
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Computational Methods for Computer Vision

Minimal Solvers and Convex Relaxations
Larsson, Viktor

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, V. (2018). Computational Methods for Computer Vision: Minimal Solvers and Convex Relaxations.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/cc1ae2a2-409d-414c-87e0-ec381d22649d

Computational Methods for
Computer Vision

Minimal Solvers and Convex Relaxations

Viktor Larsson

ACADEMIC THESIS

which, by due permission of the Faculty of Engineering at Lund University, will
be publicly defended on Friday 1st of June, 2018, at 13:15 in lecture hall MH:H,
Centre for Mathematical Sciences, Sölvegatan 18, Lund, for the degree of Doctor
of Philosophy in Engineering.

Faculty opponent

Dr. Hongdong Li, Australian National University, Australia.

Organization

Centre for Mathematical Sciences
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund

Author(s)
Viktor Larsson

Document name
DOCTORATE THESIS IN MATHEMATICAL SCIENCES

Date of issue
June 2018
Sponsoring organization

Supervisors
Carl Olsson, Fredrik Kahl, Fredrik Andersson

Title and subtitle

Computational Methods in Computer Vision: Minimal Solvers and Convex Relaxations
Abstract

Robust fitting of geometric models is a core problem in computer vision. The most common approach is to use a hypothesize-
and-test framework, such as RANSAC. In these frameworks the model is estimated from as few measurements as possible,
which minimizes the risk of selecting corrupted measurements. These estimation problems are called minimal problems, and
they can often be formulated as systems of polynomial equations. In this thesis we present new methods for building so-called
minimal solvers or polynomial solvers, which are specialized code for solving such systems. On several minimal problems we
improve on the state-of-the-art both with respect to numerical stability and execution time.
In many computer vision problems low rank matrices naturally occur. The rank can serve as a measure of model complexity and
typically a low rank is desired. Optimization problems containing rank penalties or constraints are in general difficult. Recently
convex relaxations, such as the nuclear norm, have been used to make these problems tractable. In this thesis we present new
convex relaxations for rank-based optimization which avoid drawbacks of previous approaches and provide tighter relaxations.
We evaluate our methods on a number of real and synthetic datasets and show state-of-the-art results.

Key words
computer vision, geometric vision, minimal solvers, convex relaxations, pose estimation
Classification system and/or index terms (if any)

Supplementary bibliographical information Language
English

ISSN and key title
1404-0034

ISBN
978-91-7753-695-6

Recipient’s notes Number of pages
xviii+250

Price

 Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2018-04-20

COMPUTATIONAL METHODS FOR

COMPUTER VISION

MINIMAL SOLVERS AND CONVEX RELAXATIONS

VIKTOR LARSSON

Faculty of Engineering
Centre for Mathematical Sciences

Mathematics

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

http://www.maths.lth.se/

Doctoral Theses in Mathematical Sciences 2018:4
ISSN 1404-0034

ISBN 978-91-7753-695-6 (print)
ISBN 978-91-7753-696-3 (electronic)
LUTFMA-1067-2018

c© Viktor Larsson, 2018

Printed in Sweden by MediaTryck, Lund 2018

Abstract

Robust fitting of geometric models is a core problem in computer vision. The
most common approach is to use a hypothesize-and-test framework, such as
RANSAC. In these frameworks the model is estimated from as few measurements
as possible, which minimizes the risk of selecting corrupted measurements. These
estimation problems are called minimal problems, and they can often be formu-
lated as systems of polynomial equations. In this thesis we present new methods
for building so-called minimal solvers or polynomial solvers, which are specialized
code for solving such systems. On several minimal problems we improve on the
state-of-the-art both with respect to numerical stability and execution time.

In many computer vision problems low rank matrices naturally occur. The
rank can serve as a measure of model complexity and typically a low rank is de-
sired. Optimization problems containing rank penalties or constraints are in gen-
eral difficult. Recently convex relaxations, such as the nuclear norm, have been
used to make these problems tractable. In this thesis we present new convex relax-
ations for rank-based optimization which avoid drawbacks of previous approaches
and provide tighter relaxations. We evaluate our methods on a number of real and
synthetic datasets and show state-of-the-art results.

v

Populärvetenskaplig sammanfattning

Datorseende är idag ett väldigt aktivt forskningsområde och dyker upp i populära
tillämpningar så som Virtual/Augmented Reality (VR/AR), självkörande bilar och
autonoma drönare.

Gemensamt för dessa är att man vill utvinna tredimensionell information från
tvådimensionella bilder. Detta kan t.ex. vara kamerans position och orientering,
eller avståndet till något objekt som förekommer i bilderna. Detta kräver matem-
atiska metoder och modeller. För att kunna vara användbara i verkligheten så
måste metoderna vara både effektiva och robusta mot fel i indata. Exempelvis så
är toleransen för fel väldig låg då en självkörande bil ska identifiera avstånd till
medtrafikanter. För VR/AR krävs att användarens position bestäms i realtid med
så lite fördröjning som möjligt, då även små fördröjningar kan leda till illamående
hos användaren.

I den här avhandlingen utvecklar vi metoder för att snabbt och robust kunna
lösa olika sorters geometriska estimeringsproblem, som t.ex. att bestämma kam-
erans position relativt en 3D-modell. Denna typ av problem kan ofta beskrivas
med system av polynomekvationer. Inom avhandlingsarbetet tar vi fram metoder
för att effektivt kunna lösa sådana system. Metoderna vi utvecklar är generella och
kan användas på många olika problem inom datorseende.

Idag bygger de flesta metoder för 3D-rekonstruktion på antagandet att världen
är statisk, d.v.s. att 3D-strukturen inte förändras mellan bilderna. Men i verk-
ligheten så förekommer också dynamiska scener, där föremålen i scenen deformeras
och rör sig både relativt kameran och varandra. Till skillnad från fallet då scenen
är statisk, så blir problemet väldigt svårt att modellera matematiskt då scenen är
dynamisk. Om man endast kräver att rekonstruktionen ska stämma överens med
bilderna så kommer det att finnas oändligt många lösningar. För att begränsa an-
talet lösningar så antar man att den sökta lösningen kommer från verkligheten och
är enkel i något avseende. Ett vanligt antagande är till exempel att 3D punkterna
ska röra sig i en jämn bana och inte hoppa omkring mellan bilderna. I den här
avhandlingen arbetar vi med antagandet att 3D punkterna ska ha låg rang. Rang
är ett matematiskt begrepp som mäter hur mycket beroende det finns i struk-
turen. En lösning med låg rang kommer att ha många punkter som rör sig på ett
liknande sätt. Inom avhandlingen undersöker vi dels olika sorters rang-modeller
och dels matematiska verktyg för att kunna hantera problemformuleringar där det
ingår rang-villkor.

vi

Preface

This thesis is based on the following papers:

Main papers:

• V. Larsson, K. Åström, M. Oskarsson, “Efficient Solvers for Minimal Prob-
lems by Syzygy-based Reduction”, Proc. Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, USA, 2017.

• V. Larsson, K. Åström, M. Oskarsson, “Polynomial Solvers for Saturated
Ideals”, Proc. International Conference on Computer Vision (ICCV), Venice,
Italy, 2017.

• V. Larsson, K. Åström, “Uncovering Symmetries in Polynomial Systems”,
Proc. European Conference on Computer Vision (ECCV), Amsterdam, Nether-
lands, 2016.

• V. Larsson, M. Oskarsson, K. Åström, A. Wallis, Z. Kukelova, T. Pajdla,
“Beyond Gröbner Bases: Basis Selection for Minimal Solvers”, Proc. Com-
puter Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018.

• V. Larsson, Z. Kukelova, Y. Zheng, “Making Minimal Solvers for Absolute
Pose Estimation Compact and Robust ”, Proc. International Conference on
Computer Vision (ICCV), Venice, Italy, 2017.

• V. Larsson, Z. Kukelova, Y. Zheng, “Camera Pose Estimation with Un-
known Principal Point”, In Proc. Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, USA, 2018.

vii

• V. Larsson, C. Olsson, E. Bylow, F. Kahl, “Rank Minimization with Struc-
tured Data Patterns”, Proc. European Conference on Computer Vision (ECCV),
Zürich, Switzerland, 2014.

• V. Larsson, C. Olsson, “Convex Envelopes for Low-rank Approximation”,
Proc. Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR), Hong Kong, China, 2015.

• V. Larsson, C. Olsson, “Convex Low Rank Approximation”, International
Journal of Computer Vision (IJCV), 2016.

• V. Larsson, C. Olsson, “Compact Matrix Factorization with Dependent
Subspaces”, Proc. Computer Vision and Pattern Recognition (CVPR), Hon-
olulu, USA, 2017.

Subsidiary papers:

• V. Larsson, C. Olsson, F. Kahl, “A Simple Method for Subspace Estima-
tion with Corrupted Columns”, Workshop on Robust Subspace Learning and
Computer Vision (RSL-CV), Santiago, Chilé, 2015.

• J. Fredriksson, V. Larsson, C. Olsson, “Practical Robust Two-view Trans-
lation Estimation”, Proc. Computer Vision and Pattern Recognition (CVPR),
Boston, USA, 2015.

• J. Fredriksson, V. Larsson, C. Olsson, F. Kahl, “Optimal Relative Pose with
Unknown Correspondences”, Proc. Computer Vision and Pattern Recogni-
tion (CVPR), Las Vegas, USA, 2016.

• V. Larsson, J. Fredriksson, C. Toft, F. Kahl, “Outlier Rejection for Absolute
Pose Estimation with Known Orientation”, Proc. British Machine Vision
Conference (BMVC), York, England, 2016.

• J. Fredriksson, V. Larsson, C. Olsson, O. Enqvist, F. Kahl, “Efficient Al-
gorithms for Robust Estimation of Relative Translation”, Image and Vision
Computing (IVC), 2016.

• J. Alvén, F. Kahl, M. Landgren, V. Larsson, J. Ulén, “Shape-aware Multi-
Atlas Segmentation”, Proc. International Conference on Pattern Recognition
(ICPR), Cancun, Mexico, 2016.

viii

• C. Olsson, M. Carlsson, F. Andersson, V. Larsson, “Non-Convex Rank/Sparsity
Regularization and Local Minima”, Proc. International Conference on Com-
puter Vision (ICCV), Venice, Italy, 2017.

• J. Pritts, Z. Kukelova, V. Larsson, O. Chum, “Radially-Distorted Conju-
gate Translations”, Proc. Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, USA, 2018.

ix

x

Acknowledgements

This thesis marks the end of a five year chapter of my life which I look back upon
fondly. For this I would like to thank all of my colleagues at the Centre for Math-
ematical Sciences, especially the members of the vision group. I want to give a
special thanks to my supervisors, Carl Olsson and Fredrik Kahl, for their guidance
and support, in both research related matters and otherwise. I also want to thank
Kalle Åström and Magnus Oskarsson for introducing me to the wonderful world
of minimal solvers, and for the many papers we wrote together. I am also grateful
to my other collaborators and coauthors, especially Johan Fredriksson, Yinqiang
Zheng, Zuzana Kukelova, Tomas Pajdla and James Pritts.

Finally, for their encouragement and for supporting me in all aspects of life, I
would like to thank my friends, my family and Rebecka Nyqvist.

This work has funded by the Swedish Research Council (grants no. 2012-4213
and 2012-4215), the Crafoord Foundation (grant no. 20150601), Strategic Re-
search Area ELLIIT and eSSENCE, Swedish Foundation for Strategic Research
project Semantic Mapping and Visual Navigation for Smart Robots (grant no. RIT15-
0038) and Wallenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP).

xi

xii

Contents

Preface vii

Acknowledgements xi

Introduction 1
1 Motivation . 1
2 Overview and Outline . 3
3 Geometric Computer Vision 9

3.1 Pinhole Cameras . 9
3.2 Affine Cameras . 11
3.3 Camera Resectioning 12
3.4 Epipolar Geometry 14

4 Low Rank Approximation . 17
5 Convex Analysis . 18

5.1 Fenchel Conjugacy 20
6 Polynomial Equation Systems and Algebraic Geometry 21

6.1 Monomial Orderings 22
6.2 The Division Algorithm and Gröbner Bases 24
6.3 Quotient Rings . 26
6.4 Saturation . 27
6.5 Syzygy Modules . 28

7 Solving Systems of Polynomial Equations 29
7.1 Resultants . 29
7.2 Univariate Polynomials 31
7.3 The Action Matrix Method 32
7.4 Finding Action Matrices 33

xiii

1 Building Polynomial Solvers 39
1.1 Introduction . 39

1.1.1 Related Work . 40
1.2 Finding Elimination Templates 43

1.2.1 Reducing the Expansion 44
1.3 Implementation Details . 48

1.3.1 Choosing Action Monomials 48
1.3.2 Removing Redundant Columns and Rows 48
1.3.3 Improving Numerics with Generalized Eigenvalue Prob-

lems . 49
1.4 Experimental Evaluation . 50

1.4.1 Evaluation of the Reduction Step 50
1.4.2 Numerical Accuracy of the Solvers 50
1.4.3 Three Views with Known Intrinsic Parameters and Ro-

tation Axis . 54
1.4.4 Projective Reconstruction from Nine Lines in Three Views 58

1.5 Conclusion . 62

2 Solvers for Saturated Ideals 63
2.1 Action Matrices in Saturated Ideals 64
2.2 Building Solvers with Saturation 66

2.2.1 Toy Example . 67
2.3 Saturations for Zero-dimensional Ideals 69
2.4 Applications with Saturated Ideals 72

2.4.1 Triangulation . 73
2.4.2 Time-of-Arrival Self-Calibration 78
2.4.3 Vanishing Point Estimation 80

2.5 Conclusions . 82

3 Exploiting Symmetries in Polynomials Systems 83
3.1 Related Work . 83
3.2 Symmetries in Minimal Problems 84

3.2.1 Solving Equation Systems with Symmetries 89
3.2.2 Implementation . 91

3.3 Unaligned Symmetries . 92
3.3.1 Finding Unaligned Symmetries in Practice 94

3.4 Application with Symmetries 95

xiv

3.4.1 Weak Perspective-n-Points 95
3.5 Conclusions . 100

4 Basis Selection for Minimal Problems 103
4.1 Related Work . 104
4.2 Exhaustive Search over Gröbner Bases 104

4.2.1 Gröbner Fans . 105
4.2.2 Building Minimal Solvers using Gröbner Fans 106

4.3 Beyond Gröbner Bases . 107
4.3.1 Random Sampling for Basis Selection 107
4.3.2 Checking Linear Independence 109
4.3.3 Building Minimal Solvers with Sampled Bases 109
4.3.4 Experiment: Heuristic vs. Uniform Sampling 110

4.4 Panoramic Stitching fλ+R+ fλ 112
4.4.1 Two View Image Stitching 112
4.4.2 Three View Image Stitching 113
4.4.3 Evaluation . 114

4.5 Relative Pose E + fλ . 115
4.5.1 Formulation of Kuang et al. 116
4.5.2 Formulation of Kukelova et al. 116
4.5.3 Our Approach . 117
4.5.4 Evaluation . 118

4.6 Conclusions . 119

5 Absolute Pose with Unknown Focal Length and Radial Distortion 121
5.1 Introduction . 121
5.2 Background and Previous Work 123

5.2.1 Unknown Radial Distortion and Focal Length 123
5.2.2 Minimal Solver from Josephson and Byröd 124
5.2.3 Minimal Solver from Bujnak et al. 125

5.3 Our Approach for P4PFR . 126
5.3.1 Removing Nullspace Degeneracy 126
5.3.2 New Camera Matrix Constraints 127
5.3.3 Removing Planar Degeneracy 128

5.4 Experimental Evaluation . 130
5.4.1 Numerical Stability 130
5.4.2 Noise Experiment . 130

xv

5.4.3 Stability Close to Degenerate Configurations 132
5.4.4 Evaluation on Real Images 135

5.5 Our Approach for P3.5PF . 135
5.5.1 Experiment . 137

5.6 Conclusions . 138

6 Absolute Pose with Unknown Focal Length and Principal Point 141
6.1 Unit Aspect Ratio and Zero Skew 142

6.1.1 Camera Matrix Constraints 143
6.1.2 New Camera Matrix Constraints 143
6.1.3 Building a Polynomial Solver - P4.5PFUV 144
6.1.4 Unknown Aspect Ratio - P5PFUVA 145
6.1.5 Implementation Details 145

6.2 Radial Distortion with Unknown Center 146
6.2.1 Seven Point Relaxation - P7PFRUV 146
6.2.2 Simplifying the Equations 147
6.2.3 Removing Symmetries 148
6.2.4 Recovering the Full Solutions 148

6.3 Experiments . 149
6.3.1 Stability . 150
6.3.2 Varying Noise . 150
6.3.3 Varying Principal Point 151
6.3.4 Varying Radial Distortion 152
6.3.5 Real Data . 153
6.3.6 Real Images with Radial Distortion 155

6.4 Conclusions . 156

7 Convex Relaxations for Low Rank Matrix Approximation 163
7.1 Introduction . 163

7.1.1 Related Work . 166
7.1.2 Notation . 168

7.2 Convexification . 169
7.2.1 The Conjugate Function 169
7.2.2 The Convex Envelope 170

7.3 Optimization and Performance Bounds 175
7.3.1 The Proximal Operator 178
7.3.2 Relationship between the Relaxations. 184

xvi

7.4 Single Matrix Applications . 186
7.4.1 Hankel Matrix Estimation 186
7.4.2 Smooth Linear Shape Basis Model 191

7.5 Applications with Multiple Matrices 192
7.5.1 Evaluation of the Convex Relaxation 194
7.5.2 Comparison to Non-Convex Methods 195
7.5.3 Linear Shape Basis with Missing Data 196
7.5.4 Affine Structure-from-Motion 199

7.6 Conclusions . 201
7.A Appendix . 201

7.A.1 The Sequence of Unconstrained Minimizers 201
7.A.2 Properties of Feasible Minimizers 202
7.A.3 Extension Outside the Blocks 205

8 Compact Matrix Factorization 207
8.1 Introduction . 207
8.2 A Dependent Subspace Model 210
8.3 Benefits of Dependent Models 212

8.3.1 Degrees of Freedom 212
8.3.2 Predicting Missing Data 213

8.4 Model Fitting . 217
8.4.1 Energy Formulation 218
8.4.2 Optimization . 219

8.5 Experiments . 219
8.5.1 Effects of the Trade-off Parameter λ 220
8.5.2 Occlusion and Tracking Failures 221
8.5.3 Quantitative Comparisons 223

8.6 Spatial Smoothness for Labeling 225
8.7 Conclusions . 228

xvii

xviii

Introduction

1 Motivation

In computer vision the goal is to extract information from images. This can be
information that pertains to the image at hand, e.g. if we want to count the num-
ber of cars in the image, or if we want to partition the pixels into the different
visible objects. In geometric computer vision we are instead interested in extract-
ing 3D information, that is to say something about the geometry of the actual
scene where the image was taken. From only a single viewpoint the 3D geometry
is ambiguous and it is therefore necessary to have multiple images from different
viewpoints. The most fundamental problem, called Structure-from-Motion, is to
determine both the 3D structure of the scene and the camera poses.

This thesis deals with two main topics from computer vision. The first topic
concerns robust fitting of geometric models. Most of the problems we consider
are related to camera pose estimation in different settings. Either we wish to
estimate the position and orientation of a camera relative to a known 3D model
(given 2D to 3D correspondences), or we wish to estimate the relative pose of
two or more cameras (given 2D to 2D correspondences). These two types of
camera pose estimation problems are used as building blocks for most modern
Structure-from-Motion frameworks [188, 189, 195, 194, 166].

Outlier correspondences (i.e. incorrect matches) make pose estimation diffi-
cult. Usually correspondences are found using only image data without regard
for the geometry, which makes outlier correspondences unavoidable. To solve
this problem, robust estimation methods such as Random Sample and Consensus
(RANSAC) [64] (or some of the many variations of this [212, 213, 39, 38]) are
typically used. The basic idea in RANSAC is to randomly select a small subset
of the data and estimate the model from this subset. The model is then vali-

1

Introduction

dated on the entire dataset. If the sample was outlier free, the model will typically
agree with a large subset of the dataset. This is then iterated and the best model
(i.e. the model which has the largest consensus set) is kept. This both identifies
potential outlier datapoints as well as provides a starting point for further local
optimization.

To minimize the risk of selecting any outliers in the random sample, we select
the minimal number of datapoints which allows us to estimate the model. These
estimation problems are called minimal problems. For example, if we wish to fit a
line, the problem is minimal with two points. If we only have a single point there
will be infinitely many lines passing through it. Similarly, if we have three points,
these will in general not lie on any line.

For many problems in geometric vision, the minimal problems reduce to solv-
ing systems of polynomial equations. To maximize the chance of selecting any
outlier-free samples in RANSAC, we want to run as many iterations as possible,
so we need to solve many instances of the same minimal problem. To make this
tractable, there is a need for efficient methods for solving these systems. Design-
ing specialized code for solving particular problems efficiently is the focus of the
first part of the thesis. These specialized methods are usually called minimal solvers
or polynomial solvers.

The second topic of this thesis concerns low rank models and low rank ap-
proximation. Low rank matrices occur naturally in many applications in com-
puter vision, e.g. Structure-from-Motion (affine [211], projective [155], non-
rigid [20, 72, 48] and articulated [228]), photometric stereo [17], optical flow
estimation [71], motion segmentation [228, 221] and many others. There are
also many applications outside of computer vision, e.g. linear system identifica-
tion [63, 8], recommender systems [112] and sensor network localization [196].
These examples have in common that there is some bilinear model which explains
the measurements (or at least the measurements are well-approximated with a bi-
linear model).

The rank of a matrix is the maximum number of linearly independent columns
(or rows), and in many applications the rank serves as a measure of the complexity
of the model. One such example is Non-Rigid Structure-from-Motion (NRSfM).
In regular Structure-from-Motion the rigidity (i.e. the assumption that the scene is
static) constrains both the structure (3D points) and the motion (camera positions
and orientations). In contrast, for NRSfM the 3D points are allowed to move
between each captured image, making the problem horribly under-constrained.

2

2. Overview and Outline

This is typically resolved by adding additional constraints that either the motion
or the structure should be simple in some sense. In their seminal work, Bregler et
al. [20] proposed to do this by adding additional rank constraints. The model
was that the 3D points in each frame could be explained by a linear combination
of some unknown basis shapes. In [20] they showed that the rank of the ma-
trix containing the 2D image coordinates is related to the number of basis shapes
needed.

In general, optimization problems containing rank-based penalties or con-
straints are very difficult. However in some special cases there are tractable algo-
rithms for finding the optimum. The classical result by Eckart and Young [53],
states that for a given matrix M the best rank r approximation (in any unitarily
invariant norm), i.e.

X? = arg min
X
‖X −M‖2 s. t. rank(X) ≤ r, (1)

is given by truncating the Singular Value Decomposition (SVD) ofM . The prob-
lem in (1) is a non-convex optimization problem and if we add more penalties or
constraints (even convex ones) the problem becomes much more difficult since
the SVD-based solution is no longer applicable. One recent approach is to re-
place the non-convex rank function with a convex surrogate. The most common
choice is the nuclear norm (or trace norm) [180, 37, 72, 175, 9], which is the
sum of the singular values. The drawback of this approach is that it penalizes all
singular values equally. Ideally we would like to avoid penalizing the first r sin-
gular values. One of the contributions of this thesis is a convex surrogate which
avoids this problem (see Chapter 7).

2 Overview and Outline

This thesis consists of three parts. The first part (Chapters 1-4) deals with the
construction of polynomial solvers for minimal problems. Different methods for
building faster and more stable polynomial solvers are presented. In the second
part (Chapters 5 and 6) we show two applications in pose estimation where we
apply the methods from the first part. Finally, the third part (Chapters 7 and 8)
concerns low rank models and their applications in computer vision.

Chapter 1. We present an automatic method for creating polynomial solvers
for minimal problems. The method is similar to that of Kukelova et al. [122], in

3

Introduction

that it only requires the user to specify the equations and then generates stand-
alone code for solving new instances. The main contribution is that we utilize the
Gröbner bases for both the ideal and the syzygy module of the generators when
creating the elimination template. The method is evaluated on a large number
of problems from geometric computer vision. The chapter is based on the paper
[134].

Chapter 2. We present a new method for incorporating saturation into poly-
nomial solvers. When saturation is needed to get a zero-dimensional ideal, the
typical approach in computer vision (e.g. [202, 116, 193, 32]) has been to first
compute generators for the saturated ideal as a pre-processing step, and then con-
struct an elimination template from these. In this chapter we instead propose to
lift the problem into the original ideal. This allows us to use a single elimination
template which can e.g. be constructed using the method presented in Chapter 1.
The chapter is based on the paper [135].

Chapter 3. We present an extension to the methods from Ask et al. [13] and
Kuang et al. [119] which exploits certain symmetries in polynomial systems to
make smaller elimination templates. For example, consider polynomial systems
where all monomials have an even degree. In this case for any solution x ∈ V
you also have that −x ∈ V is a solution. This was the type of symmetry studied
in [13, 119]. For these systems the action matrix can be chosen as block diagonal
with the blocks corresponding to the basis elements with either even or odd de-
gree. In [13, 119] it was then suggested to only consider a single of these blocks
when constructing the elimination template. In this chapter we provide a gener-
alization of this technique as well as show an application where this gives a large
reduction in elimination template size. The chapter is based on the paper [133].

Chapter 4. In this chapter we study the problem of selecting the monomial
basis in the action matrix method. The method in Chapter 1 uses the standard
monomials w.r.t. a GRevLex Gröbner basis. This is an arbitrary choice and in this
chapter we try to choose the basis to minimize the size of the elimination tem-
plate. However, there are infinitely many monomial basis for the quotient ring,

4

2. Overview and Outline

so it is not possible to perform any exhaustive search. Instead we consider two
different approaches. The first is to use the so-called Gröbner fans [165], which
allows us to enumerate all bases which are standard monomials to some Gröbner
basis. The second approach is a heuristic random sampling method. Interestingly,
we show several examples where we can find smaller templates compared to ones
built using Gröbner bases. The chapter is based on the paper [142].

Chapter 5. We consider the camera pose estimation problem with unknown
focal length and one parameter radial distortion (P4PFR). Given four 2D-3D
correspondences, xi = (ui, vi) ↔ Xi = (xi, yi, zi) , we wish to estimate the
camera pose (R, t), the focal length f and the distortion parameter k. Using the
one-parameter division model from Fitzgibbon [65] for the radial distortion, the
projection equations are then1

(
xi

1 + k ‖xi‖2

)
'

f f
1

 (RXi + t), (2)

This problem was originally solved by Josephsson and Byröd [102]. Later
Bujnak et al. [28] proposed an improved solver by consider the planar and non-
planar case separately. In this chapter we improve on the formulation of Bujnak
et al. [28] and propose a solver which handles both planar and non-planar data.
The chapter is based on the paper [137].

Chapter 6. In this chapter we consider the problem of pose estimation when
both the focal length and principal point are unknown. The principal point is
typically assumed to be centered in the image, but e.g. if the image is cropped
this might not be the case. The problem is similar to the P4PFR case from the
previous chapter, but instead of estimating the radial distortion parameter k, we
wish to estimate the principal point x0 = (u0, v0). We assume that the skew and
aspect ratio are known, and by changing coordinates we can w.l.o.g. assume zero

1Here ' denotes equality up to scale.

5

Introduction

skew and unit aspect ratio. In this setting the projection equations are(
xi − x0

1

)
'

f f
1

 (RXi + t). (3)

The camera having zero skew and unit aspect ratio poses polynomial constraints
on the first 3×3 part of the camera matrix which are well known (see Faugeras [60],
Heyden [88]),

P =

pT1 p14

pT2 p24

pT3 p34

 , det
[
p1, p2, p3

]
6= 0, (4)

(p1 × p3) · (p2 × p3) = 0, (5)

‖p1 × p3‖2 − ‖p2 × p3‖2 = 0. (6)

Computing the saturation of (5) and (6) w.r.t. (4) we were able to find addi-
tional polynomial constraints which allowed us to drop the non-zero determinant
constraint. Using the techniques presented in Chapter 1 we constructed polyno-
mial solvers for both known (P4.5PFUV) and unknown aspect ratio (P5PFUVA).
Finally, in this chapter we also considered the difficult case of both unknown
principal point and radial distortion. The difficulty comes from the fact that the
distortion is centered on the unknown principal point x0 = (u0, v0). In this case
the projection equations are(

xi − x0

1 + k ‖xi − x0‖2

)
'

f f
1

 (RXi + t). (7)

The problem is minimal with 5 points, however due to the extra non-linearity
we were not able to find any tractable formulation for this problem. Instead we
present a relaxed two-step solver which uses 7 point correspondences. The chap-
ter is based on the paper [138].

Chapter 7. In this chapter we look at convex relaxations for low rank approx-
imation. One common approach (see e.g. [180, 37, 72, 175, 9]) is to replace the
non-convex rank function with the convex nuclear norm

‖X‖∗ =

n∑
k=1

σk(X), (8)

6

2. Overview and Outline

which is simply the sum of the singular values. Similarly to how `1 regularization
is used for sparse regression [210], this in some sense promotes sparsity in the
singular values of X and thus also a low rank. Another motivation for using the
nuclear norm is that it is the convex envelope of the rank function on the unit ball,{
X ∈ Rm×n

∣∣ ‖X‖2 ≤ 1
}

. The restriction to the unit ball is necessary since the
convex envelope on the full domain is simply zero. In this chapter we instead
consider the convex envelope of the function

f(X) = g(rank(X)) + ‖X −X0‖2
F , (9)

where g : N → R ∪ {∞} is some penalty function. We show how to evaluate
both the convex envelope of f as well as the proximal operator which is necessary
for optimization. The chapter is based on the papers [136, 139, 140].

Chapter 8. In this chapter we present a variation on the traditional low rank
matrix factorization, where we add additional rank constraints on sub-matrices.
This results in a more compact factorization and we show in experiments that
this improves inference when we only have partial observations. We also show
in experiments that this model is well suited for tasks dealing with non-rigid and
multi-body point trajectories. The chapter is based on the paper [141].

Author Contributions

• V. Larsson, K. Åström, M. Oskarsson, “Efficient Solvers for Minimal Prob-
lems by Syzygy-based Reduction”, Proc. Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, USA, 2017.

MO had the original idea. Victor Ufnarovski suggested we consider syzygies.
VL implemented the automatic generator. MO implemented a majority of the
minimal cases for the experiments.

• V. Larsson, K. Åström, M. Oskarsson, “Polynomial Solvers for Saturated
Ideals”, Proc. International Conference on Computer Vision (ICCV), Venice,
Italy, 2017.

7

Introduction

VL had the original idea and developed the theory. MO and KÅ did most
of the work on the experiments.

• V. Larsson, K. Åström, “Uncovering Symmetries in Polynomial Systems”,
Proc. European Conference on Computer Vision (ECCV), Amsterdam, Nether-
lands, 2016.

VL noticed the symmetry in the WPnP problem. KÅ found the necessary change
of variables. VL and KÅ jointly developed the theory.

• V. Larsson, M. Oskarsson, K. Åström, A. Wallis, Z. Kukelova, T. Pajdla,
“Beyond Gröbner Bases: Basis Selection for Minimal Solvers”, Proc. Com-
puter Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018.

AW suggested considering different monomial orderings. TP suggested we con-
sider Gröbner Fans. VL, MO and KÅ developed the basis sampling. VL and
MO performed the experiments.

• V. Larsson, Z. Kukelova, Y. Zheng, “Making Minimal Solvers for Absolute
Pose Estimation Compact and Robust ”, Proc. International Conference on
Computer Vision (ICCV), Venice, Italy, 2017.

ZK found the new camera matrix constraints. VL, ZK and YZ jointly de-
veloped the new solvers and wrote the paper. ZK did most of the work for the
experiments with real images.

• V. Larsson, Z. Kukelova, Y. Zheng, “Camera Pose Estimation with Un-
known Principal Point”, In Proc. Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, USA, 2018.

ZK suggested we consider the unknown principal point problems. VL, ZK and
YZ jointly developed the no distortion solvers. VL developed the radial distor-
tion solvers. ZK did most of the work for the experiments with real images.

• V. Larsson, C. Olsson, E. Bylow, F. Kahl, “Rank Minimization with Struc-
tured Data Patterns”, Proc. European Conference on Computer Vision (ECCV),
Zürich, Switzerland, 2014.

8

3. Geometric Computer Vision

CO had the original idea. VL and CO developed most of the theory. EB
and FK helped perform the experiments and write the paper.

• V. Larsson, C. Olsson, “Convex Envelopes for Low-rank Approximation”,
Proc. Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR), Hong Kong, China, 2015.

VL and CO jointly developed the theory, performed the experiments and wrote
the paper.

• V. Larsson, C. Olsson, “Convex Low Rank Approximation”, International
Journal of Computer Vision (IJCV), 2016.

VL and CO jointly wrote the paper and performed the experiments.

• V. Larsson, C. Olsson, “Compact Matrix Factorization with Dependent
Subspaces”, Proc. Computer Vision and Pattern Recognition (CVPR), Hon-
olulu, USA, 2017.

VL and CO jointly developed the model. CO proposed the optimization scheme
and wrote the code. VL performed the experiments.

3 Geometric Computer Vision

In this section we give a very brief introduction to some basic concepts from
geometric computer vision. For more references and a more thorough exposition
of the material the reader is referred to the books by Hartley and Zisserman [81],
and Forsyth and Ponce [66].

3.1 Pinhole Cameras

The most common camera model in computer vision is by far the pinhole camera
[81]. In this model the projection rays intersect in a single point called the camera
center. The 2D projections are found by intersecting these rays with a plane,
which is called the image plane. See Figure 1.

Assume that the 3D coordinate system is chosen such that the camera center
lies at the origin and the viewing direction is along the z-axis with the image
plane at z = 1 (see Figure 1). The 2D projection x = (u, v)T of a 3D point

9

Introduction

(u, v, 1)

(x, y, z)

z

x

y

Figure 1: The pinhole camera model. The projection is formed by intersection the
image plane with the line going from the camera center to the 3D point.

X = (x, y, z)T is then found by intersecting the line from the origin to the 3D
point with the plane z = 1, i.e

x = (u, v) = (x/z, y/z)T . (10)

Let Π : R3 → R2 denote the (pinhole-)projection operator which divides by the
third coordinate, i.e. Π(x, y, z) = (x/z, y/z). Now (10) was assuming that the
camera was placed at the origin, viewing along the z-axis. To handle cameras in
general position and orientation, we pre-compose our projection with a change of
coordinate systems,

x = Π(RX + t), (11)

where R is a 3× 3 rotation matrix and t ∈ R3 is the translation. Using homoge-
neous coordinates the projection equations (11) can also be written as(

x
1

)
' [R t]

(
X
1

)
, (12)

The matrix P = [R t] is called the camera matrix and encodes the orientation
and position (called the extrinsic parameters) of the camera.

To be able to accurately represent real world cameras, we also need to model
the camera’s intrinsic parameters. These control the transformation taking us from

10

3. Geometric Computer Vision

the coordinate system of the image plane to the pixel coordinate system found in
the actual image. This is encoded in the 3×3 calibration matrix K which has the
following form,

K =

αf s u0

0 f v0

0 0 1

 . (13)

The full camera matrix, taking 3D point coordinates to pixel coordinates, is then
given by P = K[R t]. The intrinsic parameters in the calibration matrix are

• Focal length f .

• Skew s.

• Aspect ratio α.

• Principal point (u0, v0).

Typically for consumer cameras we have zero-skew (s = 0), unit aspect ratio
(α = 1) and the principal point centered in the image. In general any 3 × 4
matrix represents a projective camera and if the first 3 × 3 block is full rank it
can be decomposed as P = K[R t] using QR-factorization. Since the pinhole
projection Π : R3 → R2 is scale-invariant we typically only consider camera
matrices up to scale.

3.2 Affine Cameras

Affine cameras are a special case of pinhole cameras where the camera matrix has
the following form

P =

[
A t
0T 1

]
, A ∈ R2×3, t ∈ R2. (14)

Affine cameras have the nice property that the projections are especially simple.
The projection x ∈ R2 of a 3D pointX ∈ R3 becomes

x = Π

(
P

(
X
1

))
= Π

(
AX + t

1

)
= AX + t. (15)

11

Introduction

One interpretation of affine cameras is that the camera center is infinitely far away
so that the projection rays become parallel.

In [211] Tomasi and Kanade showed that if we have multiple affine cameras
viewing a scene, both the cameras and 3D points can be recovered using low rank
factorization (see Section 4). Let xfk ∈ R2 be the k:th 3D point seen in the f :th
image, i.e. xfk = AfXk + tf . The basic idea in [211] is that if we collect the
image points into a matrix M ∈ R2F×N it can factorized as follows,

M =

x11 . . . x1N
...

. . .
...

xF1 . . . xFN

 =

A1 t1
...

...
AF tF

[X1 . . . XN

1 . . . 1

]
. (16)

Thus we can recover both cameras and 3D points by finding a low rank factoriza-
tion of the matrix M . In this case we have rank(M) ≤ 4.

This was later extended by Bregler et al. [20] to the case of Non-Rigid Structure-
from-Motion. The assumption was then that the 3D points in each frame Xf ∈
R3×N could be written as a linear combination of some shape basisB1, B2, . . . , BK ∈
R3×N . The projections in each image are

xf · = Af

(
K∑
k=1

cfkBk

)
+ t1T ∈ R2×N . (17)

The matrix M containing the image coordinates can then be factorized as

M =

c11A1 c12A1 . . . c1KA1 t
c21A2 c22A2 . . . c2KA2 t

...
...

. . .
...

...
cF1AF cF2AF . . . cFKAF t

B1

B2
...
BK
1T

 . (18)

In this case the matrix M has rank(M) ≤ 3K + 1.

3.3 Camera Resectioning

Resectioning (or absolute pose estimation) is the problem of estimating the cam-
era parameters from given 2D-3D correspondences. Estimation from n points is
sometimes called the Perspective-n-Points problem (or PnP for short).

12

3. Geometric Computer Vision

Each 2D-3D correspondence, x = (u, v, 1)↔ X , in homogeneous coordi-
nates places two linearly independent constraints on the camera matrix P ,

x ' PX (19)

or equivalently,

uP3X − P1X = 0, and vP3X − P2X = 0, (20)

where Pk denotes the k:th row of the camera matrix. If we have at least 6 point
correspondences we can solve linearly for P from (20) in a least squares sense.
However, this does not minimize any meaningful reprojection error in the image.
Ideally we would like to instead solve the following optimization problem

min
P

∑
k

∥∥∥∥(uivi
)
−Π(PXi)

∥∥∥∥2

. (21)

This is a non-linear, non-convex optimization problem and is in general quite
difficult unless a good initial guess is known.

Minimal Problems

When we have the same number of degrees of freedom as we have constraints on
the camera matrix, we have a so-called minimal problem. In this case we are (in
general) able to find a camera pose where the projection equations are satisfied
exactly. There are different minimal problems depending on the how many addi-
tional constraints we add on the intrinsic parameters of the camera. Here we list
some common examples which have appeared in the computer vision literature:

• P6P/P5.5P – For uncalibrated cameras (i.e. no constraints on the intrinsic
parameters) we have 11 degrees of freedom (12 elements of P minus scale).
In this case we require at least 5.5 point correspondences. The half point
correspondence can be obtained by simply ignoring one of the coordinates
in the projection equations for one of the point correspondences. Since
there are no additional constraints on P we can linearly estimate it from
the projection equations (20). This is sometimes referred to as the Direct
Linear Transformation (DLT).

13

Introduction

• P3P – For completely calibrated cameras (known intrinsic parameters) the
remaining camera pose has 6 degrees of freedom (3 in the rotation and 3
in the translation), making it minimal with only 3 point correspondences.
There have been many proposed solvers for this problem, see e.g. [110, 70].

• P3.5PF/P4PF – If all intrinsic parameters are known except for the focal
length, the problem is instead minimal with 3.5 point correspondences.
There are both methods which use the minimal number of image points, by
ignoring a coordinate, see e.g. [227] (also end of Chapter 5), and methods
which use all four points but ignore some other constraints [26, 234].

• P4PFR – If we have four points we can also use the extra half point corre-
spondence to estimate a radial distortion parameter. This problem was first
solved by Josephsson and Byröd [102], and then later improved in Bujnak
et al. [28] and Larsson et al. [137] (Chapter 5).

• P4.5PFUV/P5PFUV – If we wish to estimate both the focal length f and
the principal point x = (u0, v0), the problem has 9 degrees of freedom
is minimal with 4.5 point correspondences. The first solver for this prob-
lem was presented by Triggs [214] which presented a non-minimal method
using all 5 point correspondences. In [138] (Chapter 6) a minimal solver
using 4.5 points is presented.

3.4 Epipolar Geometry

In the previous section the camera pose was relative to some coordinate system
fixed by the given 3D points. Now we instead consider the case where we only
have the images of two cameras viewing the same scene, and no 3D information
available. In this setting it is still possible to get information on the relative poses
of the cameras.

Assume that we have chosen our coordinate system such that the camera ma-
trices are P1 = [I 0] and P2 = [A t]. Let x be an image point in the first image
written in homogeneous coordinates, i.e. x = (u, v, 1)T . This point can be the
projection of any 3D point (in homogeneous coordinates) on the line

X(s) =

(
x
s

)
, s ∈ R. (22)

14

3. Geometric Computer Vision

x

X

x̂

`

Figure 2: Epipolar geometry. Each image point in the first image backprojects onto
a line in 3D, which in turn projects onto a 2D line in the second image.

In the second camera, this line projects onto the points P2X(s) = Ax + st.
These image points all lie on the line ` = t×Ax, which is called the epipolar line
corresponding to x. This is illustrated in Figure 2. Now if x̂ is the image point
in the second image corresponding to the same 3D point as x, it must lie on this
epipolar line, i.e. it must satisfy2

x̂T (t×Ax) = x̂T ([t]×A)x = x̂TFx = 0. (23)

This is called the epipolar constraint. The matrix F = [t]×A is called the funda-
mental matrix and it completely encodes the relative pose of the two cameras up
to a projective transformation of the world coordinate system. The matrix F is of
rank 2 and similarly to the camera matrices it is only determined up to scale. So
each pair of cameras, P1 = [I 0] and P2 = [A t], yields a fundamental matrix,
and conversely for each fundamental matrix we can extract a pair of cameras (or
rather a family of cameras) corresponding to this fundamental matrix.

For calibrated cameras we have that A is a rotation matrix, and the corre-
sponding object is the essential matrix E = [t]×R. The essential matrix en-
codes the calibrated relative pose up to an unknown similarity transform. In ad-
dition to the rank 2 constraint, the essential matrix is characterized by having two
equal singular values. Algebraically this can be ensured using the trace constraints
[197, 50, 157]

2EETE − tr
(
EET

)
E = 0. (24)

2[t]× denotes the 3× 3 skew-symmetric matrix corresponding to the cross product with t.

15

Introduction

Together with the constraint, det(E) = 0, this gives 10 equations of degree 3
in the elements of E. However it turns out that they only pose 3 independent
constraints. For each essential matrix there exist four different camera pairs (up
to similarity transforms) which are consistent with it.

Minimal Problems

The epipolar constraints (23) are linear in the elements of the fundamental matrix.
Since the fundamental matrix has 9 elements, but is only determined up to scale,
we can estimate it linearly from 8 or more point correspondences. This however
does not enforce the rank 2 constraint.

• F (7p) – Using 7 point correspondences we have a two dimensional nullspace
to the linear constraints in (23),

F = α1F1 + α2F2. (25)

Due the scale invariance we can fix α2 = 1. The rank constraint can be
enforced by setting det(F) = 0 which yields a cubic polynomial in α1.
(See e.g. [82]).

• E (5p) – The essential matrix has 5 degrees of freedom (3 rotation, 2 trans-
lation) so estimation becomes minimal using 5 point correspondences. In
addition to the determinant constraint we must also enforce the trace con-
straints (24). For essential matrix estimation there have been many pro-
posed solves, see e.g. [215, 170, 199, 147, 123].

In the computer vision literature there have been variations on these two prob-
lems, mostly dealing with partial calibration (e.g. unknown focal length), partial
knowledge of extrinsics (e.g. known vertical direction) or modeling other non-
linearities in the projections (e.g. radial distortion).

• E+f, f+E+f (6p) – If we assume unknown calibration matrices on the form
K = diag(f, f, 1) on either one or both of the cameras, the problem
becomes minimal with 6 point correspondences. See e.g. [200, 123, 129,
145] for different approaches to this problem.

If we also model radial distortion there are a few different cases we can consider.
We can have radial distortion on either one or both of the cameras, and the dis-
tortion parameter can either be shared or independent. Below are some references
for the various cases which have been considered in the computer vision literature.

16

4. Low Rank Approximation

Problem Points References

E+λ 6 Kuang et al. [118]
λ+E+λ 6 Kukelova et al. [126]
E+f+λ 7 Kuang et al. [118], Kukelova et al. [129], Larsson et al. [142]

λ+f+E+f+λ 7 Jiang et al. [99]
F+λ 8 Kuang et al. [118]

λ+F+λ 8 Kukelova et al. [130]
λ1+F+λ2 9 Kukelova et al. [126]

4 Low Rank Approximation

Definition 1. The rank of the matrix M is the maximum number of linearly inde-
pendent columns.

Proposition 2. Each rank r matrix X ∈ Rm×n can be factorized as

X = AB, (26)

where A ∈ Rm×r and B ∈ Rr×n.

The factorization into rectangular matrices in Proposition 2 is however not
unique, since for any invertible G ∈ Rr×r we have X = AB = (AG)(G−1B)
as another factorization.

Proposition 3. For each matrix X ∈ Rm×n there exist matrices

• U ∈ Rm×m orthogonal,

• V ∈ Rn×n orthogonal,

• S ∈ Rm×n diagonal with non-negative elements,

such that X = USV T .

This is called the Singular Value Decomposition (SVD) of M . The diagonal
elements of S, denoted by σi(X), are usually sorted in descending order,

σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(m,n)(X) ≥ 0. (27)

These are called the singular values of X .

17

Introduction

Proposition 4. The rank is equal to the number of non-zero singular values.

The following classical theorem by Eckart and Young [53] states that we can
find the best rank r approximation by truncating the singular values.

Theorem 5. The best rank r approximation of X ∈ Rm×n,

X? = arg min
Z
‖X − Z‖2

F s.t. rank(Z) ≤ r, (28)

can be found by replacing all except for the first r singular values by zero, i.e.

X? = U diag(σ1, . . . , σr, 0, . . . , 0)V T , (29)

where X = USV T is the SVD of X .

The following very useful inequality is due von Neumann [222, 161].

Theorem 6 (von Neuman’s trace inequality). Let A,B ∈ Rm×n then

| tr(ATB)| ≤
min(m,n)∑

i=1

σi(A)σi(B), (30)

with equality when A and B have SVD with the same U and V .

5 Convex Analysis

In this section we will list some basic facts and definitions from convex analysis
which will be used in the thesis. For proofs and more details we refer the reader
to Rockafellar [182] or Hiriart-Urrut and Lemaréchal [89].

Definition 7. The set C ⊂ Rn is called convex if for all x,y ∈ C and λ ∈ [0, 1]
we have

λx+ (1− λ)y ∈ C. (31)

So for any two points in the set, the line segment between them also belongs
to the set. Figure 3 shows some examples. The analogous definition for functions
follows.

18

5. Convex Analysis

Convex Convex Non-convex

Figure 3: Examples of convex and non-convex sets.

Convex Convex Non-convex

Figure 4: Examples of convex and non-convex functions.

Definition 8. The function f : Rn → R ∪ {∞} is called convex if for all x,y ∈
Rn and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (32)

In Figure 4 some examples of convex and non-convex functions are shown.
The relationship between convex functions and sets is given by the epigraph.

Definition 9. The epigraph of a function f is the set

epi f = {(x, u) ∈ Rn × R | f(x) ≤ u} (33)

An alternative definition of convexity is that the epigraph of the function is a
convex set.

Definition 10. The function f is closed if the epigraph is a closed set.

One of main attractions of convex function is the following property.

19

Introduction

−f ∗(y)
1

y

Figure 5: Geometrical interpretation of the conjugate function and the biconjugate
(the convex envelope).

Proposition 11. If f is a convex function, then any local minimizer of f is also a
global minimizer.

This makes optimization of convex functions much easier since we can infer
global optimality from local information.

5.1 Fenchel Conjugacy

For each function in this section we assume that there is an affine function min-
iorizing it.

Definition 12. The Fenchel conjugate of a function f is the function f∗ defined by

f∗(y) = sup
x
〈x,y〉 − f(x). (34)

Even if the function f is not convex, the function f∗ is always convex (as it
is the pointwise supremum of affine functions). To interpret the conjugate f∗

consider the following. If we fix y then

∀x f∗(y) ≥ 〈x,y〉 − f(x) ⇔ 〈x,y〉 − f∗(y) ≤ f(x). (35)

That is, the affine function given by h(x) = 〈x,y〉 − f∗(y) is majorized by the
function f . From the definition of f∗ we can also see that this gives us the largest
such affine function with the slope y. This is illustrated to the left in Figure 5.

Definition 13. The closed convex envelope of the function f , denoted by cof , is the
largest closed convex function which is majorized by f .

20

6. Polynomial Equation Systems and Algebraic Geometry

Since convexity is preserved by pointwise supremum, we can write this as

cof(x) = sup {g(x) | g ≤ f, g closed convex} . (36)

The following result allows us to express the convex envelope in terms of Fenchel
conjugates.

Proposition 14. The closed convex envelope is given by the biconjugate, i.e.

cof = (f∗)∗ = f∗∗. (37)

To gain some intuition why this is true, consider again the definition

f∗∗(x) = sup
y
〈x,y〉 − f∗(y). (38)

This is the pointwise supremum of all the supporting hyperplanes given by the
first conjugate f∗. This is illustrated to the right in Figure 5, which shows an
example of a one dimensional function (blue curve) and its envelope (black curve).
Notice that due to convexity the envelope does not have any local minima (apart
from the global ones).

6 Polynomial Equation Systems and Algebraic Geometry

We here give a brief overview of the topics from algebraic geometry which are
pertinent to the thesis. We only state the basic definitions and results, for more
complete statements and proofs, we recommend Cox et al. [44] and Cox et al.
[43].

Definition 15. A monomial is a finite product of variables and a polynomial is a
finite linear combination of monomials.

We denote the set of all polynomials with coefficients in the field K by K[X],
where X is short for X = (x1, x2, . . . , xn). Typically we just write X and let
the variables in X be decided from context. In the thesis we will only consider
K = C and K = Zp. However, many results hold in other fields as well.

Definition 16. The ideal I generated by the polynomials f1, . . . , fm ∈ K[X] is

I = 〈f1, . . . , fm〉 =

{
m∑
k=1

hkfk

∣∣∣ hk ∈ K[X]

}
(39)

21

Introduction

Definition 17. The affine variety V associated with the ideal I is

V (I) = {x ∈ Kn | f(x) = 0,∀f ∈ I} (40)

Figure 6 shows some example of affine varieties in C[x, y].

f1 = x2 + y2 − 2, f2 = y3−x−1/2, f3 = xy + 1/3

Figure 6: Three polynomials f1, f2 and f3 and the corresponding varieties. The last
figure shows their (real) intersections. The affine variety V (〈f1, f2〉) contains two
real points and is shown in black. The variety V (〈f1, f3〉) contains four points
shown in red. The variety V (〈f2, f3〉) contains only complex points. Finally,
V (〈f1, f2, f3〉) is empty since there are no intersections.

6.1 Monomial Orderings

To perform division with multivariate polynomials we need to order the monomi-
als. In the univariate case the degree gives us a natural ordering on the monomials,

1 < x < x2 < x3 < · · · < xn < (41)

However, for multivariate monomials things are not so easy. For example it is not
clear if xyz should come before xy2 or not. The following definition states the
minimum requirements we should place on any ordering we choose.

Definition 18. The relation < is a monomial ordering if

1. < is a total ordering on the monomials.

2. If f, g, α are monomials then f < g =⇒ αf < αg.

3. Every non-empty set of monomials has a smallest element under <.

22

6. Polynomial Equation Systems and Algebraic Geometry

Below we show some examples of common monomial orderings. These or-
derings depend on having some underlying ordering of the variables. Typically
we take this in alphabetical order, so x > y > z and so on, and similarly
x1 > x2 > x3 > · · · > xn. Unless otherwise stated this will be the assumption
for the rest of the thesis.

• Lexicographical ordering (Lex) – In Lex ordering we first compare the de-
gree of the largest variable in the monomials. If this is equal we then con-
sider the degrees of the second largest variable and so on.

• Graded Lex ordering (GLex) – In GLex we start by comparing the total
degree of the monomials. Ties are then broken using lexicographical order-
ing.

• Graded Reverse Lex (GRevLex) – In GRevLex we similarly to GLex first
compare the total degree of the monomials. However, ties are broken in a
slightly different and more confusing manner. To break ties in GRevLex,
we take the Lexicographical ordering with the variable order reversed, and
then take the opposite result.

Below are some monomials ordered in the different orderings.

Lex xz > x > y2 > z3

GLex z3 > xz > y2 > x
GRevLex z3 > y2 > xz > x

Definition 19. The leading term LT(p) of a polynomials p is the term containing
the largest monomial.

For example if we order monomials using Lexicographical order we have

LT(3x2 + 2y3 + 1) = 3x2, (42)

but in GRevLex we instead get

LT(3x2 + 2y3 + 1) = 2y3. (43)

23

Introduction

6.2 The Division Algorithm and Gröbner Bases

Similarly to the univariate case there exist a division algorithm for multivariate
polynomials.

