otherwise. 
Such points form the visible and non-visible regions of the surface; the boundary 
between these regions is known as the frontier of the surface. (Strictly speaking, 
the frontier cannot be defined in this way. For circular motion the frontier is a 
simple curve (or pair of curves) and the `boundary' idea applies, but in general 
it may intersect and a different definition must be used. However, we will not 

explicitly work with these ideas and can overlook them. ) 

It is the visible part of S which contributes to the envelope of profiles. We 

can be more precise about the relationship between the envelope of projections 
of S and the envelope of profiles. A special point of S is defined to be a point of 
S where the normal plane to S contains the axis of rotation. Any point on M 
describes a circle in R3 as M rotates. The projection of a circle described by a 
special point to the view plane is called a special ellipse; such ellipses form part 

237 



of the envelope of projections of S. It is shown in [Ryc, Corollary 3.6.5] that 

envelope of 
projections of S= envelope of profiles + special ellipses. 

Finally we note that the envelope of profiles is symmetric about the projection 
of the axis of rotation to the view plane (see [Ryc, Theorem 3.7.1]). This is 
important for technical considerations such as the recovery of the axis from the 
set of profiles, also geometrically in that certain transitions of singular points 
on the envelope only occur on the axis of symmetry. The symmetry is clearly 
depicted in the computer pictures. 

All the features noted in this section are incorporated in our program. We 
discuss this now. 

7.2 Computer Generation of the Family of Pro- 
files and its Envelope 

A brief description of the program and algorithm used to calculate the geometrical 
features is given. We restrict to the program which deals with the case M an 
ellipsoid. The version which deals with surface patches uses similar algorithms, 
we just need to modify the methods for obtaining the tangent plane and normal 
vectors to M and the S curve. The main difference is that we cannot parametrize 
the critical sets and the profile cannot be drawn as a set of points connected by 
line segments. The pictures are generally good, but we intend to improve the 
techniques in future work. 

The program is written in C and runs on a Silicon Graphics machine. The 
Silicon Graphics GL graphics library is used - this is a powerful graphics library 

and allows us to take advantage of `overlay screens'. This means the projection 
of the S curve can be superimposed over the envelope of profiles and by rotating 
M we produce an animated display where S is seen to trace out the envelope, 
as predicted. We also incorporate a window control panel library, written by 
R. J. Morris at the Liverpool University Department of Pure Mathematics. This 

allows parameters to be changed interactively through the use of windows and a 
mouse. 

The ellipsoid M in general position is specified as follows. The parameters a, 
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b and c give the standard position ellipsoid 

x2 2 z2 y 
Q2+2+C2 =1, 

which we will denote by E. An axis through the origin is specified (via its latitude 
and longitude in degrees) together with a rotation angle a. Let Aa denote the 
rotation transformation about this axis. Finally a translation vector s is specified. 
The ellipsoid E is moved to general position by applying Aa and translating by 
s, thus 

M= Aa (E) + s. 
Similarly, the axis of rotation, also through the origin, about which we are to 
revolve M is specified by the user. If 0 denotes the angle of rotation and BO the 
corresponding transformation then we will allow 0 to vary and give the family of 
ellipsoids 

Bo (M) = Bo(Aa(E)) + Bo (s). 

All these parameters may be changed interactively by the user via the control 
panel window. In addition, the family of profiles, the envelope of the profiles, and 
an animated display of the projections of the S curve for varying 0 may be drawn 
by clicking the mouse on the appropriate button in the control window. Other 

parameters, such as the step length for 0 used when drawing the family of profiles, 
may also be changed. The control window also incorporates a store/recall facility 
for saving the values of all parameters to a file for future use. 

7.2.1 Calculating the Critical Sets and Profiles 

The critical set ECM of the projection map is calculated as follows. Throughout 

the rotation we will project M to the (x, y)-plane, the view direction is therefore 
(0,0,1). The calculation is performed by firstly moving the ellipsoid to standard 

position. A translation gives the ellipsoid Bc(A,, (E)), centred at the origin. 
We then rotate and work with E, the view direction becomes u= (ßc1, u2, u3) = 
A, -, 1(Bý 1(0,0,1)). Lett be the critical set of the projection map of Ein direction 

u. E is the set of points (x, y, z) EE such that the tangent plane to E at (x, y, z) 

contains the view direction u: 
x2 2 z2 
a2 + 

b2 
+ C2 =1 

(7.1) 
ßa21 b22 

+ z23 
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We can parametrize t using the following observation made by P. J. Giblin. 
Change coordinates, thus 

X= x/a, Y= y/b, Z= z/c, 

U1 = ui/a, U2 = u2/b, U3 = U3/C, 

and put U= (Ul, U2, U3). Then equations 7.1 become 

X2+YZ+Z2 =1 

X U1 + YU2 + ZU3 =0 

(7.2) 

The solution to equations 7.2 is the intersection of a unit sphere with the plane 
through 0 perpendicular to U. This is a unit circle and can be parametrized by 

BH vcos0+wsin0, 

where v= (v1i v2, v3) and w= (w1i w2, w3) are unit vectors perpendicular to U. 
It is an easy matter to explicitly write down a vector v perpendicular to U and 
then define w using the cross product w=Uxv. (It is wise to normalise U before 
doing such calculations to reduce the possibility of numerical errors. ) Changing 

coordinates back again gives the following parametrization of E. 

eH (x, y, z) 

where 
x= a(vicos8+wisinB) 

y= b(v2 cos 0+ w2 Sine) (7.3) 

z= C(v3 COS 0+ w3 sin 0) 

for 0E [0,27r). The critical set of M is obtained by applying the original trans- 
formations 

E= BO(A,, (E)) + Bo(s), 

and the profile by applying the projection map 

to E. 

7f : R3 
-f 

R2, (X, y, z) H (x, y) 

The above process can be performed efficiently by computer. Firstly we cal- 

culate the matrix A,, and its inverse. For each value of 0 we calculate the matrix 

B 
,k and its inverse, then put u= Ate' (Bo 1(0,0,1)) and obtain the two vectors v 

and w perpendicular to u. Finally calculate BO (Ac, (x, y, z)) + BO (s) for (x, y, z) 

given by equations 7.3 and plot the projection of these points to the (x, y)-plane, 

connected by line segments, by allowing 8 to vary from 0 to 2ir. 
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7.2.2 Calculating the Envelope of the Profiles 

It is not obvious how to determine whether a point contributes to the envelope of 
profiles using definition 7.1. However, in the present scenario (where we are con- 
sidering the envelope of profiles of a rotating surface) there is a characterisation 
of the envelope suitable for implementation by computer. 

From [Ryc, Proposition 3.4.2] we see that for a given angle 0, a point pE 
B4, (M) contributes to the envelope (that is 7r(p) lies on the envelope) if and only 
if p lies on S and belongs to the critical set EO of BA(M). We must therefore 

calculate the profile of each transformation BO(M) of M as 0 is varied from 0 to 
360 degrees. For a given angle 0, a set of points lying on the profile of BO(M) 

is calculated as described in the previous section. Suppose (x, y, z) lies on the 

critical sett of the ellipsoid in standard position; (x, y, z) is calculated using 

equations 7.3. The corresponding point on M is Aa (x, y, z) +s and lies on S if 

and only if the normal line to M through this point is coplanar with the axis of 

rotation. This is an incidence property of affine subspaces of R3 and is invariant 

under affine transformation. The axis of rotation will be specified by the unit 

vector r= (ri, r2, r3) and n= (ni, n2, n3) will denote the unit normal to the 

ellipsoid E in standard position at the point (x, y, z). Applying the rotation A. 1 

the required condition is that the line 

{(x, y, z)+Aa'(s)+An: AC R} 

is coplanar with the line 
{)Aal(r): AER}. 

We can write down the vector n explicitly - it is the vector (x/a2, y/b2, z/c2) 

normalised to unit length. Now it is a standard result from linear algebra that a 

line 11 through a point al in direction vl is coplanar with a line 12 through a point 

a2 in direction v2 if and only if the triple scalar product [al -a2, v1, v2] = (a1-a2) 

(v1 x v2) vanishes. We can now check whether or not the point A,, (x, y, z) +s lies 

on S. If it does then its image under the rotation BO contributes to the envelope. 

The computer performs the following process. Firstly, it calculates the matrix 

Aa, its inverse and the vectors (ri, r'2, r3) = Aý 1(r) and (si, s', s3) = Aý 1(s). 

Then for each value of 0 (0 < 360 degrees) it calculates the matrix BO, its 

inverse, and a set of points { (x, y, z) }CE given by equations 7.3, as described 

in the previous section. For each of these points (x, y, z) the normal vector n is 
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calculated and then the computer checks for the vanishing of the determinant 

x+si y+s'2 z+s3 
nil n2 n3 (7.4) 

rl r2 r3 

When this determinant vanishes the point 

Bo(A, (x, y, z)) + Bo (s) 

is calculated and its projection under 7r, a point which lies on the envelope of 
profiles, is plotted. 

Remark. Several comments must be made. Firstly note that 0 is varied between 
0 and 360 degrees using a finite number of steps, as is 6 (used to parametrize 
the points (x, y, z) given by equations 7.3) for each value of 0. This depicts the 

envelope as a finite set of isolated points. The points are not produced in an 

order suitable for joining them up by line segments, as in the case of drawing 

the profiles. We must therefore be contented with isolated points. Generally 

the resolution produced is very good and depicts the envelope well. However, 

to ensure this is always the case the user is allowed to specify the step size for 

0- the smaller the step size the more points used to draw the envelope (though 

the more computer time required). (The step size for 0 could, in theory, be 

user specified too but, in practice, it takes a relatively small value fixed by the 

computer and the user need only specify the ¢ step size. ) The next problem is 

that the determinant 7.4 will rarely be exactly zero for the isolated points (x, y, z) 

produced. We therefore use the criterion Idetl < Eenv, for some (small) number 

Eenv, to define the envelope points. In practice, the default value is fine, but again 

we allow the user to modify this parameter to ensure a good picture is obtained. 

The parameters `0 step' and Eenv may be modified interactively by the user via 

the control panel window and the mouse. 

