

Computer Science for Continuous Data Survey,
Vision, Theory, and Practice of a Computer Algebra
Analysis System
Citation for published version (APA):

Brausse, F., Collins, P., & Ziegler, M. (2022). Computer Science for Continuous Data Survey, Vision,
Theory, and Practice of a Computer Algebra Analysis System. In F. Boulier, M. England, T. M. Sadykov, &
E. V. Vorozhtsov (Eds.), COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022):
Conference proceedings (Vol. 13366, pp. 62-82). Springer International Publishing AG. Lecture Notes in
Computer Science Vol. 13366 https://doi.org/10.1007/978-3-031-14788-3_5

Document status and date:
Published: 01/01/2022

DOI:
10.1007/978-3-031-14788-3_5

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 19 Mar. 2023

https://doi.org/10.1007/978-3-031-14788-3_5
https://doi.org/10.1007/978-3-031-14788-3_5
https://cris.maastrichtuniversity.nl/en/publications/33e5dd6a-fb5d-4887-9b42-120312233bce

François Boulier
Matthew England
Timur M. Sadykov
Evgenii V. Vorozhtsov (Eds.)

LN
CS

 1
33

66

Computer Algebra
in Scientific Computing
24th International Workshop, CASC 2022
Gebze, Turkey, August 22–26, 2022
Proceedings

Lecture Notes in Computer Science 13366

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

François Boulier ·Matthew England ·
Timur M. Sadykov · Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific Computing
24th International Workshop, CASC 2022
Gebze, Turkey, August 22–26, 2022
Proceedings

Editors
François Boulier
Université de Lille
Villeneuve d’Ascq, France

Timur M. Sadykov
Plekhanov Russian University of Economics
Moscow, Russia

Matthew England
Coventry University
Coventry, UK

Evgenii V. Vorozhtsov
Institute of Theoretical and Applied
Mechanics
Novosibirsk, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-14787-6 ISBN 978-3-031-14788-3 (eBook)
https://doi.org/10.1007/978-3-031-14788-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6663-719X
https://orcid.org/0000-0003-0741-2318
https://orcid.org/0000-0001-5729-3420
https://orcid.org/0000-0003-2753-8399
https://doi.org/10.1007/978-3-031-14788-3

Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC)
is an annual forum which aims to bring together the leading scientists, scholars, and
engineers from the various disciplines including computer algebra and to attract original
research papers of high quality. This workshop provides a platform for the delegates
to exchange new ideas and application experiences, share research results, and discuss
existing issues and challenges.

This year, CASCwas hosted near Istanbul, the largest city in Turkey and the financial
and cultural center of the country. Gebze Technical University (GTU) is situated close to
the border of the provinces of Istanbul and Kocaeli. GTU (previously the Gebze Institute
of Advanced Technologies – GYTE) is one of the leading research institutes and one of
10 research universities in Turkey.

During the two years of the COVID-19 pandemic, many conferences were either
canceledor tookplace fully online. This impactedour community and especially the early
career researchers.A decisionwasmade to gathermany symbolic computation/computer
algebra events together in the same place, driven by the need to restore ties in the
community. SCALE (Symbolic Computation: Algorithms, Learning, and Engineering),
a three-week long event, was the result of this effort. CASC 2022 was the concluding
event of SCALE.

The choice of Istanbul/Gebze for CASC 2022 was made because Turkey has an
increasing number of symbolic computation researchers. Some years ago, symbolic
computation and computer algebra were almost nonexistent in Turkey, but today many
researchers who obtained their Ph.D. or spent time as post-doctoral researchers abroad
are based in Turkey, together with a number of foreign researchers.

The ALCYON lab (Institute of Information Technologies, GTU) was started by
Zafeirakis Zafeirakopoulos six years ago. Its main focus is symbolic computation.
During this period, three nationally and internationally funded research projects
were carried out, more than 10 researchers were employed, and more than 30 students
supervised. In the last three years, a further three research projects related to computer
algebra were granted to researchers based around Istanbul and a joint effort between
computer algebra researchers from different universities was initiated. This led to the
Symbolic Computation Istanbul Meetings (organized by Tülay Ayyıldız Akoğlu, Türkü
Özlüm Çelik, and Zafeirakis Zafeirakopoulos): a biweekly seminar and social event
series that has successfully ran for a year with local and international speakers and
participants. In addition, the International Mathematics Union approved a grant for
computation in Turkey. In this context there are monthly workshops (organized by
Tülay Ayyıldız Akoğlu, Can Ozan Oğuz, and Zafeirakis Zafeirakopoulos) related to
computational mathematics (focused on computer algebra). The first event was the
Sagedays Workshop, held as part of SCALE (two weeks before CASC 2022).

This year, the CASC International Workshop had two categories of participation:
(1) talks with accompanying papers to appear in these proceedings and (2) talks with
accompanying extended abstracts for distribution at the conference only. The latter was

vi Preface

for work either already published or not yet ready for publication, but in either case still
new and of interest to the CASC audience. The former was strictly for new and original
research results or review articles, ready for publication.

All papers submitted to the LNCS proceedings received aminimum of three reviews.
In addition, the whole Program Committee (PC) was invited to comment on and debate
all papers. In total this volume contains 20 contributed papers. Alongwith the contributed
talks, CASC 2022 had two invited speakers.

The invited talk of Michael Nikitas Vrahatis was devoted to the generalizations
of the intermediate value theorem in several variables. This theorem is very useful in
various approaches including the existence of solutions of systems of nonlinear algebraic
and/or transcendental equations, the existence of fixed points of continuous functions,
the localization of extrema of objective functions, and the localization of periodic orbits
of nonlinear mappings and periodic orbits (fixed points) on Poincaré’s surface of section
(the Poincaré map).

Methods emanating from the theorem are of major importance for studying and
tackling problems with imprecise (not exactly known) information because, in a large
variety of applications, precise function values are either impossible or time-consuming
and computationally expensive to obtain. Furthermore, these methods are particularly
useful for investigating various problems where the corresponding functions assume
very large and/or very small values.

Applications related to systems of nonlinear algebraic and/or transcendental
equations, as well as fixed points of continuous functions, were presented. Further-
more, an application was presented which concerns the computation of all the periodic
orbits (stable and unstable) of any period and accuracy which occur, among others, in
the study of beam dynamics in circular particle accelerators, such as the Large Hadron
Collider machine at the European Organization for Nuclear Research.

The invited talk ofMarcMorenoMazawas on the topic of implementation techniques
for power, Laurent, and Puiseux series in several variables. This theme was motivated
by the fact that limits of multivariate functions and more advanced notions of limits, like
topological closures, are almost absent from such general-purpose computer algebra
systems as Maple and Mathematica.

The discussion of the application of above-mentioned implementation techniques
started with the implementation of arithmetic operations which are sometimes easier
than one may think (for instance, the substitution of unit formal power series into formal
power series) and sometimes harder (for instance, the inversion of multivariate Laurent
series). The impact of the implementation environment on the implementation tech-
niques, considering both interpreted and compiled code, was also discussed. The main
points of the talk were illustrated with Maple’s MultivariatePowerSeries package and
the Basic Polynomial Algebra Subroutines Library. In that latter environment, it was
shown how different parallel programming patterns can be used to obtain efficient multi-
threaded implementation of arithmetic operations on power series and factorization of
univariate polynomials over such series.

The CASC 2022 program covered a wide range of topics. Polynomial algebra,
which is at the computer algebra core, was represented by contributions devoted to
the development of a new accelerated subdivision algorithm for finding the complex

Preface vii

roots of univariate polynomials, the use of Gröbner bases and invariant manifolds for
finding the equilibrium positions in the problem of the motion of a system of two bodies
in a uniform gravity field, the application of the quaternion Fourier transform for locating
the nearest singularity in a polynomial homotopy, a new interpolation algorithm for the
solution of polynomial equations with parameters by using the Dixon resultant, and the
computations in the computer algebra system (CAS) Maple and in the C programming
language. Polynomial computer algebra is also the foundation of the contributions to the
present proceedings that expose a new speculative algorithm for computing sub-resultant
chains over rings of multivariate polynomials with the aid of the Bézout matrix, new
chordality-preserving top-down algorithms for triangular decomposition of polynomial
sets, new heuristics for choosing a cylindrical algebraic decomposition variable ordering
motivatedby complexity analysis, a comparisonof several algorithms implemented in the
CASs SageMath and Mathematica for proving positivity of linearly recurrent sequences
with polynomial coefficients, and the derivation with the aid of Gröbner bases and
Sylvester resultants of new optimal symplectic fourth-order partitioned Runge–Kutta
methods for the numerical solution of Hamiltonian mechanics problems.

Two papers deal with the application of symbolic manipulations for obtaining
the solutions of both ordinary and partial differential equations. These are the
contributions devoted to finding the solutions to linear ordinary differential equations
under the condition of incomplete information about the coefficients and the use of the
parametrization of boundary conditions at the solution of boundary-value problems for
partial differential equations to ensure well-posedness.

Two papers are devoted to the applications of symbolic-numerical algorithms
developed in the language of the CAS Mathematica for the calculation of energy
spectrum and eigenfunctions in the geometric collectivemodel of atomic nucleus and the
analysis of gyroscopic stabilization of equilibriums of a gyrostat, respectively. A further
application of CASs in mechanics is included, specifically for the stability analysis of
periodic motion of the swinging Atwood machine.

The remaining topics include a new algorithm for finding the Frobenius distance
from a given matrix to the set of matrices possessing multiple eigenvalues, the
parallel implementation of the fast Fourier transform in a ring and a finite field that can
be used for homomorphic encryption and polynomial multiplication, a new symbolic
computation method for constructing a small neighborhood around a known local
optimal point of a given multivariate function that contains radical or rational expres-
sions, new algorithms implemented in Maple and in the C/C++ programming language
for computing the integer hull of a convex polyhedral set, a new algorithm implemented
in the CAS SageMath for computing the equivalent Hilbert series of automorphisms
acting on canonical rings of projective curves with the application to Fermat curves, and
a survey of the state of the art and of the future of computer science for continuous data
as a bridge between pure and applied mathematics and as an expansion of computer
algebra to analytic data types.

We want to thank all the members of the CASC 2022 Program Committee for their
thorough work in selecting and preparing the technical program. We also thank the
external referees who provided reviews as part of this process.

viii Preface

We are grateful to the members of the group headed by Timur Sadykov for their
technical help in the preparation of the camera-ready manuscript for this volume.
We are grateful to the CASC publicity chair Dmitry Lyakhov for the management of
the conference web page (http://www.casc-conference.org) and for the design of the
conference poster.

The local organization of the CASC 2022 at Gebze Technical University was
conducted as part of the larger SCALE event. Our particular thanks are due to the
members of the CASC 2022 local organizing committee at the GTU, in particular
Zafeirakis Zafeirakopoulos (chair), Tülay Ayyıldız Akoğlu, Hadi Alizadeh, Hülya
Öztürk, and Ali Kemal Uncu, who ably handled the local arrangements. In addition,
Zafeirakis Zafeirakopoulos kindly provided us with the information above about
computer algebra activities at GTU.

SCALE would not have been possible without the enormous help of a large
local team. This includes members of the Institute of Information Technologies and
the Department of Mathematics of Gebze Technical University, members of other
universities in Istanbul, and the (student) Mathematics Club of Turkey (TMK). Among
them, Hadi Alizadeh and Başak Karakaş especially worked tirelessly to deal with the
many problems a post-pandemic conference had to face. In total there were more than
20 people volunteering work to ensure the success of the event.

Finally, we acknowledge that the success of CASC and SCALE has been financially
supported by the sponsors: the Scientific and Technological Research Institution
of Turkey (TÜBITAK), the Turkish Mathematics Society (TMD), the European
Mathematics Society (EMS), the International Mathematics Union (IMU), the ACM
Special Interest Group on Symbolic and Algebraic Manipulation (SIGSAM), the
MATRIS lab of SBA Research (Austria), the CARGO lab of Wilfrid Laurier University
(Canada), and Maplesoft.

July 2022 François Boulier
Matthew England
Timur M. Sadykov

Evgenii V. Vorozhtsov

http://www.casc-conference.org/

Organization

CASC 2022 was hosted by Gebze Technical University, Gebze, Turkey.

General Chairs

François Boulier Université de Lille, France
Timur M. Sadykov Plekhanov Russian University of Economics,

Russia

Program Committee Chairs

Matthew England Coventry University, UK
Evgenii V. Vorozhtsov Khristianovich Institute of Theoretical and

Applied Mechanics, Russia

Program Committee

François Boulier University of Lille, France
Changbo Chen Chinese Academy of Sciences, China
Jin-San Cheng Academy of Mathematics and Systems Science,

China
Türkü Özlüm Çelik Boğaziçi University, Turkey
Victor F. Edneral Lomonosov Moscow State University, Russia
Jaime Gutierrez University of Cantabria, Spain
Sergey Gutnik Moscow State Institute of International Relations,

Russia
Amir Hashemi Isfahan University of Technology, Iran
Gabriela Jeronimo Universidad de Buenos Aires, Argentina
Rui-Juan Jing Jinagsu University, China
Wen-Shin Lee University of Stirling, UK
François Lemaire University of Lille, France
Viktor Levandovskyy University of Kassel, Germany
Marc Moreno Maza University of Western Ontario, Canada
Dominik L. Michels KAUST, Saudi Arabia
Chenqi Mou Beihang University, China
Sonia Perez-Diaz Universidad de Alcalá, Spain
Veronika Pillwein JKU Linz, Austria
Alexander Prokopenya Warsaw University of Life Sciences, Poland

x Organization

Hamid Rahkooy Max Planck Institute for Informatics, Germany
Timur M. Sadykov Plekhanov Russian University of Economics,

Russia
Svetlana Selivanova KAIST, South Korea
Ekaterina Shemyakova University of Toledo, USA
Thomas Sturm CNRS, France
Akira Terui University of Tsukuba, Japan
Elias Tsigaridas Inria, France
Ali Kemal Uncu University of Bath, UK, and RICAM, Austrian

Academy of Sciences, Austria
Jan Verschelde University of Illinois, USA
Evgenii V. Vorozhtsov Khristianovich Institute of Theoretical and

Applied Mechanics, Russia
Zafeirakis Zafeirakopoulos Gebze Technical University, Turkey

Local Organization

Zafeirakis Zafeirakopoulos
(Chair)

Gebze Technical University, Turkey

Tülay Ayyıldız Akoğlu Istanbul Technical University, Turkey
Hadi Alizadeh Gebze Technical University, Turkey
Hülya Öztürk Gebze Technical University, Turkey
Ali Kemal Uncu Gebze Technical University, Turkey

Publicity Chair

Dmitry Lyakhov KAUST, Saudi Arabia

Advisory Board

Wolfram Koepf Universität Kassel, Germany
Ernst W. Mayr Technische Universität München, Germany
Werner M. Seiler Universität Kassel, Germany

Implementation Techniques for Power, Laurent,
and Puiseux Series in Several Variables

(Abstract of Invited Talk)

Marc Moreno Maza

University of Western Ontario, London, ON, CA
mmorenom@uwo.ca

While computer algebra systems can perform highly sophisticated algebraic tasks, they
are much less equipped for solving problems from mathematical analysis in a symbolic
manner. Elementary problems in analysis, such as the manipulation of Taylor series and
the calculation of limits of univariate functions, are supported, with some limitations, in
general-purpose computer algebra systems such as Maple and Mathematica. However,
limits of multivariate functions and more advanced notions of limits, like topological
closures, are almost absent from such systems. For instance,Maple is not always capable
of computing finite limits of a multivariate rational function at a zero of the denominator
that is not an isolated pole. Many fundamental concepts in mathematics are defined in
terms of limits and it is highly desirable for computer algebra systems to implement
these concepts. However, limits are, by their essence, hard to compute, in the sense of
performing finitely many rational operations on polynomials or matrices. A first helper
tool is the famousWeierstrass preparation theorem (and its extensions) which essentially
reduces the local study of analytic functions (and more general functions) to the local
study of polynomials via the manipulation of power series. A second helper tool is the
famous Newton–Puiseux algorithm (and its extensions) which essentially allows for the
local study of curves (separating their branches about a point) via the manipulation of
Laurent and Puiseux series.

The Newton–Puiseux algorithm, and more generally the factorization of univariate
polynomials over power, Laurent, and Puiseux series, has been a very active research area
in the computer algebra community in the past 50 years. This research effort, however,
has been mainly focusing on the development of algorithms and the analysis of their
algebraic complexity. Relatively little has been done in terms of implementation, except
for the case of univariate series.

In this talk, we will discuss recent findings on (1) the implementation of power,
Laurent, and Puiseux series in several variables and, (2) its application to the factoriza-
tion of univariate polynomials over such series. We will start with the implementation of
arithmetic operations which can be sometimes easier than one may think (for instance,
the substitution of unit formal power series into formal power series) and sometimes
harder (for instance, the inversion of multivariate Laurent series). We will also discuss

xii M. M. Maza

the impact of the implementation environment on the implementation techniques, con-
sidering both interpreted and compiled code. We will illustrate our points with Maple’s
MultivariatePowerSeries package and theBasic Polynomial Algebra Subroutines. In that
latter environment, we will show how different parallel programming patterns can be
used to obtain efficient multithreaded implementation of arithmetic operations on power
series and factorization of univariate polynomials over such series.

Contents

Survey on Generalizations of the Intermediate Value Theorem
and Applications . 1
Michael N. Vrahatis

On Truncated Series Involved in Exponential-Logarithmic Solutions
of Truncated LODEs . 18
S. A. Abramov, D. E. Khmelnov, and A. A. Ryabenko

Subresultant Chains Using Bézout Matrices . 29
Mohammadali Asadi, Alexander Brandt, David J. Jeffrey,
and Marc Moreno Maza

Application of Symbolic-Numerical Modeling Tools for Analysis
of Gyroscopic Stabilization of Gyrostat Equilibria . 51
Andrei V. Banshchikov

Computer Science for Continuous Data: Survey, Vision, Theory,
and Practice of a Computer Algebra Analysis System . 62

Franz Brauße, Pieter Collins, and Martin Ziegler

Computational Aspects of Equivariant Hilbert Series of Canonical Rings
for Algebraic Curves . 83
Hara Charalambous, Kostas Karagiannis, Sotiris Karanikolopoulos,
and Aristides Kontogeorgis

Symbolic-Numeric Algorithm for Calculations in Geometric Collective
Model of Atomic Nuclei . 103
Algirdas Deveikis, Alexander A. Gusev, Sergue I. Vinitsky,
Yuri A. Blinkov, Andrzej Góźdź, Aleksandra Pȩdrak, and Peter O. Hess

Analyses and Implementations of Chordality-Preserving Top-Down
Algorithms for Triangular Decomposition . 124
Mingyu Dong and Chenqi Mou

Accelerated Subdivision for Clustering Roots of Polynomials Given
by Evaluation Oracles . 143
Rémi Imbach and Victor Y. Pan

On Equilibrium Positions in the Problem of the Motion of a System
of Two Bodies in a Uniform Gravity Field . 165
Valentin Irtegov and Tatiana Titorenko

xiv Contents

An Interpolation Algorithm for Computing Dixon Resultants 185
Ayoola Jinadu and Michael Monagan

Distance Evaluation to the Set of Matrices with Multiple Eigenvalues 206
Elizaveta Kalinina and Alexei Uteshev

On Boundary Conditions Parametrized by Analytic Functions 225
Markus Lange-Hegermann and Daniel Robertz

Computing the Integer Hull of Convex Polyhedral Sets . 246
Marc Moreno Maza and Linxiao Wang

A Comparison of Algorithms for Proving Positivity of Linearly Recurrent
Sequences . 268
Philipp Nuspl and Veronika Pillwein

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 288
Alexander Prokopenya

New Heuristic to Choose a Cylindrical Algebraic Decomposition Variable
Ordering Motivated by Complexity Analysis . 300
Tereso del Río and Matthew England

An Implementation of Parallel Number-Theoretic Transform Using Intel
AVX-512 Instructions . 318
Daisuke Takahashi

Locating the Closest Singularity in a Polynomial Homotopy 333
Jan Verschelde and Kylash Viswanathan

A General Method of Finding New Symplectic Schemes for Hamiltonian
Mechanics . 353
Evgenii V. Vorozhtsov and Sergey P. Kiselev

A Mechanical Method for Isolating Locally Optimal Points of Certain
Radical Functions . 377
Zhenbing Zeng, Yaochen Xu, Yu Chen, and Zhengfeng Yang

Author Index . 397

Survey on Generalizations
of the Intermediate Value Theorem

and Applications

Michael N. Vrahatis(B)

Department of Mathematics, University of Patras, 26110 Patras, Greece

vrahatis@math.upatras.gr

Abstract. Generalizations of the intermediate value theorem in sev-
eral variables are presented. These theorems are very useful in various
approaches including the existence of solutions of systems of nonlinear
equations, the existence of fixed points of continuous functions as well as
the existence of periodic orbits of nonlinear mappings and similarly, fixed
points of the Poincaré map on a surface of section. Based on the corre-
sponding criteria for the existence of a solution or a fixed point emanated
by the intermediate value theorems, generalized bisection methods for
approximating zeros or fixed points of continuous functions are given.
These bisection methods require only the algebraic signs of the function
values and are of major importance for studying and tackling problems
with imprecise information.

Keywords: Generalizations of the intermediate value theorem ·
Existence theorems · Zeros · Fixed points · Systems of nonlinear
algebraic and/or transcendental equations · Periodic orbits · Poincaré
map

1 Introduction

Assume that Fn = (f1, f2, . . . , fn) : D ⊂ R
n → R

n is a nonlinear mapping and
θn = (0, 0, . . . , 0) is the origin of Rn. The problem of solving the equation:

Fn(x) = θn, (1)

is to find a zero x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) ∈ D for which Fn(x∗) = θn. The prob-

lem (1) may be represented as follows:

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0.

(2)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 1–17, 2022.
https://doi.org/10.1007/978-3-031-14788-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_1&domain=pdf
http://orcid.org/0000-0001-8357-7435
https://doi.org/10.1007/978-3-031-14788-3_1

2 M. N. Vrahatis

The problem of computing the extrema of an objective function f : D ⊂ R
n → R

can be studied and tackled by solving the following equation:

∇f(x) = θn, (3)

where ∇f(x) =
(

∂f(x)
∂x1

, ∂f(x)
∂x2

, . . . , ∂f(x)
∂xn

)
, denotes the gradient of f at x ∈ D.

Furthermore, the problem of finding a fixed point of Fn in D ⊂ R
n is to find

a point x� ∈ D which satisfies the equation:

Fn(x�) = x�. (4)

Obviously, the problem of finding a fixed point is equivalent to the problem of
solving Eq. (1) by using the mapping Gn = In − Fn (where In indicates the
identity mapping) instead of Fn and solving the equation:

Gn(x) = θn. (5)

The problem of computing periodic orbits of nonlinear mappings or fixed points
of the Poincaré map on a surface of section can be studied and tackled by
using fixed points [31]. More specifically the problem of finding periodic orbits of
nonlinear mappings: Φn = (ϕ1, ϕ2, . . . , ϕn) : D ⊂ R

n → R
n, of period p amounts

to finding fixed points x� = (x�
1, x

�
2, . . . , x

�
n) ∈ D of period p which satisfy the

following equation:

Φp
n(x�) = Φn

(
Φn

(· · · Φn

(
Φn(x�)

) · · ·))︸ ︷︷ ︸
p times

= x�. (6)

The problem of finding periodic orbits of period p of dynamical systems in R
n+1

amounts to fixing one of the variables, say xn+1 = const, and locating points
x� = (x�

1, x
�
2, . . . , x

�
n) on an n-dimensional surface of section Σt0 which satisfy

Eq. (6). where Φp
n = Pt0 : Σt0 → Σt0 is the Poincaré map of the system. For

example, let us consider a conservative dynamical system of the form:

ẋ = f(x, t), (7)

with x = (x, ẋ) ∈ R
2 and f = (f1, f2) periodic in t with frequency ω. We obtain

periodic orbits of period p of System (7) by taking as initial conditions of these
orbits the points which the orbits intersect the surface of section:

Σt0 =
{(

x(tk), ẋ(tk)
)
, with tk = t0 + k

2π

ω
, k ∈ N

}
, (8)

at a finite number of points p. Thus the dynamics is studied in connection with
a Poincaré map Φp

n = Pt0 : Σt0 → Σt0 , constructed by following the solutions
of (7) in continuous time.

In the paper at hand, generalizations of the intermediate value theorem in sev-
eral variables are presented. These theorems are very useful in various approaches
including, among others, those mentioned previously. Specifically, using these

Generalizations of the Intermediate Value Theorem and Applications 3

theorems we can study and analyze (a) the existence of solutions of systems
of nonlinear algebraic and/or transcendental equations, (b) the localization of
extrema of objective functions, (c) the existence of fixed points of continuous
functions, as well as (d) the existence of periodic orbits of nonlinear mappings
and similarly, fixed points of the Poincaré map on a surface of section. We notice
that, these theorems are of major importance for tackling problems with impre-
cise (not exactly known) information.

Based on the corresponding existence criteria emanated by the above theo-
rems, methods, named generalized bisection methods, are given. The only com-
putable information required by the generalized bisection methods is the alge-
braic sign of the function value which is the minimum possible information (one
bit of information) necessary for the purpose needed, and not any additional
information. Thus, these methods are of major importance for studying and
tackling problems with imprecise (not exactly known) information. These prob-
lems appear in various fields of science and technology, because, in a large variety
of applications, precise function values are either impossible or time consuming
and computationally expensive to obtain. In other cases, it may be necessary
to integrate numerically a system of differential equations in order to obtain a
function value, so that the precision of the computed value is limited. Further-
more, these methods are particularly useful for studying and tackling problems
where the corresponding functions obtain very large and/or very small values.

It is worthy to mention that regarding the case of algebraic equations, it is well
known that these equations are very important in studying and solving problems
on geometric, kinematic, and other constraints in various fields of science and
technology including, among others, robotics, vision, modeling and graphics,
molecular biology, signal processing, and computational economics. In addition,
regarding the algebraic signs of algebraic expressions there are various efficient
approaches in obtaining this information, see [4,8,9] and the references thereof.

Applications of the presented generalizations of the intermediate value the-
orem for obtaining methods related to systems of nonlinear algebraic and/or
transcendental equations, as well as fixed points of continuous functions are
presented. Furthermore, an application is presented which concerns the compu-
tation of all the periodic orbits (stable and unstable) of any period and accuracy
which occur, among others, in the study of beam dynamics in circular particle
accelerators like the Large Hadron Collider (LHC) machine at the European
Organization for Nuclear Research (CERN).

2 Generalizations of the Intermediate Value Theorem

2.1 Definitions and Notations

Let us give some necessary definitions and notations.

Notation 1. We denote by ϑA the boundary of a set A, by clA its closure, by
intA its interior, by card{A} its cardinality (i.e., the number of elements in the
set A) and by coA its convex hull (i.e., the set of all finite convex combinations
of elements of A).

4 M. N. Vrahatis

Notation 2. We shall use the index sets Nn = {0, 1, . . . , n}, Nn
¬0 = {1, 2, . . . , n}

and Nn
¬i = {0, 1, . . . , i−1, i+1, . . . , n}. Also, for a given set I = {i, j, . . . , 	} ⊂ Nn

we denote by Nn
¬I or equivalently by Nn

¬ij···� the set {k ∈ Nn | k /∈ I}.

Definition 1. For any positive integer n, and for any set of points V =
{υ0, υ1, . . . , υn} in some linear space which are affinely independent (i.e., the
vectors {υ1 − υ0, υ2 − υ0, . . . , υn − υ0} are linearly independent) the con-
vex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with ver-
tices υ0, υ1, . . . , υn. For each subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂
{υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is called an m-face of
[υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The
m-faces are also called facets of the n-simplex. An m-face of the n-simplex is
called the carrier of a point p if p lies on this m-face and not on any sub-face of
this m-face.

Notation 3. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn}
by σn = [υ0, υ1, . . . , υn]. Also, we denote the (n − 1)-simplex that determines
the i-th (n−1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn]. Furthermore,
for a given index set I = {i, j, . . . , 	} ⊂ Nn with cardinality card{I} = κ, we
denote by σn

¬I or equivalently by σn
¬ij···� the (n − κ)-face of σn with vertices

υm,m ∈ Nn
¬I .

Definition 2 [26,29]. The diameter of an m-simplex σm in R
n, m � n, denoted

by diam(σm), is defined to be the length of the longest edge (1-face) of σm while
the microdiameter, μdiam(σm), of σm is defined to be the length of the shortest
edge of σm.