Proposition 20. Let f ∈ K[X] and F = (f1, . . . , fm) ∈ K[X]m be an ordered
m-tuple of polynomials. Then there exist r, qi ∈ K[X] such that

f = q1f1 + · · ·+ qmfm + r, (44)

where either r = 0 or no monomials in r are divisible by any LT(fi).

The division algorithm for multiple multivariate polynomials is shown below.

Algorithm 1: Division Algorithm

Input: f , F = (f1, . . . , fm)
Output: r, q1, . . . , qm
r := q1 := · · · := qm := 0;
while f 6= 0 do

for i = 1, 2, . . . ,m do
if LT(fi) divides LT(f) then

qi := qi + LT(f)
LT(fi)

;

f := f − LT(f)
LT(fi)

fi;
goto start of while;

end
end
r := r + LT(f);
f := f − LT(f);

end

Unlike in the univariate case, the remainder is not unique and depends on
the order in which the polynomials are listed in the m-tuple F (and of course the
monomial ordering used). This is illustrated in the following example.

Example 21. Let f = x2 + x and consider division with f1 = x2 + y and
f2 = x2 +y2−1. Dividing with (f1, f2) yields the remainder x−y while dividing
with (f2, f1) gives the remainder x− y2 + 1.

Definition 22. For an ideal I ⊂ K[X], the set of polynomialsG = {g1, . . . , gm} ⊂
I is a Gröbner basis if for any f ∈ I we have that LT(f) is divisible by some LT(gi).

24

6. Polynomial Equation Systems and Algebraic Geometry

It can be easily shown that any Gröbner basis also generates the ideal, i.e.
I = 〈g1, . . . , gm〉. Note again that this definition also depends on the monomial
ordering used.

Proposition 23. If G = {g1, . . . , gm} is a Gröbner basis then the remainder is
unique when performing division with G regardless of the order in which the gi are
listed.

Example 24. Consider again f1 and f2 from Example 21. These polynomials are
not a Gröbner basis for the ideal I = 〈f1, f2〉. However, it can be verified that{

g1 = f1 = x2 + y

g2 = f2 − f1 = y2 − y − 1,
(45)

is a Gröbner basis for I w.r.t. GRevLex. Now dividing f = x2 + x with either
(g1, g2) or (g2, g1) yields the remainder x− y.

Definition 25. For a Gröbner basis G = {g1, . . . , gm}, the standard monomials
are the monomials of K[X] which are not divisible by any LT(gi).

The uniqueness of the remainder allows us to make the following definition.

Definition 26. For a Gröbner basis G we define the normal form of f ∈ K[X]

w.r.t. to G, denoted by f
G

, as the unique remainder after division with G, i.e.

f = q1g1 + . . . qmgm + r =⇒ f
G

= r. (46)

From the division algorithm we can see that the normal form f
G

is always a
linear combination of the standard monomials.

Definition 27. Gröbner basis G = {g1, . . . , gm} is reduced if each gi satisfies

• The coefficient for LT(gi) is one.

• No monomial in gi is divisible by any of the leading terms in G \ {gi}.

If we fix the monomial ordering, each non-empty ideal has a unique reduced
Gröbner basis. In the rest of the thesis when we speak of Gröbner basis for an
ideal we usually mean the reduced Gröbner basis.

25

Introduction

6.3 Quotient Rings

Definition 28. The quotient ring K[X]/I associated with the ideal I is the set of
equivalence classes induced by the following relation,

a ∼ b ⇐⇒ a ≡ b mod I ⇐⇒ a− b ∈ I. (47)

For p ∈ K[X] we denote the class p belongs to as [p], i.e.

[p] = {q ∈ K[X] | p− q ∈ I} . (48)

The structure of the quotient ring K[X]/I is closely connected to the affine
variety V (I) and is a key building block in the action matrix method (Sec-
tion 7.3). Some of the properties of K[X]/I are summarized in the following
proposition.

Proposition 29. Let I ⊂ K[X] be an ideal with Gröbner basis G, then the quotient
ring K[X]/I has the following properties:

1. The quotient ring K[X]/I is a K-vector space.

2. The standard monomials (w.r.t. G) forms a (linear) basis for K[X]/I .

3. If dim(V (I)) = 0 then dim(K[X]/I) is an upper bound for the number of
solutions (i.e. distinct points in V (I)).

Example 30. Consider the ideal I = 〈g1, g2〉 ⊂ C[x, y] where

g1 = x3 − 1, g2 = y2 + x+ 2. (49)

Together the polynomials g1 and g2 forms a (reduced) Gröbner basis for I using
GRevLex. The standard monomials w.r.t. G are the monomials not divisible by any
of the leading terms (which in this case are x3 and y2), i.e.

{1, x, y, x2, xy, x2y}. (50)

From this we can conclude that the dimension of the quotient ring C[x, y]/I is six
and that there are at most six complex solutions to the system,{

g1(x, y) = 0,

g2(x, y) = 0.
(51)

The standard monomials and LT(gi) are illustrated in Figure 7.

26

6. Polynomial Equation Systems and Algebraic Geometry

0 1 2 3 4

0

1

2

3

x

y

Standard monomials

LT(gi)

Divisible by LT(gi).

Figure 7: Monomials from Example 30. Each point (i, j) corresponds to the mono-
mial xiyj .

6.4 Saturation

Sometimes we have systems which contain uninteresting or otherwise unwanted
solutions. These can come from simplifications made during modeling, but can
also be inherent to the original problem. Saturation provides a way to essentially
factor these out of the ideal. One approach for integrating saturation into minimal
solvers is presented in Chapter 2.

Definition 31. The saturation of an ideal I ⊂ K[X] w.r.t. the polynomial fs ∈
K[X] is defined as3

Sat(I, fs) =
{
p | ∃N ≥ 0, fNs p ∈ I

}
. (52)

In other words, the saturated ideal consists of all polynomials such that when
we multiply them with fs sufficiently many times, we end up in the ideal I . The
saturation allows us to essentially remove solutions which satisfy fs(x) = 0 from
the affine variety V (I). This is made formal in the following proposition.

Proposition 32. If the field K is algebraically closed, the affine variety associated
with the saturated ideal Sat(I, fs) satisfies

V (Sat(I, fs)) = V (I) \ V (〈fs〉), (53)

3Note that while we only saturate with a single polynomial fs ∈ K[X] here, the saturation can
also be defined w.r.t. a polynomial ideal.

27

Introduction

where the closure is taken in the Zariski topology (see [43]).

A another approach for removing unwanted solutions is the so-called Rabi-
nowitsch trick, where an additional variable x0 is added alongside the new equation

1− x0fs(x) = 0. (54)

This will remove any solution where fs(x) = 0. However we will show examples
in the Chapter 2 where this approach leads to much larger polynomial solvers
compared to working directly with the saturated ideal.

6.5 Syzygy Modules

Definition 33. Let f ∈ K[X]m, then the (first) syzygy module of f is

Syz(f) = Syz(f1, . . . , fm) =

{
s ∈ K[X]m

∣∣∣∣ m∑
k=1

skfk = 0

}
. (55)

The syzygy module encodes the ambiguity in representing polynomials in
terms of the polynomials f1, . . . , fm, i.e. for any p ∈ I we have

p =
m∑
k=1

hkfk =
m∑
k=1

(hk + sk)fk, ∀s ∈ Syz(f1, . . . , fm) (56)

We can think of the syzygy module as analogous to the nullspace in linear equa-
tions, but for combinations with polynomial coefficients.

Definition 34. The monomials in K[X]m have the form mei where m is a mono-
mial in K[X] and ei is the m-tuple with 1 at the i:th position and zeros elsewhere.

For each monomial ordering < on K[X] we can create the following two
monomial orderings in K[X]m, where we either first compare the monomial in
K[X], or the position in the tuple.

• Term-Over-Position (TOP) – We have that m1ei < m2ej if m1 < m2 or
if m1 = m2 and i < j.

• Position-Over-Term (POT) – We have that m1ei < m2ej if i < j or if
i = j and m1 < m2.

28

7. Solving Systems of Polynomial Equations

Once the monomial orderings are fixed, the division algorithm extends naturally
to K[X]m and similarly we can also define Gröbner bases.

Example 35. The tuple (2x2 + y, x− 3y) ∈ C[x, y]2 contains the monomials

(y, 0) < (0, y) < (0, x) < (x2, 0). (57)

where the ordering is from GRevLex-TOP.

7 Solving Systems of Polynomial Equations

Methods for solving systems of multivariate polynomials can in general be divided
into two categories, iterative methods and algebraic methods.

The most basic iterative approaches are the root refinement methods, such
as Newton’s method, which aim to locally improve some solution guess. There
are also variants with higher order of convergence, see e.g. [224, 90]. While
these can converge very quickly they rely on good initialization. Another type
of iterative approach are the homotopy continuation methods [148, 219]. In
these methods the idea is to start with a simplified equation system which is then
slowly perturbed into the equation system that we wish to solve. The solutions
for the simplified system can then be tracked as they approach the solutions for
the original system. Popular implementations are PHCpack [220] and HOM4PS
[143]. One example where these have been used in computer vision is found in
[184], where Salzmann used homotopy continuation methods for solving some
sub-problems in an ADMM [18] optimization framework. However, for many
problems in geometric computer vision these methods are too slow to be useful
in practice.

For the algebraic methods there are two main approaches; resultants and
methods based on Gröbner bases. In both these approaches the goal is typically
to convert the problem into an eigenvalue problem (either using action matrices
or reducing it to a univariate polynomial). The eigenvalue problem can then be
solved using numerical methods.

7.1 Resultants

The classical resultant (sometimes called Sylvester resultant) gives a polynomial
constraint on the coefficients of two univariate polynomials which is satisfied

29

Introduction

whenever they have a a shared root. For the two univariate polynomials,{
f(x) = arx

r + · · ·+ a1x+ a0,

g(x) = bsx
s + · · ·+ b1x+ b0,

(58)

the resultant is the determinant of the (r + s)× (r + s) matrix as follows,

Res(f, g) = det

ar · · · · · · · · · a0
. . .

. . .
ar · · · · · · · · · a0

bs · · · · · · b0
. . .

. . .
. . .

. . .
bs · · · · · · b0

. (59)

The two polynomials f and g share a root exactly when Res(f, g) = 0.
If we have two polynomials in two unknowns, the resultant can be used to

eliminate one of the variables by simply considering it as part of the coefficients.
This is sometimes referred to as the hidden variable trick.

Example 36. Let f(x, y) = x2 + xy+ y2− 1 and g(x, y) = x+ y− 1. Hiding
the variable x and constructing the resultants for f(y) and g(y) yields

Resy(f, g) = det

1 x x2 − 1
1 x− 1 0
0 1 x− 1

 = x2 − x = 0. (60)

Thus either x = 0 or x = 1. The two solutions (1, 0) and (0, 1) can then be found
by back-substitution.

Although it is possible to repeat this construction for more than two polyno-
mials to eliminate multiple unknowns, the degree of the polynomials grows very
quickly and spurious solutions are often introduced.

Macaulay [154] introduced a generalization of the resultant for multivariate
polynomials and showed that it can be written as a quotient of determinants.
There are other formulations of multivariate resultants such as Bezout resultants
[55] and the Dixon resultants [105]. Using these multivariate resultants there are
then different approaches for solving systems of polynomial equations.

In computer vision resultant-based methods have been used to solve some
minimal problems, see e.g. [146, 145, 147, 214, 176]. However, as shown in

30

7. Solving Systems of Polynomial Equations

[171], these resultants sometimes suffer from poor numerical conditioning. In
[124] Kukelova et al. presented a resultant-based method for converting the equa-
tion systems into polynomial eigenvalue problems [15]. This was recently ex-
tended by Heikkila [86] using techniques for constructing sparse resultants [205,
56]. For more details on resultants, resultant-based methods and how they have
been used in computer vision see [177, 120].

While resultant-based methods work very well for some problem, the most
common approach in geometric computer vision for solving systems of polyno-
mial equations is based on Gröbner bases and action matrices. These are described
in more detail in the remainder of this chapter.

7.2 Univariate Polynomials

We start by looking at the univariate case. Consider the polynomial

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ C[x]. (61)

For this polynomial we can create the corresponding companion matrix4

Cp =

−an−1 −an−2 . . . −a0

1
1

. . .
1

 . (62)

This matrix has the polynomial p as its characteristic polynomial, i.e. the eigen-
values to Cp are exactly the roots of the polynomial p. So to solve the equation

p(x) = 0, (63)

we can compute the eigenvalues of the matrix Cp. This offers an attractive option
for root finding since there are good numerical methods for computing eigenval-
ues.

One interpretation of the matrix Cp comes from considering the quotient
ring associated with the principal ideal 〈p〉. The quotient ring C[X]/〈p〉 is an n
dimensional vector space over C with the monomials

b = {xn−1, . . . , x2, x, 1} (64)

4In some literature this is the transpose of the companion matrix, possibly with some permuta-
tion of the rows and columns.

31

Introduction

as a basis. The matrix Cp then describes how the basis elements in b are mapped
in C[X]/〈p〉 when we multiply with x,

x

xn−1

xn−2

...
x
1

 =

−an−1 −an−2 . . . −a0

1
1

. . .
1

xn−1

xn−2

...
x
1

 mod p(x). (65)

The first row is simply that in C[X]/〈p〉 we have

[xn] = [xn − p(x)] = [−an−1x
n−1 − an−2x

n−2 · · · − a1x− a0], (66)

while the remaining rows encode the trivial equations [x · xk] = [xk+1], where
the basis elements are mapped to each other. In the next section the action matrix
method is presented, which generalizes this idea to the multivariate case.

7.3 The Action Matrix Method

In this section we give a brief overview of the action matrix method (sometimes
called eigenvalue method [44]) for finding the roots of systems of multivariate
polynomials. Similarly to the companion matrix method, the main idea is to
transform the system into an equivalent eigenvalue problem, for which there ex-
ist good numerical methods. For a more thorough review of the action matrix
method and how it has been applied in computer vision we recommend [163],
[122] and [34].

Assume that we have some set of multivariate polynomials,

{f1, f2, . . . , fm} ⊂ K[X], (67)

and we seek to find their shared zeros. We let I = 〈f1, . . . , fm〉 and consider the
operator Tα : K[X]/I → K[X]/I which multiplies an element of the quotient
ring with the fixed monomial5 α ∈ K[X], i.e.

Tα [p(x)] = [α(x)p(x)] , p ∈ K[X]. (68)

5For simplicity we take α as a monomial but the method also works for a general polynomial.

32

7. Solving Systems of Polynomial Equations

The operator Tα is a linear map and thus if we choose a (linear) basis

b = {b1, b2, . . . , bK} (69)

for the quotient ring K[X]/I , we can express Tα with a matrix, i.e.

α

b1

b2
...

bK−1

bK

 =

m11 m12 . . . m1K

m21
. . .

...
...

. . .
...

mK1 mKK

b1

b2
...

bK−1

bK

 mod I (70)

or equivalently

[αbi] =
[∑

jmijbj

]
i = 1, 2, . . . ,K ⇔ [αb] = [Mb] . (71)

The matrix M = (mij) ∈ KK×K is called the action matrix and is analogous to
the companion matrix Cp in (65) in the univariate case. The polynomial α which
we multiply with is called the action polynomial. Note that since b is a linear basis
for K[X]/I the matrix M is uniquely determined.

Now similarly to the companion matrix, the eigenvalues of the matrix M is
given by α evaluated at the solutions. To see this consider that for each solution
x ∈ V we must have Mb(x) = α(x)b(x), since Mb− αb ∈ I belongs to the
ideal which vanishes on V . Thus if we evaluate α and b at the solutions we get
eigenvalues and eigenvectors for the matrix M .

Note that we get one action matrix for each choice of α. However, typically
it is sufficient to only consider a single action matrix, since it is often possible to
recover the complete solutions either from the eigenvectors (which contains the
monomials in b evaluated at the solutions) or by performing back-substitution in
the original equations.

7.4 Finding Action Matrices

In the previous section we saw that once we have our action matrix it is possible
to recover the solutions. In this section we focus on the problem of finding the
action matrix. For the univariate case, the action matrix is easily obtained in the
form of the companion matrix. However, for multivariate polynomials it requires
a little bit more work.

33

Introduction

We again let I = 〈f1, . . . , fm〉 and assume that we have chosen the action
polynomial α ∈ K[X]. Let mij denote the elements of the action matrix M ,
which satisfy

αbi −
K∑
j=1

mijbj = 0 mod I i = 1, 2, . . . ,K, (72)

for our choice of basis b = {b1, b2, . . . , bK}.
We first note that if we have a Gröbner basis G = {g1, . . . , g`} for the ideal

and choose the monomial basis b to be the standard monomials, then the action
matrix can found by simply dividing αbi with the Gröbner basis,

αbi
G

=

K∑
j=1

mijbj i = 1, 2, . . . ,K (73)

since the remainders are spanned by the standard monomials.
We can use the Gröbner basis even if we choose some other basis b̂ for

K[X]/I . Assume that b are the standard monomials and M the action matrix
w.r.t. b. Then of course since K[X]/I is a vector space, the action matrix M̂ w.r.t
the basis b̂ can be obtained by a performing a simple change of basis. This basis
change can be found by again dividing each b̂i with the Gröbner basis, i.e. if

b̂i
G

=

K∑
j=1

sijbj i = 1, 2, . . . ,K =⇒ [b̂] = [Sb] (74)

then

[αb] = [Mb] ⇔ [αb̂] = [αSb] =
[
(SMS−1)b̂

]
(75)

where we can see that M̂ = SMS−1 is the action matrix in the basis b̂.
One approach for computing the action matrix is to first compute a Gröbner

basis for the ideal and then perform the required divisions. Given the generators
of the ideal, a Gröbner basis can be computed using standard algorithms such as
the Buchberger algorithm [24, 43]. However, in the polynomial solvers used in
computer vision this is rarely the case for two reasons:

34

7. Solving Systems of Polynomial Equations

• Generic algorithms for computing Gröbner bases require some stopping
criterion for knowing when the complete basis is computed, i.e. when all
polynomials in the ideal reduce to zero. This is difficult for two reasons.
Firstly, due to accumulated round-off error from using floating point arith-
metic it can be difficult to determine if a polynomial is actually zero. Sec-
ondly, the coefficients in the polynomial systems are often computed from
measurements in the images and there needs to be robustness to small er-
rors in these. Even disregarding round-off error there will in some cases not
be any exact solution to the system.

• For many applications runtime is very important. Often we need to solve
many instances of the same problem very quickly. Thus we want to encode
as much of the structure of the problem as possible into our specialized
solvers, so that only things which are specific to the specific instance need
to be computed at runtime.

Furthermore, it is not always necessary to find the complete Gröbner basis. Con-
sider the example in Figure 7 on page 27. If we have the action α = x we will
simply shift the monomials to the right in the figure when we multiply with α. In
this case it turns our that we only need to divide with g1 which has LT(g1) = x3

to form the action matrix corresponding to x.
The most common approach in computer vision literature (see Table 1.1 in

Chapter 1 and the references therein) for finding the action matrices is to use a
so-called elimination template which avoids explicit computation of the Gröbner
basis and tries to directly encode the eliminations necessary for finding the action
matrix.

Elimination Templates

The basic idea with elimination templates is that we don’t necessarily need to di-
vide with a Gröbner basis to find the action matrix. Any sequence of eliminations
which allows to express each [αbi] in terms of the basis [b1], [b2], . . . , [bk] will
give us the action matrix. Expressing [αbi] in the basis is equivalent to finding
polynomials pi in the ideal which are on the form,

pi = αbi −
K∑
j=1

mijbj ∈ I. (76)

35

Introduction

Note that since the action matrices are unique once the basis is chosen, it is suffi-
cient to find any polynomial in the ideal which have the correct monomials (i.e.
only αbi and {b1, . . . , bK}). To find these polynomials we create an expanded
set of equations by multiplying each fj with some monomials. To goal is to mul-
tiply with sufficiently many monomials such that we can express the polynomials
in (76) as linear combinations of the expanded set, i.e. it is possible to linearly
eliminate all of the monomials except for those in (76).

To do this in practice (see e.g. [34, 120] more details) we write the expanded
set of equations as CX = 0, where the matrix C is called the elimination template
andX is a vector of all the monomials occurring in the equations. By reordering
the monomials we can rewrite this as

CX =
[
CE CR CB

] e
αb
b

 = 0, (77)

where we have grouped the monomials into excessive monomials e, reducible
monomials αb and basis monomials b. The excessive monomials are the mono-
mials which we seek to eliminate, since they are not part of the target polynomials
pi. Note that here the monomials does not need to be ordered according to any
monomial ordering.

Now we perform Gaussian elimination on (77) until we have eliminated all
of the excessive monomials and get the following form on the lower part,

[
0 I −M

] e
αb
b

 = 0, (78)

from which we can extract the action matrix M . Note that in most cases some
reducible monomials (i.e. αbi) are directly available in the basis monomials, i.e.
typically there will be some i and j such that αbi = bj . It is not necessary to
solve for these in the elimination template (these correspond to the trivial rows in
M containing only zeros and ones). So with some abuse of notation, we let αb
in (77) and (78) denote the reducible monomials which are not in the basis and
similarly for the corresponding rows in M .

One of the difficulties in constructing polynomial solvers is how to create the
elimination template, i.e. choosing which monomials to multiply the equations
with to generate the expanded set of equations (77). Since each extra equation

36

7. Solving Systems of Polynomial Equations

corresponds to a row in the elimination template you typically want to find the
smallest set possible which allow you to encode the necessary eliminations. In
practice having a smaller elimination template does not only yield faster runtimes
but often also better stability. Finding these small elimination templates is the
focus of Chapter 1.

In this section we only considered using a single elimination template which
finds all of the necessary polynomials by performing a single Gaussian elimina-
tion. However, it is also possible to use a sequence of elimination templates (see
[120, 130]) and perform the eliminations in steps, similarly to how the reduc-
tions are done in the F4 algorithm [61]. It was noted in [120] that this approach
sometimes yields faster solvers, however the numerical accuracy is often worse
compared to using a single template.

We close this chapter with a small example.

Example 37. Consider the following equation system,{
f1 = x2 + y2 − 1 = 0,

f2 = x+ ay + b = 0,
(79)

describing the intersection between the unit circle and a line determined by the pa-
rameters a and b.

For each choice of a and b there is (in general) two complex solutions and the
monomials b = {1, y} forms a basis for the quotient ring C[X]/I . This basis
corresponds to the standard monomials w.r.t. a GRevLex Gröbner basis. If we choose
y as our action monomial, the action matrix M will have the following form,

y

(
y
1

)
= M

(
y
1

)
=

[
m11 m12

1 0

](
y
1

)
mod I. (80)

The second row encodes the trivial equation [y · 1] = [1 · y]. From the matrix M we
can find the solutions by computing the eigenvalues. This gives the action y evaluated
at each of the solutions.

Now given an instance (i.e. values for a and b) we wish to recover the unknown
m11 and m12. To do this we search for polynomials in the ideal I = 〈f1, f2〉 which
have the same form as the first row in (80), i.e.

p = y2 −m11y −m12 ∈ I. (81)

37

Introduction

To find the polynomial p we can use an elimination template. The assumption is that
p can be written as a linear combination of an expanded set of our equations, in this
case the set

{f1, xf2, yf2, f2} (82)

is sufficient. Note that the coefficients in the expanded set only depends on the coeffi-
cients in the original equations (which in turn only depends on the parameters a and
b). We then write the expanded set of equations in matrix form,

x2 xy x y2 y 1

f1 1 1 −1

xf2 1 a b

yf2 1 a b

f2 1 a b

where each row corresponds to one of the equations. In the notation from (77) we have
in this example: e = {x2, xy, x}, αb = {y2, y} and b = {y, 1}. Note that y is
only included once even though it belongs to both αb and b.

Now if we perform Gaussian elimination on this template,

x2 xy x y2 y 1

1 • •
1 • •

1 • •
1 −m11 −m12

we can recover the polynomial p from the last row and construct the action matrix.
In this example we only had a single monomial y2 which we needed to express in the
basis, but in general there can be multiple non-trivial rows in the action matrix.

38

Chapter 1

Building Polynomial Solvers

In this chapter we study the problem of automatically generating polynomial
solvers for minimal problems. The main contribution is a new method for find-
ing small elimination templates by making use of the syzygies (i.e. the polynomial
relations) that exist between the original equations. These syzygies essentially pa-
rameterize the set of possible elimination templates for a given monomial basis.

We evaluate our method on a wide variety of problems from geometric com-
puter vision and show improvement compared to both handcrafted and automat-
ically generated solvers. Furthermore we apply our method on two previously
unsolved relative orientation problems.

This chapter is based on the paper [134].

1.1 Introduction

The success of geometric computer vision is largely due to the ability to quickly
and reliably solve systems of polynomial equations. This enables robust estima-
tion schemes, such as RANSAC [64], which serve as outlier detection and initial-
ization for non-linear optimization. To achieve robustness in RANSAC we need
to solve many instances of the same minimal problem. While the different in-
stances will have different coefficients, their structure will be essentially the same
each time. This allows us to create code which is problem specific for solving the
equation systems. The term polynomial solver (or sometimes minimal solver) refers
to these specialized codes or procedures for solving such systems which take the
instance specific coefficients as input, and output the solutions. Most polynomial

39

Building Polynomial Solvers

solvers in computer vision recover the solutions via action matrices found with
elimination templates (see Introduction chapter). The workflow for constructing
these solvers was first introduced into computer vision by Stewénius [198] among
others.

The idea is to consider a single instance of the problem, with the hope that
the structure for this instance is representative for the whole family of problems.
Fortunately it turns out that most instances are in fact representative, i.e. the set
of coefficients which yields ideals with a different structure forms a nullset in the
space of coefficients. To simplify computations this representative instance is usu-
ally chosen to have coefficients in some integer prime field Zp. Due to the exact
arithmetic available in these fields, we can efficiently compute a Gröbner basis (in
Zp[X]) for this instance. The assumption is now that the Gröbner basis for any
other instance will, in general, have the same structure (i.e. same monomials and
more importantly the same leading terms), but with different coefficients. This
also means that the standard monomials for this Gröbner basis will, in general, be
a linear basis in the quotient ring for any instance. So from this representative in-
stance, we get the number of solutions we can expect (dimension of Zp[X]/I) and
a candidate basis for the quotient ring. Then using these an elimination template
for recovering the polynomials defining the action matrix is constructed. In the
earlier works (e.g. [201]) these were very much handcrafted, however since then
there been have some work proposing more systematic approaches for finding the
elimination templates, see e.g. [122, 108, 168, 113].

1.1.1 Related Work

There has been a lot of work in computer vision to improve both the stability
and speed of polynomial solvers. The computational cost of action matrix based
polynomial solvers can be divided into three main parts.

1. Computing the template coefficients, i.e. finding the values which appear
in the template. Since the template is usually formed by only multiplying
with monomials, these coefficients are the same as the coefficients which
occur in the equations. However, typically some pre-processing is required
to find these coefficients from the input given to the solvers (usually some
combination of image points and 3D points). For example, in the 5 point
relative pose problem, we first need to compute a nullspace basis for the
epipolar constraints which is used to parametrize the solutions. The coef-
ficients which occur in the template are then polynomials in the elements

40

1.1. Introduction

of the nullspace basis. Other than trying different parametrizations of the
problem, it is difficult to speed up this part. In [129] Kukelova et al. pro-
pose a method based on elimination ideals for eliminating some of the un-
knowns and finding new constraints on the remaining variables, essentially
finding a new set of equations for the problem. While this often results
in a smaller elimination template, there is a trade-off where the new equa-
tions can become more complex and the coefficients are more expensive to
compute.

2. Linear elimination on the template to recover the action matrix. The cost
of the elimination is O(n3), where n is the number of rows. Thus we aim
to have as few rows as possible in our templates. There have been a few
works which aim to minimize the number of rows in the template, e.g.
[122, 108, 168, 113], and in this chapter we present another method for
finding small elimination templates. With similar goals, Ask et al. [13]
showed how to exploit certain symmetries available in some polynomial
systems. This was later extended by Kuang et al. [119] and in Chapter 3
we present a further extension of these works. In Chapter 4 we present
a method for selecting the quotient ring basis to minimize the size of the
elimination template. In [121] Kukelova et al. presented a method which
uses row and column permutations to make the elimination template into
so-called Singly-Bordered Block-diagonal form. This structure can then be
exploited to perform faster linear elimination when recovering the action
matrix.

3. Compute eigenvalues/vectors of the action matrix. The size of the action
matrix depends on the number of solutions to the problem. The number of
solutions is typically fixed, however there are some examples where we can
remove some uninteresting solutions (e.g. using saturations, see Chapter 2)
or otherwise only consider a subset of the solutions (e.g. using symmetries
[13, 119] and Chapter 3) to get a smaller eigenvalue problem. Sometimes
the number of solutions depends on the parametrization. For example,
each essential matrix corresponds to four different relative camera poses. If
we were to directly parameterize the problem using the camera poses, we
would get 40 solutions instead of 10 for essential matrix estimation. There
has also been work on avoiding solving the full eigenvalue problem. In
[29], Bujnak et al. proposed two different methods for efficiently extract-

41

Building Polynomial Solvers

ing univariate polynomials directly from the action matrix. The real roots
of these polynomials can then be found efficiently using Sturm-sequences
[91], instead of computing the full eigendecomposition of the action ma-
trix.

There has also been some works which aim to improve the numerical stability
of the polynomial solvers. In [34], Byröd et al. proposed methods to improve
numerical accuracy by selecting the quotient ring basis at runtime using singular
value decomposition (SVD) or by using QR factorization with column pivoting.
This was later extended by Kuang et al. [113] where they optimize over the so-
called permissible monomials (i.e. the set from which the basis is chosen from in
[34]). However, the template size and numerical stability are often correlated,
with smaller templates often being more stable.

For more references on how polynomial solvers are constructed and have been
applied in computer vision see [34].

Related Work by Kukelova et al.

The work which is most closely related to the topic of this chapter is by Kukelova
et al. [122], where the authors presented an automatic method for generating
polynomial solvers. The automatic generator allows the user to specify a set of
polynomial equations and then automatically generates stand-alone code for solv-
ing arbitrary problem instances. It has been widely adopted in the computer
vision community and it has been used to solve several problems in geometric
vision (see e.g. Table 1.1 and the references therein.) The solvers generated using
[122] are built on the action matrix method (see Introduction chapter). Their
generator follows the standard approach by first considering problem instances
in Zp[X]. The method for creating polynomial solvers in [122] is summarized
below.

1. Generate an instance of the equations in Zp[X].

2. Using Macaulay2[75] (or some other computer algebra software) compute
a Gröbner basis and the standard monomials in Zp[X]. The number of
standard monomials gives an upper bound for the number of solutions.
We also get which monomials should occur in the polynomials,

αbi −
∑
j

mijbj ∈ I (1.1)

42

1.2. Finding Elimination Templates

which define the action matrix.

3. An initial template is found by an iterative search which alternates between
multiplying the equations with monomials (xβfi) and performing Gaus-
sian elimination (in Zp) to check if all necessary polynomials are obtainable.

4. The template is then pruned by removing redundant polynomials. This is
accomplished by iteratively removing a polynomial (or a subset of polyno-
mials) from the template and performing Gaussian elimination to check if
the template is still solvable.

The main drawback of the approach in [122] is that as the number of variables
and equations grows the iterative search and pruning step can quickly become
intractable. In this chapter we propose a new method for finding the elimination
template in place of the iterative search used in [122]. We show on a large num-
ber of examples that our approach almost always produces smaller elimination
templates and faster polynomial solvers.

1.2 Finding Elimination Templates

Now we will present our approach for finding elimination templates. It is similar
to the method from Kukelova et al. [122] in that we also first find an initial
template and then reduce it. However, we avoid the iterative search present in
steps 3 and 4 above, and essentially have closed form solutions for the elimination
templates.

As in [122] we start by generating an instance of the equation system in some
prime field Zp. Using standard computer algebra software such as Macaulay2
[75], we compute a Gröbner basis for this instance,

G = {g1, g2 . . . , g`} ⊂ Zp[X], (1.2)

and find the corresponding standard monomials,

b = {b1, b2 . . . , bK} ⊂ Zp[X]. (1.3)

Dividing αbk with the Gröbner basis,

αbi =
∑̀
j=1

qijgj +
K∑
j=1

mijbj , qij ∈ Zp[X], i = 1, 2, . . . ,K, (1.4)

43

Building Polynomial Solvers

gives us the action matrix M = (mij) ∈ ZK×Kp for this particular integer in-
stance, which we are not particularly interested in solving. However, by keeping
track of how each of the Gröbner basis elements gj are formed during their com-
putation, we can express gj in terms of the generators f1, . . . , fm,1 i.e.

gj =
m∑
k=1

ckjfk, ckj ∈ Zp[X], j = 1, 2, . . . , `. (1.5)

Inserting this into (1.4) we get

αbi −
K∑
j=1

mijbj =
∑̀
j=1

qijgj =
∑̀
j=1

qij

(
m∑
k=1

ckjfk

)
=

m∑
j=1

hijfj . (1.6)

Thus we have expressed the polynomials αbi−
∑

jmijbj which define the action
matrix in terms of our original equations.

The assumption is now that for different problem instances the polynomials
hij in (1.6) will have the same form (i.e. same monomials) but possibly with
different coefficients. These coefficients are essentially what is found by using the
elimination template. To form the elimination template we multiply each fj with
all the monomials in each of the hij , so e.g. if h34 = 3x2 + 2y + 1 we would
include {x2f4, yf4, f4} in our elimination template.

In practice we found that elimination templates found using this method
were often larger than those found by the automatic generator from Kukelova et
al. [122] (see Section 1.4.1). In the next section we will present a heuristic which
can simplify the polynomials hij and give a more compact elimination template.

1.2.1 Reducing the Expansion

In the previous section we showed how to obtain some polynomials hij ∈ Zp[X]
such that

αbi −
K∑
j=1

mijbj =

m∑
j=1

hijfj , (1.7)

and that we could construct an elimination template from these. However, the
polynomials hij are not unique, and in fact there are infinitely many choices of

1In Macaulay2 this can e.g. be accomplished using the ChangeMatrix option for the gb func-
tion.

44

1.2. Finding Elimination Templates

hij which satisfy (1.7). This freedom is characterized by the syzygy module of the
generators (see the Introduction chapter for more details), i.e.

S = Syz(f1, . . . , fm) =

{
s ∈ Zp[X]m

∣∣∣∣ m∑
k=1

skfk = 0

}
. (1.8)

For any s ∈ S we have that

αbi −
K∑
j=1

mijbj =

m∑
j=1

(hij + sj)fj , (1.9)

and we can construct another valid elimination template using ĥij = hij + sj .
Ideally we would want to select the s ∈ S which minimizes the size of the

template, i.e. minimize the number of monomials in each hij . This is how-
ever a difficult combinatorial optimization problem. Instead we propose a simple
heuristic which we experimentally show works very well.

We start by computing a Gröbner basis GS for the syzygy module S using
the monomial ordering GRevLex-TOP. Note that this Gröbner basis consists of
m-tuples in Zp[X]m. Then for each

hi = (hi1, . . . , him) ∈ Zp[X]m, (1.10)

we compute the normal forms hi
GS w.r.t. GS and the template is constructed

using these.
Since the monomial order first compares the degree, this promotes coefficients

with low degree. One of the reasons why this heuristic works well is that having
low degree is a reasonable proxy penalty for having few monomials, especially for
problems with few variables.

Note that how we find the initial polynomials hij does not matter, as long
as they satisfy (1.7). In fact, the approach described in Section 1.2 is not well
defined since it depends on the method used for computing the Gröbner basis.
This however does not matter since the normal forms are unique. It is possible
to substitute other methods for finding the initial hij polynomials (such as the
iterative method from [122]).

The proposed method is summarized below.

1. Generate an instance of the equations in Zp[X].

45

Building Polynomial Solvers

2. Using Macaulay2[75] (or some other computer algebra software) compute
a Gröbner basis G and the standard monomials in Zp[X].

3. Using the Gröbner basis G find some polynomials hij ∈ Zp[X] such that

αbi −
K∑
j=1

mijbj =
m∑
j=1

hijfj . (1.11)

4. Compute a Gröbner basis GS for the syzygy module

S = Syz(f1, . . . , fm). (1.12)

5. Reduce each hi = (hi1, . . . , him) into normal form, i.e. compute hi
GS .

6. Construct elimination template from monomials occurring in hi
GS .

To make this a little bit more concrete we now will illustrate our method on
a small toy example.

Example 1.1. Consider again the system from Example 37 on page 37,{
f1 = x2 + y2 − 1 = 0,

f2 = x+ ay + b = 0.
(1.13)

To create an elimination template for this problem we first consider a specific instance
of the problem with integer coefficients,{

f1 = x2 + y2 − 1 = 0,

f2 = x+ 2y − 2 = 0.
(1.14)

In this example we choose to work in Z7 for ease of presentation, however in practice
a larger prime is typically used, e.g. p = 30097. For this instance of the ideal I =
〈f1, f2〉 we can compute a Gröbner basis using Macaulay2 [75] and recover the action
matrix. For this example we have

y

(
y
1

)
=

[
3 −2
1 0

](
y
1

)
mod I. (1.15)

46

1.2. Finding Elimination Templates

From the Gröbner basis we can also find a way to express the polynomial from the first
row of (1.15),

p = y2 − 3y + 2, (1.16)

in the original equations, f1 and f2, i.e. find some h1 and h2 such that p = h1f1 +
h2f2. In this case, one possibility is2

p = (−3x2 + xy − x+ 3)f1 + (3x3 + 3xy2 + x− y + 1)f2 (1.17)

The coefficients h1 and h2 are not unique. In this case the syzygy-module for (f1, f2)
only consists of

S = 〈(−f2, f1)〉 ⊂ Z7[X]2 (1.18)

thus its Gröbner basis is simplyGS = {(−f2, f1)}. Dividing (h1, h2) with (−f2, f1)
yields the remainder

(h1, h2)
GS

= (3,−3x− y + 1) . (1.19)

Thus we can also express p as

p = 3f1 + (−3x− y + 1)f2. (1.20)

Now this only tells us how to express p in f1 and f2 for this particular instance. The
assumption is that in general, the polynomials h1 and h2 will have the same structure
(i.e. same monomials), but possibly with different coefficients, i.e.

p = c0f1 + (c1x+ c2y + c3)f2. (1.21)

So to create the elimination template we choose the equations {f1, xf2, yf2, f2}
(this is the template in Example 37 on page 37). The linear elimination on the
template can then be seen as a way to recover the unknown coefficients c0, c1, c2 and
c3.

Note that using (1.17) instead of (1.20) would still give us a working template.
However since there are more monomials in the coefficients, the template would have
been larger. More specifically the template would consist of

{x2f1, xyf1, xf1, f1, x
3f2, xy

2f2, xf2, yf2, f2}. (1.22)
2For illustrative purposes we have chosen a slightly more complicated polynomial here than was

originally returned by Macaulay2 [75]. For small problems the results are often already in normal
form w.r.t. the syzygy module (see Table 1.1).

47

Building Polynomial Solvers

1.3 Implementation Details

We have written an automatic generator in MATLAB [94], which uses the tech-
nique described in Section 1.2 to find and reduce the elimination templates. The
generator is similar to that of Kukelova et al. [122] in that it only requires the
user to specify the problem equations and then generates stand-alone MATLAB
or C++ code that can be used to solve arbitrary problem instances. The elim-
ination template generation and reduction are performed in just a few lines of
Macaulay2 [75]. The generator automatically identifies and exploits any variable
aligned symmetries as described in [133] (see Chapter 3). In the implementation
we do not perform any refinement on the elimination templates (except for the
reduction step described in Section 1.2.1 and Section 1.3.2). It is possible that
by using template optimization techniques such as those described in [113, 168]
the results could be further improved. We have made the code for generating
solvers publicly available. For most of the problems that we have tried, the solver
generation time is quite small. The median running time for all the problems de-
scribed in Table 1.1 of our automatic generator (executed on a standard desktop
computer) is 5.7s.

1.3.1 Choosing Action Monomials

In the proposed approach the main computational cost is the computation of
the Gröbner bases for the both the ideal and the syzygy module. These are both
independent of the chosen action monomials. In the implementation we generate
templates for all different variables as actions. We only compute the Gröbner
bases once, and then perform the required divisions for each of the actions to
create the templates. The action which gives the smallest elimination template is
then returned.

1.3.2 Removing Redundant Columns and Rows

After finding the elimination template we optionally perform the following post-
processing step to remove redundant columns and rows. This step is similar to a
single iteration in the pruning step from the automatic generator from Kukelova
et al. [122].

We start by reducing the matrix to row echelon form and find the pivot ele-
ments. For the excessive monomials we only keep those which correspond to the
pivot elements. We also keep track of which rows were used in the elimination

48

1.3. Implementation Details

process. This allows us to also drop some redundant rows. However for almost
all of the problems in Table 1.1, the templates after performing the syzygy-based
reduction from Section 1.2.1 were already minimal in the sense that we were not
able to remove any more rows during post-processing.

1.3.3 Improving Numerics with Generalized Eigenvalue Problems

In this section we present a simple trick which for some problems improves the
numerical stability significantly. In the regular action matrix method we perform
elimination on the template until we find the action matrix, i.e.

[
U ∗ ∗
0 I −M

] e
αb
b

 = 0 =⇒ αb−Mb = 0, (1.23)

where U is some upper-triangular matrix. The idea now is to instead stop elimi-
nation once we have equations which only depend on αb and b, i.e.

[
U ∗ ∗
0 A B

] e
αb
b

 = 0 =⇒ αAb+Bb = 0. (1.24)

This instead gives us a generalized eigenvalue problem to solve. Of course, it is
now possible to get the action matrix as M = −A−1B. However, for problems
where the A matrix is poorly conditioned, we have found that it is sometimes
better to solve the generalized eigenvalue problem directly instead of explicitly
inverting the matrix A.

To use this method we construct our template in the same manner (since
there are no problems with poor conditioning in Zp), but in the solver we only
do eliminations until we have found the matrices A and B. Some special case has
to be taken for basis elements where αbi = bj for some i and j. For these we need
to add the corresponding rows to A and B. We have implemented this method
in our automatic generator. In Section 2.4.2 in Chapter 2 (page 78) we show an
example where we apply this method to a problem which is poorly conditioned.

49

Building Polynomial Solvers

1.4 Experimental Evaluation

1.4.1 Evaluation of the Reduction Step

In this section we evaluate the reduction step proposed in Section 1.2.1. Note
that while the reduction does not guarantee that the template will be smaller we
will show that this is often the case in practice.

To perform the evaluation we applied the automatic generator to a wide va-
riety of minimal problems from the computer vision literature. Table 1.1 shows
both the original template sizes as reported by the authors and the resulting tem-
plates from our proposed automatic generator. We have marked the templates
with the fewest elements in bold. If the original solver used multiple templates
they are marked with (§) and the largest template size is reported. Problems with
variable-aligned symmetries (as described in [14, 119, 133] and Chapter 3) are
marked with (†), these were automatically detected and removed by our genera-
tor.

It can be seen that in general the reduction step produces a smaller template.
More interestingly is perhaps that the reduced template is often smaller than the
template in the original paper. Note that many of the papers used the automatic
generator from Kukelova et al. [122], indicated with (*) in the table. For many of
the tested problems we get a large decrease in template size. For instance for the
problem of estimating relative pose with a known rotation direction we go from
a template of size 411 × 489 [187] to a template of size 39 × 43. This drastic
reduction in size is due to a symmetry in the problem that was not used by the
original authors, but automatically detected by the generator (see Chapter 3). If
we assume that the time complexity of the solver is quadratic in the number of
rows and linear in the number of columns this corresponds to a speed-up factor
of 900.

1.4.2 Numerical Accuracy of the Solvers

The focus of the work in this chapter has been on generating fast solvers in an
automatic manner, and not on numerical accuracy. However, for the proposed
solvers to be usable we need them to behave in an acceptable way in terms of
accuracy as well. In [168] it was reported that on a number of examples, that
smaller templates yielded better numerical accuracy as well. We have verified that
all of the generated solvers in Table 1.1 have reasonable numerical stability on
randomly generated instances.

50

1.4. Experimental Evaluation

We will in this section give comparisons between our solvers and the original
ones, for some specific problems. In terms of the underlying computer vision
problem, there is often some meaningful statistical error that one can evaluate,
e.g. the reprojection errors, but since our main contribution in this chapter is an
automatic way of constructing solvers to systems of polynomials equations, we
have opted to evaluate the actual equation residuals instead.

We compare on four different problems, where the original solvers were pub-
licly available, namely image stitching with unknown focal length and radial dis-
tortion [31, 168] , the optimal PNP-method of Hesch et al. [87], the optimal
PNP-method of Zheng et al. [232] and the refractive P5P solver from Haner et
al. [77]. In Figure 1.1 the resulting error residual histograms are shown, for 5,000
runs of the solvers, with random input. The figure shows that for these problems
we get similar accuracy as the original solvers while having smaller elimination
templates. For the image stitching we have used the original solver presented
in [31]. The smaller original template presented in Table 1.1 is from the paper
of Naroditsky et al., but they reported almost identical numerics as the original
solver [168].

51

Building Polynomial Solvers
Ta

bl
e

1.
1:

C
om

pa
ri

so
n

of
el

im
in

at
io

n
te

m
pl

at
e

si
ze

s.
Sm

al
le

st
te

m
pl

at
e

is
hi

gh
lig

ht
ed

in
bo

ld
.

Pr
ob

le
m

O
ri

gi
na

l
Pr

op
os

ed
ge

ne
ra

to
r

A
ut

ho
r

te
m

pl
at

e
si

ze
no

re
du

ct
io

n
st

ep
w

it
h

re
du

ct
io

n
st

ep

R
el

.p
os

e
E

+f
6p

t(
el

im
in

at
ed

)
K

uk
el

ov
a

et
al

.[
12

9]
(*

)
6
×

1
5

6
×

1
5

6
×

1
5

R
el

.p
os

e
E

5p
t

St
ew

én
iu

s
et

al
.[

19
9]

1
0
×

2
0

1
0
×

2
0

1
0
×

2
0

R
el

.p
os

e
F+

k
8p

t
K

ua
ng

et
al

.[
11

8]
12
×

24
1
1
×

1
9

1
1
×

1
9

T
D

O
A

of
fs

et
ra

nk
2,

7,
4

pt
s

K
ua

ng
et

al
.[

11
5]

20
×

15
1
4
×

1
5

1
4
×

1
5

R
el

.
po

se
E

+f
6p

t
B

uj
na

k
et

al
.[

27
]

(*
)

2
1
×

3
0

2
1
×

3
0

2
1
×

3
0

R
el

.p
os

e
f+

E
+f

6p
t(

el
im

in
at

ed
)

K
uk

el
ov

a
et

al
.[

12
9]

(*
)

2
1
×

3
6

2
1
×

3
6

2
1
×

3
6

A
bs

.p
os

e
P

3.
5P

F
W

u
[2

27
]

20
×

43
24
×

31
2
0
×

3
0

R
el

.p
os

e
f+

E
+f

6p
t

K
uk

el
ov

a
et

al
.[

12
2]

(*
)

3
1
×

4
6

3
1
×

4
6

3
1
×

4
6

R
el

.p
os

e
k+

F+
k

8p
t

K
uk

el
ov

a
et

al
.[

12
2]

(*
)

3
2
×

4
8

33
×

48
3
2
×

4
8

R
el

.
po

se
E

+k
6p

t
K

ua
ng

et
al

.[
11

8]
48
×

70
3
4
×

6
0

3
4
×

6
0

T
D

O
A

of
fs

et
ra

nk
2,

5,
6

pt
s

K
ua

ng
et

al
.[

11
5]

10
5
×

83
74
×

68
3
7
×

4
2

A
bs

.
po

se
R

ol
lin

g
sh

ut
te

r
Sa

ur
er

et
al

.[
18

6]
(*

)
48
×

56
50
×

55
4
7
×

5
5

G
en

.
ab

s.
po

se
P

4P
+s

ca
le

V
en

tu
ra

et
al

.[
21

8]
(*

)
48
×

56
50
×

55
4
7
×

5
5

St
it

ch
in

g
fk

+R
+f

k
3p

t
N

ar
od

it
sk

y
et

al
.[

16
8]

54
×

77
58
×

74
4
8
×

6
6

T
D

O
A

of
fs

et
ra

nk
3,

9,
5

pt
s

K
ua

ng
et

al
.[

11
5]

70
×

31
3
0
×

3
1

3
0
×

3
1

R
el

.p
os

e
E

+f
k

7p
t(

el
im

.)
K

uk
el

ov
a

et
al

.[
12

9]
(*

)
5
1
×

7
0

62
×

70
5
1
×

7
0

T
D

O
A

of
fs

et
ra

nk
3,

7,
6

pt
s

K
ua

ng
et

al
.[

11
5]

25
5
×

15
7

90
×

81
5
2
×

5
7

G
en

.
re

l.
po

se
6p

t
St

ew
én

iu
s

et
al

.[
20

1]
6
0
×

1
2
0

13
5
×

16
4

99
×

16
3

A
bs

.p
os

e
op

t.
P

N
P

H
es

ch
et

al
.[

87
]

12
0
×

12
0

93
×

11
6

8
8
×

1
1
5

Tr
ia

ng
ul

at
io

n
sa

te
lli

te
im

ag
es

Z
he

ng
et

al
.[

23
1]

(*
)

93
×

12
0

93
×

11
6

8
8
×

1
1
5

A
bs

.
po

se
op

t.
P

N
P

(C
ay

le
y)

N
ak

an
o

[1
67

]
(*

)
12

4
×

16
4

18
6
×

16
1

1
1
8
×

1
5
8

A
bs

.
po

se
P

4P
F

R
B

uj
na

k
et

al
.[

28
]

(*
)

13
6
×

15
2

1
4
0
×

1
4
4

14
0
×

15
6

R
el

.p
os

e
un

sy
nc

hr
on

iz
ed

A
lb

le
ta

l.
[6

]
(*

)
19

4
×

21
0

27
9
×

17
5

1
5
9
×

1
7
5

52

1.4. Experimental Evaluation

R
el

.p
os

e
k+

E
+k

6p
t

K
uk

el
ov

a
et

al
.[

12
2]

(*
)

23
8
×

29
0

22
3
×

29
0

1
4
9
×

2
0
1

R
el

.
po

se
k 1

+F
+k

2
9p

t
K

uk
el

ov
a

et
al

.[
12

2]
(*

)
17

9
×

20
3

35
5
×

29
2

1
6
5
×

1
8
9

R
el

.
po

se
E

+f
k

7p
t

K
ua

ng
et

al
.[

11
8]

20
0
×

23
1

24
9
×

21
4

1
8
5
×

2
0
4

A
bs

.
po

se
w

ea
k

P
N

P
La

rs
so

n
et

al
.[

13
3]

23
4
×

27
6

32
2
×

30
4†

1
3
8
×

1
5
4
†

A
bs

.p
os

e
w

ea
k

P
N

P
(2

x2
sy

m
)

La
rs

so
n

et
al

.[
13

3]
10

4
×

90
42
×

48
†

2
6
×

3
4
†

A
bs

.p
os

e
ro

lli
ng

sh
ut

te
r

R
6P

A
lb

le
ta

l.
[7

]
(*

)
1
9
6
×

2
1
6

22
2
×

23
0

20
0
×

22
0

A
bs

.p
os

e
in

lie
r

op
t.

P
4P

w
di

r.
Sv

är
m

et
al

.[
20

8]
28

0
×

25
2

23
0
×

22
9

2
0
3
×

2
3
1

R
el

.p
os

e
E

w
di

r.
3p

t
Sa

ur
er

et
al

.[
18

7]
(*

)
41

1
×

48
9

28
7
×

32
4

2
0
9
×

2
1
7

R
el

.p
os

e
E

w
di

r.
3p

t(
us

in
g

sy
m

.)
-

-
64
×

68
†

3
9
×

4
3
†

A
bs

.p
os

e
qu

iv
er

s
K

ua
ng

et
al

.[
11

4]
37

2
×

38
6

24
0
×

24
4

1
6
9
×

1
8
9

O
pt

.
th

re
e-

vi
ew

tr
ia

ng
.

B
yr

öd
et

al
.[

34
]

2
2
5
×

2
0
9
§

13
3
×

18
2

L
2

th
re

e-
vi

ew
tr

ia
ng

.
(R

el
ax

ed
)

K
uk

el
ov

a
et

al
.[

13
1]

(*
)

27
4
×

30
5

32
1
×

32
8

2
3
9
×

2
7
0

R
el

.p
os

e
E

w
an

gl
e

4p
t

Li
et

al
.[

14
4]

(*
)

27
0
×

29
0

28
0
×

27
6

2
6
6
×

2
8
6

A
bs

.p
os

e
re

fr
ac

ti
ve

P
5P

H
an

er
et

al
.[

77
]

28
0
×

39
9

41
0
×

48
0

2
4
0
×

2
5
6

O
pt

.
va

ni
sh

in
g

po
in

ts
M

ir
za

ei
et

al
.[

16
2]

2,
86

0
×

3,
06

0
26

3
×

29
6

2
4
6
×

2
9
6

T
D

O
A

of
fs

et
ra

nk
3,

6,
8

pt
s

K
ua

ng
et

al
.[

11
5]

1,
35

9
×

75
4

1,
35

9
×

75
4

3
5
6
×

3
4
5

A
bs

.
po

se
op

t.
P

N
P

Z
he

ng
et

al
.[

23
2]

(*
)

57
5
×

65
6

81
2
×

70
4

5
2
1
×

6
0
1

A
bs

.
po

se
op

t.
P

N
P

(u
si

ng
sy

m
.)