7.2.3 Calculating the S Curve, Special Points and Visible 

Points 

The calculation of the S curve is now an easy matter. The method used to 

calculate the envelope in the previous section is used, only now we must consider 

all the points on the ellipsoid instead of restricting to points (x, y, z) on critical 

sets. 
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We will generate points (x, y, z) on the ellipsoid E in standard position by 
intersecting it with a family of planes parallel to one of the coordinate planes. The parameter Snum, will be an integer, greater than 0, which determines the 
number of planes to slice E with. (The actual number used will be 2Snum - 1. ) 
We will use planes parallel to the (y, z)-plane, namely the planes 

x= -a+ 
za 

where i=1,2,..., 2Snum-1. Snum 

(The extremities {x = ±a} nE= {±a} are of little use. ) The intersection of 
such a plane with E is an ellipse which can be parametrized. One easily checks 
that the p oints (x, y, z) on the intersection are given by 

_ 
za x -a+'Snum 

y= mb cos t 

z= me sin t 

where 

Z2 
m= Snum 

2 
Snum 

and0<t<27r. 

(7.5) 

The S curve is calculated using the process described for the envelope cal- 
culation, only now we try to find all the points of S (or, more specifically, a 
reasonable representation for the set of all points of S- those which lie on a 
family of planes parallel to a given coordinate plane). In the envelope calculation 
we restricted to points which lie on the critical set. The computer now performs 
the same calculations only generates the points (x, y, z) using equations 7.5 in- 

stead of equations 7.3. As before, the vanishing of the determinant 7.4 is replaced 
by the criterion Idetl < ES. The parameters ES and may be modified using 
the control panel window to improve the resolution of the picture. (The points 
lying on S are not produced in an order suitable for joining them together with 
line segments. ) The computer actually performs two sweeps, the first using planes 
parallel to the (y, z)-plane, the second using planes parallel to the (x, z)-plane. 
This usually produces a good image for S. 

The above process produces a set of points {A, (x, y, z) + s} lying on SCM, 
it is the computationally demanding part of the calculation. Once calculated 
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these points are stored in an array. Now S is invariant under rotation about the 
axis r, that is, the S curve for B, (M) is just BO(S). We obtain an image for 
B0 (S) by applying Bp to each of the previously stored points Aa(x, y, z) + s; the 
computational aspects of this are minimal and the new curve BO(S) is produced 
almost instantaneously. This allows an animated sequence of the projections of 
the S curve to the (x, y)-plane to be viewed, one frame for each value of 0. The 
sequence is shown in the envelope window. Technically, it is displayed on an 
overlay screen for the window so that the S curve can be seen to `sweep out' the 
envelope of profiles in real time without `rubbing out' the envelope as it moves 
around. The sequence is displayed continually for 0<0< 360 degrees until the 
user clicks the mouse on the `stop' button in the control window. Other features 
include a `pause' option to freeze the display temporarily and the ability to change 
the delay time between frames and the step size for 0 (again, via parameters in 
the control window). 

Finally we discuss special points and visible points. The special points only 
occur on the S curve and we need only show the visible points of the ellipsoid 
which lie on S. These points will be shown under projection of S to the view 
plane (in the envelope window). Visible points are coloured white while non- 
visible points are coloured green. The special points are generally isolated so 
are exaggerated and displayed as pink `blobs' (the `blob' size may be changed 
interactively to suit the user's tastes! ). These features are invariant under rota- 
tion about the axis r so the attributes are assigned during the algorithm which 
calculates the points on S-a fourth coordinate is assigned to each point which 
is a flag indicating whether the point should be displayed as visible, non-visible 

or special. 

A point p on S is special if the normal plane to S at p contains the axis of 
rotation. Provided the normal to the surface M at p is not parallel to the axis of 
rotation this is equivalent to the tangent vector T to S at p being perpendicular 
to the axis of rotation. For clarity we recall that the normal plane to S at 
p is the plane through p spanned by two independent vectors perpendicular to 
T. Hence, if the normal plane contains the axis of rotation, the axis must be 

perpendicular to T. Provided the normal vector to M at p is not parallel to the 

axis of rotation, the normal plane to S at p must meet the axis of rotation (along 

the surface normal line through p, for example) since pES. Thus, if the axis 

of rotation is perpendicular to T then the axis must be contained in the normal 

plane. As we shall see, the condition `T is perpendicular to the axis of rotation' 
is computationally viable and we will take this as our criterion for obtaining the 
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special points. The view taken regarding the `imposter' special points (where, in 
addition, the normal to M at p is parallel to the axis of rotation) is that such 
points are generally too unlikely to be of any concern, at least in what is just a 
graphical representation. 

Let TES denote the tangent space to S at p, it is spanned by the vector T. 
Let N be the unit normal vector to M at p. Suppose Nxr0 then 

NxrETTS r"T=O. 

(For the implication = we just note that Nxr is a non-zero vector perpendicular 
to N and r. The reverse implication then follows from the fact that N"T=0 
always holds. ) Now, Nxr=0 just says that the normal vector to M at p is 
parallel to the axis of rotation. Having agreed to include such occurrences in our 
criterion for special points we are reduced to checking 

NxrETTS. 

Applying transformations which take M= Aa (E) +s onto the standard position 
ellipsoid E we find that S can be written as the zero set F-1 (0) of the map 

F: R3 --; R2, F= (F� F2), 

where 

x2 y2 z2 Fi (x, y, z) _2+ b2 + C2 - 
17 

F2(x, y, z) = [(x, y, z)+Aal(s), n, AT'(r)), 

in the notation introduced for the envelope calculation earlier; in particular, n is 

the unit normal vector to E at (x, y, z) and may be explicitly written down. The 

tangent space to this curve at (x, y, z) is just Ker (dF(x, y, z)). With r' = Aa1(r) 

the condition therefore reduces to 

nx r' E Ker (dF(x, y, z)) = Ker 
dF2(x, y, z) 
dF2(x, y, z) 

But Ker (dFi (x, y, z)) = T(.,;, y, z)E and nx r' E Ker (dF1(x, y, z)) follows automat- 
ically. We therefore only need to check 

dF2(x, y, z) (n x r') =0 
(7.6) 

Expanding the above product 7.6 gives a very complex formula (after all, one 

must differentiate a triple scalar product) but the point now is that we have an 
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explicit condition for the computer to check. As the computer calculates the S 
curve, considering points (x, y, z) produced by equations 7.5, it takes any point 
found to lie on S and checks 

dF2(x, y, z) (n x r') 1< Esp 

for some (small) number Esp. When this occurs the flag associated to the point 
(x, y, z) is set to indicate a special point. As always, the parameter f5 may be 
changed via the control window. 

Finally we consider the visible points of S. Let /3 be the angle between the 
axis of rotation and the view plane, this is called the slant of the axis. We can 
assume -11 < /3 <2 without loss of generality. From [Ryc, Proposition 3.5.3] we 
have a point pEM is visible if and only if 1N "r< cos , Q, where N is the normal 
to M at p. Now M= Aa (E) +s and p=A,, (x, y, z) +s for (x, y, z) E E. Let 

n be the unit normal to E at (x, y, z), r' = A, 1(r) and /3' the angle between r' 
and the plane obtained by applying Ate' to the (x, y)-plane. Then an equivalent 
condition is In " r'I < cos 0' or In " r' 12 < cos2 , 

Q'. But 
, 
Q' =ß and ,Q can be obtained 

using (0,0,1) r= sin ,Q 
(since -2< ,Q<2). Thus, for each point (x, y, z) given 

by equations 7.5 which lies on the S curve, the computer checks 

In. r112+1(0,0,1) "r12 < 1. 
When this occurs the flag associated to the point (x, y, z) is set to indicate a 

visible point, otherwise it indicates a non-visible point. One therefore sees the 

projections of S divided into white and green (i. e., visible and non-visible) regions 

with isolated special points. 

7.3 Examples; Transitions of the Singular Points 

on the Envelope 

We now give some examples produced by the program together with the relevant 

mathematical background. We just give pictures of the profiles for a rotating 

ellipsoid, the resulting envelope is generally clear; see Figures 7.1 and 7.2. (In 

practice, we get the computer to draw the envelopes as well. This helps clarify 
the resulting singularities and their transitions. ) 

Many of the results proved by Rycroft should be apparent, for example, the 

symmetry of the envelope and the transitions in the singularities. The animation 
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(a) 

(c) 

Figure 7.1: Profiles I 

(b) 

2 4' 



(c) 

Figure 7.2: Profiles II 
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which depicts the S curve sweeping out the envelope cannot really be conveyed 
in a single picture. We do remark, however, that this facility of the program was 
used a great deal in the investigations of Rycroft. 

We shall recall Rycroft's results concerning the transitions in the singularities 
of the envelope and finish by giving pictures which demonstrate these. To apply 
the methods of singularity theory we will consider the envelope of projections of 
S (locally) as the discriminant of a map-germ (R2,0) -+ (R2,0). This describes 
the local singularities on the envelope of profiles too since the special ellipses 
which occur in the envelope of projections of S do not contribute to the local 

singularity theory. 

Let M be a surface in R3 and MO the surface obtained by rotating M about 
an axis r by 0. Let ß be the slant of the axis; here this is the angle r makes 
with the (x, y)-plane. By taking such a surface MO and rotating the whole of R3 

about r by -0 we see that the scenario is equivalent to a fixed surface M with 
a rotating view plane. This alternative description is often more convenient to 

work with mathematically. We refer to [Ryc, Section 3.3] and the related material 
for a more detailed discussion. The axis of rotation will then be taken to be the 

z-axis and the view direction given by a vector w on the unit sphere, 

w= (-cos0cos0, -cosßsin0, -sinß), 

where ,Q and 0 are the latitude and longitude, respectively. The angle ,Q is just the 

slant of the axis r in the `rotating surface' set-up. The view direction will rotate 
about a circle of latitude for fixed , Q. We can assume the corresponding view 
plane (orthogonal to w) is always centred at the origin and choose the coordinate 

axes to be spanned by the unit vectors 

a= (-sin0, cos 0,0) 

ýQ) v= Sin 0 cos Cps Sin 0 Sin Cp, - cos 

(so (u, v, w) forms a right-handed system). By abuse of notation we will denote 

the coordinates in the view plane by (u, v) as well. For fixed ß we have a family 

of projection maps from R3 to the view plane parametrized by 0: 

R3 xR -> R2 

(x, y, z, 0) (u, v) 

where 

U- -XsinO+ycosO 

v= xsinßcosq5+ysin0sinq5-zcosß. 
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fold cusp 

Figure 7.3: Fold and Cusp 

M can be defined locally as the graph of a function z= h(x, y) and (provided it is 
smooth) S may be parametrized as t ý---> (x(t), y(t), h(x(t), y(t))). The projections 
of S to the view plane are then given by the map 

f: RxR -p R2 
(t, 0) '-* (u, v) 

where 

'a = -x(t) sin q+ y(t) cos q5 

v= x(t) sin ß cos 0+ y(t) sin ß sin 0- h(x(t), y(t)) cos, 3. 