Definition 3. Let σm = [υ0, υ1, . . . , υm] be an m-simplex in R
n, m � n. Then

the barycenter of σm denoted by K is the point K = (m + 1)−1
∑m

i=0 υi in R
n.

Remark 1. By convexity it is obvious that the barycenter of any m-simplex σm

in R
n is a point in the relative interior of σm.

Definition 4. An n-simplex is oriented if an order has been assigned to its ver-
tices. If 〈υ0, υ1, . . . , υn〉 is an orientation of {υ0, υ1, . . . , υn} this is regarded as
being the same as any orientation obtained from it by an even permutation of the
vertices and as the opposite of any orientation obtained by an odd permutation
of the vertices. We shall denote oriented n-simplices by σn = 〈υ0, υ1, . . . , υn〉,
and we shall write, for example, 〈υ0, υ1, υ2, . . . , υn〉 = −〈υ1, υ0, υ2, . . . , υn〉 =
〈υ2, υ0, υ1, . . . , υn〉. The boundary ϑσn of an oriented n-simplex σn =
〈υ0, υ1, . . . , υn〉 is given by ϑσn =

∑n
i=0 (−1)i〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉.

The oriented (n − 1)-simplex 〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉 will be called the
ith face of σn.

Definition 5. An n-dimensional polyhedron Πn is a union of a finite number of
oriented n-simplices σn

i , i = 1, 2, . . . , k such that the σn
i have pairwise-disjoint

interiors. We write Πn =
∑k

i=1 σn
i and ϑΠn =

∑k
i=1 ϑσn

i .

Generalizations of the Intermediate Value Theorem and Applications 5

Definition 6. Let ψ ∈ R, then the sign (or signum) function, denoted by sgn,
maps ψ to the set {−1, 0, 1} as follows:

sgnψ =

⎧
⎨
⎩

−1, if ψ < 0,

0, if ψ = 0,

1, if ψ > 0.

(9)

Furthermore, for any a = (a1, a2, . . . , an) ∈ R
n the sign of a, denoted sgna, is

defined as sgna = (sgna1, sgna2, . . . , sgnan) .

2.2 Bolzano’s Intermediate Value Theorem

The fundamental and pioneering well-known and widely applied Bolzano’s the-
orem states the following [3,12]:

Theorem 1 (Bolzano’s theorem). If f : [a, b] ⊂ R → R is a continuous func-
tion and if it holds that f(a)f(b) < 0, then there is at least one x ∈ (a, b) such
that f(x) = 0.

The above theorem is also called intermediate value theorem since it can be
easily given as follows:

Theorem 2 (Bolzano’s intermediate value theorem). If f : [a, b] ⊂ R → R

is a continuous function and if y0 is a real number such that:

min{f(a), f(b)} < y0 < max{f(a), f(b)},

then there is at least one x0 ∈ (a, b) such that f(x0) = y0.

Remark 2. Obviously, Theorem 2 can be deduced from Theorem 1 by considering
the function g(x) = f(x) − y0.

Remark 3. The above theorem has been independently proved by Bolzano in
1817 [3] and Cauchy in 1821 [6]. These proofs were crucial in the procedure of
arithmetization of analysis, which was a research program in the foundations of
mathematics during the second half of the 19th century.

2.3 Bolzano-Poincaré-Miranda Intermediate Value Theorem

A straightforward generalization of Bolzano’s intermediate value theorem to con-
tinuous mappings in several variables was proposed (without proof) by Poincaré
in 1883 and 1884 in his work on the three body problem [20,21]. This generaliza-
tion, known as Bolzano-Poincaré-Miranda theorem, states that [17,25,30]:

Theorem 3 (Bolzano - Poincaré -Miranda theorem). Suppose that P ={
x ∈ R

n | |xi| < L, for 1 � i � n
}

and let the mapping Fn =
(f1, f2, . . . , fn) : P → R

n be continuous on clP such that θn /∈ Fn(ϑP), and

6 M. N. Vrahatis

(a) fi(x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) � 0, for 1 � i � n,
(b) fi(x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

Remark 4. The Bolzano-Poincaré-Miranda theorem is closely related to impor-
tant theorems in analysis and topology and constitutes an invaluable tool for
verified solutions of numerical problems by means of interval arithmetic. For
various interesting relations between the theorems of Bolzano-Poincaré-Miranda,
Borsuk, Kantorovich and Smale with respect to the existence of a solution of a
system of nonlinear equations, we refer the interested reader to [1].

Remark 5. Theorem 3 it has come to be known as Miranda’s theorem since
in 1940 Miranda [17] proved that it is equivalent to the traditional Brouwer
fixed point theorem [5]. Also, this theorem has been named Miranda-Vrahatis
theorem [2]. For a short proof and a generalization of the Bolzano-Poincaré-
Miranda theorem using topological degree theory we refer the interested reader
to [30]. Following the proof of [30] it is easy to see that Theorem 3 is also true,
if L is dependent of i. That is, P can also be an n-dimensional rectangle and
need not to be necessarily an n-dimensional cube. In addition, for generalizations
with respect to an arbitrary basis of Rn that eliminate the dependence of the
Bolzano-Poincaré-Miranda theorem on the standard basis of Rn see [11,30].

2.4 Intermediate Value Theorem for Simplices

The intermediate value theorem for simplices (cf. Theorem 4 below) is pro-
posed in [33]. The obtained proof is based on the following Knaster-Kuratowski-
Mazurkiewicz covering principle [15]:

Lemma 1 (Knaster-Kuratowski-Mazurkiewicz). Let Ci, i ∈ Nn be a fam-
ily of (n+1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) For each ∅ 	= I ⊂ Nn it holds that

⋂
i∈I σn

¬i ⊂ ⋃
j∈Nn

¬I
Cj .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 6. Lemma 1 is often referred in the literature as KKM Lemma.

Remark 7. The three well known and widely applied fundamental and pioneer-
ing classical results, namely, the Brouwer fixed point theorem [5], the Sperner
lemma [24], and the KKM lemma [15] are mutually equivalent in the sense that
each one can be deduced from another.

Similar to KKM covering principle, the following covering principles have
been proposed by Sperner [24]:

Generalizations of the Intermediate Value Theorem and Applications 7

Lemma 2 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ∩ Ci = ∅, ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

A similar covering principle is the following:

Lemma 3 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ⊂ Ci , ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 8. Based on the above Sperner covering principles two short proofs of
the intermediate value theorem for simplices (cf. Theorem 4 below) are given
in [34].

Next, we give the intermediate value theorem for simplices [33,34]:

Theorem 4 (Intermediate value theorem for simplices). Assume that
σn = [υ0, υ1, . . . , υn] is an n-simplex in R

n. Let Fn = (f1, f2, . . . , fn) : σn → R
n

be a continuous function such that fj(υi) 	= 0, ∀ j ∈ Nn
¬0 = {1, 2, . . . , n},

i ∈ Nn = {0, 1, . . . , n} and θn /∈ Fn(ϑσn). Assume that the vertices υi, i ∈ Nn

are reordered such that the following hypotheses are fulfilled:

(a) sgnfj(υj) sgnfj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0 , (10)

(b) sgnFn(υ0) 	= sgnFn(x), ∀x ∈ σn
¬0 , (11)

where sgnFn(x) =
(
sgnf1(x), sgnf2(x), . . . , sgnfn(x)

)
and σn

¬i denotes the face
opposite to vertex υi. Then, there is at least one point x ∈ intσn such that
Fn(x) = θn.

Remark 9. The only computable information required by the hypotheses (10)
and (11) of Theorem 4 is the algebraic sign of the function values on the boundary
of the n-simplex σn. Thus, Theorem 4 is applicable whenever the signs of the
function values are computed correctly. Theorem 4 has been applied for the
localization and approximation of fixed points and zeros of continuous mappings
using a simplicial subdivision of a simplex [34]. For an interesting application of
this theorem see [16].

8 M. N. Vrahatis

3 Applications of the Intermediate Value Theorems

Applications of the corresponding existence criteria emanated by the above inter-
mediate value theorems are given below.

3.1 Bisection Method

Based on the hypotheses of Bolzano’s theorem (Theorem 1), a very useful cri-
terion for the existence of a zero of a continuous mapping f : [a, b] ⊂ R → R

within an interval (a, b) is the following Bolzano’s existence criterion:

f(a) f(b) < 0, (12)

or equivalently:
sgn f(a) sgn f(b) = −1, (13)

where sgn denotes the sign function (9).

Remark 10. The Bolzano existence criterion is well-known and widely used and
it can be generalized to higher dimensions, see [30,33] (cf. Sect. 2.3 and Sect.
2.4). Note that when the condition (12) (or the condition (13)) is not fulfilled,
then in the interval (a, b) either no zero exists or there are zeros for which the
sum of their multiplicities is an even number (e.g., two simple zeros, one double
and two simple zeros, one triple and one simple zeros etc.).

The well-know and widely applied bisection method is based on the Bolzano
existence criterion in order to approximate a zero of a continuous function f :
[a, b] ⊂ R → R in a given interval (a, b). A simplified version described in [27] is
the following:

xp+1 = xp + c sgn f(xp) / 2p+1, p = 0, 1, . . . , (14)

where x0 = a and c = sgnf(a) (b − a). Instead of the iterative formula (14) we
can also use the following [27]:

xp+1 = xp − ĉ sgn f(xp) / 2p+1, p = 0, 1, . . . , (15)

where x0 = b and ĉ = sgn f(b) (b − a).
The sequences (14) and (15) converge with certainty to a zero r ∈ (a, b) if

for some xp it holds that:

sgnf(x0) sgnf(xp) = −1, for p = 1, 2,

Furthermore, the number of iterations ν required to obtain an approximate
zero r∗ such that |r − r∗| � ε for some ε ∈ (0, 1) is given by:

ν =
⌈
log2(b − a) ε−1

⌉
, (16)

where �x = ceil(x) denotes the ceiling function that maps a real number x to
the least integer greater than or equal to x.

Generalizations of the Intermediate Value Theorem and Applications 9

Remark 11. The main characteristics of the iterative schemes (14) and (15) are
the following:

(a) They converge with certainty within the given interval (a, b).
(b) They are globally convergent methods in the sense that they converge to a

zero from remote initial guesses.
(c) Using relation (16), the number of iterations that are required for the attain-

ment of an approximate zero to a given accuracy is known a priori.
(d) They are worst-case optimal. That is, they possess asymptotically the best

possible rate of convergence in the worst case [23]. This means that they
are guaranteed to converge within the predefined number of iterations, and,
moreover, no other method has this important property.

(e) They require only the algebraic signs of the function values to be computed,
as is evident from (14) and (15); thus they can be applied to problems with
imprecise function values.

For applications of the iterative schemes (14) and (15) we refer the interested
reader, among others, to [27,28].

3.2 Generalized Bisection Methods

The conditions of the Bolzano-Poincaré-Miranda theorem give an invaluable
existence criterion for a solution of Eq. (1). Similarly to Bolzano’s criterion,
the Bolzano - Poincaré - Miranda criterion requires only the algebraic sings of the
function values to be computed on the boundary of the n-cube P . On the other
hand, for general continuous functions, in contrary to Bolzano’s criterion, the
hypotheses (a) and (b) of Theorem 3 are not always fulfilled or it is impossible
to be verified for a given n-cube P .

Next, the characteristic polyhedron criterion and the characteristic bisec-
tion method are briefly presented. These approaches, in contrary to Bolzano -
Poincaré - Miranda criterion require only the algebraic sings of the function val-
ues to be computed on the vertices of the considered polyhedron.

There are various generalized bisection methods that require the computation
of the topological degree [19] in order to localize a solution of Eq. (1) (see,
e.g., [14,26]). The important Kronecker’s theorem [19] states that if the value
of topological degree is not zero Eq. (1) has at least one zero within D. To
this end, several methods for the computation of the topological degree have
been proposed in the past few years (see, e.g., [14,25]). One such method is
the fundamental and pioneering Stenger’s method [25] that in some classes of
functions is an almost optimal complexity algorithm (see, e.g., [18,23,25]).

Once we have obtained a domain for which the value of the topological degree
relative to this domain is nonzero, we are able to obtain upper and lower bounds
for solution values. To this end, by computing a sequence of bounded domains
with nonzero values of topological degree and decreasing diameters, we are able
to obtain a region with arbitrarily small diameter that contains at least one
solution of Eq. (1). However, although the nonzero value of topological degree
plays an important role in the existence of a solution of Eq. (1), the computation
of this value is a time-consuming procedure.

10 M. N. Vrahatis

The bisection method which is briefly described below, avoids all calculations
concerning the topological degree by implementing the concept of the character-
istic n-polyhedron criterion for the existence of a solution of Eq. (1) within a given
bounded domain. This criterion is based on the construction of a characteristic
n-polyhedron (CP) [27,28,35,37]. This can be done as follows. Let Mn be the
2n × n matrix whose rows are formed by all possible combinations of −1 and 1.
Consider now an oriented n-polyhedron Πn, with vertices Vk, k = 1, 2, . . . , 2n. If
the 2n × n matrix of signs associated with Fn and Πn, S(Fn;Πn), whose entries
are the vectors sgn Fn(Vk) =

(
sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)

)
, is identi-

cal to Mn, possibly after some permutations of these rows, then Πn is called
characteristic polyhedron relative to Fn. Furthermore, if Fn is continuous, then,
under some suitable assumptions on the boundary of Πn, the topological degree
of Fn relative to Πn is not zero (see [37] for a proof), which implies the existence
of a solution within Πn. For more details on how to construct a CP and locate
a desired solution see [27,31].

Next, we describe a generalized bisection method. This method combined
with the above mentioned CP criterion, produces a sequence of characteristic
polyhedra of decreasing size always containing the desired solution. We call it
characteristic bisection method. This version of bisection does not require the
computation of the topological degree at each step, as others do [14,26]. It can
be applied to problems with imprecise function values, since it depends only on
their signs.

The method simply amounts to constructing another refined characteristic
polyhedron, by bisecting a known one, say Πn. To do this, we compute the
midpoint M of the longest edge 〈Vi, Vj〉, of Πn (where the distances are measured
in Euclidean norms). Then we obtain another characteristic polyhedron, Πn

∗ , by
comparing the sign, sgnFn(M), of Fn(M) with that of Fn(Vi) and Fn(Vj) and
substituting M for that vertex for which the signs are identical [27,28,31]. Then
we select the longest edge of Πn

∗ and continue the above process. If one of the
sgnFn(Vi), sgnFn(Vj) does not coincide with sgnFn(M), we either continue with
another edge or perform a relaxation process (for details see [27,28,31]).

The minimum number ζ of bisections of the edges of Πn required to obtain
a characteristic polyhedron Πn

∗ whose longest edge length satisfies Δ(Πn
∗) � ε,

for some accuracy ε ∈ (0, 1), is given by [37]:

ζ =
⌈
log2

(
Δ(Πn) ε−1

)⌉
. (17)

Remark 12. Notice that ζ is independent of n and that the bisection algorithm
has the same number of iterations as the bisection in one-dimension which is
optimal and possesses asymptotically the best rate of convergence [22].

3.3 Generalized Method of Bisection for Simplices

Definition 7 [13]. Let σm
0 = 〈υ0, υ1, . . . , υm〉 be an oriented m-simplex in R

n,
m � n, suppose that 〈υi, υj〉 is the longest edge of σm

0 and let Υ = (υi +υj)/2 be
the midpoint of 〈υi, υj〉. Then the bisection of σm

0 is the order pair of m-simplices
〈σm

10, σ
m
11〉 where:

Generalizations of the Intermediate Value Theorem and Applications 11

σm
10 = 〈υ0, υ1, . . . , υi−1, Υ, υi+1, . . . , υj , . . . , υm〉,

σm
11 = 〈υ0, υ1, . . . , υi, . . . , υj−1, Υ, υj+1, . . . , υm〉.

The m-simplices σm
10 and σm

11 will be called lower simplex and upper simplex
respectively corresponding to σm

0 while both σm
10 and σm

11 will be called elements
of the bisection of σm

0 . Suppose that σn
0 = 〈υ0, υ1, . . . , υn〉 is an oriented n-

simplex in R
n which includes at least one solution of Eq. (1). Suppose further

that 〈σn
10, σ

n
11〉 is the bisection of σn

0 and that there is at least one solution of the
system (1) in some of its elements. Then this element will be called selected n-
simplex produced after one bisection of σn

0 and it will be denoted by σn
1 . Moreover

if there is at least one solution of the system (1) in both elements, then the
selected n-simplex will be the lower simplex corresponding to σn

0 . Suppose now
that the bisection is applied with σn

1 replacing σn
0 giving thus the σn

2 . Suppose
further that this process continues for p iterations. Then we call σn

p the selected
n-simplex produced after p iterations of the bisection of σn

0 .

Definition 8 [29]. The barycentric radius β(σm) of an m-simplex σm in R
n is

the radius of the smallest ball centered at the barycenter of σm and containing
the simplex. The barycentric radius β(A) of a subset A of Rn is the supremum
of the barycentric radii of simplices with vertices in A.

Theorem 5 [29]. Any m-simplex σm = [υ0, υ1, . . . , υm] in R
n, m � n is enclos-

able by the spherical surface Sm−1
β with radius β(σm) given by:

β(σm) =
1

m + 1
max

i

⎛
⎜⎜⎝m

m∑
j=0
j �=i

‖υi − υj‖22 −
m−1∑
p=0
p�=i

m∑
q=p+1

q �=i

‖υp − υq‖22

⎞
⎟⎟⎠

1/2

.

Remark 13. The barycentric radius β(σn) of a n-simplex σn in R
n can be

used to estimate error bounds for approximate fixed points or approximate
roots of mappings in R

n, by approximating a fixed point or a root by the
barycenter of σn. Note that the computation of β(σn) requires only the lengths
of the edges of σn, which are also required in order to compute the diame-
ter diam(σn) of σn. Furthermore, since the distance of the barycenter K of
an n-simplex σn = [υ0, υ1, . . . , υn] in R

n from the barycenter Ki of the i-
th face σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn] of σn is equal to ‖K − υi‖2/n
[26,29], then using Theorem 5 we can easily compute the value of γ(σn) =
mini ‖K − Ki‖2/diam(σn). The value γ(σn) can be used to estimate the thick-
ness θ(σn) of σn, that is:

θ(σn) = min
i

{
min
x∈σn

¬i

∥∥K − x
∥∥
2

}
/diam(σn).

In general, the thickness θ(σn) is important to piecewise linear approximations
of smooth mappings and, in general, to simplicial and continuation methods for
approximating fixed points or roots of systems of nonlinear equations.

12 M. N. Vrahatis

Theorem 6 [13]. Suppose that σm
0 is an m-simplex in R

n and let σm
p be any

m-simplex produced after p bisections of σm
0 . Then

diam(σm
p) �

(√
3/2

)�p/m�
diam(σm

0), (18)

where diam(σm
p) and diam(σm

0) are the diameters of σm
p and σm

0 respectively and
�p/m� is the largest integer less than or equal to p/m.

Theorem 7 [26,32]. Suppose that σm
0 , σm

p , diam(σm
0) and diam(σm

p) are as in
Theorem 6 and let Km

p be the barycenter of σm
p . Then for any point T in σm

p the
following relationship is valid

‖T − Km
p ‖2 � m

m + 1

(√
3/2

)�p/m�
diam(σm

0). (19)

Definition 9. Let σn be an n-simplex in R
n and let diam(σn) and μdiam(σn)

be the diameter and the microdiameter of σn respectively. Suppose that r is a
solution of Eq. (1) in σn. Then we define the barycenter Kn of σn to be an
approximation of r and the quantity

ε(σn) =
n

n + 1

((
diam(σn)

)2 − n − 1
2n

(
μdiam(σn)

)2)1/2

, (20)

to be an error estimate for Kn.

Theorem 8 [26,32]. Suppose that σn
p is the selected n-simplex produced after

p bisections of an n-simplex σn
0 in R

n. Let r be a solution of Eq. (1) which is
included in σn

p and that Kn
p and ε(σn

p) are the approximation of r and the error
estimate for Kn

p respectively. Then the following hold:

(a) ε(σn
p) � n

n + 1

(√
3/2

)�p/n�
diam(σn

0),

(b) ε(σn
p) �

(√
3/2

)�p/n�
ε(σn

0),
(c) lim

p→∞ εp = 0,

(d) lim
p→∞ Kn

p = r.

3.4 Locating and Computing Periodic Orbits

Our approaches are illustrated here for methods for locating and computing peri-
odic orbits of nonlinear mappings as well as fixed points of the Poincaré map on
a surface of section. In general, analytic expressions for locating and computing
these periodic orbits on fixed points are not available.

Many problems in a variety of areas of science and technology can be studied
and tackled using periodic orbits of nonlinear mappings or dynamical systems.
For example, such problems appear in Quantum Mechanics where a weighted

Generalizations of the Intermediate Value Theorem and Applications 13

Fig. 1. Hénon mapping for cos ω = 0.24 and g(x1) = −x2
1

sum over unstable periodic orbits yields quantum mechanical energy level spac-
ings as well as in Statistical Mechanics where a weighted, according to the values
of their Liapunov exponents, sum over unstable periodic orbits can be used to
calculate thermodynamic averages (see, e.g., [10]). Furthermore, periodic orbits
play a major role in assigning the vibrational levels of highly excited polyatomic
molecules. as well as in Celestial Mechanics and Galactic Dynamics.

Let us illustrated our approaches for the following quadratic area-preserving
two-dimensional Hénon’s mapping [31]:

Φ2 :
(

x̂1

x̂2

)
=
(

cos ω − sin ω
sinω cos ω

)(
x1

x2 + g(x1)

)
, (21)

where (x1, x2) ∈ R
2 and ω ∈ [0, π] is the rotation angle. By choosing cos ω = 0.24

and g(x1) = −x2
1, we observe in the corresponding Hénon’s mapping phase plot,

illustrated in Fig. 1, that there is a chain of five “islands” around the center of the
rectangle. The center points of each island contain a stable elliptic periodic orbit
of period five (p = 5). Additionally, the five points where the islands connect
consist an unstable hyperbolic periodic orbit of period five [31]. These points can
be computed by applying the aforementioned methods. When one of these points
is computed we can either subsequently apply the same method with different
starting conditions and find another point of the periodic orbit or we can iterate
the mapping using one of the computed points as starting point. For example,
to produce the stable periodic orbit we can iterate the mapping using the fol-
lowing starting point: (x1, x2) = (0.5672405470221847,−0.1223202134278941).
The rotation number of this orbit is σ = m1/m2 = 1/5. It produces m2 = 5
points by rotating around the origin m1 = 1 times. Additionally, to compute the

14 M. N. Vrahatis

Fig. 2. A Poincaré surface of section of Duffing’s oscillator for α = 0.05 and β = 2

unstable periodic orbit, one can iterate the mapping using at starting point the
(x1, x2) = (0.2942106885737921,−0.4274862418615337) (for details see [31]).

Also, periodic orbits can be used in the study of the structure and breakdown
properties of invariant tori in the case of symplectic mappings of direct relevance
of the beam stability problem in circular accelerators like the Large Hadron
Collider (LHC) machine at the European Organization for Nuclear Research
(CERN). Such a 4-D symplectic mapping can be defined as follows [31,36,38]:

Φ4 :

⎛
⎜⎜⎝

x̂1

x̂2

x̂3

x̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos ω1 − sin ω1 0 0
sin ω1 cos ω1 0 0

0 0 cos ω2 − sin ω2

0 0 sin ω2 cos ω2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3

⎞
⎟⎟⎠ . (22)

This mapping describes the (instantaneous) effect experienced by a hadronic
particle as it passes through a magnetic focusing element of the FODO cell
type, where x1 and x3 are the particle’s deflections from the ideal (circular)
orbit, in the horizontal and vertical directions respectively, and x2, x4 are the
associated “momenta”, while ω1, ω2 are related to the accelerator’s betatron
frequencies (or “tunes”) qx, qy by ω1 = 2πqx and ω2 = 2πqy and constitute the
main parameters that can be varied by an experimentalist see, e.g., [31,36,38]
and the references thereof.

Next we consider a Poincaré surface of section for the conservative Duff-
ing’s oscillator. More specifically, the conservative Duffing’s oscillator [7] can be
described by the following equation:

ẍ = x − x3 + α cos βt, (23)

which can be written as:
{

ẋ1 = x2,
ẋ2 = x1 − x3

1 + α cos βt.
(24)

Generalizations of the Intermediate Value Theorem and Applications 15

For the aforementioned dynamical system, we consider the Poincaré surface of
section for the parameter values of α = 0.05 and β = 2. Figure 2 illustrates
the phase plot of this surface, in the [−1.6, 1.6] × [−1.2, 1.2] rectangle. For this
example, we can observe two distinct islands along the x2 = 0 axis. The center
points of each island correspond to fixed points of period one (p = 1). Once again
we can easily compute these two points by applying the aforementioned methods.
The two center points correspond to (x1, x2) = (−1.024572461190486, 0.0), and
(x1, x2) = (0.9746253482044169, 0.0).

In conclusion, our experience is that the generalized methods of bisection are
very efficient and effective applied on the problems (21), (22) and (23). These
is so, because, we have succeeded to compute rapidly and accurately periodic
orbits (stable and unstable) for periods which reach up to the thousands. For
detailed results we refer the interested reader to [7,31,36,38].

4 Synopsis

Generalizations the intermediate value theorems in several variables are pre-
sented. These theorems are very useful for the existence of solutions of systems
of nonlinear equations, the existence of fixed points of continuous functions as
well as the existence of periodic orbits of nonlinear mappings and similarly, fixed
points of the Poincaré map on a surface of section. Based on the corresponding
criteria for the existence of a solution or a fixed point emanated by the interme-
diate value theorems, generalized bisection methods for approximating zeros or
fixed points of continuous functions are given. These bisection methods require
only the algebraic signs of the function values and are of major importance for
studying and tackling problems with imprecise information.

Acknowledgments. The author would like to thank the editors for their kind invi-
tation.

References

1. Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of
Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111
(2004)

2. Bánhelyi, B., Csendes, T., Hatvan, L.: On the existence and stabilization of an
upper unstable limit cycle of the damped forced pendulum. J. Comput. Appl.
Math. 371, 112702 (2020)

3. Bolzano, B.: Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werten,
die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der
Gleichung liege. Prague (1817)

4. Brönnimann, H., Emiris, I.Z., Pan, V., Pion, S.: Sign determination in residue
number systems. Theor. Comput. Sci. 210, 173–197 (1999)

5. Brouwer, L.E.J.: Über Abbildungen von Mannigfaltigkeiten. Math. Ann. 71, 97–
115 (1912)

16 M. N. Vrahatis

6. Cauchy, A.-L.: Cours d’Analyse de l’École Royale Polytechnique, Paris (1821).
(Reprinted in Oeuvres Completes, Series 2, vol. 3)

7. Drossos, L., Ragos, O., Vrahatis, M.N., Bountis, T.C.: Method for computing long
periodic orbits of dynamical systems. Phys. Rev. E 53(1), 1206–1211 (1996)

8. Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for counting and computing
real roots of algebraic systems. RR-3669, Inria (1999). inria-00073003

9. Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for enumerating solutions
of nonlinear algebraic systems. In: Proceedings of the Fifth Hellenic European
Conference on Computer Mathematics and Its Applications, vol. 2, pp. 469–473,
Athens, Greece (2002)

10. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York
(1990). https://doi.org/10.1007/978-1-4612-0983-6

11. Heindl, G.: Generalizations of theorems of Rohn and Vrahatis. Reliable Comput.
21, 109–116 (2016)

12. Jarńık, V.: Bernard Bolzano and the foundations of mathematical analysis. In:
Bolzano and the Foundations of Mathematical Analysis, pp. 33–42. Society of
Czechoslovak Mathematicians and Physicists, Prague (1981)

13. Kearfott, R.B.: A proof of convergence and an error bound for the method of
bisection in R

n. Math. Comp. 32(144), 1147–1153 (1978)
14. Kearfott, R.B.: An efficient degree-computation method for a generalized method of

bisection. Numer. Math. 32, 109–127 (1979). https://doi.org/10.1007/BF01404868
15. Knaster, B., Kuratowski, K., Mazurkiewicz, S.: Ein Beweis des Fixpunkt-satzes für

n-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)
16. Milgrom, P., Mollner, J.: Equilibrium selection in auctions and high stakes games.

Econometrica 86(1), 219–261 (2018)
17. Miranda, C.: Un’ osservatione su un theorema di Brouwer. Bollettino dell’U.M.I.