Z
he

ng
et

al
.[

23
2]

(*
)

34
8
×

37
6

48
4
×

40
8†

3
0
2
×

3
4
2
†

A
bs

.p
os

e
op

t.
in

lie
r

po
se

w
di

r
3p

t
Sv

är
m

et
al

.[
20

8]
1,

26
0
×

1,
27

8
91

8
×

72
6

5
4
4
×

5
9
2

T
O

A
(4

,6
)

K
ua

ng
et

al
.[

11
6]

96
6
×

92
5§

77
6
×

80
9

4
9
3
×

5
3
1

A
bs

.
po

se
op

t.
P

N
P

(q
ua

te
rn

io
n)

N
ak

an
o

[1
67

]
(*

)
63

0
×

71
0

95
8
×

69
3

6
0
4
×

6
8
4

A
bs

.
po

se
re

fr
ac

ti
ve

P
6P

F
H

an
er

et
al

.[
77

]
64

8
×

91
7

2,
19

6
×

1,
62

2†
6
3
6
×

6
5
4
†

R
el

.p
os

e
fk

+E
+f

k
7p

t
Ji

an
g

et
al

.[
99

]
88

6
×

1,
01

1
1,

39
3
×

1,
23

7
5
8
1
×

6
5
8

D
ua

l-
R

ec
ei

ve
r

T
D

O
A

5p
t

B
ur

ge
ss

et
al

.[
30

]
2,

62
5
×

2,
35

2
85

0
×

1,
16

7
4
5
5
×

4
9
4

T
O

A
(5

,5
)

K
ua

ng
et

al
.[

11
6]

1,
38

6
×

1,
53

9§
1,

21
7
×

1,
17

3
8
1
7
×

8
5
9

A
bs

.p
os

e
op

t.
P

N
P

(r
ot

.m
at

ri
x)

N
ak

an
o

[1
67

]
(*

)
1,

93
6
×

1,
97

6
1,

69
8
×

1,
15

3
1
,0

9
5
×

1
,1

3
5

L
2

th
re

e-
vi

ew
tr

ia
ng

.
K

uk
el

ov
a

et
al

.[
13

1]
(*

)
1,

86
6
×

1,
97

5
2,

54
1
×

2,
28

8
1
,4

5
0
×

1
,5

3
8

53

Building Polynomial Solvers

1.4.3 Three Views with Known Intrinsic Parameters and Rotation Axis

In order to test our framework on a novel case, we turn our attention to the prob-
lem of pose estimation in three views when the rotation axis is known. Known
rotation axis can occur in practice when there is additional information from
sensors such as accelerometers which are common in modern cell phones. The
problem is minimal when we observe one point and two lines. The problem has
previously been studied for two views, where the minimal case is three points
[68, 169, 209], and for two generalized cameras, where the minimal case is four
points [85, 209]. Let the cameras be chosen as

P1 =
[
I 0
]
, P2 =

[
R(θ2,v) t2

]
, P3 =

[
R(θ3,v) t3

]
(1.25)

where R(θ,v) denotes rotation of θ radians around the rotation axis v. Since the

rotation axis is assumed to be known we can w.l.o.g. assume that v =
(
0, 1, 0

)T
by rotating the image coordinate systems. The two line constraints can be formu-
lated as

rank
([
P T1 `k1 P T2 `k2 P T3 `k3

])
= 2, k = 1, 2 (1.26)

where `ij denotes line i observed in image j. The rank constraint can be encoded
as a polynomial constraint by requiring each of the 3 × 3 submatrices to have
zero determinant. Finally the single point correspondence gives us three sets of
equations

λkxk = PkX, k = 1, 2, 3 (1.27)

or equivalently by eliminating λk

xk × (PkX) = 0, k = 1, 2, 3 (1.28)

where xk denotes the image point in image k.

Building an Efficient Two-step Solver

To build an efficient solver for this problem we start by noting that the top 3× 3
submatrix in (1.26) only contains the rotation matrices. The determinant con-
straints are

det
([
`1k RT2 `2k RT3 `3k

])
= 0, k = 1, 2 (1.29)

54

1.4. Experimental Evaluation

−15 −10 −5 0
0

0.1

0.2

Residuals (log10)

Our
Byröd et al. [31]

−15 −10 −5 0
0

0.1

0.2

0.3

Residuals (log10)

Our
Hesch et al. [87]

−15 −10 −5 0
0

0.2

0.4

Residuals (log10)

Our
Zheng et al. [232]

−15 −10 −5 0
0

0.1

0.2

0.3

0.4

Residuals (log10)

Our
Haner et al. [77]

Figure 1.1: Kernel smoothed histograms of residual errors for 5,000 runs for: image
stitching with unknown focal length and radial distortion [31, 168] , the optimal PnP-
method of Hesch et al. [87], the optimal PnP-method of Zheng et al. [232] and the
refractive P5P solver from Haner et al. [77].

55

Building Polynomial Solvers

which gives us two quadratic equations in the elements ofR2 andR3. Since there
are only two parameters in the rotations we can use these two equations to solve
for the rotations independently from the rest of the variables.

Next we note that the constraint in (1.29) is invariant to the scale of the rota-
tion matrices. We exploit this by parameterizing the rotations by non-unit quater-

nions (i.e. the Cayley parametrization), q2 =
(
1, s2v

T
)T
, q3 =

(
1, s3v

T
)T

.
This parameterization gives us two quartic equations in the unknowns s2 and s3.
Fixing the first element of the quaternion introduces a degeneracy for any 180-
degree rotation.

Using the proposed automatic generator we construct a solver for this system.
The resulting template size is 12 × 20 and the system has 8 solutions. The so-
lutions include two false solutions s2 = s3 = ±i that were introduced by the
rotation parameterization. These can easily be discarded, and from the true so-
lutions we can recover the correct rotations by rescaling each quaternion to unit
length.

When the rotations are known we can use them to recover the translations t2
and t3. Using the point correspondence we can parameterize the two translations
using the depths as

tk = λkxk −RkX, k = 2, 3. (1.30)

Since P1 = [I 0] we can select the scale such that X = x1. Inserting (1.30)
into the line constraints gives linear equations in the unknown λ2 and λ3, which
allows us to solve for the translations. We evaluated the performance of the two-
step solver on 10,000 random synthetic instances. Figure 1.2 shows the residuals
for the rotation estimation and the distance from the recovered pose to the ground
truth. In average solving for the rotations and finding all translations took less
than one millisecond per instance. Figure 1.3 shows an example where we have
used the minimal solver in a RANSAC framework to estimate the relative pose of
three cameras. The 3D structure is found using DLT [81]. Note that this is the
result without any bundle adjustment.

Importance of Good Parameterization

In the previous section we developed an efficient solver by choosing a clever pa-
rameterization of the problem. Finding a good parameterization is often one of
the main difficulties when building polynomial solvers for minimal problems.

56

1.4. Experimental Evaluation

−18 −16 −14 −12 −10 −8
0

0.1

0.2

0.3

0.4

Dist GT
Residuals

Figure 1.2: Results for 10,000 random synthetic instances for the rotation estima-
tion in Section 1.4.3. The figure shows kernel smoothed distributions of both the
residuals and the distance to the ground truth pose. The distance is defined as the
maximum of ‖R2 −RGT

2 ‖F , ‖R3 −RGT
3 ‖F , ‖t2 − tGT

2 ‖2 and ‖t3 − tGT
3 ‖2.

Knowing which parameterization will yield good solvers is non-trivial and usu-
ally a trial and error approach is taken. Automatic tools such as the generator
proposed in this chapter greatly speeds up this process and allows for much faster
prototyping.

To illustrate the importance of good parameterization we show three alterna-
tive parameterizations for this problem.

1. First we fix the scale by setting X = x1 and directly parameterize the two

translations t2 =
(
t21, t22, t23

)T
and t3 =

(
t31, t32, t33

)T
. The rotations

are represented using unit quaternions, q2 = (s21, s22v
T)T and q3 =

(s31, s32v
T)T with the additional constraints ‖q2‖2 = ‖q3‖2 = 1. This

system has 24 solutions, however there exist two independent two-fold sign
symmetries and by removing these we get the desired 6 solutions.

2. Next we remove the translations by parameterizing the depths λk in the
2nd and 3rd image, i.e. tk = λkxk − Rkx1. This reduces the number of
unknowns to 6.

57

Building Polynomial Solvers

Figure 1.3: Example of three-view relative pose estimation with known rotation axis
from one point and two lines. The image points and lines are shown in blue. The 3D-
point reprojections are shown in red. The rightmost two images show the recovered
3D structure and poses.

3. Finally we tried using unit-quaternions when solving for the rotations using
only the line constraints. The parameterization avoids the two false solu-
tions introduced by the non-unit quaternion parameterization. However
there still remains a two-fold symmetry.

The different parameterizations are summarized in Table 1.2 which also shows
the template sizes and average runtimes for the solvers. Note that there is about
a three orders of magnitude difference in runtime between the fastest and slowest
solvers, which shows the need of finding a good parameterization.

1.4.4 Projective Reconstruction from Nine Lines in Three Views

In order to test the boundaries of our method, we have looked at a challenging
unsolved minimal case. The classical problem of minimally estimating the ge-
ometry of three projective views of lines is an inherently difficult problem, [81, p.
413]. Whereas algorithms for projective reconstruction from points in three views
have existed for a long time, [88, 179], there exists no practical method for the
corresponding minimal problem using lines. The problem is minimal with either

58

1.4. Experimental Evaluation

N
ot

e
U

nk
no

w
ns

A
dd

it
io

na
le

qu
at

io
ns

Te
m

pl
at

e
si

ze
R

un
ti

m
e

Fi
xe

d
sc

al
e

by
de

pt
h.

s 2
1
,s

22
,s

31
,s

32
,t

2
,t

3
X

=
x

1
,
‖q

2
‖2

=
‖q

3
‖2

=
1

1,
30

6
×

1,
26

1
0.

57
s

E
lim

in
at

ed
tr

an
sl

at
io

ns
in

th
e

se
co

nd
an

d
th

ir
d

im
ag

e.
s 2

1
,s

22
,s

31
,s

32
,λ

2
,λ

3

{ t k
=
λ
k
x
k
−
R

k
X
,
k

=
2,

3

X
=
x

1
,‖
q

2
‖2

=
‖q

3
‖2

=
1

65
2
×

46
2

40
m

s

U
ni

tq
ua

te
rn

io
ns

.
s 2

1
,s

22
,s

31
,s

32
‖q

2
‖2

=
‖q

3
‖2

=
1

96
×

88
1.

25
m

s

N
on

-u
ni

tq
ua

te
rn

io
ns

.
s 2
,s

3
q
k

=
(1,

s k
v
T
) T k

=
2,

3
8
×

16
0.

1m
s

Ta
bl

e
1.

2:
C

om
pa

ri
so

n
of

di
ff

er
en

t
pa

ra
m

et
er

iz
at

io
ns

fo
r

th
e

on
e

po
in

t
tw

o
lin

e
pr

ob
le

m
fr

om
Se

ct
io

n
1.

4.
3.

59

Building Polynomial Solvers

six points or nine lines. There are also algorithms for different minimal combi-
nations of lines and points, cf. [176]. Linear algorithms have been developed for
over-constrained solutions of at least 13 lines [78], and for combinations of lines
and points [79], and there exist non-linear methods for the over-constrained cases
of 10-12 lines [117]. We assume that we have three unknown uncalibrated cam-
eras, viewing nine unknown lines in space. Each camera has eleven parameters,
and each line has four degrees of freedom. In addition to this, we can only deter-
mine a solution up to a global projective coordinate system, with 15 parameters.
Each viewed line in each camera gives two constraints on our parameters. Since
3 · 11 + 4 · 9 − 15 = 2 · 3 · 9, this gives a minimal system. A major reason
that the line case is much more difficult than the point case, is that the projective
coordinate system can be efficiently parameterized with five points. With lines
we use fewer lines, and we need to be very careful in order to avoid specialized
situations, e.g. lines intersecting. We have experimented with a large number of
parameterizations of our problem, and in the end we found that the following
gave the most tractable solution. First of all we make coordinate changes in the
images so that the first two lines in each image are represented by `1 = (1, 0, 0)T

and `2 = (0, 1, 0)T . This corresponds to the lines x = 0 and y = 0 respectively.
We then make a projective coordinate change so that the first camera is given by
P1 = [I 0]. This fixes 11 of the 15 degrees of freedom, and also gives that the
first 3D-line must lie on the plane Π1 = P T1 `1 = (1, 0, 0, 0)T and the second
line on the plane Π2 = P T1 `1 = (0, 1, 0, 0)T . This in turn fixes the first two
lines up to two parameters each. We can now fix the final four degrees of free-
dom of our coordinate system by specifying two additional planes (Π′1 and Π′2)
that the first two lines should lie on. (Assuming that a 3D-line is represented by
two pointsX andX ′ this places two linear constraints on the coordinate change
homography H , (HX)TΠ′ = 0 and (HX ′)TΠ′ = 0 for each line). Choosing
Π′1 = (0, 1, 0, −1)T and Π′2 = (0, 0, 1, −1)T gives that the two additional
cameras can be written

P2 =

x1 1 0 −1
0 x2 x3 −x3

x4 x5 x6 x7

 , P3 =

 x8 x9 0 −x9

0 x10 1 −1
x11 x12 x13 x14

 , (1.31)

where (x1, . . . , x14) are unknown parameters. We can now for each image-line
triplet, (`i1, `i2, `i3), i = 3, . . . , 9, construct the matrix

Mi = [P T1 `i1, P
T
2 `i2, P

T
3 `i3]. (1.32)

60

1.4. Experimental Evaluation

−18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
0

0.2

0.4

0.6
Our
Our+Bundle

Figure 1.4: The distribution of the distance to the ground truth solution, for our
initial nine-lines solver, and after non-linear refinement on the equation residuals.

If the three image lines are views of the same line, the corresponding planes
should intersect, and hence rankMi = 2, and all 3 × 3 sub-determinants of
Mi should vanish. This gives three linearly independent second-degree polyno-
mial constraints on (x1, . . . , x14) for each i and in total 21 equations in the 14
parameters. In this parametrization the problem has 36 solutions. In [4] the ideal
of the trifocal tensor was investigated. Here they show that the corresponding
variety has degree 297. However it turns out that most of these solutions do not
correspond to a valid three view camera geometry, and these degeneracies are not
present in our parameterization.

We have used our automatic generator on the formulation in (1.31), resulting
in a template with size 20, 273×14, 281 without the reduction step. The problem
has a large number of variables, and the resulting equations contain a large syzygy-
set, and we have not been able to calculate this in Macaulay2 entirely. We have
run a partial reduction step, based on taking all possible combinations of four
equations, and this leads to a template of size 16, 278× 13, 735. To evaluate our
generated solver we ran the following test. We generated 1000 random synthetic
instances. We then ran our solver on the corresponding data, and compared the
closest of the 36 solutions to the ground truth solution. The resulting histogram

61

Building Polynomial Solvers

is shown in Figure 1.4. It also shows the difference to the ground truth solution
after non-linear refinement of our solution. Our final elimination template is
large, but very sparse. The complete solver has an average runtime of 13 s in
MATLAB on a standard desktop computer (Intel I7-3930K 64 GB ram).

1.5 Conclusion

In this chapter we have presented a new method for finding elimination templates.
The main contribution was to utilize the Gröbner bases for both the ideal and
the syzygy module. The module encapsulates the ambiguity in representing the
polynomials that are needed for constructing the action matrix. We have achieved
state-of-the-art results by finding the normal form w.r.t. the syzygy module, but it
is possible that a more advanced search over the syzygies would yield even better
results, and this is an interesting venue for further work.

62

Chapter 2

Solvers for Saturated Ideals

In this chapter we present a new method for creating polynomial solvers for prob-
lems where a (possibly infinite) subset of the solutions are undesirable or uninter-
esting. These solutions typically arise from simplifications made during modeling,
but can also come from degeneracies which are inherent to the geometry of the
original problem. The proposed approach extends the standard action matrix
method to saturated ideals. This allows us to add constraints that some polyno-
mials should be non-zero on the solutions. This does not only offer the possibility
of improved performance by removing superfluous solutions, but makes a larger
class of problems tractable. Previously, problems with infinitely many solutions
could not be solved directly using the action matrix method as it requires a zero-
dimensional ideal. In contrast we only require that after removing the unwanted
solutions only finitely many remain.

State-of-the-art solvers for problems in computer vision involving saturated
ideals, e.g. [202, 116, 193, 32], were implemented by manually constructing
equations from the saturated ideal as a preprocessing step and then applying the
standard approach for constructing the action matrix. These methods are es-
sentially hand-crafted and problem specific. In contrast our approach is entirely
generic and we have extended the automatic solver generator presented in Chap-
ter 1 to also handle saturation.

This chapter is based on preliminary results presented in Larsson et al. [135].

63

Solvers for Saturated Ideals

2.1 Action Matrices in Saturated Ideals

Let I = 〈f1, . . . , fm〉 ⊂ K[X] be an ideal such that

J = Sat(I, fs) = {p | ∃N ≥ 0, fNs p ∈ I} (2.1)

is zero-dimensional and let {bk}dk=1 be a linear basis for the quotient ring K[X]/J .
The goal is now to lift the properties we need from the saturated ideal J into

the original ideal I . This will allow us to create an elimination template directly
from our original equations which can be used to find the action matrix from the
saturated ideal.

Lemma 2.1. For each N ≥ 0 the set {fNs bk}dk=1 is linearly independent in the
quotient ring K[X]/I .

Proof. Assume otherwise. Then there exist some ci ∈ K, not all zero, such that∑
i cif

N
s bi ∈ I . From the definition of the saturation we get

fNs (
∑

icibi) ∈ I =⇒ ∑
icibi ∈ J, (2.2)

which is a contradiction.

For N ≥ 0 define1

SN =

[
spanK {fNs bk}dk=1

]
I

⊂ K[X]/I. (2.3)

From Lemma 2.1 we know that SN forms an d-dimensional subspace in K[X]/I .

Lemma 2.2. For each α ∈ K[X] there exists N ≥ 0 such that

[αp]I ∈ SN , ∀p ∈ SN , (2.4)

i.e. SN is stable under multiplication with α.

Proof. Let α ∈ K[X] and consider [αbk]J in K[X]/J . Since {bk}dk=1 spans
K[X]/J there exist mij ∈ K such that

[αbi]J =
[∑

jmijbj

]
J
⇔ pi := αbi −

∑
j

mijbj ∈ J. (2.5)

1To clarify which quotient ring the class in taken in, we add the ideal as subscript here.

64

2.1. Action Matrices in Saturated Ideals

By definition there exist some Ni ≥ 0 such that fNis pi ∈ I . Take some N ≥ Ni

for all i, then in K[X]/I we have

fNs pi ∈ I ⇔
[
αfNs bi

]
I

=
[∑

jmijf
N
s bj

]
I
. (2.6)

Now for any p ∈ SN we have as [p]I =
[∑

cif
N
s bi

]
I
. Applying (2.6) we get

[αp]I =
[∑

iciαf
N
s bi

]
I

=
[∑

i

∑
jcimijf

N
s bj

]
I
∈ SN , (2.7)

which proves the lemma.

The following theorem will show a useful relationship between the two mul-
tiplication operators2

T Iα : K[X]/I → K[X]/I and T Jα : K[X]/J → K[X]/J. (2.8)

Theorem 2.3. For large enoughN ≥ 0, the action matrices corresponding to T Iα
∣∣
SN

and T Jα are the same with respect to the basis {fNs bk}dk=1 and {bk}dk=1 respectively.

Proof. While K[X]/I may be infinite dimensional as a vector space, we know
from Lemma 2.2 that ImT Iα

∣∣
SN
⊂ SN for large enough N . The rest of the

proof follows immediately by noting that Mα = (mij) from (2.5) and (2.6) is
indeed the action matrix for both mappings.

To gain some intuition why this works consider the action matrix Mα =
(mij) corresponding to T Iα

∣∣
SN

, i.e. Mα

fNs b
 = α

fNs b
 mod I. (2.9)

Note that while this equation is satisfied for all x ∈ V (I), any solution where
fs(x) = 0 will correspond to a zero vector and not an eigenvector. Thus by
computing the eigenvectors of Mα it is possible to recover only the solutions in
the saturated ideal.

2Recall that Tα is the operator which multiplies with α, i.e. Tα[p(x)] = [α(x)p(x)].

65

Solvers for Saturated Ideals

2.2 Building Solvers with Saturation

To apply the theory presented in the previous section in practice, we extend the
method for automatic solver generation from Chapter 1. The steps taken are
outlined below.

1. Generate an instance of the problem with coefficients in some prime field
Zp. This allows for efficient and accurate computations.

2. Compute the saturated ideal

J = Sat(I, fs) (2.10)

and find a linear basis {bk}dk=1 for Zp[X]/J .

3. Form the polynomials used in the action matrix, i.e.

pi = αbi −
∑

jmijbj ∈ J. (2.11)

4. By iteration find the smallest N ≥ 0 such that

fNs pi ∈ I ∀i. (2.12)

5. Using the method described in Chapter 1, find hij ∈ Zp[X] such that

fNs pi =
∑

jhijfj (2.13)

and create the elimination template from these.

Note that we essentially take the same steps as in Chapter 1, but we instead form
the polynomials pi in the saturated ideal. Then we lift both the basis {bk}dk=1
and the polynomials pi into the original ideal I by multiplying with fNs . Each of
the steps listed above can be efficiently carried out in algebraic geometry software
such as Macaulay2 [75].

In the implementation we restrict ourselves to saturating a single monomial.
This is however not very limiting, since if we instead wish to saturate some poly-
nomial f(x) we can introduce a new variable x0 and the equation x0−f(x) = 0.
Saturating x0 will then be equivalent to saturating f(x) in the original formula-
tion. Note that this equation is much simpler compared to using the Rabinowitsch
trick (see Introduction chapter),

x0f(x) = 1, (2.14)

66

2.2. Building Solvers with Saturation

z

y
x

y = 0

Figure 2.1: Solutions to the polynomial system in (2.16). The solution set consists
of two points and a circle contained in the xz-plane. Saturating the ideal with y
removes any solution where y = 0.

since the new variable x0 appears linearly and is easy to eliminate.
In practice we found that for problems where we need to saturate a general

polynomial f(x), the elimination templates often become much smaller when
the extra variable x0 is not present in the quotient ring basis {bk}dk=1. This
can always be accomplished by choosing a monomial order where any monomial
containing x0 is greater than any monomial without x0. If this is the case then
clearly LT(x0 − f(x)) = x0 and the standard monomials for the Gröbner basis
will only contain monomials without x0.

2.2.1 Toy Example

We will now show an overview of the steps taken to construct a polynomial solver
for a toy example.

Example 2.4. Consider the following system of equations.
f1 = c0x

2 + c1y
2 + c2z

2 + c3 = 0,

f2 = c0x
2 + c4xy + c2z

2 + c3 = 0,

f3 = c0x
2 + c5yz + c2z

2 + c3 = 0,

(2.15)

where c0, c1, . . . , c5 ∈ C are constants. Note that while three quadratic equations in
three variables in general have eight solutions, it is easy to see that this system becomes
degenerate for y = 0, and the standard action matrix method breaks down.

67

Solvers for Saturated Ideals

To construct a polynomial solver for this problem we again start by considering an
instance of the system where the coefficients are in Z7, e.g.

f1 = x2 + y2 + z2 − 1 = 0,

f2 = x2 + 2xy + z2 − 1 = 0,

f3 = x2 + 2yz + z2 − 1 = 0.

(2.16)

Figure 2.1 shows the solution set (in C) for these equations. For this particular instance
we can use algebraic geometry software (e.g. [75]) to compute the saturation w.r.t. y.

J = Sat(I, y) = 〈y − 2z, x− z, z2 + 1〉. (2.17)

This also gives us a basis for the quotient ring Z7[X]/J ,

b = {1, z}. (2.18)

Taking the action polynomial as x we get the action matrix

x

(
z
1

)
=

[
0 −1
1 0

](
z
1

)
, mod J. (2.19)

Thus we have that the polynomials

p1 = xz + 1, p2 = x− z, (2.20)

both lie in the saturated ideal J . They are however not in I = 〈f1, f2, f3〉, so it is not
possible to directly construct an elimination template using f1, f2 and f3 to recover
p1 and p2 for a general instance. However when we multiply these by the saturation
variable y, we lift them into the ideal I and we can express them in terms of the
original equations,

yp1 = 2zf1 + (−3x+ z)f2 + (3x− y − 3z)f3, (2.21)

yp2 = −3f2 + 3f3. (2.22)

Note that in this example we only needed to multiply by y to lift p1 and p2 into the
ideal I (i.e. N = 1), but in general higher powers might be required.

Now to solve a general instance of (2.15) we follow the approach described in
the previous sections. The elimination template is created by multiplying each of the

68

2.3. Saturations for Zero-dimensional Ideals

polynomials fi with the monomials occurring in the coefficients in (2.21)–(2.22). So
in this case we have

{zf1, f2, xf2, zf2, f3, xf3, yf3, zf3}. (2.23)

Using just linear combinations of these, it is then possible to recover the polynomials,

yp1 = y(xz −m11z −m12), (2.24)

yp2 = y(x−m21z −m22), (2.25)

from which we can extract the action matrix

M =

[
m11 m12

m21 m22

]
. (2.26)

2.3 Saturations for Zero-dimensional Ideals

In this section we consider the special case where we have finitely many solutions
before saturating the ideal, i.e. when

dimK[X]/J < dimK[X]/I <∞. (2.27)

In this case it is possible to recover the action matrix in the saturated ideal from
the action matrix in the original ideal.

Let α ∈ K[X] be fixed and let b be a linear basis in K[X]/I , with the
corresponding action matrix M ∈ Kd×d, i.e. the matrix M satisfies

αb−Mb = 0 mod I. (2.28)

Similarly let b0 be a linear basis for K[X]/J with action matrix M0 ∈ Kd0×d0 ,

αb0 −M0b0 = 0 mod J. (2.29)

The following proposition relates the two action matrices M and M0.

Proposition 2.5. The action matrices M0 and M satisfy

M0S = SM (2.30)

where S ∈ Kd0×d satisfies

fNs b0 = Sb mod I (2.31)

for some N ≥ 0.

69

Solvers for Saturated Ideals

Proof. Take N ≥ 0 large enough so that

fNs (αb0 −M0b0) = 0 mod I, (2.32)

and find the matrix S such that (2.31) holds for this N . Then

αfNs b0 −M0f
N
s b0 = 0 mod I =⇒ αSb−M0Sb = 0 mod I. (2.33)

Multiplying (2.28) with S and inserting into (2.33) we get

(SM −M0S) b = 0 mod I. (2.34)

Since b is a basis for K[X]/I we must have SM = M0S.

For some problems it can be simpler to find the action matrix M in the
original ideal I . If the matrix S is also available (e.g. if the necessary monomials
are available in the template), we can recover the action matrix for J as

M0 = SMS†. (2.35)

This allows us to instead solve the smaller eigenvalue problem related to M0 to
compute the solutions. For problems where many solutions are removed during
saturation this can be significantly cheaper.

Another way to see this is to explicitly perform a change of basis (in K[X]/I)
such that fNs b0 becomes part of the new basis. This is possible since we know
from Lemma 2.1 that these are linearly independent in K[X]/I for any N ≥ 0.

Let Ŝ =
[
ST ST⊥

]T
be some invertible matrix formed by adding rows to some

S which satisfies (2.31). Then the new action matrix M̂ = ŜMŜ−1 satisfies

α

(
fsb0

b1

)
−
[
M̂11 M̂12

M̂21 M̂22

](
fsb0

b1

)
= 0 mod I, (2.36)

where b1 = S⊥b. If N ≥ 0 is chosen large enough, it follows from (2.32) that
M̂11 = M0 and M̂12 = 0. Then (2.30) follows directly,[

M0 0
M̂21 M̂22

]
= ŜMŜ−1 =⇒

[
M0 0
M̂21 M̂22

] [
S
S⊥

]
=

[
S
S⊥

]
M, (2.37)

where the first row is M0S = SM . This is illustrated in the following example.

70

2.3. Saturations for Zero-dimensional Ideals

Example 2.6. Consider the ideal I = 〈f1, f2〉 ⊂ Z7[x, y] where{
f1 = x2 + y2 − 1,

f2 = y3 − xy + x− y + 1.
(2.38)

For this ideal we have that

b = {xy2, xy, y2, x, y, 1}, (2.39)

is a basis of Z7[x, y]/I and the action matrix M ∈ Z6×6
7 for x is

x

xy2

xy
y2

x
y
1

 =

−1 1 0 0 1 0
0 −1 0 1 0 1
1 0 0 0 0 0
0 0 −1 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

xy2

xy
y2

x
y
1

 mod I. (2.40)

For the saturated ideal J = Sat(I, xy − 1) we have that b0 = {y, 1} is a basis for
Z7[x, y]/J . Now to recover the action matrix for b0 in Z7[x, y]/J we simply express
fsb0 in terms of b. In this case we have

fsb0 =

(
xy2 − y
xy − 1

)
= Sb =

[
1 0 0 0 −1 0
0 1 0 0 0 −1

]

xy2

xy
y2

x
y
1

 . (2.41)

Now let Ŝ be some invertible matrix formed by adding rows to S. One such choice is

Ŝ =

1 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

 . (2.42)

71

Solvers for Saturated Ideals

Performing the change of basis in (2.40) we get

αŜb = (ŜMŜ−1)Ŝb mod I ⇐⇒

x

xy2 − y
xy − 1
y2

x
xy2 + y
xy + 1

 =

−1 0 0 0 0 0
0 −1 0 0 0 0
−3 0 0 0 −3 0
0 3 −1 0 0 −3
−1 1 0 0 0 1
0 −1 0 2 0 0

xy2 − y
xy − 1
y2

x
xy2 + y
xy + 1

 mod I,

(2.43)

and from the first two rows we can extract

(xy − 1)

(
x

(
y
1

)
−
[
−1 0
0 −1

](
y
1

))
= 0 mod I, (2.44)

which implies that

M0 =

[
−1 0
0 −1

]
, (2.45)

is the action matrix in Z7[x, y]/J .

2.4 Applications with Saturated Ideals

We will in the following sections show how our method can be applied to a
number of real world problems. These examples will show the benefits of our
approach in terms of ease of construction of solvers without manual saturation
(Section 2.4.1 and 2.4.2), significant speed-up (Section 2.4.2 and 2.4.3) and the
benefit over introduction of auxiliary variables as in (2.14). The new solvers pre-
sented in this section are summarized in Table 2.1. In Pritts et al. [178] the
saturation technique presented in this chapter was used to create minimal solvers
for affine rectification and distortion estimation from coplanar repeated structure.

72

2.4. Applications with Saturated Ideals

Exec.
Template size # Sol. time

Three view triang.
Stewénius et al. [202] - 47 > 1 s
Byröd et al. [32] (relaxed ideal) 225× 209† 154 60 ms
Byröd et al. [34] (basis select.) 225× 209† 58 3 ms
Our 571× 676 47 10 ms
Our (new param.) 209× 265 50 3 ms

Time-of-Arrival
Kuang et al. [116] (4,6) 966× 925† 38 0.6 s
Kuang et al. [116] (5,5) 1, 386× 1, 539† 42 1.4 s
Our (4,6) 569× 692 38 22 ms
Our (5,5) 938× 1, 301 42 95 ms

Vanishing point est.
Mirzaei et al. [162] 2, 860× 3, 060 40 1.8 s
Our 246× 397 40 5 ms

Table 2.1: Overview over template sizes for the investigated applications in the pa-
per. †: Several elimination steps are used, the largest of the elimination templates is
reported.

2.4.1 Triangulation

In this section we will investigate how our saturation framework can be used in
multiple view triangulation. Geometrically triangulation seems easily done, by
simply intersecting the back-projected image rays. However to find the global
minimizer of the reprojection error for many views is an inherently difficult prob-
lem. For two views one can find the solution by solving a sixth-degree polynomial,
[83], but for three views it becomes numerically and theoretically harder, and
there have many papers dealing with this problem [202, 32, 34, 131]. There are
also iterative methods, that do not guarantee a global optimum, [3, 104, 151, 84],
methods that minimize the L∞-error [80, 160] and Branch-and-Bound methods
whose worst case convergence is exponential [103, 153].

73

Solvers for Saturated Ideals

Optimal Three View Triangulation

We will initially model the triangulation problem in three views in the same way
as described in [202]. To find the optimal solution we want to minimize the
reprojection error

minimize
X

3∑
i=1

(
P 1
i X

P 3
i X
− x1

i)
2 + (

P 2
i X

P 3
i X
− x2

i)
2, (2.46)

where X = [X Y Z 1]T is the unknown 3D-point, and superscript denotes row-
index. This is a non-convex problem and we will solve it by evaluating all station-
ary points. We have the freedom to make projective world coordinate changes
without changing the error function. Similar to [202] we will use this to simplify
our formulation, by choosing a coordinate system so that the third rows of the
cameras are given by [1 0 0 0], [0 1 0 0] and [0 0 1 0] respectively. This will in turn
change the denominators in (2.46) to X , Y and Z respectively. The gradient
is easily calculated, but in order to get polynomial constraints we need to cross-
multiply all the fractions with the denominators. In this way we end up with
three equations, each of total degree 6 – giving rise to a one-dimensional ideal. In
[202] they solved this by manually saturating the ideal, and after saturation with
X , Y and Z ended up with 47 solutions. But the problem is very numerically
challenging and the authors needed to use 128 bit arithmetic, making the solver
impractically slow to use in practice. In [32] they used the same parametriza-
tion but showed that, by using a slightly different saturation approach and then
considering a relaxed ideal, a practical solver could be developed. The solver still
suffered from poor conditioning. In [34] the authors developed new methodol-
ogy to handle poor conditioning by numerically choosing the linear basis during
runtime in the minimal solver, using either SVD or QR factorization. We can
use our automatic saturation process to avoid the cumbersome manual saturation
steps. After saturation with X , Y and Z we end up with 47 solutions and get an
elimination template of size 571× 676.

In order to compare our solver with the publicly available solver from [34]
we ran a simple test on the well-known dinosaur sequence. Using 36 calibrated
frames with a total of 2592 points, seen in at least three views, we extracted for
each of these points the corresponding first, last and middle camera. We ran our
solver and the solver from [34]. The resulting mean of the reprojection error for
all points was 8.90×10−5 for both methods (in the calibrated images). Using the

74

2.4. Applications with Saturated Ideals

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2
0

50

100

log10 of reprojection error

Bundled
Our (571× 676)
Byröd et al. [34]

Figure 2.2: Error histograms for the dinosaur experiment for the different methods,
on a log-scale.

chosen cameras we can for each point triangulate its 3D position linearly and then
perform non-linear optimization on the reprojection error. This gave the same
error (8.90× 10−5). In Figure 2.2 the error histogram is shown for all methods.
One can see that they produce very similar results. Our developed solver has a
runtime of around 10 ms, compared to around 3 ms for the handcrafted solver
from [34].

New Parameterization

We can actually further simplify our problem formulation by setting the last row
of camera three to [0 0 0 1], instead of as previously [0 0 1 0] (i.e. move the third
camera’s image plane to infinity). This means that we don’t need to cross-multiply
with factors of Z. This leads to three equations of total degree 6, 6 and 5 respec-
tively. Furthermore, in this parameterization it turns out that it is sufficient to
saturate only one of the variables. In this case the saturated ideal has 50 solutions.
This approach gives a substantially smaller template of size 209×265, and in turn
a much faster solver, with runtime under 3 ms. We have evaluated this new solver
on both synthetic and real data. For a synthetic test, we randomly placed a 3D

75

Solvers for Saturated Ideals

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Input noise standard deviation

R
ep

ro
je

ct
io

n
er

ro
r

Bundled
Our (209× 265)
Byröd et al. [34] (using basis selection)
Byröd et al. [34] (without basis selection)
Ground truth

Figure 2.3: Synthetic triangulation test, comparing our method to non-linear opti-
mization for different amounts of added image noise.

point and three cameras in a box with side-length 100. We then randomly chose
an orientation for each camera with the constraint that the point would be visible,
for a field of view of around 70◦. We finally added normally distributed noise to
the projection points with varying standard deviation. The result of running our
algorithm, for varying degrees of noise, is shown in Figure 2.3. Also shown is
the corresponding reprojection error for the randomly set ground truth 3D-point
as well as the non-linearly optimized 3D-point position, using the ground truth
position as initialization. The results for each noise level are evaluated on 1,000
random instances. We compare our results with the state-of-the-art solver from
Byröd et al. [34]. Note that our solver achieves similar results without the special
techniques for improving numerics from [34]. For comparison we have also in-
cluded the results from the solver from [34] without basis selection. To test our
triangulation method on real data, we ran it on three large scale problems where
the camera matrices are available. In Figure 2.4 triangulated 3D points for the
Notre Dame dataset [195] with around 120,000 3D-points, the Orebro Castle
dataset [174] with around 50,000 3D-points, and the Arts Quad dataset [45]
with around 1,400,000 3D-points are shown.

76

2.4. Applications with Saturated Ideals

−6 −5 −4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2
·104

log10 of reprojection error

Bundled
Our (209× 265)
Byröd et al. [34]
(using basis selection)

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

0.2

0.4

0.6

0.8

1

1.2
·104

log10 of reprojection error

Bundled
Our (209× 265)
Byröd et al. [34]
(using basis selection)

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

log10 of reprojection error

Bundled
Our (209× 265)
Byröd et al. [34]
(using basis selection)

Figure 2.4: Triangulated points for three real problems using our triangulation
method. Top to bottom: the Notre Dame dataset [195] with around 120,000 3D-
points, the Orebro Castle dataset [174] (around 50,000 3D-points), and the Arts
Quad dataset [45] (around 1,400,000 3D-points). Histograms show reprojection
errors for our method compared to the solutions provided in the original datasets
(which are bundled over all available cameras, hence the slighly larger median error)
and the solver from [34].

77

Solvers for Saturated Ideals

2.4.2 Time-of-Arrival Self-Calibration

The term Time-of-Arrival (ToA) or alternatively Time-of-Flight (ToF), denotes
the travel time of a signal from a transmitter to a receiver. If the speed of the
medium is known such measurements provide distances from the transmitters to
the receivers. The ToA self-calibration problem is the problem of estimating both
transmitter positions sj and receiver positions ri given distance measurements,

d2
ij = ‖ri − sj‖2

2. (2.47)

Following [116] we rearrange the equations in (2.47) into four types,

d2
11 = (r1 − s1)T (r1 − s1), (2.48)

d2
1j − d2

11 = −2rT1 (sj − s1)+sTj sj−sT1 s1, (2.49)

d2
i1 − d2

11 = −2(ri − r1)T s1+rTi ri−rT1 r1, (2.50)

d2
ij − d2

i1 − d2
1j + d2

11 = −2(ri − r1)T (sj − s1). (2.51)

Introducing the two matrices

R =
[
(r2 − r1) . . . (rm − r1)

]
(2.52)

S =
[
(s2 − s1) . . . (sn − s1)

]
(2.53)

the (m− 1)(n− 1) constraints in (2.51) can then be written B = RTS, where

B =

d2

22−d2
21−d2

12+d
2
11

−2 . . .
d2

2n−d2
21−d2

1n+d
2
11

−2
...

. . .
...

d2
m2−d2

m1−d2
12+d

2
11

−2 . . .
d2
mn−d2

m1−d2
1n+d

2
11

−2

 . (2.54)

By factorizing B = R̃T S̃, we can almost solve the self-calibration problem, how-
ever the factorization is not unique. If B = R̃T S̃, then B = R̃TAA−1S̃ is also
a valid factorization. Furthermore both the sender position s1 and the receiver
position r1 are unknown.

Since the choice of coordinate system is arbitrary, one may without loss of
generality set r1 to the origin. Also since any matrix A can be QR-factorized as
a rotation matrix times a triangular matrix, one may assume that A is triangular,
i.e. A = L. These choices fixate most of the freedom in the coordinate system.

78

2.4. Applications with Saturated Ideals

Thus we parametrize the problem with (L,b) so that

r1 = 0, s1 = Lb, ri = L−T R̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n.
(2.55)

Using this parametrization the equations (2.48)–(2.50) become

d2
11 = bTH−1b, (2.56)

d2
1j − d2

11 = S̃Tj H
−1S̃j + 2bTH−1S̃j , (2.57)

d2
i1 − d2

11 = R̃Ti HR̃i − 2bT R̃i, (2.58)

using the symmetric matrix H = (LTL)−1. When both receivers and senders
are in general 3D positions, there are two minimal problems to the time-of-arrival
self-calibration problem – 6 receivers and 4 senders, and 5 receivers and 5 senders
[116]. The solution strategy is now to first consider the constraints in (2.58),
which are linear in the unknowns (H,b). For the minimal problem with 6 re-
ceivers and 4 senders there are 5 such linear constraints on the 9 parameters in
(H,b). Thus it is possible to parametrize (H,b) linearly in four unknowns
(x1, x2, x3, x4). The remaining equations (2.56) and (2.57) involve the inverse
of H . By rewriting H−1 = adjH/detH and multiplying with detH , the
remaining four equations

d2
11 detH − bT adjHb = 0, (2.59)

(d2
1j−d2

11) detH−S̃Tj adjHS̃j−2bT adjHS̃j = 0 (2.60)

become polynomial equations in (x1, x2, x3, x4). The problem has 38 solutions
for which detH 6= 0. However there is a one dimensional family of solutions for
which detH = 0. The other minimal case with 5 receivers and 5 senders can in
a similar manner be reduced to a system of five equations (2.59) and (2.60) in five
unknowns. This problem has 42 solutions for which detH 6= 0 and again a one
dimensional family of solutions where detH = 0. For other cases see [192, 193].

Using our approach we generated solvers for the two minimal cases (4, 6)
and (5, 5). The two solvers have similar performance and we only evaluate the
(4, 6) case here. In Figure 2.5 we show the relative error in the distances for
1000 synthetic instance. We compare with the state-of-the-art solver from [116].
The underlying problem is numerically challenging, and in [116] the online ba-
sis selection method from [33] was used to improve the numerical performance.

79

Solvers for Saturated Ideals

The template sizes and runtimes are shown in Table 2.1. We also include the
results using the generalized eigenvalue technique from Chapter 1 Section 1.3.3
(page 49) which improves the numerical stability.

−14 −12 −10 −8 −6 −4 −2 0 2 4
0

5 · 10−2

0.1

0.15

0.2
Kuang et al.[116]
Our
Our (Gen. eig.)

Figure 2.5: Histogram of log10 of residuals for solutions using the solver from Kuang
et al. [116] and from proposed system.

2.4.3 Vanishing Point Estimation

In [162] the authors present a method for estimating the vanishing points in a
Manhattan world. It is based on solving the following minimization problem
optimally,

min
R

E =

N∑
i=1

(nTi Rmi)
2, RTR = I, det(R) = 1, (2.61)

where ni is the known vanishing point in the canonical frame for each line i given
by its unit normalized representation mi. The sought R is the rotation matrix
that takes the camera to the canonical frame. The rotation is then parameterized
using the Cayley-Gibbs-Rodrigues formulation using sT = [s1, s2, s3], and

R(s) =
(1− sT s)I + 2[s]× + 2ssT

1 + sT s
, (2.62)

80

2.4. Applications with Saturated Ideals

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

RMS consistency error (degrees)

Mirzaei et al. [162]
Our
Ground truth

Figure 2.6: Vanishing point estimation RMS consistency on the York Urban dataset
[51]. The figure shows that our method gives the same results as [162] on this dataset.

where [s]× is the cross-product matrix. The solution to (2.61) is found by enu-
merating all stationary points of E, by calculating the derivatives of (2.61) with
respect to s and setting these to zero. The equations are given by

fj(s) = (1 + sT s)
∂Ê

∂sj
− 4sjÊ = 0, j = 1, 2, 3, (2.63)

where Ê(s) = (1 + sT s)2E(s). The affine variety related to (2.63) contains
a one-dimensional solution set corresponding to the imaginary hypersphere 1 +
sT s = 0. This means that the standard action matrix method cannot be used di-
rectly. In [162] the authors solve this by introducing an auxiliary variable s0 and
a new equation, f0 = s0(1 + sT s)− 1 = 0, which results in a zero-dimensional
solution set, containing at most 40 solutions. This results in a stable, but com-
parably slow solver, based on an elimination template of size 2, 860 × 3, 060.

We have tested our automatic saturation methodology on this problem, by
directly solving (2.63) and saturating with 1 + sT s. This results in an orders of
magnitude faster solver with an elimination template of size 246 × 397. In or-
der to compare the numerical properties of our solver we evaluated it on the same

81

Solvers for Saturated Ideals

dataset as in [162], namely the York Urban Dataset (YUD), [51]. In Figure 2.6 the
cumulative histogram of the consistency error is shown for our method compared
to [162] and the ground truth estimate. The consistency error is defined as the
RMS of sin−1(vTi mj) over all lines j for each image, where vi is the correspond-
ing estimated vanishing point. One can note that we get the same distribution
as [162] (see their paper for the discussion on the slightly better results compared
to the ground truth estimate). The average running time of our solver on YUD
is 5 ms, compared to 1.8 s for [162]. This corresponds to a speed-up of more
than a factor of 300, which shows that in this case it is much more beneficial to
saturate directly compared to introducing an auxiliary variable as in (2.14). Our
faster solver is also more suited to be used in a RANSAC framework, to eliminate
errors in the classification of the lines.

2.5 Conclusions

In this chapter we have presented a new technique for building polynomial solvers
for saturated ideals. In contrast to previous approaches the method avoids explic-
itly computing generators of the saturated ideal at runtime and instead lifts the
problem into the original ideal.

82

Chapter 3

Exploiting Symmetries in
Polynomials Systems

In this chapter we study certain symmetries in polynomial equation systems and
how they can be integrated into the action matrix method. The main contribution
is a generalization of the partial p-fold symmetry from Ask et al. [13] and Kuang
et al. [119], and we provide new insights as to why these methods work.

3.1 Related Work

In [13] Ask et al. considers polynomial systems, where the degree of each mono-
mial has the same remainder modulo p. This introduces a p-fold symmetry into
the solution set. By taking this symmetry into account they construct smaller and
more stable polynomial solvers. This work was later extended by Kuang et al.
[119] to polynomial systems where this symmetry only exists in a subset of the
variables. This type of symmetry has been used in [109, 232, 12, 77, 57]. In
this chapter we further extend the work from [13, 119] and show how to handle
multiple independent symmetries.

In [41] Corless et al. also consider symmetries in the action matrix method.
Their approach is based on studying the group structure of the symmetry using
tools from invariant theory. The paper present theory for symmetries of general
group structure and the focus is mostly showing how to solve the equation system
assuming that a Gröbner basis is known.

In contrast, in this chapter the focus is to use these symmetries to construct

83

Exploiting Symmetries in Polynomials Systems

smaller elimination templates, and similarly to [13, 119] we instead classify the
symmetry based on the monomials appearing in the equations. This allows the
method to integrate more naturally into the standard pipeline for building poly-
nomial solvers using elimination templates. While we are only able to handle a
subset of the symmetries using this formulation, we will show many interesting
applications where this is sufficient.

3.2 Symmetries in Minimal Problems

Now we present our generalization of the results from the Ask et al. [13] and
Kuang et al. [119]. In this section we will make heavy use of the multi-index
notation for monomials, i.e.

xα = x(α1,...,αn) =

n∏
k=1

xαkk . (3.1)

We start with a simple example.

Example 3.1. Consider the following system of polynomial equations{
x2 + y − 2 = 0,

x2y2 − 1 = 0.
(3.2)

The system has six solutions given by

(±1, 1), (±ϕ,−ϕ−1), (±ϕ−1, ϕ) where ϕ =
1 +
√

5
2

. (3.3)

Since each monomial has the x-variable raised to an even power, we can for any
solution flip the sign of x and get another solution.

This type of symmetry was studied in [13, 119] and is characterized in the
following definition.

Definition 3.2. The polynomial f(x,y) has a partial p-fold symmetry in x if the
sum of the exponents for x of each monomial has the same remainder q modulo p, i.e.

f(x,y) =
∑
k

akx
αkyβk =⇒ q ≡ 1Tαk mod p ∀k. (3.4)

84

3.2. Symmetries in Minimal Problems

In [119] it was shown that if we have a system of polynomials with this prop-
erty the solution set will also have a p-fold symmetry. More specifically if V is the
set of solutions then

(x,y) ∈ V =⇒ (e
2πi k

px,y) ∈ V k = 0, 1, 2, ..., p− 1. (3.5)

Example 3.3. The polynomial system{
x3 − 1 = 0,

xy − 1 = 0
(3.6)

has three solutions given by V = {(1, 1), (−1+i
√

3
2 , −1−i

√
3

2), (−1−i
√

3
2 , −1+i

√
3

2)}.
While this system does not have any partial p-fold symmetries, the solution set has the
following property

(x, y) ∈ V =⇒ (e2πi 1
3x, e2πi 2

3 y) ∈ V, (3.7)

which is similar to that in (3.5).

In this work we consider a natural generalization of the partial p-fold symme-
try characterized by the following definition.

Definition 3.4. The polynomial f(x) has a weighted p-fold symmetry with weights
c ∈ Znp if the c-weighted sum of the exponents for x of each monomial has the same
remainder q modulo p, i.e.

f(x) =
∑
k

akx
αk =⇒ q ≡ cTαk mod p ∀k. (3.8)

Example 3.5. Below are three examples

f1(x, y) = x3 − x2y2 + y3, p = 3, c = (2, 1),
f2(x, y) = x5 + x3y + x, p = 4, c = (1, 2),
f3(x, y, z) = x+ y2 + yz − 1, p = 2, c = (0, 1, 1).

Note that the vector c is not unique, e.g. for the first polynomial c = (1, 2) would
also work. If p is not prime then for any factor of p we also have a symmetry, e.g.
the polynomial f2 also has a 2-fold symmetry. From the last example it becomes clear
that the partial p-fold symmetry from [119] is a special case of the weighted symmetry
where the weights are binary, corresponding to the symmetry variables.

85

Exploiting Symmetries in Polynomials Systems

Similarly to (3.5) we will see that for any polynomial equation system with
c-weighted p-fold symmetry, the solution set has a corresponding symmetry. For
any vector c ∈ Znp we define the matrix

Dcp = diag

{
exp(2πi

ck
p

)

}n
k=1

. (3.9)

Definition 3.6. The set V ⊂ Cn has a c-weighted p-fold symmetry if it is stable
under Dcp , i.e.

DcpV ⊂ V. (3.10)

The following two theorems are directly adapted from Kuang et al. [119],
where they are proved for regular partial p-fold symmetry.

Theorem 3.7. Let I = 〈f1, . . . , fm〉. If each fi has a c-weighted p-fold symmetry
then

x ∈ V (I) =⇒ Dcpx ∈ V (I). (3.11)

Proof. Take any x ∈ V (I). Consider some fi and let q be the remainder from
Definition 3.4. Let xβ be any monomial from fi and consider the effect of Dcp ,

(Dcpx)β =
∏
k

(e
2πi

ck
p xk)

βk =
∏
k

e
2πi

ckβk
p xβkk = e

2πi c
T β
p xβ = e

2πi q
pxβ.

(3.12)

Then if fi(x) =
∑

k akx
αk we have

fi(D
c
px) =

∑
k

ak(D
c
px)αk =

∑
k

ake
2πi q

pxαk = e
2πi q

p fi(x) = 0, (3.13)

and since this holds for any i = 1, 2, . . . ,mwe must have thatDcpx ∈ V (I).

Theorem 3.8. Let I = 〈f1, . . . , fm〉 be an ideal where V (I) satisfies (3.11). Then
there exist a set of generators I = 〈g1, . . . , gn〉 where each gi has c-weighted p-fold
symmetry.

86

3.2. Symmetries in Minimal Problems

Proof. Let x ∈ V . Then for any fi we have

fi

(
(Dcp)

kx
)

= 0, k = 0, 1, 2, ..., p− 1. (3.14)

Decompose fi into fi(x) = g0(x) + g1(x) + ... + gp−1(x) such that each
monomial in gq has the c-weighted remainder q modulo p, i.e.

gq(x) =
∑
k

akx
γk =⇒ cTγk ≡ q mod p. (3.15)

Then if we denote ω = e
2πi 1

p we have

fi(x) = g0(x) + g1(x) + ...+ gp−1(x), (3.16)

fi(D
c
px) = g0(x) + ωg1(x) + ...+ ωp−1gp−1(x), (3.17)

. . .

fi((D
c
p)
p−1x) = g0(x) + ωp−1g1(x) + ...+ ωgp−1(x). (3.18)

Since each fi((Dcp)
kx) = 0 we can rewrite this as

1 1 1 . . . 1
1 ω ω2 . . . ωp−1

...
...

...
. . .

...
1 ωp−1 ωp−2 . . . ω

g0(x)
g1(x)
g2(x)

...
gp−1(x)

 = 0. (3.19)

Since the matrix is non-singular we must have gk(x) = 0 for k = 0, 1, 2, . . . , p−
1. By definition each gk will have a c-weighted p-fold symmetry and by replacing
each equation fi(x) = 0 by the equations {gk(x) = 0}p−1

k=0 it is clear that we get
new generators which has the correct symmetry.

Corollary 3.9. Take any polynomial f ∈ I = 〈f1, f2, . . . , fm〉 where V (I) satisfy
(3.11) and decompose

f(x) = g0(x) + g1(x) + ...+ gp−1(x), (3.20)

such that each monomial in gq has the c-weighted remainder q modulo p, then each
component gq is a polynomial in I .

87

Exploiting Symmetries in Polynomials Systems

Proof. This is a consequence of the proof of the previous theorem.

Corollary 3.10. Let I ⊂ C[X] be an ideal where V (I) has c-weighted p-fold
symmetry, i.e. satisfies (3.11), and let B be a monomial basis in C[X]/I . For any
h ∈ C[X] with c-weighted exponent remainder q modulo p we have that

[h(x)] ∈ [spanBq], (3.21)

where Bq are the basis elements with c-weighted exponent remainder q modulo p.