The point now is that the envelope of the projections of S is given by the discrim- 
inant of f, f (E), where I is the set of critical points of f; see [Ryc, Remark 3.2.4] 
and [BG5, P. 84]. The phenomena of codimension <1 are described by the fol- 
lowing singularities (using (x, y) as coordinates on R2 for convenience). 

(x, y2) fold stable 
(x, xy + y3) cusp stable 
(x, xy + y4) swallowtail , 

Ae-cödim =1 
(x) x2y + y3) lips 

, 
Ae-codim =1 

(x, x2y - y3) beaks Ae-codim =1 

The fold and cusp maps are in Figure 7.3. (In all diagrams representing map- 
germs f: (R2,0) ) (R2,0) we actually draw their discriminant, f (E). ) 

When the projection map f above is a fold map (as a germ, to be precise) 
the corresponding point on the envelope is smooth, while when it is a cusp map 
we obtain isolated cusp singularities on the envelope. Rycroft gave several condi- 
tions for the occurrence of cusps on the envelope; [Ryc, Corollary 4.4.2, Proposi- 

tion 4.4.5, Proposition 4.4.7]. Indeed, generically, we expect to find isolated cusps 
on the envelope; see [BG5, Section 7.13] (this is just Whitney's result referred 
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x swallowtail 

0 

lips 
0 

beaks 

Figure 7.4: Codimension 1 Singularities 

to at the start of this section). Such singularities were shown in our computer 
generated pictures of the envelopes in Figures 7.1 and 7.2. 

We now turn our attention to the codimension 1 transitions. The maps 

(X, y, u) '-' (x, xy+y4+uy2, u) 
(X, y, u) '-* (x, x2y±y3+uy, u) 

are versal unfoldings of the swallowtail, lips and beaks maps and give the transi- 
tions shown in Figure 7.4. 

Rycroft considered 1-parameter families of envelopes by varying the slant ß 
and determined the possible transitions in the singularities. In particular, condi- 
tions for the envelope to have on-axis and off-axis swallowtail transitions were ob- 
tained (Propositions 4.7.2 and 4.7.8), together with on-axis lips/beaks transitions 
(Proposition 4.6.2); no off-axis lips/beaks transitions occur (Proposition 4.6.8). 
By on-axis/off-axis we mean the phenomena occur on/off the axis of symmetry 
of the envelope (the projection of the axis of rotation to the view plane). These 

results are proved by applying the recognition criteria of [Tar, Chapter 3], to the 
map-germ f: (t, 0) -* (u, v) defined earlier. Rycroft also gave conditions for 
the map-germ 

R2xR -* R2xR 

(t, 0, ß) F--* (u, v, 0) 

ý\ 

251 



to be a versal unfolding (in 0) of the above codimension 1 singularities, at least 
generically (Propositions 4.6.4 and 4.7.5). Thus, by varying the slant ß we can 
obtain computer pictures which exhibit the swallowtail, lips and beaks transitions. 
We conclude with such pictures (Figures 7.5 7.7). In addition, Figure 7.1(b) 
shows a lips transition, Figure 7.2(c) a beaks transition and Figure 7.2(b) several 
swallowtail transitions, including off -axis swallowtails. (Strictly speaking, these 
just depict the aftermath of such transitions. ) The transitions are picked out 
clearly in the computer produced pictures of the envelopes, unfortunately we 
could not produce a reasonable PostScript version of these pictures. To make 
things a bit clearer we have oriented the figures so that the transitions always 
appear in the top left-hand corner of the image. 

Computer investigations have led to many possibilities for future work. For 

example, we would expect the cusp singularities on the envelope to be ordinary, 
yet several pictures suggest they are of a rhamphoid nature. This is shown in the 
`big smile' (or rather the aftermath of a lips transition) in Figure 7.1(b) where 
the cusps are extremely sharp and beaked. The animated sequence showing the 

projections of S suggests that the trajectories of the special points always pass 
through these cusps at the ends of the smiles. This will hopefully become clearer 
with future work. 
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(c) 

Figure 7.5: Beaks Transition 
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(a) 

(b) 

Figure 7.6: Lips Transition 
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C) 

Figure 7.7: Swallowtail Transition 
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Appendix A 

Saito Vector Fields 

The module of vector fields tangent to a discriminant variety is a free OP-module. 
The Saito vector fields form a basis and can be calculated by computer using the 
methods described in Chapter 5. We give some of the results of these calculations 
below. 
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Appendix B 

Transversal Code 

A fully documented listing of the Transversal code is given in this appendix. 
Section B. 1 contains the code for the main routine jetcalc; Section B. 2 the 

code for the user functions; Section B. 3 contains examples of liealg routines; 
and Section B. 4 the code for the subroutines. We do not give the code for all 
the liealg routines, nor the `set-up' routines, nor the functions which deal with 
the weighted case (the main function for use with weighted filtrations, wtcalc, 
is similar to jetcalc only more complicated). 

B. 1 Jetcalc 

jetcalc := proc(f, k) 

local i, j, num_vectors, deg, rank, count, poly, rov, col, rov2, scalar, temp, 

least_deg, tgtcopy, pre_tgtspace, pre_num_vectors, poly_table, num_polys, 

index_ref, deg_ref, left_deg_lim, left_indea_ref, left_deg_ref, 

num_nilp, nilp_terms, nilp_pt_ref, nilp_wt_ref, weight; 

# define tables 

tgtcopy := table(); pre_tgtspace := table(); poly-table := table(); 

index-ref := table(); deg-ref := table(); 

left-index-ref := table(); left-deg-ref := table(); 

nilp_terms := table(); nilp_pt_ref := table(); nilp_wt_ref := table(); 

# define global variable tables (used to store results) 

gl_index_ref := table(); gl_deg_ref := table(); 

tgtspace table(); 

compbasis := table(); 
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checklist := table(); 

coeff array_ref := table(); 

# basic global variable checks (always a good idea !!! ) 

if not assigned(liealg) then 
ERROR(`global variable 'liealg' unassigned'); 

fi; 

if not type(compltrans, boolean) then 
ERROR(`global variable 'compltrans' must be of type 'boolean "); 

fi; 

if equiv<>'A' and equiv<>'K' and equiv<>'R' and equiv<>'L' 
and equiv<>'C' then 

ERROR C global variable 'equiv' must be set as A, K, R, L or C'); 
fi; 

if not type(source_power, nonnegint) then 
ERROR(`global variable 'source-power' must be a non -ve integer'); 

fi; 

if not type(target_power, nonnegint) then 
ERROR(`global variable 'target-power' must be a non -ve integer'); 

fi; 

if liealg=stdjacobian and not type(source_dim, posint) then 
ERROR(`global variable 'source-dim' must be a +ve integer'); 

fi; 

if nilp=true or nilp='true_order' then 
if not type(R_nilp, list) then 

ERROR(`global variable 'R_nilp' must be of type 'list"); 

fi; 

if not type(L_nilp, list) then 

ERROR('global variable 'L_nilp' must be of type 'list"); 

fi; 

if nilp='true_order' then 

if not type(nilp_source_wt, list) then 

ERROR(`global variable 'nilp_source_wt' must be of type 'list"); 

fi; 

if not type(nilp_target_wt, list) then 
ERROR('global variable 'nilp_target_wt' must be of type 'list''); 

fi; 

fi; 

else 
if nilp<>false then ERROR 

('global variable 'nilp' must be set as 'true', 'false', or 'true-order"); 

fi; 

fi; 

# basic parameter checks 

if not type(f, list) then 

ERROR(`parameter 'f' must be of type 'list"); 

fi; 

if not type(k, nonnegint) then 
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ERROR(`parameter 'k' must be a non -ve integer'); 
fi; 

# set up initial variables 
# check nilpotent global variables assigned in 'liealg' 

print(`defined map: '); 

print(f); 
target dim := nops(f); 
print (`working in `. k. `-jet space with `. equiv. `-equivalence`); 

# get the variables stored in 'liealg' 
liealg(f, target_dim, tgtspace); 

print('defined coordinates: '); 

print(coords); 

num_coords := nops(coords); 

num_vectors := nops(convert(tgtspace, list)); 

num_polys :=0; # used in L and C tgtspace routines 
# create and print the nilpotent terms 

num_nilp :=1; 
if nilp=true or nilp='true_order' then 

for i from 1 to nops(R_nilp) do 

if not type(R_nilp[i], list) or nops(R_nilp[i])<>2 then 
ERROR(" R_nilp[`. i. `]' must be of type 'list' with 2 entries'); 

fi; 

if R_nilp[ii[2]>num_vectors then 
ERROR(" R_nilp[`. i. `][2]' > number of vectors in Lie algebra'); 

fi; 

nilp_terms[num_nilp] := scalar_multn( R_nilp[i][1], 

tgtspace(R_nilp[i][2]], target_dim); 

num_nilp := num_nilp+1; 

od; 
for i from 1 to nops(L_nilp) do 

if not type(L_nilp[i], list) or nops(L_nilp[i])<>2 then 
ERROR(" L_nilp('. i. `]' must be of type 'list' with 2 entries'); 

fi; 

if L_nilp[i] [1]>target_dim then 

ERROR(" L nilp[`. i. `][1]' > dimension of target'); 

fi; 

if L_nilp[i] [2]>target_dim then 

ERROR(" L_nilp[`. i. `][2]' > dimension of target'); 

fi; 

nilp_terms[num_nilp] := canonical vector(L nilp[i][2], 
f[L_nilp[i][1]], target_dim); 

num_nilp := num_nilp+l; 

od; 
fi; 

# store the number of terms in 'nilp_terms'; 

num_nilp := num_nilp-1; 

# Check map-germ 'f' has target 0, Ie. f(0)=0 or equivalently all poly. 

# components of f are of degree >1 (needed for "left tgt. space" 
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# procedure to work). Also checks for monomials with negative indices. 

if ldegree_vector(f, k, target_dim) <= 0 then 
ERROR ('f has non-zero target or monomials with negative indices'); 

fi; 