3, 5–7 (1940)
18. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating

real roots and computing with certainty the topological degree. J. Complex. 18(2),
612–640 (2002)

19. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Classics in Applied Mathematics vol. 30. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2000)

20. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps.
Comptes rendus de l’Académie des Sciences Paris 91, 251–252 (1883)

21. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Bull.
Astronomique 1, 63–74 (1884)

22. Sikorski, K.: Bisection is optimal. Numer. Math. 40, 111–117 (1982)
23. Sikorski, K.: Optimal Solution of Nonlinear Equations. Oxford University Press,

New York (2001)
24. Sperner, E.: Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes.

Abh. Math. Sem. Hamburg 6, 265–272 (1928)
25. Stenger, F.: Computing the topological degree of a mapping in R

n. Numer. Math.
25, 23–38 (1975)

26. Vrahatis, M.N.: An error estimation for the method of bisection in R
n. Bull. Greek

Math. Soc. 27, 161–174 (1986)
27. Vrahatis, M.N.: Solving systems of nonlinear equations using the nonzero value of

the topological degree. ACM Trans. Math. Softw. 14, 312–329 (1988)
28. Vrahatis, M.N.: CHABIS: a mathematical software package for locating and eval-

uating roots of systems of nonlinear equations. ACM Trans. Math. Softw. 14,
330–336 (1988)

https://doi.org/10.1007/978-1-4612-0983-6
https://doi.org/10.1007/BF01404868

Generalizations of the Intermediate Value Theorem and Applications 17

29. Vrahatis, M.N.: A variant of Jung’s theorem. Bull. Greek Math. Soc. 29, 1–6 (1988)
30. Vrahatis, M.N.: A short proof and a generalization of Miranda’s existence theorem.

Proc. Amer. Math. Soc. 107, 701–703 (1989)
31. Vrahatis, M.N.: An efficient method for locating and computing periodic orbits of

nonlinear mappings. J. Comput. Phys. 119, 105–119 (1995)
32. Vrahatis, M.N.: Simplex bisection and Sperner simplices. Bull. Greek Math. Soc.

44, 171–180 (2000)
33. Vrahatis, M.N.: Generalization of the Bolzano theorem for simplices. Topol. Appl.

202, 40–46 (2016)
34. Vrahatis, M.N.: Intermediate value theorem for simplices for simplicial approxima-

tion of fixed points and zeros. Topol. Appl. 275, 107036 (2020)
35. Vrahatis, M.N.: Generalizations of the intermediate value theorem for approxi-

mating fixed points and zeros of continuous functions. In: Sergeyev, Y.D., Kvasov,
D.E. (eds.) NUMTA 2019, Part II. LNCS, vol. 11974, pp. 223–238. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40616-5 17

36. Vrahatis, M.N., Bountis, T.C., Kollmann, M.: Periodic orbits and invariant surfaces
of 4D nonlinear mappings. Int. J. Bifurcat. Chaos 6, 1425–1437 (1996)

37. Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving
systems of non-linear equations. Numer. Math. 49, 123–138 (1986). https://doi.
org/10.1007/BF01389620

38. Vrahatis, M.N., Isliker, H., Bountis, T.C.: Structure and breakdown of invariant
tori in a 4D mapping model of accelerator dynamics. Int. J. Bifurcat. Chaos 7,
2707–2722 (1997)

https://doi.org/10.1007/978-3-030-40616-5_17
https://doi.org/10.1007/BF01389620
https://doi.org/10.1007/BF01389620

On Truncated Series Involved
in Exponential-Logarithmic Solutions

of Truncated LODEs

S. A. Abramov(B) , D. E. Khmelnov , and A. A. Ryabenko

Federal Research Center “Computer Science and Control” of the Russian Academy
of Sciences, Vavilova, 40, Moscow 119333, Russia

sergeyabramov@mail.ru

Abstract. Previously, the authors proposed algorithms for finding
exponential-logarithmic solutions of linear ordinary differential equations
with coefficients in the form of series, for which only a finite number of
initial terms is known. Each solution involves a finite set of power series,
for which the maximum possible number of terms is calculated. Below,
these algorithms are supplemented with the option to confirm the impos-
sibility of obtaining a larger number of terms in the series without using
additional information about the given equation. Such a confirmation
has the form of a counterexample to the assumption that it is possible
to obtain additional terms of the series involved in the solution that are
invariant under all prolongations of the given equation.

Keywords: Differential equations · Truncated power series ·
Computer algebra systems

1 Introduction

The representation of solutions of linear ordinary differential equations requires
the use of power and Laurent series. This is the subject of many theoretical
studies (see, e.g., [19–23,26,27]) and found numerous application in computer
algebra (see, e.g., [1–5,8,11,17,28]).

The proposed paper is a continuation of the series of works by the authors
on LODE with coefficients, having the form of such power series, with respect to
which only their first terms are known. Thus, about the considered equations,
there is only some incomplete information. In our previous papers, we proposed
algorithms for finding solutions of such equations in the form of Laurent series,
as well as the search for regular and exponential-logarithmic solutions. It has
been proven that these algorithms allow one to find the maximum possible num-
ber of terms of those series that are included in the solutions. The algorithms
are implemented by the authors as a package of procedures. The user of these
procedures may find it is desirable to obtain some visual arguments in favor of
the maximum number of found terms of the series. Below, the authors proposed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 18–28, 2022.
https://doi.org/10.1007/978-3-031-14788-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_2&domain=pdf
http://orcid.org/0000-0001-7745-5132
http://orcid.org/0000-0002-4602-2382
http://orcid.org/0000-0001-5780-7743
https://doi.org/10.1007/978-3-031-14788-3_2

On Exponential-Logarithmic Solutions of Truncated LODEs 19

such visual arguments: for an arbitrary equation with truncated coefficients, a
new algorithm presents two prolonged versions of the original equation whose
solutions differ from each other in subsequent (not included in the number of
previously found) terms of the series included in the solutions.

2 Truncated Equations

Suppose that K is an algebraically closed field of characteristics 0. The standard
notation K[x] is used below for a ring of polynomials in x over K. A ring of
formal power series in x over K is denoted by K[[x]], a field of formal Laurent
series is denoted by K((x)). It is clear that K[x] ⊂ K[[x]] ⊂ K((x)). For any
nonzero element a(x) =

∑
aix

i in K((x)), its valuation val a(x) is defined by
the equality val a(x) = min {i | ai �= 0}, while val 0 = ∞.

The differential equations in the paper are represented with θ = x d
dx instead

of d
dx . It is convenient for the algorithms to solve linear ordinary differential

equations with coefficients in the form of truncated series (see [6,7,13,14,16]).
We consider such equations in the form

ar(x)θry(x) + ar−1(x)θr−1y(x) + · · · + a0(x)y(x) = 0, (1)

where y(x) is an unknown function of x. The equation coefficients a0(x), a1(x),
. . . , ar(x) are truncated series, i.e., for each i = 0, 1, . . . , r we have

ai(x) =
ti∑

j=0

aijx
j + O(xti+1), (2)

where aij ∈ K; ti is an integer such that ti � −1 (if ti = −1 then the sum in (2)
is 0). Hereinafter, the symbol O(xt) involved in the formal expressions denotes
some series, whose valuation is not less than t. For a series

t∑

k=l

akxk + O(xt+1),

ak ∈ K, l, t are integer, t � l, we call t the truncation degree. Note that a
coefficient in (1) can be in the form O(xm), m � 0.

We refer as a prolongation of equation (1) to any equation

ãr(x)θry(x) + ãr−1(x)θr−1y(x) + · · · + ã0(x)y(x) = 0,

such that ãi(x) − ai(x) = O(xti+1), i.e., val (ãi(x) − ai(x)) > ti, i = 0, 1, . . . , r.
We consider as prolongations both equations with truncated coefficients, and
equations with completely specified series coefficients, i.e., equations

⎛

⎝
∞∑

j=0

ãrjx
j

⎞

⎠ θry(x) +

⎛

⎝
∞∑

j=0

ãr−1,jx
j

⎞

⎠ θr−1y(x) + · · ·

· · · +

⎛

⎝
∞∑

j=0

ã0jx
j

⎞

⎠ y(x) = 0. (3)

20 S. A. Abramov et al.

3 Truncated Solutions

Formal exponential-logarithmic solutions of equation (3) are solutions in the form

eQ(x−1/q) xλw(x1/q), (4)

where Q is a polynomial with coefficients in K, q ∈ Z>0, λ ∈ K,

w(x) =
m∑

s=0

ws(x) lns x,

m ∈ Z≥0, ws(x) ∈ K((x)), s = 0, . . . , m, and wm(x) �= 0. In (4), the factor
xλw(x1/q) is the regular part, Q(x−1/q) is the exponent of irregular part, and q is
the ramification index.

When q = 1 and Q ∈ K, solution (4) is called formal regular solution,
otherwise it is called irregular. When q = 1, Q ∈ K, λ ∈ Z and w(x) ∈ K((x)),
formal regular solution (4) is called Laurent one. In the further references of
solutions in the paper we skip the word “formal”, but it is assumed.

Suppose that the leading coefficient ãr(x) is nonzero in Eq. (3) with com-
pletely specified coefficients. It is known (see e.g. [20, Ch. V], [17,26,29]) that for
Eq. (3), there exist r solutions in form (4), which are linearly independent over
K. Algorithms are proposed in [17,18,26,29] for finding the ramification index q
and the exponent of irregular part Q(x−1/q) for r linearly independent solutions
of the form (4). Suppose that the valuation of at least one of the coefficients in (3)
is equal to 0. Then, to construct the ramification index q and the exponent of
irregular part Q(x−1/q) for all solutions, it is sufficient to know r val ãr(x) initial
coefficients of all ãi(x), i = 0, 1, . . . , r (see e.g. [25]). To construct the regular
part of the solution with any given truncation degree of the series in w(x), the
algorithms proposed in [20, ch. IV], [21], [22, ch. II, VIII] may be used. For this
construction, it is also sufficient to know some finite number of initial coefficients
of all ãi(x) ([3, Proposition 1]).

Let Q(x−1/q) ∈ K[x−1/q], q ∈ Z>0, λ ∈ K and

w〈ks〉
s (x) =

ks∑

j=js

ws,jx
j + O(xks+1),

js, ks ∈ Z, ks ≥ js, s = 0, . . . , m, and wm,jm �= 0. For equation (1) with truncated
coefficients, the expression

eQ(x−1/q)xλ
m∑

s=0

w〈ks〉
s (x1/q) lns x (5)

is referred to as a solution with a truncated regular part if any equation that is
a prolongation of (1) has the solution eQ(x−1/q)xλw̃(x1/q) that is a prolongation
of solution (5), i.e., w̃(x) has a form

w̃(x) =
m∑

s=0

w̃s(x) lns x

On Exponential-Logarithmic Solutions of Truncated LODEs 21

and it is satisfied that w̃s(x) − w
〈ks〉
s (x) = O(xks+1), i.e., val (w̃s(x)−w

〈ks〉
s (x)) >

ks, s = 0, 1, . . . ,m. Such truncated solution is described as invariant to the pro-
longations of equation (1).

In [6,7,13,14,16] it is shown that for an equation of the form (1), it is possi-
ble to construct all truncated solutions with the maximum possible truncation
degree of the series involved in the solution. The maximum possible truncation
degree in the invariant solution smax means that there is no invariant solution
s that is a prolongation of smax such that the truncation degree of at least one
series in s is greater than the truncation degree of the corresponding series in
smax. We describe this case as the exhaustive use of information on a given equa-
tion in constructing truncated solutions. The above articles present algorithms
for solving this problem and their implementation in Maple.

In [12,24], we have considered the question of automatic confirmation of such
an exhaustive use of information about a given equation for the construction of
Laurent and regular truncated solutions. Confirmation is presented as a coun-
terexample with two different prolongations of the given equation, which lead to
the appearance of different additional terms in the solutions.

Algorithms for constructing both the truncated solutions themselves and
counterexamples of the described type are based on finding solutions with liter-
als, i.e., symbols used to represent unspecified coefficients of a series involved in
the equation (see [7]). Literals denote the coefficients of the terms of the series,
the degrees of which are greater than the truncation degree of the series. Find-
ing solutions using literals means representing subsequent (non-invariant for all
possible prolongations of the equation) terms of the series by formulas contain-
ing literals, i.e., unspecified coefficients. This allows us to clarify the influence of
unspecified coefficients on the subsequent terms of the series in the solution.

Remark 1. Thus, literals are something close to undetermined coefficients. But
for literals, it is not supposed to find specific values that allow one to find out
all the solutions to the original differential equation. Here the goal is to find out
whether the unknown coefficients of the series included in the equation have an
effect on the initial terms of those series that are included in the solutions.

In this article, we extend the results obtained in [12,24] to the case of
exponential-logarithmic solutions with a truncated regular part. The problem
of presenting two different prolongations of the original equation, which form
a counterexample to the assumption about the possibility of adding invariant
terms to the series involved in the truncated exponential-logarithmic solutions
of the given truncated equation, is solved.

4 The Case of Exponential-Logarithmic Solutions

Prolongations of equation (1) which contain literals U[i,j] look like the following:

22 S. A. Abramov et al.

⎛

⎝
tr∑

j=0

arjx
j +

∞∑

j=tr+1

U[r,j]x
j

⎞

⎠ θry(x)

+

⎛

⎝
tr−1∑

j=0

ar−1,jx
j +

∞∑

j=tr−1+1

U[r−1,j]x
j

⎞

⎠ θr−1y(x) + · · ·

· · · +

⎛

⎝
t0∑

j=0

a0jx
j +

∞∑

j=t0+1

U[0,j]x
j

⎞

⎠ y(x) = 0 (6)

(we use the notation U[i,j] rather than, say Ui,j to emphasize the special status
of these unknowns).

The algorithms from [17,18] allow computing exponential parts eQ(x−1/q) of
all solutions in form (4) for Eq. (6). We are only interested in the exponential
parts that have ramification indices q and coefficients of polynomials Q that do
not depend on literals. For each of such pairs q,Q the substitution

x = tq, y(x) = eQ(1/t)z(t) (7)

is made in Eq. (6), where t is a new independent variable, and z(t) is a new
unknown function. As a result of the substitution with further multiplication of
the equation by e−Q(1/t), we obtain a new equation, whose coefficients are Lau-
rent series in t. The coefficients of the series are polynomials in literals over K.
The regular solutions tλw(t) of the new equation are then constructed using the
version of the algorithm ([14, Sect. 4.2]). For each series involved in the regular
solutions, the version of the algorithm computes the maximum number of terms
which are invariant under the prolongations of the equation, and one more term
which depends on literals. Such a coefficient will be a polynomial over K in a
finite number of literals.

In such a way we get a finite set of polynomials in literals for the exponen-
tial-logarithmic solution with regular part (5). The set may be used to construct
a counterexample.

In [12], we proved the following theorem for the case of truncated Laurent
and regular solutions.

Theorem 1 ([12], Theorem 1). Suppose that solutions of equation (6) involve
m truncated power series

ci0 + ci1x + · · · + ciki
xki + pi(u1, . . . , ul)xki+1 + O(xki+2), (8)

where u1, . . . , ul are literals, the coefficients cij are independent from the literals,
while the coefficient pi(u1, . . . , ul) is a non-constant polynomial in the literals, i =
1, . . . , m. Then, there are α1, . . . , αl, β1, . . . , βl ∈ K such that two prolongations
of the equation that correspond to uj = αj, uj = βj, j = 1, . . . , l, lead to the
occurrence of different very first additional terms in the truncated series involved
in the solutions.

On Exponential-Logarithmic Solutions of Truncated LODEs 23

Now we show that a similar statement is valid for exponential-logarithmic
solutions with a truncated regular part.

Theorem 2. Let E be an equation of the form (1) and s be its truncated solution
of the form (5), computed using the algorithm from [16]. Then there exist E1

and E2, which are two different prolongations of the equation E such that E1 has
a truncated solution s1, E2 has a truncated solution s2, both solutions s1 and s2
are prolongations of s, and any truncated series involved in s has a prolongation
both in s1, and in s2, while the very first additional terms of those prolongations
are different.

Proof. The algorithm from [16] is based on the construction of the truncated
solutions in form (5), each series in the solutions being constructed up to the
first term that contains literals and that is not included in the resulting truncated
solutions. Before dropping the terms with literals each series in the truncated
solutions is in form (8). Theorem 1 can be applied to all these truncated series
together. Thus, there are two different sets of values α1, . . . , αl, β1, . . . , βl ∈ K
for the literals u1, . . . , ul, which are used to construct the prolongations E1

and E2 that have truncated solutions s1 and s2 with different additional terms
pi(α1, . . . , αl)xki+1 and pi(β1, . . . , βl)xki+1 not containing literals. ��

An algorithm to compute two different sets α1, . . . , αl, β1, . . . , βl ∈ K may
be based on the approach used in [12] to prove Theorem 1.

5 Automatic Confirmation of the Solutions Truncation
Degree Maximality

The counterexample computation is implemented by us as an extension of
FormalSolution procedure from TruncatedSeries package. The package contains
our implementation of the algorithms presented in [6,7,10,12–14,16,24] in Map-
le. The Maple library with the TruncatedSeries package and Maple worksheets
with examples of using its commands are available from [30].

The first argument of FormalSolution procedure is a differential equation in
the form (1). The application of θk to the unknown function y(x) is written as
θ(y(x), x, k). The truncated coefficients ai(x) of the equation, i.e., the coefficients
in the form (2) are written as bi(x) + O(xti+1), where bi(x) is a polynomial of
the degree not higher than ti over the field of algebraic numbers. An unknown
function of the equation is specified as the second argument of the procedure.

A row of optional arguments are also supported in the procedure (see [7,9,15]
for details). We introduce a new optional argument 'counterexample'= 'Eqs',
which allows obtaining the automatically constructed counterexample assigned
to the variable Eqs in addition to the computed solution itself. The use of some
optional parameters are demonstrated below.

In order to use the package download TruncatedSeries2021.zip from [30].
This archive includes two files: maple.ind and maple.lib. Put these files to some
directory, for example to ''/usr/userlib''. Assign

24 S. A. Abramov et al.

> libname := ''/usr/userlib'', libname :

in the Maple session. Make the short form name of FormalSolution procedure
available:

>with(TruncatedSeries) :

Consider the third-order equation with coefficients truncated to different
degrees:

> eq := (x4 + O(x7))θ(y(x), x, 3) + (3x + O(x5))θ(y(x), x, 2)+

(1 + 3x3 + 2x2 + x + O(x4))θ(y(x), x, 1) + O(x5)y(x) = 0:

Using the FormalSolution command we obtain exponential-logarithmic solu-
tions whose regular parts are calculated to the maximum possible degrees:

>FormalSolution(eq , y(x))
[

c1 + O
(
x5

)
+ e

1
3x x

2
3

(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+ O

(
x3

)
)

+

e
1
x3 − 1

3x yreg(x)

] (9)

The first two terms of the result, i.e., c1+O
(
x5

)
, mean that all prolongations

of eq have Laurent solutions with valuation 0, and their initial segment till the
degree 4 is equal to c1 where c1 is an arbitrary constant c1.

The third term means that all prolongations of the equation eq have irregular
solutions with the exponential part e

1/(3x)
and the regular part, which is the same

up to an arbitrary constant c2 for all prolongations of the original equation.
The fourth term means that all prolongations of the equation eq have irreg-

ular solutions with the exponential part e
1/(x3)−1/(3x)

. Moreover, there are such
prolongations that their regular parts differ by λ.

If, when calling the FormalSolution command, the optional argument
'output'= 'literal' is used, then the regular parts of the solution are calculated
to the maximum degree and, furthermore, terms are added with coefficients
depending on literals. In some cases, it is possible to obtain the expression for λ
which also depends on literals.

>FormalSolution(eq , y(x), 'output'= 'literal')

c1 − U[0,5] c1x
5

5
+ O

(
x6

)
+ e

1
3x x

2
3

(

c2 +
35 c2x

27
+

8947 c2x
2

1458

+
(

5832431
118098

c2 − 1
9

c2U[1,4] +
1
27

c2U[2,5]

)

x3 + O
(
x4

)
)

+ e
1
x3 − 1

3x x
19
3 + 3U[3,7]

(c3 + O(x))

(10)

On Exponential-Logarithmic Solutions of Truncated LODEs 25

Here the literal U[i,k] denotes the coefficient of xkθi. There are two sets of
values from Q̄ for these literals such that the expressions

U[0,5] c1

5
,

5832431
118098

c2 − 1
9

c2U[1,4] +
1
27

c2U[2,5],
19
3

+ 3U[3,7]

take different values. These two sets correspond to two prolongations of the
equation eq . Their solutions are different prolongations of solution (9) and all
regular parts of the solution are prolonged. We call such prolongations a coun-
terexample. Obviously, there are an infinite number of counterexamples. As a
result of running the FormalSolution command with the new optional argument
'counterexample'= 'Eqs’, the variable Eqs will be assigned a pair of the equa-
tions which forms one of the possible counterexamples:

>FormalSolution(eq , y(x), 'counterexample'= 'Eqs') :

For the first counterexample equation

>Eqs[1]
(
x5 + O

(
x6

))
y(x) +

(
3x3 + 2x2 + x + 1 + 4x4 + O

(
x5

))
θ(y(x) , x, 1)

+
(
3x + O

(
x6

))
θ(y(x) , x, 2) +

(
x4 − 4x7 + O

(
x8

))
θ(y(x) , x, 3) = 0

(11)

using FormalSolution we obtain a truncated solution

> FormalSolution(Eqs[1], y(x))
[

c1 − c1x
5

5
+ O

(
x6

)

+ e
1
3x x

2
3

(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+

5779943 c2x
3

118098
+ O

(
x4

)
)

+
e

1
x3 − 1

3x (c3 + O(x))

x
17
3

⎤

⎥
⎦

(12)

For the second counterexample equation

>Eqs[2]
(
5x5 + O

(
x6

))
y(x) +

(
3x3 + 2x2 + x + 1 − 2x4 + O

(
x5

))
θ(y(x) , x, 1)

+
(
3x + O

(
x6

))
θ(y(x) , x, 2) +

(
x4 − x7 + O

(
x8

))
θ(y(x) , x, 3)

(13)

we obtain

26 S. A. Abramov et al.

>FormalSolution (Eqs [2], y(x))
[− c1x

5 + c1 + O
(
x6

)

+ e
1
3x x

2
3

(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+

5858675 c2x
3

118098
+ O

(
x4

)
)

+ e
1
x3 − 1

3x x
10
3 (c3 + O(x))

]

(14)

It can be seen that (12) and (14) are prolongations of (9), they differ in
all regular parts. The exponents λ of the third regular part are also different:
λ = − 17

3 for (12) and λ = 10
3 for (14).

6 Conclusion

In this paper, we have described an algorithm which confirms the exhaustive
use of the information contained in a truncated LODE in the process of find-
ing truncated exponential-logarithmic solutions by our algorithms which were
published earlier.

The mathematical techniques we employ in this paper use the algebras of
differential operators and polynomials, and we give the explicit counterexample
for the supposition that additional terms of solutions of a given LODE can
be obtained.

From our work, new questions arise. For example, can our results be extended
to systems of LODEs? We will continue to investigate this line of enquiry.

Acknowledgments. The authors are grateful to anonymous referees for their helpful
comments, as well as Maplesoft (Waterloo, Canada) for consultations and discussions.

References

1. Abramov, S.A., Barkatou, M.A.: Computable infinite power series in the role of
coefficients of linear differential systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 1–12. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10515-4 1

2. Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with
power series coefficients. J. Symb. Comput. 68, 120–137 (2015)

3. Abramov, S.A., Barkatou, M.A., Pflügel, E.: Higher-order linear differential
systems with truncated coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 10–24. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-23568-9 2

4. Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear oper-
ator equations. In: ISSAC 1995: Proceedings of the 1995 International Symposium
on Symbolic and Algebraic Computation, pp. 290–296 (1995)

https://doi.org/10.1007/978-3-319-10515-4_1
https://doi.org/10.1007/978-3-642-23568-9_2

On Exponential-Logarithmic Solutions of Truncated LODEs 27

5. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems
with power series coefficients. Program. Comput. Softw. 40(2), 98–106 (2014).
https://doi.org/10.1134/S0361768814020029

6. Abramov, S., Khmelnov, D., Ryabenko, A.: Laurent solutions of linear ordinary
differential equations with coefficients in the form of truncated power series. In:
Computer Algebra: 3rd International Conference Materials, Moscow, 17–21 June
2019, International Conference Materials, pp. 75–82 (2019)

7. Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching Laurent and
regular solutions of linear differential equations with the coefficients in the form of
truncated power series. Program. Comput. Softw. 46, 67–75 (2020)

8. Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E.: Procedures for searching local
solutions of linear differential systems with infinite power series in the role of
coefficients. Program. Comput. Softw. 42(2), 55–64 (2016). https://doi.org/10.
1134/S036176881602002X

9. Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: The TruncatedSeries package
for solving linear ordinary differential equations having truncated series coefficients.
In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds.) MC 2020. CCIS, vol. 1414, pp.
19–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81698-8 2

10. Abramov, S.A., Khmelnov, D.E., Ryabenko, A.A.: Truncated and infinite power
series in the role of coefficients of linear ordinary differential equations. In: Boulier,
F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS,
vol. 12291, pp. 63–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60026-6 4

11. Abramov, S., Petkovšek, M.: Special power series solutions of linear differential
equations. In: Proceedings FPSAC 1996, pp. 1–8 (1996)

12. Abramov, S., Ryabenko, A., Khmelnov, D.: Exhaustive use of information on an
equation with truncated coefficients. Program. Comput. Softw. 48, 116–124 (2022).
https://doi.org/10.1134/S0361768822020025

13. Abramov, S., Ryabenko, A., Khmelnov, D.: Linear ordinary differential equations
and truncated series. Comput. Math. Math. Phys. 59, 1649–1659 (2019). https://
doi.org/10.1134/S0965542519100026

14. Abramov, S., Ryabenko, A., Khmelnov, D.: Regular solutions of linear ordinary
differential equations and truncated series. Comput. Math. Math. Phys. 60, 1–14
(2020). https://doi.org/10.1134/S0965542520010029

15. Abramov, S., Ryabenko, A., Khmelnov, D.: Procedures for constructing truncated
solutions of linear differential equations with infinite and truncated power series in
the role of coefficients. Program. Comput. Softw. 47, 144–152 (2021). https://doi.
org/10.1134/S036176882102002X

16. Abramov, S., Ryabenko, A., Khmelnov, D.: Truncated series and for-
mal exponential-logarithmic solutions of linear ordinary differential equations.
Comput. Math. Math. Phys. 60, 1609–1620 (2020). https://doi.org/10.1134/
S0965542520100024

17. Barkatou, M.A.: Rational Newton algorithm for computing formal solutions of
linear differential equations. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp.
183–195. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51084-2 17

18. Barkatou, M., Richard-Jung, F.: Formal solutions of linear differential and differ-
ence equations. Program. Comput. Software 23(1), 17–30 (1997)

19. Bruno, A.D.: Asymptotic behavior and expansions of solutions of an ordinary dif-
ferential equation. Russ. Math. Surv. 59(3), 31–80 (2004)

20. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations.
Krieger, Malabar (1984)

https://doi.org/10.1134/S0361768814020029
https://doi.org/10.1134/S036176881602002X
https://doi.org/10.1134/S036176881602002X
https://doi.org/10.1007/978-3-030-81698-8_2
https://doi.org/10.1007/978-3-030-60026-6_4
https://doi.org/10.1007/978-3-030-60026-6_4
https://doi.org/10.1134/S0361768822020025
https://doi.org/10.1134/S0965542519100026
https://doi.org/10.1134/S0965542519100026
https://doi.org/10.1134/S0965542520010029
https://doi.org/10.1134/S036176882102002X
https://doi.org/10.1134/S036176882102002X
https://doi.org/10.1134/S0965542520100024
https://doi.org/10.1134/S0965542520100024
https://doi.org/10.1007/3-540-51084-2_17

28 S. A. Abramov et al.

21. Frobenius, G.: Über die Integration der linearen Differentialgleichungen durch Rei-
hen. J. für die reine und angewandte Mathematik 76, 214–235 (1873)

22. Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen. Teubner,
Leipzig (1894)

23. Ince, E.: Ordinary Differential Equations. Longmans, London, New York, Bombay
(1926)

24. Khmelnov, D., Ryabenko, A., Abramov, S.: Automatic confirmation of exhaustive
use of information on a given equation. In: Computer Algebra: 4th International
Conference Materials, pp. 69–72. MAKS Press, Moscow (2021) (2021)

25. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for
singular differential equations. Linear Algebra Appl. 72, 1–46 (1985)

26. Malgrange, B.: Sur la réduction formelle des équations différentielles a singularités
irrégulières. Université Scientifique et Médicale de Grenoble (1979)

27. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, vol. 1.
Teubner, Leipzig (1895)

28. Singer, M.F.: Formal solutions of differential equations. J. Symb. Comput. 10(1),
59–94 (1990)

29. Tournier, E.: Solutions formelles d’équations différentielles. Le logiciel de calcul
formel DESIR. Étude théorique et réalisation. Thèse d’Etat, Université de Grenoble
(1987)

30. TruncatedSeries website. http://www.ccas.ru/ca/TruncatedSeries. Accessed 11
May 2022

http://www.ccas.ru/ca/TruncatedSeries

Subresultant Chains Using Bézout
Matrices

Mohammadali Asadi, Alexander Brandt , David J. Jeffrey ,
and Marc Moreno Maza(B)

ORCCA, The University of Western Ontario, London, Canada
{masadi4,abrandt5,djeffrey}@uwo.ca, moreno@csd.uwo.ca

Abstract. Subresultant chains over rings of multivariate polynomials
are calculated using a speculative approach based on the Bézout matrix.
Our experimental results yield significant speedup factors for the pro-
posed approach against comparable methods. The determinant compu-
tations are based on fraction-free Gaussian elimination using various piv-
oting strategies.