Proof. Since B is a linear basis for C[X]/I there exist coefficients ak such that

[h(x)] =

[∑
k

akbk(x)

]
, where bk ∈ B. (3.22)

Then we have h(x) −∑k akbk(x) ∈ I . Using Corollary 3.9 we can split this
into the different exponent remainder classes, which gives us,

h(x)−
∑
bk∈Bq

akbk(x) ∈ I =⇒ [h(x)] =

 ∑
bk∈Bq

akbk(x)

 . (3.23)

While the following corollary was not stated explicitly in Ask et al. [13] and
Kuang et al. [119], it is what allowed them to only consider e.g. even monomials
when constructing their elimination templates. This also makes it clear how to
handle multiple independent symmetries. In Corless et al. [41] a similar result is
presented.

Corollary 3.11. For any action polynomial α(x) ∈ C[X] with c-weighted remain-
der zero the corresponding action matrix becomes block diagonal.

Proof. If α(x) has c-weighted remainder zero then all polynomials in α(x)Bq
will have remainder q. From Corollary 3.10 we get [α(x)Bq] ⊂ [spanBq] and
the result follows.

88

3.2. Symmetries in Minimal Problems

3.2.1 Solving Equation Systems with Symmetries

Once the symmetries have been identified they can be used to construct more
compact polynomial solvers. From Corollary 3.11 we know that if we choose our
action polynomial a(x) ∈ C[X] to be invariant with respect to the symmetry
the corresponding action matrix will be block diagonal. The idea is then to only
consider a single block of the matrix, i.e. we only consider the action of α(x) on a
subset of the basis monomials B. The elimination template then only needs to be
able to construct the polynomials required for this smaller sub-block of the action
matrix. Since these only contain monomials of a certain exponent remainder
class, we only need to include equations which has this class in our template.
This typically allows for much smaller elimination templates to be used.

Next we show two concrete examples where we construct the partial action
matrix and use it to recover the solutions.

Example 3.12. Consider again the system in Example 3.1,{
x2 + y − 2 = 0,

x2y2 − 1 = 0.
(3.24)

We saw earlier that this system has six solutions and a 2-fold partial symmetry in the
x variable, or equivalently a (1, 0)-weighted 2-fold symmetry. For this system the
quotient ring C[X]/I is spanned by the monomials

B = {1, x, y, xy, y2, xy2}. (3.25)

We can group these into two sets, based on their (1, 0)-weighted remainder modulo 2,

B0 = {1, y, y2} and B1 = {x, xy, xy2}. (3.26)

Now instead of working with the entire basis B we will only consider the subset B0.
If we choose x2 to be our action polynomial (note that this has (1, 0)-remainder zero)
we have the following multiplication maps1

Tx2 [1] = x2 = 2− y, Tx2 [y] = x2y, Tx2 [y2] = x2y2 = 1. (3.27)

Since one of the monomials was not in the span of B0 we need to generate more
equations. Multiplying the first equation by y we get

x2y + y2 − 2y = 0 =⇒ Tx2 [y] = x2y = 2y − y2 ∈ spanB0. (3.28)

1Tα : C[X]/I → C[X]/I is the linear map corresponding to multiplication by α(x).

89

Exploiting Symmetries in Polynomials Systems

Finally we can construct our action matrix, 0 0 1
−1 2 0
0 −1 2

y2

y
1

 = x2

y2

y
1

 . (3.29)

Even though the system has six solutions we only have to solve a 3 × 3 eigenvalue
problem. From each eigenvector we can construct two solutions with different signs for
x.

Next we show a similar example but where the equation system has two inde-
pendent symmetries.

Example 3.13. Consider the equation system{
x2 + y2 − 2 = 0,

xy2 − x = 0.
(3.30)

This system has a 2-fold partial symmetry in the x variable and 2-fold partial sym-
metry in y, or equivalently two 2-fold symmetries with weights c1 = (1, 0) and
c2 = (0, 1). The equation system has six solutions and a basis for the quotient ring
C[X]/I is given by

B = {1, x, y, xy, y2, y3}. (3.31)

Grouping the basis monomials based on their ck-weighted remainders modulo 2:

B0,0 = {1, y2}, B0,1 = {y, y3}, B1,0 = {x}, B1,1 = {xy}. (3.32)

Let us choose to work with B0,0. By multiplying the second equation with x we get
that all the monomials in the system have the same remainder as our monomial basis,{

x2 + y2 − 2 = 0,

x2y2 − x2 = 0.
(3.33)

Choosing again the action polynomial as x2 we get the following multiplications

Tx2 [1] = x2 = 2− y2 ∈ spanB0,0, Tx2 [y2] = x2y2 = x2 = 2− y2 ∈ spanB0,0,
(3.34)

90

3.2. Symmetries in Minimal Problems

which allows us to construct a 2× 2 action matrix[
−1 2
−1 2

](
y2

1

)
= x2

(
y2

1

)
. (3.35)

This matrix has eigenvalues 0 and 1 with corresponding eigenvectors
(

2
1

)
,
(

1
1

)
.

The two eigenpairs give us the following possibilities{
y2 = 2

x2 = 0
and

{
y2 = 1

x2 = 1
. (3.36)

The first eigenvector gives two solutions (0,
√

2) and (0,−
√

2) and the second gives
four solutions (1,±1), (−1,±1). The full action matrix has the following form

1
1
−1 2
−1 2

−1 2
−1 2

xy
x
y3

y
y2

1

 = x2

xy
x
y3

y
y2

1

 . (3.37)

In this example we chose the basis B0,0 but we could also have used B0,1 to recover
the solutions. However the other two choices would not have allowed us to recover the
complete solution set.

3.2.2 Implementation

We have implemented support for using this type of symmetry in the automatic
generator presented in Chapter 1. It automatically finds these variable aligned
symmetries by simply computing the remainders for the monomial exponents
for all the weight vectors c up to some predefined maximum weight. For small
problems this can be done very quickly. To find the elimination template we
only need to partition the quotient ring basis into the different remainder classes
and make sure to choose an action monomial invariant to the symmetry. One
elimination template is then created for each exponent remainder class and the
smallest one is kept.

91

Exploiting Symmetries in Polynomials Systems

3.3 Unaligned Symmetries

In the previous section we have studied symmetries which depend on the expo-
nents of the monomials. These properties are however not preserved under a
linear change of variables and for some problems there can exist weighted sym-
metries which only appear after a change of variables.

Example 3.14. For θ ∈ R consider the following family of polynomial systems{
x2 + y2 = 1

x+ y = θ
. (3.38)

Clearly the solution set is stable under the transform which switches x and y since the
equation system is unchanged. But in this formulation the system does not have any
weighted p-fold symmetries. Performing a change of variables{

x̂ = x+ y

ŷ = x− y
=⇒

{
1
2 x̂

2 + 1
2 ŷ

2 = 1

x̂ = θ
(3.39)

reveals a 2-fold symmetry in the ŷ variable. The solutions before and after the change
of variables is illustrated below. The axis of symmetry is dashed in the left figure. After
the change of variables, the symmetry axis is aligned with the x axis.

x

y

x̂

ŷ

The previous example showed a polynomial system which was invariant to
a specific linear transform. After a change of variables the symmetry was trans-
formed into a weighted p-fold symmetry as in Section 3.2. The following theorem
shows that under some weak assumptions this can be done in general.

92

3.3. Unaligned Symmetries

Theorem 3.15. Let fi(x) = 0, i = 1, 2, . . . ,m be a polynomial system with a
finite number of solutions. If there exist an invertible matrix A 6= I such that the
solution set V = {x | f(x) = 0} ⊂ Cn is stable under A, then the polynomial
system exhibits a c-weighted p-fold symmetry after a linear change of variables.

Proof. We start by noting that we can without loss of generality assume that
spanV = Cn. If this does not hold it will be sufficient to consider the restriction
of A to the span of V , i.e. A|V : spanV → spanV .

Since V is finite and A injective we have that AV = V . This means that A
acts as a permutation on the elements of V . It follows that there must exist p ∈ N
such that

Aps = s ∀s ∈ V, (3.40)

since there are only a finite number of possible permutations. This implies

Ap = I, (3.41)

since the elements of V span Cn. This is a sufficient condition for A to be
diagonalizable and that the eigenvalues of A are p:th roots of unity, i.e. λk =

e
2πi

ck
p . Let S be the matrix which diagonalizes A, then

A = SDS−1 = S diag {e2πi
ck
p }nk=1S

−1. (3.42)

Note that by definition D = Dcp for c = (c1, c2, . . . , cn) ∈ Znp and if we
perform the change of variables x̂ = S−1x the solution set instead becomes
stable under Dcp and thus the system has a c-weighted p-fold symmetry.

If the system has multiple symmetry matrices we can use all of them if we
are able to diagonalize them simultaneously. It is a well-known fact from linear
algebra that a set of diagonalizable matrices can be simultaneously diagonalized if
and only if they commute.

In [41], Corless et al. also consider symmetries where the corresponding ma-
trices do not commute. In this case it is not always possible to choose a monomial
basis for K[X]/I which makes the action matrix block diagonal. However, for
non-monomial quotient ring bases it is not as clear how to construct the elimina-
tion templates efficiently.

93

Exploiting Symmetries in Polynomials Systems

3.3.1 Finding Unaligned Symmetries in Practice

Unless there is some problem specific knowledge it can be difficult to find the
change of variables which reveals the symmetry. In this section we present a simple
heuristic method for determining if a given problem has any symmetries of the
type presented in the previous section. The idea is to, similarly to the homotopy
continuation methods, generate solution trajectories for a family of problems.
From these trajectories it is then possible to identify the symmetries.

Assume that we are given a family of polynomial systems {fi(x,a) = 0},
which depends on some data a ∈ Cm, i.e. for fix a each fi(x,a) is polynomial
in x. To find the symmetries we do the following:

1. Take some instance a0 ∈ Cm and solve the problem {fi(x,a0) = 0}
using any method. This can for example be accomplished by selecting
some a0 where the solutions are known, or by using some numerical solver
(e.g. PHCPack [220]). Denote the solutions s0

k, k = 1, 2, . . . , N .

2. Next we generate a sequence of polynomial systems by updating data in
small increments, at+1 = at + ε. For each solution s0

k we generate a solu-
tion trajectory by tracking the solution using non-linear refinement methods
(e.g. Newton iterations). So to find st+1

k we solve {fi(x,at+1) = 0} by
starting non-linear refinement at stk. This is repeated until the matrices

Sk =
[
s0
k s1

k . . . stk
]
∈ Cn×t, k = 1, 2, ..., N (3.43)

are all of full rank and t > n.

3. For each pair, i 6= j, we try to find a matrix Aij ∈ Cn×n such that

AijSi = Sj . (3.44)

Since the system is overdetermined and the solution matrices Si might have
some small errors we solve (3.44) in a least square sense. If the residuals
are sufficiently close to zero, we add the matrix Aij to a list of possible
symmetry matrices.

4. For each matrix Aij we check if the solution set is stable, i.e. if for each k
there exist ` 6= k such that AijSk = S`. The matrices which satisfy this
are the symmetry matrices.

5. Finally we generate new instances and check if the symmetry matrices work.

94

3.4. Application with Symmetries

3.4 Application with Symmetries

Now we will present one problem where we can build significantly smaller solvers
by exploiting the symmetric structure of the problem. Other examples (marked
with †) can be found in Table 1.1 in Chapter 1.

3.4.1 Weak Perspective-n-Points

In this section we show a practical example where we can construct a more com-
pact polynomial solver by exploiting a symmetry in the problem. We consider the
problem of estimating a weak perspective camera2 (also known as scaled ortho-
graphic camera) from n 2D-3D point correspondences. We find the pose which
minimizes the squared reprojection error.

To find the pose which minimizes the squared reprojection error we want to
solve the following constrained minimization problem

min
s,R,t

∥∥RA+ t1T −B
∥∥2
F

s.t. RRT = s2I2, (3.45)

where A ∈ R3×n are the 3D points and B ∈ R2×n are the corresponding 2D
projections. By differentiating the cost w.r.t. t we get

2(RA+ t1T −B)1 = 0 =⇒ t =
1
n

(B −RA)1. (3.46)

Inserting into the original cost∥∥∥∥(RA−B)(I − 1
N
11T)

∥∥∥∥2

F

=
∥∥∥RÃ− B̃∥∥∥2

F
, (3.47)

where Ã is simply A with the row-mean subtracted. The problem can be further

simplified. Let Ã = U
[
Σ 0

] [V T
1
V T

2

]
be the singular value decomposition of Ã.

Then ∥∥∥RÃ− B̃∥∥∥2

F
=
∥∥∥(RU)Σ− B̃V1

∥∥∥2

F
(3.48)

2In some literature different scales for x and y-axis are allowed (i.e. unknown aspect ratio),
however here we consider a weak perspective camera to have unit aspect ratio.

95

Exploiting Symmetries in Polynomials Systems

and by an orthogonal change of variables the optimization problem is reduced to

min
s,R

∥∥∥∥R diag(a1, a2, a3)−
[
b11 b12 b13

b21 b22 b23

]∥∥∥∥2

F

(3.49)

s.t. RRT = s2I2, (3.50)

where a1 ≥ a2 ≥ a3 ≥ 0 are the singular values of Ã.

Parameterizing the Constraints

We use the unconstrained quaternion parametrization of the scaled 2×3 rotation,

R(q) =

[
q2

1 + q2
2 − q2

3 − q2
4 2(q2q3 − q1q4) 2(q1q3 + q2q4)

2(q1q4 + q2q3) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 − q1q2)

]
,

(3.51)

where q = (q1, q2, q3, q4) and ‖q‖2 = s. In this parametrization the problem in
(3.49) becomes unconstrained and the cost function

f(q) = ‖R(q)A−B‖2
F . (3.52)

is a quartic polynomial in the elements of q. Since each element in R(q) is of
degree two we have that f(q) only contains monomials of degrees 0, 2 and 4.

We find the optimal pose by studying the first-order necessary conditions
for (3.52). Since the problem is now unconstrained in the unscaled quaternion
representation we simply solve for the critical points, i.e.

g(q) = ∇qf(q) = 0. (3.53)

Since f(q) only contains even terms, this equation system g(q) = 0 can only
contain odd terms (degree 1 or 3). Thus we can directly see that the equation
system will have at least a two-fold symmetry. This symmetry correspond to the
sign ambiguity of the quaternion representation, i.e. R(q) = R(−q).

Additional Symmetries in the Solutions

The quaternion parametrization is inherently ambiguous since the sign of the
quaternion does not matter. But it turns out that there is a further ambiguity
which comes from the fact that the third row of the rotation matrix is ignored. By

96

3.4. Application with Symmetries

studying (3.51) we can see thatR(q1, q2, q3, q4) = R(iq4, iq3,−iq2,−iq1) holds
for all q ∈ C4. For the full 3 × 3 rotation matrix this corresponds to changing
sign of the third row. Together these ambiguities introduce a four-fold symmetry
into the solution set which can be described by the matrices

A1 =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and A2 =

 0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

. (3.54)

To simultaneously diagonalize the matrices we perform the following change of
variables,

q̂ =
1√
2

 0 −i −i 0
−1 0 0 1
i 0 0 i
0 −1 1 0

 q. (3.55)

In these new variables the rotation matrix becomes

R(q̂) =

[
q̂2

1 − q̂2
2 − q̂2

3 + q̂2
4 − iq̂2

1 − iq̂2
2 + iq̂2

3 + iq̂2
4 2(q̂1q̂2 + 2q̂3q̂4)

−iq̂2
1 + iq̂2

2 − iq̂2
3 + iq̂2

4 − q̂2
1 − q̂2

2 − q̂2
3 − q̂2

4 2i(q̂3q̂4 − q̂1q̂2)

]
.

(3.56)

Note that the only mixed terms are q̂1q̂2 and q̂3q̂4. This leads to one 2-fold
symmetry in (q̂1, q̂2) and one 2-fold symmetry in (q̂3, q̂4).

In Chapter 6 we present another problem where this symmetry appears.

Constructing a Polynomial Solver

By studying the problem in Macaulay2 [75] and Maple [164] we find that the
system has 33 solutions when parameterizing it using quaternions. Ignoring the
trivial solution, the rest of the solutions can be grouped into eight groups of four
solutions.

We used the automatic generator from Chapter 1 to create polynomial solvers
for this problem, both using only the 2-fold symmetry (as in [14] and [119]) as
well as the full 2× 2-fold symmetry as described in the previous section. For the
2× 2 symmetry the following eight basis monomials,

B1,1 = {q̂1q̂3, q̂1q̂3q̂
2
4, q̂1q̂4, q̂1q̂

3
4, q̂2q̂3, q̂2q̂3q̂

2
4, q̂2q̂4, q̂2q̂

3
4}, (3.57)

97

Exploiting Symmetries in Polynomials Systems

gave the smallest elimination template with the action monomial α(q̂) = q̂1q̂2.
We also generated solvers without using any of the symmetries. We applied

both the automatic generator from Chapter 1 as well as the automatic generator
from Kukelova et al. [122]. The template sizes were 231 × 263 and 243 × 273.
In the experimental evaluation we only include the former.

Another Parametrization from Wu

In [227] Wu presented a solver for the P3.5PF problem. For this problem there
exist a similar symmetry where the sign change in the first two rows of the rotation
matrix can be canceled by changing the sign of the focal length, i.e.f f

1

 rT1
rT2
rT3

 =

−f −f
1

 −rT1
−rT2
rT3

 . (3.58)

To avoid this symmetry Wu proposed used a re-parametrization of the problem.
The idea is to factor out a rotation around the z-axis,f f

1

cos(θ) − sin(θ)
sin(θ) cos(θ)

1

R(φ, γ) =

x −y
y x

1

R(φ, γ),

(3.59)

and then introduce new unknowns, x = f cos(θ) and y = f sin(θ) where the
symmetry is not present, i.e.

x = f cos(θ) = (−f)(− cos(θ)). (3.60)

Since only the two first rows are considered for the WPnP problem, we can
use the parametrization for the scaled 2×3 rotation. In this parametrization we get
in addition to the 8 correct solutions, 4 solutions where x = y = 0, correspond-
ing to the zero scale solution. Using the automatic generator from Chapter 1 we
created a polynomial solver for this parametrization. The elimination template
was of size 208× 220.

Experimental Evaluation

In this section we experimentally evaluate the polynomial solvers from the previ-
ous sections. The sizes of the elimination templates and action matrices for the
three methods can be seen in Table 3.1.

98

3.4. Application with Symmetries

2× 2-sym. 2-sym. No sym. Wu

Elimination template 26× 34 138× 154 231× 263 208× 220
Action matrix 8× 8 16× 16 32× 32 12× 12
Runtime 0.22 ms 0.79 ms 1.9 ms 0.91 ms

Table 3.1: Size of the elimination template and action matrix for the four solvers.

−16 −15 −14 −13 −12 −11 −10 −9 −8
0

0.5

1 2x2-sym.
2-sym
No sym.
Wu

Figure 3.1: Histogram over the residuals for 1000 random instances. For the solver
using the parametrization from Wu [227] we prune the zero-scale solutions before
computing the residuals.

We evaluated the four solvers on synthetic instances. Figure 3.1 shows the dis-
tribution of the residuals over 1000 random instances. All solvers are sufficiently
stable for practical purposes. The solver using the parametrization from Wu has
slightly worse performance. For the 1000 instances, the maximum relative error
in the best residual was less than 10−4 for all methods. The average runtimes are
shown in Table 3.1.

Degeneracies

Under some conditions the problem changes nature and the polynomial solvers
break down. For this problem we empirically found that this happens when ei-
ther the structure is planar (a3 = 0) or if two of the singular values are equal
(a1 = a2 or a2 = a3). Close to these configurations the solvers become numeri-
cally unstable. We compare the performance of the polynomial solver on random
instances close to these degeneracies. We generated random instances where the
third singular value approached zero and instances where |a2 − a3| approached

99

Exploiting Symmetries in Polynomials Systems

zero. Figure 3.2 shows the percentage of successful instances (defined as all resid-
uals less than 10−6) as we approach the degenerate configurations. The solver
using the parametrization from Wu [227] is the most sensitive to close to degen-
erate configurations. We can also see that the solver which only uses the two-fold
symmetry (2-sym.) has the best performance for the close to planar case (a3 = 0).

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

20

40

60

80

100

a3

2x2-sym.
2-sym.
No sym.
Wu

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

20

40

60

80

100

a2-a3

Figure 3.2: Percentage of successful instances (all residuals smaller than 10−6) when
the structure is close to planar, i.e. a3 ≈ 0 (Top) and when there are two almost
equal singular values, i.e. a2 ≈ a3. (Bottom)

3.5 Conclusions

In this chapter we have revisited the symmetries studied in Ask et al. [13] and
Kuang et al. [119]. These symmetries can be used to construct smaller elimination
templates by only considering a subset of the basis monomials in the quotient
ring. Our contribution is a more clear presentation of the symmetries from [13,
119] and we provide some more theoretical motivations why these methods work.

100

3.5. Conclusions

This also revealed how to handle multiple independent symmetries, resulting in
even more compact polynomial solvers. Furthermore, we have shown that these
symmetries are not restricted to theoretical examples, but occur in real problems
from computer vision.

101

Exploiting Symmetries in Polynomials Systems

102

Chapter 4

Basis Selection for Minimal
Problems

Many state-of-the-art polynomial solvers in computer vision are based on Gröbner
bases and the action-matrix method, and there are now powerful tools available
for the automatic generation of such solvers (see Chapter 1 and [122, 134, 108]).
In this chapter we target a specific part of this pipeline, namely the choice of
monomial basis in the quotient ring. We will show how careful selection of the
monomial bases can give significant speed-up in the resulting solvers. Previously,
little attention has been paid to the choice of basis to gain speed in polynomial
solvers, and usually a Gröbner basis is used to select the monomial basis. We will
in the chapter describe how we can test all possible Gröbner bases. We will further
show that going beyond Gröbner bases leads to faster solvers in a number of cases.

Specifically, our contributions in this chapter are:

• Minimizing elimination template size by enumerating all possible Gröbner
bases for an ideal.

• A heuristic method for sampling feasible monomial bases which do not
come from any Gröbner basis.

• State-of-the-art performance on a number of geometric estimation and cal-
ibration problems in terms of speed.

103

Basis Selection for Minimal Problems

4.1 Related Work

When creating polynomial solvers in computer vision, the basis for the quotient
ring {b1, . . . , bK} is typically chosen as the standard monomials from the Gröb-
ner basis w.r.t. the monomial ordering GRevLex (this is e.g. done in Chapter 1
and [122, 134, 108]). However, this is an arbitrary choice and the methods work
for any basis. In this chapter we focus on the problem of selecting this basis with
the aim of reducing the size of the elimination template. We show that for some
problems there are better choices that yield significantly faster solvers.

Given a monomial basis it is still a difficult problem to find the smallest elim-
ination template. In this work we use the automatic generator from Chapter 1
([134]) to construct the templates, but this method is not guaranteed to find the
optimal template. The results in this chapter are w.r.t. this particular template
construction method. However, any other method for constructing the template
(such as the one from [122]) could be substituted.

Our approach can be used to optimize other characteristics of the solvers
as well, such as accuracy or stability. However, for practical purposes these are
typically secondary to runtime as long as they are sufficiently good. For example
if you are estimating the focal length it usually does not matter whether the errors
are 10−6 or 10−16.

In [34], Byröd et al. presented different methods for choosing the basis during
runtime. However in their setting the size of the template was fixed, and the
online basis selection was done solely to improve the numerics of the solver. In
[113] the authors further improved stability by carefully selecting the so-called
permissible monomials (i.e. the set from which the basis is chosen from in [34]).

4.2 Exhaustive Search over Gröbner Bases

For an ideal I , the (reduced) Gröbner basis depends on the monomial order-
ing chosen in the polynomial ring K[X]. Different orderings can yield different
Gröbner bases, and thus different sets of standard monomials. For polynomial
solvers in computer vision, the most popular ordering is GRevLex [43], since it
has been empirically observed to typically give small elimination templates [202,
200, 122, 134]. It has also been noted in computational algebraic geometry and
cryptography [190] that graded orderings [43] (i.e. archimedean [181]) often lead
to faster Gröbner basis computations compared to, e.g. lexicographical order-

104

4.2. Exhaustive Search over Gröbner Bases

0 1 2 3
0

1

2

3

x3 − x2 + 1
y + x2 − x
{x2, x, 1} y2 + x− 1

xy − 1
x2 − x+ y
{x, y, 1}

x+ y2 − 1
y3 − y + 1
{y2, y, 1}

a

b

Figure 4.1: The Gröbner fan of the ideal I = 〈x+ y2− 1, x y− 1〉 consists of three
two-dimensional cones. For each cone, there is exactly one reduced Gröbner basis
of I , and a corresponding basis for K[X]/I of standard monomials. All monomial
orderings generated by all weight vectors from one cone give the same reduced Gröb-
ner basis of I . Hence, there are exactly three different reduced Gröbner bases for I
over all possible different monomial orderings.

ings [43]. However, there exist examples where this is not the case. Hence, this
suggests to investigate the efficiency of Gröbner basis (and hence action matrix)
construction w.r.t. all possible different monomial orderings.

4.2.1 Gröbner Fans

While there are infinitely many different monomial orderings, Mora and Rob-
biano [165] showed that for a given ideal I there are only finitely many different
reduced Gröbner bases [69]. To present this theory is beyond the scope of this
chapter, but we will try to describe the main ideas and relate how this can be used
in our problem setting. The set of all reduced Gröbner bases of an ideal can be
computed [69, 97, 96] using the Gröbner fan of the ideal [165, 206]. The Gröb-
ner fan of an ideal was defined by Mora and Robbiano in 1988 [165]. It is a finite
fan of polyhedral cones indexing the distinct monomial initial ideals with respect
to monomial orderings or, equivalently, indexing the reduced Gröbner bases of
the ideal. See [165, 206, 69] for the full account of the theory.

Here we will illustrate it on a simple example computed using the software

105

Basis Selection for Minimal Problems

package Gfan [96, 97]. Consider the polynomial system I = 〈x+y2−1, x y−1〉.
Figure 4.1 shows the Gröbner fan of I together with the corresponding reduced
Gröbner bases and standard monomials. It consists of three two-dimensional
cones. For each cone, there is exactly one reduced Gröbner basis of I , giving
in total three different reduced Gröbner bases. To connect the different reduced
Gröbner bases to the fans in Figure 4.1, consider the exponent vectors [a, b]>

that correspond to monomials xayb, e.g. [2, 3]> represents x2y3. Now, for every
monomial ordering≺ on C[x, y] one can find a (set of) real non-negative (weight)
vectors w ∈ R2 such that if xayb ≺ xcyd, then [a, b] · w ≤ [c, d] · w. In this
way, every ordering is connected to a set of its (compatible) real weight vectors.
Finally, for a fixed I , the union of all the sets of weight vectors corresponding to
all monomial orderings producing the same reduced Gröbner basis is a full (here
two) dimensional cone in R2. There are only finitely many such cones for a fixed
I . In our situation, there are three two-dimensional cones, see Figure 4.1.

4.2.2 Building Minimal Solvers using Gröbner Fans

In Chapter 1 we presented an automatic generator for polynomial solvers which
was evaluated on a large test-bed of polynomial equation systems from geometric
computer vision. Even though some of the problem formulations are no longer
state-of-the-art for their respective problem, they still serve as a good benchmark
set to test our methods. For each of these problems we tried to compute the Gröb-
ner fan, aborting the computations if they lasted more than 12 hours. Using the
automatic generator we then constructed a polynomial solver for each of the re-
duced Gröbner bases found. Table 4.1 (page 111) shows some problems where we
were able to find a smaller elimination template compared to using the GRevLex
basis. Note that the number of Gröbner bases can increase very quickly and it is
not always tractable to compute the complete Gröbner fan for larger problems.
For the six point relative pose with shared radial distortion problem we ran the
Gröbner fan computation for a week before aborting the computation.

Figure 4.2 shows a histogram of the different template sizes for the solvers
constructed from the Gröbner fan for the P4PFR formulation from Bujnak et
al. [28]. Many of the found bases yield very large templates. To avoid these
uninteresting bases, as well as the long runtimes for computing the Gröbner fan,
we propose to use a guided random sampling approach in the next section.

106

4.3. Beyond Gröbner Bases

0 100 200 300 400 500 600 700 800
0

200

400

Template size

Fr
eq

.

Figure 4.2: Template size (rows) for the Gröbner fan bases for the P4PFR formulation
from Bujnak et al. [28].

4.3 Beyond Gröbner Bases

In the previous section we computed all reduced Gröbner bases for a problem and
used these to select quotient ring bases. However, it is not necessary to select a
standard monomial basis that comes from a Gröbner basis for some monomial
ordering, since any spanning and linearly independent set will do. In this section
we instead consider bases which do not come as standard monomial bases from
any Gröbner basis, and show that for some problems this allows us to find even
smaller elimination templates.

4.3.1 Random Sampling for Basis Selection

Once you drop the Gröbner basis constraint you have infinitely many choices for
monomial bases, so it is no longer possible to do any exhaustive search. Even if
we restrict ourselves to monomials below some fixed degree, the combinatorial
explosion of choices often makes it intractable to try them all.

Instead we propose a random sampling approach. The sampling is guided by
several heuristics based on empirical observations. We will try to motivate our
choices later on, but we will start by describing our proposed algorithm. The
heuristics we use for basis selection are:

H1. We try to have as many of the basis monomials and reducible monomials
(i.e. αbk) appearing in the original equations as possible.

H2. We try to minimize the degree in some of the unknowns. This usually

107

Basis Selection for Minimal Problems

helps when the variables occur in an unbalanced way in the equations. E.g.
if our problem is parameterized using a quaternion (for rotation) and a
focal length, we have seen that it is typically good to try to minimize the
degree of the focal length.

H3. We try to select a connected block of monomials.

To generate the initial set of monomials that we sample from we use the
following strategy: We start with the monomials occurring in the equations. If
these do not contain any basis (see Section 4.3.2) we multiply with all first degree
monomials that occur in the equations and add these. If they still do not contain
any basis, we again multiply with all the second degree monomials and so on (in
some special cases we need to add some extra low-degree monomials to get an
independent set). We denote these monomials by M and the monomials that
occur in the original equations by E ⊂M.

Now, to sample a basis we start by randomly choosing a binary weight vector
ω = {0, 1}n. This represents the direction we want to minimize in H2. For each
monomial m ∈ M we assign a weight wd(m) penalizing the weighted degree
using ω. So, e.g. if ω = (0, 1, 1), the monomial m = xyz2 would have the
weighted degree 0 + 1 + 2 = 3. Next we select an action variable α. It is chosen
uniformly in the direction which is minimized by ω. So, in the previous example
we would have chosen either y or z. If ω is all zero we choose uniformly from all
variables. Note that this α is used only for guiding the random sampling. When
we construct the solvers we try every variable as action.

The basis is then sampled iteratively, with one monomial added at a time.
Given a partial basis B ⊂M we select the next monomial to add as follows:

1. Find monomialsMB ⊂M that are linearly independent from the partial
basis B (see Section 4.3.2)

2. For each monomial m ∈MB compute a weight

w(m) = I (m ∈ E) + I (αm ∈ E ∪ B) + wd(m) + ε (4.1)

where ε is a small number.

3. Find the neighboring monomials of B inMB.

4. Sample proportionally tow(m) from the neighboring monomials. (If there
are no feasible neighboring monomials, sample instead from all ofMB).

These steps are iterated until we have a complete basis.

108

4.3. Beyond Gröbner Bases

4.3.2 Checking Linear Independence

When we sample basis elements, we need to be able to quickly determine if a set
of monomials are linearly independent in the quotient ring C[X]/I (or typically
Zp[X]/I since we do most of our calculations in Zp to speed up computations
and avoid round-off errors).

We start by computing any (reduced) Gröbner basis for the ideal and find the
standard monomials {b1, b2, . . . , bK} for this basis. Then, since these monomials
form a basis for the quotient ring, we write each m ∈M as

m =
∑
k

ckbk mod I, (4.2)

by simply dividing with the Gröbner basis. This associates vector

c = (c1, c2, . . . , cK), (4.3)

to each monomial inM. To check if a set of monomials is linearly independent in
the quotient ring, we can now equivalently check if the corresponding vectors are
independent in CK (or ZKp) by performing the standard Gaussian elimination.

4.3.3 Building Minimal Solvers with Sampled Bases

We applied our random sampling strategy in an experiment similar to the one
in Section 4.2.2. For each problem, we randomly sampled 100 bases and con-
structed the corresponding solvers. Some results are shown in Table 4.1. Using
our sampling strategy we can find smaller elimination templates for some prob-
lems. Note that for some problems the best basis did not come from any Gröbner
basis. We were also able to find smaller solvers for problems where the Gröbner
fan computation took too long and was aborted.

In Figure 4.3 we show the monomial bases which gave the smallest templates
from our sampling scheme for two problems, 8 point relative pose F+λ and 3
point image stitching fλ+R+fλ. The monomials are here represented by their
corresponding exponents as vectors. We also show the standard GRevLex bases,
that give significantly larger templates for these two problems. In general the
GRevLex ordering will lead to a basis that has a low total degree. We have found
that, for some problems, if it is possible to keep the maximum degree low in one
variable, even if the total degree becomes larger, this is beneficial for the template
size. Figure 4.3 left shows an example of this. Another important aspect that we

109

Basis Selection for Minimal Problems

0 1 2 3

0

1

2

3

Monomials in equation
Gröbner basis
Sampled basis

0 1 2 3 4 5 6

0

1

2

3

4

5

Monomials in equation
Gröbner basis
Sampled basis

Figure 4.3: The figure shows the basis monomials for two example problems, namely
8pt rel. pose F+λ (left) and 3pt image stitching fλ+R+fλ (right). Both these problems
have two variables, and for both these problems the proposed basis sampling scheme
gives significantly smaller template compared to the Gröbner basis variants.

have seen, is that we should choose, if possible, monomials within the original
equations, as these are available directly. In Figure 4.3 right, all the monomials
occurring in the original equations are shown as blue dots. In this case the sampled
basis better aligns with the structure of the monomials in the equations compared
to GRevLex.

4.3.4 Experiment: Heuristic vs. Uniform Sampling

In this section we show a comparison of our heuristic with sampling basis mono-
mials uniformly. We compare three different approaches: (i) our heuristic sam-
pling from the monomials in M (as defined in Section 4.3.1), (ii) uniformly
sampling fromM, and (iii) uniformly sampling from all monomials of the same
degree as those in M. Figure 4.4 shows the distribution of the template sizes
(number of rows) for 1,000 random samples for the P4PFR formulation from
Bujnak et al. [28]. Our sampling heuristic and the strategy for selectingM both
give significant improvements for this example.

110

4.3. Beyond Gröbner Bases

Pr
ob

le
m

A
ut

ho
r

O
ri

gi
na

l
[1

34
]

G
Fa

n+
[1

34
]

(#
G

B
)

H
eu

ri
st

ic
+[

13
4]

R
el

.p
os

e
F+
λ

8p
t

K
ua

ng
et

al
.[

11
8]

12
×

24
11
×

20
11
×

20
(1

0)
7
×

1
6

R
el

.p
os

e
E

+f
6p

t
B

uj
na

k
et

al
.[

27
]

21
×

30
21
×

30
1
1
×

2
0

(6
6)

1
1
×

2
0

R
el

.p
os

e
f

+E
+f

6p
t

K
uk

el
ov

a
et

al
.[

12
2]

31
×

46
31
×

50
31
×

50
(2

18
)

2
1
×

4
0

R
el

.p
os

e
E

+λ
6p

t
K

ua
ng

et
al

.[
11

8]
48
×

70
34
×

60
34
×

60
(8

46
)

1
4
×

4
0

St
it

ch
in

g
f
λ

+R
+f
λ

3p
t

N
ar

od
it

sk
y

et
al

.[
16

8]
54
×

77
48
×

66
48
×

66
(2

6)
1
8
×

3
6

A
bs

.P
os

e
P

4P
F

R
B

uj
na

k
et

al
.[

28
]

13
6
×

15
2

14
0
×

15
6

5
4
×

7
0

(1
74

5)
5
4
×

7
0

R
el

.p
os

e
λ

+E
+λ

6p
t

K
uk

el
ov

a
et

al
.[

12
2]

23
8
×

29
0

14
9
×

20
5

-
?

5
3
×

1
1
5

R
el

.p
os

e
λ

1
+F

+λ
2

9p
t

K
uk

el
ov

a
et

al
.[

12
2]

17
9
×

20
3

16
5
×

20
0

8
4
×

1
1
7

(6
89

6)
8
4
×

1
1
7

R
el

.p
os

e
E

+f
λ

7p
t

K
ua

ng
et

al
.[

11
8]

20
0
×

23
1

18
1
×

20
0

6
9
×

9
0

(3
19

0)
6
9
×

9
0

R
el

.p
os

e
E

+f
λ

7p
t(

el
im

.λ
)

-
-

52
×

71
37
×

56
(3

32
)

2
4
×

4
3

R
el

.p
os

e
E

+f
λ

7p
t(

el
im

.f
λ

)
K

uk
el

ov
a

et
al

.[
12

9]
5
1
×

7
0

5
1
×

7
0

5
1
×

7
0

(3
41

6)
5
1
×

7
0

A
bs

.p
os

e
qu

iv
er

s
K

ua
ng

et
al

.[
11

4]
37

2
×

38
6

21
6
×

25
8

-
?

8
1
×

1
1
9

R
el

.
po

se
E

an
gl

e+
4p

t
Li

et
al

.[
14

4]
27

0
×

29
0

26
6
×

32
9

-
?

1
8
3
×

2
4
9

A
bs

.p
os

e
re

fr
ac

ti
ve

P5
P

H
an

er
et

al
.[

77
]

28
0
×

39
9

24
0
×

32
4

1
5
7
×

2
4
6

(8
65

9)
24

0
×

32
4

Ta
bl

e
4.

1:
Si

ze
of

th
e

el
im

in
at

io
n

te
m

pl
at

es
fo

r
so

m
e

m
in

im
al

pr
ob

le
m

s.
Fo

r
th

e
re

la
ti

ve
po

se
pr

ob
le

m
s

un
kn

ow
n

ra
di

al
di

st
or

ti
on

is
de

no
te

d
w

it
h
λ

an
d

un
kn

ow
n

fo
ca

ll
en

gt
h

w
it

h
f

,a
nd

th
e

po
si

ti
on

de
sc

ri
be

s
w

hi
ch

ca
m

er
a

it
re

fe
rs

to
.

T
he

ta
bl

e
sh

ow
s

th
e

or
ig

in
al

te
m

pl
at

e
si

ze
fr

om
th

e
au

th
or

,
th

e
te

m
pl

at
e

si
ze

fo
un

d
us

in
g

th
e

m
et

ho
d

fr
om

C
ha

pt
er

1
[1

34
]

(G
R

ev
Le

x
ba

si
s)

,
th

e
te

m
pl

at
e

si
ze

fr
om

do
in

g
an

ex
ha

us
ti

ve
se

ar
ch

ov
er

G
rö

bn
er

ba
se

s
(S

ec
ti

on
4.

2.
2)

an
d

th
e

ra
nd

om
sa

m
pl

in
g

ap
pr

oa
ch

(S
ec

ti
on

4.
3.

1)
.

M
is

si
ng

en
tr

ie
s

ar
e

w
he

n
th

e
G

rö
bn

er
fa

n
co

m
pu

ta
ti

on
to

ok
lo

ng
er

th
an

12
ho

ur
s.

111

Basis Selection for Minimal Problems

0 100 200 300 400 500
0

200

400

600

800

1,000

Template size

Fr
eq

.

Heuristic (M)
Uniform (M)
Uniform

Figure 4.4: Template size (rows) for 1,000 randomly sampled bases for the P4PFR

formulation from Bujnak et al. [28].

4.4 Panoramic Stitching fλ+R + fλ

We will now show how our method can be used to construct fast solvers for
stitching images from cameras with radial distortion and where the focal length
is unknown. This problem was formulated and solved using Gröbner basis tech-
niques in [31]. In [168] a technique for numerically optimizing the size of the
elimination template was presented, and a new faster solver with a template of
size 54 × 77 was constructed. In Chapter 1 ([134]) a slightly faster solver was
presented, based on a template of size 48 × 66. We will follow the derivations
in [22] and [31] when we construct our solver for two-view stitching using three
point correspondences. We will additionally show that we can use the exact same
solver to solve the minimal problem of three-view stitching using two point cor-
respondences.

4.4.1 Two View Image Stitching

We assume that we have a camera undergoing some unknown rotation R, taking
two images of a number of unknown 3D points Xi. We denote the points in
the two images with ui and u′i respectively. We will describe how we handle the
radial distortion later, and will assume that we only need to handle the unknown
focal length f just now. The projection equations can then be formulated as

γiui = KXi, γ′iu
′
i = KRXi, (4.4)

112

4.4. Panoramic Stitching fλ+R+ fλ

Author Execution time (ms)

Proposed 0.16
Larsson et al. [134] 0.38
Byröd et al. [31] 0.89

Table 4.2: Timing of three point stitching with unknown focal length and radial dis-
tortion, using MATLAB implementations running on a standard desktop computer.

where γi and γ′i are the depths, and K = diag(f, f, 1). We can remove the
dependence of γi, γ′i and R by solving for Xi and taking scalar products, giving
the constraints

〈K−1uj ,K
−1uk〉2

|K−1uj |2|K−1uk|2
=
〈Xj ,Xk〉2
|Xj |2|Xk|2

=
〈K−1u′j ,K

−1u′k〉
2

|K−1u′j |2|K−1u′k|2
, (4.5)

for two points j and k. Cross-multiplying with denominators will give polyno-
mials in the unknown f . We will now add radial distortion to our problem, and
model it using Fitzgibbon’s division model [65] so that for the radially distorted

image coordinates xi we have ui ∼ xi + λzi, where zi =
[
0 0 x2

i + y2
i

]T
,

and λ is the radial distortion parameter. Inserting this into (4.5) gives us our
final constraints in the unknown λ and f . Using two points will only give us
one equation so we need at least three point correspondences (this actually gives
three constraints, so it is slightly over-determined, but we only use two of the
equations).

We have run both the exhaustive Gröbner basis selection and our proposed
basis sampling scheme, see Table 4.1. The Gröbner bases do not give any im-
provement over the state-of-the-art solver but our sampling gives a significantly
smaller template of size 18× 36.

4.4.2 Three View Image Stitching

The constraints (4.5) only compare pairs of images, using two point correspon-
dences. So if we, instead of having three point correspondences in two views, have
two point correspondences in three views, we get the same type of constraints,
namely

〈K−1u1,K−1u2〉2
|K−1u1|2|K−1u2|2 =

〈K−1u′1,K
−1u′2〉2

|K−1u′1|2|K−1u′2|2
, (4.6)

113

Basis Selection for Minimal Problems

−18−16−14−12−10 −8 −6 −4 −2 0
0

0.05

0.1
Larsson et al. [134]
Byröd et al. [31]
Proposed

Figure 4.5: The figure shows histograms of equation residuals for 10,000 examples
of the 3 pt stitching problem.

and

〈K−1u′′1 ,K
−1u′′2 〉2

|K−1u′′1 |2|K−1u′′2 |2
=
〈K−1u′1,K

−1u′2〉2
|K−1u′1|2|K−1u′2|2

, (4.7)

where double primes are used for image three. We can hence use the exact same
solver to solve this case. In this case we have a true minimal case, since we only
get two constraints on f and λ.

4.4.3 Evaluation

We have implemented our solver in MATLAB, where all image coordinate input
and manipulation were done using mex-compiled C++ routines. In order to have
a fair comparison of our method with [134] and [31], we modified their code
so that the corresponding image coordinate manipulations also were done using
mex-compiled code. The timing comparison is shown in Table 4.2, and one can
see a clear speed-up. The solvers were run on a standard desktop computer. In
order to check the numerical stability of our solver, we generated synthetic data,
and evaluated the equation residuals. The results can be seen in Figure 4.5. In or-
der to see how well our method works in practice, we did an automatic panoramic
stitching of two images, with a fish-eye lens and unknown focal length, shown to
the left in Figure 4.6. We then ran our solver in a standard RANSAC framework,
with tentative correspondences based on SURF features and descriptors. The re-
sults can be seen to the right in Figure 4.6. Here the panoramic image was done
without any blending in order to show the correctness of the stitching. The trans-

114

4.5. Relative Pose E + fλ

Figure 4.6: Stitching of two images with large radial distortion using on our three-
point solver in a standard RANSAC framework. The resulting panorama (right) is
based on the best RANSAC three-point solution without any additional non-linear
refinement.

formation used was based on the best RANSAC solution from our solver based
on only three point correspondences, without any further refinement.

4.5 Relative Pose E + fλ

As another example we consider the relative pose problem where the calibration
and distortion parameter are known for only one of the two cameras. The goal
is to find a fundamental matrix F and distortion parameter λ that satisfy the
epipolar constraints[

x̂i, ŷi, 1
]
F
[
xi, yi, 1 + λ(x2

i + y2
i)
]T

= 0, (4.8)

as well as a focal length f , that makes

E = Fdiag(f, f, 1) (4.9)

an essential matrix. The problem is minimal with seven point correspondences
and has 19 solutions. The first solver was presented by Kuang et al. [118] and was
recently improved by Kukelova et al. [129].

115

Basis Selection for Minimal Problems

4.5.1 Formulation of Kuang et al.

Now we give a brief overview of the formulation used in Kuang et al. [118]. The
scale of the fundamental matrix is fixed by setting f33 = 1, and the epipolar
constraints yield seven equations in the monomials

{λf13, λf23, λ, f11, f12, f13, f21, f22, f23, f31, f32, 1}. (4.10)

Using the first six equations, Kuang et al. linearly eliminate the first two columns
of the fundamental matrix1

[f11, f12, f21, f22, f31, f32]
T

= G [λf13, λf23, λ, f13, f23, 1]
T (4.11)

where G ∈ R6×6. Finally, the last equation expresses the monomial λf13 as a
quadratic function h(λ, f13, f22), which gives the additional equation

λf13 − h(λ, f13, f23) = 0. (4.12)

Parametrizing the inverse focal length w, the essential matrix is given by E =
Fdiag(1, 1, w), and it must satisfy the equations

2EETE − tr(EET)E = 0, det(F) = 0. (4.13)

This gives 11 equations in unknowns w, λ, f13 and f23. Using these equations,
Kuang et al. [118] constructed a polynomial solver with a template of size 200×
231.

Computing the Gröbner fan, we found that there are 3190 different reduced
Gröbner bases for this problem. Constructing solvers for all of these bases, we
found an elimination template of size 69×90. Applying the random approach in
Section 4.3.1, we did not find any better solver. While this solver is significantly
smaller than the original solver from Kuang et al. [118] (200 × 231), it is still
slightly larger than the state-of-the-art solver from Kukelova et al. [129] (51×70).

4.5.2 Formulation of Kukelova et al.

In [129] the authors present another formulation for this problem based on com-
puting elimination ideals to eliminate both the radial distortion and focal length.

1Note that here we have the focal length and distortion on the right side of F , while it was on
the left in [118].

116

4.5. Relative Pose E + fλ

Since the radial distortion makes the epipolar constraints non-linear they first em-
ploy a lifting technique to remove the non-linearity. They introduce new variables
y1, y2 and y3 and construct an extended fundamental matrix as in [21],

F̂ =

f11 f12 f13 y1

f21 f22 f23 y2

f31 f32 f33 y3

 , (4.14)

together with the equations yi = λfi3. Now the epipolar constraints are linear
constraints on F̂ , [

x̂i, ŷi, 1
]
F̂
[
xi, yi, 1, x2

i + y2
i

]T
= 0. (4.15)

Using the (now) linear constraints on F̂ they parametrize it using four unknowns.
Finally using the elimination ideal trick they eliminate both the focal length and
radial distortion parameter to get new polynomial constraints on the elements on
F̂ . Using these new equations, they were able to construct a solver with a template
size 51× 70 using the automatic generator from [122].

We computed the Gröbner fan for this parametrization and found that there
are 3416 reduced Gröbner basis. Among these we found no solver better than the
GRevLex solver built by Kukelova et al. We also performed the random sampling
approach without finding any improvement. This matches our intuition that for
equation systems where the unknowns are balanced in the monomials, GRevLex
performs very well.

4.5.3 Our Approach

Empirically we have seen that our basis selection approach works best when the
monomials appear in some unbalanced way in the equations. In the parametriza-
tion from Kukelova et al. [129], the only unknowns are the nullspace parameters
from the linear equations.

To get more imbalanced equations, we propose another formulation which is
a combination of the two previous approaches. In particular, we use the elimina-
tion ideal trick to eliminate the focal length, but keep the radial distortion param-
eter as an unknown. This avoids the extra unknowns introduced by the lifting in
(4.14). Using similar linear eliminations as Kuang et al. [118], the fundamental
matrix is expressed in λ, f13 and f23. Then, instead of directly parametrizing the
focal length and adding the essential matrix constraints (4.13), we add the elimi-
nated constraints for one-sided focal length from [129] which only depend on the

117

Basis Selection for Minimal Problems

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3 Kuang et al. [118] 200×231
Kukelova et al. [129] 51 ×70
Proposed 24×43

Figure 4.7: Relative error in focal length for 1,000 random instances.

elements of the fundamental matrix. Together with the constraint from (4.12),
we get five equations in only three unknowns. Computing the Gröbner fan, we
find 332 different reduced Gröbner bases. The best solver was of size 37 × 56.
Finally using the random sampling approach we find a solver with an elimination
template of size 24× 43.

4.5.4 Evaluation

We performed a synthetic experiment to evaluate the numerical stability of the
new solver. We generated 1,000 random (but feasible) synthetic instances. The
calibration parameters were set to fgt = 10 and λgt = −0.1. For each solver we
recorded the solution with the smallest focal length error. Figure 4.7 shows the

distribution of the log10 relative focal length error |f−fgt|fgt
for all 1000 instances.

The numerical stability of the new solver is similar to the solver from Kuang et
al. [118]. Note that while the stability is worse than the solver from Kukelova et
al. [129], it is still stable enough for practical purposes. The new solver is how-
ever significantly faster with an average runtime of 1.2 ms, compared to 10 ms
for the solver from Kukelova et al. [129] (both solvers are implemented in MAT-
LAB). Note that this increase in speed is not only due to the smaller elimination
template, but the coefficients in the template are less complex and cheaper to
compute.

118

4.6. Conclusions

4.6 Conclusions

We have explored how basis selection can be used to make polynomial solvers
based on the action matrix method faster. The concept of Gröbner fans is an
efficient representation of the possible reduced Gröbner bases that arise from (in-
finitely many) different monomial orderings. This gives us a tool to enumerate
and test all monomial bases that arise from different Gröbner bases. We have
shown that this in some cases gives significantly smaller elimination templates,
and hence much faster solvers. We have also introduced a novel sampling scheme,
that optimizes some heuristic criteria that we have experimentally found to often
give small templates. Our initial motivation for sampling was that the calcula-
tion and testing of all Gröbner fans in some cases takes very (or even unfeasibly)
long time, but we found that going beyond Gröbner bases can yield even smaller
templates. Our motivation has here been to optimize the template size but the
framework could easily be modified to optimize other criteria such as numerical
stability (as was done in Kuang et al. [113]). We have tested our method on a
large number of minimal problems, and shown that we get significant speed-ups
in many cases. We have also explored in more depth how our method can be
used in two applications, namely panoramic stitching with unknown focal length
and radial distortion and relative pose with unknown one-sided focal length and
radial distortion.

119

Basis Selection for Minimal Problems

120

Chapter 5

Absolute Pose with Unknown
Focal Length and Radial
Distortion

In this chapter we revisit the problem of camera pose estimation with unknown
focal length and radial distortion (P4PFR). Previous approaches suffer from artifi-
cial degeneracies which come from their formulation and not the geometry of the
original problem. In this chapter we show how to avoid these false degeneracies
to create a more robust solver. Combined with recently published techniques for
Gröbner basis solvers we are also able to construct solvers which are significantly
smaller. Finally we show that a similar approach can be directly applied to the
P3.5PF problem to get a non-degenerate solver, which is competitive with the
current state-of-the-art.

This chapter is based on the paper [137].

5.1 Introduction

Estimating the pose of a camera from minimal 2D-3D point correspondences is
an important problem in geometric computer vision, as the minimal solvers often
form the building blocks for 3D reconstruction frameworks. For estimating a cal-
ibrated camera only three points are required [70, 110]. If the intrinsic parameters
are only partially known, more point correspondences are necessary.

When all the intrinsic parameters are unknown, the direct linear transform

121

Absolute Pose with Unknown Focal Length and Radial Distortion

(DLT) [81] algorithm applies, which uses at least five and a half point correspon-
dences. In practice, considering that a part of the intrinsic parameters are usually
known a priori, the DLT algorithm suffers from over-parametrization, and usually
gives inaccurate estimates because of overfitting in the presence of noisy data.

The most common case is that all intrinsic parameters are known except for
the focal length. For the pose estimation with unknown focal length there have
been many proposed minimal solvers using four points [214, 26, 234] and re-
cently Wu [227] presented the first truly minimal solver using 3.5 points (ob-
tained by ignoring one image point coordinate).

In this chapter we consider the problem when the camera suffers from un-
known radial distortion which needs to be estimated alongside the camera pose.
The problem with both unknown radial distortion and unknown focal length be-
comes minimal with four 2D-3D point correspondences and is usually denoted
P4PFR (see Figure 5.1). It was first solved by Josephson and Byröd [102], how-
ever the elimination template for this solver was quite large (1134× 720), which
limits its practical use. In [28] Bujnak et al. presented polynomial solvers with
much smaller elimination templates by considering the planar and non-planar
problems separately.