# Create index and degree reference tables for the source coordinates. 
# Store these for global use too. 
# Store the jet space degree (k) as a global variable. 

get_ref_tables(k, num_coords, index_ref, deg_ref); 

gl_index_ref := copy(index_ref); gl_deg_ref := copy(deg_ref); 
jetspace_deg :=k; 

# Use right tangent space (given by 'liealg') in the equivalence ??? 

if equiv=R or equiv=A or equiv=K then 

# *** RIGHT TANGENT SPACE ROUTINE *** 

# Calculate a real spanning set for the (image of the) E(n)-module 

# (m(n)"source_power) 
.< LR. f > 

# in the jet space J"k(n, p), where LR is the Lie algebra of the 'source 

# coordinate change group' and LR. f is obtained from the procedure liealg. 

print(`*** calculating right tangent space 
tgtcopy copy(tgtspace); 
count :=1; 

# Multiply tgtcopy[i] by the monomials in m(n)-source_power. 
# That is multiply by the monomials of degree source-power and higher 

# until a zero k-jet is reached. 
# The set of all such vectors is stored in tgtspace and gives 

# all the possible non-zero k-jets which result from tgtcopy[i]. 

for i from 1 to num_vectors do 

# Check m(n)"source_power*tgtcopy[i] gives non zero k-jets. 

# (Case when tgtcopy[i] is the zero vector, 'ldegree_vector' 

# RETURNS k+1 and the jet will be ignored as required. ) 

least-deg := ldegree-vector(tgtcopy[il, k, target-dim); 

if source-power+least_deg<=k then 

for deg from deg_ref[source_power] to 

deg_ref[k-least_deg+1]-1 do 

# multiply tgtcopy[i] by monomial corresponding to deg 

# and store in the tangent space table 

tgtspace(count] := scalar multn(get_monomial(index_ref[deg]), 
tgtcopy[i], target_dim); 

count := count+1; 

od; 
fi; 

od; 
# store the number of vectors in 'tgtspace' 

num_vectors := count-1; 
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*** END OF RIGHT TANGENT SPACE ROUNTINE *** 

else 
# no right tangent space ... ignore vectors stored in tgtspace 

num_vectors :=0; 
fi; 

# Use left tangent space in the equivalence ??? 

if equiv=L or equiv=A then 

# *** LEFT TANGENT SPACE ROUTINE *** 

# Calculate a real spanning set for the (image of the) E(p)-module 
# (f"*)(m(p)"target_power) 

.{ e(i) } 
# in the jet space J"k(n, p). 

print(`*** calculating left tangent space ***`); 
# Get maximum degree for left ref tables, Ie. the maximum degree by 
# which the components of 'f' may be raised giving non-zero k-jets. 
# Do not get 'division by zero' below, Ie. 'ldegree_vector' <> 0, 
# as 'f' does not contain constant terms (cf. check at start of 
# procedure). And the case f=0 gives a RETURNED least degree of 
# k+1; thus left_deg_lim=0 giving just the vectors with constant 
# (unit) components in the left tangent space. 

ldegree_vector(f, k, target_dim); 
left_deg_lim := iquo(k, "); 

# Get all possible jets formed by the 'appropriate combinations' of 
# the coord. functions of 'f' (using monomials of degree target-power 
# to left_deg_lim, with the indeterminates substituted with the 
# components of f). 
# Store all these polys in the table poly-table. 

# first check that the left tangent space gives non zero jets 

if target_power<=left_deg_lim then 

get_ref_tables(left_deg_lim, target_dim, 
left_index_ref, left_deg_ref); 

count :=1; 
for deg from left_deg_ref[target_power] to 

left_deg_ref [left_deg_lim+1] -1 do 

# Get the polynomial f [1] "left_index_ref [deg] [1] * ... 
# ... *f [target_dim] "left_index_ref [deg] [target_dim] 

. 
# NB: require f [i] "0 =1 for any value of f [i] 

, in particular 
# if f[i]=O, for all the possible powers of the f [i] 

. 
poly :=1; 
for i from I to target-dim do 

if left_index_ref [deg] [i]=0 then 
1; 

else 
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f [ii left_index_ref [deg] [i] ; 
fi; 

poly := poly * 'I ; 
od; 

# Check poly is a non-zero k-jet. 
# NB: for 'ldegree' to return the total least degree the list 
# of indeterminates must in fact be of data type 'set'. 

if poly<>O and ldegree(expand(poly), convert(coords, set))<=k then 
poly_table[count] := expand(poly); 
count := count+1; 

fi; 

od; 
# store the number of polys in poly-table 

num_polys := count-1; 
fl; 

# *** END OF LEFT TANGENT SPACE ROUTINE *** 

fi; 

# Use the C tangent space in the equivalence ??? 

if equiv=C or equiv=K then 

# *** C( LEFT CONTACT ) TANGENT SPACE ROUTINE *** 

# Calculate a real spanning set for the (image of the) E(n)-module 
# (m(n)"target_power) 

. 
(f'*)(m(p)) 

. E(n, p) 
# in the jet space J"k(n, p). 

print(`*** calculating C tangent space 
count 

# Multiply f[i] by the monomials in m(n) -target-power. 
# That is multiply by the monomials of degree target-power and higher 

# until a zero k-jet is reached. 
# Store all these polys in the table poly-table. 

for i from 1 to target-dim do 

# check (m(n)"target_power)*f[i] gives non zero k-jets 

least-deg := ldegree(expand (f[i]), convert (coords, set)); 
if target_power+least_deg<=k and f[i]<>0 then 

for deg from deg_ref [target_power] to 
deg_ref[k-least_deg+1]-1 do 

# Multiply f[i] by monomial corresponding to deg and store. 

poly_table (count ] := expand (get 
-monomial 

(index-ref (deg]) *f [i] 

count := count+1; 

od; 
fi; 

od; 
# store the number of polys in poly-table 

num_polys := count-1; 
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# *** END OF C TANGENT SPACE ROUTINE *** 

fi; 

# *** INCLUDE THE NILPOTENT TERMS IN THE TANGENT SPACE *** 

# These are just added to the table tgtspace (since there are only a 
# few of them, so no need to incorporate and pre-tangent routine). 

count := num_vectors+1; 
for i from 1 to num_nilp do 

# use 'copy' here as 'nilp_terms[i]' is an indexed table 
tgtspace[count] := copy(nilp_terms[i]); 
count := count+1; 

od; 
# store the number of vectors in 'tgtspace' 

num_vectors := count-1; 

# *** END OF 'NILPOTENT' ROUTINE *** 

# *** REDUCTION ROUTINE TO PRODUCE BASIS FOR TANGENT SPACE *** 

# Basic procedure: take k-jets and extract coefficients of the jets to form 
#a matrix (coeffarray) and reduce to echelon form using Gaussian 
# elimination. However, matrix very sparse (and large) and it is more 
# efficient to have a reference table which allows us to obtain each 
# coefficient (ie. each 'would be' entry (i, j) of coeff array) from the table 
# of polynomial vectors, tgtspace, as required. 

# The right tangent space (currently stored in the table tgtspace (with the 
# the nilpotent vectors)) and the left tangent space (to be calculated from 

# the table of polynomials poly-table) are dealt with separately so that we 
# can exploit the symmetry present in the left tangent space (cf. the 

# pre-tangent space routine below). 

print('*** performing Gaussian elimination ***`); 

# Firstly set up the 'coeffarray' reference table. 

# The rth column of 'coeffarray' gives the coefficient of a monomial of a 
# component of V (V being some tangent vector), where 
# coeffarray_ref[r][1] indicates the component of V, 

# coeffarray_ref[r][2] gives the monomial via a pointer to its index. 

# Use the ordering induced by the nilpotent weights ? 

if nilp='true_order' then 

print C using ordering induced by the nilpotent weights'); 

# firstly create the nilpotent reference tables by ordering the 

# degree k monomials by their weight 

count :=0; 
for weight from k to k*num_coords do 

nilp_wt_ref[weight] := count; 
for deg from deg-ref[k] to deg_ref [k+1] -1 do 
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if get_wt(indea_ref[deg], num_coords, nilp_source_wt)=weight then 
nilp_pt_ref[count] := deg; 

count := count+1; 
fi; 

od; 

od; 
# store pointer to end of table 

nilp_wt_ref(k*num_coords+1] := count; 

# Create 'coeffarray' reference table for the monomial vectors up to 
# and including degree k-1. 

count :=1; 
for deg from 0 to deg_ref [k] -1 do 

for j from 1 to target-dim do 

coeff array_ref[count][1] :=j; 
coeffarray_ref[count][2] deg; 

count := count+l; 

od; 

od; 

# Create 'coeffarray' reference table for the monomial vectors of 
# degree k, now using the nilpotent ordering. 
# Ie. order via the (vector) weights k thru' k*num_coords+target_dim-1. 

for weight from k to k*num_coords+target_dim-1 do 

for j from 1 to target-dim do 

weight+nilp_target_wt[j]; 
if k<=" and "<=k*num_coords then 

for i from nilp_wt_ref["] to nilp_wt_ref["+1]-1 do 

coeff array_ref[count][1] j; 

coeff array_ref[count][2] := nilp_pt_ref[i]; 

count := count+1; 

od; 
fi; 

od; 

od; 

else 
# Do not use nilpotent weights, use default ordering. 

print(`using default ordering'); 
# Create 'coeffarray' reference table for all the monomial vectors 

# of degree up to and including k. 

for deg from 0 to deg_ref[k+1]-1 do 

for j from 1 to target-dim do 

coeffarray_ref[deg*target_dim+j][1] :=j; 

coeff array_ref[deg*target_dim+j][2] := deg; 

od; 

od; 
fi; 

# Now reduce to echelon form using Gaussian elimination. 

# If equiv=R then only the right tangent space need be reduced. 
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# Otherwise, a routine is firstly used to reduce the left tangent space 
# (the pre_tgtspace) which has a lot of symmetry, followed by a full 
# reduction to create a basis for the whole tangent space. 
# ('Indexed' Gaussian elimination is used via the matrix coeffarray_ref). 

if equiv=R then 

# Calculate tangent space: just need to reduce "matrix" tgtspace. 

# Check the (right) tangent space is non-empty; if empty 
# then add a zero vector so that the rest of the 
# prodedure may continue with the calculations. 