Keywords: Subresultant chain · Speculative algorithm ·
Multithreaded algorithm · Bézout matrix

1 Introduction

Subresultants are one of the most fundamental tools in computer algebra. They
are at the core of numerous algorithms including, but not limited to, polynomial
GCD computations, polynomial system solving, and symbolic integration. When
the subresultant chain of two polynomials is required in a procedure, not all
polynomials of the chain, or not all coefficients of a given subresultant, may be
needed. Based on that observation, the authors of [5] studied different practical
schemes, and their implementation, for efficiently computing subresultants.

The main objective of [5] is, given two univariate polynomials a, b ∈ A[y]
over some commutative ring A, to compute the subresultant chain of a, b ∈ A[y]
speculatively. To be precise, the objective is to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until it
is proven necessary. The practical importance of this objective, as well as related
works, are discussed extensively in [5].

Taking advantage of the Half-GCD algorithm and evaluation-interpolation
methods, the authors of [5] consider the cases in which the coefficient ring A
is a polynomial ring with one or two variables, and with coefficients in a field,
Q or Z/pZ, for a prime number p. The reported experimentation demonstrates
the benefits of computing subresultant chains speculatively in the context of
polynomial system solving.

That strategy, however, based on the Half-GCD algorithm, cannot scale to
situations in which the coefficient ring A is a polynomial ring in many variables,
say 5 or more. The reason is that, for the Half-GCD algorithm to bring benefits,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 29–50, 2022.
https://doi.org/10.1007/978-3-031-14788-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_3&domain=pdf
http://orcid.org/0000-0002-1294-9710
http://orcid.org/0000-0002-2161-6803
https://doi.org/10.1007/978-3-031-14788-3_3

30 M. Asadi et al.

the degree in y of the polynomials a, b must be in the 100’s, implying that the
resultant of a, b is likely to have very large degrees in the variables of A, thus
making computations not feasible in practice when A has many variables.

Therefore, for this latter situation, one should consider an alternative app-
roach in order to compute subresultant chains speculatively, which is the objec-
tive of the present paper. To this end, we consider subresultant chain computa-
tions using Bézout matrices. Most notably, [1] introduced an algorithm to com-
pute the nominal coefficients of subresultants by calculating the determinants of
sub-matrices of a modified version of the Bézout matrix. Later, [15] generalized
this approach to compute all subresultants instead of only the nominal coeffi-
cients. Although the approach is theoretically slower than Ducos’ subresultant
chain algorithm [10], early experimental results in Maple, collected during the
development of the SubresultantChain method in the RegularChains library
[16], indicate that approaches based on the Bézout matrix are particularly well-
suited for sparse polynomials with many variables.

In this paper, we report on further work following this approach. In Sect. 2,
we discuss how to compute the necessary determinants of the sub-matrices of
the Bézout matrix. We modify and optimize the fraction-free LU decomposition
(FFLU) of a matrix over a polynomial ring presented in [14]. We demonstrate
the efficacy of the proposed methods using implementations in Maple and the
Basic Polynomial Algebra Subprograms (BPAS) library [3]. Our optimization
techniques include smart-pivoting and using the BPAS multithreaded interface
to parallelize the row elimination step. All of our code, is open source and part
of the BPAS library available at www.bpaslib.org.

In Sect. 3, we focus on the computation of subresultants using the Bézout
matrix. In Sect. 3.1, we review the definitions of the Bézout matrix and a modified
version of it, known as the Hybrid Bézout matrix. Then, we introduce a speculative
approach for computing subresultants by modifying the fraction-free LU factoriza-
tion and utilizing the Hybrid Bézout matrices in Sect. 3.2. We have implemented
these computational schemes for subresultant chains and our experimental results,
presented in Sect. 3.3, illustrate the benefits of the proposed methods.

2 Fraction-Free LU Decomposition

A standard way to compute the determinant of a matrix A is to reduce it to a
triangular form and then take the product of the resulting diagonal elements [18].
One such triangular form is given by an LU matrix decomposition. When the
input matrix A has elements in a polynomial ring, standard LU decomposition
algorithms lead to matrices with rational functions as elements. In order to keep
the elements in the ring of polynomials, while controlling expression swell, one
can use a fraction-free LU decomposition (FFLU), taking advantage of Bareiss’
algorithm [6], which was originally developed for integer matrices. Although
in an FFLU decomposition the matrices contain only elements from the ring of
polynomials, the intermediate computations do require exact divisions. Reducing
the cost of these divisions is a practical challenge, one which we discuss in this

www.bpaslib.org

Subresultant Chains Using Bézout Matrices 31

section. The main algorithm on which we rely has been described in [12, Ch. 9]
and [14]. The main theorem is the following.

Theorem 1. A rectangular matrix A with elements from an integral domain B,
having dimensions m × n and rank r, may be factored into matrices containing
only elements from B in the form,

A = PrLD−1UPc = Pr

(L
M

)
D−1

(U V)
Pc,

where the permutation matrix Pr is m × m; the permutation matrix Pc is n × n;
L is r × r, lower triangular and has full rank:

L =

⎛
⎜⎜⎜⎜⎝

p1 0 . . . 0

l21 p2
. . .

...
...

...
. . . 0

lr1 lr2 . . . pr

⎞
⎟⎟⎟⎟⎠ ,

where the pi �= 0 are the pivots in a Gaussian elimination; M is (m− r)× r and
is null when m = n holds; D is r × r and diagonal:

D = diag(p1, p1p2, p2p3, · · · , pr−2pr−1, pr−1pr),

U is r × r and upper triangular, while V is r × (n − r) and is null when m = n
holds:

U =

⎛
⎜⎜⎜⎝

p1 u12 . . . u1r

0 p2 . . . u2r

...
.

...
0 . . . 0 pr

⎞
⎟⎟⎟⎠ .

Proof [14, Theorem 2]. Note that the elements of the matrix D belong to B,
but the matrix D−1, if explicitly calculated, lies in the quotient field.

Algorithm 3 implements Theorem 1 while Algorithm 2 utilizes Theorem 1 for
computing the determinant of A, when A is square. Both Algorithm 3 and Algo-
rithm 2 rely on Algorithm 1, which is a helper-function. This latter algorithm
updates the input matrix A in-place, to record the upper triangular matrix U ; it
also computes the “denominator” d, the rank r of the matrix A and the column
permutation of the input matrix. This is sufficient information to calculate the
determinant of a square matrix.

In Algorithm 2, the routine check-parity calculates the parity of the given
permutation modulo 2. Note that in both Algorithms 1 and 3, we only consider
row-operations to find the pivot and store the row permutation patterns in the
list Pr of size m. Column-permutations, and the corresponding list Pc, are used
in Sect. 2.1.

To optimize the FFLU algorithm, we use a smart-pivoting strategy, discussed
in Sect. 2.1. The idea is to find a “best” pivot by searching through the matrix

32 M. Asadi et al.

to pick a non-zero coefficient (actually a polynomial) with the minimum number
of terms in each iteration. The goal of this technique is to reduce the cost of the
exact divisions in Bareiss’ algorithm; see Sect. 2.1 for the details.

In addition, we discuss the parallel opportunities of this algorithm in Sect. 2.2,
taking advantage of the BPAS multithreaded interface. Finally, Sect. 2.3 high-
lights the performance of these algorithms in the BPAS library, utilizing sparse
multivariate polynomial arithmetic.

Algorithm 1. fflu-helper(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, Pr where r is the rank of A, d is the “denominator”, so that, d = s det(S)

where S is an appropriate sub-matrix of A (S = A if A is square and non-singular).
s ∈ (−1, 1) is decided by the parity of row permutations (encoded by Pr).

1: k := 0; d := 1; k := 0; c := 0; Pr := [0, 1, . . . , m − 1]
2: while k < m and c < n do
3: if ak,c = 0 then
4: i := k + 1
5: while i < m do
6: if ai,c �= 0 then
7: swap i-th and k-th rows of A
8: Pr[i], Pr[k] := Pr[k], Pr[i]
9: break

10: i := i + 1

11: if m ≤ i then
12: c := c + 1
13: continue
14: r := r + 1
15: for i = k + 1, . . . , m − 1 do
16: for j = c + 1, . . . , n − 1 do
17: ai,j := ai,c ak,j − ai,j ak,c

18: if k = 0 then ai,j := −ai,j

19: else ai,j := ExactQuotient(ai,j , d)

20: d := −ak,c; k := k + 1; c := c + 1

21: return r, −d, Pr

Algorithm 2. det(A)
Input: a n × n matrix A over B

Output: det(A), the determinant of A
1: r, d, Pr := fflu-helper(A)
2: if r < n then return 0

3: p := check-parity(Pr)
4: if p �= 0 then d := −d

5: return d

Subresultant Chains Using Bézout Matrices 33

Algorithm 3. fflu(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, P, L, U where r is the rank of A, d is the “denominator”, so that, d =

s det(S) where S is an appropriate sub-matrix of A (S = A if A is square and
non-singular) and s ∈ (−1, 1) is decided by the parity of the row permutations
(encoded by the matrix P) performed on A, L is the lower triangular matrix, and
U is the upper triangular matrix s.t. PA = LDU .

1: U := A; i = 0; j = 0; k = 0
2: r, d, Pr := fflu-helper(U)
3: Initialize P to the null square matrix of order m
4: Let P [i, j] := 1 iff Pr[i] = j for all 0 ≤ i, j, ≤ m − 1
5: while i < m and j < n do
6: if U [i, j] �= 0 then
7: for l = 0, . . . , i − 1 do Ll,k := 0

8: Li,k := Ui,j

9: for l = 0, . . . , m − 1 do Ll,k := Ul,j ; Ul,j := 0

10: i := i + 1; k := k + 1

11: j := j + 1

12: while k < m do
13: for l = 0, . . . , k − 1 do Ll,k := 0

14: Lk,k := 1
15: for l = k + 1, . . . , m do Ll,k := 0

16: k := k + 1

17: return r, d, Pr, L, U

Example 1. Consider matrix A ∈ B
4×4 where B = Z[x]. A =

⎛
⎜⎜⎝

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)

−2x + 3 0 0 −x

⎞
⎟⎟⎠ .

To compute the determinant of this matrix, Algorithm 1 starts with d = 1, k = 0,
c = 0, Pr = [0, 1, 2, 3], A0,0 = 11x2 − 11x + 3 �= 0, and r = 1. After the first
iteration, the nested for-loops update the (bottom-right) sub-matrix from the
second row and column; we have A(1) =

⎛
⎜⎜⎜⎝

A0,0 −3(x − 1)(2x − 3) 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0

−2x + 3 −3(x − 1)(2x − 3)2 0 −xA0,0

⎞
⎟⎟⎟⎠ ,

34 M. Asadi et al.

where A
(1)
1,2 = A

(1)
2,3 = −3(x − 1)(2x − 3)(11x2 − 11x + 3). In the second iteration

of the while-loop, we have d = −11x2 + 11x − 3, k = 1, c = 1, A
(1)
1,1 = (11x2 −

11x + 3)2 �= 0, and r = 2. Then, A(2) =
⎛
⎜⎜⎜⎝

A0,0 A0,1 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

3 −3(x − 1)(2x − 3)(A0,0)
2

−2x + 3 (2x − 3)A0,1 −9(x − 1)2(2x − 3)3 −x(A0,0)
2

⎞
⎟⎟⎟⎠ .

In the third iteration of the while-loop, we have d = −(11x2 − 11x + 3)2,
k = 2, c = 2, A

(2)
2,2 = −(11x2 − 11x + 3)3 �= 0, and r = 3. And so, A(3) =

⎛
⎜⎜⎜⎝

A0,0 A0,1 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

3 −3(x − 1)(2x − 3)(A0,0)
2

−2x + 3 (2x − 3)A0,1 −9(x − 1)2(2x − 3)3 A
(3)
3,3

⎞
⎟⎟⎟⎠ ,

where A
(3)
3,3 = −1763x7 + 7881x6 − 19986x5 + 35045x4 − 41157x3 + 30186x2 −

12420x+2187. In fact, one can check that A
(3)
3,3 is the determinant of the full-rank

(r = 4) matrix A ∈ Z[x]4×4.

In [6], Bareiss introduced an alternative version of this algorithm, known as
multi-step Bareiss’ algorithm to compute fraction-free LU decomposition. This
method reduces the computation of row eliminations by adding three cheaper
divisions to compute each row in the while-loop and removing one multiplica-
tion in each iteration of the nested for-loops; see the results in Table 1 and [12,
Chapter 9] for more details.

In the next sections, we investigate optimizations of Algorithm 1 to compute
the determinant of matrices over multivariate polynomials. These optimizations
are achieved by reducing the cost of exact divisions by finding better pivots and
utilizing the BPAS multithreaded interface to parallelize this algorithm.

2.1 Smart-Pivoting in FFLU Algorithm

Returning to Example 1, we performed exact divisions for the following divisors
in the second and third iterations,

d(1) = −11x2 + 11x − 3,

d(2) = −121x4 + 242x3 − 187x2 + 66x − 9.

However, we could pick a polynomial with fewer terms as our pivot in every
iteration to reduce the cost of these exact divisions. Such a method, which finds
a polynomial with the minimum number of terms in each column as the pivot
of each iteration, is referred to as column-wise smart-pivoting. For matrix A of

Subresultant Chains Using Bézout Matrices 35

Example 1, one can pick A3,0 = −2x+3 as the first pivot. Applying this method
yields, after the first iteration, A(1) =

⎛
⎜⎜⎜⎝

−2x + 3 0 0 −x

0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2 0
0 0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2

A0,0 3(x − 1)(2x − 3)2 0 xA0,0

⎞
⎟⎟⎟⎠ ,

where d = 2x−3. Continuing this method from Algorithm 1, we get the following
matrix for r = 4, A(4) =

⎛
⎜⎜⎜⎝

−2x + 3 0 0 −x

0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2 0
0 0 −(2x − 3)A2

0,0 3(x − 1)(2x − 3)2A0,0

A0,0 3(x − 1)(2x − 3)2 9(x − 1)2(2x − 3)3 A
(4)
3,3

⎞
⎟⎟⎟⎠ ,

where A
(4)
3,3 = 1763x7 − 7881x6 + 19986x5 − 35045x4 + 41157x3 − 30186x2 +

12420x− 2187, Pr = [3, 1, 2, 0], and we have det(A) = −A
(4)
3,3 from Algorithm 2.

In column-wise smart-pivoting, we limited our search for the best pivot to
the corresponding column of the current row. To extend this method, one can
try searching for the best pivot in the sub-matrix starting from the next current
row and column. To perform this method, referred to as (fully) smart pivoting,
we need to use column-operations and a column-wise permutation matrix Pc.
The column operations along with row operations are not cache-friendly. This is
certainly an issue for matrices with (large) multivariate polynomial entries while
this may not be an issue with (relatively small) matrices with numerical entries.
Therefore, we avoid column swapping within the decomposition, and instead
we keep track of column permutations in the list of column-wise permutation
patterns Pc to calculate the parity check later in Algorithm 2.

Algorithm 4 presents the pseudo-code of the smart pivoting fraction-free
LU decomposition utilizing both row-wise and column-wise permutation pat-
terns Pr, Pc. This algorithm updates A in-place, to become the upper triangular
matrix U , and returns the rank and denominator of the given matrix A ∈ B

m×n.

2.2 Parallel FFLU Algorithm

For further practical performance, we now investigate opportunities for paral-
lelism alongside our schemes for cache-efficiency. In particular, notice that during
the row reduction step (the for loops on lines 24–28 of Algorithm 4) the update
of each element is independent. Implementing this step as a parallel for loop
is easily achieved with the multithreading support provided in the BPAS library;
see further details in [4].

36 M. Asadi et al.

Algorithm 4. spfflu-helper(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, Pr, Pc where r is the rank, d is the denominator, so that, d = s det(S)

where S is an appropriate sub-matrix of A (S = A if A is square and non-singular)
s ∈ (−1, 1) is decided by the parity of row and column permutations, Pr, Pc.

1: k := 0; d := 1; � := 0
2: Pr := [0, 1, . . . , m − 1]; Pc := [0, 1, . . . , n − 1]
3: while k < m and � < n do
4: if ak,� = 0 then
5: i := k + 1
6: while i < m do
7: if ai,� �= 0 then
8: (i, j) := FindBestPivot(A, i, �)
9: swap i-th and k-th rows of A

10: Pr[i], Pr[k] := Pr[k], Pr[i]
11: Pc[j], Pc[�] := Pc[�], Pc[j]
12: break
13: i := i + 1

14: if m ≤ i then
15: � := � + 1
16: continue
17: else
18: (i, j) := FindBestPivot(A, k, �)
19: swap i-th and k-th rows of A
20: Pr[i], Pr[k] := Pr[k], Pr[i]
21: Pc[j], Pc[�] := Pc[�], Pc[j]

22: r := r + 1
23: for i = k + 1, . . . , m − 1 do
24: for j = � + 1, . . . , n − 1 do
25: ai,Pc[j] := ai,Pc[�] ak,Pc[j] − ai,Pc[j] ak,Pc[�]

26: if k = 0 then ai,Pc[j] := −ai,Pc[j]

27: else ai,Pc[j] := ExactQuotient(ai,Pc[j], d)

28: d := −ak,Pc[�]; k := k + 1; � := � + 1

29: return r, −d, Pr, Pc

Algorithm 5. parallel-spfflu-helper(A)

// -snip-

1: parallel for i = k + 1, . . . , m − 1
2: parallel for j = � + 1, . . . , n − 1
3: ai,Pc[j] := ai,Pc[�] ak,Pc[j] − ai,Pc[j] ak,Pc[�]

4: if k = 0 then ai,Pc[j] := −ai,Pc[j]

5: else ai,Pc[j] := ExactQuotient(ai,Pc[j], d)

6: end for
7: end for

// -snip-

Subresultant Chains Using Bézout Matrices 37

Algorithm 5 shows a näıve implementation of this parallel algorithm. Note
that in a parallel for loop, each iteration is (potentially) executed in par-
allel. In Algorithm 5, this means lines 3–5 are executed independently and in
parallel for each possible value of (i, j). If that number of such possible values
exceeds a pre-determined limit (e.g. the number of hardware threads supported),
then the number of iterations will be divided as evenly as possible among the
available threads.

A difficulty to this parallelization scheme is that the size of the sub-matrices
decreases with each iteration. Therefore, the amount of work executed by each
thread also decreases. In practice, to address this load-balancing and to maximize
parallelism, we only parallelize the outer loop (line 1 of Algorithm 5).

2.3 Experimentation

In this section, we compare the fraction-free LU decomposition algorithms for
Bézout matrix (Definition 2) of randomly generated, non-zero and sparse poly-
nomials in Z[x1, . . . , xv] for v ≥ 5 in the BPAS library. We recall that meth-
ods based on the Bézout matrix have been observed (during development of
the RegularChains library [16], and later in Sect. 3.3) to be well-suited for
sparse polynomials with many variables. Throughout this paper, our bench-
marks were collected on a machine running Ubuntu 18.04.4 and GMP 6.1.2,
with an Intel Xeon X5650 processor running at 2.67 GHz, with 12× 4 GB DDR3
memory at 1.33 GHz.

Table 1 shows the comparison between the standard implementation of the
fraction-free LU decomposition (Algorithm 1; denoted plain), the column-wise
smart pivoting (denoted col-wise SP), the fully smart-pivoting method (Algo-
rithm 4; denoted fully SP), and Bareiss’ multi-step technique added to Algo-
rithm 4 (denoted multi-step). Here, v = 5 and the generated polynomials have
a sparsity ratio (the fraction of zero terms to the total possible number of terms
in a fully dense polynomial of the same partial degrees) of 0.98.

This table indicates that using smart-pivoting yields up to a factor of 3 speed-
up. Comparing col-wise SP and fully SP shows that calculating Pc (column-
wise permutation patterns) along with Pr (row-wise permutation patterns) does
not cause any slow-down in the calculation of d.

Moreover, using both multi-step technique and smart-pivoting does not bring
any additional speed-up. The smart-pivoting technique is already minimized the
cost of exact divisions in each iteration. Table 2 shows plain/fully SP, plain/multi-step,
and fully SP/multi-step ratios from Table 1.

To analyze the performance of parallel FFLU algorithm, we compare Algo-
rithm 5 and Algorithm 4 for n × n matrices of randomly generated non-zero
univariate polynomials with integer coefficients and degree 1. Table 3 summa-
rizes these results. For n = 75, 2.14× parallel speed-up is achived, and speed-up
continues to increase with increasing n.

38 M. Asadi et al.

Table 1. Compare the execution time (in seconds) of fraction-free LU decomposition
algorithms for Bézout matrix of randomly generated, non-zero and sparse polynomials
a, b ∈ Z[x1, x2, . . . , x5] with x5 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d,
deg(a, x2) = deg(b, x2)+1 = 5, deg(a, x3) = deg(b, x3) = 1, deg(a, x4) = deg(b, x4) = 1,
deg(a, x5) = deg(b, x5) = 1

d plain col-wise SP fully SP multi-step

6 0.048346 0.018623 0.021154 0.021257

7 2.379480 0.941655 0.954981 0.953532

8 3.997310 0.444759 0.426654 0.475043

9 73.860600 32.531600 31.764200 30.882500

10 2726.690000 1431.430000 1408.140000 1398.370000

11 9059.290000 5113.530000 4768.950000 5348.520000

12 5953.150000 3937.250000 3521.140000 3711.790000

13 81411.900000 42858.500000 42043.600000 41850.800000

Table 2. Ratios of FFLU algorithms for polynomials in Table 1

d plain/fully SP plain/multi-step fully SP/multi-step

6 2.285431 2.274357 0.995155

7 2.491652 2.495438 1.001520

8 9.368973 8.414628 0.898138

9 2.325278 2.391665 1.028550

10 1.936377 1.949906 1.006987

11 1.899640 1.693794 0.891639

12 1.690688 1.603849 0.948637

13 1.936368 1.945289 1.004607

Table 3. Comparing the execution time (in seconds) of Algorithm 4 and Algorithm 5
for n × n matrices of random non-zero degree 1 univariate integer polynomials

n serial FFLU parallel FFLU serial/parallel

10 00.11976 0.012765 0.938109

15 0.118972 0.076118 1.562994

20 0.628613 0.339738 1.850288

25 2.299270 1.126620 2.040857

30 6.241600 3.109840 2.007049

35 15.305100 7.552200 2.026575

40 33.831800 16.387200 2.064526

45 67.702600 32.307100 2.095595

50 127.438000 60.420000 2.109202

55 224.681000 106.043000 2.118773

60 392.795000 177.456000 2.213478

65 607.089000 284.659000 2.132689

70 947.805000 444.181000 2.133826

75 1432.180000 668.991000 2.140806

Subresultant Chains Using Bézout Matrices 39

3 Bézout Subresultant Algorithms

In this section, we continue exploring the subresultant algorithms for multi-
variate polynomials based on calculating the determinant of (Hybrid) Bézout
matrices.

3.1 Bézout Matrix and Subresultants

A traditional way to define subresultants is via computing determinants of sub-
matrices of the Sylvester matrix (see, e.g. [5] or [11, Ch. 6]). Li [17] presented
an elegant way to calculate subresultants directly from the following matrices.
This method follows the same idea as subresultants based on Sylvester matrix.

Theorem 1. The k-th subresultant Sk(a, b) of a =
∑m

i=0 aiy
i, b =

∑n
i=0 biy

i ∈
B[y] is calculated by the determinant of the following (m + n − k) × (m + n − k)
matrix:

Ek :=

am am−1 · · · a2 a1 a0

.
am am−1 · · · a2 a1 a0

1 −y

.
1 −y

bn bn−1 · · · b2 b1 b0
.

bn bn−1 · · · b2 b1 b0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n − k

k

m − k

, (1)

so that,
Sk(a, b) = (−1)k(m−k+1)det (Ek) .

Proof. [17, Section 2]
Another practical division-free approach is through utilizing the Bézout

matrix to compute the subresultant chain of multivariate polynomials by cal-
culating the determinant of the Bézout matrix of the input polynomials [13].
From [7], we define the symmetric Bézout matrix as follows.

Definition 1. The Bézout matrix associated with a, b ∈ B[y], where m := deg(a)
≥ n := deg(b) is the symmetric matrix:

Bez(a, b) :=

⎛
⎜⎝

c0,0 · · · c0,m−1

...
. . .

...
cm−1,0 · · · cm−1,m−1

⎞
⎟⎠ ,

40 M. Asadi et al.

where the coefficients ci,j, for 0 ≤ i, j < m, are defined by the so-called Cayley
expression as follows,

a(x)b(y) − a(y)b(x)
x − y

=
m−1∑
i,j=0

ci,jy
ixj .

The relations between the Sylvester and Bézout matrices have been studied
for decades yielding an efficient algorithm to construct the Bézout matrix [2]
using a so-called Hybrid Bézout matrix.

Definition 2. The Hybrid Bézout matrix of a =
∑m

i=0 aiy
i and b =

∑n
i=0 biy

i

is defined as the m × m matrix

HBez(a, b) :=

⎛
⎜⎝

h0,0 · · · h0,m−1

...
. . .

...
hm−1,0 · · · hm−1,m−1

⎞
⎟⎠ ,

where the coefficients hi,j, for 0 ≤ i, j < m, are defined as:

hi,j = coeff(Hm−i+1,m − j) for 1 ≤ i ≤ n,

hi,j = coeff(xm−ib,m − j) for m + 1 ≤ i ≤ n,

with,

Hi = (amyi−1 + · · · + am−i+1)(bn−iy
m−i + · · · + b0y

m−n)

− (am−iy
m−i + · · · + a0)(bnyi−1 + · · · + bn−i+1).

Example 2. Consider the polynomials a = 5y5+y3+2y+1 and b = 3y3+y+3
in Z[y]. The Sylvester matrix of a, b is:

Sylv(a, b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 1 0 2 1 0 0
0 5 0 1 0 2 1 0
0 0 5 0 1 0 2 1
3 0 1 3 0 0 0 0
0 3 0 1 3 0 0 0
0 0 3 0 1 3 0 0
0 0 0 3 0 1 3 0
0 0 0 0 3 0 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the Bézout matrix of a, b is:

Bez(a, b) =

⎛
⎜⎜⎜⎜⎝

0 −15 0 −5 −15
−15 0 −5 −15 0

0 −5 −15 5 0
−5 −15 5 0 0

−15 0 0 0 −5

⎞
⎟⎟⎟⎟⎠ ,

Subresultant Chains Using Bézout Matrices 41

while the Hybrid Bézout matrix of a, b is:

HBez(a, b) =

⎛
⎜⎜⎜⎜⎝

15 −6 0 −2 −1
2 15 −6 −3 0
0 2 15 −6 −3
3 0 1 3 0
0 3 0 1 3

⎞
⎟⎟⎟⎟⎠ .

Diaz-Toca and Gonzalez-Vega examined the relations between Bézout matri-
ces and subresultants in [9]. Hou and Wang studied to apply the Hybrid Bézout
matrix for the calculation of subresultants in [13].

Notation 1. Let Jm denote the backward identity matrix of order m and let B
and H be defined as follows:

B := Jm Bez(a, b) Jm =

⎛
⎜⎝

cm−1,m−1 · · · cm−1,0

...
. . .

...
c0,m−1 · · · c0,0

⎞
⎟⎠ ,

H := Jm HBez(a, b) =

⎛
⎜⎝

hm−1,0 · · · hm−1,m−1

...
. . .