In [125] Kukelova et al. presented a non-minimal solver which uses five point
correspondences. The solver is very fast but has the drawbacks of requiring more
data and solving an overconstrained problem.

The P4PFR problem becomes degenerate when the 3D points lie in a plane
parallel to the image plane. In this case there exist infinitely many solutions by
translating the camera towards the plane and changing the focal length. This
degeneracy is inherent to the problem itself and cannot be avoided. However
the previous solvers from [102] and [28] both suffer from additional degeneracies
which are artificial in the sense that they come from the specific formulation used,
instead of the geometry of the original problem.

In this chapter we show how to avoid these unnecessary degeneracies and con-
struct minimal solvers which are both more robust and have better performance.
The main contributions of this chapter are

• We present new polynomial solvers for P4PFR which outperform the cur-
rent state-of-the-art.

• We avoid the nullspace and rotation degeneracies which are present in com-
peting methods.

122

5.2. Background and Previous Work

• Using the elimination ideal technique for minimal solvers from Kukelova
et al. [129] we are able to find additional constraints on the camera matrix
and produce significantly smaller elimination templates.

• We create a single solver which works for both planar and non-planar data.

• We also apply our approach to the case with no radial distortion (P3.5PF)
and get results comparable to the current state-of-the-art.

Figure 5.1: The camera pose, focal length and radial distortion are estimated from
four 2D-3D correspondences. The examples above are from the Rotunda dataset
(Section 5.4.4).

5.2 Background and Previous Work

5.2.1 Unknown Radial Distortion and Focal Length

If the image has undergone radial distortion, the standard pinhole camera model
is no longer valid, and more complicated models are required to handle the extra
non-linearity. For this, different models have been proposed, e.g. [52, 65, 40].
One of the more popular models (which is used in e.g. [16, 100, 102, 28, 126]) is
the one parameter division model presented by Fitzgibbon [65], since it provides
a good trade-off between representation accuracy and model complexity.

123

Absolute Pose with Unknown Focal Length and Radial Distortion

The model assumes the undistorted image coordinates (uu, vu) are given by

(uu, vu) =
1

1 + k(u2
d + v2

d)
(ud, vd) (5.1)

where (ud, vd) are the distorted image coordinates observed in the image. The
strength of the distortion is controlled by the parameter k, which is typically
negative in the presence of barrel distortion.

In this model the projection equations can be written as

λi

(
ui
vi

1 + kdi

)
= PXi =

[
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

]xiyizi
1

 (5.2)

where di = u2
i + v2

i . We assume that the camera has zero skew, unit aspect ratio
and that the principal point lies in the center of the image. The camera matrix
must then satisfy

P ∼ K[R t], K = diag(f, f, 1), RTR = I (5.3)

Since the camera matrix has 7 degrees of freedom and the radial distortion pa-
rameter k is unknown, the problem becomes minimal with four 2D-3D point
correspondences.

5.2.2 Minimal Solver from Josephson and Byröd

The first solution to the P4PFR problem was presented in [102] by Josephson
and Byröd. In the paper they proposed to parametrize the problem directly using
quaternions for the rotation matrix. The scale of the camera matrix was fixed
by setting the first element of the quaternion to one. Finally, by using a clever
choice of coordinate systems, they were able to eliminate the translation. This
formulation leads to 5 equations in the 5 remaining unknowns (three quaternion
parameters, the inverse focal length and the distortion parameter).

Using the techniques from [33] they constructed a Gröbner basis based solver
for this system. The solver performs linear elimination on a matrix of size 1134×
720 followed by eigendecomposition of a 24 × 24 matrix. The large template
results in poor numerical stability and long running time, both of which make
the solver unsuitable for practical applications.

124

5.2. Background and Previous Work

The solver works for both planar and non-planar 3D points, but has a non-
trivial degeneracy for any 180◦ rotation introduced by setting the first quaternion
element to one. In addition, the number of solutions from this solver (24) is
unnecessarily doubled, because of an ambiguity between the focal length and the
rotation [227] (see also Section 3.4.1 in Chapter 3).

5.2.3 Minimal Solver from Bujnak et al.

In [28] Bujnak et al. presented another minimal solver for the P4PFR problem.
Their solver is based on the observation that if we eliminate the scalars λi from
the first two equations in (5.2), we get

viP1Xi − uiP2Xi = 0, i = 1, 2, 3, 4 (5.4)

which is linear in the first two rows of the camera matrix and does not contain the
radial distortion parameter k. These equations constrain the projections to lie on
the lines going from the image plane origin to the image points. Since there are
four such equations, this can be rewritten as

Mv = 0, M ∈ R4×8, (5.5)

where v = [p11, p12, p13, p14, p21, p22, p23, p24]. This is used to parametrize the
first two rows of the camera matrix using only four parameters,

v = α1v1 + α2v2 + α3v3 + α4v4. (5.6)

where {vi}4
i=1 ⊂ R8 is a basis for the nullspace of M . Since the reprojection

equations are homogeneous in the camera matrix, the scale is fixed by setting
α4 = 1. From (5.2) the remaining linearly independent equations can be written
as

(1 + kdi)P1Xi − uiP3Xi = 0, i = 1, 2, 3, 4 (5.7)

Collecting the terms properly will lead to

A[p31, p32, p33, p34]T = B[α, kα, k, 1]T , (5.8)

where A ∈ R4×4, B ∈ R4×8 and α = [α1, α2, α3]T . Multiplying with the
inverse of A, the third camera row is expressed in the four unknowns α1, α2, α3

and k.

125

Absolute Pose with Unknown Focal Length and Radial Distortion

The left-most 3 × 3 part of the camera matrix should correspond to KR
(5.3). This gives constraints that the rows should be pairwise orthogonal and that
the first two rows should have the same norm, as follows

p21p31 + p22p32 + p23p33 = 0, (5.9)

p11p31 + p12p32 + p13p33 = 0, (5.10)

p11p21 + p12p22 + p13p23 = 0, (5.11)

p2
11 + p2

12 + p2
13 − p2

21 − p2
22 − p2

23 = 0. (5.12)

Using these equations Bujnak et al. [28] created a solver which performs Gaus-
sian elimination on a template of size 136 × 152. Once the camera matrices are
found, the focal length can be recovered by solving a quadratic polynomial. This
formulation has 16 solutions, but only 12 of these are geometrically valid for the
original problem.

This solver greatly reduces the template size compared to the solver from
Josephson and Byröd [102]. However, it only works for non-planar 3D points.
In the paper, the authors proposed a special solver to handle the planar case sepa-
rately. The planar solver has an elimination template of size 12× 18.

5.3 Our Approach for P4PFR

Now we will present our approach for solving the P4PFR problem. It builds on
the formulation from Bujnak et al. [28], but improves it in three key aspects:

• The artificial degeneracy introduced by fixing the scale with α4 = 1 is
removed.

• Using the recent elimination ideal technique [129] we get a significantly
smaller elimination template.

• We remove the planar degeneracy and create a unified solver that works for
both planar and non-planar scenes.

5.3.1 Removing Nullspace Degeneracy

In the solver by Bujnak et al. [28], the scale is fixed by setting α4 = 1 in (5.6).
This has the benefit of reducing the number of unknowns by one. However it in-
troduces a degeneracy for any camera matrix which correspond to α4 = 0. Since

126

5.3. Our Approach for P4PFR

the nullspace is only determined up to a 4 × 4 change of variables, this essen-
tially excludes a random set of camera matrices. It is unlikely in practice that the
true solution has α4 = 0 exactly, however any solutions close to these degenerate
configurations can result in bad numerics (see Section 5.4.3 for experiments on
this).

To avoid this degeneracy we propose a simple method for ensuring that the
camera matrices which are excluded are geometrically uninteresting. To accom-
plish this we instead fix the scale by setting λ1 = 1. Then for the first point the
projection equations become(

u1, v1, 1 + kd1
)T

= PX1 (5.13)

Using this technique the first point now gives two linear constraints on the first
two camera rows, P1 and P2. The homogeneous linear system in (5.5) now
becomes inhomogeneous,

Mv = b, M ∈ R5×8, b ∈ R8 (5.14)

and has one additional row. The solutions to this system can be parametrized as

v = v0 + α1v1 + α2v2 + α3v3 (5.15)

where Mv0 = b and {vi}3
i=1 ⊂ R8 forms a basis for the nullspace of M .

Note that this is essentially the same parametrization as before, but we have
made sure that the degeneracy now instead occurs when the first point has zero
depth, i.e. the first 3D point coincides with the camera center.

5.3.2 New Camera Matrix Constraints

In [129] Kukelova et al. presented a new technique for using elimination ideals to
construct smaller polynomial solvers. The approach is based on the observation
that for many problems the equations can be divided into two groups; linear equa-
tions which depend on the data and non-linear equations which are independent
of the data. By computing elimination ideals [42] for the non-linear equations, it
is possible to eliminate some of the unknowns before constructing the elimination
template. For a more detailed description of the process see [129].

In the P4PFR problem the non-linear equations are1

P = diag(f, f, 1)
[
R t

]
, RTR = sI (5.16)

1We add the unknown s since the camera matrix is only determined up to scale.

127

Absolute Pose with Unknown Focal Length and Radial Distortion

Computing the elimination ideal which eliminates all unknowns except for P
yields the following set of equations

p2
13p32 − p2

21p32 − p2
22p32 − p12p13p33 − p22p23p33 = 0 (5.17)

p12p13p32 + p22p23p32 − p2
12p33 + p2

21p33 + p2
23p33 = 0 (5.18)

p11p13p32 + p21p23p32 − p11p12p33 − p21p22p33 = 0 (5.19)

p2
13p31 − p2

22p31 + p21p22p32 − p11p13p33 = 0 (5.20)

p12p13p31 + p22p23p31 − p11p12p33 − p21p22p33 = 0 (5.21)

in addition to the constraints (5.9)–(5.12). These constraints ensure that the first
3 × 3 part of the camera matrix can be factorized as diag(f, f, 1)R, where R is
a scaled rotation. To the best of our knowledge, the constraints (5.17)–(5.21) are
new and have not been used in the computer vision literature before.

After adding these new equations, the formulation now correctly has 12 so-
lutions, in contrast to 16 in [28] and 24 in [102]. A closer study revealed that
the four solutions removed (compared to [28]) with these new constraints are
complex and yield camera matrices for which

p2
11 + p2

12 + p2
13 = p2

21 + p2
22 + p2

23 = 0. (5.22)

Using the automatic solver generator from [122], we generate a polynomial
solver with an elimination template of size 28 × 40. While the solver is signifi-
cantly smaller than the non-planar solver from [28] (136 × 152), it also suffers
from the same planar degeneracy.

In [129] the authors also considered radial distortion, but for relative pose.
To avoid the extra non-linearity introduced by the radial distortion they used a
lifting approach. We tried to apply the same technique for our problem and also
eliminate the radial distortion, but the resulting solvers were too large for practical
use. The size of the elimination template was 296× 330.

5.3.3 Removing Planar Degeneracy

In this section we will extend the formulation to handle both planar and non-
planar scenes.

For planar scenes we can without loss of generality assume that all zi = 0,
i.e. the 3D points lie in the xy−plane. As was noted in Bujnak et al. [28], for
such scenes the third column of the A matrix in (5.8) becomes zero, and it is
impossible to eliminate p33 this way. To avoid this situation we instead add p33 as

128

5.3. Our Approach for P4PFR

an additional unknown. Then using only three of the four points we can express
p31, p32 and p34 in the unknowns α, k and p33, i.e.

A[p31, p32, p34]T = B[α, kα, k, p33, 1]T (5.23)

where A ∈ R3×3 and B ∈ R3×9. Note that this works for both planar and non-
planar data. Since we have only used three of the four equations (5.7), we need to
add the last projection equation separately. Using the first point (which was used
to fix the scale (5.13)) this equation is simply

1 + kd1 = P3X1 (5.24)

Studying the equations in Macaulay2 [75] we found that this formulation also has
12 solutions. Using the automatic generator presented in Chapter 1 we generated
a solver with template size 38 × 50. To our surprise this solver did not directly
work for planar data.

Further investigations of the problem in Macaulay2 [75] revealed that for
planar instances, the monomial basis,

{1, α1, α2, α3, k, p33, α1α3, α
2
2, α2α3, α

2
3, α3k, α3p33} (5.25)

which was used for the quotient ring C[X]/I became linearly dependent. Thus
making it impossible to express the action matrix using it. Furthermore we found
that if we added the monomial α1α2k to the basis, it would span the quotient ring
for both planar and non-planar data. Since the structure of the ideal is different
for the two types of instances, different monomials are needed in the elimination
template. Using the automatic generator from Chapter 1 we created elimination
templates for both planar and non-planar instances and then constructed a single
template by taking the union of all the necessary equations. Since the ideals are
very similar for both cases, we were able to find a merged template which is only
slightly bigger than the template created using non-planar data only.

The final solver performs Gaussian elimination on a single template of size
40 × 50 and then solves a 13 × 13 eigenvalue problem (due to the extra basis
element). However for any instance only 12 of the eigenvectors correspond to
actual solutions. This solver does not suffer from any of the artificial degeneracies
present in previous solvers and it works for both planar and non-planar data.
Compared to the current state-of-the-art general solver from Josephson and Byröd
[102] the size is orders of magnitude smaller (40× 50 vs. 1134× 720).

129

Absolute Pose with Unknown Focal Length and Radial Distortion

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

Log10 relative focal length error

SOTA general 1134x720 [102]
SOTA non-planar 136x152 [28]
NEW non-planar 28x40
NEW general 40x50

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

Log10 relative radial distortion error

Figure 5.2: Histograms of log10 relative errors of the estimated focal lengths (left)
and radial distortions (right) for non-planar scenes.

5.4 Experimental Evaluation

5.4.1 Numerical Stability

To evaluate the stability and accuracy of the new P4PFR solvers we use a sim-
ilar experiment setup as was used in [234, 227]. We generate synthetic scenes
by uniformly sampling four 3D points in the box [−2, 2] × [−2, 2] × [2, 8] in
the camera’s local coordinate system. The 3D points are then transformed by a
random rotation and translation. The focal length is randomly chosen in the in-
terval fgt ∈ [0.5, 2.5]. Radial distortion using the division model [65] was added
to all image points to generate noiseless distorted points. The radial distortion
parameter was randomly drawn from the interval kgt ∈ [−0.45, 0].

To perform the experiment we generated 10000 random scenes as described
above. Figure 5.2 shows the histograms of the log10 relative errors in the estimated
focal length and radial distortion parameter obtained by selecting the real root
closest to the ground truth values fgt and kgt. We also ran the same experiment
for planar scenes, generated by projecting the four 3D points to the closest plane
using SVD. The results are shown in Figure 5.3.

The new general P4PFR (40x50) solver is stable for both the planar and non-
planar setting. Moreover, the new solver is more stable than the state-of-the-art
general solver from Josephson and Byröd [102] for non-planar setting. The same
holds true for the new non-planar solver compared to the state-of-the-art non-
planar solver from Bujnak et al. [28].

5.4.2 Noise Experiment

In the next experiment we studied the performance of the new solvers in the
presence of image noise. We again compare both presented solvers (the general

130

5.4. Experimental Evaluation

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

Log10 relative focal length error

SOTA general 1134x720 [102]
SOTA planar 12x18 [28]
NEW general 40x50

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

Log10 relative radial distortion error

Figure 5.3: Histograms of log10 relative errors of the estimated focal lengths (left)
and radial distortions (right) for planar scenes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−3

0

2

4

6
·10−2

noise

m
ed

ia
n

fo
ca

ll
en

gt
h

er
ro

r

0 0.1 0.5 1 2
0

2

4

6
·10−2

noise

fo
ca

ll
en

gt
h

er
ro

r

SOTA general 1134x720 [102] SOTA non-planar 136x152 [28] NEW non-planar 28x40

NEW general 40x50 NEW general 40x50 (5p) Kukelova et al. [125] (5p)

Figure 5.4: Comparison of the errors in the focal length estimated by different solvers
for varying levels of noise. The ground truth values were set to fgt = 1.5 and
kgt = −0.4. Left: Median focal length error. Right: Boxplot of focal length errors.

solver and the non-planar solver) with the the state-of-the-art general solver from
Josephson and Byröd [102] and the state-of-the-art non-planar solver from Buj-
nak et al. [28].

In this experiment we used the same setup as was used in the previous stability
experiment, however with the fixed ground truth focal length fgt = 1.5 and
the fixed radial distortion kgt = −0.4. For each noise level 1000 estimates for
random scenes and camera positions were made. Figure 5.4 (Left) shows the
median focal length errors for different noise levels. Figure 5.4 (Right) shows the
errors for the focal lengths using the MATLAB boxplot function which shows
values 25% to 75% quantile as a box with horizontal line at median. The crosses
show data beyond 1.5 times the interquartile range. Here we only show the errors
in the focal length since the other errors are qualitatively similar.

All minimal solvers perform equally well. This is caused by the fact that these

131

Absolute Pose with Unknown Focal Length and Radial Distortion

solvers are all algebraically equivalent. The only difference is caused by numerical
instabilities. This is e.g. visible in Figure 5.4 (Right) for the state-of-the-art general
solver by Josephson and Byröd [102] in the noiseless case.

Estimation from Non-Minimal Point Sets

In [125] Kukelova et al. presented a non-minimal solver which uses five point
correspondences. To perform a comparison with this solver we generated a fifth
point for each of the scenes. The results are included in Figure 5.4 and we can
see that in the presence of noise the performance is superior compared to the four
point solvers, which is reasonable since more data is used.

Since our solver is based on a nullspace parametrization it is possible to use
five points in our solver as well. For estimation with non-minimal point sets the
only changes we need to make is to compute an approximate nullspace in (5.14)
using SVD and to solve (5.23) in a least squares sense. Figure 5.4 shows that our
solver using 5 points is more accurate for noisy data compared to the solver from
[125].

5.4.3 Stability Close to Degenerate Configurations

In this section we evaluate the stability of the polynomial solvers close the de-
generate configurations. First we consider the quaternion based degeneracy in
the solver from Josephson and Byröd [102]. We generated random scenes where
the ground truth camera pose was close to the degenerate configuration (i.e. first
element of the quaternion representing the rotation is close to zero). Figure 5.5
shows the median relative error in the focal length as the first element of the
quaternion tends to zero.

Next we consider the nullspace based degeneracy from Section 5.3.1. To per-
form the experiment we randomly generate a scene and computed a basis for the
nullspace (as in (5.5)). We then find the coefficients α which correspond to the
ground truth camera matrix. Next we perform a random rotation in the nullspace
which brings α4 close to zero. Figure 5.6 shows the result for our solver both
using the parametrization from Section 5.3.1 and using the degenerate nullspace
created as above. Since this degeneracy is also present in the solver from Buj-
nak et al. [28] we include the results of running their solver with the degenerate
nullspace basis as well.

Finally we consider close-to-planar degeneracy. To evaluate the performance

132

5.4. Experimental Evaluation

10−410−310−210−1100
10−15

10−10

10−5

100

q1

m
ed

ia
n

re
l.

er
ro

r

NEW 40x50
SOTA general 1134x720 [102]

Figure 5.5: The relative focal length error as the first element of the quaternion
approaches zero. Each point shows the median error over 1000 instances.

10−810−710−610−510−410−310−210−1100
10−15

10−10

10−5

100

α4

m
ed

ia
n

re
l.

er
ro

r

NEW 40x50
NEW 40x50 (degen. ns.)
SOTA non-planar
136x152 [28] (degen. ns.)

Figure 5.6: The relative focal length error as the last nullspace coefficient α4 ap-
proaches zero. Each point shows the median error over 1000 instances. For our
solver we show the results both with and without the scale fixing in Section 5.3.1.

of our new P4PFR solvers on close-to-planar scenes we use a similar experiment
setup as was used in [28]. We created a synthetic scene where we were able control
the scene planarity by a scalar value a. First, we generated three random non-
collinear 3D points. These three points define our plane. Then we randomly
generated the fourth point at the distance sa from the plane, where the scale s
was the maximum distance from the first three points to their center of gravity.
The fourth point was generated such that its distance from the center of gravity
was not greater than s. This means that for a = 0 we got four points on the plane
and for a = 1 we got a well defined non-planar four-tuple of 3D points. For each
given planarity value a we created a scene consisting of these four 3D points and
an additional 100 random 3D points. Each 3D point was projected by a camera

133

Absolute Pose with Unknown Focal Length and Radial Distortion

-10 -8 -6 -4 -2 0
0

20

40

60

80

100

planarity 10x

m
ea

n
%

of
in

lie
rs

SOTA planar 12x18 [28]
SOTA non-planar 136x152 [28]
NEW non-planar 28x40
SOTA general 1134x720 [102]
NEW general 40x50

Figure 5.7: Mean of the number of inliers for a near planar scene.

with random feasible orientation and position, fgt = 1.5 and kgt = −0.4. The
first four points were kept noise free, while we added some small noise (standard
deviation of 0.5 pixels) to the remaining 100 points.

For each given planarity value a we computed the camera pose, focal length
and radial distortion from the first four-tuple of correspondences. This four-tuple
was not affected by a noise and hence the only deviation from the ground truth
solutions comes from the numerical instability of the solvers itself. To evaluate
the impact of this instability we used the estimated camera pose, focal length and
radial distortion to project all remaining 3D points to the image plane. Then
we measured the number of inliers, i.e. the number of points that were projected
closer than one pixel to its corresponding 2D image point.

In this experiment, for each given planarity value a we created 100 random
scenes. Figure 5.7 shows the mean number of inliers found by different solvers.
It can be seen that the new non-planar solver performs better than the state-of-
the-art non-planar solver from Bujnak et al. [28] for close-to-planar scenes and is
therefore more suitable for a “joined general solver” presented in [28]. The new
general P4PFR solver doesn’t have problems with close-to-planar or planar scenes
and this solver was able to find all inliers. The state-of-the-art general solver [102]
has some problems with numerical stability due the decomposition of a huge
template matrix (1134× 720). Therefore, the average number of inliers returned
by this solver was less than 100.

134

5.5. Our Approach for P3.5PF

5.4.4 Evaluation on Real Images

Finally we evaluate our method on real image data. We consider the Rotunda
dataset [127] and the Graffiti dataset [128]. The Rotunda dataset consists of 62
images captured using a GoPro Hero4 camera with significant radial distortion.
The Graffiti dataset consists of 12 images captured using GoPro Hero3 camera
and 7 images captured using a HTC Desire 500 mobile phone. Some example
images are shown in Figure 5.8. Using the RealityCapture software [2] we built a
3D reconstructions of both scenes. The Rotunda reconstruction contains 170994
3D points and the average reprojection error was 1.4694 pixels over 549478 image
points. The Graffiti reconstruction contains 26078 3D points and the average
reprojection error was 1.0778 pixels over 91518 image points.

Then to perform the experiment we used the 3D model to estimate the pose
of each image using the new minimal solver (40× 50) in a RANSAC framework.
Since the dataset only contains image data, we used the camera and distortion
parameters obtained from RealityCapture as ground truth for the experiment.
Table 5.1 shows the errors for the focal length and radial distortion, as well as the
camera pose. Overall the errors are quite small, with slightly larger errors for the
more difficult planar dataset (Graffiti).

Dataset Rotunda Graffiti

avg. med. max avg. med. max

Focal (%) 0.08 0.07 0.29 0.44 0.33 1.76
Distortion (%) 0.51 0.45 1.85 2.16 1.23 8.85
Rotation (degree) 0.03 0.03 0.10 0.12 0.11 0.27
Translation (%) 0.07 0.07 0.26 1.30 0.70 5.06

Table 5.1: Errors for the real datasets. The errors are relative to the ground truth for
all except rotation which is shown in degrees.

5.5 Our Approach for P3.5PF

Now we show how we can apply the same approach to the closely related problem
of pose estimation with unknown focal length. This problem has 7 degrees of
freedom and is overconstrained with four points. In [227] Wu presented a min-

135

Absolute Pose with Unknown Focal Length and Radial Distortion

Figure 5.8: Some examples of the images in the Rotunda (Top) and Graffiti (bottom)
datasets.

136

5.5. Our Approach for P3.5PF

imal solver using 3.5 points (i.e. ignoring one of the image coordinates for one
of the points). This solver works for both planar and non-planar data but has a
degeneracy introduced by setting one quaternion element to one.

In this section we develop a new solver for this problem which has comparable
performance to [227], but does not introduce any artificial degeneracies. The
approach is essentially the same as for our P4PFR solver, but the formulation is
simplified slightly since the projection equations (5.2) become completely linear
when the radial distortion is removed. Each point correspondence now gives us
two linearly independent equations in the camera matrix,

P1Xi − uiP3Xi = 0, P2Xi − viP3Xi = 0, (5.26)

for i = 1, 2, 3, 4. Ignoring one of these eight equations gives a minimal problem.
Using the same trick as in Section 5.3.1, we fix the scale by setting the first depth
to one,

u1 = P1X1, v1 = P2X1, 1 = P3X1. (5.27)

Rewriting the linear constraints as

Mv = b, M ∈ R8×12, (5.28)

we can parametrize the problem with only four unknowns using the nullspace of
M . Note that for this problem the constraints on the camera matrix are exactly
same as in Section 5.3.2. Using these 9 equations in the four unknowns, we
generated a polynomial solver using the automatic generator from [122]. The
resulting solver has a template of size 25×35, comparable to the current state-of-
the-art [227] (20× 30). However in contrast to [227] this formulation does not
contain any additional degeneracies.

In this formulation the problem has 10 solutions for general data, and 8 solu-
tions for planar data. For this problem the quotient basis and template we found
from the non-planar instances works for planar instances as well. In the case of
planar data the solver still returns 10 solutions, but only 8 will correspond to
actual solutions.

5.5.1 Experiment

To evaluate the stability and accuracy of the polynomial solver we use a similar
experiment setup as was used in [234, 227]. We generated random instances

137

Absolute Pose with Unknown Focal Length and Radial Distortion

by uniformly sampling four 3D points in the box [−2, 2] × [−2, 2] × [2, 8] in
the camera’s local coordinate system. The points were transformed by a random
rotation and translation. The focal length was chosen uniformly in the inter-
val [200, 2000]. Figure 5.9 shows the log10 relative focal length error for 1000
instances for both planar and non-planar data. For comparison we include the
results for the best ratio and distance based solvers from Bujnak [25] and the
GP4PF solver from Zheng et al. [234]. The new P3.5PF solver is stable for both
the planar and non-planar setting. We were unable to directly compare with the
solver from [227], since the code has not been made available. However in [227]
they report comparable results to the solver from Zheng et al. [234].

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

Log10 relative focal length error

BestDist [25]
BestRatio [25]
GP4PF [234]
NEW 25x35

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

Log10 relative focal length error

BestDist [25]
BestRatio [25]
GP4PF [234]
NEW 25x35

Figure 5.9: Stability of the P3.5PF solver. The figure shows the relative focal length
errors over 1000 random instances. Top: General 3D data. Bottom: Planar 3D data.

5.6 Conclusions

In this chapter we revisited the absolute pose estimation problem with unknown
focal length and radial distortion (P4PFR). We improved on previous approaches
in several aspects.

138

5.6. Conclusions

First we removed the degeneracy introduced by fixing the scale in the nullspace
parametrization by manually choosing which camera matrices to exclude. It is
possible that this trick could be applied for other problems as well, e.g. in relative
pose problems where nullspace parametrizations are commonly used.

Next we applied the elimination ideal techniques from [129] to get new con-
straints on the camera matrix. These constraints are satisfied whenever the focal
length is the only unknown intrinsic parameter. It is possible that this technique
could be applied to settings with other partial calibrations as well.

Finally we were able to construct a solver which worked for both planar
and non-planar scenes. The key idea was to make sure that the monomial ba-
sis spanned both quotient rings and then creating a single merged elimination
template which contains the equations necessary to solve for both types of in-
stances. We believe that this template merging strategy could be applied to other
problems as well. Not only for planar/non-planar degeneracies, but any time the
structure of the problem depends on the input data.

139

Absolute Pose with Unknown Focal Length and Radial Distortion

140

Chapter 6

Absolute Pose with Unknown
Focal Length and Principal Point

In terms of partially calibrated intrinsic parameters, the majority of existing work
on pose estimation assume that the principal point lies in the image center (see
e.g. Chapter 5 and the references therein). Unfortunately, this assumption is not
always true, especially in the case of asymmetrically cropped images. When the
offset is trivial, it can be partially compensated by the translation, without severely
affecting the rotation. However, in the presence of significant offset such solvers
with centered principal point will give poor rotation and translation estimates.

Triggs [214] was the first to consider estimation of the camera pose with un-
known focal length and principal point. A non-minimal 5-point solver was pre-
sented, although the minimal case is with four and a half points only. As noted
in [214], this 5-point solver is very sensitive to noise due to the non-minimal
parametrization.

In this chapter we present the first exactly minimal solver for the case of un-
known principal point and focal length, using four and a half point correspon-
dences (called P4.5PFUV). In addition to the classical constraints on the camera
matrix for enforcing zero skew and unit aspect ratio [60, 88], we derive novel
polynomial constraints which allow us to avoid solutions corresponding to rank
deficient camera matrices. Next we consider the problem where the aspect ratio
is also unknown, and construct a minimal solver which uses five point correspon-
dences (called P5PFUVA). In this case the equations reduce to a simple quartic
polynomial which allows for a closed form solver that is both extremely fast and

141

Absolute Pose with Unknown Focal Length and Principal Point

stable. In experiments we show that the new solvers are superior in terms of both
stability and efficiency compared to the previous state-of-the-art five point solver
from Triggs [214].

Finally, we consider the case of both unknown principal point and radial dis-
tortion. This problem is very difficult and highly non-linear due the radial distor-
tion being centered on the unknown principal point. We develop the first practi-
cal non-minimal solver by using seven point correspondences (called P7PFRUV)
instead of the minimum five.

The contributions in this chapter are:

• To derive new polynomial constraints on the camera matrix for the case of
unit aspect ratio and zero skew.

• To develop the first minimal P4.5PFUV solver (unit aspect ratio and zero
skew) as well as an extremely fast P5PFUVA solver (zero skew).

• To explore the extremely challenging case of unknown principal point and
radial distortion, and develop the first practical non-minimal solver using
seven point correspondences.

This chapter is based on the paper [138].

6.1 Unit Aspect Ratio and Zero Skew

In this section, we first focus on the absolute pose problem without radial distor-
tion. Given point correspondences xi ↔ Xi, we wish to estimate the camera
pose (R, t), the focal length f and the principal point x0 = (u0, v0). For this
setting the projection equations become

(
xi − x0

1

)
'

f f
1

 (RXi + t). (6.1)

Since the focal length and principal point are both unknown, the only remaining
constraints on the camera matrix come from the aspect ratio and skew. We assume
that the cameras have zero skew (s = 0) and unit aspect ratio (α = 1). These are
natural constraints which are satisfied by most consumer cameras with a modern
CCD/CMOS sensor.

142

6.1. Unit Aspect Ratio and Zero Skew

6.1.1 Camera Matrix Constraints

The constraints for a camera matrix P to admit the following factorization

P = K
[
R t

]
, K =

f u0

f v0

1

 , (6.2)

are well known and summarized in the following theorem.

Theorem 6.1 (Faugeras [60], Heyden [88]). The matrix

P =

pT1 p14

pT2 p24

pT3 p34

 (6.3)

corresponds to a perspective camera with zero skew and unit aspect ratio if and only if

det
[
p1, p2, p3

]
6= 0 (6.4)

and

(p1 × p3) · (p2 × p3) = 0 (6.5)

‖p1 × p3‖2 − ‖p2 × p3‖2 = 0 (6.6)

If only (6.5) holds the camera has non-unit aspect ratio.

Although formulated differently, the constraints (6.5) and (6.6) are equivalent
to the ones used to create the solver from Triggs [214].

6.1.2 New Camera Matrix Constraints

The non-zero determinant constraint in (6.4) is difficult to incorporate in poly-
nomial solvers. Ignoring this constraint adds false solutions corresponding to rank
deficient camera matrices. In this section we use tools from algebraic geometry
(see e.g. [42]) to find additional polynomial constraints which ensure that we only
recover the true camera matrices.

Let I be the ideal generated by the original constraints,

I =
〈
(p1 × p3) · (p2 × p3), ‖p1 × p3‖2 − ‖p2 × p3‖2〉 . (6.7)

143

Absolute Pose with Unknown Focal Length and Principal Point

Using Macaulay2 [75] we find that this ideal is of dimension 71 and degree 16.
This means that if we add 7 linear constraints we will in general have 16 solutions.
Now some of these solutions might correspond to rank deficient camera matrices.
To remove these solutions we compute the saturation of I w.r.t to the determinant,
i.e.

J =

{
f(x)

∣∣∣∣ ∃N ≥ 0, det(
[
p1,p2,p3

]
)Nf(x) ∈ I

}
. (6.8)

The saturated ideal J contains additional polynomial constraints which should
be satisfied by the correct camera matrices (i.e. non-zero determinant). We find
that this ideal is also of dimension 7 but only of degree 10. This means that in
general there are 6 false solutions corresponding to rank deficient camera matrices
if you only use the constraints in (6.5) and (6.6).

The ideal J is generated by the two constraints from (6.5) and (6.6), as well
as 5 polynomials of degree 5, listed below.

p11p12p
2
32p33+p11p12p

3
33−p11p13p

3
32−p11p13p32p

2
33−p2

12p31p32p33+p12p13p31p
2
32−

p12p13p31p
2
33 + p2

13p31p32p33 + p21p22p
2
32p33 + p21p22p

3
33− p21p23p

3
32− p21p23p32p

2
33−

p2
22p31p32p33 + p22p23p31p

2
32 − p22p23p31p

2
33 + p2

23p31p32p33 = 0

p11p12p31p
2
33 − p11p13p31p32p33 + p2

12p32p
2
33 − p12p13p

2
31p33 − 2p12p13p

2
32p33 +

p2
13p

2
31p32+p2

13p
3
32−p2

21p
3
32−p2

21p32p
2
33+2p21p22p31p

2
32+p21p22p31p

2
33+p21p23p31p32p33−

p2
22p

2
31p32 − p22p23p

2
31p33 = 0

p2
11p

2
32p33+p2

11p
3
33−p11p12p31p32p33−p11p13p31p

2
32−2p11p13p31p

2
33+p12p13p

2
31p32+

p2
13p

2
31p33 + p21p22p31p32p33 − p21p23p31p

2
32 − p2

22p
2
31p33 − p2

22p
3
33 + p22p23p

2
31p32 +

2p22p23p32p
2
33 − p2

23p
2
32p33 = 0

p2
11p31p

2
33 + p11p12p32p

2
33 − 2p11p13p

2
31p33 − p11p13p

2
32p33 − p12p13p31p32p33 +

p2
13p

3
31+p2

13p31p
2
32−p2

21p31p
2
32+2p21p22p

2
31p32+p21p22p32p

2
33−p21p23p

2
32p33−p2

22p
3
31−

p2
22p31p

2
33 + p22p23p31p32p33 = 0

p2
11p31p32p33−p11p12p

2
31p33−p11p12p

3
33−p11p13p

2
31p32+p11p13p32p

2
33+p12p13p

3
31+

p12p13p31p
2
33−p2

13p31p32p33+p2
21p31p32p33−p21p22p

2
31p33−p21p22p

3
33−p21p23p

2
31p32+

p21p23p32p
2
33 + p22p23p

3
31 + p22p23p31p

2
33 − p2

23p31p32p33 = 0

6.1.3 Building a Polynomial Solver - P4.5PFUV

Cameras with unit aspect ratio and zero skew have 9 degrees of freedom (3 in-
trinsic and 6 extrinsic), making the pose estimation problem minimal with 4.5

1Note that here we only consider the first 3× 3 block of the camera matrix. For the full camera
matrix the dimension would be 10.

144

6.1. Unit Aspect Ratio and Zero Skew

points. Computing the three dimensional nullspace to the projection equations
allow us to parametrize the camera matrix with three unknowns

P = α1P1 + α2P2 + α3P3. (6.9)

The scale can be fixed by setting α3 = 1. Inserting the first 3 × 3 block of (6.9)
into the constraints from Section 6.1.2 we get 2 equations of degrees 4 and 5
equations of degree 5 in the two unknowns α1 and α2. Using the automatic
generator from Chapter 1, we constructed a polynomial solver with template size
11× 21.

If we only use the two original constraints, (6.5) and (6.6), the automatic
generator from Chapter 1 returns a polynomial solver with template size 20× 36
and if we employ the automatic saturation technique from Chapter 2 to saturate
the determinant we get a template of size 34× 50.

6.1.4 Unknown Aspect Ratio - P5PFUVA

In the case of unknown aspect ratio and zero skew we only have a single constraint
(6.5) on the camera matrix. For this ideal no additional constraints are yielded
when we saturate the determinant. Cameras with zero skew have 10 degrees of
freedom (4 intrinsic and 6 extrinsic) and the pose estimation problem becomes
minimal with 5 point correspondences. The linear constraints from 5 points have
a 2 dimensional nullspace, allowing us to parameterize the camera using only a
single unknown,

P = α1P1 + P2. (6.10)

Inserting into the constraint (6.5) yields a single quartic equation in α1 that can
be efficiently solved.

6.1.5 Implementation Details

For the 4.5 point solver from Section 6.1.3 we can get 9 linear constraints from
5 point correspondences by ignoring a coordinates for one of the image points.
The ignored coordinate can then be used to filter solutions. Another approach
is to consider all 5 points (10 linear constraints) and compute an approximate 3
dimensional nullspace. In experiments we found that this approach is less sensitive
to noise, however the runtime is slightly longer due to the need for computing an
SVD to find the approximate nullspace.

145

Absolute Pose with Unknown Focal Length and Principal Point

For the zero-skew 5 point solver from Section 6.1.4 we need to find the roots
to a quartic polynomial. This can be done by either computing the eigenvalues
of the companion matrix, or using the closed form solution for the quartic. In
experiments we found that these have similar accuracy if some care is taken to
avoid cancellation errors when implementing the closed form solver.

Implemented in C++ the runtimes on a standard desktop computer are≈ 120
µs (P4.5PFUV) and 5 µs (P5PFUVA).

6.2 Radial Distortion with Unknown Center

Radial distortion adds an extra non-linearity to the projections which makes pose
estimation more difficult. The problem is further complicated if the center of
distortion (typically the principal point) is unknown. In this case the projection
equations can be written as(

x− x0

1 + k ‖x− x0‖2

)
'

f f
1

 (RX + t). (6.11)

The problem contains 10 degrees of freedom and thus becomes minimal with
5 points. However the minimal problem is extremely difficult and we have not
found any tractable formulation.

6.2.1 Seven Point Relaxation - P7PFRUV

To tackle this problem we instead consider a non-minimal relaxation using 7
points. The idea is to consider only the first two equations of (6.11),[

u− u0

v − v0

]
' f

[
R1X + t1
R2X + t2

]
(6.12)

These equations constrain the projections to lie on the lines passing through the
distortion center (u0, v0) and the image point (u, v). This constraint is indepen-
dent of the focal length and the radial distortion parameter, since they just move
the projections along these lines.

In (6.12) we can of course ignore the focal length since it is non-zero for any
interesting solution. Using 2× 2 determinants we can rewrite the equations as

(u− u0)(R2X + t2)− (v − v0)(R1X + t1) = 0 (6.13)

146

6.2. Radial Distortion with Unknown Center

This relaxed problem has 7 degrees of freedom, and since each point yields a
single constraint the problem becomes minimal with 7 points. Of course solving
(6.13) only gives the orientation R, distortion center (u0, v0) and the first two
components of the translation t1 and t2. The remaining unknowns in (6.11) can
be solved for linearly, see Section 6.2.4.

This relaxation is similar to the one made in [125] where they solved the
P4PFR problem using five points instead of the minimal four. In [217] Tsai used
a similar approach but did not enforce the constraints on the rotation and simply
solved for the unknowns linearly using more points. However, in both these works
the principal point is assumed to be known.

6.2.2 Simplifying the Equations

To solve the equations in (6.12) we start by translating the 2D and 3D coordinate
systems such that

x1 = (u1, v1)T = (0, 0)T , X1 = (0, 0, 0)T . (6.14)

The equations from the first point then reduce to[
−u0

−v0

]
'
[
t1
t2

]
(6.15)

If we let R be a scaled rotation, we can instead fix the scale of the camera matrix
by setting t1 = u0 and t2 = v0. This eliminates two unknowns and has the
additional benefit that when we insert this into the equations in (6.13), the mixed
quadratic terms in (u0, v0, t1, t2) cancel and we are left with equations which
only depend linearly on (u0, v0).

Using the hidden variable trick [42] we can eliminate the distortion center
(u0, v0) from our equations. Rewrite (6.13) as

M(R)

u0

v0

1

 = 0 (6.16)

where M(R) is a 6× 3 matrix depending on the rotation R. Requiring all 3× 3
determinants of this matrix to vanish, we get 20 equations of degree 3 in the
elements of R.

147

Absolute Pose with Unknown Focal Length and Principal Point

Finally using quaternions we parameterize the scaled rotation matrix, i.e.

R(q) =

[
q2

1 + q2
2 − q2

3 − q2
4 2q2q3 − 2q1q4 2q1q3 + 2q2q4

2q1q4 + 2q2q3 q2
1 − q2

2 + q2
3 − q2

4 2q3q4 − 2q1q2

2q2q4 − 2q1q3 2q1q2 + 2q3q4 q2
1 − q2

2 − q2
3 + q2

4

]

This yields 20 equations of degree 6 in q = (q1, q2, q3, q4).
Studying this equation system in Macaulay2 [75] we find that it has 88 so-

lutions. However 16 of these are false solution introduced in the hidden variable
trick (6.16).

6.2.3 Removing Symmetries

Using the quaternion parametrization we introduce a 2-fold symmetry into our
problem since R(q) = R(−q). For this problem there is another symmetry
corresponding to changing the sign of the first two rows of the rotation matrix.
Note that this symmetry is also present in the original (non-relaxed) problem
where the focal length also changes sign.

This type of symmetry also occurred in the WPNP problem from Larsson et
al. [133] (see Chapter 3) and in the P3.5PF formulation of [227]. In [133] we
handled the symmetry by doing the following linear change of variables in the
quaternion,

q =

 0 −i −i 0
−1 0 0 1
i 0 0 i
0 −1 1 0

 q̂, (6.17)

which reduces the symmetry into two sign symmetries in (q̂1, q̂2) and (q̂3, q̂4).
Removing the symmetries collapses the 88 solutions into 22.

Using the automatic generator from Chapter 1 (which automatically handles
these sign symmetries as described in Chapter 3) we were able to construct a
polynomial solver with template size 124× 162.

6.2.4 Recovering the Full Solutions

The solver we created only returns the rotation R. To recover the remaining
parameters we first solve linearly for u0, v0, t1 and t2 from (6.13). Since these are
part of the relaxed problem we have an exact solution to this system.

148

6.3. Experiments

To recover the remaining parameters f, k and t3 we rewrite (6.11) as

(R3X + t3)(x− x0) = f(1 + k ‖x− x0‖2)

[
R1X + t1
R2X + t2

]
(6.18)

where we can solve linearly for f, fk and t3. Note that in general there is no
exact solution satisfying all 7× 2 = 14 equations since we did not solve the true
minimal problem. So instead we solve the linear equations in a least squares sense.

Since this does not minimize any meaningful geometric error we can refine
the solutions by performing a few iterations of local optimization. Note that this
can be done very quickly since we have very few unknowns and residuals. Since
the division model’s inverse transform is quite messy, we minimize

7∑
i=1

∥∥∥∥∥(xi − x0)− f(1 + k ‖xi − x0‖2)

(R3Xi + t3)

[
R1Xi + t1
R2Xi + t2

]∥∥∥∥∥
2

(6.19)

instead of the true reprojection error. Empirically we have seen that this approxi-
mation works well.

6.3 Experiments

We experimentally evaluate our new solvers on both synthetic and real image data.
For P4.5PFUV we compare both using the exact nullspace from 4.5 points (com-
puted using QR), as well as the approximate nullspace from 5 points (computed
using SVD). For P5PFUVA we compare solving the quartic equation both using
the closed form solution and by computing the eigenvalues to the companion
matrix. For solvers returning multiple focal length estimates (i.e. non-unit aspect
ratio) we compute the focal length error by comparing against the geometric mean
f =
√
f1f2. For the P7PFRUV solver the results are without the extra non-linear

refinement proposed in Section 6.2.4 unless otherwise noted.
For the solver from Triggs [214] we added some normalization of the co-

ordinate systems (scaling and shifting) since it was not available in the original
implementation available from the author. Experimentally we have observed that
this improves the performance drastically in the presence of noise.

For some experiments we only show the errors in the focal length since the
other errors are qualitatively similar.

149

Absolute Pose with Unknown Focal Length and Principal Point

6.3.1 Stability

In this section we evaluate the numerical stability of the proposed polynomial
solvers. We generated random but feasible noise-free synthetic problem instances.
To generate the scene we uniformly sample five 3D-points from the box [−2, 2]×
[−2, 2] × [2, 8] in the camera’s local coordinate system. These are then trans-
formed with a random rotation and translation. The focal length was drawn uni-
formly from the interval [200, 2000] and the principal point was placed randomly
500 px from the origin.

Figure 6.1 shows the distribution of the log10 relative focal length errors for
10,000 instances, and we can see that all solvers are quite stable.

We ran a similar experiment but where we added radial distortion to the
image points. The distortion parameter was drawn uniformly from the interval
[−0.4, 0]. The results for the P7PFRUV solver with and without the non-linear
refinement is shown in Figure 6.2. On a small number of instances the P7PFRUV

solver had issues with numerical stability. However, these solutions were still a
good enough starting guess for the non-linear refinement (Section 6.2.4).

−16 −14 −12 −10 −8 −6 −4
0

0.2

0.4

0.6

0.8

Rel. focal length error

P4.5PFUV

P4.5PFUV (SVD)
P5PFUVA (Eig.)
P5PFUVA (Closed)
Triggs [214]
Triggs [214] (Norm.)

Figure 6.1: Relative focal length error |f−fgt|fgt
for 10,000 random synthetic instances.

6.3.2 Varying Noise

Next we evaluate the sensitivity to image noise. We use a similar setup as in
Section 6.3.1 but where we fixed the focal length fgt = 1000 and added Gaussian
noise with varying standard deviation to the image points. Figure 6.3 shows the

150

6.3. Experiments

−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

Rel. focal length error

P7PFRUV

P7PFRUV (bundle)

Figure 6.2: Relative focal length error |f−fgt|fgt
for 10,000 random synthetic instances

for image points with added radial distortion.

median relative focal length error against the noise level and Figure 6.4 shows the
error distribution for σ = 2 px.

Our new solvers, especially P4.5PFUV (SVD), performs the best in the pres-
ence of image noise. For the solver from Triggs [214], the accuracy degrades
heavily for noisy image points. Additionally we can see that normalization of the
image and 3D coordinate systems is essential.

Again we ran a similar experiment but with radial distortion added to the
image points. The distortion parameter was fixed at kgt = −0.2. The median
relative focal length errors are shown in Figure 6.5.

Comparison to 6p DLT

We also did a comparison with standard 6 point DLT [81]. To get a fair com-
parison we use 6 points to compute the approximate nullspace in our P4.5PFUV

(SVD) solver. Figure 6.6 shows that we are able to get better results by enforcing
the correct constraints on the intrinsic parameters.

6.3.3 Varying Principal Point

In this section we study the effects of varying principal point. We compare our
new solvers to the state-of-the-art P3.5PF and P4PFR solvers from Chapter 5
([137]), which assume that the principal point is in the center of the image. We
generate synthetic scenes where the distance from the origin to the principal point

151

Absolute Pose with Unknown Focal Length and Principal Point

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

Noise (px)

R
el

.f
oc

al
le

ng
th

er
r.

P4.5PFUV

P4.5PFUV (SVD)
P5PFUVA (Eig.)
P5PFUVA (Closed)
Triggs [214]
Triggs [214] (Norm.)

Figure 6.3: Median relative focal length error for varying noise.

is varied. The ground truth focal length was fgt = 1000 and we added small
Gaussian noise (σ = 0.1 px) to the image coordinates. For the distortion solvers
we also add radial distortion to the image points with kgt = −0.2. The median
errors in the focal length and rotation are shown in Figure 6.7. As expected
ignoring the principal point makes the pose estimation significantly worse.

6.3.4 Varying Radial Distortion

In this section we compare the performance of the new solvers when we add
varying degrees of radial distortion to the image points. We generated synthetic
scenes similarly to Section 6.3.2 and added varying radial distortion. The ground
truth focal length was fgt = 1000 and the principal point was chosen randomly
at distance 500 px from the origin. We also added some small Gaussian noise
(σ = 0.1 px) to the image coordinates. Figure 6.8 shows the median relative
focal length and rotation errors for different radial distortion parameters. For the
solvers which do not model the radial distortion the error increases drastically
when distortion is added. We can also see that the P7PFRUV solver has slightly
worse performance on image data with little or no radial distortion.

152

6.3. Experiments

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

Rel. focal error

P4.5PFUV

P4.5PFUV (SVD)
P5PFUVA (Eig.)
P5PFUVA (Closed)
Triggs [214]
Triggs [214] (Norm.)

Figure 6.4: Distribution of relative focal length error for 2 px noise.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2
·10−2

Noise (px)

R
el

.f
oc

al
le

ng
th

er
r. P7PFRUV

P7PFRUV (bundle)

Figure 6.5: Median relative focal length error for varying noise with radial distortion.

6.3.5 Real Data

We evaluated all proposed solvers on real image data and compared them with the
current state-of-the-art solvers. We downloaded 101 images of the Notre Dame
cathedral from the Internet. All downloaded images have a square resolution
varying from 800 px × 800 px to 3000 px × 3000 px. Since the images have a
square resolution, there was a higher probability that some of these images were
edited or cropped and that their principal points are not in the center of the
image. Some example images are shown in Figure 6.9.

Using the RealityCapture software [2] we built a 3D reconstruction of the
scene. Since the dataset is quite challenging and it contains many manually

153

Absolute Pose with Unknown Focal Length and Principal Point

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4
·10−2

Noise (px)

R
el

.f
oc

al
le

ng
th

er
r. P4.5PFUV (6p SVD)

P6P [81]

Figure 6.6: Comparison with 6 point DLT. The graph shows the median relative focal
length error for varying noise levels. Note that we use 6 points in our P4.5PFUV

solver as well.

edited images, images taken at different conditions, or images with a small over-
lap, the RealityCapture was only able to register 81 of the 101 images. The Notre
Dame reconstruction contains 24762 3D points, the average reprojection error
was 0.6277 pixels and the maximum 1.997 pixels over 73543 image points. Ac-
cording to the principal point estimates returned by RealityCapture, 32 out of 81
images have the principal point shifted by more than 6% of the image size.

We used the 3D model and 2D-to-3D correspondences returned by Reality-
Capture to estimate the pose of each image using the solvers in a simple RANSAC
framework with the number of RANSAC iterations fixed to 1000. We used the
camera intrinsic and extrinsic parameters obtained from RealityCapture as the
ground truth for the experiment. Table 6.1 shows the errors for the focal length,
the radial distortion, the camera pose, as well as the ratio of inliers obtained by
different solvers for all 81 registered images. Table 6.2 shows the same errors for
32 images with the principal point shift larger than 6% of the image size. The
results with non-linear refinement for P7PFRUV, as described in Section 6.2.4,
are marked with (b). Note that this is performed using only the 7 sampled point
correspondences.

Overall, the errors are quite small and the new solvers (marked bold) per-
form the best. It is visible that solvers which assume that the principal point in
the center of the image (P3.5PF, P4PFR) perform significantly worse than the
solvers with unknown principal point, especially on images with larger principal

154

6.3. Experiments

0 100 200 300 400 500
0

2

4

6

8
·10−2

‖(u, v)‖

R
el

.f
oc

al
le

ng
th

er
r. P4.5PFUV

P5PFUVA

P7PFRUV

P3.5PF [137]
P4PFR [137]

0 100 200 300 400 500
0

10

20

30

‖(u, v)‖

R
ot

at
io

n
er

r.
(d

eg
re

e) P4.5PFUV

P5PFUVA

P7PFRUV

P3.5PF [137]
P4PFR [137]

Figure 6.7: Comparison to standard solvers with for scenes with varying principal
point. Top: Relative focal length error |f−fgt|fgt

. Bottom: Rotation error in degrees.

point shift (Table 6.2). Even though the images from the Notre Dame dataset do
not have a significant radial distortion, the new radial distortion solver helps to
improve the results.

6.3.6 Real Images with Radial Distortion

Finally, we evaluate our solvers on real images which have both a shifted princi-
pal point and significant radial distortion. Since it is difficult to generate reliable
ground truth for this problem we took the following approach. We started with
the Rotunda dataset which was used in [127, 137]. The dataset contains images
captured with a wide-angle cameras with large radial distortion and a 3D recon-

155

Absolute Pose with Unknown Focal Length and Principal Point

struction with cameras’ intrinsic and extrinsic parameters (see Chapter 5 for more
details). We used these camera parameters as a ground truth data. For each im-
age in the dataset we cropped out 80% of the image, starting from each of the
four corners. See Figure 6.10 for an example. This gave us a new dataset with
4 × 62 = 248 images which have both radial distortion and shifted principal
points.

The results for running 1000 iterations of RANSAC are shown in Table 6.4.
The best results are obtained using the new P7PFRUV solver which can model
both radial distortion and shifted principal point.

6.4 Conclusions

In this chapter, we have revisited the camera pose estimation problem with un-
known principal point. We proposed effective polynomial constraints to avoid
trivial rank-deficient solutions, and successfully developed the first exactly min-
imal solver for the case of unknown principal point and focal length by using
four and a half point correspondences (P4.5PFUV), as well as an extremely ef-
ficient variant using five point correspondences in the presence of unknown as-
pect ratio (P5PFUVA). We have also explored the extremely challenging case of
unknown principal point and radial distortion, and developed the first practical
non-minimal solver by using seven point correspondences (P7PFRUV). The ap-
plicability of these new solvers has been verified on both synthetic data and real
images.