if num_vectors=0 then 

num_vectors :=1; 
tgtspace[1] := array(sparse, l.. target_dim); 

fi; 

print(`calculating tangent space'); 
print(`matrix dimensions: `. num_vectors, deg_ref[k+1]*target_dim); 

# Gaussian elimination bit. 

# NB: pivotal elements are left as they are found, they must NOT be 

# scaled to produce a1 for the pivotal element. 
# NB: number of columns = deg_ref[k+1]*target_dim. 

# Number of vectors in the table tgtspace was stored as the 

# variable num_vectors earlier. 

row :=1; 
for col from 1 to deg_ref[k+1]*target_dim while 

row <= num_vectors do 

# find pivot 
for i from row to num_vectors while 

coeff_table(tgtspace, i, col) =0 do od; 

# Give preference to numeric pivots, but otherwise 

# choose most efficient pivot from a symbolic point of view 

# (that is the one of least length as a Maple expression). 

for j from i+1 to num_vectors do 

coeff_table(tgtspace, j, col); 

if "<>0 and 

not type(coeff_table(tgtspace, i, col), numeric) and 

( type(", numeric) or 
length(") < length(coeff_table(tgtspace, i, col)) ) 

then 
i :=j; 

fi; 

od; 
# If a pivot has been found then perform "row reduction" and move 

# to next row, otherwise (zero column) stay on the same row. 

if i <= num_vectors then 

# swap rows first ? 

if i <> row then 

temp := copy(tgtspace[i]); 
tgtspace[i] := copy(tgtspace[row]); 
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tgtspace[row] := copy(temp); 
fi; 

for i from row+1 to num_vectors do 
# reduce row i? 

if coeff _table(tgtspace, i, col) <> 0 then 
scalar := normal(coeff_table(tgtspace, i, col)/ 

coeff_table(tgtspace, row, col)); 
for j from I to target-dim do 

tgtspace[i] [j] := normal(tgtspace[i] [j]- 

scalar*tgtspace [row][j]); 

od; 
fi; 

od; 

row := row+1; 
fi; 

od; 
# Finally store the rank as the global variable basis-dim. 

basis-dim := row-1; 
# And store the number of columns as a global variable. 

tgtstore_lim := deg_ref[k+1]*target_dim; 

else 

# Calculate pre-tangent space ('left bit'). 

# Check the table poly-table is non-empty; if empty 
# then add a zero term so that the rest of the 
# procedure may continue with the calculations. 

if num_polys=0 then 

num_polys :=1; 

poly-table[l] :=0; 
fi; 

print(`calculating pre-tangent space'); 

print(`matrix dimensions: `. num_polys, deg_ref[k+1]); 

# First reduce the table poly-table using Gaussian elimination. 
# NB: pivotal elements are left as they are found, they must NOT be 

# scaled to produce a1 for the pivotal element. 

row :=1; 
for col from 0 to deg_ref[k+1]-1 while row <= num_polys do 

# find pivot 
for i from row to num_polys while 

normal(get_coeff(poly_table[i], index_ref[col])) =0 do 

od; 
# Give preference to numeric pivots, but otherwise 

# choose most efficient pivot from a symbolic point of view 

# (that is the one of least length as a Maple expression). 

for j from i+1 to num_polys do 

normal(get_coeff(poly_table[j], indez_ref[col])); 

if "<>0 and 

not type(get_coeff(poly_table[i], indez_ref[col]), numeric) and 
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( type(", numeric) or 
length(") < length(get_coeff(poly_table[i], index_ref[col])) ) 
then 

# NB: above condition is not as time-inefficient to check as 
# first seems as "<>0 will fail for most entries and the 
# rest of the expression is avoided (Maple uses the 
# McCarthy evaluation rules for logical operators). 

i 

fi; 

od; 
# If a pivot has been found then perform "row reduction" and move 
# to next row, otherwise (zero column) stay on the same row. 

if i <= num_polys then 
# swap rows first ? 

if i <> row then 
temp := copy(poly_table[i]); 
poly-table[i] := copy(poly_table[row]); 
poly_table[rov] := copy(temp); 

fi; 

for i from row+1 to num_polys do 
# reduce row i? 

if normal(get_coeff(poly_table[i], index_ref[col])) <> 0 then 
scalar := normal(get_coeff(poly_table[i], index_ref[col])/ 

get_coeff(poly_table[row], index_ref[col])); 

poly_table[ii := normal(poly_table[i]- 

scalar*poly_table[row]); 
fi; 

od; 

row := row+1; 
fi; 

od; 
# store rank 

num_polys := row-1; 

# Store (in the table pre_tgtspace) target-dim number of copies of 
# poly-table to form (echelon) matrix for whole of left tangent space. 

count :=1; 
# The order below is CRUCIAL: do i loop before j loop. 

for i from 1 to num_polys do 
for j from 1 to target-dim do 

pre_tgtspace[count] := canonical_vector(j, poly_table[i], target_dim); 

count := count+1; 

od; 

od; 
# Store number of vectors (note that pre_num_vectors IS >= 1 

# because we ensured num_polys >= 1 at the start of this bit. 

pre_num_vectors := count-1; 

# If using the ordering induced by the nilpotent weights, then 
# re-order the last block of the matrix (represented by) pre_tgtspace 
# (the block of terms of degree k) and then reduce this block. 
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if nilp=true_order then 
# Find the start of the degree k terms, these start at # column deg-ref [kj*taLrget-dim+l. 

row 

col 

while row<=pre_num_vectors and col<deg_ref[k]*target 
_dim+1 

do 
if coeff_table(pre_tgtspace, row, col)=0 then 

col := col+1; 
else 

# hit a pivotal element so ... 
row row+1; 
col := col+1; 

fi; 

od; 
# Reduce this last block of degree k terms using Gaussian 
# elimination. Use value of row just calculated. 
# NB: pivotal elements are left as they are found, they must NOT be 
# scaled to produce a1 for the pivotal element. 

for col from deg-ref [k]*target_dim+l to deg_ref[k+1]*target_dim while 
row <= pre_num_vectors do 

# find pivot 
for i from row to pre_num_vectors while 

coeff_table(pre_tgtspace, i, col) =0 do od; 
# Give preference to numeric pivots, but otherwise 
# choose most efficient pivot from a symbolic point of view 
# (that is the one of least length as a Maple expression). 

for j from i+1 to pre_num_vectors do 

coeff_table(pre_tgtspace, j, col); 
if "<>0 and 

not type(coeff_table(pre_tgtspace, i, col), numeric) and 
( type(", numeric) or 
length(") < length(coeff_table(pre_tgtspace, i, col)) ) 

then 
i :=j; 

fi; 

od; 
# If a pivot has been found then perform "row reduction" and move 

# to next row, otherwise (zero column) stay on the same row. 

if i <= pre_num_vectors then 

# swap rows first ? 

if i <> row then 

temp := copy(pre_tgtspace[i]); 

pre_tgtspace[i] := copy(pre_tgtspace[row]); 

pre_tgtspace[row] := copy(temp); 

fi; 

for i from row+1 to pre_num_vectors do 

# reduce row i? 

if coeff_table(pre_tgtspace, i, col) <> 0 then 

scalar := normal(coeff_table(pre_tgtspace, 
i, col)/ 

coeff_table(pre_tgtspace, row, col)); 

for j from 1 to target-dim do 
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pre_tgtspace[i] [j] := normal(pre_tgtspace[i] [j]- 

od; 
scalar*pre_tgtspace[row][j]); 

fi; 

od; 

row := row+1; 
fi; 

od; # NB: rank already stored as pre_num_vectors and will not 
# have changed due to this reordering. 

fi; # otherwise nilp <> true-order and everything already OK. 

# Now perform full Gaussian elimination to create table tgtspace. 
# Note that there is no need to reduce pre_tgtspace as this is 
# already in echelon form. Just adjoin the right tangent space 
# (currently stored as tgtspace) and then apply Gaussian elimination 
# using the previously calculated pivotal elements of pre_tgtspace as 
# pivots, where possible, and avoiding interchanging the rows (except 
# where necessary in tgtcopy). 
# This method is very efficient. 

# Check the (right) tangent space is non-empty; if empty 
# then add a zero vector so that the rest of the 
# prodedure may continue with the calculations. 

if num_vectors=0 then 

num_vectors :=1; 
tgtspace[1] := array(sparse, l.. target_dim); 

fi; 

print(`calculating tangent space'); 
print(`matrix dimensions: `. num_vectors, deg_ref[k+1]*target_dim); 

tgtcopy := copy(tgtspace); 
# Use variables row and col for pre_tgtspace "matrix", 

# row2 and col for tgtcopy "matrix" 

# (this is now used to store the right tangent space), 
# and variable count for each element ("row") in the final (echelon) 

# "matrix" (THIS will now be stored as the global table tgtspace). 

# NB: number of columns = deg-ref [k+11*target-dim. 

# Number of vectors in the table tgtcopy was stored as the 

# variable num_vectors earlier. 

row :=1; 

row2 1; 

count 1; 

tgtspace := table(); 

# Gaussian elimination 
# NB: pivotal elements are left as they are found, they must NOT be 

# scaled to produce a1 for the pivotal element. 

# Note that below we must take col up to deg-ref [k+11 *target-dim and 

# not have a termination condition dependent on row (or row2) as in 

# previous cases. This ensures that ALL the appropriate vectors from 

# pre_tgtspace and tgtcopy are included in the final table tgtspace. 

# When row or row2 become too large the appropriate section of code 
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# below is ignored accordingly. 
for col from 1 to deg-ref N+11 *target-dim do 

# Use current element in pre_tgtspace as a pivot to reduce tgtcopy? 
# NB: following statement OK because if row>pre_num_vectors then 
# second half of 'and' statement ignored (McCarthy rules). if row<=pre_num_vectors and coeff-table (pre_tgtspace, row, col) <>O then 

# store current row from pre_tgtspace in tgtspace 
tgtspace[count] := copy(pre_tgt space [row]); 
count := count+1; 

# perform elimination on tgtcopy 
for i from row2 to num_vectors do 

if coeff_table(tgtcopy, i, col)<>O then 
scalar := normal(coeff_table(tgtcopy, i, col)/ 

coeff_table(pre_tgtspace, row, col)); 
for j from 1 to target-dim do 

tgtcopy[i] [j] := normal(tgtcopy[i] [j]- 

scalar*pre_tgtspace[row][j]); 
od; 

fi; 

od; 

row := row+1; 
else 

# Whole of the current column in pre_tgtspace must be zero so 
# find appropriate pivot from tgtcopy. 
# Now only need to reduce column in tgtcopy. 