...
h0,0 · · · h0,m−1

⎞
⎟⎠ .

Now, we can state how to compute the subresultants from Bézout matrices
as follows.

Theorem 2. For polynomials a =
∑m

i=0 aiy
i and b =

∑n
i=0 biy

i in B[y], the
k-th subresultant of a, b, i.e., Sk(a, b), can be obtained from:

(−1)(m−1)(m−k−1)/2am−n
m Sk(a, b) =

k∑
i=0

Bm−k,k−i yi,

where Bm−k,i for 0 ≤ i ≤ k denotes the (m − k) × (m − k) minor extracted
from the first m − k rows, the first m − k − 1 columns and the (m − k + i)-th
column of B.

Proof. [2, Theorem 2.3]

Theorem 3. For those polynomials a, b ∈ B[y], the k-th subresultant of a, b,
i.e., Sk(a, b), can be obtained from:

(−1)(m−1)(m−k−1)/2Sk(a, b) =
k∑

i=0

Hm−k,k−i yi,

where Hm−k,i for 0 ≤ i ≤ k denotes the (m − k) × (m − k) minor extracted
from the first m − k rows, the first m − k − 1 columns and the (m − k + i)-th
column of H.

42 M. Asadi et al.

Proof. [2, Theorem 2.3]
Abdeljaoued et al. in [2] study further this relation between subresultants and
Bézout matrices. Theorem 4 is the main result of this paper.

Theorem 4. For those polynomials a, b ∈ B[y], the k-th subresultant of a, b can
be obtained from the following m×m matrices, where τ = (m−1)(m−k −1)/2:

(−1)τam−n
m Sk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cm−1,m−1 cm−1,m−2 · · · · · · · · · cm−1,0

...
... · · · · · · · · · ...

ck,m−1 ck,m−2 · · · · · · · · · ck,0

1 −y
.

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(−1)τSk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hm−1,0 hm−1,1 · · · · · · · · · hm−1,m−1

...
... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

1 −y
.

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. [2, Theorem 2.4]
The advantage of this aforementioned method is that one can compute the entire
subresultant chain in a bottom-up fashion. This process starts from computing
the determinant of matrix H (or B) in Definition 1 to calculate S0(a, b), the
resultant of a, b, and update the last k rows of H (or B) to calculate Sk(a, b) for
1 ≤ k ≤ n.

Example 3. Consider polynomials a = −5y4x + 3yx − y − 3x + 3 and b =
−2y3x + 3y3 − x in Z[x, y] where x < y. From Definition 2, the Hybrid Bézout
matrix of a, b is the matrix A from Example 1 on page 34. Recall from Example 1
that the determinant of this matrix can be calculated using the fraction-free LU
decomposition schemes. Theorem 4, for k = 0, yields that,

S0(a, b) = −1763x7 + 7881x6 − 19986x5 + 35045x4 − 41157x3

+ 30186x2 − 12420x + 2187.

For k = 1, one can calculate S1(a, b) from the determinant of:

H(1) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0
0 0 1 −y

⎞
⎟⎟⎠ ,

that is,

S1(a, b) = −242x5y + 132x5 + 847x4y − 660x4 − 1100x3y + 1257x3

+ 693x2y − 1134x2 − 216xy + 486x + 27y − 81.

Subresultant Chains Using Bézout Matrices 43

We can continue calculating subresultants of higher indices with updating matrix
H(1). For instance, the 2nd and 3rd subresultants are, respectively, from the
determinant of:

H(2) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎠ ,

and,

H(3) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
1 −y 0 0
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎠ ,

which are,

S2(a, b) = 22yx3 − 12x3 − 55yx2 + 48x2 + 39yx − 63x − 9y + 27,

S3(a, b) = −2y3x + 3y3 − x.

We further studied the performance of computing subresultants from Theo-
rem 4 in comparison to the Hybrid Bézout matrix in Definition 2 for multivariate
polynomials with integer coefficients. In our implementation, we took advantage
of the FFLU schemes reviewed in Sect. 2 to compute the determinant of these
matrices using smart-pivoting technique in parallel; see Sect. 3.3 for implemen-
tation details and results.

3.2 Speculative Bézout Subresultant Algorithms

In Example 3, the Hybrid Bézout matrix was used to compute subresultants of
two polynomials in Z[x, y]. We constructed the square matrix H from Definition 1
and updated the last k ≥ 0 rows following Theorem 4. Thus, the kth subresultant
could be directly computed from the determinant of this matrix.

Consider solving systems of polynomial equations by triangular decomposi-
tion, and particularly, regular chains. This method uses a Regular GCD subrou-
tine (see [8]) which requires the computation of subresultants in a bottom-up
fashion: for multivariate polynomials a, b (viewed as univariate in their main vari-
able) compute S0(a, b), then possibly S1(a, b), then possibly S2(a, b), etc., to try
and find a regular GCD. This bottom-up approach for computing subresultant
chains is discussed in [5].

In the approach explained in the previous section, we would call the deter-
minant algorithm twice for H(0) := H and H(1) to compute S0, S1 respectively.
Here, we study a speculative approach to compute both S0 and S1 at the cost
of computing only one of them. This approach can also be extended to compute
any two successive subresultants Sk, Sk+1 for 2 ≤ k < deg(b, xn).

44 M. Asadi et al.

To compute S0, S1 of polynomials a = −5y4x + 3yx − y − 3x + 3 and b =
−2y3x + 3y3 − x in Z[x, y] from Example 3, consider the (m + 1) × m matrix,
with m = 4, derived from the Hybrid Bézout matrix of a, b, H(0,1) =
⎛
⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
0 0 1 −y

⎞
⎟⎟⎟⎟⎠.

In this matrix, the first three rows are identical to the first three rows of H(0)

and H(1), while the 4th (bold) row is the 4th row of H(0) and the 5th (italicized)
row is the 4th row of H(1). A deeper look into the determinant algorithm reveals
that the Gaussian (row) elimination for the first three rows in each iteration
of the fraction-free LU decomposition is similar in both H(0) and H(1) and the
only difference is within the 4th row.

Hence, managing these row eliminations in the fraction-free LU decomposi-
tion, we can compute determinants of H(0) and H(1) by using H(0,1) only calling
the FFLU algorithm once. Indeed, when this algorithm tries to eliminate the last
rows of H(0) and H(1), we should use the last two rows of H(0,1) separately and
return two denominators corresponding to S0, S1.

We can further extend this speculative approach to compute S2 and S3 by
updating the matrix H(0,1) to get the (m + 3) × m matrix H(2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
1 −y 0 0
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, to calculate subresultants of index 2 and 3, we should respectively
consider the 2nd (bold) and 5th (italicized) rows of H(2,3) in the fraction-free
LU decomposition while ignoring the 3rd and 4th (strikethrough) rows. An adap-
tation of the FFLU algorithm can then modify H(2,3) as follows to return d(2),
ignoring the 5th and strikethrough rows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 −2x + 3 −y(−2x + 3) 0
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0

1 −y 0 0
0 0 −22x3 + 55x2 − 39x + 9 3(x − 1)(2x − 3)2

0 0 −2x + 3 d(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Subresultant Chains Using Bézout Matrices 45

where d(2) = −22x3y+12x3+55x2y−48x2−39xy+63x+9y−27 and S2 = −d(2).
Note that the 2nd and 6th rows are swapped to find a proper pivot.

The adapted FFLU algorithm can also modify H(2,3) to rather return d(3),
ignoring the 2nd (bold) and strikethrough rows,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0

1 −y(−2x + 3) 0 x
0 −2x + 3 −y2(−2x + 3) x
0 0 y(−2x + 3) d(3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where d(3) = −2xy3 + 3y3 − x and S3 = d(3).
Generally, to compute subresultants of index k and k + 1, one can construct

the matrix H(k,k+1) from the previously constructed H(k−2,k−1) for k > 1. This
recycling of previous information makes computing the next subresultants of
index k and k + 1 much more efficient, and is discussed below. We proceed with
an adapted FFLU algorithm over:

– the first m − k − 1 rows,
– the bold row for computing Sk, or the italicized row for computing Sk+1, and
– the last k rows

of matrix H(k,k+1) ∈ B
(m+k)×k with B = Z[x1, . . . , xv],

H(k,k+1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hm−1,0hm−1,1· · · · · · · · ·hm−1,m−1

...
... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

hk−1,0 hk−1,1 · · · · · · · · ·hk−1,m−1

...
... · · · · · · · · · ...

h0,0 h0,1 · · · · · · · · · h0,m−1

1 −y
.

1 −y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As seen in the last example, the FFLU algorithm, depending on the input
polynomials, may create two completely different submatrices to calculate d(2)
and d(3). Thus, the cost of computing Sk, Sk+1 from H(k,k+1) speculatively may
not necessarily be less than computing them successively from H(k),H(k+1) for
some k > 1.

We improve the performance of computing Sk, Sk+1 speculatively via caching,
and then reusing, intermediate data calculated to compute Sk−2, Sk−1 from
H(k−2,k−1). In this approach, the adapted FFLU algorithm returns d(k−2), d(k−1)

along with H(k−2,k−1), the reduced matrix H(k−2,k−1) to compute d(k−1), the
list of permutation patterns and pivots.

46 M. Asadi et al.

Therefore, we can utilize H(k−2,k−1) to construct H(k,k+1). In addition, if the
first δ := m − k − 1 pivots are picked from the first δ rows of H(k−2,k−1), then
one can use the first δ rows of the reduced matrix H(k−2,k−1) along with the
list of permutation patterns and pivots to perform the first δ row eliminations
of H(k,k+1) via recycling the first δ rows of the reduced matrix cached a priori.

3.3 Experimentation

In this section, we compare the subresultant algorithms based on (Hybrid)
Bézout matrix against the Ducos’ subresultant chain algorithm in BPAS and
Maple 2020. In BPAS, our optimized Ducos’ algorithm (denoted OptDucos),
is detailed in [5].

Table 4 and Table 5 show the running time of plain and speculative algorithms
for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x1, x2, . . . , x6]
with x6 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) =
deg(b, xi) = 1 for 2 ≤ i ≤ 6. Table 6 and Table 7 show the running time of
plain, speculative and caching subresultant schemes for randomly generated,
non-zero, and sparse polynomials a, b ∈ Z[x1, x2, . . . , x7] with x7 < · · · < x2 <
x1, deg(a, x1) = deg(b, x1)+1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7.

Note that the Bézout algorithm in Maple computes the resultant of a, b
(S0(a, b)) meanwhile both Maple’s and BPAS’s Ducos’ algorithm computes the
entire subresultant chain. In BPAS, we have the following:

1. Bézout (ρ = 0) calculates the resultant (S0(a, b)) via the determinant of
Hybrid Bézout matrix of a, b;

2. Bézout (ρ = 1) calculates S1(a, b) following Theorem 4 from the Hybrid
Bézout matrix of a, b;

3. SpecBézout (ρ = 0) calculates S0(a, b), S1(a, b) speculatively using H(0,1);
4. SpecBézout (ρ = 2) calculates S2(a, b), S3(a, b) speculatively using H(2,3);
5. SpecBézoutcached (ρ = 2) calculates S2(a, b), S3(a, b) speculatively via H(2,3)

and the cached information calculated in SpecBézout (ρ = 0)
6. SpecBézoutcached (ρ = all) calculates the entire subresultant chain using the

speculative algorithm and caching.

To compute subresultants from Bézout matrices in Maple, we use the
command SubresultantChain(... , ‘representation’=‘BezoutMatrix’)
from the RegularChains library. Our Bézout algorithm is up to 3× faster than
the Maple implementation to calculate only S0. Moreover, our results show that
Bézout algorithms outperform the Ducos’ algorithm in both BPAS and Maple
for sparse polynomials with many variables.

Tables 4 and 6 show that the cost of computing subresultants S0, S1 specula-
tively is comparable to the running time of computing only one of them. Tables 5
and 7 indicate the importance of recycling cached data to compute higher sub-
resultants speculatively. Our Bézout algorithms can calculate all subresultants
speculatively in a comparable running time to the Ducos’ algorithm.

Subresultant Chains Using Bézout Matrices 47

Table 4. Comparing the execution time (in seconds) of subresultant algorithms based
on Bézout matrix for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x6 <
. . . < x1], deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 6

Maple BPAS

d Bézout (ρ = 0) Ducos Bézout (ρ = 0) Bézout (ρ = 1) SpecBézout (ρ = 0) OptDucos

10 0.05128 0.03000 0.024299 0.026762 0.032166 0.045270

11 0.06001 0.04574 0.057312 0.068722 0.058843 0.049532

12 0.02515 0.05100 0.007223 0.019530 0.012792 0.061419

13 0.81209 16.81200 0.421278 0.739842 0.594225 9.527660

14 3.14360 112.280 2.414530 3.829530 3.250710 69.957100

15 518.380 7163.30 151.656 779.9240 512.260 3655.820

Table 5. Comparing the execution time (in seconds) of speculative subresultant algo-
rithms for polynomials in Table 4

BPAS

d SpecBézout(ρ = 0) SpecBézout(ρ = 2) SpecBézoutcached(ρ = 2) SpecBézoutcached(ρ = all)

10 0.032166 0.022125 0.016432 0.076283

11 0.058843 0.079425 0.043512 0.193512

12 0.012792 0.010566 0.004148 0.071435

13 0.594225 2.106280 1.535510 7.891180

14 3.250710 8.735510 4.133760 73.59940

15 512.260 953.1170 579.8580 4877.130

Table 6. Comparing the execution time (in seconds) of subresultant algorithms based
on Bézout matrix for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x7 <
. . . < x1], deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7

Maple BPAS

d Bézout(ρ = 0) Ducos Bézout(ρ = 0) Bézout(ρ = 1) SpecBézout(ρ = 0) OptDucos

6 0.00098 0.00372 0.001303 0.001427 0.001553 0.002444

7 0.01148 0.43145 0.080210 0.174460 0.095569 0.279023

8 15.1850 34.8540 7.057270 10.834100 8.380050 22.440500

9 74.1390 327.570 36.8450 66.8430 44.7160 194.4860

10 9941.20 inf 4130.980 6278.240 5686.060 14145.30

48 M. Asadi et al.

Table 7. Comparing the execution time (in seconds) of speculative and caching sub-
resultant algorithms for polynomials in Table 6

BPAS

d SpecBézout(ρ = 0) SpecBézout(ρ = 2) SpecBézoutcached(ρ = 2) SpecBézoutcached(ρ = all)

6 0.001553 0.001812 0.001350 0.003519

7 0.095569 0.103801 0.053730 0.213630

8 8.380050 13.10210 5.7240 25.83050

9 44.7160 67.86560 31.12090 136.8930

10 5686.060 8853.10 3856.550 17569.20

As described in Sect. 3.1, polynomial system solving benefits from computing
regular GCDs in a bottom-up approach. From a test suite of over 3000 polyno-
mial systems, coming from the literature and collected from Maple user-data
(see [4, Section 6]) we compare the benefits of (Speculative) Bézout methods for
computing subresultants vs BPAS’s optimized Ducos algorithm. Table 8 shows
this data for some systems of the test suite with at least 5 variables. Table 9
shows systems which are very challenging to solve, requiring at least 50 s. For
these hard systems, speculative methods achived a speed-up of up to 1.6× com-
pared to Ducos’ method. Note that, in some cases, the regular GCD has high
degree and is thus equal to a subresultant of high index. Thus, Ducos’ method
to compute the entire subresultant chain may be more efficient than repeated
calls to the speculative method.

Table 8. Comparing time (in seconds) to solve polynomial systems with nvar ≥ 5;
system names come from a test suite detailed [4]

OptDucos/ Bézout/

SysName OptDucos Bézout SpecBézout SpecBézoutcached SpecBézout SpecBézout

Sys2922 7.91041 7.93589 7.95695 7.95698 0.994151 0.997353

Sys2880 5.55801 5.70138 5.46921 5.41538 1.016236 1.042450

Sys2433 8.75830 8.77473 8.75625 8.76812 1.000234 1.002110

Sys2161 1.08153 0.89279 0.56666 0.63128 1.908605 1.575530

Sys2642 8.06066 6.97177 4.89233 3.21021 1.647612 1.425041

Sys2695 3.18267 3.05706 2.98045 2.12872 1.067849 1.025704

Sys2238 8.75708 8.75923 8.75251 8.75813 1.000522 1.000768

Sys2943 6.70348 6.12246 4.54511 4.69512 1.474877 1.347043

Sys1935 4.14390 5.01831 3.01449 1.98466 1.374660 1.664729

Sys2882 2.42182 2.37203 2.38065 2.35716 1.017294 0.996379

Sys2588 4.49268 4.51135 4.49201 4.49792 1.000149 1.004305

Sys2449 1.23251 1.28321 1.24507 1.26588 0.989912 1.030633

Sys2874 6.99887 7.22326 6.99438 7.11027 1.000642 1.032723

Sys2932 6.27556 6.25798 6.31953 6.29113 0.993042 0.990260

Sys2269 1.03128 1.03253 1.03961 1.04012 0.991987 0.993190

Subresultant Chains Using Bézout Matrices 49

Table 9. Comparing time (in seconds) to solve “hard” polynomial systems with
nvar ≥ 5; system names come from a test suite detailed [4]

OptDucos/ Bézout/

SysName OptDucos Bézout SpecBézout SpecBézoutcached SpecBézout SpecBézout

Sys2797 466.4250 425.8670 386.3810 325.1170 1.207163 1.102194

Sys2539 55.8694 55.8531 55.5113 55.4933 1.006451 1.006157

Sys2681 458.6800 458.5810 458.5360 458.5780 1.000314 1.000098

Sys2745 599.8020 599.3290 599.0610 599.2150 1.001237 1.000447

Sys3335 6406.7400 5843.7300 4799.9700 4801.1200 1.334746 1.217451

Sys2703 322.2940 487.0120 485.8170 491.1520 0.663406 1.002460

Sys2000 55.7026 56.1724 56.3106 57.0079 0.989203 0.997546

Sys2877 2127.4900 1914.5200 1253.8200 1247.4400 1.696807 1.526950

References

1. Abdeljaoued, J., Diaz-Toca, G.M., Gonzalez-Vega, L.: Minors of Bézout matrices,
subresultants and the parameterization of the degree of the polynomial greatest
common divisor. Int. J. Comput. Math. 81(10), 1223–1238 (2004)

2. Abdeljaoued, J., Diaz-Toca, G.M., González-Vega, L.: Bézout matrices, subresul-
tant polynomials and parameters. Appl. Math. Comput. 214(2), 588–594 (2009)

3. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (2021). http://
www.bpaslib.org

4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization
of triangular decompositions: techniques and implementation. J. Symb. Comput.
(2021, to appear)

5. Asadi, M., Brandt, A., Moreno Maza, M.: Computational schemes for subresultant
chains. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2021. LNCS, vol. 12865, pp. 21–41. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85165-1 3

6. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Math. Comput. 22(103), 565–578 (1968)

7. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations: Fundamental Algo-
rithms. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0265-3

8. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

9. Diaz-Toca, G.M., Gonzalez-Vega, L.: Various new expressions for subresultants
and their applications. Appl. Algebra Eng. Commun. Comput. 15(3–4), 233–266
(2004). https://doi.org/10.1007/s00200-004-0158-4

10. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra
145(2), 149–163 (2000)

11. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

12. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Springer, New York (1992). https://doi.org/10.1007/b102438

13. Hou, X., Wang, D.: Subresultants with the Bézout matrix. In: Computer Mathe-
matics, pp. 19–28. World Scientific (2000)

http://www.bpaslib.org
http://www.bpaslib.org
https://doi.org/10.1007/978-3-030-85165-1_3
https://doi.org/10.1007/978-3-030-85165-1_3
https://doi.org/10.1007/978-1-4612-0265-3
https://doi.org/10.1007/s00200-004-0158-4
https://doi.org/10.1007/b102438

50 M. Asadi et al.

14. Jeffrey, D.J.: LU factoring of non-invertible matrices. ACM Commun. Comput.
Algebra 44(1/2), 1–8 (2010)

15. Kerber, M.: Division-free computation of subresultants using Bézout matrices. Int.
J. Comput. Math. 86(12), 2186–2200 (2009)

16. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple.
ACM SIGSAM Bull. 39(3), 96–97 (2005)

17. Li, Y.B.: A new approach for constructing subresultants. Appl. Math. Comput.
183(1), 471–476 (2006)

18. Olver, P.J., Shakiban, C.: Applied Linear Algebra. Prentice Hall, Upper Saddle
River (2006)

Application of Symbolic-Numerical
Modeling Tools for Analysis of Gyroscopic

Stabilization of Gyrostat Equilibria

Andrei V. Banshchikov(B)

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch
of Russian Academy of Sciences, PO Box 292,
134, Lermontov str., Irkutsk 664033, Russia

bav@icc.ru

Abstract. Using the applied software developed on the basis of the
computer algebra system “Mathematica” and its functions of symbolic-
numerical modeling, the dynamics of the rotational motion along the
circular orbit of a satellite-gyrostat in a Newtonian central field of forces
is investigated. In accordance with the problem of Lyapunov’s stability
from the equations of perturbed motion in the first approximation, the
regions with an even degree of instability by Poincaré are found in the
space of introduced parameters. The paper considers the question of
the possibility of gyroscopic stabilization of unstable relative equilibrium
positions of the gyrostat, when the vector of the gyrostatic moment of the
system is located in one of the planes formed by the principal central axes
of inertia. The research results were obtained in a symbolic (analytic)
form on a computer and by means of a numerical experiment with the
graphic interpretation.

Keywords: Orbital gyrostat · Degree of instability · Gyroscopic
stabilization · Parametric analysis · System of inequalities

1 Introduction

The problems of reliability and accuracy of computation, as well as the question
of speeding-up of the investigation process can be partially solved if a computer
algebra system (CAS) is chosen as a software tool. As can be seen from the
publications, more often, there is an approach to using the CAS as a calculator
for solving a particular problem. There is another approach when, based on the
internal programming language of CAS, an applied software is developed to solve
a specific class of problems.

The use of CAS in the problems of celestial mechanics has its own prehistory
and is very important for specialists (see, for example, [10,12]). The classical
problem of the influence of the structure of forces on the stability of the equilib-
ria of mechanical systems [9] began to develop in the 19th century – the effect of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 51–61, 2022.
https://doi.org/10.1007/978-3-031-14788-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_4

52 A. V. Banshchikov

gyroscopic stabilization was discovered. Nevertheless, the problem remains rele-
vant: see, for example, the review in [1] among the large number of publications
on this topic. With the help of symbolic computations, the author in the present
paper investigates the dynamics of an orbital gyrostat and the question of the
possibility of gyroscopic stabilization of its unstable equilibrium positions.

The rigid body with the fixed axis of a statically and dynamically balanced
flywheel rotating about that axis with a constant relative angular velocity is
a gyrostat. The system moves along the circular Keplerian orbit in a central
Newtonian field of forces around the gravitational center. It is accepted that
the mutual influence of the motion of the gyrostat about its mass center and
the displacement of the latter at a constant angular velocity along the above-
mentioned trajectory are neglected. This is a so-called limited formulation of the
problem of orbital motion [8].

The stability of the relative equilibrium positions of a satellite-gyrostat for
various variants of the positioning of the flywheel rotation axis in its body has
been considered by many authors. For example, in [14], the regions are found in
the parameter space where there are different numbers of equilibrium orienta-
tions of the system, and sufficient conditions for their Lyapunov’s stability are
obtained from the analysis of the sign-definiteness of the generalized energy inte-
gral. The stabilization of the equilibria of an orbital gyrostat (with an arbitrary
inertia ellipsoid) using the equations of the first approximation, that is presented
here, continues and supplements the studies performed earlier for oblate [2] and
prolate [5] axisymmetric gyrostats.

2 Construction of a Symbolic Model and Stability
Conditions

For the description of a motion of the system, two rectangular coordinate sys-
tems with the poles in the system’s mass center O are introduced: OZ1Z2Z3 is
the orbital coordinate system (OCS), and the coordinate system Oz1z2z3 rigidly
connected to a body has the axes directed along the principal central axes of
inertia of the gyrostat. A ,B, and C are the moments of inertia of the system
relative to the axes Oz1, Oz2 , Oz3 , and hj are the projections (onto the corre-
sponding axis) of a vector of gyrostatic moment of system divided by ω (the
module of orbital angular velocity). For the definition of a relative positioning
of the OZk and Ozj axes, the directional cosines defined by the aircraft angles
α , β , γ are used (see, for example, [14]).

By the construction of a symbolical model, one implies the obtaining of non-
linear and linearized differential equations of motion in analytic form in computer
memory. The software package (SP) [6] used for this paper is designed for model-
ing and qualitative analysis in symbolic form of dynamic systems (in particular,
the systems of interconnected absolutely rigid bodies). This applied software,
the functional description and application technology of which is given in [4,7],
is a set of interactive programs executed in the interpretation mode in the CAS
“Mathematica” [15] environment.

Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization 53

Consider the position of equilibrium (α̇ = 0 , β̇ = 0 , γ̇ = 0) in regard to
OCS in general form:

α = α0 = const , β = β0 = const , γ = γ0 = const. (1)

The equations of motion of the satellite-gyrostat with respect to its center of
mass in Euler form are widely known (see review [13]). With the help of SP [6],
the following results in a symbolic form in computer memory are obtained:

(a) kinetic energy and force function of the approximate Newtonian field of
gravitation (as given in [13]);

(b) nonlinear differential equations in the Lagrange form of the second kind
describing the motion of an orbital gyrostat;

(c) existence conditions of equilibrium (1).

For example, let us write down the equations determining the relative equilibria
of the gyrostat (i.e., conditions (c)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin 2α0

(
2 (2A − B − C) cos2β0 − (B − C) (cos 2β0 − 3) cos 2γ0

)

+ 4 (B − C) cos 2α0 sinβ0 sin 2γ0 = 0,

(B + C − 2A + (B − C) cos 2γ0) sin 2β0 (5 − 3 cos 2α0)
+ 6 (B − C) cosβ0 sin 2α0 sin 2γ0

+ 8 (sinβ0 (h2 cos γ0 − h3 sin γ0) − h1 cosβ0) = 0,

(B − C)
(
sin 2γ0

(
3 cos2α0 cos2β0 − 3 sin2α0 sin2β0

)

+ 3 sin 2α0 sinβ0 cos 2γ0) + 2 cosβ0 (h2 sin γ0 + h3 cos γ0) = 0.

(2)

The necessary conditions of stability for the equilibrium can be obtained from
the equations of perturbed motion in the first approximation. The linearized
equations of perturbed motion in vicinity of (1) look as follows:

M q̈ + G q̇ + K q = 0, (3)

where q =
(
α, β, γ

)T
is the column vector of deviations of generalized coordi-

nates from the unperturbed motion (1);

M =

⎛

⎝
M11 M12 M13

M12 M22 0
M13 0 M33

⎞

⎠ is a positive definite symmetric matrix of kinetic energy;

G =

⎛

⎝
0 G12 G13

−G12 0 G23

−G13 −G23 0

⎞

⎠ is a skew-symmetric matrix of gyroscopic forces;

K =

⎛

⎝
K11 K12 K13

K12 K22 K23

K13 K23 K33

⎞

⎠ is a symmetric matrix of potential forces.

54 A. V. Banshchikov

Here

M11 = A sin2β0 + (B cos2γ0 + C sin2γ0) cos2β0 , M22 = B sin2γ0 + C cos2γ0 ,

M12 = (B − C) cosβ0 sinγ0 cosγ0 , M13 = A sinβ0 , M33 = A ;

G12 = sin 2β0(A − B cos2γ0 − C sin2γ0) + h1 cosβ0

+ sinβ0(h3 sinγ0 − h2 cosγ0) ,

G13 = − cosβ0 (cosβ0(B − C) sin 2γ0 + h2 sinγ0 + h3 cosγ0) ,

G23 = − cosβ0 (A + (C − B) cos 2γ0) − h3 sinγ0 + h2 cosγ0 ;

K11 =
3
4

(
cos 2α0

(
(4A − 2(B + C)) cos2β0 − (B − C)(cos 2β0 − 3) cos 2γ0

))

+ 3 (C − B) sin 2α0 sinβ0 sin 2γ0 ,

K12 = 3 cosβ0

(
(B cos2γ0 + C sin2γ0 − A) sin 2α0 sinβ0

+
1
2

(B − C) cos 2α0 sin 2γ0

)

,

K13 =
3
4

(B − C)(4 cos 2α0 sinβ0 cos 2γ0 + sin 2α0(cos 2β0 − 3) sin 2γ0) ,

K22 =
1
4

((2A + (C − B) cos 2γ0 − B − C)(3 cos 2α0 − 5) cos 2β0

+ 3 (C − B) sin2α0 sinβ0 sin2γ0) + h1 sinβ0 + (h2 cosγ0 − h3 sinγ0) cosβ0 ,

K23 =
1
4

(B − C) (6 sin 2α0 cosβ0 cos 2γ0 (3 cos 2α0 − 5) sin 2β0 sin 2γ0)

− (h2 sinγ0 + h3 cosγ0) sinβ0 ,

K33 =
1
4

(B − C)
(
cos 2γ0

(
10 cos2β0 − 3 cos 2α0 (cos 2β0 − 3)

)

− 12 sin 2α0 sinβ0 sin 2γ0) + (h2 cosγ0 − h3 sinγ0) cosβ0.