The high non-linearity in the case of both unknown principal point and ra-
dial distortion prevents us from developing an exactly minimal solver. We will
continue to explore the feasibility of the exactly minimal problem in the future.

156

6.4. Conclusions

−0.5−0.4−0.3−0.2−0.10
0

0.05

0.1

0.15

0.2

Distortion parameter k

R
el

.f
oc

al
le

ng
th

er
r. P4.5PFUV

P5PFUVA

P7PFRUV

Triggs [214]

−0.5−0.4−0.3−0.2−0.10
0

5

10

15

20

Distortion parameter k

R
ot

at
io

n
er

r.
(d

eg
re

e) P4.5PFUV

P5PFUVA

P7PFRUV

Triggs [214]

Figure 6.8: Comparison of the solvers for scenes with varying radial distortion. Top:
Relative focal length error |f−fgt|fgt

. Bottom: Rotation error in degrees.

157

Absolute Pose with Unknown Focal Length and Principal Point

Figure 6.9: Example images from the NotreDame internet dataset.

Figure 6.10: Example images. Left: Image from the original Rotunda dataset [127].
Right: Cropped images from the Rotunda dataset used for the experiment in Sec-
tion 6.3.6.

158

6.4. Conclusions

P
3.

5P
F

[1
37

]
P

6P
[8

1]
P

5P
F

U
V

[2
14

]
P

4.
5P

F
U

V
P

4.
5P

F
U

V
(S

V
D

)
P

4.
5P

F
U

V
(6

pt
)

P
5P

F
U

V
A

P
4P

F
R

[1
37

]
P

7P
F

R
U

V
P

7P
F

R
U

V
(b

)

m
ea

n
0.

12
56

0.
02

42
0.

02
34

0.
02

09
0.

01
89

0.
01

42
0.

02
43

0.
10

12
0.

02
11

0.
00

37
m

ed
ia

n
0.

04
58

0.
01

37
0.

01
38

0.
01

42
0.

01
38

0.
00

96
0.

01
59

0.
02

64
0.

01
65

0.
00

24
Fo

ca
ll

en
gt

h
m

ax
1.

30
42

0.
13

42
0.

11
23

0.
14

49
0.

09
62

0.
05

35
0.

11
76

0.
93

07
0.

08
07

0.
01

86
m

ea
n

2.
94

95
1.

20
67

1.
25

59
1.

25
44

1.
25

64
1.

12
28

1.
23

22
3.

00
43

0.
90

05
0.

31
66

m
ed

ia
n

1.
68

91
0.

88
14

0.
97

78
1.

05
82

1.
12

60
0.

92
55

0.
85

46
1.

68
16

0.
70

09
0.

20
85

R
ot

at
io

n
m

ax
19

.5
78

9
5.

15
10

4.
19

78
3.

97
26

3.
88

89
4.

07
54

4.
58

83
21

.7
93

3
2.

74
97

1.
94

64
m

ea
n

0.
61

96
0.

11
63

0.
12

49
0.

08
94

0.
08

49
0.

07
14

0.
12

00
0.

49
41

0.
10

16
0.

01
88

m
ed

ia
n

0.
20

52
0.

05
22

0.
05

69
0.

05
86

0.
06

29
0.

04
14

0.
06

40
0.

13
15

0.
06

29
0.

00
97

Tr
an

sl
at

io
n

m
ax

5.
44

42
0.

67
11

1.
61

83
0.

51
00

0.
58

09
0.

72
89

0.
70

50
4.

10
39

0.
59

29
0.

16
65

m
ea

n
-

0.
03

19
0.

03
17

0.
03

35
0.

03
35

0.
02

96
0.

03
24

-
0.

02
27

0.
00

89
m

ed
ia

n
-

0.
02

26
0.

02
23

0.
02

39
0.

02
36

0.
02

07
0.

02
24

-
0.

01
68

0.
00

54
Pr

in
ci

pa
lp

oi
nt

m
ax

-
0.

22
63

0.
28

29
0.

44
84

0.
44

11
0.

38
77

0.
34

91
-

0.
17

35
0.

08
08

m
ea

n
-

-
-

-
-

-
-

0.
08

68
0.

04
74

0.
01

65
m

ed
ia

n
-

-
-

-
-

-
-

0.
02

90
0.

01
73

0.
00

71
D

is
to

rt
io

n
m

ax
-

-
-

-
-

-
-

1.
05

09
1.

93
41

0.
38

40
m

ea
n

74
.9

31
5

88
.0

26
5

86
.8

77
0

87
.8

97
1

88
.6

42
0

89
.4

03
9

87
.5

29
7

82
.1

42
2

93
.2

45
3

98
.3

41
3

m
ed

ia
n

79
.6

97
5

90
.6

26
1

90
.3

53
4

91
.7

34
4

91
.8

06
5

92
.6

47
4

90
.3

01
5

89
.3

57
1

94
.6

93
4

98
.3

41
3

In
lie

r
(%

)
m

ax
99

.6
80

5
99

.2
39

1
99

.0
58

1
99

.3
40

7
99

.4
61

0
99

.6
71

1
99

.3
85

6
99

.6
80

5
99

.3
61

0
10

0.
00

00

Ta
bl

e
6.

1:
Fu

ll
re

su
lts

fo
r

th
e

N
ot

re
D

am
e

da
ta

se
t:

C
om

pa
ri

so
n

of
di

ff
er

en
t

so
lv

er
s

on
81

im
ag

es
do

w
nl

oa
de

d
fr

om
th

e
In

te
rn

et
.

T
he

ta
bl

e
sh

ow
s

th
e

re
la

ti
ve

er
ro

rs
ex

ce
pt

fo
r

th
e

ro
ta

ti
on

er
ro

rs
w

hi
ch

ar
e

in
de

gr
ee

s.
Fo

r
th

e
pr

in
ci

pa
lp

oi
nt

th
e

er
ro

r
is

re
la

ti
ve

to
th

e
im

ag
e

si
ze

.
T

he
be

st
re

su
lts

(e
xc

lu
di

ng
P

7P
F

R
U

V
w

it
h

bu
nd

le
ad

ju
st

m
en

t)
ar

e
m

ar
ke

d
bo

ld
.

159

Absolute Pose with Unknown Focal Length and Principal Point

P
3.5P

F
[137]

P
6P

[81]
P

5P
F

U
V

[214]
P

4.5P
F

U
V

P
4.5P

F
U

V
(SV

D
)

P
4.5P

F
U

V
(6pt)

P
5P

F
U

V
A

P
4P

F
R

[137]
P

7P
F

R
U

V
P

7P
F

R
U

V
(b)

m
ean

0.2615
0.0295

0.0228
0.0185

0.0186
0.0123

0.0286
0.2177

0.0192
0.0043

m
edian

0.1409
0.0150

0.0138
0.0139

0.0089
0.0093

0.0224
0.1363

0.0163
0.0031

Focallength
m

ax
1.3042

0.1342
0.0809

0.0572
0.0762

0.0437
0.1176

0.9307
0.0807

0.0186
m

ean
5.6991

1.6485
1.5334

1.3566
1.3602

1.3361
1.5225

5.9204
0.8759

0.3942
m

edian
4.6145

1.1001
1.0628

1.0924
1.1260

1.0800
1.1426

4.6211
0.6414

0.2657
R

otation
m

ax
19.5789

5.1510
4.1978

3.9726
3.8889

4.0754
4.5883

21.7933
2.7497

1.9127
m

ean
1.2483

0.1679
0.1528

0.1004
0.0978

0.0699
0.1646

1.0641
0.1140

0.0283
m

edian
0.7351

0.0941
0.0735

0.0745
0.0759

0.0601
0.1105

0.7020
0.0797

0.0135
Translation

m
ax

5.4442
0.6711

1.6183
0.3328

0.3557
0.2896

0.6612
4.1039

0.4998
0.1665

m
ean

-
0.0413

0.0373
0.0333

0.0334
0.0319

0.0396
-

0.0214
0.0108

m
edian

-
0.0291

0.0277
0.0300

0.0270
0.0258

0.0286
-

0.0163
0.0071

Principalpoint
m

ax
-

0.1559
0.0971

0.0965
0.1114

0.0907
0.1375

-
0.0669

0.0572
m

ean
-

-
-

-
-

-
-

0.1647
0.0240

0.0121
m

edian
-

-
-

-
-

-
-

0.1102
0.0176

0.0066
D

istortion
m

ax
-

-
-

-
-

-
-

1.0509
0.1082

0.1137
m

ean
61.7820

89.4821
87.9500

89.3505
90.0521

90.8913
88.6629

66.8490
93.0248

98.2320
m

edian
68.0180

91.7491
90.3534

92.2825
92.1621

92.7361
90.9337

70.3435
94.9796

98.2320
Inlier

(%
)

m
ax

94.9309
99.1837

99.0581
99.3407

99.3563
99.6711

99.3856
96.7742

99.1031
100.0000

Table
6.2:Fullresultsforthe

N
otreD

am
e

dataset:C
om

parison
ofdifferentsolverson

im
agesw

ith
principalpointshift

>
6%

.T
he

table
show

s
the

relative
errors

exceptfor
the

rotation
errors

w
hich

are
in

degrees.For
the

principalpointthe
error

is
relative

to
the

im
age

size.
T

he
bestresults

(excluding
P

7P
F

R
U

V
w

ith
bundle

adjustm
ent)

are
m

arked
bold.

160

6.4. Conclusions

P
3.

5P
F

[1
37

]
P

6P
[8

1]
P

5P
F

U
V

[2
14

]
P

4.
5P

F
U

V
P

4.
5P

F
U

V
(S

V
D

)
P

4.
5P

F
U

V
(6

pt
)

P
5P

F
U

V
A

P
4P

F
R

[1
37

]
P

7P
F

R
U

V
P

7P
F

R
U

V
(b

)

m
ea

n
0.

03
51

0.
02

06
0.

02
38

0.
02

25
0.

01
91

0.
01

55
0.

02
14

0.
02

36
0.

02
23

0.
00

34
m

ed
ia

n
0.

02
40

0.
01

24
0.

01
36

0.
01

42
0.

01
57

0.
00

96
0.

01
50

0.
01

59
0.

01
66

0.
00

15
Fo

ca
ll

en
gt

h
m

ax
0.

22
35

0.
09

20
0.

11
23

0.
14

49
0.

09
62

0.
05

35
0.

11
37

0.
08

70
0.

07
57

0.
01

73
m

ea
n

1.
11

64
0.

91
21

1.
07

09
1.

18
63

1.
18

72
0.

98
06

1.
03

87
1.

06
03

0.
91

69
0.

26
49

m
ed

ia
n

0.
91

37
0.

80
07

0.
93

29
0.

95
18

1.
11

45
0.

89
11

0.
76

50
0.

91
35

0.
78

30
0.

18
66

R
ot

at
io

n
m

ax
3.

20
30

2.
54

08
3.

06
33

3.
45

79
3.

69
08

2.
62

47
4.

25
05

2.
79

17
2.

35
52

1.
94

64
m

ea
n

0.
20

05
0.

08
18

0.
10

64
0.

08
20

0.
07

63
0.

07
24

0.
09

02
0.

11
42

0.
09

34
0.

01
26

m
ed

ia
n

0.
08

61
0.

03
61

0.
04

78
0.

05
33

0.
05

42
0.

03
56

0.
04

81
0.

05
68

0.
05

53
0.

00
72

Tr
an

sl
at

io
n

m
ax

2.
29

31
0.

48
28

0.
53

47
0.

51
00

0.
58

09
0.

72
89

0.
70

50
1.

24
41

0.
59

29
0.

07
72

m
ea

n
-

0.
02

57
0.

02
80

0.
03

36
0.

03
35

0.
02

80
0.

02
75

-
0.

02
36

0.
00

77
m

ed
ia

n
-

0.
01

91
0.

02
04

0.
02

13
0.

02
31

0.
01

88
0.

01
52

-
0.

01
87

0.
00

43
Pr

in
ci

pa
lp

oi
nt

m
ax

-
0.

22
63

0.
28

29
0.

44
84

0.
44

11
0.

38
77

0.
34

91
-

0.
17

35
0.

08
08

m
ea

n
-

-
-

-
-

-
-

0.
03

49
0.

06
31

0.
01

95
m

ed
ia

n
-

-
-

-
-

-
-

0.
01

36
0.

01
61

0.
00

91
D

is
to

rt
io

n
m

ax
-

-
-

-
-

-
-

0.
67

77
1.

93
41

0.
38

40
m

ea
n

83
.6

97
8

87
.0

56
1

86
.1

61
7

86
.9

28
1

87
.7

01
9

88
.4

12
3

86
.7

74
2

92
.3

37
7

93
.3

92
3

98
.4

14
1

m
ed

ia
n

85
.4

58
3

89
.7

18
5

90
.3

24
3

90
.7

80
9

90
.5

39
7

92
.1

72
0

90
.1

25
7

93
.8

95
4

94
.5

74
3

98
.4

14
1

In
lie

r
(%

)
m

ax
99

.6
80

5
99

.2
39

1
99

.0
41

5
99

.2
06

3
99

.4
61

0
99

.3
97

6
98

.8
90

3
99

.6
80

5
99

.3
61

0
10

0.
00

00

Ta
bl

e
6.

3:
Fu

ll
re

su
lts

fo
rt

he
N

ot
re

D
am

e
da

ta
se

t:
C

om
pa

ri
so

n
of

di
ff

er
en

ts
ol

ve
rs

on
im

ag
es

w
it

h
pr

in
ci

pa
lp

oi
nt

sh
ift
<

6%
.T

he
ta

bl
e

sh
ow

s
th

e
re

la
ti

ve
er

ro
rs

ex
ce

pt
fo

r
th

e
ro

ta
ti

on
er

ro
rs

w
hi

ch
ar

e
in

de
gr

ee
s.

Fo
r

th
e

pr
in

ci
pa

lp
oi

nt
th

e
er

ro
r

is
re

la
ti

ve
to

th
e

im
ag

e
si

ze
.

T
he

be
st

re
su

lts
(e

xc
lu

di
ng

P
7P

F
R

U
V

w
it

h
bu

nd
le

ad
ju

st
m

en
t)

ar
e

m
ar

ke
d

bo
ld

.

161

Absolute Pose with Unknown Focal Length and Principal Point

P
3.5P

F
[137]

P
6P

[81]
P

5P
F

U
V

[214]
P

4.5P
F

U
V

P
4.5P

F
U

V
(SV

D
)

P
4.5P

F
U

V
(6pt)

P
5P

F
U

V
A

P
4P

F
R

[137]
P

7P
F

R
U

V
P

7P
F

R
U

V
(b)

m
ean

0.3696
0.2199

0.1667
0.1699

0.1666
0.1696

0.1928
0.0845

0.0012
0.0008

m
edian

0.2629
0.1564

0.1386
0.1319

0.1290
0.1368

0.1494
0.0540

0.0010
0.0007

Focallength
m

ax
4.1083

0.5135
0.5066

0.4187
0.4461

0.4217
0.5450

0.5896
0.0040

0.0053
m

ean
14.6800

10.7499
8.4318

8.4168
8.3194

8.2880
9.7119

13.6371
0.2558

0.1837
m

edian
13.3526

10.0873
7.8776

8.1739
7.8868

7.6738
9.4980

13.3771
0.2191

0.1588
R

otation
m

ax
176.5515

24.4273
22.8580

20.9626
22.7519

22.4078
27.0481

21.1274
0.7516

0.7629
m

ean
0.4538

0.1687
0.1446

0.1436
0.1434

0.1450
0.1535

0.2181
0.0043

0.0031
m

edian
0.2673

0.1218
0.1175

0.1170
0.1136

0.1129
0.1211

0.2062
0.0038

0.0026
Translation

m
ax

5.9461
0.8867

0.6083
0.6217

0.6804
0.7358

0.6327
0.7070

0.0138
0.0138

m
ean

-
0.0635

0.0619
0.0616

0.0614
0.0608

0.0655
-

0.0022
0.0016

m
edian

-
0.0633

0.0536
0.0556

0.0539
0.0535

0.0624
-

0.0018
0.0012

Principalpoint
m

ax
-

0.1710
0.2004

0.1857
0.2008

0.1764
0.1798

-
0.0080

0.0080
m

ean
-

-
-

-
-

-
-

0.2042
0.0067

0.0045
m

edian
-

-
-

-
-

-
-

0.1271
0.0054

0.0034
D

istortion
m

ax
-

-
-

-
-

-
-

2.9758
0.0334

0.0232
m

ean
21.26

40.46
34.73

36.04
36.81

36.93
37.45

33.18
96.78

97.49
m

edian
18.67

38.55
31.97

32.73
33.58

33.98
35.22

29.93
97.06

97.80
Inlier

(%
)

m
ax

55.03
67.12

63.42
62.06

64.12
65.65

65.76
64.50

98.93
99.19

Table
6.4:

Fullresults
for

the
cropped

Rotunda
dataset:

C
om

parison
ofdifferent

solvers
on

248
im

ages
w

ith
radialdistortion

and
shifted

principalpoint.
T

he
table

show
s

the
relative

errors
except

for
the

rotation
errors

w
hich

are
in

degrees.
For

the
principal

pointthe
error

is
relative

to
the

im
age

size.
T

he
bestresults

(excluding
P

7P
F

R
U

V
w

ith
bundle

adjustm
ent)

are
m

arked
bold.

162

Chapter 7

Convex Relaxations for Low Rank
Matrix Approximation

Low rank approximation is an important tool in many applications. Given an
observed matrix with elements corrupted by noise it is possible to find the best
approximating matrix in Frobenius sense of a given rank through singular value
decomposition. However, due to the non-convexity of the formulation it is not
possible to incorporate any additional knowledge of the sought matrix without
resorting to heuristic optimization techniques.

In this chapter we propose a convex formulation that is more flexible in that
it can be combined with any other convex constraints and penalty functions. The
formulation uses the so called convex envelope, which is the provably best possible
convex relaxation. We show that for a general class of problems the envelope can
be efficiently computed and may in some cases even have a closed form expression.
We test the algorithm on a number of real and synthetic datasets and show state-
of-the-art results.

This chapter is based on the papers [136, 139, 140].

7.1 Introduction

Low rank approximation procedures such as PCA are important tools for various
dimensionality reduction problems. The fundamental result that makes these
approaches possible is due to [53] which shows that a closed form solution to the

163

Convex Relaxations for Low Rank Matrix Approximation

problem

min
rank(X)=r0

‖X −X0‖2
F , (7.1)

can be obtained from the singular value decomposition of X0. In this chapter we
consider the more general formulation

min
rank(X)=r0

‖X −X0‖2
F + C(X). (7.2)

Here the function C(X) represents any additional prior knowledge that we may
have on the entries of X . The only requirement we make is that C is convex.

Adding a convex function may seem to be a very minor change. Unfortu-
nately, the problem in (7.1) is not convex and any modification makes it much
more difficult since the SVD approach is no longer applicable.

In order to make the formulation more flexible it is desirable to replace the
complicated rank constraint with a convex surrogate. Typically a soft penalty on
the singular values is adopted resulting in

min
X

µ‖X‖∗ + ‖X −X0‖2
F , (7.3)

where the so called nuclear norm is given by

‖X‖∗ =

n∑
i=1

σi(X), (7.4)

and n is the number of singular values. The rationale behind this choice is that
penalizing the sum of singular values is likely to produce results where many of
them are set to zero, thus resulting in a solution of low rank. The connection to
the rank function is given in [63] where it is shown that the nuclear norm is the
convex envelope of the rank function on the set {X;σ1(X) ≤ 1}, where σ1(X)
is the largest singular value of X . The constraint σ1(X) ≤ 1 is artificial and
only added since the convex envelope of the rank function on the whole domain
is simply the zero function.

The nuclear norm approach is very general and can in principle be applied
to a wide range of problems as long as the remaining terms are convex. On the
downside, since all singular values are penalized rather than just the small ones,
the formulation introduces an unwanted bias to solutions with small elements.

164

7.1. Introduction

There is for example no choice of µ such that the relaxed problem in (7.3) will
give the correct solution to (7.1) (unless X0 is already of low rank).

In contrast, in this chapter we derive a convex formulation that has the same
optimizer as (7.1). The key observation is that if one considers not just the rank
function but also the data term ‖X −X0‖2

F one can derive a significantly more
accurate convex approximation of (7.1), without the need for adding artificial
constraints. Compared to the nuclear norm constraint {X;σ1(X) ≤ 1}, the
term ‖X − X0‖2

F effectively translates the feasible region to a neighborhood
around X0 instead of the origin. Therefore our convex envelope can penalize
smaller singular values harder than larger ones, while the nuclear norm tries to
force all singular values to be zero. Specifically, we show that it is possible to
compute the convex envelope of functions of the type

fg(X) = g(rank(X)) + ‖X −X0‖2
F . (7.5)

The only assumption we make is that the function g can be written

g(k) =

{
g0 if k = 0

g0 +
∑k

i=1 gi otherwise
, (7.6)

where the sequence gi is non-negative and non-decreasing for 1 ≤ i ≤ n. It is
easy to see that this is possible if g is convex and non-decreasing on R. Further-
more, we will assume that g0 = 0 since subtracting a constant from the objective
function does not affect the minimizers (and only subtracts a constant from the
convex envelope).

In particular we are interested in two special cases of g. With a slight abuse of
notation we define

fµ(X) = µ rank(X) + ‖X −X0‖2
F (7.7)

and

fr0(X) = I(rank(X) ≤ r0) + ‖X −X0‖2
F , (7.8)

where I(rank(X) ≤ r0) = 0 if rank(X) ≤ r0 and ∞ otherwise. The first
formulation consists of a trade-off between rank and measurement fit using a soft
rank penalty. In many practical applications it is however not interesting to lower
the rank further than a predefined value r0. In such cases the second formulation

165

Convex Relaxations for Low Rank Matrix Approximation

is more appropriate. Note that in this case we select gk = 0 for k ≤ r0 and
gk =∞ for k > r0.

For many applications any of the two formulations can be used. Given a value
of r0 it is for example possible to find a value of µ such that fµ and fr0 have the
same optimizers and vice versa. For applications involving the ranks of multiple
interdependent matrices searching for the right parameters can become a difficult
task. In such cases it is of interest to directly specify the correct prior knowledge.
In applications with multiple matrices we will typically assume that the rank is
known a priori and therefore we often prefer to use fr0 . On the other hand
the convex envelope of fµ is mathematically easy to handle since it has a closed
form expression. Additionally, it is intuitively easy to understand and compare to
existing approaches.

Minimizing the convex envelope of fg gives the same result as minimizing fg
itself. The significant advantage of using the envelope instead is that it is convex
and therefore can be combined with other convex constraints and functions. For
example, in the presence of missing data we propose to utilize it as illustrated in
Figure 7.13 on page 193. More specifically, our convex relaxation is applied to
sub-blocks of the matrix with no missing entries rather than the nuclear norm
of the entire matrix X . In effect, this can be seen as minimizing the rank of
each sub-block separately, and due to the convexity of our approximation, it is
possible to enforce that the sub-blocks agree on their overlap. Furthermore, we
show that under mild assumptions it possible to extract a solution to the full
matrix X that has rank equal to the largest rank of the sub-blocks. We present
an ADMM [18] based approach for obtaining a solution which only requires
to compute SVDs of the sub-blocks rather than the whole matrix resulting in
an efficient implementation. To enable efficient optimization we show how to
compute the proximal operators for our convex relaxations.

7.1.1 Related Work

The ability to find the best fixed rank approximation of a matrix has been proven
useful in applications such as rigid and non rigid Structure-from-Motion, pho-
tometric stereo and optical flow [211, 20, 228, 72, 17, 71]. The rank of the
approximating matrix typically describes the complexity of the solution. For ex-
ample, in non-rigid Structure-from-Motion the rank measures the number of ba-
sis elements needed to describe the point motions [20]. Under the assumption of
gaussian noise the rank approximation problem can be solved optimally in a least

166

7.1. Introduction

squares sense using SVD [53], but the strategy is limited to problems without
missing data and outliers.

In the presence of missing data the general problem becomes much more
difficult, some versions even NP-hard [73]. In [10] it is shown that replacing
the Frobenious norm with the spectral norm yields a closed form solution if the
missing data forms a Young pattern and thus the globally optimal solution can
be computed. For general problems [10] proposes an alternation over Young
patterns.

A recent heuristic that has been shown to work well is to replace the rank
function with the nuclear norm [180, 37, 72, 175, 9]. It can be shown [180,
37] that if the location of the missing entries are random then the nuclear norm
approach provides a good approximation. However, in many applications such
as Structure-from-Motion, where missing entries are highly correlated, they have
been shown to perform poorly (e.g. [136, 175]).

In an effort to strengthen the nuclear norm formulation, [9] adds prior infor-
mation using the generalized trace norm. The formulation is related to (7.3) by
a reweighing of the data term and can incorporate knowledge such as smoothness
priors. The availability of such information can improve the estimation, however
the formulation still uses the nuclear norm for regularization. On a high level
our approach is similar to [9] in that it also attempts to find a stronger convex
relaxation by considering not just the rank function but also the data. However,
in contrast to [9] we do not add priors to the problem but simply use the infor-
mation in the available measurements.

If the rank of the sought matrix is known, bilinear parametrizations with lo-
cal optimization are often employed. Buchanan and Fitzgibbon [23] showed that
alternating methods often exhibit very slow convergence. Instead they proposed a
damped gauss-newton update that jointly optimizes over both factors. In [35] it
was observed that the damping factor can be seen as a nuclear norm regularization
term thereby unifying the use of bilinear parametrization and nuclear norm min-
imization. In [172] it was illustrated that the Wiberg elimination strategy [225]
is very robust to local minima.

In [106] the `1 norm is used to address outliers. The proposed alternating
approach is shown to converge slowly in [58]. Instead [58, 203, 233] propose
generalizations of the Wiberg approach designed to handle the non differenetiable
objective function while jointly updating the two factors. While experimental
results indicate robustness to suboptimal solutions, these methods are still local in

167

Convex Relaxations for Low Rank Matrix Approximation

that updates are computed using a local approximation of the objective function.
In sparse prediction it has been observed that the standard `1 approach shrinks

too many of the variables in settings where these are highly correlated. This has
motivated the use of elastic nets [236] and more recently the so called k-support
norm [11, 132]. This norm is a convex relaxation of a combination of cardinality
and the `2 norm. In [159, 59] these results are generalized to a combination of
rank and Frobenious norm for the matrix setting.

The work most similar to ours is perhaps [101] where the convex envelope
of a vector version of our problem (the cardinality function and the `2-norm) is
computed. The underlying idea of the above line of work is that approximating
the cardinality/rank function without regard for the remaining objective functions
may yield relaxations unsuitable for the problem at hand. Rather, it is desirable to
consider as much of the objective function as possible when computing the convex
envelopes. Specifically, in our work, we propose a problem specific relaxation
that considers as much of the measurement data as possible. In the above works
the additional `2-norm is centered around the origin, and will actually serve to
penalize large non-zero components hard, which is the opposite of what we aim
for here. In our framework the use of a non-centered Frobenious-norm is an
essential component required to avoid penalizing large singular values.

In [76] Grussler et al. present another derivation of the convex envelope of
Frobenious loss together with the indicator function for rank r matrices, which
is a special case of the convex envelopes presented in this chapter. In [76] they
present some results for the relaxation gaps, as well as an SDP-representation for
the convex envelope which can be useful for optimization in some settings. They
also present an extension where they allow non-integer values for the rank to allow
for stronger penalties for cases where the envelope is not tight.

From an algorithmic point of view there are several methods that similar to us
have employed proximal operators for inference in rank approximation problems.
In the context of nuclear norm optimization [36, 150, 158, 37, 62] employ these
techniques in order to avoid costly semidefinite programming problems associated
with the nuclear norm.

7.1.2 Notation

Throughout the chapter we use σi(X), i = 1, ..., n to denote the ith singular
value of a matrix X . Here n denotes the number of singular values and for
notational convenience we will also define σ0(X) = ∞ and σn+1(X) = 0.

168

7.2. Convexification

The vector of all singular values is denoted σ(X). With some abuse of notation
we write the SVD of X as U diag(σ(X))V T . For ease of notation we do not
explicitly indicate the dependence of U and V on X since this will be clear from
the context. The scalar product is defined as 〈X,Y 〉 = tr(XTY), where tr is the

trace function, and the Frobenius norm ‖X‖F =
√
〈X,X〉 =

√∑n
i=1 σ

2
i (X).

Truncation at zero is denoted [a]+, that is, [a]+ = 0 if a < 0 and a otherwise.
Elementwise multiplication is denoted �.

7.2 Convexification

In this section we show that it is possible to compute the convex envelope of fg
in (7.5). To compute the envelope we will use the Fenchel conjugate [182]

f∗g (Y) = sup
X
〈Y,X〉 − fg(X). (7.9)

The convex envelope is then given by computing the biconjugate f∗∗. See the
Introduction chapter for more details.

7.2.1 The Conjugate Function

The first step in finding the convex envelope is the computation of the conjugate
function. By inserting (7.5) in (7.9) and completing squares, the conjugate can
be written

max
k

sup
rank(X)=k

‖Z‖2
F − ‖X0‖2

F − ‖X − Z‖2
F −

k∑
i=1

gi, (7.10)

where

Z =
1
2
Y +X0. (7.11)

Note that the first two terms are independent of X and can be considered as
constants in the maximization over X and k. In addition k is fixed in the inner
maximization. For a fixed k, the maximizing X is given by the best rank k ap-
proximation of Z = 1

2Y + X0 which can be obtained from an SVD of Z by

169

Convex Relaxations for Low Rank Matrix Approximation

setting all singular values but the k largest to zero [53]. Inserting into (7.10) we
get

max
k
‖Z‖2

F − ‖X0‖2
F −

n∑
i=k+1

σ2
i (Z)−

k∑
i=1

gi. (7.12)

Recall that the sequence gi is non-decreasing by assumption and the singular
values σi(Z) are non-increasing. To select the best k we note that the largest
value is achieved when k fulfills

σ2
k(Z) ≥ gk and gk+1 ≥ σ2

k+1(Z). (7.13)

For this maximizing k the last two sums can be written

n∑
i=k+1

σ2
i (Z) +

k∑
i=1

gi =
n∑
i=1

min
(
gi, σ

2
i (Z)

)
. (7.14)

Therefore we get the conjugate function

f∗g (Y) =

∥∥∥∥1
2
Y +X0

∥∥∥∥2

F

− ‖X0‖2
F −

n∑
i=1

min

(
gi, σ

2
i (

1
2
Y +X0)

)
. (7.15)

7.2.2 The Convex Envelope

We next proceed to compute the bi-conjugate of (7.5). To keep the notation
simple we again change variables to Z = 1

2Y +X0 and maximize over Z instead.
Inserting (7.15) into the definition of the biconjugate, we get f∗∗(X) =

sup
Z

2 〈X,Z −X0〉 − ‖Z‖2
F + ‖X0‖2

F +

n∑
i=1

min(gi, σ
2
i (Z)). (7.16)

The first three terms can, by completing squares, be simplified into ‖X−X0‖2
F−

‖Z −X‖2
F . Furthermore, since ‖X −X0‖2

F does not depend on Z we get

f∗∗g (X) = Rg(X) + ‖X −X0‖2
F , (7.17)

where

Rg(X) = max
Z

(
n∑
i=1

min
(
gi, σ

2
i (Z)

)
− ‖Z −X‖2

F

)
. (7.18)

170

7.2. Convexification

The sum in (7.18) only depends on the singular values of Z and is therefore uni-
tarily invariant. We also note that−‖Z−X‖2

F = −‖Z‖2
F + 2 〈Z,X〉−‖X‖2

F .
The term ‖Z‖2

F is unitarily invariant and by von Neumann’s trace inequality, we
know that 〈Z,X〉 ≤ ∑n

i=1 σi(Z)σi(X). Equality is achieved if X and Z have
SVDs with the same U and V . Hence, for Z to maximize (7.18), its SVD should
be of the form Z = U diag(σ(Z))V T if X = U diag(σ(X))V T . This reduces
the maximization in (7.18) to

max
σ(Z)

(
n∑
i=1

min
(
gi, σ

2
i (Z)

)
−

n∑
i=1

(σi(Z)− σi(X))2

)
. (7.19)

Note that the elements of σ(Z) have to fulfill

σ1(Z) ≥ σ2(Z) ≥ ... ≥ σn(Z) ≥ 0, (7.20)

since these are singular values.
What is left now is to determine the singular values of Z. For the general case

in (7.5) there does not seem to be any closed form solution. None the less, the
problem has some properties that allow us to efficiently enumerate and search the
possible sets of maximizing singular values. The concave maximization problem
could in principle be solved using an equivalent second order cone formulation
with standard solvers like [1, 204]. However, as we shall see the particular prop-
erties of this problem allow us to solve it much more efficiently.

Properties of the Optimal σ(Z)

Considering each singular value σi(Z) separately they should solve a program of
the type

maxs min(gi, s
2)− (s− σi(X))2 (7.21)

s.t. σi+1(Z) ≤ s ≤ σi−1(Z) (7.22)

Note that for i = 1 there is no upper bound on s and for i = n there is no positive
lower bound since we use the convention that σ0(Z) =∞ and σn+1(Z) = 0.

We first consider the unconstrained objective function. This function is the
pointwise minimum of the two concave functions gi − (s − σi(X))2 (for s ≥√
gi) and s2− (s−σi(X))2 = 2sσi(X)−σ2

i (X). The function is concave and
attains its optimum in s = σi(X) if σi(X) ≥ √gi and in s =

√
gi otherwise

171

Convex Relaxations for Low Rank Matrix Approximation

(see Figure 7.1). In case σi(X) = 0 the optimum is not unique. For simplicity
we will assume that σi(X) > 0 in what follows. The solution we create will
still be valid if σi(X) = 0 but might not be unique. Let si be the individual

σi(X)
√
gi σi(X)

√
gi

Figure 7.1: The objective function in (7.21) for σi(X) ≤ √gi and σi(X) ≥ √gi.

unconstrained optimizers of (7.21), i.e.

si = max(
√
gi, σi(X)). (7.23)

Note that this sequence is decreasing when σi(X) is larger than
√
gi and increas-

ing after that. We choose p such that sp is the smallest value in the sequence
si.

We now consider the constrained problem (7.21)-(7.22). Since the cost func-
tion is separable and concave the optimal σi(Z) must be either the unconstrained
optimum si or equal to one of its neighbors σi+1(Z) and σi−1(Z). The search
over singular values can be further reduced using the following lemma.

Lemma 7.1. If Z? is an optimal solution to (7.19) then there is a value sp ≤ s ≤ sn
such that

σi(Z
?) = max(s, si), if i ≤ p, (7.24)

σi(Z
?) = s, if i ≥ p. (7.25)

The above result is a consequence of Theorem 7.5 (with q = n) which we
prove in Appendix 7.A.2. It essentially says that we can limit our search to a
1-parameter family of vectors parametrized by s. For the decreasing part of the
sequence {si} the optimal singular values are selected by truncation at s and for
the increasing part we let all singular values be s. In the next section we show how
to find the optimal s through a simple linear search.

172

7.2. Convexification

Finding the Optimal σ(Z)

Finding the optimal Z? amounts to a one dimensional search over the unknown
parameter s. We let σ(s) be given by (7.24) and (7.25) and the cost of each
singular value

ci(s) = min(gi, σ
2
i (s))− (σi(s)− σi(X))2. (7.26)

For i ≥ p , we have σi(s) = s and therefore ci is concave in s with a non-
differentiable point at s =

√
gi. For i < p we have σi(s) ≥ si ≥ √gi due to

(7.23), which gives the cost function

ci(s) = gi − [s− σi(X)]2+. (7.27)

This function is concave and differentiable for s 6= σi(X). (In fact it is differ-
entiable everywhere since the derivative of (s − σi(X))2 is zero at s = σi(X),
but our algorithm does not utilize this.) The resulting objective function c(s) =∑n

i=1 ci(s) is therefore concave on s ≥ sp and piecewise differentiable.
Our general algorithm for maximizing this function consists of three steps:

1. Compute the sequence of unconstrained maximizers si and determine p.

2. Sort the breakpoints
sp,
√
gp+1,

√
gp+2, ...,

√
gn, σ1(X), σ2(X), ..., σp−1(X), in ascending or-

der. Let p1, ..., pm be the sorted points.

3. Maximize c(s) on each subinterval [pi, pi+1].

The last step requires evaluating at most two points for each interval (a possible
stationary point and a boundary point). Furthermore, the sequences

√
gi and

σi(X) are already sorted and can therefore be merged in linear time. Hence given
an SVD of the matrix X it is easy to see that the steps of the algorithm are linear
in the number of singular values.

The Case of f∗∗µ

In the special case of (7.7) we are able to determine the maximizing σ(Z) without
iteration. Here we have g(k) = µk and therefore gk = µ for all k > 0. In this
case {sk} will be decreasing for all k. The constraints (7.22) are automatically
fulfilled and the sequence

173

Convex Relaxations for Low Rank Matrix Approximation

{max(
√
µ, σk(X))} will therefore contain the optimal singular values. Inserting

into (7.17) gives, after some simplifications,

f∗∗µ (X) = Rµ(X) + ‖X −X0‖2
F , (7.28)

where

Rµ(X) =

n∑
i=1

(
µ− [

√
µ− σi(X)]2+

)
. (7.29)

In [223] the authors propose a rank regularizer which for some parameter choices
is equivalent to Rµ. However, they make no connection to the convex envelope
of f and simply minimize it in a non-convex framework.

Figure 7.2 shows a one dimensional version of (7.28). To the left is the term
µ−

[√
µ− σ

]2
+

which is in itself not convex. For singular values larger than
√
µ

it gives a constant penalty. When the quadratic term σ2 is added the result is a
convex penalty, see the middle graph in Figure 7.2. For σ <

√
µ the function has

a linear shape (red dashed curve) similar to the nuclear norm, while for σ ≥ √µ
it behaves like the quadratic function µ + σ2. Note that the one dimensional
version of fµ is identical to µ + σ2 everywhere except for σ = 0. In the right

image we plotted the graphs of µ−
[√
µ− σ

]2
+

+ (σ− σ0)2 for σ0 = 0, 1, 2. If
σ0 is large enough the function will not try to force σ to be zero.

√
µ

µ

√
µ

2µ

√
µ

2µ

Figure 7.2: One dimensional visualizations of (7.28) for µ = 2. Left: The graph of

µ−
[√
µ− σ

]2

+
. Middle: The graph of µ−

[√
µ− σ

]2
+

+σ2. If µ is large its shape

resembles the nuclear norm. Right: The graphs of µ−
[√
µ− σ

]2
+

+ (σ− σ0)2 for
σ0 = 0, 1, 2.

174

7.3. Optimization and Performance Bounds

The Case of f∗∗r0
.

If gi = 0 for i ≤ r0 and ∞ for i > r0 we get that the sequence si (7.23) is
minimized at p = r0. Lemma 7.1 then shows that the optimizing σ(Z) is of the
form

σi(Z) =

{
max(σi(X), s), i ≤ r0

s, i ≥ r0.
(7.30)

As a function of the unknown parameter s the cost for each singular value can
therefore be written

ci(s) = −[s− σi(X)]2+, (7.31)

for i ≤ r0 and

ci(s) = 2sσi(X)− σ2
i (X), (7.32)

for i > r0. The resulting objective function c(s) =
∑n

i=1 ci(s) is concave and
differentiable on s ≥ 0. Furthermore, Lemma 7.1 shows that the optimal s fulfills
s ≥ sp. Since sn = ∞, the maximizing s will therefore be a stationary point of
c(s) in [sp,∞). Note that the function is quadratic on the sub intervals

[σr0−i(X), σr0−i−1(X)], i = 1, ..., r0 − 1, (7.33)

where σ0(X) = ∞. Searching for stationary points in each interval amounts to
solving a linear equation. Our algorithm therefore consists of a loop over these
intervals. Note that when we have found a stationary point we can terminate the
algorithm. Figure 7.3 shows a 3D illustration of the regularizer in the case of f∗∗r0

.

7.3 Optimization and Performance Bounds

In this section we address the problem of minimizing fg(X) + C(X). To achieve
a convex formulation we replace fg with its convex envelope f∗∗g . Note that
while any minimizer of fg is also a minimizer of f∗∗g the same may not hold when
adding the function C. However, the relaxed regularizer illustrated in Figure 7.2

175

Convex Relaxations for Low Rank Matrix Approximation

Algorithm 2: Finding maximizing Z forRr0(X).
Data: X, r0

Result: σ(Z∗)
for i = 0 : r0 − 1 do

For the interval [σr0−i(X), σr0−i−1(X)], compute s∗ by solving
d
dsc(s) = 0;

if s∗ ∈ [σr0−i(X), σr0−i−1(X)] then
σi(Z

∗) := max(σi(X), s∗), ∀i ≤ r0;
σi(Z

∗) := s∗, ∀i ≥ r0;
break;

end
end

Figure 7.3: Level set surfaces {X | Rr0(X) = α} for X = diag(x1, x2, x3) with
r0 = 1 (Left) and r0 = 2 (Middle). Note that when r0 = 1 the regularizer promotes
solutions where only one of xk is non-zero. For r0 = 2 the regularlizer instead favors
solutions with two non-zero xk. For comparison we also include the level set of the
nuclear norm. (Right)

still makes sense since it will penalize small singular values proportionally harder
than large ones. Furthermore, since

f∗∗g (X) + C(X) ≤ fg(X) + C(X), (7.34)

for all X , we may determine if an optimal solution X? of f∗∗g (X) + C(X) is
also optimal in fg(X) + C(X) by comparing the objective values. Note that in
contrast the nuclear norm formulation is not a proper lower bound on the whole
domain and therefore it can not be used for verifying optimality in this way.

176

7.3. Optimization and Performance Bounds

It is possible to make some simple theoretical estimates of the tightness of the
relaxation f∗∗g by analyzingRg. The relaxation gap is given by

0 ≤ fg(X)− f∗∗g (X) = g(rank(X))−Rg(X)

= g(rank(X))−max
Z

n∑
i=1

min(gi, σ
2
i (Z))− ‖Z −X‖2

F

≤ g(rank(X))−
n∑
i=1

min(gi, σ
2
i (X))

where the last inequality follows from setting Z = X in the maximization.
This can be further simplified by noting that for i > rank(X) we must have
min(gi, σ

2
i (X)) = 0. Thus the relaxation gap is bounded by

rank(X)∑
i=1

gi −min(gi, σ
2
i (X)) =

rank(X)∑
i=1

[
gi − σ2

i (X)
]
+
. (7.35)

Hence any matrix X whose non-zero singular values fulfill σ2
i (X) ≥ gi will have

fg(X) = f∗∗g (X).
In the special case of fµ we have gi = µ, ∀i and therefore any matrix with

non-zero singular values larger than
√
µ has no gap. This is also is easily seen

from Figure 7.2.
Similarly for fr0 we have gi = 0, for i ≤ r0 and gi = ∞ for i > r0. It then

follows that

fr0(X) = f∗∗r0
(X) ∀X with rank(X) ≤ r0. (7.36)

For optimization we employ the popular ADMM [18] approach. This is
essentially a splitting scheme that uses two copies of the X and enforces them to
be equal using dual variables. We formulate an augmented Lagrangian as

L(X,Y,Λ) = f∗∗g (X) + ρ‖X − Y + Λ‖2
F + C(Y)− ρ‖Λi‖2

F . (7.37)

In each iteration t of ADMM the variable updates are given by

Xt+1 = arg minX f
∗∗
g (X) + ρ‖X − Yt + Λt‖2

F , (7.38)

Yt+1 = arg minY ρ‖Xt+1 − Y + Λt‖2
F + C(Y), (7.39)

Λt+1 = Λt +Xt+1 − Yt+1. (7.40)

177

Convex Relaxations for Low Rank Matrix Approximation

The updates in equations (7.38) and (7.39) are computed using the proximal
operators of f∗∗g and C. In the next section we will show how to evaluate the
proximal operator of f∗∗g . The approach will be similar to the one presented in
Section 7.2.2 and for the case of (7.7) we will show that the proximal operator
admits a closed form solution.

7.3.1 The Proximal Operator

To evaluate the proximal operator of f∗∗g we need to be able to efficiently solve a
minimization problem of the following type

min
X

f∗∗g (X) + ρ ‖X −M‖2
F = (7.41)

min
X
Rg(X) + ‖X −X0‖2

F + ρ ‖X −M‖2
F (7.42)

Due to (7.18) this can be seen as convex-concave min-max problem (with an outer
minimization over X and an inner maximization over Z). The key observation
in order to be able to solve it efficiently is that we can switch the order of the
maximization and minimization1. Performing the minimization in X first gives

X = M +
X0 − Z

ρ
=

(ρ+ 1)Y − Z
ρ

, (7.43)

where Y = X0+ρM
1+ρ . Inserting into the objective function gives that the remaining

maximization in Z is (ignoring constants)

max
Z

n∑
i=1

min
(
gi, σ

2
i (Z)

)
− ρ+ 1

ρ
‖Z − Y ‖2

F . (7.44)

Similarly to Section 7.2.2 we can reduce the search to the singular values of Z by
noting that the first term is unitarily invariant and the second term is maximized
when Z has the same U and V in its SVD as Y .

Each singular value σi(Z) must then solve the following program

max
s

min
(
gi, s

2)− ρ+ 1
ρ

(s− σi(Y))2 (7.45)

s.t. σi+1(Z) ≤ s ≤ σi−1(Z) (7.46)

1Since it is possible to restrict the minimization in X to a compact set the existence of a saddle
point can be guaranteed (see [182] for details).

178

7.3. Optimization and Performance Bounds

The objective function can be seen as the pointwise minimum of two quadratic
functions,

q1(s) = gi −
ρ+ 1
ρ

(s− σi(Y))2 , (7.47)

q2(s) = s2 − ρ+ 1
ρ

(s− σi(Y))2 . (7.48)

Since ρ+1
ρ > 1 both of these are concave quadratics and achieve their maximum

at s = σi(Y) and s = (ρ + 1)σi(Y) respectively. For the pointwise minimum
three cases can occur (see also Figure 7.4):

1. The maximum occurs in the region where s >
√
gi, that is, where q1(s) <

q2(s). In this case the maximum has to be that of q1 which occurs at
s = σi(Y). Therefore we get that if σi(Y) >

√
gi then σi(Y) is optimal.

2. The maximum occurs in the region where s <
√
gi, that is, where q1(s) >

q2(s). In this case the maximum has to be that of q2 which occurs at
s = (ρ + 1)σi(Y). Therefore we get that if (1 + ρ)σi(Y) <

√
gi then

(1 + ρ)σi(Y) is optimal.

3. The maximum is in s =
√
gi. This case occurs when σi(Y) ≤ √gi ≤

(ρ+ 1)σi(Y) or equivalently 1
1+ρ
√
gi ≤ σi(Y) ≤ √gi.

Note that cases 1 and 2 are mutually exclusive since only one of σi(Y) >
√
gi

and (1 + ρ)σi(Y) <
√
gi can hold (with ρ > 0). (Having strict local maxima at

both σi(Y) and (1+ρ)σi(Y) would also contradict the concavity of the objective
function.)

Summarizing we get that the sequence of unconstrained maximizers si for
each singular value is given by

si =

σi(Y),

√
gi ≤ σi(Y)

√
gi,

1
1+ρ
√
gi ≤ σi(Y) ≤ √gi

(1 + ρ)σi(Y), σi(Y) ≤ 1
1+ρ
√
gi

. (7.49)

Note that the sequence {si} is first non-increasing with σi(Y) up to some index
p, then non-decreasing (with

√
gi) from p to some index q and then again non-

increasing (with (1 + ρ)σi(Y)) from q to n. In what follows we will assume that
sp < sq. If this is not the case the sequence {si} will be non-increasing for all i

179

Convex Relaxations for Low Rank Matrix Approximation

√
gi σi(Y) (ρ+ 1)σi(Y)

√
giσi(Y)

(ρ+ 1)σi(Y)

√
giσi(Y) (ρ+ 1)σi(Y)

Figure 7.4: The three possible configurations for the maximum of min(q1, q2).

180

7.3. Optimization and Performance Bounds

thus making it an optimal sequence of singular values for Z. Figure 7.5 shows an
illustration of what the sequence can look like with the above definitions of p and
q. Note that around both p and q the sequence can be constant, taking the values
sp = max(

√
gp, σp(Y)) and sq = min(

√
gq, (ρ+ 1)σq(Y)). In Lemma 7.3 (of

Appendix 7.A.1, page 201) we gives further details and proofs.

p q

σi(Y)

sp

√
gi

sq

(1 + ρ)σi(Y)

Figure 7.5: An example of sequence {si} and the definition of p and q.

We now consider the constraints (7.46). Similarly to Section 7.2.2 we can
reduce the maximization over the singular values to a one-dimensional search
over a single parameter. Theorem 7.5 of Appendix 7.A.2 (page 204) shows that
when sp < sq the optimal set of singular values are of the form

σi(Z) = max(si, s), if i ≤ p (7.50)

σi(Z) = s, if p ≤ i ≤ q (7.51)

σi(Z) = min(si, s), if i ≥ q. (7.52)

We let σ(s) be given by (7.50)-(7.52) and the cost of each singular value

ci(s) = min(gi, σ
2
i (s))−

ρ+ 1
ρ

(σi(s)− σi(Y))2. (7.53)

Similarly to Section 7.2.2 the ith cost ci(s) will be concave and possibly non-
differentiable at the breakpoints s =

√
gi. Our algorithm for maximizing

∑n
i=1 ci(s)

therefore consists of the following three steps:

1. Compute the sequence of unconstrained maximizers si and determine p
and q.

2. Sort the breakpoints
s1, ..., sn,

√
gp+1,

√
gp+2, ...,

√
gn, in ascending order. Remove doubles

181

Convex Relaxations for Low Rank Matrix Approximation

and the ones that are either smaller than sp or larger than sq. Let p1, ..., pm
be the sorted points.

3. Maximize c(s) on each subinterval [pi, pi+1] and choose the best maxi-
mizer.

For each interval, the maximization consists of checking a boundary point and
searching for a feasible stationary point for a quadratic objective function. The
number of intervals that needs to be considered is linear in the number of singular
values, and therefore the complexity of the search is linear.

The Proximal Operator of f∗∗µ

For the special case of f∗∗µ we have that all gi = µ. The unconstrained optimizers
si from (7.49) will then be a non-increasing sequence. This implies that the
optimal Z has σi(Z) = si. Inserting into (7.43) gives the singular values for the
optimal X as

σi(X) =

σi(Y),

√
µ ≤ σi(Y)

(1+ρ)σi(Y)−√µ
ρ , 1

1+ρ
√
µ ≤ σi(Y) ≤ √µ

0, σi(Y) ≤ 1
1+ρ
√
µ

. (7.54)

The proximal operators for the rank-function and the nuclear norm are hard and
soft thresholding respectively. We note that the above operator is a mixture of
both of these. Singular values larger than

√
µ are not truncated which is similar

to hard thresholding. Whereas the middle case 1
1+ρ
√
µ ≤ σi(Y) ≤ √µ is similar

to soft thresholding.

The Proximal Operator of f∗∗r0

For f∗∗r0
we have gi = 0 if i ≤ r0 and∞ if i > r0. This gives the sequence of

unconstrained minimizers

si =

{
σi(Y), i ≤ r0

(1 + ρ)σi(Y), i > r0
, (7.55)

182

7.3. Optimization and Performance Bounds

and p = r0, q = r0 +1. Theorem 7.5 now shows that the optimal singular values
must be of the form

σi(Z) =

{
max(σi(Y), s), i ≤ r0

min((ρ+ 1)σi(Y), s), i > r0
, (7.56)

and the optimal s is in [σr0(Y), (ρ + 1)σr0+1(Y)]. For i ≤ r0 we now get the
cost

ci(s) = −ρ+ 1
ρ

[s− σi(Y)]2+, (7.57)

which is concave and differentiable everywhere. For i ≥ r0 + 1 we get after some
simplifications that

ci(s) = − [(ρ+ 1)σi(Y)− s]2+
ρ

+ (ρ+ 1)σ2
i (Y). (7.58)

This function is also concave and differentiable everywhere. Since there are no
non-differentiable points, we simply search for any stationary point in [σr0(Y), (ρ+
1)σr0+1(Y)]. The algorithm can be terminated when we find one. Algorithm 3
summarizes the approach.

Algorithm 3: Finding maximizing Z forRr0(X).
Data: Y, r0

Result: σ(Z∗)
Compute and sort the values
σ1(Y), ..., σr0(Y), (ρ+ 1)σr0+1(Y), ..., (ρ+ 1)σn(Y)

Let p1, ..., pm be the sorted values in [σr0(Y), (ρ+ 1)σr0+1(Y)].
for i = 1 : m− 1 do

For the interval [pi, pi+1], compute s∗ by solving d
dsc(s) = 0;

if s∗ ∈ [pi, pi+1] then
σi(Z

∗) := max(σi(Y), s∗), ∀i ≤ r0;
σi(Z

∗) := min((ρ+ 1)σi(Y), s∗), ∀i ≥ r0 + 1;
return;

end
end

183

Convex Relaxations for Low Rank Matrix Approximation

Note that the cost of evaluating the proximal operator is dominated by the
computation of the SVD. To illustrate this we ran a small synthetic experiment
(with r0 = 5) where we computed the proximal operator for random matricesX0

and M and with elements drawn from a normal distribution with unit variance.
The average runtime for each matrix size can be seen in Figure 7.6. The average
runtimes over all instances were 56 ms for computing the SVD and 0.1 ms for
finding the stationary point.