for i from row2 to num_vectors while 

coeff_table(tgtcopy, i, col) =0 do od; 
# Give preference to numeric pivots, but otherwise 
# choose most efficient pivot from a symbolic point of view 
# (that is the one of least length as a Maple expression). 

for j from i+1 to num_vectors do 

coeff_table(tgtcopy, j, col); 
if "<>0 and 

not type(coeff_table(tgtcopy, i, col), numeric) and 
( type(", numeric) or 
length(") < length(coeff_table(tgtcopy, i, col)) ) 

then 
i :=j; 

fi; 

od; 
# If a pivot has been found then store current row from tgtcopy 

# in tgtspace, perform "row reduction" and move to next row of 

# tgtcopy; otherwise (zero column) stay on the same row. 

if i <= num_vectors then 

# swap rows first ? 

if i <> row2 then 

temp := copy(tgtcopy[i]); 
tgtcopy[i] := copy(tgtcopy[row2]); 

tgtcopy[row2] := copy(temp); 

fi; 

# store current row from tgtcopy in tgtspace 
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tgtspace[count] := copy(tgtcopy[row2]); 
count := count+1; 

# perform elimination 
for i from row2+1 to num_vectors do 

# reduce row i? 
if coeff_table(tgtcopy, i, col) <> 0 then 

scalar := normal(coeff_table(tgtcopy, i, col)/ 
coeff_table(tgtcopy, rov2, col)); 

for j from I to target-dim do 
tgtcopy[i] [j] := normal(tgtcopy[i] [j]- 

scalar*tgtcopy[rov2][j]); 
od; 

fi; 

od; 

row2 := row2+1; 
fi; 

fi; # if row<=pre_num_vectors then ... else ... fi; 
od; # col loop 

# Finally store the rank (number of vectors in tgtspace) as the 
# global variable basis-dim. 

basis-dim := count-1; 
# And store the number of columns as a global variable. 

tgtstore_lim := deg-ref [k+1]*target_dim; 

fi; 

# *** END OF REDUCTION ROUTINE *** 

# *** ROUTINE TO CALCULATE BASIS FOR COMPLEMENTARY SPACE *** 

# Calculates and stores (as global variables) the basis, the codimension, 
# and a checklist of all non-numeric pivotal elements in the echelon matrix 
# (represented by) tgtspace. 

1; # the row 
1; # the column 

# set up global count variables 
basis-count :=1; 

clist_count :=1; 

# Search through the "matrix" tgtspace looking for pivotal elements. 

while i<=basis-dim and j<=deg_ref[k+1]*target -dim 
do 

# Check for zero entry, this corresponds to a vector in the basis. 

if coeff_table(tgtspace, i, j)=0 then 

canonical_vector(coeffarray_ref[j][1], get_monomial 
(indea_ref[coeffarray_ref[j][2]]), target_dim); 

compbasis [basis_count] [1] :="; 

# check for 'degree(monomial) = k' 

compbasis[basis_count][2] := false; 

if deg_ref [k] <=coeffarray_ref [j] [2] and 

coeffarray_ref [j] [2] <deg_ref [k+1] then 
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compbasis[basis_count][2] := true; 
fi; 

basis-count := basis-count+j; 
j "= j+1; 

else 
# Hit a pivotal element; see if numeric and store in checklist 
# along with corresponding monomial vector (for which this element 
# is a coefficient). 

coeff_table(tgtspace, i, j); 
if not type(", numeric) then 

checklist[clist_count][1] 

checklist [clist_count] [2] canonical-vector (coeff array-ref (j] [11 
, 

get monomial(indea_ref[coeffarray_ref[j][2])), target_dim); 
clist_count := clist_count+1; 

fi; 

i .= i+1; 

j .= j+1; 

fi; 

od; 
# Check for i> basis-dim, for then the vectors corresponding 
# to the remaining columns (Ie. from j to deg-ref N+13 *target-dim) are 
# to be included in the complementary basis. 

if i>basis_dim then 

while j<=deg_ref[k+1]*target_dim do 

canonical_vector(coeffarray_ref[j][1], get_monomial 
(indea_ref [coeffarray_ref [j] [2]]) 

, target_dim) ; 

compbasis[basis_count][1] :_"; 
# check for 'degree(monomial) = k' 

compbasis[basis_count][2) := false; 

if deg_ref [k] <=coeffarray_ref [j] [2] and 

coeffarray_ref [j] [2] <deg_ref [k+l] then 

compbasis[basis_count][2] := true; 

fi; 

basis_count := basis_count+l; 

j := j+i; 

od; 
fi; 

# store the codimension 

codim := deg-ref (k+11*target 
_dim-basis_dim; 

# *** END OF COMPLEMENTARY SPACE ROUTINE *** 

# Print warning if checklist non-empty and RETURN NULL. 

if clist-count>1 then 

print ('WARNING: global variable 'checklist' is non-empty !!! `); 

fi; 

print(); 
print(`Ready. `); 

NULL; 
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end: 

B. 2 User Functions 

# The parameters passed to this procedure are all of type list and specify 
# vectors in J°k(n, p). If the space spanned by these vectors is in the 
# previously calculated tangent space (given by coeffarray) then true is 
# RETURNED, otherwise false. (Specifically, true is RETURNED when this set 
# of vectors and the basis given by coeffarray form a dependent set of 
# vectors, and false when they form an independent set. ) 

#A set of vectors by which the tangent space basis must be extended to give 
#a basis for the whole space is calculated and stored as the global variable 
# ext_tangent (a matrix whose rows give the coordinates of the basis elements). 
# So rank (ext_tangent)=(number of parameters) <=> independent. 

# In some cases this may contain non-numeric elements (even if the parameters 
# passed to the procedure do not) and the rank may drop for certain values. 

# In such cases ext_tangent is output to allow the user to determine the 

# degenerate cases. It is global and may therefore be inspected later too. 

# NB: the appropriate reference tables (whether for standard jet-spaces or 

# weighted jet-spaces) will have already been created by jetcalc or wtcalc 

# as appropriate, and stored as the common global variables gl-index-ref 

# and gl-deg_ref. These tables must be used below and allow the routine 

# to work for both cases without the need to re-calculate the reference 

# tables depending on the case in question. 

intangent := proc() 
local i, j, jj, k, t, v, rank; 

# check parameter type 

if nargs<1 then 

ERROR(`parameters must be of type 'list " ); 

fi; 

for jj from 1 to nargs do 

if not type(args[jj], list) then 

ERROR(`parameters must be of type 'list'`); 

fi; 

od; 

# Get coefficient matrix (v) for the vector parameters. 

v := array(1.. nargs, l.. tgtstore_lim); 

for jj from i to nargs do 

for j from 1 to tgtstore_lim do 

expand(args [j j] [coeffarray_ref [j] [1] ]) ; 

v[jj, j] := get_coeff(", g1_index_ref[coeffarray_ref[j][2])); 

od; 

od; 
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# row reduce each vector (row of v) using the matrix coeffarray 
# NB: no need to use full Gaussian elimination as coeffarray is 
# already in echelon form 

for jj from 1 to nargs do 
i 

while i<=basis-dim and j<=tgtstore-lim do 
if coeff_table(tgtspace, i, j)=0 then 

j 
"= j+1; 

else 
if v[jj, j]<>O then 

# Perform Gaussian elimination. We do not need to use 
# fraction-free Gaussian elimination: instead a scaled copy 
# of the row containing the pivotal element is subtracted 
# from the current row, jj, (cf. use of t below). However, 
# it is important NOT to scale the row itself (as in standard 
# Gaussian elimination) in order to make the pivotal element 
# equal to 1. 

# NB: this is done more efficiently "manually" than using 
# the 'linalg' library for row manipulations 

t := normal(v[jj, j]/coeff_table(tgtspace, i, j)); 

for k from j+i to tgtstore_lim do 

v[jj, k] := normal(v[jj, k]-t*coeff_table(tgtspace, i, k)); 

od; 
# and finally ... 

v[jj, j] .=0; 
fi; 
i := i+l; 

j 

fi; 

od; 

od; 

# Now reduce matrix v to echelon form and obtain its rank. 

# (NB: Maple V procedure 'rank' will not use standard Gaussian 

# elimination, so call the 'gausselim' procedure explicitly. ) 

# Store row reduced v as the global variable ext_tangent. 

# Then if rank(v) = nargs, the tangent space (coeffarray) and vectors 

# passed as parameters form an independent set 

ext_tangent := gausselim(v, 'rank'); 

# print warning if matrices not numeric 

if not type(ext_tangent, 'matrix'(numeric)) then 

print 
(`WARNING: matrix contains non-numeric elements, check ext_tangent: 

print('tangent space basis to be extended by (the rows of)'); 

print(ext_tangent); 
fi; 

if clist_count>1 then 

print 
(`WARNING: original matrix contains non-numeric elements, check checklist !!! `) 

281 



fi; 

if rank = nargs then 
# RETURN false 

false; 

else 
# rank < nargs; RETURN true 

true; 
fi; 

end: 

# prints the table 'compbasis' output from the 'jetcalc' procedure 

pcomp := proc() 
local i, print_flag; 

print-flag false; 
for i from 1 to basis-count-1 do 

# print vector? 
if compltrans=false or compbasis[i][2]=true then 

print(convert(compbasis[i][1], list)); 
print-flag := true; 

fi; 

od; 
if print-flag=false then 

print('*** TRANSVERSAL EMPTY 
fi; 

# RETURN NULL 
NULL; 

end: 

# prints the table 'det_store' output from the 'Adetermined' procedure 

pdetterms := proc() 
local i; 

for i from 1 to det_count-1 do 

print(convert(det_store[i], list)); 
od; 

end: 

# Prints the table 'checklist' output from the 'jetcalc' or 'wtcalc' procedures. 
# Each element in 'checklist' represents a monomial vector and the precise 

# format is to output the number of the element in the table checklist followed 

# by the coefficient and monomial term of the vector. Thus the actual vector is 

# given by 'coefficient' * 'monomial term'. The number of the element is output 
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# so that the vector can be accessed by the user; the coefficient and monomial 
# term of the r-th entry in checklist being given by checklist [r] [1] and 
# checklist [r] [21 respectivey. For instance, to factor the coefficient of the 
# r-th vector one would use (in Maple) 
# factor(checklist [r] [1]) ; 

# Parameters may be passed to the procedure; they must take the form of a 
# flag with value 'P' or 'F'. If 'P' (PAUSE) is passed then the elements of the 
# checklist are printed out in turn with the procedure waiting for the user 
# to type C; [RETURN] (C followed by a semi-colon followed by the [RETURN] key) 

# (CONTINUE) before proceeding with the next element. Alternatively the 
# procedure may be terminated at this point by typing E; [RETURN] instead of 
# C; [RETURN] (for EXIT). 