All derivatives in (3) are calculated by the dimensionless time τ = ωt .
The characteristic equation: det

(
Mλ2 + Gλ + K

)
= v3λ

6 + v2λ
4 + v1λ

2+
v0 = 0 of system (3) contains λ only in even degrees. The stability of equilibrium
(1) takes place when all roots with respect to λ2, being simple, will be real
negative numbers. The algebraic conditions providing specified properties of the
roots (necessary conditions of stability) represent the system of inequalities [11]:

{
v3 ≡ detM > 0 , v2 > 0 , v1 > 0 , v0 ≡ detK > 0 ,

Dis ≡ v2
2v

2
1 − 4v3

1v3 − 4v3
2v0 + 18v3v2v1v0 − 27v2

0v
2
3 > 0 .

(4)

The first condition in (4) is always satisfied by virtue of the positive definite-
ness of the kinetic energy matrix. We should note that, if at least one of the condi-
tions in (4) is replaced by a strict contrary inequality, system (3) will be unstable,
according to the Lyapunov theorem on instability in the first approximation [9].

Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization 55

Note also that the construction of the symbolic linearized model (3) (i.e.,
obtaining in the analytical form the elements of the matrices M , G , K), the
calculation of the coefficients vi (i = 0, 3) and the discriminant Dis from (4)
was also performed using the SP [6].

3 Parametric Analysis

3.1 Investigated Relative Equilibrium Positions

In [10], using the algorithms of constructing Gröbner bases, all the equilibrium
positions in regard to the OCS of a satellite-gyrostat are determined analytically
or numerically for three special cases. For these cases, the gyrostatic moment
vector is in one of the planes formed by the satellite’s principal central axes
of inertia. For example, in case h3 = 0 , h1 �= 0 , and h2 �= 0 , there are the
equilibrium orientations (the solutions of system of equations (2)):

{
α = α0 = π/2 , γ = γ0 = 0 ,

β = β0 = const : h2 sinβ0 − cosβ0 (h1 + 4 (A − B) sinβ0) = 0;
(5)

{
α = α0 = 0 , γ = γ0 = 0 ,

β = β0 = const : h2 sinβ0 − cosβ0 (h1 + (A − B) sinβ0) = 0.
(6)

Let us parametrize the problem. Without loss of generality, let hi > 0 ,
(i = 1, 2) , and B > A > C for definiteness.

Let us introduce dimensionless parameters:

H1 ≡ h1

B
; H2 ≡ h2

B
; JA ≡ A

B
; JC ≡ C

B
; pc ≡ cosβ0 ; ps ≡ − sinβ0. (7)

The values of the parameters belong to the intervals:

Hi > 0 , (i = 1, 2) ; 1/2 < JA < 1 , 1 − JA < JC < JA;

−1 < pc < 1 ,
(
pc �= 0 , ps = ±√

1 − p2c

)
.

(8)

3.2 The Gyroscopic Stabilization of Equilibrium (5)

Using (7), let us resolve the equation from (5) with respect to the parameter H1:

H1 = ps

(

4 (JA − 1) − H2

pc

)

. (9)

Taking into account notations (7) and expression (9), the equations of
motion (3) have the matrices:

M =

⎛

⎜
⎝

p2c + JAp2s 0 −JAps

0 JC 0
−JAps 0 JA

⎞

⎟
⎠;

56 A. V. Banshchikov

G =

⎛

⎜
⎝

0 −2 (JA − 1) pcps 0
2 (JA − 1) pcps 0 H2 − (JC + JA − 1) pc

0 (JC + JA − 1) pc − H2 0

⎞

⎟
⎠;

K =

⎛

⎜
⎝

3
(
JC − p2s − JAp2c

)
0 −3 (JC − 1) ps

0 K22 0

−3 (JC − 1) ps 0 K33

⎞

⎟
⎠, (10)

where K22 = H2/pc + 4 (1 − JA) p2c ; K33 = H2pc + (1 − JC)
(
2
(
p2c − p2s

) − 1
)
.

The parameter ps enters the coefficients of the system’s characteristic equa-
tion only in even degrees. Let us eliminate it, considering p2c + p2s = 1 . Let us
write down these coefficients depending on four parameters JA , JC , pc , H2 in
an explicit form:

v3 ≡ detM = JAJCp2c ; v2 = H2
2

(
JA − (JA − 1) p2c

)

+ H2pc
(
(JA − 1) p2c (6JA + JC − 2) − JA (6JA + JC − 7)

)

+ p2c

(
− (JA − 1) p2c

(
2 (3JA + 1) JC + (1 − 3JA)2 − 3J2

C

)

+ (JA (3JA − 2) − 3) JC + 9JA (JA − 1)2 + 3J2
C

)
;

v1 = H2
2

(
JA + 3JC − 3 − 4 (JA − 1) p2c

)
+ H2pc (JA (22 − 19JC)

− 3J2
A + (JA − 1) p2c (6JA + 19JC − 26) − 3 (JC − 7) (JC − 1)

)

+ p2c
(
(JA − 1) p2c

(
6JA (5 − 7JC) + 9J2

A − 3J2
C + 34JC − 31

)

+ 3 (JC − 1)
(
(3JA − 2) JC + 9 (JA − 1)2

))
;

v0 ≡ detK = 3
(
H2 − 4 (JA − 1) p3c

) (
H2

(
JC − 1 − (JA − 1) p2c

)

+ pc (JC − 1)
(
4 (JA − 1) p2c − 3JA − JC + 4

))
.

(11)

According to the Kelvin–Chetaev’s theorems [9], studying the questions on
stability of equilibria begins with an analysis of the matrix of potential forces.
For applied problems of spacecraft dynamics, one usually sets the distribution of
masses in the system, under which the initial matrix of potential forces will be
positive definite. Further, due to the influence of dissipative forces, the asymp-
totic stability of motion is ensured by the Lyapunov theorem. However, poten-
tially unstable systems may also be of interest, for example, because of the
possibility of nonstandard situations in orbit.

It is not difficult to show that the principal diagonal first-order minor of the
matrix K from (10) on the intervals (8) is negative. Hence, the matrix of poten-
tial forces is not positive definite and equilibrium (5) will be unstable. It is known
that if the equilibrium position is unstable at potential forces, Kelvin–Chetaev’s
theorem [9] of the influence of gyroscopic forces tells us that gyroscopic stabiliza-
tion is possible only for systems with an even degree of instability. The evenness

Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization 57

(or oddness) of the degree of instability according to Poincaré is determined by
the positivity (or negativity) of the determinant of the matrix of potential forces.

Let us pose the question of the possibility of the gyroscopic stabilization of
an unstable equilibrium (5) under a condition detK > 0 . With the help of the
“Mathematica” function:

Reduce[{ 1/2 < JA < 1 , 1 − JA < JC < JA , −1 < pc < 1 , pc �= 0 , H2 > 0 ,

detK > 0 } , {JA , JC , pc , H2 } ,Reals]

designed to find the symbolic (analytical) solution of the inequalities systems,
the region with an even degree of instability is obtained. Due to the solution
bulkiness, its presentation is omitted here. An analysis of the solution obtained
allows us to formulate the following conclusion.

Proposition 1. The region with an even degree of instability for equilibrium (5)
with the values of parameters JA , JC from (8) lies in the plane −1 < pc < 0 ∧
0 < H2 < 2 .

For the detection of a property of gyroscopic stabilization, it is necessary to
find in which part of region with an even degree of instability the remaining
inequalities from (4) are fulfilled (except for v3 ≡ detM > 0 , v0 ≡ detK > 0).

It is not possible to obtain an analytical solution for the entire system of
inequalities (4) (with the coefficients vi (i = 0, 3) from (11)) because of the large
number of parameters and the complexity of the expressions being analyzed.
Therefore, to simplify the analysis, let us move on to symbolic-numerical analysis
for fixed values of one or two parameters.

Let two parameters have the following values: JA = 51/100 , JC = 1/2 . Let
us construct the regions with an even degree of instability and of gyroscopic
stabilization in the parameter plane pc ,H2 using the “Mathematica” function

RegionPlot[−1 < pc < 0 ∧ 0 < H2 < 2 ∧ v0 > 0 ∧ v1 > 0 ∧ v2 > 0 ∧ Dis > 0 ,

{ pc ,−1 , 0 } , {H2 , 0 , 2 }]

designed for a graphical representation of the solution of the system of inequal-
ities. The result obtained is shown with regions in Fig. 1. The light part of the
shaded area in the figure is the region with an even degree of instability. Its
darker part determines the parameter values at which gyroscopic stabilization is
possible. Outside the selected regions, the system has an odd degree of instability
(i.e., detK < 0) and the equilibrium (5) is unstable.

It is noted that as the value of the parameter JA increases in the interval
from (8), the gyroscopic stabilization region narrows and ceases to exist, starting
from the value JA = 4/5 .

Drawing a conclusion from the symbolic-numerical modeling, we can formu-
late the following proposition.

Proposition 2. The unstable equilibrium (5) can be stabilized by gyroscopic
forces. Stabilization is possible only for the values of parameters (7) from the
intervals:

58 A. V. Banshchikov

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.5

1.0

1.5

2.0

pc

H
2

Fig. 1. The region with an even degree of instability and the region of gyroscopic
stabilization for JA = 51/100 , JC = 1/2

1
2

< JA <
4
5

∧ 1 − JA < JC < JA ∧ −1 < pc < 0 ∧ 0 < H2 < 2.

3.3 The Gyroscopic Stabilization of Equilibrium (6)

The equation from (6) in notations (7) is resolved with respect to the parameter
H1 as follows: H1 = ps (JA − 1 − H2/pc) . Considering the last relation, the
matrix of potential forces for the equilibrium (6) takes the form:

K =

⎛

⎜
⎝

3
(
p2s + JAp2c − JC

)
0 3 (JC − 1) ps

0 K22 0
3 (JC − 1) ps 0 K33

⎞

⎟
⎠, (12)

where K22 = H2/pc − (JA − 1) p2c ; K33 = H2pc − (JC − 1)
(
3 + p2c

)
.

The principal diagonal first-order minor of the matrix K from (12) on inter-
vals (8) is positive. Based on the structure of the matrix K, a region with an

Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization 59

even degree of instability exists only if the conditions K22 < 0 and detK > 0
are simultaneously satisfied. In this case, the equilibrium (6) will be unstable.
The set in the parameter space that satisfies the last inequalities is found using
the above-mentioned Reduce function and has the following solution:

1
2

< JA < 1 ∧ 1 − JA < JC < JA ∧ −1 < pc < 0

∧ H2 >
pc (JC − 1)

(
4JC − JA

(
p2c + 3

)
+ p2c − 1

)

JC − 1 − (JA − 1) p2c
. (13)

The coefficients of the characteristic equation (after the elimination of param-
eter ps) become:

v3 ≡ detM = JAJCp2c ; v2 = H2
2

(
JA − (JA − 1) p2c

)

+H2pc
(
(JA − 1) p2c (JC − 2) − JA (JC − 1)

)

+ p2c
(
(JA − 1) p2c (JC − 1) + JC

(
3 + JA + 3J2

A − 3 (JA + 1) JC

))
;

v1 = H2
2

(
3 + JA − 3JC + 2 (JA − 1) p2c

)
+ H2pc (JA (1 − 4JC)

+ 3J2
A + 3 (JC − 1)2 − 2 (JA − 1) p2c (3JA − 2JC + 1)

)

+ p2c
(
(JA − 1) p2c

(
2 (3JA + 5) JC − 3JA − 6J2

C − 4
)

− 3 (JC − 1) JC (3JA − 3JC + 1)) ;

v0 ≡ detK = 3
(
H2 − (JA − 1) p3c

) (
H2

(
(JA − 1)p2c − JC + 1

)

− pc (JC − 1)
(
(JA − 1)p2c + 3JA − 4JC + 1

))
.

(14)

For the reasons given in Sect. 3.2, let JA = 9/10 , JC = 4/5 . Let us substitute
these values into the coefficients (14) and the discriminant of the characteristic
equation. The region of gyroscopic stabilization for equilibrium (6) is found using
the function

RegionPlot[−1 < pc < 1 ∧ pc �= 0 ∧ H2 > 0 ∧ K22 < 0 ∧ detK > 0

∧ v1 > 0 ∧ v2 > 0 ∧ Dis > 0 , { pc ,−1 , 0 } , {H2 , 0 , 1.8 }]

and is shown in Fig. 2. As a result, we can formulate the following
Proposition 3. The unstable equilibrium (6), whose parameter values belong to
intervals (13), can be stabilized by gyroscopic forces.

It is important to note that the question of the possibility of gyroscopic
stabilization is not always resolved positively. In [3] for the case h2 = 0 , h1 �= 0 ,
and h3 �= 0 the stability of the equilibrium position

{
α = α0 = 0 , γ = γ0 = π/2 ,

β = β0 = const : h1 cos β0 + sinβ0 (h3 + (A − C) cos β0) = 0
(15)

was considered. In this article, the following proposition has been formulated
and proved.
Proposition 4. The unstable equilibrium (15) for parameters from intervals (8)
cannot be stabilized by gyroscopic forces.

60 A. V. Banshchikov

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.5

1.0

1.5

pc

H
2

Fig. 2. The region of gyroscopic stabilization when JA = 9/10 , JC = 4/5

4 Conclusion

The presented results of modeling and qualitative analysis of differential equa-
tions of motion (DEM) of a gyrostat by means of computer algebra indicate that
the proposed approach expands our capabilities in the study of multi-parameter
problems. In addition, the automatic mode at the stage of obtaining of DEM
in symbolic form spares routine computations for specialists and significantly
reduces the research time. It is planned to continue the analysis of gyroscopic
stabilization of other relative equilibria in order to obtain a more comprehen-
sive qualitative picture of research and compare it with the results obtained
earlier [2,5] for an axisymmetric gyrostat.

References

1. Agafonov, S.A.: The stability and stabilization of the motion of non-conservative
mechanical systems. J. Appl. Math. Mech. 74(4), 401–405 (2010)

2. Banshchikov, A.V.: Research on the stability of relative equilibria of oblate axisym-
metric gyrostat by means of symbolic-numerical modelling. In: Gerdt, V.P., Koepf,
W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 61–71.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3 5

https://doi.org/10.1007/978-3-319-24021-3_5

Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization 61

3. Banshchikov, A.V.: Symbolic-numerical analysis of the necessary stability condi-
tions for the relative equilibria of an orbital gyrostat. J. Appl. Indust. Math. 14(2),
213–221 (2020)

4. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Symbolic com-
putation in modelling and qualitative analysis of dynamic systems. Comput. Tech-
nol. 19(6), 3–18 (2014). (in Russian)

5. Banshchikov, A.V., Chaikin, S.V.: Analysis of the stability of relative equilibria
of a prolate axisymmetric gyrostat by symbolic-numerical modeling. Cosm. Res.
53(5), 378–384 (2015)

6. Banshchikov, A.V., Irtegov, V.D., Titorenko, T.N.: Software package for modeling
in symbolic form of mechanical systems and electrical circuits. Certificate of State
Registration of Computer Software. Federal service for intellectual property. No.
2016618253 (2016) (in Russian)

7. Banshchikov, A.V., Vetrov, A.A.: Application of software tools for symbolic
description and modeling of mechanical systems. In: Bychkov, I.V. et al. (eds.)
CEUR Workshop Proceedings of the 2nd International Workshop on Informa-
tion, Computation, and Control Systems for Distributed Environments, pp. 33–42
(2020). http://ceur-ws.org/Vol-2638/paper3.pdf

8. Beletskii, V.V.: Motion of an Artificial Satellite Relative to the Center of Mass.
Nauka, Moscow (1965).(in Russian)

9. Chetaev, N.G.: The Stability of Motion. Pergamon Press, New York (1961)
10. Gutnik, S.A., Sarychev, V.A.: Application of computer algebra methods for inves-

tigation of stationary motions of a gyrostat satellite. Program. Comput. Softw.
43(2), 90–97 (2017). https://doi.org/10.1134/S0361768817020050

11. Kozlov, V.V.: Stabilization of the unstable equilibria of charges by intense magnetic
fields. J. Appl. Math. Mech. 61(3), 377–384 (1997)

12. Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M.: Symbolic calculations
in studying the problem of three bodies with variable masses. Program. Comput.
Softw. 40(2), 79–85 (2014). https://doi.org/10.1134/S036176881402008X

13. Sarychev, V.A.: Problems of orientation of satellites. In: Itogi Nauki i Tekhniki.
Series ”Space Research”, vol. 11, pp. 5–224. VINITI Publication, Moscow (1978).
(in Russian)

14. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: Dynamics of a gyrostat satellite with
the vector of gyrostatic moment in the principal plane of inertia. Cosm. Res. 46(1),
60–73 (2008)

15. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Inc., Somerville
(2003)

http://ceur-ws.org/Vol-2638/paper3.pdf
https://doi.org/10.1134/S0361768817020050
https://doi.org/10.1134/S036176881402008X

Computer Science for Continuous Data

Survey, Vision, Theory, and Practice of a Computer
Algebra Analysis System

Franz Brauße1, Pieter Collins2, and Martin Ziegler3(B)

1 University of Manchester, Manchester, UK
2 Maastricht University, Maastricht, The Netherlands

3 KAIST, Daejeon, Republic of Korea
ziegler@kaist.ac.kr

Abstract. Building on George Boole’s work, Logic provides a rigor-
ous foundation for the powerful tools in Computer Science that under-
lie nowadays ubiquitous processing of discrete data, such as strings or
graphs. Concerning continuous data, already Alan Turing had applied
“his” machines to formalize and study the processing of real numbers:
an aspect of his oeuvre that we transform from theory to practice.

The present essay surveys the state of the art and envisions the future
of Computer Science for continuous data: natively, beyond brute-force
discretization, based on and guided by and extending classical discrete
Computer Science, as bridge between Pure and Applied Mathematics.

1 Introduction and Motivation

Since its early days, Computer Science has enjoyed the support and guidance of
Logic, from Theory via Engineering to Practice: recall Alan Turing’s 1936 pub-
lication preceding nowadays ubiquitous digital computers, or Alonzo Church’s
Lambda Calculus having led to functional programming languages, or axiomatic
structures in Model Theory corresponding to specification of Abstract Data
Types, or Hoare Logic for formal program verification—concerning the process-
ing of discrete data, such as graphs or integers or strings.

Continuous data on the other hand commonly arises in Engineering and
Science (natura non facit saltus) in the form of temperatures and fields; it
mathematically includes real numbers, smooth functions, bounded operators,
or compact subsets of an abstract metric space. Processing such continuous data
has arguably been lacking the foundation and support from Logic in Computer
Science that the discrete case is enjoying [11]:

35 years after introduction and hardware standardization of IEEE 754 floating
point numbers,mainstreamnumerics is still governedby this forcible discretization

This work was supported by the National Research Foundation of Korea (grant
2017R1E1A1A03071032) and by the International Research & Development Program
of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702) and by the

European Union’s Horizon 2020 MSCA IRSES project #731143.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 62–82, 2022.
https://doi.org/10.1007/978-3-031-14788-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_5

Survey: Computer Science for Continuous Data 63

of continuous data—in spite of violating associative and distributive laws, break-
ing symmetries, introducing and propagating rounding errors in addition to
an involved (and incomplete) axiomatization including NaNs and denormalized
numbers.

Deviations between mathematical structures and their hardware counterparts
are common also in the discrete realm, such as the wraparound 255 + 1 = 0
occurring in bytes that led to the “Nuclear Gandhi” programming bug. Therefore
nowadays high-level programming languages (like Java or Python) provide user
data types (like BigInt) that fully agree with mathematical integers, simulated
in software using a variable number of hardware bytes; and advanced discrete
data types (such as weighted or labelled graphs) can and do build on that,
reliably and efficiently.

The present essay expands on a similar perspective for continuous data
types: including real numbers, converging sequences, smooth/integrable func-
tions, bounded operators, compact subsets etc.—exactly, that is, devoid of
rounding errors, see Sect. 2. Section 3 discusses imperative programming over
such data: with computable semantics including limits, that is, beyond the
algebraic realm. Encoding such data over sequences of bits is described in
Sect. 4. And Sect. 5 connects discrete complexity theory, with famous classes
like P/NP/#P/PSPACE, to operations on continuous data such as integration.
Final steps for putting this theory into practice and its applications are col-
lected in Sect. 6.

2 Computable Continuous Data Types

Data types are at the core of Object-Oriented Programming, see Subsect. 2.1.
They constitute Computer Science’s counterpart to structures in Model Theory.
This section explains how, unlike in the discrete case, for continuous data types
already their specification often poses a challenge—and may require Kleene Logic
(Subsect. 2.2), enrichment (Subsect. 2.3) and/or multivaluedness (Subsect. 2.4)
in order to assert mere computability—before proceeding to complexity ques-
tions (Sect. 5). Subsects. 2.5 and 2.6 illustrate these with examples.

2.1 Formal Numerical Software Engineering

Formal software engineering of a data type/object proceeds from (i) problem
specification via (ii) algorithm design and (iii) analysis to (iv) proof of optimality
and finally (v) implementation and (vi) verification/testing in some high-level
object-oriented programming language. Depending on the particular endeavour,
some of these stages can of course be kept informal of skipped entirely. Item (iv)
here refers to Computational Complexity Theory [49], and implies a (meta)
“loop”: If the algorithm designed (ii) and analyzed (iii) is not optimal (iv), then
start over designing a more efficient one (ii).

Note how (ii) implicitly supposes that the problem specified in (i) actually
does admit an algorithmic solution—which in the discrete realm is usually the
case. In the real setting, however, any computable function must necessarily be

64 F. Brauße et al.

i) problem specification
ii) algorithm design and
iii) algorithm analysis
iv) proof of optimality — or repeat from (ii)
v) implementation and
vi) verification/testing.

Fig. 1. Six stages of full-fledged Formal Software Engineering. In practice some may
be omitted depending on the particular endeavour under consideration.

continuous1 [63, §2.2+§3.2+§4.3]; hence a näıve problem specification (such as
of finding the kernel of a given real matrix) easily results in algorithmic unsolv-
ability. Thus the need arises for another (meta) “loop” in Numerical Software
Engineering: if (ii) fails, start over from (i).

2.2 Kleene Logic Data Type, Generalized Sierpiński Topology

The sign function is discontinuous and thus uncomputable. More precisely, a real
test like “x > 0?” may take more runtime when x is close to zero—and in case
x = 0 fail to terminate at all:

Fact 1. Real inequality is “complete” for the Halting Problem H ⊆ N in the
following sense [63, Exercise 4.2.9]:

a) For every computable real sequence x̄ = (xj), the set {j ∈ N : xj > 0} is
computably reducible to H.

b) There exists a computable sequence x̄ of non-negative real numbers such that
said set coincides with H.

Note that fixing a computable real sequence makes the problem independent of
encoding issues, as the input consists only of an integer index. The thus non-
uniform Item a) follows from the following uniform claim with respect to any of
the many equivalent ways of encoding real numbers [63, §4.1]:
c) The partial sign function sign : R \ {0} → {−1,+1} is computable; same

for comparison � : R
2 \ {(x, x) : x ∈ N} → {ff, tt}, where ff and tt denote

computational counterparts to Booleans TRUE and FALSE.

A mathematically undefined expression (like 1/0) is sometimes denoted to “have”
value ⊥; comparison “x > 0” on the other hand is defined mathematically also
in case x = 0, but not computationally so. The latter is captured by Kleene
Logic K including, in addition to classical Booleans tt and ff, as third value uk
for (mathematically defined but computationally) “unknown”. Equip K with the
generalized Sierpiński’s topology

{∅, {tt}, {ff}, {ff, tt}, {uk, tt,ff}}

1 Arguably this also applies to the discrete case, where every function is trivially
continuous.

Survey: Computer Science for Continuous Data 65

and note that this non-Hausdorff topology fails to separate uk from the other
elements. Accordingly, a logical expression with mathematical value uk fails to
evaluate computationally.

K thus serves as “lazy” data type that can store unevaluated, computation-
ally partial predicates: such as “x > 0” for every x ∈ R, as well as any other
promise problem. Recall [19] that a (discrete) promise problem P is a disjoint
pair P+, P− ⊆ N, such that a query “m ∈ P?” answers tt in case m ∈ P+ and
answers ff in case m ∈ P− and gives no answer uk in case m �∈ P+ ∪ P−.

2.3 Enrichment/Promises

Promises generalize from decision to function problems, motivated as follows:
Topology requires that any non-constant function f : X → Z from a connected
domain X to the discrete set of integers must be discontinuous. This easily pre-
vents näıve problems from being computable, such as the matrix rank function,
or the multiplicities of degenerate eigenvalues. On the other hand providing—in
addition to the original continuous data—a suitable integer as input often does
render such a problem computable [71]. For example, by Fact 1c), the real sign
function is computable on X0 := R \ {0}, and on X1 := {0} trivially so. See
Subsect. 2.5 below for more examples.

In Constructive Mathematics such an effect is well-known as enrichment [36,
p. 238/239]; elsewhere also as advice [1,8]. It amounts to proceeding from total
but discontinuous f : X → Y to a partial function

f̃ : ⊆ X × Z 	 (x, k)
→ f(x) ∈ Y (1)

for some suitable—and now non-connected—domain X̃ := dom(f̃) ⊆ X × Z

whose projection Xk := {x : ∃k : (x, k) ∈ X̃} covers X. Put differently, the
accompanying argument k entails the promise that the “main” input x belongs
to the subset X̃k := {x : (x, k) ∈ X̃}.

2.4 Multivaluedness/Non-extensionality

Although any computable function must necessarily be continuous, this con-
straint can be avoided by considering relations, that is, by dropping extension-
ality. Relations mathematically capture search problems, where a query x ∈ X
has not necessarily one unique answer y = f(x), but a range of possible answers
y ∈ F (x) ⊆ Y .

In case the domain X is discrete/countable, namely when arguments x ∈ X
are finitely encoded and read in finite time, then any (deterministic) computation
of such a relation F actually computes a selection, that is, a function f ⊆ F . How-
ever in the continuous setting, multivaluedness is well-known unavoidable [42].

Mathematically one may identify the relation F with the single-valued total
function F : X 	 x
→ {y ∈ Y | (x, y) ∈ F} from X to the powerset 2Y ;
but the preferable notation of a multi function f :⊆ X ⇒ Y emphasizes that
not every y ∈ F (x) needs to occur as output. Another important reason to

66 F. Brauße et al.

consider multifunctions f : X ⇒ Y distinct from relations f ⊆ X × Y is related
to compactness: Generalizing continuity for single-valued functions, call such
a multifunction f compact-valued if f [Z] ⊆ Y is compact for every compact
Z ⊆ X.

A function problem f : X → Y becomes “easier” when restricting arguments
to x ∈ X ′ for some X ′ ⊂ X, that is, when proceeding to f ′ = f |X′ . A search
problem F : X ⇒ Y additionally becomes “easier” when increasing the range
of possible answers, that is, when proceeding to some F ′ ⊆ X ⇒ Y satisfying
F ′(x) ⊇ F (x) for every x ∈ dom(F ′). Such F ′ is also called a restriction of F .
Note that, unlike in the single-valued case, F ′ need not be a subset of F when
considered as graphs.

2.5 Examples

Example 2. The Archimedian Property of real numbers states that, to every
x ∈ R, there exists some k ∈ Z with k ≥ x.

Skolemization yields a function k : R → Z with ∀x : k(x) ≥ x. The least such
function is known as rounding up x
→ �x� and discontinuous. In fact any such
function must be discontinuous and hence uncomputable.

On the other hand the original property formulation suggests formalization
as a search (rather than function) problem Arch : R ⇒ Z. And indeed this
relaxation becomes computable as follows:

Obtain some rational input approximation to the argument x ∈ R up to
error 2−0 and round it up, exploiting that integer fractions can be operated on
exactly. Note that a different rational approximation to the same argument x
up to error 2−0 can yield a different output, i.e., violate extensionality.