101 102 103

10−4

10−2

100

n

ti
m

e
(s

)

SVD
Algorithm 3

Figure 7.6: The average runtime for each matrix size. Note the logarithmic scales.

7.3.2 Relationship between the Relaxations.

It is easy to see that minimizing fg can be done by finding a particular µ and
minimizing fµ instead. In this section we will show that the same holds for the
convex relaxations f∗∗g (X) and f∗∗µ (X). First we show that for eachM there exist
a µ such that the proximal operators are equal. Specifically, we show that when the
unknown parameter s in (7.50)-(7.52) has been determined the singular values of
the minimizer X of (7.42) can be written

σi(X) =

σi(Y), s ≤ σi(Y)
(1+ρ)σi(Y)−s

ρ , 1
1+ρs ≤ σi(Y) ≤ s

0, σi(Y) ≤ 1
1+ρs

. (7.59)

Therefore the problem can also be solved using f∗∗µ with µ = s2.
Inserting (7.50)-(7.52) into (7.43) yields three cases

σi(X) =

(ρ+1)σi(Y)−max(s,si)

ρ , i ≤ p
(ρ+1)σi(Y)−s

ρ , p ≤ i ≤ q
(ρ+1)σi(Y)−min(s,si)

ρ , q ≤ i
. (7.60)

184

7.3. Optimization and Performance Bounds

To show that (7.60) is equivalent to (7.59) we use the properties of the se-
quence {si} derived in Lemma 7.3, Appendix 7.A.1 (see also Figure 7.5). We
first consider the case i ≤ p in (7.60). Since si = max(σi(Y), sp) for i ≤ p,
due to (7.83), and s ≥ sp we see that max(s, si) = max(s, σi(Y)). Therefore
the terms i ≤ p can be written

σi(X) =

{
(ρ+1)σi(Y)−σi(Y)

ρ = σi(Y), s ≤ σi(Y)
(ρ+1)σi(Y)−s

ρ , s ≥ σi(Y)
. (7.61)

We also note that s ≤ sq ≤ (1 + ρ)σq(Y) ≤ (1 + ρ)σi(Y) for all i ≤ q and
therefore (7.61) can be written as (7.59).

For i ≥ q we have si = min(sq, (ρ + 1)σi(Y)) by (7.83) and s ≤ sq,
which shows that min(s, si) = min(s, (ρ + 1)σi(Y)). Therefore the third case
in (7.60) reduces to

σi(X) =

{
(ρ+1)σi(Y)−s

ρ , s ≤ (ρ+ 1)σi(Y)

0, s ≥ (ρ+ 1)σi(Y)
. (7.62)

Additionally, s ≥ sp ≥ σp(Y) ≥ σi(Y) for all i ≥ p which shows that (7.62)
can be written as (7.59).

The second case p ≤ i ≤ q in (7.60) is already of the right form. Fur-
thermore, as we have seen all the terms in p ≤ i ≤ q fulfill σi(Y) ≤ s ≤
(ρ+ 1)σi(Y), which shows that (7.59) and (7.60) are equivalent.

The above argument establishes that for any M we can always find a µ such
that the proximal operators give the same solution. Since this also holds at any
optimizer of f∗∗g + C we can easily show the following theorem.

Theorem 7.2. There exist a µ such that

arg minX f
∗∗
g (X) + C(X) = arg minX f

∗∗
µ (X) + C(X). (7.63)

Proof. A necessary and sufficient condition for X? to optimize f∗∗g + C is that
there exist Λ such that {

0 ∈ ∂f∗∗g (X?)− Λ

0 ∈ ∂C(X?) + Λ
(7.64)

185

Convex Relaxations for Low Rank Matrix Approximation

From the first condition we get

0 ∈ ∂f∗∗g (X?)− Λ ⇐⇒ (7.65)

0 ∈ ∂f∗∗g (X?) + 2ρ(X? − (X? +
1

2ρ
Λ)) (7.66)

which is the first order condition for X? to be optimal in (7.42) with M =
X? + 1

2ρΛ. Since we can always find µ such that the proximal operators of f∗∗g
and f∗∗µ are equal we get 0 ∈ ∂f∗∗µ (X?) − Λ, which shows that X? is also an
optimal point for f∗∗µ + C.

The above result shows that for problem formulations involving f∗∗g we can
get an equivalent formulation with f∗∗µ by finding a specific µ. In a sense the
algorithm for the proximal operator of f∗∗g from Section 7.3.1 can be seen as an
efficient way of finding the correct µ. Note, that in case the problem formulation
involves multiple matrices searching for the right combination of coefficients can
be difficult. In such cases it is of great benefit to be able to have an efficient
algorithm for doing this.

7.4 Single Matrix Applications

In this section we evaluate our convex envelopes on a couple of low rank esti-
mation problems. We consider one application with linear constraints and one
application with additional convex objective terms. In both cases we consider
applications where a single matrix is sought.

7.4.1 Hankel Matrix Estimation

Hankel matrices are commonly occurring in various engineering applications.
The rank of the Hankel matrix is often connected to the complexity of the system.
For example, in the context of linear dynamical systems, [63] shows that if f is
an impulse response of an order r0 system, then the corresponding Hankel ma-
trix H(f) is of rank r0. If f is a linear combination of r0 complex exponentials
(with arbitrary frequencies) then H(f) is of rank r0 [8], which is of importance
in signal processing applications.

186

7.4. Single Matrix Applications

In this section we consider the problem of estimating a low rank Hankel
matrix from a noisy measurement matrix X0. We seek to solve

min
H∈H

I(rank(H) ≤ r0) + ‖H −X0‖2
F (7.67)

whereH is the set of Hankel matrices. Note that as Hankel matrices are constant
along anti-diagonals the constraint X ∈ H corresponds to linear constraints.
Moreover the proximal operator of I(X ∈ H) corresponds to projection onto H
and amounts to taking average values of the anti-diagonals.

In this experiment we generated Hankel matrices of rank r0 = 8 by randomly
sampling damped sinusoids according to

f(t) =

4∑
i=1

edi(t−ti) cos(φi(t− ti)), (7.68)

where di and ti are sampled from a uniform distribution on [−1, 1] and φi from
[−20π, 20π]. Note that each term of the sum can be realized with 2 complex
exponentials and therefore the corresponding matrix H(f) will be of rank 8. We
added Gaussian noise with varying standard deviation σ and tried to recover the
true matrix by solving (7.67). Figure 7.7 shows the generated signal, its corre-
sponding Hankel matrix and the added noise for one instance of the problem.
Figure 7.8 shows the results of using f∗∗r0

(H) on the data of Figure 7.7. For
comparison we also plot the results of ignoring the Hankel constraint and sim-
ply taking the SVD of X0 as well as ignoring the low rank objective and only
projecting X0 on the closest Hankel matrix.

Figure 7.9 shows the result of optimizing the three relaxations f∗∗µ (H), f∗∗r0
(H)

and µ‖H‖∗ + ‖H − X0‖2
F with the Hankel constraint. For the nuclear norm

and f∗∗µ formulations we use a bisection approach for finding the best value of
µ. We try to find µ such that 99.99% of the matrix is described by the first r0

singular values. Given an upper bound µu and a lower bound µl we test their
average µ = (µu + µl)/2 and reduce the upper bound if the criteria is met and
alternatively increase the lower bound if not. Note that there is no guarantee that
this approach will work since the singular values may depend nonlinearly on µ.
In Figure 7.9 we varied the noise level and measured the distance between the ob-
tained solution and the ground truth data. Here we averaged over 100 problem
instances for each noise level. In theory, there should be a µ such that f∗∗µ gives
the same result as f∗∗r0

. However the performance of the f∗∗µ formulation is worse

187

Convex Relaxations for Low Rank Matrix Approximation

Figure 7.7: Data from one instance of the Hankel experiment. Top - Signal generated
form (7.68). Middle - Ground truth Hankel matrix. Bottom - Matrix with noise.

due to the difficulty of finding this µ. The nuclear norm formulation has the ad-
ditional disadvantage that all singular values are shrunk in order to get the correct
rank, further degrading the result. For comparison we also plotted the result ob-
tained when only doing SVD of the matrix (ignoring the Hankel constraint) and
when computing the mean over the anti-diagonals of the measurement matrix.
While the mean operation gives a relatively good estimation it does not give a low
rank solution. To illustrate this we plot the average sum of the leading r0 singular
values

∑r0
i=1 σi(H) normalized by ‖H‖∗ versus the noise level in Figure 7.10.

188

7.4. Single Matrix Applications

minH∈HRr0(H) + ‖H −M‖2
F

‖H −H(f)‖2
F = 6.08

∑n
i=r0+1 σi(H) = 3.69 · 10−5

minH∈H ‖H −M‖2
F

‖H −H(f)‖2
F = 23.0

∑n
i=r0+1 σi(H) = 133

minrank(H)=r0
‖H −M‖2

F

‖H −H(f)‖2
F = 67.0

∑n
i=r0+1 σi(H) = 0

Figure 7.8: Results for the data in Figure 7.7 using our relaxation f∗∗r0
(top), projec-

tion onto closest Hankel matrix (middle), SVD without Hankel constraint (bottom).

189

Convex Relaxations for Low Rank Matrix Approximation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

noise σ

‖H
−
H

(f
)‖

SVD
Mean
f∗∗µ
f∗∗r0

Nuclear norm

Figure 7.9: Average distance to ground truth ‖H −H(f)‖ vs. noise level σ for the
Hankel experiment.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1
Mean
f∗∗µ
f∗∗r0

Nuclear norm

Figure 7.10: Average size of leading r0 singular values
∑r0

i=1 σi(H)/‖H‖∗ vs. noise
level σ for the Hankel experiment.

190

7.4. Single Matrix Applications

7.4.2 Smooth Linear Shape Basis Model

In this experiment we show an example of how the proposed convex rank penalty
can be integrated into other convex frameworks. In [72] an alternating framework
for estimating the cameras and non-rigid 3D-shape is presented. To ensure a
smooth 3D shape they minimize an energy penalizing the total variation of the
3D point coordinates in each frame. Here we consider a simplified version of
their shape update by minimizing

fN (S) = ‖S − S0‖2
F + µ‖P (S)‖∗ + τTV(S), (7.69)

where S ∈ R3F×N are the 3D coordinates in each frame stacked on top of each
other and P : R3F×N → RF×3N is simply the linear map which stacks the
coordinates in each frame. The function TV is the total variation norm, see [72]
for more information. We compare this to minimizing

fR(S) = ‖S − S0‖2
F +Rµ(P (S)) + τTV(S). (7.70)

The two methods were evaluated on the synthetic face data used in Garg et
al. [72]. The data consists of 10 synthetic face basis shapes which we used to
generate 50 faces by forming random convex combinations. To the generated
faces we then added Gaussian noise. Since the faces are all linear combinations of
the 10 original base faces the rank of P (S) should be 10.

For different noise levels we solved both (7.69) and (7.70) using ADMM
and then measured the error to the ground truth after projecting to the correct
rank. For each instance the parameter µ was chosen such that the correct rank
was attained for τ = 0 (i.e. without TV regularization). The error to the ground
truth shape is shown in Figure 7.11. In Figure 7.12 one of the faces are shown.
While our reconstruction error is lower the result is visually similar to the nuclear
norm and therefore we only plot our reconstruction.

191

Convex Relaxations for Low Rank Matrix Approximation

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
100

120

140

160

noise σ

‖S
−
S
G
T
‖ F

Rµ
Nuclear norm

Figure 7.11: The average reconstruction error ‖S − SGT ‖F over 50 instances for
different noise levels.

Figure 7.12: Left Ground truth Middle: Added noise. (σ = 0.1) Right: Reconstruc-
tion by minimizing (7.70).

7.5 Applications with Multiple Matrices

In previous sections we considered problems where we are searching for a single
matrix of low rank. The flexibility of the framework makes it possible to search
for several low rank matrices at once. This gives us a way of addressing problems
with missing data by considering completely observed sub-matrices.

The missing data problem can be formulated as

min
X
‖W � (X −M)‖2

F s.t. rank(X) = r0, (7.71)

where Wij ∈ {0, 1} indicates if Mij was observed. While our convex envelope is
not directly applicable to the energy we will in this section show how to perform
low rank approximations for some structured data patterns. The assumption we
make is that the observed entries contain a set of sufficiently large overlapping
submatrices, such that each column and row of the matrix has at least one inter-

192

7.5. Applications with Multiple Matrices

section with one of the submatrices. This is common in vision where structured
data patterns occur naturally. In Figure 7.13 we show the observed entries from
the Oxford dinosaur sequence and some overlapping blocks covering each row
and column. Note that in this example the blocks are formed from contiguous
sets of rows and columns. This is not necessary and other block configurations
with non-contiguous submatrices can cover a much larger percentage of the data.

Figure 7.13: Missing data pattern for a subset of the Oxford dinosaur sequence. The
gray elements correspond to observed data. The blocks are highlighted in red. Note
that the blocks contain no missing elements.

To find a low rank approximation in the presence of missing data we min-
imize our convex relaxation on each complete submatrix simultaneously. Let
Pk : Rm×n → Rmk×nk be the operator which extracts the k:th submatrix.
The energy we minimize is then

E(X) =
∑
k

Rg(Pk(X)) + ‖Pk(X)− Pk(M)‖2
F , (7.72)

where M ∈ Rm×n is the matrix containing the data. Note that we assumed
that the blocks were chosen such that Pk(M) contains no missing data. The
minimization problem can be reformulated as

min
X, Xk

∑
k

Rg(Xk) + ‖Xk − Pk(M)‖2
F , (7.73)

s.t. Xk = Pk(X).

Since the constraints are linear this is a convex problem which can be solved effi-
ciently using ADMM. Note that the solution obtained is only defined on blocks.
In the Appendix 7.A.3 we show that the solution can be extended to the full ma-
trix without increasing the rank. Under mild assumptions this extension will be
unique.

193

Convex Relaxations for Low Rank Matrix Approximation

To select the blocks we use a simple heuristic. For every kth row we consider
l consecutive rows. We form a block from the columns which are observed in all
l rows. The block is then extended by adding all rows which observe all of the
selected columns. The parameters k and l are chosen manually for each dataset.

7.5.1 Evaluation of the Convex Relaxation

Next we empirically evaluate the relaxation in the framework for missing data
from Section 7.5. For evaluation the non-convex energy we consider is

E(X) =

K∑
i=1

µ rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F , (7.74)

for a fix parameter µ.2 Using the proposed convex envelope a convex relaxation is

ER(X) =

K∑
i=1

Rµ(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F . (7.75)

Since each term inER is a lower bound for the corresponding term inE we must
have ER(X) ≤ E(X) for all X . Let X?

R = arg minX ER(X) then if

ER(X?
R) = E(X?

R) (7.76)

it follows that X? must be a global minimizer to the non-convex energy E. Note
if K = 1 then ER is simply the convex envelope of E and we necessarily have

min
X

E(X) = min
X

ER(X). (7.77)

We evaluate on synthetic instances with K = 10 and varying levels of noise
added to M . Using ADMM we minimize (7.75) and then compare ER(X?

R)
and E(X?

R).
We also include the results found using the nuclear norm as a surrogate for

the rank, i.e.

EN (X) =
K∑
i=1

µ ‖Pi(X)‖∗ + ‖Pi(X)− Pi(M)‖2
F . (7.78)

Note that this is only a lower bound onE on the set {X | σ1(X) ≤ 1}. In Figure
7.14 the function values are plotted against the added noise level.

2Note that we choose g(k) = µk here to allow for a comparison with the nuclear norm. In
general when we solve the missing data problem we use g(k) = I(k ≤ r0).

194

7.5. Applications with Multiple Matrices

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

500

1,000

1,500

Noise σ

E
ne

rg
y

E(X?
R)

ER(X?
R)

E(X?
N)

Figure 7.14: Evaluation of the convex relaxation. The relaxationER is a lower bound
for E. If ER(X?

R) = E(X?
R) a global optimum to E has been found.

7.5.2 Comparison to Non-Convex Methods

Next we compare the performance of the proposed method to three non-convex
methods; OptSpace [107], Truncated Nuclear Norm Regularization [92] and
Damped Wiberg-L2 [173]. In contrast to the proposed approach these meth-
ods are local in nature and their result is dependent on initialization.

In the previous experiment we used the regularization termRµ because of its
simplicity. Here we instead useRr0 . The reason is that we are searching for many
matrices of the same rank. Doing this with Rµ would require iteration over the
µ (one parameter for each block) which quickly becomes tedious.

The measurement matrix was chosen as M = UV T + N where U, V ∈
R100×5, N ∈ R100×100 and Uij , Vij ∼ N (0, 1) and Nij ∼ N (0, σ). If σ is
small then M will be approximately rank 5. The observation matrix W consisted
of overlapping blocks along the diagonal and had 72% missing data. In Figure
7.15 we show the average of ||W � (X − M)||F over 100 instances. Note
that while on most instances the non-convex methods converged to the optimal
solution they sometimes find local-minima which raise their average error. The
performance of the proposed method and Damped Wiberg-L2 is very similar on
this data. To illustrate the benefit of the proposed method we also performed an
experiment on another family of instances generated by replacing the fifth column
of V by 1031. This essentially makes M have one very dominant singular value
which is common in applications. The averaged result for these instances can be
seen in the bottom graph in Figure 7.15.

195

Convex Relaxations for Low Rank Matrix Approximation

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

noise σ

er
ro

r

Our
OptSpace
TNNR-ADMMAP
DWiberg-L2

0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

noise σ

er
ro

r

Our
DWiberg-L2

Figure 7.15: Comparison with non-convex methods. Top: Initial experiment. (Note
that the errors for our approach and DWiberg-L2 are very similar). Bottom: Experi-
ment with adjusted row-mean.

7.5.3 Linear Shape Basis with Missing Data

A common assumption when dealing with non-rigid deformation is that the
points move in some low-dimensional subspace. The idea is that the points in
each frame can be written as a linear combination of a shared shape basis. This
shape basis assumption leads to a low rank prior on the matrix containing the
points from all frames.

We performed an experiment where we used a standard KLT tracker on two
video sequences. Due to tracking failure most of the points could not be tracked
throughout the entire sequence. Figure 7.16 shows the pattern for the observed
data for the sequences and Table 7.1 shows further information about the se-
quences.

Using the block approach we found a low rank approximation of the partially

196

7.5. Applications with Multiple Matrices

Figure 7.16: Missing data patterns for the experiments with real data. The observed
entries are shown as black if they are contained in a block and gray otherwise. From
left to right : Book, Hand, Banner, Oxford, Cathedral.

filled in matrix with the tracked point coordinates from each frame. The results
can be seen in Figure 7.17 and Figure 7.18. Here blue points have been correctly
detected in the image whereas yellow point positions correspond to missing entries
that have been filled in using the estimated model. For the book sequence we used
f∗∗r0

with r0 = 3 and for the hand sequence r0 = 5.
We also performed a similar experiment where we instead filmed a piece of

cloth with a Kinect camera. During filming a wave like motion was created in
the cloth by moving one of the corners. We tracked points on the cloth while
panning the camera up and down such that cloth was only partially visible at any
time. See Figure 7.16 and Table 7.1. Using our method we found a low rank
approximation of the partially observed matrix containing the 3D points. The
results can be seen in Figure 7.19 and Figure 7.20. Here we used r0 = 9. In
Figure 7.20 we also compare our results obtained with the standard nuclear norm
formulation

min
X

µ‖X‖∗ + ‖W � (X −M)‖2
F . (7.79)

Here µ was selected so that the rank of X was 9. The nuclear norm bias towards
small singular values manifests itself by stretching of the solution towards the
origin when there are large areas of missing data.

197

Convex Relaxations for Low Rank Matrix Approximation

Figure 7.17: The reconstructed points for four frames from the book sequence from
[136]. The green crosses show the observed data. The reconstruction of the observed
and unobserved entries are indicated by the blue and yellow dots respectively.

Figure 7.18: The reconstructed points for four frames from the hand sequence from
[136]. The green crosses show the observed data. The reconstruction of the observed
and unobserved entries are indicated by the blue and yellow dots respectively.

Figure 7.19: The reprojection for four frames from the banner sequence from [136].
The green crosses show the observed entries. The reconstruction of the observed and
unobserved entries are indicated by the blue and red dots respectively.

Figure 7.20: From left to right: Our solution (frame 329), nuclear norm solution
(frame 329), our solution (frame 650), nuclear norm solution (frame 650).

198

7.5. Applications with Multiple Matrices

7.5.4 Affine Structure-from-Motion

In affine Structure-from-Motion the assumption is that the image points are
formed as

M = PX + T1T , (7.80)

where P ∈ R2F×3 are the cameras, X ∈ R3×N the structure and T ∈ R2F the
translation. This implies that rank(M) ≤ 4 and that 1T lie in the row space of
the matrix.

If all data is observed the cameras and structure can be recovered using stan-
dard factorization approaches [211]. But due to tracking failures it is rare to
observe each point in each frame. Using our block approach to missing data we
can reconstruct the full measurement matrix M . To handle the constraint on the
row space we add an additional row to each block in (7.73) which we through
linear constraint enforce to be constant. This will ensure that 1T lies in the row
space of each block. The modified optimization problem then becomes

min
Z,Zk

∑
k

Rr0(Zk) +

∥∥∥∥Zk − [Pk(M)
1T

]∥∥∥∥2

F

(7.81)

s.t. Zk =

[
Pk(Z)
1T

]
. (7.82)

The recovered Z will then approximate M on the observed data and can be fac-
torized into Z = PX + T1T .

Figure 7.21 shows the results for the well-known Oxford sequence compared
to simply finding a rank 4 approximation as in Section 7.5. We also included a
solution found by minimizing the nuclear norm formulation (7.79). The same
tendency to stretch trajectories towards the origin is clearly visible.

We also include the result from a short image sequence of Lund Cathedral.
To minimize the perspective effects of the camera we selected a subset of 2480
points where the projective depth is approximately the same in all images. Figure
7.22 shows the recovered reprojections in three of the frames.

199

Convex Relaxations for Low Rank Matrix Approximation

Figure 7.21: Results on the Oxford dinosaur sequence. Left: Rank 4. Middle: Rank
4 with a constant vector forced into the row space. Right: Solution found using the
nuclear norm approach.

Figure 7.22: Three frames from the Lund cathedral sequence. Red points correspond
to tracks which were not observed in the frame.

Size Missing Blocks Coverage

Hand 742× 203 32.4% 9 96.8%
Book 1336× 85 35.4% 16 98.8%
Banner 2052× 560 26.9% 31 97.9%
Oxford 72× 319 76.9% 32 100%
Cathedral 54× 2420 68.8% 44 89.5%

Table 7.1: Statistics for the image sequences used in the experiments.

200

7.6. Conclusions

7.6 Conclusions

In this chapter we have proposed a convex method for low-rank approximation
of matrices with additional convex constraints. The approach is based on a new
convex relaxation - the strongest one possible - of the rank function and a least
squares data term. Unlike the nuclear norm, it is able to avoid penalizing large
singular values. Our experiments clearly show the benefits of being able to do
so in a convex framework. It should be noted that the presented results are the
outputs of our approach without refinement. In cases where the relaxation is not
tight, the solution can be used as a starting point for local optimization to obtain
even better results.

For the missing data problem the proposed method only has to compute the
SVD of small sub-matrices, therefore it has potential to tackle large-scale prob-
lems. Furthermore, the ADMM approach allows to perform computations in a
parallel and distributed manner.

A limitation of the formulation is that in its current form it is sensitive to
outliers. The issue has received a lot of attention lately, for example, using the
arguably more robust `1-norm [58, 203, 233] and it is something that we intend
to address in the near future.

7.A Appendix

7.A.1 The Sequence of Unconstrained Minimizers

In this section we prove that with the definitions of p and q as in Section 7.3.1
the sequence of unconstrained minimizers defined by equation (7.49) will have
the shape illustrated in Figure 7.5.

Lemma 7.3. If p and q are selected such that the sequence {si} defined by (7.49) is
non-increasing for i ≤ p and q ≤ i, non-decreasing for p ≤ i ≤ q and sp < sq
then

si =

max(σi(Y), sp), i ≤ p
min(max(

√
gi, sp), sq) p ≤ i ≤ q

min((ρ+ 1)σi(Y), sq), i ≥ q
. (7.83)

201

Convex Relaxations for Low Rank Matrix Approximation

Proof. We first note that (7.49) can equivalently be written

si = min
(

max(
√
gi, σi(Y)), (ρ+ 1)σi(Y)

)
. (7.84)

We begin with the case i ≤ p. Since

sp < sq ≤ (ρ+ 1)σq(Y) ≤ (ρ+ 1)σp(Y), (7.85)

we have by (7.84) that sp = max(
√
gp, σp(Y)) < (ρ + 1)σi(Y) and therefore√

gp ≤ (ρ + 1)σp(Y). Furthermore, since gi is non-decreasing and σi(Y) is
non-increasing

√
gi ≤ (ρ + 1)σi(Y) for all i ≤ p. For i < p we now get that if

si > sp then si >
√
gp ≥ √gi and therefore by (7.84) si = σi(Y).

For i ≥ q we similarly have

sq > sp ≥ σp(Y) ≥ σq(Y), (7.86)

which together with (7.84) gives that sq = min(
√
gp, (ρ+1)σq(Y)) and

√
gq ≥

σq(Y). Moreover, since gi is non-decreasing and σi(Y) is non-increasing
√
gi ≥

σi(Y) for all i ≥ q. For i > q we now get that if si < sq then si <
√
gq ≤ √gi

and therefore by (7.84) si = (ρ+ 1)σi(Y).
For the final case p ≤ i ≤ q we note that sp ≤ si ≤ sq since si is non-

decreasing between p and q. If si > sp then

si > sp ≥ σp(Y) ≥ σi(Y). (7.87)

If si < sq then

si < sq ≤ (ρ+ 1)σq(Y) ≤ (ρ+ 1)σi(Y). (7.88)

Therefore if sp < si < sq then si =
√
gi.

7.A.2 Properties of Feasible Minimizers

In this section we give a result that enables us to efficiently search for optimal
sequences of singular values. The key observation is that for concave costs the
optimum is either in a stationary point (determined by minimizing each singular
value separately) or constrained by one of its neighboring singular values. Using
this information it is possible to single out a 1-parameter family of singular value
configurations guaranteed to contain the optimal one.

202

7.A. Appendix

We let si be a sequence of non-negative numbers. For i ≤ p we require that
the sequence is non-increasing, for p ≤ i ≤ q non-decreasing and q ≤ i non-
increasing. Note that due to the definition sq and sp will be local extreme points
of the sequence (sp−1 ≥ sp ≤ sp+1 and sq−1 ≤ sq ≥ sq+1).

Lemma 7.4. Let {si} be the unconstrained maximizers of fi(s), where fi are con-
cave (with unique unconstrained maximizers). Then the maximizer of g(σ) =∑

i fi(σi), such that σ1 ≥ σ2 ≥ ... ≥ σn, fulfills

σi = max(si, σi+1), 1 ≤ i ≤ p (7.89)

σi = σi+1, p ≤ i ≤ q − 1 (7.90)

σi = min(si, σi−1), i ≥ q (7.91)

Proof. Since each fi is concave and σi+1 ≤ σi−1 the optimization over σi can be
limited to three choices

σi =

si if σi+1 ≤ si ≤ σi−1

σi−1 if σi−1 < si
σi+1 if si < σi+1

. (7.92)

Using induction we first prove the recursion

σi = max(si, σi+1) for i ≤ p. (7.93)

For i = 1 we see from (7.92) that s1 is the optimal choice if s1 > σ2 other-
wise σ2 is optimal. Therefore σ1 = max(s1, σ2). Next assume that σi−1 =
max(si−1, σi) for some i ≤ p. Then

σi−1 ≥ si−1 ≥ si, (7.94)

therefore we can ignore the second case in (7.92), which proves the recursion
(7.93).

Next we show that the sequence {σi} is constant in p ≤ i ≤ q. We consider
σi for some p ≤ i ≤ q − 1. If σi > si it must have been bounded from below in
(7.92), i.e. σi = σi+1. If instead σi ≤ si we have σi+1 ≤ σi ≤ si ≤ si+1. Then
similarly σi+1 is bounded from above in (7.92) which implies σi+1 = σi.

For the final part we consider i ≥ q and show that

σi = min(si, σi−1) for i ≥ q. (7.95)

203

Convex Relaxations for Low Rank Matrix Approximation

It is clear from (7.92) that this holds for i = n. We continue using induction by
assuming σi+1 = min(si+1, σi) holds. Then

σi+1 ≤ si+1 ≤ si, (7.96)

since si are non-increasing for i ≥ q. This means that for σi we can ignore the
third case in (7.92). Thus it follows that σi = min(si, σi−1). So (7.95) holds for
all i ≥ q.

Theorem 7.5. Then the maximizer σ can be written

σi = max(si, s), 1 ≤ i ≤ p (7.97)

σi = s, p ≤ i ≤ q − 1 (7.98)

σi = min(si, s), i ≥ q, (7.99)

where s fulfills sp ≤ s ≤ sq.
Proof. We first consider i ≤ p. Assume σi 6= si for some i < p. From (7.93) it
follows that

σi = σi+1 > si. (7.100)

But si is non-increasing for i ≤ p which implies that σi+1 > si+1. By repeating
the argument it follows that

σi = σi+1 = σi+2 = ... = σp. (7.101)

We let s = σp and note that due to (7.93) s ≥ sp. By Lemma 7.4 we also have

σp = σp+1 = σi+2 = ... = σq. (7.102)

Therefore s = σq and by (7.95) we get s ≤ sq.
Now assume that for some i ≥ q we have σi(Z) 6= si. By (7.95) we must

have that

σi(Z) = σi−1(Z) < si ≤ si−1. (7.103)

By repeating the argument we get

σi(Z) = σi−1(Z) = σi−2(Z) = ... = σq(Z). (7.104)

and the result follows.

204

7.A. Appendix

7.A.3 Extension Outside the Blocks

In this section we show how to extend a partial low rank solution computed on
overlapping blocks of the matrix to a complete solution. The approach hinges on
the following result.

X1

X2
?

?

X =

X11 X12 X13

X21 X22 X23

X31 X32 X33

=

Figure 7.23: Two overlapping blocks X1 and X2. The goal of the extension is to
find the unknown X13 and X31 such that the rank is not increased, i.e. rank(X) =
max(rank(X1), rank(X2)).

Lemma 7.6. Let X1 and X2 be two overlapping blocks such that they agree on the
overlap X22 (in the notation from Figure 7.23). If the overlap satisfies

rank(X22) = min(rank(X1), rank(X2)) (7.105)

then there exist X13 and X31 such that

rank(X) = max(rank(X1), rank(X2)), (7.106)

Furthermore, if rank(X1) = rank(X2) the extension is unique.

Proof. Without loss of generality assume that rank(X22) = rank(X2) ≤ rank(X1).

Then the column space of X2 must be spanned by

[
X22

X32

]
and similarly the row

space by
[
X22 X23

]
. There exist coefficient matrices C1 and C2 such that[

X22

X32

]
C1 =

[
X23

X33

]
and C2

[
X22 X23

]
=
[
X32 X33

]
. (7.107)

For the extension we can then take

X13 := X12C1 and X31 := C2X21. (7.108)

205

Convex Relaxations for Low Rank Matrix Approximation

To see that this does not increase the rank we note thatX12

X22

X32

C1 =

X13

X23

X33

 , (7.109)

and similarly for the rows. This means that the number of linearly independent
columns and rows have not increased and the rank must be preserved.

Now assume that rank(X1) = rank(X2). We prove uniqueness by means
of contradiction. Assume there exist two different extensions

X13 = X12C1 and X̃13 = X12C̃1. (7.110)

To be extensions which preserve the rank C1 and C̃1 must satisfy[
X23

X33

]
=

[
X22

X32

]
C1 =

[
X22

X32

]
C̃1. (7.111)

Which implies that C1 − C̃1 lies in the nullspace of
[
XT

22 XT
32

]T
. But by as-

sumption we have

rank(

[
X22

X32

]
) = rank(

X13

X22

X32

). (7.112)

This implies that C1 − C̃1 must also lie in the nullspace of X12, i.e.

X12(C1 − C̃1) = 0⇔ X13 = X̃13, (7.113)

which is a contradiction.

The previous lemma showed that each pair of overlapping blocks has an ex-
tension which preserves the rank. If we assume that the blocks are chosen to be
connected (in a graph sense) we can iterate this construction to find an extension
to the whole matrix.

206

Chapter 8

Compact Matrix Factorization

Traditional low rank matrix factorization methods approximate high dimensional
data by fitting a low dimensional subspace. This imposes constraints on the ma-
trix elements which allow for estimation of missing entries. A lower rank provides
stronger constraints and makes estimation of the missing entries less ambiguous
at the cost of measurement fit.

In this chapter we propose a new factorization model that further constrains
the matrix entries. Our approach can be seen as a unification of traditional low-
rank matrix factorization and the more recent union-of-subspace approach. It
adaptively finds clusters that can be modelled with low dimensional local sub-
spaces and simultaneously uses a global rank constraint to capture the interac-
tions between clusters. For inference we use an energy that penalizes a trade-off
between data fit and degrees-of-freedom of the resulting factorization. We show
qualitatively and quantitatively that regularizing both local and global dynamics
yields significantly improved missing data estimation.

This chapter is based on the paper [141].

8.1 Introduction

Matrix factorization is a an important tool in many engineering applications. The
assumption that data belongs to a low dimensional subspace has been proven
useful in numerous computer vision applications, e.g. non-rigid and articulated
structure from motion [20, 5, 228], photometric stereo [17], optical flow [71],
face recognition [226, 191] and texture reparation [149].

Given an m × n matrix M containing m-dimensional measurements a low

207

Compact Matrix Factorization

dimensional approximation X ≈ M , where rank(X) = r0, can be found using
singular value decomposition (SVD). Since rank(X) = r0 the matrix X can be
written

X = BCT , (8.1)

where B is m × r0 and C is n × r0. The columns of B constitute a basis for
the column-space of X . The matrix C contains coefficients used to form the
columns of X from the basis. Alternatively one may think of the rows of X as
n-dimensional data, C as a basis for the row-space and B as the coefficients. In
both cases the data is approximated by an r0-dimensional subspace, as illustrated
in Figure 8.1(a).

In a sense the factorization BCT can be seen as a compressed representation
of M where the mn elements have been reduced to (m + n − r0)r0 degrees of
freedom (see Section 8.3.1). It is therefore possible to compute the factorization
even if only a subset of the elements of M are known, by solving W �M ≈
W � (BCT). Here � denotes element-wise multiplication and the matrix W
has elements wij = 1 for known data and 0 for missing data. Note that once
computed, BCT contains estimates of both known and missing data. In this way
it is theoretically possible to "predict" at most mn − (m + n − r0)r0 missing
elements.

In the presence of missing data the low rank approximation problem becomes
very difficult, some variations of the problem even NP-hard [73]. However, due
to its practical importance a lot of research have been directed at finding good
algorithms. In [10] it is shown that under the spectral norm a closed form solution
exist if the missing data forms a so called Young pattern. A recent trend has
been to replace the rank function with convex surrogates, such as the nuclear
norm [180, 37, 175]. However, in many applications such as structure from
motion, where missing entries are highly correlated, this approach has been shown
to perform poorly (see e.g. the experiments in Chapter 7).

If the rank of the sought matrix is known, the bilinear parametrization (8.1)
can be locally optimized. Buchanan and Fitzgibbon [23] showed that alternat-
ing methods often exhibit very slow convergence and proposed a damped Gauss-
Newton update. In [172] it was illustrated that the Wiberg elimination strategy
[225] is very robust to local minima. For a recent comparison of different ap-
proaches to minimize the bilinear formulation see [93]. In [106] the `1 norm is
used to address outliers. The proposed alternating approach is shown to converge

208

8.1. Introduction

(a) (b) (c)

Figure 8.1: 3D illustration of subspace representations. (a) - A 2D subspace is fitted
to all the data (global model). (b) - A union of independent 1D subspaces is fitted to
clustered data (local models). (c) - Our unified approach. 1D subspaces are fitted to
clustered data and restricted to lie in a 2D subspace. (For this data m = 3, n = 100,
r0 = 2 and rk = 1, see Section 8.2 for definitions.)

slowly in [58]. Instead [58, 203] use generalizations of the Wiberg approach de-
signed to handle the non-differentiable objective function while jointly updating
the two factors.

Despite numerous recent developments in rank optimization missing data is
still a problem plaguing vision algorithms. Dai et al. [47] argue that researchers
have focused too much on optimization and ignored modeling issues. While
the rank constraint provides a compact model representation it is limited by only
measuring the overall complexity of the matrix even though individual sub-blocks
may be less complex. Hence, there is no incentive to use fewer basis columns
for sub-blocks than what the total rank admits. A relatively high overall model
complexity is a particular problem when missing data needs to be estimated. As
noted in [156, 74, 67] the availability of too many basis elements causes methods
only optimizing a global rank constraint to over-fit giving very poor results.

A related model used in clustering is the union-of-subspace approach [235,
229]. Here data is clustered into similar groups that can be represented with
independent low dimensional subspaces, see Figure 8.1(b). We refer to these as
local subspaces since they are local to a particular cluster. In [152, 111] these
are used to cluster frames into groups that allow simple deformation models. In
principle these could also be used to address the missing data problem. In contrast
to the global rank constraint, which constrains the whole matrix, each cluster has

209

Compact Matrix Factorization

its own set of basis vectors and can only be constructed from these. This gives a
data representation that is often (but not always, see Section 8.3.1) more compact.
The overall idea of dividing the matrix into less complex parts and treating them
separately is shared with the multi-body factorization methods [221, 46, 230]
which typically perform clustering on the trajectories.

In this chapter we address the missing data problem by presenting a new
compact factorization formulation. Our approach unifies the local and global
subspace approaches leveraging the benefits of them both. Our method adap-
tively clusters the data and fits local subspaces, but also enforces a low rank on
the entire data matrix. This ensures that any potential interactions between clus-
ters are identified by the model which increases the prediction capability. For
example, if clusters correspond to rigid parts of an object, similar to [183], our
model can predict occluded parts if a motion dependency exists. In contrast the
union-of-subspace approach lacks the ability to learn global scene dependence
since subspaces are treated independently. Figure 8.1(c) illustrates our approach
for a simple 3D example.

The contributions in this chapter are:

• We analyze the performance of global and local models with respect to
different types of missing data.

• We present a new factorization that incorporates both a global rank con-
straint and local subspace constraints and show how this reduces model
complexity.

• For computing the factorization we propose an energy-based model fitting
framework that is able to perform joint clustering and adaptive model se-
lection.

• We show in experiments that this model is well suited for recovering miss-
ing data in tasks involving multi-body and non-rigid image point trajecto-
ries.

8.2 A Dependent Subspace Model

In this section we present our model. We make two assumptions on the data
matrix; that the entire scene is explained well by a low rank model, and that it can
be partitioned into clusters that are explained by simpler rank models. Let X be
an m × n matrix. The model can then (possibly after column permutations) be

210

8.2. A Dependent Subspace Model

written as

X =
[
X1 X2 . . . XK

]
(8.2)

rank(X) = r0, rank(Xk) = rk

where each Xk is an m × nk matrix that contains the data points of a cluster. It
is clear that r0 ≥ rk and typically we try to have r0 �

∑K
k=1 rk since we want

to model the dependence between the clusters. Here we have divided the matrix
columns into clusters. Note however that the same model can be applied to the
rows by transposing.

Since Xk is of rank rk it can be factorized into Xk = BkC
T
k , where Bk is

m × rk and Ck is nk × rk. The matrix Bk contains a basis for the subspace
spanned by the columns of Xk. The full matrix X can thus be written

X =
[
B1C

T
1 B2C

T
2 . . . BKC

T
K

]
. (8.3)

Note that if the global rank constraint rank(X) = r0 is ignored thenB1, B2, ..., BK
are assumed to be independent and this expression constitutes a union of subspace
representation of X .

Now, assuming r0 <
∑K

k=1 rk there is a dependence between the cluster sub-
spaces. Since the columns ofX are spanned by the columns of

[
B1 B2 . . . BK

]
this matrix must also be of rank r0. Therefore we may factor it into[

B1 B2 . . . BK
]

= B
[
U1 U2 . . . UK

]
, (8.4)

where B is m × r0 and Uk is r0 × rk. Here B is a basis of the column space
of
[
B1 B2 . . . BK

]
and therefore also of X . Inserting into (8.3) gives our

model

X = B
[
U1C

T
1 U2C

T
2 . . . UKC

T
K

]
. (8.5)

We can think of the r0 × rk matrices Uk as selecting a rk-dimensional basis
within the r0-dimensional space spanned by the columns of B. While the union-
of-subspace model (8.3) treat subspaces independently by allowing arbitrary se-
lection of the bases B1, B2, ..., Bk our model forces these to be selected in the
shared global subspace spanned by B. Figure 8.2 shows an example of the three
model factorizations when r0 = 5 and rk = 3 for k = 1, 2, 3.

In the above description of our model we have assumed that the subspaces are
linear. Note however that it is easy to use affine subspaces by restricting the last

211

Compact Matrix Factorization

row of CTk to be all ones. If Bk =
[
A t

]
and CTk =

[
CT

1T

]
then BkCTk =

ACT + t1T , which is an affine function in C.

8.3 Benefits of Dependent Models

In this section we discuss the benefits of using both local and global subspace
constraints. We compare three formulations: the global model (8.1), local models
(8.3) and our unified model (8.5).

8.3.1 Degrees of Freedom

We first compute the degrees of freedom (DOF) of the three models. Note that
it is clear that the unified model will have fewer DOF than both the local and
the global models since (8.5) is a special case of both (8.1) and (8.3). Having
an accurate model with few DOF makes matrix completion more well posed and
reduces the space of feasible matrices.

Linear Subspace Models Under the global model the data matrix X can be
factorized as in (8.1). The matrices B and C have mr0 and nr0 elements respec-
tively. However due to the gauge freedom X = BCT = BGG−1CT , where G
is an unknown invertible r0 × r0 matrix the DOF for the global model are

mr0 + nr0 − r2
0. (8.6)

For cluster k in (8.3) the matrices Bk and Ck have mrk and nkrk elements
respectively. Similarly to the global model Bk and Ck are only determined up to
an invertible rk × rk matrix Gk. We therefore get

K∑
k=1

mrk + nkrk − r2
k (8.7)

DOF for the local models.
For the unified model we first consider the term BUkC

T
k . Since B is m× r0,

Uk is r0×rk andCk nk×rk this term hasmr0+r0rk+nkrk elements. However,
since

Xk = BUkC
T
k = BGG−1UkGkG

−1
k CTk , (8.8)

212

8.3. Benefits of Dependent Models

there are two ambiguities here. The first subtracts r2
0 DOF once and the second

r2
k DOF for each cluster. Summing over k we thus get

mr0 − r2
0 +

K∑
k=1

r0rk + rknk − r2
k. (8.9)

Note that for independent clusters this reduces to (8.7). However when r0 <∑
k rk (and typically r0 �

∑
k rk) it is easy to see that the unified model is at

least as compact as the local model. To compare to the global model we note that∑
k nk = n and subtract (8.9) from (8.6). This gives

nr0 −
K∑
k=1

(r0rk + rknk − r2
k) =

K∑
k=1

(r0 − rk)(nk − rk). (8.10)

Since we can’t form clusters with fewer columns than their rank both terms of the
product are positive, which confirms that the unified model is always at least as
compact as the global model.

Affine Subspace Models In our applications we will typically use affine sub-
spaces since it better models the affine camera projection. See Section 7.5.4 in
Chapter 7 for a comparison of using affine and linear subspaces. In this case the
matrix CTk is required to have one row of all ones, which reduces the DOF in
this matrix to nk(rk − 1). Furthermore, this requires the last row of G−1

k to be[
0 0 . . . 1

]
which therefore has rk(rk − 1) DOF. The unified model then

has

mr0 − r2
0 +

K∑
k=1

r0rk + (rk − 1)nk − (rk − 1)rk (8.11)

DOF. Note that the dimension of the affine subspace is rk − 1 while the rank of
its matrix BUkCTk is still rk.

8.3.2 Predicting Missing Data

In this section we discuss the prediction capabilities of the unified model and
illustrate how the global and local models complement each other when recover-
ing missing data. To gain some intuition about the model we first consider the

213

Compact Matrix Factorization

situation where a new column is added to each of the three factorizations, see
Figure 8.2. In SfM this corresponds to estimation of a point track from a motion
model. To generate a new column we need to specify coefficients in the C and
Ck matrices (for some k ∈ {1, ...,K}), that is, the elements marked with c in
Figure 8.2. In this example the global model needs to determine 5 parameters

Figure 8.2: Three factorizations: Left - global model. Middle - union of subspace
model. Right - unified model. Here r0 = 5 and ri = 3, i = 1, 2, 3. The r and
c markers highlight elements that need to be estimated when adding a new row or
column.

and therefore requires at least 5 known elements in the new column. For the local
and unified models we only have 3 unknowns. (Additionally we may need a 4th
known element to determine which cluster the new column belongs to.) Hence,
in this situation the local and unified models require less data than the global
model to predict missing elements.

Interestingly, when we consider rows instead of columns (see Figure 8.2) the
relation is different. In SfM this situation corresponds to estimating a new scene
shape from a shape model. For the global and the unified models there are 5
coefficients that needs to be determined. For the local model there are 9 since the
cluster bases are independent. Hence the global and unified models can recover
the entire row using 5 available measurements while the local model requires 9.
Furthermore, note that the local model needs at least three measurements for each
cluster since these are estimated independently. In contrast, the unified model
could theoretically predict the entire row from measurements in a subset of the
clusters. Specifically, if Xnew is the new row (with missing data) we want to find
a row Bnew by solving

Xnew = Bnew
[
U1C

T
1 U2C

T
2 . . . UKC

T
K

]
(8.12)

(possibly in a least squares sense). This is possible if the columns of[
U1C

T
1 U2C

T
2 . . . UKC

T
K

]
214

8.3. Benefits of Dependent Models

that correspond to known data entries of Xnew span an r0-dimensional space. In
the example of Figure 8.2 each UiV T

i is of at most rank 3 hence it is not possible
to completely determine Bnew from only one cluster. However two clusters could
be enough if their columns span the entire column space of B.

Next we show an example with data from real images that illustrates the ben-
efits of using the unified model. The sequence consists of images containing two
hands flexing, see Figure 8.3. Using the method of [207] we tracked points on
the hands throughout the sequence. The dataset contains 7899 point trajectories
in 441 frames with 67% missing data due to tracking failures. Figure 8.3 shows
three of the 441 images together with the tracked points as well as the missing
data pattern.

(a) Frame 1 (b) Frame 200

(c) Frame 441 (d) The missing data pattern.

Figure 8.3: Frames 1, 200 and 441 of the hand sequence. Note that in the last frame
the right thumb has no tracks. Bottom right shows the missing data pattern. The
observed entries of the measurement matrix are shown in white.

The point trajectories were manually partitioned into 14 approximately rigid
components (see Figure 8.4d). Since each rigid component essentially only under-
goes planar rotation and translation we restrict each cluster to a two-dimensional
affine subspace (i.e. rk = 3). For the global model we used r0 = 5.

Figure 8.4 shows the result for the last frame of the sequence. In this frame
the right thumb has almost no point trajectories due to tracking failures. Using

215

Compact Matrix Factorization

Dataset Hand Paper Back Heart

Global model 43880 3311 166824 547576
Local models 52758 2750 63472 163134
Unified model 20309 1686 43908 138814

Table 8.1: DOF for the three type of models for various datasets used in the experi-
ments (see Section 8.5.2 for more information.)

only the global model (Figure 8.4a) we can successfully recover the unobserved
thumb but each rigid part is over-parameterized leading to over-fitting and noisy
tracks. Table 8.1 (first column) shows the number of parameters for the three
alternatives.

Using only the local models (Figure 8.4b) it is difficult to recover the correct
track locations at the thumb when there are only a few visible tracks. Combining
both the global and local models (Figure 8.4c) allows us to deal with the missing
observations without over-parameterizing each rigid part.

(a) Global model (b) Local models

(c) Unified model (d) Partitioning for local models.

Figure 8.4: The reconstructed tracks in the last frame of the sequence. The tracks
which have observations in the current frame are shown in blue.

216

8.4. Model Fitting

Figure 8.5: The constraint r0 = 5 allows us to generate new shapes. Here the
position of the five blue points where specified while the red points where predicted
by the model.

Figure 8.5 illustrates how the unified model can estimate new poses (rows)
from only 5 known point positions (since r0 = 5). Note that since the hands
move together throughout the sequence the learned model can infer the pose of
the right hand (for which there are no measurements) from the left. If the clus-
ters were treated independently each cluster would need at least 3 measurements
for successful estimation. On the other hand our model would not fit well to a
new image where for example the distance between the two hands is significantly
different from what has been previously observed.

8.4 Model Fitting

In this section we present an energy-based optimization framework for computing
compact factorizations. Given a measurement matrix M we seek a factorization

W �M ≈W �
(
B
[
U1C

T
1 . . . UKC

T
K

]
P
)
, (8.13)

where P is a permutation matrix that switches the order of columns and W is a
binary matrix with element wij = 1 if mij is known and 0 otherwise. Changing
column order using P corresponds to assigning a column of M to a particular
cluster. Note that the overall rank r0 (and thereby the size of B) is assumed to
be known (otherwise it is possible that rank estimation methods similar to [98]
could be used). However, the cluster number K, the ranks rk and assignments
are estimated by penalizing a trade-off between data fit and complexity.

For a fixed B determining the factorization can be seen as a model fitting
problem where we assign affine subspaces to the columns of M . In the discrete
setting, it is well known that these problems are NP hard [95]. However, [95, 49]

217

Compact Matrix Factorization

have demonstrated that move making approaches such as α-expansion typically
provide good solutions.

8.4.1 Energy Formulation

The approach we take essentially follows [95, 49] which generate a large but fi-
nite number of proposal subspaces and fuse them into a complete clustering by
optimizing a discrete labeling energy using α-expansion [19].

Let ` be a labeling of the matrix columns. Then given a finite set of proposal
subspaces {BUk}, letting lp = k corresponds to assigning column p to cluster k.
Note that once a column is assigned to a local subspace the coefficients Ck can be
determined solving a simple least squares problem.

From the proposals we compute the cluster assignment by minimizing the
discrete function

E(l) =
∑
p

Dp(lp) +
∑
k

hkδk(l). (8.14)

The data termDp consists of two components. The first is a standard least squares
term that measures the fit to the measurement matrix. The second component
counts the number of elements required for representing the column in the fac-
torization. Specifically, we use

Dp(k) = min
c
‖Wp � (Mp −BUkc)‖2

F + λ(rk − 1), (8.15)

where Wp and Mp denote the p:th column of W and M respectively. Summing
over the columns in the cluster the second term contributes λnk(rk − 1), which
is the DOF in the Ck matrix of (8.11) times a weight λ. The weight λ controls
the trade-off between data-fit and DOF.

The second term in (8.14) is a label cost term which we use to encode the
remaining part of the model-complexity in (8.11) by setting

hk = λ (r0rk − (rk − 1)rk) . (8.16)

The function δk returns one if any of the columns is assigned to proposal k and
zero otherwise. Thus using both the data term and the label cost we can achieve
an adaptive penalization of the complexity of the factorization. Since we assume
that r0 is known the first term of (8.11) is constant and ignored.

218

8.5. Experiments

Note that a pairwise Potts terms Vpq(lp, lq) [19] can easily be introduced to
(8.14) to add geometric context. From a practical point of view this can help
to resolve ambiguous assignments in the vicinity of subspace intersections and
therefore typically yields visually more appealing clusters. However it requires a
neighborhood system and a number of additional parameters. For the experi-
ments in the following section we therefore only use (8.14). In Section 8.6 we
perform experiments with the pairwise term.

8.4.2 Optimization

It is clear from [49] that the above energy yields submodular α-expansions. Note
however that the dimensionality of the search space is typically very large, which
makes efficient proposal generation difficult. For example, to compute a affine
subspace of dimension three we need to specify the elements of four columns,
that is 4m elements, where m is the number of rows of M . Furthermore, be-
cause of missing data we cannot expect to be able to sample complete columns
directly from M . To address this issue we maintain estimates of the B, Uk and
Ck matrices and use these to fill in the measurement matrix. Using the completed
measurement matrix we sample subsets of columns Ms and use these to estimate
new Uk such that Ms ≈ BUk. If there is no application specific prior on the
dimension of the local subspaces, the number of sampled columns is also selected
at random in order to ensure that subspaces of different dimensions are gener-
ated. We employ the above proposal generation with α-expansion as outlined in
[95]. In each iteration re-estimation is performed individually for the B, Uk and
Ck matrices by solving the corresponding linear least squares problems. For ini-
tialization we find one r0-dimensional subspace for the whole matrix using local
optimization.

8.5 Experiments

In this section we will evaluate the performance of our method both quantita-
tively and qualitatively on different datasets and compare to several state-of-the-
art methods. In order to obtain ground truth data we use a number of publicly
available data sets and remove random entries from these. Figure 8.6 shows the
data patterns that we consider. In the left pattern entries were discarded with a
uniform probability. It is well known from compressed sensing that nuclear norm
optimization works well (and even has performance guarantees [37]) for this kind

219

Compact Matrix Factorization

of data. We argue that this setup is of limited interest since it does not occur in
tracking based applications and further results in easier problem instances. There-
fore we only test this type of data in Section 8.5.3 for completeness.

Figure 8.6: Examples of synthetic missing data patterns used for the experiments.
Observed entries are shown in white. Left: Uniformly missing entires. Middle: Tra-
jectories exhibiting tracking failure. Right: Tracking failure and occlusion.