# If 'F' (FACTOR) is passed then the elements in checklist which are the 

# coefficients (of the appropriate vector) are factored before being output. 

plist := proc() 
local i, pause_flag, factor_flag, input_char; 

# check parameter 

pause-flag false; 

factor-flag false; 

for i from 1 to nargs do 

if args [i] _' P' or args [i] _' F' then 

if args [i] _' P' then 

pause flag true; 

else 
factor-flag true; 

fi; 

else 
ERROR (`parameter must be the flag 'P' or 'F' or empty'); 

fi; 

od; 

# print checklist 
for i from 1 to clist_count-1 do 

if factor-flag then 

factor(checklist [i] [1]) ; 

else 
checklist [i] [1] ; 

fi; 

print (`# `. i, " , checklist [i] [2]) ; 

if pause-flag then 

input-char := NULL; 

while input_char<>'E' and input_char<>'C' do 

input-char := readstat 
('type E; [RETURN] to exit, or C; (RETURN] to continue ... 

`); 

od; 
if input-char='E' then 

RETURN(NULL); 

fi; 
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fi; 

od; 
if clist_count=l then 

print(`*** CHECKLIST EMPTY 
fi; 

# RETURN NULL 
NULL; 

end: 

# Prints the set of homogeneous monomial vectors of degree k1. If a second 
# (optional) parameter, k2, is given then all vectors of degree k1 to degree 
# k2 are output. 

# The order in which these monomial vectors are printed is that used by jetcalc 
# when creating the array of coefficients, coeffarray, with the lower order 
# terms being output first. If global variable nilp is set to false then the 
# default order is used; however if nilp is set to 'true-order' then the order 
# induced by the nilpotent filtration is used. 
# (NB: the global lists nilp_source_wt and nilp_target_wt must be defined and 
# are used to determine this order. ) 

# In such a case the homogeneous monomial vectors of degree k are partitioned 
# into their appropriate M(r, s) jet-level, this level being output too. 

# NB: coordinates are specified by the global variable coords, which must 

* therefore be defined beforehand. Note that liealg procedures will assign 

* values to coords when appropriately called (usually by jetcalc). 

pmons := proc(kl) 
local i, j, k, k2, count, level, weight, wt, index_ref, deg_ref, 

nilp_pt_ref, nilp_wt_ref ; 

# set up initial variables 
if not type(coords, list) then 

ERROR (`coordinates undefined (variable coords not of type list)'); 

fi; 

print(`defined coordinates: '); 

print(coords); 

num_coords := nops(coords); 
# initialise ordering variables 

if nilp='true_order' then 

if not type(nilp_source_wt, list) or not type (nilp_target_wt, list) then 

ERROR (`variables nilp_source_vt and nilp_target_Wt not of type list'); 

fi; 
target-dim := nops(nilp_target wt); 
if Hops(nilp_source_wt)<>num_coords then 

ERROR('source dimension and list nilp_source_Wt incompatible'); 

fi; 

print(`using ordering induced by the nilpotent weights'); 

nilp_pt_ref := table(); nilp_vt_ref := table(); 
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else 
if nilp=true or nilp=false then 

print(`using default ordering'); 
else 

ERROR 
(`global variable 'nilp' must be set as 'true', 'false', or 'true-order'') 

fi; 

fi; 

# get degree (k) limits 
if nargs=2 then 

k2 args (21 

else 
k2 kl; 

fi; 

# create reference tables 
index-ref := table(); 
deg-ref := table(); 

get_ref_tables(k2, num_coords, indea_ref, deg_ref); 

# go through all required degrees (kl to k2) and output vectors 
for k from ki to k2 do 

print('monomial vectors of degree `. k); 
if nilp='true_order' then 

# use nilpotent filtration and corresponding jet-space 
level :=1; 

# run through all weights for the degree k monomials 
for weight from k to k*num_coords+target_dim-1 do 

# firstly create the nilpotent reference tables by ordering the 
# degree k monomials by their weight 

count :=0; 
for wt from k to k*source_dim do 

nilp_wt_ref[wt] := count; 
for deg from deg-ref[k] to deg_ref [k+1] -1 do 

if get_wt(index_ref[deg], num_coords, nilp_source_wt)= 

wt then 

nilp_pt_ref[count] := deg; 

count := count+1; 
fi; 

od; 

od; 
# store pointer to end of table 

nilp_wt_ref[k*source_dim+1] := count; 

# now print the terms at this level 

print('level: (`. k. `, `. level. `)`); 

for j from 1 to target-dim do 

weight+nilp_target_wt[j); 
if k<=" and "<=k*source_dim then 

for i from nilp_vt_ref ["] to nilp_wt_ref ["+1] -1 do 

print(convert( canonical_vector(j, getmonomial 
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od; 

(index_ref[nilp_pt_ref[i]]), 
target_dim), list)); 

fi; 

od; 
level := level+1; 

od; 

else 
# use standard ordering and jet-spaces 

for i from deg-ref[k] to deg_ref [k+1] -1 do 
for j from 1 to target-dim do 

print(convert( canonical_vector(j, getmonomial 
(indea_ref[i]), target_dim), list)); 

od; 

od; 
fi; 

print( `------------`)" 

od; 
# RETURN NULL 

NULL; 

end: 

# Prints a canonical basis for the tangent space as output by jetcalc (in 
# the matrix coeffarray). Vectors are represented as a sum, the constituent 
# monomial vectors and their coefficients being output for each vector. 
# If a (monomial vector) parameter is passed only tangent vectors containing 
# it as a term are output ( NB: parameter must be of type list ) 

# NB: the appropriate reference tables (whether for standard jet-spaces or 
# weighted jet-spaces) will have already been created by jetcalc or wtcalc 
# as appropriate, and stored as the common global variables gl-index-ref 
# and gl-deg-ref. These tables must be used below and allow the routine 
# to work for both cases without the need to re-calculate the reference 

# tables depending on the case in question. 

ptangent := proc() 
local i, j, ii, mon_term, print_flag; 

# check correct number of parameters 

if nargs<>O and nargs<>1 then 

ERROR(`wrong number of parameters passed`); 

fi; 

# check parameter of type list 

if nargs =1 and not type(args[1], list) then 

ERROR(`parameter must be of type 'list'`); 

fi; 

print(`*** basis for tangent space ***`); 

print(`vectors output as monomial terms and corresponding coefficients'); 

for i from 1 to basis-dim do 
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print-flag := true; 
if nargs =1 then 

# search for the monomial passed as a parameter (args[1]) as 
#a term in the tangent vector and print vector iff it is present 

print-flag := false; 

j :=1; 
while print-flag=false and j<=tgtstore-lim do 

# first check coefficent of term corresponding to j is zero 
if coeff _table(tgtspace, 

i, j)<>O then 

print-flag := true; 
# now see if monomial term corresponding to j is 
# equal to parameter passed to procedure 

mon_term := canonical_vector(coeffarray_ref[j][1], get_monomial 
(gl_indea_ref[coeff array_ref[j][2]]), target_dim); 

for ii from 1 to nops(args[1]) do 

if mon_term[ii] <>args [1] [ii] then 

print-flag := false; 

break; 

fi; 

od; 
fi; 

j := j+1; 

od; 
fi; 

if print-flag = true then 

# print vector 

print(`vector`. i); 

for j from 1 to tgtstore_lim do 

if coeff_table(tgtspace, i, j)<>O then 

print(coeff_table(tgtspace, i, j), convert(canonical_vector 
(coeff array_ref[j][1], get_monomial(gl_indea_ref 
[coeff array_ref[j][2]]), target_dim), list)); 

fi; 

od; 
fi; 

od; 
# RETURN NULL 

NULL; 

end: 

# prints-out the global variables 

pvars := proc() 

print('liealg = `. liealg); 

print('equiv = `. equiv); 

print('compltrans = `. compltrans); 

print(`source_dim = `. source dim); 

print(`source_power = '. source-power); 
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print ('target-power = '. target-power); 
print(`nilp = `. nilp); 
print(`R_nilp: `); 
print(R_nilp); 

print(`L_nilp: `); 

print(L_nilp); 
# RETURN NULL 

NULL; 

end: 

# Given a germ f, test whether it is k-A-determined using the determinacy 
# criterion 'm(n)-(k+1). E(n, p) contained in LG. f + m(n)-(2k+2). E(n, p)' (G a 
# unipotent subgroup of A) implies f is k-A-determined. 
# This is done by calculating successive complete transversals (from k+1 up to 
# 2k+1) and checking that they are empty. If the determinacy criterion fails 
# then output the first non-empty transversal. 

# If an optional third parameter r is passed then (provided it lies between 
# k+1 and 2k+1) the complete transversals are only checked up to degree r. 
# This provides an implementation of the `extended determinacy criterion': 
# 'm(n)"(k+l). E(n, p) contained in LG. f + m(n)-(k+1). f"(*)(m(p)). E(n, p) + 
# m(n)"(2k+2). E(n, p)' implies f is k-determined. 

Aclassify := proc(f, k) 

local i, r, kk; 

# set the limit degree r 

r := 2*k+1; 

if nargs=3 then 
if type (args[31 posint) and args[3]>=k+1 and args[3]<2*k+1 then 

r := args[3]; 

else 
ERROR(`third parameter must be a postive integer r; k+1 <= r< 2k+1`); 

fi; 

fi; 

# check tranversals from degree k+1 to degree r 

print('*** checking transversals up to degree `. r. ` 

for kk from k+1 to r do 

jetcalc(f, kk) ; 
# check transversal is empty 

for i from I to basis-count do 

if compbasis [i] [2] =true then 

# NB: the degree 'kk' will have been stored globally as 

# 'jetspace_deg' should the user need to refer to it 

print(f); 

print('the `. kk. ` tranversal is non-empty: '); 

pcomp(); 

print(`given determinacy condition failed'); 
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RETURN(NULL); 

fi; 

od; 

print('the `. kk. ` transversal is empty'); 
print(`--------------------`), 

od; 

# all tranversals empty: germ is k-A-determined 
print(f); 

print(`germ is `. k. `-A-determined`); 

# RETURN NULL 
NULL; 

end: 

# Uses criterion 'm(n)"(k+1). E(n, p) contained in LG. f + m(n)"(2k+2). E(n, p) 
# implies f is k-A-determined' (G a unipotent subgroup of A) to test for k 
# determinacy of the map-germ f. 
# If determinacy fails the offending terms are stored in the global 
# variable det_store and then output using the function pdetterms. 