Similarly, no integer rounding function is computable; whereas the following
multi function is:

Round : R 	 x
→ {k ∈ Z | x − 1 < k < x + 1} ⊆ Z (2)

Example 3. The Fundamental Theorem of Algebra states that, to every monic
univariate complex degree-d polynomial c0 + c1 · Z + · · · + cd−1 · Zd−1 + Zd

decomposes into linear factors (Z − z1) · · · (Z − zd).
This suggests formalization as a mapping

F : C
d 	 (c0, . . . , cd−1)
→ (z1, . . . , zd) ∈ C

d.

However note that no order on the roots z1, . . . , zd can be imposed mathemati-
cally; hence F should naturally be considered as multifunction.

Moreover it turns out that, similarly to Example 2, multivalued F is com-
putable while no single-valued selection of F is [59].

Example 4. Consider the problem of computing a basis of the kernel of a real
matrix A given by its entries. Note that this problem is already multivalued
problem to begin with, since such a basis is usually far from unique.

Survey: Computer Science for Continuous Data 67

Gaussian elimination involves pivot search and thus tests for real inequality—
which are uncomputable: recall Fact 1. Indeed already the (unique) cardinality
of a (non-unique) basis depends discontinuously on the matrix entries.

However enriching input A with said cardinality = rank(A) ∈ N does render
such a basis computable [71].

Example 5. Consider the problem of computing the spectral decomposition,
formalized as computing an (!) eigenvector basis, to a given symmetric real
matrix A ∈ R

d×d.
According to Example 3, a tuple of eigenvalues, repeated according to their

multiplicities, can be computed via the characteristic polynomial. However the
integer-valued multiplicities themselves are discontinuous and uncomputable in
their dependence on the matrix entries. Moreover computing an eigenvector
basis, although non-unique/multivalued, is impossible; whereas enriching input
A with the number k ∈ {1, . . . , d} of distinct eigenvalues renders the problem
computable [71, Theorem 11]. Moreover such d-fold advice turns out as opti-
mal [70, Theorem 46].

We remark that computing eigenspaces is possible, when equipping the latter
with the right topology.

Example 6. Alternative to the partial sign function from Fact 1, the following
total but multivalued so-called soft test [67, §6] is computable as well [7, p. 491]:

“x <n 0′′ = tt in case x < −2−n,

ff in case x > 2−n, and

either tt or ff in case − 2−n ≤ x ≤ 2−n.

(3)

Example 7. Fix promise problems P0, P1, . . . , Pd−1 ⊆ N with the aforementioned
computational semantics “(m ∈ Pj) ∈ K”. Consider the partial multi-valued
mapping choose : K

d ⇒ {0, 1, . . . , d−1} assigning to
(
(m ∈ P0), . . . , (m ∈ Pd−1)

)

to some j such that (m ∈ Pj) = tt. This is computable!

2.6 More Continuous Data Types

Real numbers are arguably the most basic continuous structure in Calculus;
vector, sequence, and function spaces for instance build on top of them. Similarly,
having turned real numbers into a computable data type (“level 0”) enables
now turning more advanced spaces from Mathematics into computable ones—
using the aforementioned techniques to deal with discontinuities: enrichment
(Subsect. 2.3) and multivaluedness (Subsect. 2.4). Specifically polynomials and
matrix operations have been discussed in Subsect. 2.5 above. Note that each
such object can be described with finitely many real numbers: “level 1”.

2) Sequence spaces �p are the next level, each element consisting of countably
infinitely many real numbers. A plethora of investigations [9,34,43,45] pro-
vide guidance on suitable enrichment (such as integer bounds on the norm)
to turn them into computable data types.

68 F. Brauße et al.

3) Power series can be identified with their germs/coefficient sequences in appro-
priately enriched sequence spaces [28, §3.1]; and analytic functions are local
power series—of which finitely many suffice to “cover” any fixed compact
subset of their domain [28, §3.2].

4) The hyperspace of non-empty compact subsets of Euclidean space is compu-
tably closed under union and under image of continuous functions [63, §6.2],
but not under (even promised non-empty) intersection [63, Exercise 5.1.15].
The hyperspace of convex compact subsets does satisfy this, and additional,
computational closure properties [39].

5) Space of probability measures [24,44,57] and subspace of Haar measures on
compact groups [51].

6) Spaces of continuous [63, §6.1], of smooth [28], and of integrable functions [29,
60]; equipped with operations like (anti or weak) derivative, or trace.

7) Differential geometry, that is, the hyperspace of closed (smooth) manifolds
equipped with (smooth) tensor fields on them.

3 New Numerical Programming

Since the early days of automated digital processing in assembly code, program-
ming has made tremendous progress. Nowadays high-level languages provide
both convenience/intuition and soundness/reliability—regarding discrete data,
such as integers or strings.

Numerical programming differs from this classical realm in that the under-
lying data type intrinsically incurs errors, namely from rounding. Tracing and
bounding the propagation of such deviations is up to the user programmer, and
the involved IEEE 754 standard makes reliable coding inconvenient. Practition-
ers therefore often imagine operating on real (instead of floating point) numbers.
This implicit approach thus trades convenience for reliability.

Algebraic numbers can be processed exactly, and the formal verification of
algebraic programs [48] may build on Tarski’s decidability of the First-Order
Theory of this algebraically closed field (although the latter excludes the expo-
nential as well as many other important analytic functions in Science and Engi-
neering and Calculus [6]).

Computable Analysis [63] on the other hand does provide a realistic char-
acterization of un/computable real functions beyond the algebraic realm. It is
however based on the (type-2) Turing machine model: theoretically important
but practically inconvenient for programming, not to mention formal verification.

Subsection 3.1 recalls an equivalent but convenient imperative model of com-
putation called ERC that comes as close to, and thus provides a sound for-
malization of, common implicit conceptions underlying numerical programming.
Previous and future ways for implementing it on actual digital computers are
discussed in Subsect. 3.2. ERC modifies the semantics of real comparison, and
Subsection 3.3 illustrates its use with some basic example algorithms. Subsec-
tion 3.4 provides a road map of continuous data types to next implement in ERC.

Survey: Computer Science for Continuous Data 69

3.1 Analytic Programming

The preprint [10] formalizes a (proof-of-concept) imperative programming lan-
guage called ERC supporting a data type REAL that agrees with the mathemati-
cal structure R, exactly. Its semantics is carefully designed to capture common
conceptions (sometimes implicitly) underlying numerical coding, while achiev-
ing “Turing-completeness” over the reals: Any function realizable in ERC is
computable in the sense of Computable Analysis—and vice versa. ERC thus
combines the structural benefits of Computable Analysis (such as closure under
composition and including transcendental functions) with the intuitive conve-
nience and practical pervasion of object-oriented imperative programming to
replace the hassles of Turing machines.

Paradigm 8. A mathematical partial function f :⊆ R → R is realized in ERC
as a (multi-)function of type Z × R ⇒ R: It receives its real argument x exactly,
as well as a separate integer2 parameter p → −∞, and must eventually return
some approximation to y = f(x) up to absolute error 2p → 0. To this end
during intermediate calculations, it may use arithmetic operations free of round-
ing errors. The “result” of a possibly partial comparison “x � y” according to
Fact 1(c) can be stored in a logic variable of type KLEENEAN (Subsect. 2.2), and
can be evaluated safely using the multivalued operation from Example 7 to yield
a total program.

The discrepancy between exact argument and approximate return value
might suspect to void closure under composition [68, p. 325]; however in combi-
nation with the modified partial semantics of comparison (Fact 1c), Computable
Analysis does assert closure under composition [64]. In particular an ERC pro-
gram expressing real function f as above may, in addition to using arithmetic
operations, call another ERC representing some other real function g with exact
argument z to receive and continue processing real return value w = g(z) exactly,
i.e., without having to worry about error propagation.

Remark 9. The error bound 2p (Z 	 p → −∞) is preferable over, say, 1/|p|:
1. It reflects that π has been approximated up to 2−billions [26].
2. It renders the underlying logic decidable; see Subsect. 3.5.
3. It yields numerical characterizations of popular discrete complexity classes;

see Subsect. 5.1.

A similar but more practically fleshed-out programming language for continuous
data has been devised in [3].

3.2 Implementations

Superficially, operating on real (including transcendental) numbers exactly as
postulated by ERC might seem technically infeasible: within finite time, only
2 One could replace it with some real error bound ε > 0.

70 F. Brauße et al.

finite information can be processed. This reproach is valid in operational seman-
tics, where (the order of) user commands correspond to finite blocks of machine
instructions executed in the same order. However functional programming regu-
larly removes this implicit condition, and adapting that relaxation to the imper-
ative setting does enable the above semantics in user space [38,46,69].

Technically speaking, operations can be realized “exactly” by actually pro-
cessing approximations of variable but finite precision; precision chosen auto-
matically, for any given n, such that (a) the output accuracy attained after
initial and propagated errors is ≤ 1/2n, and (b) the program flow remains
indistinguishable from hypothetical exact calculations.

Both conditions can be implemented by object-oriented overloading the oper-
ations involving continuous data. One approach executes the user program sym-
bolically, recording expressions of all variables’ contents in dependence on the
initial arguments—expressions which thus can be evaluated in any finite ini-
tial precision and with error propagation whenever needed for (a) output or
(b) to decide/branch on a comparison between two distinct reals. Another app-
roach trades runtime for memory namely, instead of recording and silently re-
evaluating symbolic expressions, silently re-executes the user program repeat-
edly in increasing but finite initial precision until sufficient to (b) decide all
comparisons/branches and (a) attain the desired output accuracy. Note that
either approach requires the user program to be devoid of side effects, as com-
mon in functional programming and “desirable” (but now mandatory) in the
imperative setting.

3.3 Example ERC Programs

Paradigm 8 was designed to yield a rigorous and real Turing-complete semantics
of analytic programming closest to numerical intuition. Thus it requires only
little adaptation to replace classical but uncomputable tests with their replace-
ments, as exemplified in this subsection:

Example 10. The Soft Test x <n 0 from Example 6 can be expressed in ERC:

choose
(

x > 2−n+1 , x < 2−n
)

ieq 1

Example 11. The multivalued rounding “function” from Eq. 2 after Example 2
can be represented in ERC as follows:

INTEGER Round(x:REAL);
LET k:INTEGER=0;
WHILE choose(x<1 , x>1/2) = 1

DO k:=k+1; x:=x-1; ENDWHILE;
WHILE choose(x>-1 , x<-1/2) = 1

DO k:=k-1; x:=x+1; ENDWHILE;
RETURN k;

Note that the loop bodies are executed roughly |x| times, that is, exponential
in the binary length of the output. See [10, §2.5] for a more efficient version
sufficing with a linear number of loop iterations.

Survey: Computer Science for Continuous Data 71

Classically, bisection is employed for finding the root of a function f : [a; b] → R.
Rigorously speaking however, this may fail in case the chosen mid-point c =
(a + b)/2 already happens to coincide with the root of the function: In this case
f(c) = 0, the test of sign f(c) to decide which of the two sub-intervals to proceed
with, fails to terminate; recall Fact 1. Instead, trisection with overlapping sign
conditions has been suggested [20, p. 336] and can be represented in ERC as
follows:

Example 12. Program Trisection(p : INTEGER, f : REAL → REAL)
let a : REAL = 0; let b : REAL = 1;
while choose

(
ı(p) � b − a, b − a � ı(p − 1)

)
= 1

let a′ : REAL = b/3 + 2 × a/3; let b′ : REAL = 2 × b/3 + a/3;
if choose

(
0 � f(a′) × f(b) , 0 � f(a) × f(b′)

)
= 1

then b := b′ elsea := a′ end if ;
end while; return a

Gaussian Elimination, as reported in Example 4, requires and suffices with
receiving the rank of the given matrix as additional input in order to become
computable. A rigorous implementation using full pivoting can be found at
http://github.com/realcomputation/iRRAMx.

Example 13. Common implementations drawing the Mandelbrot Set lack relia-
bility for two reasons: First the defining iteration is conducted in floating-point
arithmetic with rounding and truncation errors that propagate and make the
computed sequence differ from the mathematical one. Secondly, said sequence is
calculated for a fixed number N of iterations after which it is considered to not
diverge—without actual mathematical justification.

The first rigorous algorithm for computing the Mandelbrot Set (subject to the
Hyperbolicity Conjecture) is due to Peter Hertling [21] with first implementation
due to Jihoon Hyun:
http://github.com/realcomputation/MANDELBROT.

3.4 Advanced and Upcoming ERC Programs

Some of the computable continuous data types from Subsects. 2.5 and 2.6 already
have been implemented in ERC: such as polynomial root-finding (in the sense of
Example 3) with QR-algorithm and Wilkinson Shift, or matrix Gaussian Elimi-
nation (in the sense of Example 4) with full pivoting [50], or analytic functions
[58] or compact metric groups [51] or solution operators to selected PDEs [35].

Future efforts are directed towards similarly implementing:

– the hyperspace of compact subsets of Euclidean space [25];
– spaces of integrable functions defined on a compact Euclidean domain;
– closed manifolds from differential geometry;
– Random sampling of continuous objects (Subsect. 5.2).

See also Subsect. 6.1 below.

http://github.com/realcomputation/iRRAMx
http://github.com/realcomputation/MANDELBROT

72 F. Brauße et al.

3.5 Verification/Testing

According to Murphy’s Law of Computing, “Every non-trivial program has at
least one bug”. Verification and Testing are two major approaches to prevent or
at least reduce the number of errors. Beyond heuristical success stories [55], both
methods arguably lack logical justification: A program may well work correctly
throughout years and on billions of practical test instances yet still contain fun-
damental flaws, such as zero-day exploits. And Gödel Incompleteness/Hilbert’s
Tenth Problem translates to arithmetic programs which are correct, but whose
correctness provably cannot be proven [13].

Relative to such constraints on integer processing, formally verifying the
correctness of floating point calculations is possible [4]—but involved and messy:
Designed by the Institute of Electrical and Electronics Engineers, the IEEE 754
standard revolves around 1980ies hardware capabilities to support for example
NaNs and de/normalized numbers while violating mathematical associate and
distributive laws as well as logical completeness.

Real closed fields of characteristic zero on the other hand do admit an
intuitive and elegant axiomatization3, which is furthermore logically complete
according to Tarski. More generally, consider the many-sorted structure involving
real numbers and Presburger integers connected via the “precision” embedding
ı : Z 	 z
→ 2z ∈ R: It can express many (local) properties of ERC programs
and, building on work by van den Dries [2,14], is decidable: justifying auto-
matic formal verification. (Whereas other embeddings, such as ı̃ : N \ {0} 	
n
→ 1/n ∈ R, lead to Gödel undecidability.) Recall Remark 9 and see §4.1 in
arXiv:1608.05787 for details.

4 Coding Theory

Digital computers and Turing machines naturally operate on sequences of bits;
processing any other data, such as integers or graphs, needs first fixing encod-
ings for input and output. In the discrete case, this is usually straightforward
and/or complexity-theoretically inessential (up to polynomial time, say). How-
ever concerning continuous data, already real numbers suggest various encodings
with surprisingly different algorithmic properties: ranging from the computably
“unreasonable” binary expansion via qualitatively to polynomially and even lin-
early complexity-theoretically “reasonable” signed-digit expansion. But how to
distinguish between un/suitable encodings of other spaces common in Calculus
and Numerics, such as Sobolev?

This (meta) question has long been answered regarding qualitative com-
putability: admissibility [37,56] is a crucial condition for an encoding of a space X
to be “reasonable”. Following this conception, encodings are partial surjective
mappings (historically called representations) from Cantor space onto X; and
said mapping is required to be (a) sequentially continuous and (b) maximal with
respect to sequentially continuous reduction [63, §3.2]. Admissible encodings are

3 Without the second-order property of being topologically complete.

http://arXiv.org/abs/1608.05787

Survey: Computer Science for Continuous Data 73

guaranteed to exist for a large class of topological spaces, and to be Cartesian
closed. And for (precisely) these does the sometimes so-called Main Theorem
hold: which characterizes continuity of functions by the continuity of mappings
translating codes, so-called realizers.

Subsection 4.1 summarizes the preprint [41] on quantitatively/complexity-
theoretically refining said qualitative/computable admissibility from topological
to metric spaces. Further tailoring such efficient encoding to spaces with addi-
tional structure is discussed in Subsect. 4.2.

4.1 Quantitative Coding Theory of Compact Metric Spaces

[41] develops a generic approach to refine qualitative computability over topo-
logical spaces to quantitative complexity over metric spaces. It strengthens the
notion of unqualified admissibility to polynomial and to linear admissibility.
Informally speaking, the latter two require a representation to be (a) almost
“optimally” continuous (namely linearly/polynomially relative to the space’s
entropy) and (b) maximal with respect to relatively linearly/polynomially con-
tinuous reductions.

A large class of spaces is shown to admit a quantitatively admissible represen-
tation, including a generalization of the signed-digit encoding; and quantitatively
admissible representations exhibit a quantitative strengthening of the qualitative
Main Theorem, namely now characterizing quantitative continuity of functions
by quantitative continuity of realizers. Quantitative admissibility thus provides
the desired criterion for complexity-theoretically “reasonable” encodings.

The contribution then rephrases quantitative admissibility as quantitative
continuity of both the representation and of its set-valued inverse. For the latter
purpose, it adapts from [52] a new notion of sequential continuity for multi-
functions. By establishing a quantitative continuous selection theorem for multi-
functions between compact ultrametric spaces, it extends the above quantitative
Main Theorem from functions to multifunctions aka search problems. Higher-
type complexity is captured by generalizing Cantor’s (and Baire’s) ground space
for encodings to other (compact) ultrametric spaces.

4.2 Encoding Advanced Spaces in Analysis

Structures expanding on compact metric spaces support operations beyond the
metric. Making also these computable (subject to admissible encodings) is dis-
cussed in Subsect. 2.6 above. Minimizing their computational cost in turn relies
on further refining the encodings from Subsect. 4.1: Work in progress devel-
ops and compares tailored representations for spaces of (say, square) integrable
functions, and for Sobolev spaces of weakly differentiable functions. Such spaces
underlie the mathematical theory of partial differential equations [62], and are
thus required for the following complexity considerations:

74 F. Brauße et al.

5 Complexity Theory of Continuous Data

Over the past decades, Numerics has devised a myriad of methods: for effi-
ciently computing algebraic and transcendental constants and functions, for solv-
ing ordinary and differential and partial differential equations, for optimization
under constraints etc.

The efficiency of such a method can often be shown optimal by compari-
son to the quantitative stability of the problem it solves. When small pertur-
bations of the input lead to large changes in output, algorithms must neces-
sarily process and operate on high-precision data, incurring a large number of
bit manipulations.

Function maximization and Riemann integration are stable; yet information-
theoretically their approximation up to guaranteed absolute error 1/2n depends
on exponentially many sample points already in the smooth case; recall
Remark 9. This demonstrates information theory as another method for rig-
orous lower complexity bounds in Numerics.

But what if the function is fixed, so that only the precision parameter n ∈ N

remains as input? Subsect. 5.1 reports on surprising connections of numerical
problems in this setting to unary classical (i.e., discrete) complexity classes. Sub-
section 5.2 addresses the question of adapting randomization from the discrete
to the continuous setting.

5.1 Computational Complexity of Continuous Data

For any fixed polynomial-time computable real function f : [0; 1] → R, Har-
vey Friedman and Ker-I Ko had observed that its maximum max(f) can be
computed relative to an NP1 oracle and its definite integral

∫
f relative to a

#P1 oracle [17,31,33]. Recall that the latter denote restrictions of the famous
complexity classes NP and #P to inputs n ∈ N encoded in unary; and maxi-
mizing and integrating/counting a given, discrete (e.g., Boolean) function are
well-known complete for these respective classes.

Parametric maximization is the problem of maximizing f : [0; 1] → R not on
the entire interval, but on the subinterval [0;x] for a given real number x ≤ 1.
Similarly, computing the indefinite integral

∫ x

0
f(y) dy involves two arguments:

real x and integer precision parameter n. These turn out to be computable
in polynomial time relative to NP oracles and #P oracles, respectively. And,
perhaps surprisingly, this is optimal: there exist (even smooth) polynomial-time
computable real functions such that polynomial-time algorithms for parametric
maximization and indefinite integration yields polynomial-time solutions to NP
and #P, respectively [32].

Thus, perhaps contrary to intuition, proceeding from discrete to smooth
instances does not help (enough) in the rigorous sense of computational com-
plexity theory to proceed from NP/#P to polynomial time.

#P1-“completeness” of definite integration generalizes from the real unit
interval with respect to the Lebesgue measure to a large class of compact

Survey: Computer Science for Continuous Data 75

metric groups with respect the Haar measure [51]. Akitoshi Kawamura’s 2010
breakthrough result [27] similarly characterizes PSPACE via solving 1D smooth
ordinary differential equations. And recent contributions relate #P to solving
two linear prototype PDEs, namely (elliptic) Poisson [30] and (parabolic) Heat
Equation [35].

Next up on the to-do list is a complexity-theoretic classification of the (hyper-
bolic) linear Wave Equation, and of the non-linear Navier-Stokes Equation.
Subject the Millennium Prize Problem, Navier-Stokes maintains regularity and
its solutions remain in classical spaces of continuously differentiable functions
with their established coding and computability and complexity theory [61].
But regarding the Wave Equation, its regularity theory is well-established to
require Sobolev spaces for computability investigations [53,66]; and Subsect. 4.2
develops the quantitative coding theory necessary for complexity considerations.

5.2 Algorithmic Random Sampling of Continuous Data

Monte Carlo algorithms date back to the Manhattan Project, and randomization
has since evolved into an important technique in Computer Science: building up
from random bits to random integers, random real numbers etc. Like every subset
of natural numbers giving rise to a decision problem, every probability measure
gives rise to three conceptually distinct computational problems: (a) evaluating,
(b) integrating, and (c) random sampling.

Under mild assumptions, evaluation (a) and integration (b) are known com-
putably equivalent [65]; see also the many works of Hoyrup. The general relation
of (a) and (b) to (c) random sampling however seems open so far regarding
computability. This includes generalizing the real case with Lebesgue measure
to other Haar measures on compact groups, cmp. Subsect. 2.6. More generally
consider the problem of computably sampling elements from a separable but not
necessarily (sigma-)compact space, such as the Wiener space [40].

Following computability, the natural next question is concerned with compu-
tational complexity. Recall Subsect. 5.1 that, over the reals, (iii) sampling takes
polynomial time while (ii) integrating characterizes #P. Both generalize from the
real unit interval to convex bodies in Euclidean space [12,15]. Beyond the con-
tinuous Lebesgue measure, integration remains #P-hard for singular measures
[16] but becomes algorithmically easy for discrete (e.g., Dirac) measures.

Question 14. Is there a probability measure space where sampling is significantly
harder than integration?

6 From Theory to Applications via Practice

Sections 2 to 5 have expanded on four central concepts from classical computer
science and how to extend them to the continuous setting. Key examples illus-
trate how this has been achieved or is currently in progress or what to approach
next: to provide proofs-of-concept and opportunities to gather experience and

76 F. Brauße et al.

guidance, to pave the path. The present section explores and details ways to
finally flesh out between and beyond said case studies, to turn the theory into
practice, and to pursue applications.

The present section explores and details ways for finally fleshing out between
and beyond said case studies, to turn the theory into practice, and to pursue
applications: Subsect. 6.1 envisions thus growing a rich software library of con-
tinuous data types. The question of inputting and outputting smooth vector
fields is addressed in Subsect. 6.3. Combining such human-computer interface
with the software library for analytical computing complements common Com-
puter Algebra Systems, see Subsect. 6.4. Subsection 6.5 promotes its benefits to
Experimental Mathematics.

6.1 Software Library

The rigorous paradigm of Analytic Programming (Sect. 3) finally allows to
extend the six stages (i)–(vi) of Formal Software Engineering (Subsect. 2.1)
from discrete to continuous problems. It thus enables creating a collection of
abstract data types that build up from basic real numbers to the structures
of Advanced Calculus, reliably. Above we have illustrated selected stages of this
process (Fig. 1) with independent examples, such as: specification (Subsect. 2.6),
efficient coding (Sect. 4), complexity (Subsect. 5.1), imperative implementation
(Subsect. 3.4), and verification/testing (Subsecti. 3.5).

After completing these proofs-of-concepts comes extending, for each of the
above case-study data type levels (0) and (1) from Subsect. 2.6, the example stage
from the demonstration to range full-stack from (i) to (vi); and then similarly
applying formal Numerical Software Engineering from specification (i) to verifi-
cation/testing (vi) for the advanced structures in Calculus on levels (2) to (7).
This yields a gradually growing collection of reliable data types with algorith-
mically optimal methods in agreement with constructive proofs. Specifically the
following four examples, formulated abstractly and generically in Mathematics,
translate equally universally to algorithms using overloading:

Example 15. Equations are often solved by means of iterations:

a) The multiplicative inverse y = x−1 can be computed as solution to 1/y−x = 0
by Newton’s method yn+1 = yn · (2 − x · yn): generically in many rings, such
as for example of matrices or operators.

b) Similarly, the square root y =
√

x as solution of the equation x2 = y is
also often computed by means of Newton iterations aka Babylonian method
yn+1 =

(
yn + x · y−1

n

)
/2: again generically in many rings.

c) Picard’s method for solving ODEs amounts to iterations according to
Banach’s Fixedpoint Theorem in a suitable space of smooth functions.

d) Solutions to Navier-Stokes’ nonlinear PDE are also mathematically shown to
exist [18, §2] and being computable [61] by means of iterations in some space
of integrable functions.

Survey: Computer Science for Continuous Data 77

6.2 Hardware Acceleration

Being Turing-complete over the reals, Analytic Programming (Sect. 3) hides but
must and can build on processing ordinary variable precision approximations.
IEEE 754 floating point numbers have fixed precision, but enjoy a constant-
factor acceleration from hardware support—compared to software solutions.
Similarly accelerating ERC will thus combine the best of both worlds: reliability
and efficiency.

Previous work has already managed to beat the highly optimized software
library MPFRin quadruple precision by instead operating on pairs of hardware
doubles [23,25]. Alternative approaches may explore SIMD parallel processing
of many single precision floating point numbers on a GPU; or may develop
dedicated FPGAs/ASICs for multiprecision processing. In both cases, the com-
munication bottleneck to the main CPU/memory requires outsourcing complex
operations and sequences on once transferred data.

This endeavour naturally proceeds with the support of and collaboration
with Electrical Engineering.

6.3 User Interface

Processing is the middle part of the IPO model, whose extension from discrete to
continuous data have been discussed above. The first and last part of IPO refer to
input and output. Historical human-computer-interfaces like keyboard/printer
can input/output symbolic data, and are thus suitable for Computer Algebra
Systems manipulating expressions: one way of representing functions, but lacking
intuition. Intuitively and interactively “grabbing” and “pulling” is supported by
common graphical user interfaces, based on mouse devices for input and monitors
for output—but these are limited to 2D.

VR glasses can visualize 3D, but doing so for opaque non-scalar fields is
challenging to put it mildly; and motion sensing game controllers (like Kinect
or Nintendo Switch Pro) allow for “grabbing” and “pulling” in 3D, but they do
not support “twisting”, i.e., they cannot edit vortices.

Thus arises the need to develop a user interface for input and output of
real functions “living” in higher dimensions, such as scalar (e.g., temperature)
fields in 2D and 3D, or vector (e.g., force) fields. Its core challenge is for a
haptic data glove that, conversely to detecting user motions in space (as men-
tioned already supported by existing models), can also exercise free forces, i.e.,
to pull/drag the user’s hand in any direction and magnitude: allowing to “feel”
(as opposed/complement to “view” in VR) vector fields. Moreover, in order to
both feel and modify vortices of vector fields, the glove will be able to both sense
and exercise twisting motions according to any rotation vector.

This endeavour naturally proceeds with the support of and collaboration
with Mechanical Engineering.

78 F. Brauße et al.

6.4 Computer Analysis System

Combining the software library from Subsect. 6.1 with an interactive user inter-
face (cmp. Subsect. 6.3) yields a Computer Analysis System: complementing
contemporary Computer Algebra Systems, either standalone or—preferably—as
seamless extension to a suitable open system like OSCAR. Here each abstract data
type naturally turns into a package (interface). The plan is for further integration
with some theorem proof assistant, such as Coq/HOL.