To construct more realistic patterns we simulate tracking failure by randomly
selecting (with uniform probability) if a track should have missing data. We then
select (with uniform probability after the first few frames) in which image tracking
failure occurs. No track is restarted after it has been lost. This results in data
patterns such as the on displayed in the middle of Figure 8.6. In Section 8.5.2 we
further simulate occlusion by removing a complete block of the matrix, see the
right pattern of Figure 8.6.

8.5.1 Effects of the Trade-off Parameter λ

Our energy contains one parameter λ that controls the trade-off between model
fit and DOF. To evaluate the behavior of our energy for different λ we use one
instance from the CMU Motion Capture dataset. We used subject 10, which
contains 5 sequences of a person kicking a soccer ball and one sequence of walk-
ing. These were selected since they were approximately the same size and they
all provided about 330 point trajectories. The 3D points were projected into an
orthographic camera slowly rotating around the subject. Some example frames
can be seen in Figure 8.7. We generated missing data patterns as displayed in the
middle image of Figure 8.6. Figure 8.8 shows how the resulting errors on the
observed and missing data as well as the model complexity varies for different λ.
For low values of λ the model fit term dominates the energy giving almost perfect
fit to the available measurements. On the other hand model complexity is high
which limits the ability to accurately predict missing data. The best results are
achieved for mid range values of λ (in this case between 1 and 10). When λ is
high the DOF of the model becomes too low to be able to capture the full scene

220

8.5. Experiments

Figure 8.7: Some example frames from one of the soccer kick instances. Blue skeleton
added for visualization.

10−2 10−1 100 101 102 103

0.1

0.2

0.3

λ

R
M

S
er

ro
r

Observed data

10−2 10−1 100 101 102 103
5 · 10−2

0.1

0.15

0.2

0.25

λ

R
M

S
er

ro
r

Missing data

10−2 10−1 100 101 102 103
4,000

4,500

5,000

5,500

6,000

λ
D

oF

Model complexity

Figure 8.8: For different values of λ the plots show; Left: the RMS error on the
observed data, Middle: the RMS error on the missing data, Right: the degrees of
freedom in the resulting model.

dynamics resulting in poor prediction.

8.5.2 Occlusion and Tracking Failures

In this section we show some result on trajectories from three public image se-
quences: The paper sequence [185] containing 340 points in 70 frames, the back
sequence [72] containing 20561 points in 150 frames and the heart sequence [72]
containing 68295 points in 80 frames. To these we generated missing data as
illustrated in the right image of Figure 8.6. (For occlusion we remove all tra-
jectories in one half of the image for the last 25% of the frames.) Since these
sequences are roughly locally planar we only sample affine rank 3 subspaces. We
used λ = 500 in all three cases. Figure 8.9 shows the obtained clusterings and
one frame from each sequence with the visible (blue) points and the reconstructed
(red) points. Here we compare the local, global and unified models. For the local
model we used the clustering computed by our method. Note that clusters that
do not have any visible points due to occlusion are not reconstructed by the local

221

Compact Matrix Factorization
O

btained
C

lustering:
G

lobal:
Local:

U
nified:

(r
0

=
7
)

(r
k

=
3)

(r
0

=
7,r

k
=

3)

(r
0

=
8
)

(r
k

=
3)

(r
0

=
8,r

k
=

3)

(r
0

=
8
)

(r
k

=
3)

(r
0

=
8,r

k
=

3)

Figure
8.9:Paper,B

ack
and

H
eartsequences

from
[185,72].T

he
leftcolum

n
show

s
the

clustering
obtained

using
our

m
ethod.

T
he

rest
of

the
colum

ns
show

the
visible

points
(blue)

and
the

reconstructed
points

(red)
in

one
fram

e.

222

8.5. Experiments

method. Table 8.2 shows the reconstruction errors for both missing and visible
points. Table 8.1 shows the DOF of the resulting factorizations.

Observed data Missing data

Paper Back Heart Paper Back Heart

Global 3.95e1 5.3e2 1.1e3 3.27e3 1.9e3 4.4e3
Local 1.04e2 4.9e2 1.1e3 2.79e4 1.1e5 2.2e5

Unified 1.07e2 6.9e2 1.5e3 2.86e2 1.4e3 3.6e3

Table 8.2: Reconstruction errors for visible and missing data. For each column the
smallest errors highlighted in bold.

8.5.3 Quantitative Comparisons

Next we compare our approach to a number of state-of-the-art methods. We test
four methods that are based on a single global rank model:

• LM-r0 and Wiberg: Fitting a rank r0 matrix by minimizing f(B,C) =∥∥W � (BCT −M)
∥∥2
F

using Levenberg-Marquardt and the damped Wiberg
method from [173] respectively.

• CSF and CSF-DCT: The column space fitting method from [74], both
with and without using the DCT basis.

• NN: Nuclear norm minimization f(X) = λ ‖X‖∗+‖W � (X −M)‖2
F

using ADMM [18].

We also test using two approaches from [229] for clustering the columns followed
by fitting local models to each cluster. For these methods we use rank 4 affine
models since these correspond to rigid 3D objects.

• SSC-EZWF+LM-r4: The Entry-wise Zero-Fill method from [229], fol-
lowed by fitting rank 4 affine models to each cluster.

• NN+SSC+LM-r4: Nuclear norm minimization (as in NN) followed by
regular SSC [54]. Affine rank 4 models are fitted to the resulting clusters.

For the competing methods the available parameters were tuned for each dataset
to give the best results. In our comparisons we measure the fraction of matrix el-
ements that have reconstruction error less than a given threshold. This is because

223

Compact Matrix Factorization

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

pixel threshold

Our LM-r0
Wiberg NN
NN+SSC+LM-r4 SSC-EWZF+LM-r4
CSF CSF(DCT)
GT+LM-r4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

residual threshold

Our LM-r0
Wiberg NN
NN+SSC+LM-r4 SSC-EWZF+LM-r4
CSF CSF(DCT)

Figure 8.10: The fraction of residuals across all instances less than a threshold for the
Hopkins (left) and MOCAP data (right).

over-fitting to noise may lead to highly unstable tracks which results in unpre-
dictable `2 errors.

Hopkins155 and CMU Motion Capture. We first consider the Hopkins155
dataset [216] which is commonly used for motion segmentation. It contains
155 sequences with multiple rigidly moving objects. Since the dataset contains a
ground truth clustering of the trajectories, we include a comparison with fitting
local models to this partition. This is denoted GT+LM-r4 in the results. For the
methods using a global rank constraint we use r0 = 4K where K is the number
of scene motions.

Here we generated both uniform missing entries and random tracking fail-
ure (left and middle of Figure 8.6). Table 8.3 shows the number of instances
where more than 90% of the missing data was reconstructed with less than a 10

224

8.6. Spatial Smoothness for Labeling

Missing data

Method Uniform Tracking failure

Our 155 (100.0%) 148 (95.5%)
LM-r0 143 (92.3%) 26 (16.8%)
Wiberg 152 (98.1%) 75 (48.4%)
NN 155 (100.0%) 6 (3.9%)
NN+SSC+LM-r4 155 (100.0%) 97 (62.6%)
SSC-EWZF+LM-r4 155 (100.0%) 93 (60.0%)
CSF 118 (76.1%) 70 (45.2%)
CSF(DCT) 154 (99.4%) 54 (34.8%)
GT+LM-r4 155 (100.0%) 88 (56.8%)

Table 8.3: Number of instances where 90% of the missing entries have less than 10px
error.

pixel error. In Figure 8.10 we vary the pixel threshold and show the fraction of
residuals, across all instances, that are reconstructed with a lower error. (Here
we did not consider the uniform missing entry pattern.) It is a bit surprising
that our approach outperforms competing methods, even GT+LM-r4, on this
dataset since the ground truth clusters are typically independently moving ob-
jects. Closer inspection reveals that our method often splits objects into smaller
dependent models, whose interactions are captured by the global rank constraint.
Thus a likely explanation is that affine rank 4 models with ground truth clusters
is still an over-parametrization (due to degenerate motions/planar structure). To
the right in Figure 8.10 we show the results obtained when performing the same
experiment on subject 10 of the MOCAP data set.

8.6 Spatial Smoothness for Labeling

In this section we consider the incorporation of a pair-wise Potts penalty [19]
in our energy based model fitting framework. This regularization term, typically
referred to as the smoothness term, adds spatial context to the formulation and
can resolve ambiguous cluster assignments. This is particularly effective in ar-
eas where several good subspaces are available, e.g. in the vicinity of transitions
between models.

225

Compact Matrix Factorization

r0 rk λ µ Size of M

hands 5 3 5000 100 882× 7899
paper 7 3 500 100 140× 340
back 8 3 500 100 300× 20561
heart 8 {3, 4} 500 100 160× 68295

Table 8.4: Parameters used for the real image sequences. The column rk contains
the dimensions used for the local subspaces.

We use the formulation

E(l) =
∑
p

Dp(lp) +
∑

q∈N (p)

µSpq(lp, lq)

+
∑
k

hkδk(l). (8.17)

Recall that the data terms Dp(lp) and the label costs hkδk(l) jointly encode a
trade-off between data fit and model complexity. The additional term Spq(lp, lq)
penalizes cluster assignments where neighboring trajectories are assigned different
clusters. The function Spq assumes the values 0 or 1 and the parameter µ controls
the penalty strength.

For the neighborhood system we use the k nearest neighbors. We define the
distance between column k and column ` as the maximum distance between the
elements in their overlapping rows, i.e.

dist (Mk,M`) = max
Wik=Wi`=1

|Mik −Mi`|. (8.18)

If the two columns do not have any overlapping observations we define the dis-
tance to be infinite. In the following experiments we used the 8 nearest neighbors.

We applied the method with the smoothness term to the four image se-
quences; hands, paper, back and heart. The results are shown in Figure 8.11.
The reconstruction error, both with and without the pairwise term, are reported
in Table 8.5 for the cases when the ground truth is known. Note that while the
labels are more visually pleasing the reconstruction quality is very similar. The
problem sizes and parameters used for the experiments are shown in Table 8.4.

226

8.6. Spatial Smoothness for Labeling

Observed data Missing data

Paper Back Heart Paper Back Heart

µ = 0 1.07e2 6.86e2 1.50e3 2.86e2 1.44e3 3.67e3
µ 6= 0 1.50e2 7.61e2 1.79e3 3.63e2 1.44e3 3.70e3

Table 8.5: Comparison of reconstruction error for the three datasets where ground
truth is available.

No pairwise term With pairwise smoothness

Figure 8.11: Estimated point positions and obtained clusters using the energy (8.17)
with and without the smoothness term Spq .

227

Compact Matrix Factorization

8.7 Conclusions

In this chapter we have presented an extension of the traditional low rank matrix
factorization. In addition to requiring the matrix to be of low rank, we further
constrain the rank of sub-matrices. This provides a more compact factorization
of the matrix. We have shown in experiments that this model is well suited for
task involving multi-body and non-rigid image point trajectories.

228

References

[1] The MOSEK optimization toolbox for MATLAB manual.

[2] RealityCapture. www.capturingreality.com.

[3] C. Aholt, S. Agarwal, and R. Thomas. A qcqp approach to triangulation.
In European Conference on Computer Vision (ECCV), 2012.

[4] C. Aholt and L. Oeding. The ideal of the trifocal variety. Mathematics of
Computation, 83(289):2553–2574, 2014.

[5] I. Akhter, Y. A. Sheikh, S. Khan, and T. Kanade. Nonrigid structure from
motion in trajectory space. In Neural Information Processing Systems, 2008.

[6] C. Albl, Z. Kukelova, A. Fitzgibbon, J. Heller, M. Smid, and T. Pajdla. On
the two-view geometry of unsynchronized cameras. In Computer Vision
and Pattern Recognition (CVPR), 2017.

[7] C. Albl, Z. Kukelova, and T. Pajdla. R6p-rolling shutter absolute camera
pose. In Computer Vision and Pattern Recognition (CVPR), pages 2292–
2300, 2015.

[8] F. Andersson, M. Carlsson, J.-Y. Tourneret, and H. Wendt. A new fre-
quency estimation method for equally and unequally spaced data. Signal
Processing, IEEE Transactions on, 62(21):5761–5774, 2014.

[9] R. Angst, C. Zach, and M. Pollefeys. The generalized trace-norm and its
application to structure-from-motion problems. In International Confer-
ence on Computer Vision (ICCV), 2011.

229

www.capturingreality.com

REFERENCES

[10] P. M. Q. Aquiar, M. Stosic, and J. M. F. Xavier. Spectrally optimal factor-
ization of incomplete matrices. In Computer Vision and Pattern Recognition
(CVPR), 2008.

[11] A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction with the k-
support norm. In Advances in Neural Information Processing Systems, 2012.

[12] E. Ask, O. Enqvist, and F. Kahl. Optimal geometric fitting under the
truncated l2-norm. In Computer Vision and Pattern Recognition (CVPR),
pages 1722–1729, 2013.

[13] E. Ask, Y. Kuang, and K. Åström. Exploiting p-fold symmetries for faster
polynomial equation solving. In International Conference on Pattern Recog-
nition (ICPR), 2012.

[14] E. Ask, Y. Kuang, and K. Åström. Exploiting p-fold symmetries for faster
polynomial equation solving. In International Conference on Pattern Recog-
nition (ICPR), Tsukuba, Japan, 2012.

[15] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates
for the solution of algebraic eigenvalue problems: a practical guide. SIAM,
2000.

[16] J. P. Barreto and K. Daniilidis. Fundamental matrix for cameras with ra-
dial distortion. In International Conference on Computer Vision (ICCV),
volume 1, pages 625–632, 2005.

[17] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with gen-
eral, unknown lighting. International Journal of Computer Vision (IJCV),
72(3):239–257, May 2007.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of
multipliers. Found. Trends Mach. Learn., 3(1):1–122, Jan. 2011.

[19] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-
tion via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI), 23(11):1222–1239, 2001.

230

REFERENCES

[20] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d
shape from image streams. In Computer Vision and Pattern Recognition
(CVPR), 2000.

[21] J. H. Brito, C. Zach, K. Koeser, M. Ferreira, and M. Pollefeys. One-sided
radial-fundamental matrix estimation. In British Machine Vision Conference
(BMVC), 2012.

[22] M. Brown, R. I. Hartley, and D. Nistér. Minimal solutions for panoramic
stitching. In Computer Vision and Pattern Recognition (CVPR), pages 1–8.
IEEE, 2007.

[23] A. M. Buchanan and A. W. Fitzgibbon. Damped newton algorithms for
matrix factorization with missing data. In Computer Vision and Pattern
Recognition (CVPR), 2005.

[24] B. Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[25] M. Bujnak. Algebraic solutions to absolute pose problems. PhD thesis, Czech
Technical University, Prague., 2012.

[26] M. Bujnak, Z. Kukelova, and T. Pajdla. A general solution to the p4p
problem for camera with unknown focal length. In Computer Vision and
Pattern Recognition (CVPR), pages 1–8. IEEE, 2008.

[27] M. Bujnak, Z. Kukelova, and T. Pajdla. 3d reconstruction from image
collections with a single known focal length. In International Conference on
Computer Vision (ICCV), pages 1803–1810. IEEE, 2009.

[28] M. Bujnak, Z. Kukelova, and T. Pajdla. New efficient solution to the
absolute pose problem for camera with unknown focal length and radial
distortion. In Asian Conference on Computer Vision (ACCV), pages 11–24.
Springer, 2010.

[29] M. Bujnak, Z. Kukelova, and T. Pajdla. Making minimal solvers fast. In
Computer Vision and Pattern Recognition (CVPR), 2012.

[30] S. Burgess, Y. Kuang, and K. Åström. Pose estimation from minimal dual-
receiver configurations. In International Conference on Pattern Recognition
(ICPR), 2012.

231

REFERENCES

[31] M. Byröd, M. Brown, and K. Åström. Minimal solutions for panoramic
stitching with radial distortion. In British Machine Vision Conference
(BMVC), 2009.

[32] M. Byröd, K. Josephson, and K. Åström. Fast optimal three view triangu-
lation. In Asian Conference on Computer Vision (ACCV), 2007.

[33] M. Byröd, K. Josephson, and K. Åström. A column-pivoting based strat-
egy for monomial ordering in numerical gröbner basis calculations. In
European Conference on Computer Vision (ECCV), 2008.

[34] M. Byröd, K. Josephson, and K. Åström. Fast and stable polynomial equa-
tion solving and its application to computer vision. International Journal
of Computer Vision (IJCV), 2009.

[35] R. Cabral, F. de la Torre, J. Costeira, and A. Bernardino. Unifying nuclear
norm and bilinear factorization approaches for low-rank matrix decompo-
sition. In International Conference on Computer Vision (ICCV), 2013.

[36] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algo-
rithm for matrix completion. SIAM J. on Optimization, 20(4):1956–1982,
2010.

[37] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis? J. ACM, 58(3):11:1–11:37, June 2011.

[38] O. Chum and J. Matas. Matching with prosac-progressive sample consen-
sus. In Computer Vision and Pattern Recognition (CVPR), 2005.

[39] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac. In Joint
Pattern Recognition Symposium, pages 236–243. Springer, 2003.

[40] D. Claus and A. W. Fitzgibbon. A rational function lens distortion model
for general cameras. In Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 213–219. IEEE, 2005.

[41] R. M. Corless, K. Gatermann, and I. S. Kotsireas. Using symmetries in
the eigenvalue method for polynomial systems. Journal of symbolic compu-
tation, 44(11):1536–1550, 2009.

232

REFERENCES

[42] D. Cox, J. Little, and D. O’Shea. Ideals, Varities and Algorithms. Springer-
Verlag, New York, NY, USA, 1992.

[43] D. Cox, J. Little, and D. O’Shea. Ideals, Varities and Algorithms. Un-
dergraduate Texts in Mathematics. Springer-Verlag, New York, NY, USA,
2007.

[44] D. A. Cox, J. Little, and D. O’Shea. Using algebraic geometry, volume 185
of Graduate Texts in Mathematics. Springer-Verlag New York, 2005.

[45] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher. SfM with
MRFs: Discrete-continuous optimization for large-scale structure from
motion. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),
35(12):2841–2853, December 2013.

[46] N. da Silva and J. Costeira. The normalized subspace inclusion: Robust
clustering of motion subspaces. In International Conference on Computer
Vision (ICCV), pages 1444–1450, 2009.

[47] Y. Dai and H. Li. Rank minimization or nuclear-norm minimization: Are
we solving the right problem? In DICTA, 2014.

[48] Y. Dai, H. Li, and M. He. A simple prior-free method for non-rigid
structure-from-motion factorization. International Journal of Computer Vi-
sion (IJCV), 107(2):101–122, 2014.

[49] A. Delong, A. Osokin, H. Isack, and Y. Boykov. Fast approximate energy
minimization with label costs. International Journal of Computer Vision
(IJCV), 96:1–27, Jan. 2012.

[50] M. Demazure. Sur deux problemes de reconstruction. PhD thesis, INRIA,
1988.

[51] P. Denis, J. H. Elder, and F. J. Estrada. Efficient edge-based methods for
estimating manhattan frames in urban imagery. In European Conference on
Computer Vision (ECCV), 2008.

[52] F. Devernay and O. D. Faugeras. Automatic calibration and removal of
distortion from scenes of structured environments. In SPIE’s 1995 Inter-
national Symposium on Optical Science, Engineering, and Instrumentation,
pages 62–72. International Society for Optics and Photonics, 1995.

233

REFERENCES

[53] C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[54] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory,
and applications. IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI), 35(11):2765–2781, 2013.

[55] M. Elkadi and B. Mourrain. Some applications of bezoutians in effective
algebraic geometry. PhD thesis, INRIA, 1998.

[56] I. Z. Emiris. On the complexity of sparse elimination. Journal of Complex-
ity, 12(2):134–166, 1996.

[57] O. Enqvist, E. Ask, F. Kahl, and K. Åström. Tractable algorithms for
robust model estimation. International Journal of Computer Vision (IJCV),
112(1):115–129, 2015.

[58] A. Eriksson and A. Hengel. Efficient computation of robust weighted low-
rank matrix approximations using the L1 norm. IEEE Trans. Pattern Anal.
Mach. Intell., 34(9):1681–1690, 2012.

[59] A. Eriksson, T. Thanh Pham, T.-J. Chin, and I. Reid. The k-support
norm and convex envelopes of cardinality and rank. In Computer Vision
and Pattern Recognition (CVPR), 2015.

[60] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint.
MIT press, 1993.

[61] J.-C. Faugere. A new efficient algorithm for computing gröbner bases (f4).
Journal of pure and applied algebra, 139(1-3):61–88, 1999.

[62] P. Favaro, R. Vidal, and A. Ravichandran. A closed form solution to ro-
bust subspace estimation and clustering. In Computer Vision and Pattern
Recognition (CVPR), 2011.

[63] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with
application to minimum order system approximation. In American Control
Conference, 2001.

234

REFERENCES

[64] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with application to image analysis and automated cartog-
raphy. Commun. Assoc. Comp. Mach., 1981.

[65] A. W. Fitzgibbon. Simultaneous linear estimation of multiple view ge-
ometry and lens distortion. In Computer Vision and Pattern Recognition
(CVPR), volume 1, pages I–I. IEEE, 2001.

[66] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2002.

[67] K. Fragkiadaki, M. Salas, P. Arbelaez, and J. Malik. Grouping-based low-
rank trajectory completion and 3d reconstruction. In Advances in Neural
Information Processing Systems 27, 2014.

[68] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case solution to
the calibrated relative pose problem for the case of two known orientation
angles. European Conference on Computer Vision (ECCV), 2010.

[69] K. Fukuda, A. Jensen, and R. Thomas. Computing gröbner fans. Math.
Comput., 76(260):2189–2212, 2007.

[70] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution
classification for the perspective-three-point problem. IEEE Trans. Pattern
Analysis and Machine Intelligence (PAMI), 25(8):930–943, 2003.

[71] R. Garg, A. Roussos, and L. Agapito. A variational approach to video
registration with subspace constraints. International Journal of Computer
Vision (IJCV), 104(3):286–314, 2013.

[72] R. Garg, A. Roussos, and L. de Agapito. Dense variational reconstruc-
tion of non-rigid surfaces from monocular video. In Computer Vision and
Pattern Recognition (CVPR), 2013.

[73] N. Gillis and F. Glinuer. Low-rank matrix approximation with weights or
missing data is np-hard. SIAM Journal on Matrix Analysis and Applications,
32(4), 2011.

[74] P. F. Gotardo and A. M. Martinez. Non-rigid structure from motion with
complementary rank-3 spaces. In Computer Vision and Pattern Recognition
(CVPR), 2011.

235

REFERENCES

[75] D. R. Grayson and M. E. Stillman. Macaulay2, a soft-
ware system for research in algebraic geometry. Available at
http://www.math.uiuc.edu/Macaulay2/.

[76] C. Grussler, A. Rantzer, and P. Giselsson. Low-rank optimization with
convex constraints. IEEE Transactions on Automatic Control, 2018.

[77] S. Haner and K. Åström. Absolute pose for cameras under flat refrac-
tive interfaces. In Computer Vision and Pattern Recognition (CVPR), pages
1428–1436, 2015.

[78] R. Hartley. Projective reconstruction from line correspondences. In Com-
puter Vision and Pattern Recognition (CVPR), pages 903–907. IEEE Com-
puter Society Press, 1994.

[79] R. Hartley. Lines and points in three views and the trifocal tensor. Inter-
national Journal of Computer Vision (IJCV), 22(2):125–140, March 1997.

[80] R. Hartley and F. Schaffalitzky. Linf minimization in geometric recon-
struction problems. In Computer Vision and Pattern Recognition (CVPR),
2004.

[81] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004.

[82] R. I. Hartley. Projective reconstruction and invariants from multiple
images. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),
16(10):1036–1041, 1994.

[83] R. I. Hartley and P. Sturm. Triangulation. Computer Vision and Image
Understanding (CVIU), 68(2):146–157, 1997.

[84] J. Hedborg, A. Robinson, and M. Felsberg. Robust three-view triangu-
lation done fast. In Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 152–157, 2014.

[85] G. Hee Lee, M. Pollefeys, and F. Fraundorfer. Relative pose estimation for
a multi-camera system with known vertical direction. In Computer Vision
and Pattern Recognition (CVPR), pages 540–547, 2014.

236

REFERENCES

[86] J. Heikkila. Using sparse elimination for solving minimal problems in
computer vision. In International Conference on Computer Vision (ICCV),
pages 76–84, 2017.

[87] J. A. Hesch and S. I. Roumeliotis. A direct least-squares (dls) method for
pnp. In International Conference on Computer Vision (ICCV), pages 383–
390. IEEE, 2011.

[88] A. Heyden. Geometry and Algebra of Multipe Projective Transformations.
PhD thesis, Lund Institute of Technology, Sweden, 1995.

[89] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis.
Springer Science & Business Media, 2012.

[90] H. Homeier. On newton-type methods with cubic convergence. Journal
of computational and applied mathematics, 176(2):425–432, 2005.

[91] D. Hook and P. McAree. Using sturm sequences to bracket real roots of
polynomial equations. In Graphics gems, pages 416–422. Academic Press
Professional, Inc., 1990.

[92] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He. Fast and accurate matrix com-
pletion via truncated nuclear norm regularization. IEEE Trans. Pattern
Analysis and Machine Intelligence (PAMI), 35(9):2117–2130, 2013.

[93] J. Hyeong Hong and A. Fitzgibbon. Secrets of matrix factorization: Ap-
proximations, numerics, manifold optimization and random restarts. In
International Conference on Computer Vision (ICCV), pages 4130–4138,
2015.

[94] T. M. W. Inc. MATLAB Reference Guide. The Math Works, Inc., 1992.

[95] H. Isack and Y. Boykov. Energy-based geometric multi-model fitting. In-
ternational Journal of Computer Vision (IJCV), 97(2):123–147, 2012.

[96] A. N. Jensen. Gfan, a software system for Gröbner fans.
http://home.imf.au.dk/ajensen/software/gfan/gfan.html.

[97] A. N. Jensen. A presentation of the gfan software. In Mathematical Soft-
ware - ICMS 2006, Second International Congress on Mathematical Software,

237

REFERENCES

Castro Urdiales, Spain, September 1-3, 2006, Proceedings, pages 222–224,
2006.

[98] P. Ji, M. Salzmann, and H. Li. Shape interaction matrix revisited and
robustified: Efficient subspace clustering with corrupted and incomplete
data. In International Conference on Computer Vision (ICCV), pages 4687–
4695, 2015.

[99] F. Jiang, Y. Kuang, J. E. Solem, and K. Åström. A minimal solution to
relative pose with unknown focal length and radial distortion. In Asian
Conference on Computer Vision (ACCV), pages 443–456. Springer, 2014.

[100] H. Jin. A three-point minimal solution for panoramic stitching with lens
distortion. In Computer Vision and Pattern Recognition (CVPR), pages 1–8.
IEEE, 2008.

[101] V. Jojic, S. Saria, and D. Koller. Convex envelopes of complexity control-
ling penalties: the case against premature envelopment. In International
Conference on Artificial Intelligence and Statistics, 2011.

[102] K. Josephson and M. Byröd. Pose estimation with radial distortion and
unknown focal length. In Computer Vision and Pattern Recognition (CVPR),
pages 2419–2426. IEEE, 2009.

[103] F. Kahl, S. Agarwal, M. K. Chandraker, D. Kriegman, and S. Belongie.
Practical global optimization for multiview geometry. International Journal
of Computer Vision (IJCV), 79(3):271–284, 2008.

[104] K. Kanatani, Y. Sugaya, and H. Niitsuma. Triangulation from two views
revisited: Hartley-sturm vs. optimal correction. In British Machine Vision
Conference (BMVC), 2008.

[105] D. Kapur, T. Saxena, and L. Yang. Algebraic and geometric reasoning using
dixon resultants. In Proceedings of the international symposium on Symbolic
and algebraic computation, pages 99–107. ACM, 1994.

[106] Q. Ke and T. Kanade. Robust l1 norm factorization in the presence of
outliers and missing data by alternative convex programming. In Computer
Vision and Pattern Recognition (CVPR), 2005.

238

REFERENCES

[107] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few
entries. IEEE Trans. Inf. Theory, 56(6):2980–2998, 2010.

[108] L. Kneip. Polyjam: Toolbox for symbolic polynomial computations and
automatic groebner basis solver generation in c++. https://github.

com/laurentkneip/polyjam. Accessed: 2018-03-28.

[109] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o (n) solution to the
absolute pose problem with universal applicability. In European Conference
on Computer Vision (ECCV), pages 127–142, 2014.

[110] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute cam-
era position and orientation. In Computer Vision and Pattern Recognition
(CVPR), pages 2969–2976. IEEE, 2011.

[111] C. Kong and S. Lucey. Prior-less compressible structure from motion. In
Computer Vision and Pattern Recognition (CVPR), 2016.

[112] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8), 2009.

[113] Y. Kuang and K. Åström. Numerically stable optimization of polynomial
solvers for minimal problems. In European Conference on Computer Vision
(ECCV), 2012.

[114] Y. Kuang and K. Åström. Pose estimation with unknown focal length using
points, directions and lines. In International Conference on Computer Vision
(ICCV), pages 529–536, 2013.

[115] Y. Kuang and K. Åström. Stratified sensor network self-calibration from
tdoa measurements. In 21st European Signal Processing Conference 2013,
2013.

[116] Y. Kuang, S. Burgess, A. Torstensson, and K. Åström. A complete char-
acterization and solution to the microphone position self-calibration prob-
lem. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on, pages 3875–3879. IEEE, 2013.

239

https://github.com/laurentkneip/polyjam
https://github.com/laurentkneip/polyjam

REFERENCES

[117] Y. Kuang, M. Oskarsson, and K. Åström. Revisiting trifocal tensor estima-
tion using lines. In International Conference on Pattern Recognition (ICPR),
pages 2419–2423, 2014.

[118] Y. Kuang, J. E. Solem, F. Kahl, and K. Åström. Minimal solvers for relative
pose with a single unknown radial distortion. In Computer Vision and
Pattern Recognition (CVPR), pages 33–40. IEEE, 2014.

[119] Y. Kuang, Y. Zheng, and K. Åström. Partial symmetry in polynomial sys-
tems and its applications in computer vision. In Computer Vision and
Pattern Recognition (CVPR), 2014.

[120] Z. Kukelova. Algebraic methods in computer vision. PhD thesis, Czech
Technical University, Prague., 2013.

[121] Z. Kukelova, M. Bujnak, J. Heller, and T. Pajdla. Singly-bordered block-
diagonal form for minimal problem solvers. In Asian Conference on Com-
puter Vision (ACCV), pages 488–502. Springer, 2014.

[122] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator of minimal
problem solvers. In European Conference on Computer Vision (ECCV), pages
302–315. Springer, 2008.

[123] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigenvalue solutions
to the 5-pt and 6-pt relative pose problems. In British Machine Vision
Conference (BMVC), Leeds, UK, 2008.

[124] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigenvalue solutions
to minimal problems in computer vision. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), 34(7):1381–1393, 2012.

[125] Z. Kukelova, M. Bujnak, and T. Pajdla. Real-time solution to the absolute
pose problem with unknown radial distortion and focal length. In Inter-
national Conference on Computer Vision (ICCV), pages 2816–2823, 2013.

[126] Z. Kukelova, M. Byröd, K. Josephson, T. Pajdla, and K. Åström. Fast
and robust numerical solutions to minimal problems for cameras with
radial distortion. Computer Vision and Image Understanding (CVIU),
114(2):234–244, 2010.

240

REFERENCES

[127] Z. Kukelova, J. Heller, M. Bujnak, A. Fitzgibbon, and T. Pajdla. Efficient
solution to the epipolar geometry for radially distorted cameras. In Inter-
national Conference on Computer Vision (ICCV), pages 2309–2317, 2015.

[128] Z. Kukelova, J. Heller, M. Bujnak, and T. Pajdla. Radial distortion homog-
raphy. In Computer Vision and Pattern Recognition (CVPR), pages 639–647,
2015.

[129] Z. Kukelova, J. Kileel, B. Sturmfels, and T. Pajdla. A clever elimination
strategy for efficient minimal solvers. In Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[130] Z. Kukelova and T. Pajdla. A minimal solution to the autocalibration
of radial distortion. In Computer Vision and Pattern Recognition (CVPR),
pages 1–7. IEEE, 2007.

[131] Z. Kukelova, T. Pajdla, and M. Bujnak. Fast and stable algebraic solution
to l2 three-view triangulation. In International Conference on 3D Vision
(3DV), 2013.

[132] H. Lai, Y. Pan, C. Lu, Y. Tang, and S. Yan. Efficient k-support matrix
pursuit. In European Conference on Computer Vision (ECCV), volume 8690,
2014.

[133] V. Larsson and K. Åström. Uncovering symmetries in polynomial systems.
In European Conference on Computer Vision (ECCV), 2016.

[134] V. Larsson, K. Åström, and M. Oskarsson. Efficient solvers for minimal
problems by syzygy-based reduction. In Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[135] V. Larsson, K. Åström, and M. Oskarsson. Polynomial solvers for saturated
ideals. In International Conference on Computer Vision (ICCV), 2017.

[136] V. Larsson, E. Bylow, C. Olsson, and F. Kahl. Rank minimization with
structured data patterns. In European Conference on Computer Vision
(ECCV), 2014.

[137] V. Larsson, Z. Kukelova, and Y. Zheng. Making minimal solvers for ab-
solute pose estimation compact and robust. In International Conference on
Computer Vision (ICCV), pages 2335–2343. IEEE, 2017.

241

REFERENCES

[138] V. Larsson, Z. Kukelova, and Y. Zheng. Camera pose estimation with
unknown principal point. In Computer Vision and Pattern Recognition
(CVPR), 2018.

[139] V. Larsson and C. Olsson. Convex envelopes for low rank approximation.
In Energy Minimization Methods in Computer Vision and Pattern Recogni-
tion (EMMCVPR), 2015.

[140] V. Larsson and C. Olsson. Convex low rank approximation. International
Journal of Computer Vision (IJCV), 120(2):194–214, 2016.

[141] V. Larsson and C. Olsson. Compact matrix factorization with dependent
subspaces. In Computer Vision and Pattern Recognition (CVPR), pages 280–
289, 2017.

[142] V. Larsson, M. Oskarsson, K. Åström, A. Wallis, Z. Kukelova, and T. Pa-
jdla. Beyond gröbner bases: Basis selection for minimal solvers. In Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[143] T.-L. Lee, T.-Y. Li, and C.-H. Tsai. Hom4ps-2.0: a software package
for solving polynomial systems by the polyhedral homotopy continuation
method. Computing, 83(2-3):109, 2008.

[144] B. Li, L. Heng, G. H. Lee, and M. Pollefeys. A 4-point algorithm for rel-
ative pose estimation of a calibrated camera with a known relative rotation
angle. In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1595–1601. IEEE, 2013.

[145] H. Li. A simple solution to the six-point two-view focal-length prob-
lem. In European Conference on Computer Vision (ECCV), pages 200–213.
Springer, 2006.

[146] H. Li and R. Hartley. A non-iterative method for correcting lens distor-
tion from nine-point correspondences. In OmniVision’05, ICCV-workshop,
2005.

[147] H. Li and R. Hartley. Five-point motion estimation made easy. In Inter-
national Conference on Pattern Recognition (ICPR), 2006.

[148] T.-Y. Li. Numerical solution of multivariate polynomial systems by homo-
topy continuation methods. Acta numerica, 6:399–436, 1997.

242

REFERENCES

[149] X. Liang, X. Ren, Z. Zhang, and Y. Ma. Repairing sparse low-rank texture.
In European Conference on Computer Vision (ECCV), 2012.

[150] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method
for exact recovery of corrupted low rank matrices. Mathematical Program-
ming, 2010.

[151] P. Lindstrom. Triangulation made easy. In Computer Vision and Pattern
Recognition (CVPR), 2010.

[152] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of sub-
space structures by low-rank representation. IEEE Trans. Pattern Analysis
and Machine Intelligence (PAMI), 35(1):171–184, 2013.

[153] F. Lu and R. Hartley. A fast optimal algorithm for l 2 triangulation. In
Asian Conference on Computer Vision (ACCV), 2007.

[154] F. Macaulay. Some formulae in elimination. Proceedings of the London
Mathematical Society, 1(1):3–27, 1902.

[155] L. Magerand and A. Del Bue. Practical projective structure from motion
(p2sfm). In Computer Vision and Pattern Recognition (CVPR), pages 39–47,
2017.

[156] M. Marques and J. Costeira. Estimating 3d shape from degenerate se-
quences with missing data. Computer Vision and Image Understanding
(CVIU), 113(2):261 – 272, 2009.

[157] S. Maybank. Theory of reconstruction from image motion, volume 28.
Springer Science & Business Media, 2012.

[158] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization al-
gorithms for learning large incomplete matrices. J. Mach. Learn. Res.,
11:2287–2322, 2010.

[159] A. M. McDonald, M. Pontil, and D. Stamos. Spectral k-support norm
regularization. In Advances in Neural Information Processing Systems, 2014.

[160] Y. Min. L-infinity norm minimization in the multiview triangulation. In
International Conference on Artificial Intelligence and Computational Intelli-
gence, pages 488–494. Springer, 2010.

243

REFERENCES

[161] L. Mirsky. A trace inequality of john von neumann. Monatshefte für math-
ematik, 79(4):303–306, 1975.

[162] F. M. Mirzaei and S. I. Roumeliotis. Optimal estimation of vanishing
points in a manhattan world. In International Conference on Computer
Vision (ICCV), 2011.

[163] H. M. Möller and H. J. Stetter. Multivariate polynomial equations with
multiple zeros solved by matrix eigenproblems. Numerische Mathematik,
70(3):311–329, 1995.

[164] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron, and P. DeMarco. Maple 10 Programming Guide. Maplesoft,
Waterloo ON, Canada, 2005.

[165] F. Mora and L. Robbiano. The Gröbner fan of an ideal. Journal of Symbolic
Computation, 6(2-3):183–208, 1988.

[166] P. Moulon, P. Monasse, and R. Marlet. Global fusion of relative motions
for robust, accurate and scalable structure from motion. In International
Conference on Computer Vision (ICCV), pages 3248–3255. IEEE, 2013.

[167] G. Nakano. Globally optimal dls method for pnp problem with cayley
parameterization. In British Machine Vision Conference (BMVC), 2015.

[168] O. Naroditsky and K. Daniilidis. Optimizing polynomial solvers for min-
imal geometry problems. In International Conference on Computer Vision
(ICCV), 2011.

[169] O. Naroditsky, X. S. Zhou, J. Gallier, S. I. Roumeliotis, and K. Dani-
ilidis. Two efficient solutions for visual odometry using directional corre-
spondence. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),
34(4):818–824, 2012.

[170] D. Nistér. An efficient solution to the five-point relative pose problem.
IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 2004.

[171] V. Noferini and A. Townsend. Numerical instability of resultant methods
for multidimensional rootfinding. SIAM Journal on Numerical Analysis,
54(2):719–743, 2016.

244

REFERENCES

[172] T. Okatani and K. Deguchi. On the wiberg algorithm for factoriza-
tion with missing data. International Journal of Computer Vision (IJCV),
72(3):329–337, 2007.

[173] T. Okatani, T. Yoshida, and K. Deguchi. Efficient algorithm for low-rank
matrix factorization with missing components and performance compar-
ison of latest algorithms. In International Conference on Computer Vision
(ICCV), 2011.

[174] C. Olsson and O. Enqvist. Stable structure from motion for unordered
image collections. In Scandinavian Conference on Image Analysis (SCIA),
2011.

[175] C. Olsson and M. Oskarsson. A convex approach to low rank matrix
approximation with missing data. In Scandinavian Conference on Image
Analysis (SCIA), 2009.

[176] M. Oskarsson, A. Zisserman, and K. Åström. Minimal projective recon-
struction for combinations of points and lines in three views. Image and
Vision Computing (IVC), 22(10):777–785, 2004.

[177] S. Petitjean. Algebraic geometry and computer vision: Polynomial sys-
tems, real and complex roots. Journal of Mathematical Imaging and Vision
(JMIV), 10(3):191–220, 1999.

[178] J. Pritts, Z. Kukelova, V. Larsson, and O. Chum. Radially-distorted con-
jugate translations. In Computer Vision and Pattern Recognition (CVPR),
2018.

[179] L. Quan. Invariants of six points and projective reconstruction from three
uncalibrated images. IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI), 17(1):34–46, 1995.

[180] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Rev.,
52(3):471–501, Aug. 2010.

[181] L. Robbiano. Term orderings on the polynominal ring. In Proc. of EURO-
CAL ’85, European Conference on Computer Algebra, 1985.

245

REFERENCES

[182] R. Rockafellar. Convex Analysis. Princeton University Press, 1997.

[183] C. Russell, R. Yu, and L. Agapito. Video pop-up: Monocular 3d recon-
struction of dynamic scenes. In European Conference on Computer Vision
(ECCV), 2014.

[184] M. Salzmann. Continuous inference in graphical models with polynomial
energies. In Computer Vision and Pattern Recognition (CVPR), pages 1744–
1751. IEEE, 2013.

[185] M. Salzmann, R. Hartley, and P. Fua. Convex optimization for de-
formable surface 3-d tracking. In International Conference on Computer
Vision (ICCV), pages 1–8. IEEE, 2007.

[186] O. Saurer, M. Pollefeys, and G. H. Lee. A minimal solution to the rolling
shutter pose estimation problem. In Intelligent Robots and Systems (IROS),
pages 1328–1334. IEEE, 2015.

[187] O. Saurer, P. Vasseur, C. Demonceaux, and F. Fraundorfer. A homography
formulation to the 3pt plus a common direction relative pose problem. In
Asian Conference on Computer Vision, pages 288–301. Springer, 2014.

[188] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In
Computer Vision and Pattern Recognition (CVPR), 2016.

[189] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise
view selection for unstructured multi-view stereo. In European Conference
on Computer Vision (ECCV), 2016.

[190] A. Segers. Algebraic Attacks from a Gröbner Basis Perspective. PhD thesis,
Eindhoven University of Technology, 2004.

[191] Q. Shi, A. Eriksson, A. Van Den Hengel, and C. Shen. Is face recognition
really a compressive sensing problem? In Computer Vision and Pattern
Recognition (CVPR), pages 553–560. IEEE, 2011.

[192] Z. Simayijiang, S. Burgess, Y. Kuang, and K. Åström. Minimal solutions
for dual microphone rig self-calibration. In European Signal Processing Con-
ference (EUSIPCO), 2014.

246

REFERENCES

[193] Z. Simayijiang, S. Burgess, Y. Kuang, and K. Åström. Toa-based self-
calibration of dual-microphone array. IEEE Journal on Selected Topics in
Signal Processing, 9(5):791–801, 2015.

[194] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo
collections in 3d. In ACM transactions on graphics (TOG), volume 25, pages
835–846. ACM, 2006.

[195] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from in-
ternet photo collections. International Journal of Computer Vision (IJCV),
80(2):189–210, 2008.

[196] A. M.-C. So and Y. Ye. Theory of semidefinite programming for sen-
sor network localization. Mathematical Programming, 109(2-3):367–384,
2007.

[197] P. Stefanovic. Relative orientation–a new approach. ITC Journal, 3:417–
448, 1973.

[198] H. Stewénius. Gröbner Basis Methods for Minimal Problems in Computer
Vision. PhD thesis, Lund University, 2005.

[199] H. Stewénius, C. Engels, and D. Nistér. Recent developments on direct
relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing,
60(4):284–294, 2006.

[200] H. Stewénius, D. Nistér, F. Kahl, and F. Schaffalitzky. A minimal solution
for relative pose with unknown focal length. Image and Vision Computing
(IVC), 26(7):871–877, 2008.

[201] H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström. Solutions to min-
imal generalized relative pose problems. In Workshop on Omnidirectional
Vision, Beijing China, OCT 2005.

[202] H. Stewenius, F. Schaffalitzky, and D. Nister. How hard is 3-view trian-
gulation really? In International Conference on Computer Vision (ICCV),
2005.

[203] D. Strelow. General and nested Wiberg minimization. In Computer Vision
and Pattern Recognition (CVPR), 2012.

247

REFERENCES

[204] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625–653,
1999.

[205] B. Sturmfels. On the newton polytope of the resultant. Journal of Algebraic
Combinatorics, 3(2):207–236, 1994.

[206] B. Sturmfels. Gröbner Bases and Convex Polytopes. University Lecture Series.
American Mathematical Society, Providence, RI, USA, 1996.

[207] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by gpu-
accelerated large displacement optical flow. In European Conference on
Computer Vision (ECCV), pages 438–451. Springer, 2010.

[208] L. Svarm, O. Enqvist, F. Kahl, and M. Oskarsson. City-scale localization
for cameras with known vertical direction. IEEE Trans. Pattern Analysis
and Machine Intelligence (PAMI), 2016.

[209] C. Sweeney, J. Flynn, and M. Turk. Solving for relative pose with a par-
tially known rotation is a quadratic eigenvalue problem. In International
Conference on 3D Vision (3DV), volume 1, pages 483–490. IEEE, 2014.

[210] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[211] C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: A factorization method. International Journal of Computer
Vision (IJCV), 9(2):137–154, 1992.

[212] P. H. Torr and A. Zisserman. Mlesac: A new robust estimator with appli-
cation to estimating image geometry. Computer Vision and Image Under-
standing (CVIU), 78(1):138–156, 2000.

[213] P. H. S. Torr. Bayesian model estimation and selection for epipolar geom-
etry and generic manifold fitting. International Journal of Computer Vision
(IJCV), 50(1):35–61, 2002.

[214] B. Triggs. Camera pose and calibration from 4 or 5 known 3d points.
In International Conference on Computer Vision (ICCV), volume 1, pages
278–284. IEEE, 1999.

248

REFERENCES

[215] B. Triggs. Routines for relative pose of two calibrated cameras from 5
points. 2000. Technical Report.

[216] R. Tron and R. Vidal. A benchmark for the comparison of 3D motion seg-
mentation algorithms. In Computer Vision and Pattern Recognition (CVPR),
2007.

[217] R. Tsai. A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses. IEEE
Journal on Robotics and Automation, 3(4):323–344, 1987.

[218] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. A minimal solution
to the generalized pose-and-scale problem. In Computer Vision and Pattern
Recognition (CVPR), 2014.

[219] J. Verschelde. Homotopy continuation methods for solving polynomial systems.
PhD thesis, University of California, Berkeley, 1996.

[220] J. Verschelde. Algorithm 795: Phcpack: A general-purpose solver for poly-
nomial systems by homotopy continuation. ACM Transactions on Mathe-
matical Software (TOMS), 25(2):251–276, 1999.

[221] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with
missing data using powerfactorization and gpca. International Journal of
Computer Vision (IJCV), 79(1):85–105, 2008.

[222] J. von Neumann. Some matrix-inequalities and metrization of matrix-
space. Tomsk University Review. vol 1, 1937.

[223] S. Wang, D. Liu, and Z. Zhang. Nonconvex relaxation approaches to
robust matrix recovery. In International Joint Conference on Artificial Intel-
ligence, 2013.

[224] S. Weerakoon and T. Fernando. A variant of newton’s method with accel-
erated third-order convergence. Applied Mathematics Letters, 13(8):87–93,
2000.

[225] T. Wiberg. Computation of principal components when data are missing.
In Proc. Second Symp Computational Statistics, 2013.

249

REFERENCES

[226] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), 31(2):210–227, 2009.

[227] C. Wu. P3.5p: Pose estimation with unknown focal length. In Computer
Vision and Pattern Recognition (CVPR), pages 2440–2448, 2015.

[228] J. Yan and M. Pollefeys. A factorization-based approach for articulated
nonrigid shape, motion and kinematic chain recovery from video. IEEE
Trans. Pattern Anal. Mach. Intell., 30(5):865–877, 2008.

[229] C. Yang, D. Robinson, and R. Vidal. Sparse subspace clustering with
missing entries. In International Conference on Machine Learning (ICML),
2015.

[230] L. Zappella, A. D. Bue, X. Lladó, and J. Salvi. Joint estimation of segmen-
tation and structure from motion. Computer Vision and Image Understand-
ing (CVIU), 117(2):113 – 129, 2013.

[231] E. Zheng, K. Wang, E. Dunn, and J.-M. Frahm. Minimal solvers for 3d
geometry from satellite imagery. In International Conference on Computer
Vision (ICCV), December 2015.

[232] Y. Zheng, Y. Kuang, S. Sugimoto, K. Åström, and M. Okutomi. Revisiting
the pnp problem: A fast, general and optimal solution. In International
Conference on Computer Vision (ICCV), 2013.

[233] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-
rank matrix approximation under robust L1-norm. In Computer Vision
and Pattern Recognition (CVPR), 2012.

[234] Y. Zheng, S. Sugimoto, I. Sato, and M. Okutomi. A general and simple
method for camera pose and focal length determination. In Computer
Vision and Pattern Recognition (CVPR), pages 430–437, 2014.

[235] Y. Zhu, D. Huang, F. De La Torre, and S. Lucey. Complex non-rigid
motion 3d reconstruction by union of subspaces. In Computer Vision and
Pattern Recognition (CVPR), 2014.

[236] H. Zou and T. Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 67:301–320, 2005.

250

	Preface
	Acknowledgements
	Introduction
	Motivation
	Overview and Outline
	Geometric Computer Vision
	Pinhole Cameras
	Affine Cameras
	Camera Resectioning
	Epipolar Geometry

	Low Rank Approximation
	Convex Analysis
	Fenchel Conjugacy

	Polynomial Equation Systems and Algebraic Geometry
	Monomial Orderings
	The Division Algorithm and Gröbner Bases
	Quotient Rings
	Saturation
	Syzygy Modules

	Solving Systems of Polynomial Equations
	Resultants
	Univariate Polynomials
	The Action Matrix Method
	Finding Action Matrices

	Building Polynomial Solvers
	Introduction
	Related Work

	Finding Elimination Templates
	Reducing the Expansion

	Implementation Details
	Choosing Action Monomials
	Removing Redundant Columns and Rows
	Improving Numerics with Generalized Eigenvalue Problems

	Experimental Evaluation
	Evaluation of the Reduction Step
	Numerical Accuracy of the Solvers
	Three Views with Known Intrinsic Parameters and Rotation Axis
	Projective Reconstruction from Nine Lines in Three Views

	Conclusion

	Solvers for Saturated Ideals
	Action Matrices in Saturated Ideals
	Building Solvers with Saturation
	Toy Example

	Saturations for Zero-dimensional Ideals
	Applications with Saturated Ideals
	Triangulation
	Time-of-Arrival Self-Calibration
	Vanishing Point Estimation

	Conclusions

	Exploiting Symmetries in Polynomials Systems
	Related Work
	Symmetries in Minimal Problems
	Solving Equation Systems with Symmetries
	Implementation

	Unaligned Symmetries
	Finding Unaligned Symmetries in Practice

	Application with Symmetries
	Weak Perspective-n-Points

	Conclusions

	Basis Selection for Minimal Problems
	Related Work
	Exhaustive Search over Gröbner Bases
	Gröbner Fans
	Building Minimal Solvers using Gröbner Fans

	Beyond Gröbner Bases
	Random Sampling for Basis Selection
	Checking Linear Independence
	Building Minimal Solvers with Sampled Bases
	Experiment: Heuristic vs. Uniform Sampling

	Panoramic Stitching f+ R + f
	Two View Image Stitching
	Three View Image Stitching
	Evaluation

	Relative Pose E + f
	Formulation of Kuang et al.
	Formulation of Kukelova et al.
	Our Approach
	Evaluation

	Conclusions

	Absolute Pose with Unknown Focal Length and Radial Distortion
	Introduction
	Background and Previous Work
	Unknown Radial Distortion and Focal Length
	Minimal Solver from Josephson and Byröd
	Minimal Solver from Bujnak et al.

	Our Approach for P4Pfr
	Removing Nullspace Degeneracy
	New Camera Matrix Constraints
	Removing Planar Degeneracy

	Experimental Evaluation
	Numerical Stability
	Noise Experiment
	Stability Close to Degenerate Configurations
	Evaluation on Real Images

	Our Approach for P3.5Pf
	Experiment

	Conclusions

	Absolute Pose with Unknown Focal Length and Principal Point
	Unit Aspect Ratio and Zero Skew
	Camera Matrix Constraints
	New Camera Matrix Constraints
	Building a Polynomial Solver - P4.5Pfuv
	Unknown Aspect Ratio - P5Pfuva
	Implementation Details

	Radial Distortion with Unknown Center
	Seven Point Relaxation - P7Pfruv
	Simplifying the Equations
	Removing Symmetries
	Recovering the Full Solutions

	Experiments
	Stability
	Varying Noise
	Varying Principal Point
	Varying Radial Distortion
	Real Data
	Real Images with Radial Distortion

	Conclusions

	Convex Relaxations for Low Rank Matrix Approximation
	Introduction
	Related Work
	Notation

	Convexification
	The Conjugate Function
	The Convex Envelope

	Optimization and Performance Bounds
	The Proximal Operator
	Relationship between the Relaxations.

	Single Matrix Applications
	Hankel Matrix Estimation
	Smooth Linear Shape Basis Model

	Applications with Multiple Matrices
	Evaluation of the Convex Relaxation
	Comparison to Non-Convex Methods
	Linear Shape Basis with Missing Data
	Affine Structure-from-Motion

	Conclusions
	Appendix
	The Sequence of Unconstrained Minimizers
	Properties of Feasible Minimizers
	Extension Outside the Blocks

	Compact Matrix Factorization
	Introduction
	A Dependent Subspace Model
	Benefits of Dependent Models
	Degrees of Freedom
	Predicting Missing Data

	Model Fitting
	Energy Formulation
	Optimization

	Experiments
	Effects of the Trade-off Parameter
	Occlusion and Tracking Failures
	Quantitative Comparisons

	Spatial Smoothness for Labeling
	Conclusions