# If an optional third parameter r is passed then (provided it lies between 

# k+1 and 2k+1) the jet-space used is of degree r instead of degree 2k+1. 

# This provides an implementation of the `extended determinacy criterion': 
# 'm(n)"(k+1). E(n, p) contained in LG. f + m(n)-(k+1). f-(*)(m(p)). E(n, p) + 

# m(n)"(2k+2). E(n, p)' implies f is k-determined. 

# NB: the index and degree reference tables have already been calculated by 

# jetcalc and stored as the globals gl_index_ref and gl_deg_ref. 

Adetermined := proc(f, k) 

local j, count, u, r; 

# set the limit degree r 

r := 2*k+1; 

if nargs=3 then 
if type(args[3], posint) and args[3]>=k+1 and args[3]<2*k+l then 

r := args [3] ; 

else 
ERROR('third parameter must be a postive integer r; k+1 <= r< 2k+1`); 

fi; 

fi; 

# calculate tangent space LG. f 

jetcalc(f, r); 

# check determinacy condition 

print('*** checking determinacy condition ***`); 
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# set up global table for storing any vectors which fail determinacy test 
det_store := table(); 

# see if the monomial vectors m(n)"(k+1). E(n, p) are in the tangent space 
print('number of vectors to check`, gl_deg_ref[r+1]*target 

_dim- gl_deg_ref[k+l]*target_dim); 

count :=1; 
for j from gl_deg_ref[k+1]*target_dim+1 to gl_deg_ref[r+1]*target_dim do 

# more user info ??? 
if 1< printlevel then 

lprint(`adetermined: checking vector`, j-gl_deg_ref[k+1]*target 
_dim); fi; 

u := canonical_vector(coeffarray_ref[j][1], get_monomial 
(gl_indea_ref[coeffarray_ref[j][2]]), target_dim); 

if not intangent(convert(u, list)) then 

det_store[count] := copy(u); 
count := count+1; 

fi; 

od; 
# store count as a global 

det_count := count; 

# RETURN the result 

print(f); 
if det_count=l then 

print(`germ is `. k. `-A-determined`); 

else 

print(`given determinacy condition failed, due to missing vectors: '); 

pdetterms(); 
fi; 

# now RETURN NULL 
NULL; 

end: 

B. 3 Liealg Routines 

# RIGHT-EQUIVALENCE SET-UP PROCEDURE 

# procedure to define standard Jacobian Lie algebra ( pseudo tgt. space ) 

# dimension of source manifold given by the global variable 'source_dim' 

stdjacobian := proc(f, target_dim, tgtspace) 

local i, j, coords_temp; 

# DEFINE COORDINATES (global variable, data type 'list') 

# denote coordinates as zl, z2,... xn, where n= source-dim 
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# first check all source coordinates are formal indeterminates, 
8 Ie. are unassigned as Maple expressions 

for i from 1 to source-dim do 
if assigned('x'. i) then 

ERROR('not all source coordinates are unassigned Maple names`); 
fi; 

od; 
coords_temp := array(1.. source_dim); 
for i from 1 to source-dim do 

coords_temp[i] ._ 
`a`. i; 

od; 
# now convert coords_temp to type list to form coords 

coords := convert(coords_temp, list); 

* DEFINE LIE ALGEBRA GENERATING SET (data type 'table') 

tgtspace := table(); 
for i from 1 to source-dim do 

for j from 1 to target-dim do 

tgtspace [i] [j] := diff (f [j] 
, coords [i]) ; 

od; 

od; 

# RETURN NULL 

NULL; 

end: 

# RIGHT-EQUIVALENCE SET-UP PROCEDURE 

# procedure to define Lie algebra tgt. to the cusp discriminant 

cusp := proc(f, target_dim, tgtspace) 

# DEFINE COORDINATES (global variable, data type 'list') 

if assigned(`ul`) or assigned('u2') then 

ERROR(`not all source coordinates are unassigned Maple names'); 

fi; 

coords :_ [ul, u2]; 

# DEFINE LIE ALGEBRA GENERATING SET (data type 'table') 

tgtspace := table(); 

tgtspace[1] [9*u2*diff(f [1] ul) - 2*u1-2*diff(f [1] , u2)] ; 

tgtspace [2] :_ [2*ul*diff (f [1] , u1) + 3*u2*diff (f [1] , u2)] ; 

# DEFINE WEIGHTS (global variables, data type 'list') 

source_vt :_ (2,31; 

target_vt ._ 101 ; 

# DEFINE NILPOTENT VECTORS (global variables, data type 'list') 

R_nilp :_[ [1,11 1; 
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L_nilp := [] ; 

# RETURN NULL 
NULL; 

end: 

B. 4 Subroutines 

* RETURNS the vector ( data type 'sparse array' ) of dimension 'n' 
ü whose ith component contains 'poly', all other entries being zero 

canonical-vector := proc(i, poly, n) 
local vector; 

vector := array(sparse, l.. n); 
vector[i] := poly; 

# RETURN 'vector' 

op(vector); 

end: 

# returns the coeff of a monomial ( specified via index ) 

# in the given ( multivariate ) polynomial 

get_coeff := proc(poly, index) 

local p, i; 

p := expand(poly); 
for i from 1 to num_coords do 

coeff (p, coords [i] , index [i]) ; 
p=... 

od; 

end: 

# returns the monomial with indices given by the table 'index' 

# the indeterminates are specified by global variable 'coords' 

get monomial := proc(index) 
local i, monomial; 

monomial :=1; 
for i from 1 to num_coords do 

monomial := monomial*coords[i]"index[i]; 

od; 
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end: 

# set up index and degree reference tables 
# index_ref() :a table of indices corresponding to our monomials 
# deg-ref[r] : where degree r indices begin in index 

_ref 
table 

#( indices go from deg 0 to deg k in 'num_indets' indeterminates ) 

get-ref-tables := proc(k, num_indets, index-ref, deg-ref) 
local count, deg, i, index; 

index table(); 

count :=0; 
for deg from 0 to k do 

deg-ref[deg] := count; 
# set up first index of degree 'deg', namely [0,..., 0, deg] 

for i from 1 to num_indets-1 do 
index [i] :=0; 

od; 
index[num_indets] deg; 

index-ref[count] copy(index); 
# increase index list by one starting with 'num_indets-1' index 
# 'increment' procedure returns false when no longer possible 

while increment(index, deg, num_indets) do 

count := count+1; 
index_ref[count] := copy(index); 

od; 
# move onto indices of the next degree 

count := count+l; 

od; 
# store pointer to end of table 

deg_ref[k+1): =count; 
# RETURN NULL 

NULL; 

end: 

# tries to increase the set of indices stored in table parameter 'index' 

# by one, starting from the n-i st. index ( nth index is predetermined 

# by 'homogenity' requirement ), subject to the total index degree 

# being <= deg. If this holds then TRUE is returned, otherwise FALSE 

increment := proc(index, deg, n) 

local i, j; 

# first try to increase n-1 st. index 

i := n-1; 

while i>O do 

index [i] := index[i]+i; 
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# if the sum of the indices exceeds the degree then try 
# to increase the next index along to the left instead 

if get_deg(index, n-i)>deg then 
for j from i to n-1 do 

index[j] :=0; 
od; 
i := i-1; 

else 
# increment worked ok so leave the while loop 

i ._ -1; 
fi; 

od; 
* i=0 means all indices of given degree obtained: return 'false' 

if i=0 then 

RETURN(false) ; 
fi; 

# otherwise set the nth component of the list appropriately 
# to give indices of the required degree and return 'true' 

index[n) := deg-get_deg(indea, n-1); 
true; 

end: 

# calculates the degree of the monomial with indices given by the table 

# a, in m indeterminates 

get-deg := proc(a, m) 
local i, sum; 

sum :=0; 
for i from 1 to m do 

sum sum+a 

od; 

sum; 

end: 

# RETURNS the minimum degree of all the non-zero components of the 

# polynomial vector 'p' C or 'k+l' if no components of degree <= k) 

# NB: MAPLE defines the degree of the zero polynomial to be 0, but we are 

# not interested in such cases and therefore ignore zero components. 

# Thus if 'p' is identically zero degree 'k+l' is RETURNED 

ldegree_vector := proc(p, k, n) 

local i, least; 

least := k+1; 

for i from 1 to n do 

if p[i]<>O then 
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# NB: for ldegree to return the total least degree the list 
# of variables must in fact be of data type 'set' 

ldegree(expand(p[i]), convert(coords, set)); 
if "<least then 

least 
._" 

fi; 

od; 

fi; 

# RETURN 'least' 
least; 

end: 

# multiply vector 'v' ( of dim 'n' ) by scalar 's' 

scalar_multn := proc(s, v, n) 
local i, v_copy; 

v_copy table(); 

v_copy copy(v); 
for i from 1 to n do 

v_copy[i] := s*v_copy[i]; 
od; 

# return v_copy 
op(v_copy); 

end: 

# Gets a particular monomial coefficient from a table of polynomial vectors. 

#M specifies a table of tangent vectors (polynomial vectors). 

# The global refence tables gl_indea_ref and coeffarray_ref defined in jetcalc 

# and wtcalc are required. 
# This function then obtains the component of the ith vector in M indicated 

# by the value of coeffarray_ref[j][1]. This component is a polynomial; the 

# coefficient of the monomial with index given by the value of 

# gl_index_ref[coeffarray-ref [j][2]] is then RETURNED. 

coeff_table := proc(M, i, j) 

M[i] [coeffarray_ref [j] [1] ]; 

normal (get_coeff (" 
, gl_index_ref [coeffarray_ref [j] [211)); 

# this coefficient is RETURNED 

end: 
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