6.5 Experimental Transcendental Mathematics

The rise of Computer Algebra Systems has truly boosted experimental
approaches to discrete branches of Mathematics; see for instance the works
of Shalosh B. Ekhad. Computer-assisted proofs of statements in continuous
Mathematics are a rising field, with breakthroughs concerning for example the
Kepler Conjecture or Smale’s 14th Problem. But these contributions remain iso-
lated, with each approach computationally tailored (e.g., whether using hardware
floats, or MPFR, and at which precision) to the particular problem: challenging
for good reasons [5,47], and far from the convenience and turnkey approaches
available in the discrete realm.

The software library from Subsect. 6.1 will remedy this deficiency, support-
ing reliable off-the-shelf computations for example in transcendental number
theory: by putting a variety of theoretical algorithms into practice [22,54] and
by spurring the development of new ones.

References

1. Ambos-Spies, K., Brandt, U., Ziegler, M.: Real benefit of promises and advice. In:
Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 1–11.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1 1

2. Avigad, J., Yin, Y.: Quantifier elimination for the reals with a predicate for the
powers of two. Theor. Comput. Sci. 370(1–3), 48–59 (2007). https://doi.org/10.
1016/j.tcs.2006.10.005

3. Bauer, A.: Clerical. https://github.com/andrejbauer/clerical (2017)
4. Boldo, S., Jourdan, J.H., Leroy, X., Melquiond, G.: Verified compilation of floating-

point computations. J. Autom. Reason. 54(2), 135–163 (2015)
5. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Chal-

lenge. SIAM (2004). http://www.siam.org/books/100digitchallenge/
6. Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential

function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words,
Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore
(2003), iCWLC 2000, Kyoto, Japan, March 14–18 (2000)

7. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4),
490–526 (1998)

8. Brattka, V., Pauly, A.: Computation with advice. In: Zheng, X., Zhong, N. (eds.)
CCA 2010, Proceedings of the Seventh International Conference on Computabil-
ity and Complexity in Analysis. Electronic Proceedings in Theoretical Computer
Science, vol. 24, pp. 41–55 (2010)

https://doi.org/10.1007/978-3-642-39053-1_1
https://doi.org/10.1016/j.tcs.2006.10.005
https://doi.org/10.1016/j.tcs.2006.10.005
https://github.com/andrejbauer/clerical
http://www.siam.org/books/100digitchallenge/

Survey: Computer Science for Continuous Data 79

9. Brattka, V., Schröder, M.: Computing with sequences, weak topologies and the
axiom of choice. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 462–476.
Springer, Heidelberg (2005). https://doi.org/10.1007/11538363 32

10. Brauße, F., et al.: Semantics, logic, and verification of “exact real computation”.
Tech. rep., arXiv (2021)

11. Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific
computing. Notice AMS 53(3), 318–329 (2006)

12. Cho, J., Park, S., Ziegler, M.: Computing periods In: Proceedings of the WAL-
COM: Algorithms and Computation - 12th International Conference, WALCOM
2018, Dhaka, Bangladesh, 3–5 March 2018, pp. 132–143 (2018). https://doi.org/
10.1007/978-3-319-75172-6 12

13. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978). https://doi.org/10.1137/0207005

14. Dries, L.v.d.: The field of reals with a predicate for the powers of two. Manus.
Math.54, 187–196 (1986), http://eudml.org/doc/155108

15. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991). https://
doi.org/10.1145/102782.102783

16. Férée, H., Ziegler, M.: On the computational complexity of positive linear func-
tionals on C[0; 1]. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015.
LNCS, vol. 9582, pp. 489–504. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32859-1 42

17. Friedman, H.: The computational complexity of maximization and integration.
Adv. Math. 53, 80–98 (1984). https://doi.org/10.1016/0001-8708(84)90019-7

18. Giga, Y., Miyakawa, T.: Solutions in lr of the Navier-stokes initial value problem.
Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

19. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

20. Hertling, P.: Topological complexity with continuous operations. J. Complex. 12,
315–338 (1996). https://doi.org/10.1006/jcom.1996.0021

21. Hertling, P.: Is the Mandelbrot set computable? Math. Log. Q. 51(1), 5–18 (2005)
22. Hertling, P., Spandl, C.: Computing a solution of Feigenbaum’s functional equation

in polynomial time. Log. Methods Comput. Sci. 10(4), 4:7, 9 (2014). https://doi.
org/10.2168/LMCS-10(4:7)2014

23. Hida, Y., Li, X.S., Bailey, D.H.: Library for double-double and quad-double arith-
metic. Tech. rep, Lawrence Berkeley National Laboratory (2007)

24. Hoyrup, M., Rute, J.: Computable measure theory and algorithmic randomness.
In: Handbook of Computability and Complexity in Analysis. TAC, pp. 227–270.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59234-9 7

25. Jiman, H.: Real computation: from computability via efficiency to practice. M.sc.
thesis, School of Computing (2021)

26. Kanada, Y.J.: . Math. Cult. 1(1), 72–83 (2003). Cal-
culation of circumferential ratio by computer

27. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Comput. Complex. 19(2), 305–332 (2010). https://doi.org/10.
1007/s00037-010-0286-0

28. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of
smoothness: parameterized bit-complexity of numerical operators on analytic func-
tions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/
10.1016/j.jco.2015.05.001

https://doi.org/10.1007/11538363_32
https://doi.org/10.1007/978-3-319-75172-6_12
https://doi.org/10.1007/978-3-319-75172-6_12
https://doi.org/10.1137/0207005
http://eudml.org/doc/155108
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1007/978-3-319-32859-1_42
https://doi.org/10.1007/978-3-319-32859-1_42
https://doi.org/10.1016/0001-8708(84)90019-7
https://doi.org/10.1007/11685654_12
https://doi.org/10.1006/jcom.1996.0021
https://doi.org/10.2168/LMCS-10(4:7)2014
https://doi.org/10.2168/LMCS-10(4:7)2014
https://doi.org/10.1007/978-3-030-59234-9_7
https://doi.org/10.1007/s00037-010-0286-0
https://doi.org/10.1007/s00037-010-0286-0
https://doi.org/10.1016/j.jco.2015.05.001
https://doi.org/10.1016/j.jco.2015.05.001

80 F. Brauße et al.

29. Kawamura, A., Steinberg, F., Ziegler, M.: Towards computational complexity the-
ory on advanced function spaces in analysis. In: Beckmann, A., Bienvenu, L.,
Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 142–152. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40189-8 15

30. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of
the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8),
1437–1465 (2017). https://doi.org/10.1017/S096012951600013X

31. Ko, K.I.: The maximum value problem and NP real numbers. J. Comput. Syst.
Sci. 24, 15–35 (1982)

32. Ko, K.I.: Complex. Theory Real Funct. Progress in Theoretical Computer Science,
Birkhäuser, Boston (1991)

33. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret. Com-
put. Sci. 20, 323–352 (1982)

34. Køber, P.K.: Uniform domain representations of �p-spaces. Math. Log. Q. 180(2),
180–205 (2007)

35. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving
systems of linear evolutionary partial differential equations. In: Santhanam, R.,
Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79416-3 13

36. Kreisel, G., Macintyre, A.: Constructive logic versus algebraization, I. In: Troelstra,
A., van Dalen, D. (eds.) The L. E. J. Brouwer Centenary Sympos. Studies in
Logic and the Foundations of Mathematics, vol. 110, pp. 217–260. North-Holland,
Amsterdam (1982), (Noordwijkerhout, June 8–13 1981)

37. Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38,
35–53 (1985)

38. Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. Math.
Struct. Comput. Sci. 17, 81–98 (2007)

39. Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set
computability. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N.
(eds.) Proceedings of the Fourth International Conference on Computability and
Complexity in Analysis (CCA 2007). Electronic Notes in Theoretical Computer
Science, vol. 202, pp. 73–88. Elsevier (2008), CCA 2007, Siena, Italy, 6–18 June
2007

40. Lee, H.: Random sampling of continuous objects. Ph.D. thesis, School of Comput-
ing (2020)

41. Lim, D., Ziegler, M.: Quantitative coding and complexity theory of continuous
data. Tech. rep., arXiv (2021)

42. Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret.
Comput. Sci. 5(3), 321–324 (1977)

43. McNicholl, T.H.: A note on the computable categoricity of �p spaces. In: Beck-
mann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 268–275.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 27

44. Mori, T., Tsujii, Y., Yasugi, M.: Computability of probability distributions and
characteristic functions. Log. Methods Comput. Sci. 9, 3:9, 11 (2013). https://doi.
org/10.2168/LMCS-9(3:9)2013

45. Mostowski, A.: On computable sequences. Fundam. Math. 44, 37–51 (1957)
46. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,

Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

https://doi.org/10.1007/978-3-319-40189-8_15
https://doi.org/10.1017/S096012951600013X
https://doi.org/10.1007/978-3-030-79416-3_13
https://doi.org/10.1007/978-3-319-20028-6_27
https://doi.org/10.2168/LMCS-9(3:9)2013
https://doi.org/10.2168/LMCS-9(3:9)2013
https://doi.org/10.1007/3-540-45335-0_14

Survey: Computer Science for Continuous Data 81

47. Nakao, M.T., Plum, M., Watanabe, Y.: Numerical Verification Methods and
Computer-Assisted Proofs for Partial Differential Equations. Springer Series in
Computational Mathematics, Springer (2019). https://doi.org/10.1007/978-981-
13-7669-6

48. Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and ter-
mination for polynomial programs. In: Konnov, I., Kovács, L. (eds.) 31st Inter-
national Conference on Concurrency Theory, CONCUR 2020, September 1–4,
2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 15:1–15:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.CONCUR.2020.15

49. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
50. Park, S., Ziegler, M.: Reliable degenerate matrix diagonalization. Tech. Rep. CS-

TR-2018-415, KAIST (2018)
51. Pauly, A., Seon, D., Ziegler, M.: Computing Haar measures. In: Fernández, M.,

Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic,
CSL 2020, January 13–16, 2020, Barcelona, Spain. LIPIcs, vol. 152, pp. 34:1–
34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.CSL.2020.34

52. Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations.
J. Log. Anal. 5(7), 1–39 (2013)

53. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such
that its unique solution is not computable. Advances in Math. 39, 215–239 (1981)

54. Rettinger, R.: Bloch’s constant is computable. J. Univ. Comput. Sci. 14(6), 896–
907 (2008)

55. Ryu, S., Park, J., Park, J.: Toward analysis and bug finding in javascript web
applications in the wild. IEEE Softw. 36(3), 74–82 (2019). https://doi.org/10.
1109/MS.2018.110113408

56. Schröder, M.: Admissible representations in computable analysis. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–
480. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342 48

57. Schröder, M.: Admissibly Represented Spaces and Qcb-Spaces. In: Handbook of
Computability and Complexity in Analysis. TAC, pp. 305–346. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-59234-9 9

58. Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of
solution operators for linear analytic systems of partial differential equations. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021.
LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85165-1 21

59. Specker, E.: The fundamental theorem of algebra in recursive analysis. In: Dejon,
B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Alge-
bra, pp. 321–329. Wiley-Interscience, London (1969)

60. Steinberg, F.: Complexity theory for spaces of integrable functions. Logical Meth-
ods in Computer Science 13(3), Paper No. 21, 39 (2017). https://doi.org/10.23638/
LMCS-13(3:21)2017

61. Sun, S.-M., Zhong, N., Ziegler, M.: Computability of the solutions to Navier-Stokes
equations via effective approximation. In: Du, D.-Z., Wang, J. (eds.) Complex-
ity and Approximation. LNCS, vol. 12000, pp. 80–112. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41672-0 7

62. Triebel, H.: Theory of Function Spaces I, II, III. Birkhäuser (1983, 1992, 2006).
https://doi.org/10.1007/978-3-0346-0416-1

https://doi.org/10.1007/978-981-13-7669-6
https://doi.org/10.1007/978-981-13-7669-6
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CSL.2020.34
https://doi.org/10.4230/LIPIcs.CSL.2020.34
https://doi.org/10.1109/MS.2018.110113408
https://doi.org/10.1109/MS.2018.110113408
https://doi.org/10.1007/11780342_48
https://doi.org/10.1007/978-3-030-59234-9_9
https://doi.org/10.1007/978-3-030-85165-1_21
https://doi.org/10.1007/978-3-030-85165-1_21
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.1007/978-3-030-41672-0_7
https://doi.org/10.1007/978-3-0346-0416-1

82 F. Brauße et al.

63. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

64. Weihrauch, K.: The computable multi-functions on multi-represented sets are
closed under programming. J. Univ. Comput. Sci. 14(6), 801–844 (2008)

65. Weihrauch, K., Tavana-Roshandel, N.: Representations of measurable sets in com-
putable measure theory. Logical Methods Comput. Sci. 10, 3:7,21 (2014). https://
doi.org/10.2168/LMCS-10(3:7)2014

66. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers
beat the Turing machine? Proc. Lond. Math. Soc. 85(2), 312–332 (2002)

67. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm
using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
LNCS, vol. 7921, pp. 434–444. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39053-1 51

68. Yap, C.K.: On guaranteed accuracy computation. In: Geometric Computation, pp.
322–373. World Scientific Publishing, Singapore (2004)

69. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 24

70. Ziegler, M.: Real computation with least discrete advice: a complexity theory of
nonuniform computability with applications to effective linear algebra. Ann. Pure
Appl. Logic 163(8), 1108–1139 (2012). https://doi.org/10.1016/j.apal.2011.12.030

71. Ziegler, M., Brattka, V.: Computability in linear algebra. Theoret. Comput. Sci.
326(1–3), 187–211 (2004)

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.2168/LMCS-10(3:7)2014
https://doi.org/10.2168/LMCS-10(3:7)2014
https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-15582-6_24
https://doi.org/10.1016/j.apal.2011.12.030

Computational Aspects of Equivariant
Hilbert Series of Canonical Rings

for Algebraic Curves

Hara Charalambous1 , Kostas Karagiannis2,3(B) , Sotiris Karanikolopoulos2,
and Aristides Kontogeorgis2

1 Department of Mathematics, School of Sciences,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

hara@math.auth.gr
2 Department of Mathematics, National and Kapodistrian University of Athens,

Panepistimioupolis, 15784 Athens, Greece
kontogar@math.uoa.gr

3 Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
konstantinos.karagiannis@manchester.ac.uk

Abstract. We study computational aspects of the problem of decom-
posing finite group actions on graded modules arising in arithmetic geom-
etry, in the context of ordinary representation theory. We provide an algo-
rithm to compute the equivariant Hilbert series of automorphisms acting
on canonical rings of projective curves, using the formulas of Chevalley
and Weil. Further, we apply our results on Fermat curves, determine
explicitly the respective equivariant Hilbert series and extend the com-
putation to the short exact sequence that arises from Petri’s Theorem.
Finally, we implement the above computations in Sage.

Keywords: Hilbert series · Group actions · Holomorphic differentials ·
Fermat curves

1 Introduction

1.1 Equivariant Hilbert Series

One of the most fundamental problems in representation theory of finite groups
is that of decomposing representations into direct sums of indecomposables.
Namely, given a finite group G acting on a vector space V over an arbi-
trary field k, the problem amounts to determining, for each indecomposable
representation W ∈ Ind(G) over k, a natural number nW,V such that V =⊕

W∈Ind(G) nW,V W . In the context of modular representation theory, that is, if

This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme �Human Resources Development,
Education and Lifelong Learning 2014-2020� in the context of the project “On the
canonical ideal of algebraic curves” (MIS 5047968).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 83–102, 2022.
https://doi.org/10.1007/978-3-031-14788-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_6&domain=pdf
http://orcid.org/0000-0002-9107-005X
http://orcid.org/0000-0003-0861-8959
http://orcid.org/0000-0002-6869-8367
https://doi.org/10.1007/978-3-031-14788-3_6

84 H. Charalambous et al.

the characteristic of the ground field is positive and divides the order of G, there
are several complications that make the general case of this problem practically
impossible; however, if char(k) = 0 or char(k) = p � |G|, every indecompos-
able representation is irreducible, and there is a direct approach using character
theory

nW,V = 〈χV , χW 〉 := 1
|G|

∑

g∈G

χV (g)χW (g),

where χV denotes the character of the representation ρ : G → GL(V).
The above technique can be also used when one generalizes the objects acted

on, from vector spaces V over k to modules M over some k-algebra R. Histori-
cally, a case of particular interest is that of finite groups acting as automorphisms
on polynomial rings: the study of their G-structure is essentially the main moti-
vation behind the development of invariant theory, a subject whose origins date
back to Hilbert’s fourteenth problem. The next level of abstraction dictates to
consider, instead of a polynomial ring, an arbitrary graded, Noetherian k-algebra
R =

⊕∞
d=0 Rd acted upon by a finite group G. Since each graded piece Rd is

a vector space over k, one can apply the techniques of the first paragraph to
obtain for each d ∈ N and each W ∈ Irr(G), natural numbers nW,d such that
Rd =

⊕
W∈Irr(G) nW,dW . The decomposition of R is then given by

R =
∞⊕

d=0

Rd =
∞⊕

d=0

⊕

W∈Irr(G)

nW,dW =
⊕

W∈Irr(G)

∞∑

d=0

nW,dW.

One obtains for each W ∈ Irr(G) a generating function for the sequence
{nW,d}∞

d=0

HR,W (T) =
∞∑

d=0

nW,dT
d.

By studying the convergence of HR,W (T), the infinite information of the action
of G on R, which is infinite dimensional over k, can be packaged in a finite
sequence {HR,W (T) | W ∈ Irr(G)} which is called the equivariant Hilbert series
of the pair (R,G). The best understood case is, again, that of polynomial rings: if
R = Sym (V) is the symmetric algebra of a finite dimensional k-vector space V ,
Molien’s theorem [15, Theorem 2.1] says that

HR,W (T) =
dimW

|G|
∑

g∈G

χW (g)
det (IdV − gT)

. (1)

Of course, hoping to obtain an analogous formula for arbitrary graded, Noethe-
rian k-algebras R, is unrealistic, unless one has some concrete information on
the action of G on R. Since graded, Noetherian k-algebras arise as homogeneous
coordinate rings of projective varieties, this can be achieved by switching the
viewpoint towards algebraic geometry.

Equivariant Hilbert Series of Canonical Rings of Curves 85

1.2 Petri’s Theorem

From now on we assume that k is algebraically closed. Let X be a smooth,
projective curve of genus g over k. Recall that X does not come a priori with
a fixed embedding into projective space; however, it is well known that explicit
projective embeddings can be constructed using (very ample) line bundles on X.
Of all possible projective embeddings of X, there is one that stands out as
canonical: that determined by the cotangent bundle ΩX , referred to also as the
sheaf of holomorphic differentials on X. It is given by

X → P
(
H0(X,ΩX)

) ∼= Pg−1
k , P �→ [ω1(P) : · · · : ωg(P)],

where {ω1, . . . , ωg} denotes a k-basis for the global sections H0(X,ΩX).
To see that this construction gives an embedding, we rephrase the above in

the algebraic language. Recall that the homogeneous coordinate ring of the pro-
jectivization P

(
H0(X,ΩX)

)
is the symmetric algebra Sym

(
H0(X,ΩX)

)
, which

may be identified with a polynomial ring in g variables. The canonical embedding
is then determined by the so-called canonical map, as ensured by the following
classic theorem [14] due to Max Noether, Federigo Enriques and Karl Petri.

Theorem 1. If X is not hyperelliptic and has genus g ≥ 4, the canonical map

φ : S := Sym
(
H0(X,ΩX)

) → SX :=
∞⊕

m=0

H0(X,Ω⊗m
X),

is surjective. Its kernel IX , the canonical ideal, is generated in degrees 2 and 3.

Quoting from [3, Section 2, §3], the canonical ring SX “is the homogeneous coor-
dinate ring of the canonically embedded curve X”. Any action of a finite group G
on X induces an action on SX , and thus, we may seek a formula for its equivari-
ant Hilbert series. Assuming that char(k) = p � |G|, we may use Molien’s formula
to compute the respective series for S and thus obtain the equivariant Hilbert
series for the canonical ideal IX . It is worth noting that these calculations are the
starting point in computing the action of G on the minimal graded resolution of
SX as an S-module. The latter is well-studied in the non-equivariant case mainly
due its connection to Green’s syzygy conjecture [5]; we hope that this work will
shed some light to possible generalizations in the equivariant case.

The main results of this paper are:

1. General formulas (Theorem 3) and an algorithm (Algorithm 2) that gives the
equivariant Hilbert series of SX for arbitrary curves X.

2. Explicit formulas (Theorem 4) for the equivariant Hilbert series of SX when
X is a Fermat curve.

3. A Sage [16] program1,2 that computes, when X is a Fermat curve:
(a) {HSX ,V (T) : V ∈ Irr(G)}, by implementing the formulas of Theorem 4.
(b) {HS,V (T) : V ∈ Irr(G)}, by implementing Molien’s formula.

1 http://users.uoa.gr/ kontogar/Code/EquivariantSage.ipynb.
2 http://users.uoa.gr/ kontogar/Code/EquivariantSage.pdf.

http://users.uoa.gr/~kontogar/Code/EquivariantSage.ipynb
http://users.uoa.gr/~kontogar/Code/EquivariantSage.pdf

86 H. Charalambous et al.

(c) {HIX ,V (T) : V ∈ Irr(G)}, subtracting the two above results.

We remark that similar results were obtained in our preprint [1] using differ-
ent techniques. We have verified computationally that the two approaches lead
to the same answers; a concrete theoretical proof involves complicated calcula-
tions, however we can indicatively provide the reader with one, i.e., for one of
the irreducible representations, upon request.

2 Equivariant Hilbert Series of Canonical Rings

Let X be a smooth, projective curve of genus g over an algebraically closed field k
of arbitrary characteristic p ≥ 0. Let G be a finite subgroup of its automorphism
group Autk(X) of order |G| not divisible by p. For m ≥ 1, we denote by Ω⊗m

X

the sheaf of holomorphic m-differentials on X and by Wm the k-vector space
H0(X,Ω⊗m

X) of its global sections. By the Riemann-Roch Theorem [6, IV.1.3],

dimk Wm =

⎧
⎪⎨

⎪⎩

1 , if m = 0
g , if m = 1
(2m − 1)(g − 1) , if m ≥ 2

it is further well known that the action of G on X induces an action on Wm for all
m ≥ 1. Let Irr(G) denote the group of irreducible representations of G over k; the
isomorphism class of each Wm, viewed as a kG-module, is uniquely determined
by a collection of integers {NV,m}V ∈Irr(G) such that Wm =

⊕
V ∈Irr(G) NV,mV .

The classic approach to computing the integers NV,m goes as follows.

Algorithm 1: Computing the multiplicities NV,m.
Inputs:
1. The character table [χV (g)]V ∈Irr(G)

g∈G
of G over k.

2. The action of G on the closed points of X.
3. A k-basis bm = {f(x, y)dx⊗m} for Wm.

Output: A list of integers {NV,m}V ∈Irr(G) such that Wm =
⊕

V ∈Irr(G) NV,mV .
Method:

1. For each g ∈ G
(a) Compute the matrix ρ(g), given by the action of g on the basis bm.
(b) Produce a list {χWm(g) : g ∈ G} where χWm(g) = Trace (ρ(g)).

2. For each V ∈ Irr(G), compute

NV,m =
1

|G|
∑

g∈G

χWm(g)χV (g).

The downside of the above algorithm comes from input (3), in that there does
not exist a general method to compute explicit bases for the k-vector spaces

Equivariant Hilbert Series of Canonical Rings of Curves 87

Wm = H0(X,Ω⊗m
X). Even in the few cases in which bases are known, one of

which is that of Fermat curves that we will study in Sect. 3, the sums in step (2)
can in practice become rather difficult to compute, see for example our proof
of [1, Theorem 20]. An alternative approach, exploited with great success by
many authors, see for example [2,4] and [8], is to express the multiplicities NV,m

in terms of the ramification data of the action of G on X. The resulting formulas
are much easier to use, both in terms of the input required and in terms of
computational complexity; however, as is usually the case in such situations, they
require some familiarity with technical aspects of arithmetic geometry, which we
briefly recall here. For more details the reader may refer to [6, Chapter IV], [12,
Chapters 4 & 10], or [13].

From now on, we assume that the characteristic of k is either 0 or does
not divide |G|. Let Y = X/G be the quotient of X by the action of G. The
quotient map π : X → Y is a non-constant, regular morphism of curves of
degree |G|, so that the number of points in a generic fiber π−1 (Q) , Q ∈ Y is
equal to |G|. There exists a finite set of points Q ∈ Y for which the fiber π−1 (Q)
has cardinality strictly less than |G|, called the branch locus of π and denoted
by B. The ramification locus of π is R = π−1 (B) ⊆ X. By [7, Theorem 11.49],
the decomposition group of a point P ∈ X is the cyclic group GP = {σ ∈ G :
σ(P) = P} and its order is called the ramification index of P ∈ X. Since the
ramification index is the same for all points in the orbit of P ∈ X, we denote it
by eQ, where Q = π(P) ∈ Y . The cyclic group GP has eQ-many, distinct, one-
dimensional irreducible representations, determined by their characters. Fix ζeQ

to be a primitive eQ-th root of unity; the irreducible characters of GP are all of
the of the form χd

P , 1 ≤ d ≤ eQ, where χP , is the fundamental character at the
point P , that is, the character obtained by letting GP act on a local uniformizer
uP at P considered modulo u2

P . The monodromy element σP is a generator of GP

such that σP (uP) = ζeQ
uP . For each irreducible representation V of G, we denote

by nd,Q,V the multiplicity of the irreducible character χd
P in the decomposition

of the restricted representation ResGGP
(V), i.e., nd,Q,V = 〈χd

P ,ResGGP
(χV)〉. We

summarize the above in the table below.

Table 1. Notation for the ramification data of the action of G on X

Y = X/G Quotient of X by the action of G

R Ramification locus of π : X → Y

B Branch locus π : X → Y

eQ Ramification index at Q ∈ B

GP = {σ ∈ G : σ(P) = P} decomposition group at P ∈ R

σP monodromy generator of GP , P ∈ R

{χd
P : 0 ≤ d ≤ eQ − 1} irreducible characters of GP

∼= Z/eQZ

{nd,Q,V : Q ∈ B, 0 ≤ d ≤ eQ − 1, V ∈ Irr(G)} multiplicities of χd
P in ResGGP

(V)

The following result gives an explicit formula for the multiplicities NV,m.

88 H. Charalambous et al.

Theorem 2 (Chevalley-Weil [2]). For each V ∈ Irr(G), we have that

NV,m = EV,m + (2m − 1)(gY − 1) dimV

+
∑

Q∈B

eQ−1∑

d=0

(

(m − 1)
(

1 − 1
eQ

)

+
〈

m − 1 − d

eQ

〉)

nd,Q,V ,

where B, eQ and nd,Q,V are given in Table 1, gY is the genus of Y ,

EV,m =

⎧
⎪⎨

⎪⎩

NV ∗,1 , if m = 0 (V ∗ denotes the dual of V)
1 , if m = 1 and V is the trivial representation
0 , otherwise.

and 〈x〉 = x − �x� denotes the fractional part of x.

Remark 1. For a proof of the above, see [4, Th. 3.8 & Rem. 3.9] The authors com-
pute the multiplicity of V in the equivariant Euler characteristic [H0(X,Ω⊗m

X)]−
[H1(X,Ω⊗m

X)]. The formula for EV,m, which is the multiplicity in H1(X,Ω⊗m
X),

follows from the Riemann-Roch theorem combined with Serre’s duality. It is
worth mentioning that the above result was generalized in [8] to the weakly
ramified case.

Theorem 3. The equivariant Hilbert series of SX =
⊕

m H0(X,Ω⊗m
X)

HSX ,V (T) =
∞∑

m=0

NV,mTm

of an irreducible representation V of G is given by the rational function

HSX ,V (T) = NV ∗,1 + δV T +
3T − 1
(1 − T)2

(gY − 1) dimV +
T

(1 − T)2
dimV |B|

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T)
1 − T eQ

,

where δV = 1 for V = Vtriv and 0 otherwise,

fQ,V (T) =
eQ−1∑

d=0

nd,Q,V T d

and |B| denotes the cardinality of the branch locus of the cover X → X/G.

Our computations will be in two steps. Write

HSX ,V (T) = NV ∗,1 + δV T + FV (T) + GV (T),

Equivariant Hilbert Series of Canonical Rings of Curves 89

where

FV (T) =
∞∑

m=0

⎛

⎝(2m − 1)(gY − 1) dimV +
∑

Q

eQ−1∑

d=0

(m − 1)
(

1 − 1
eQ

)

nd,Q,V

⎞

⎠Tm

GV (T) =
∞∑

m=0

∑

Q

eQ−1∑

d=0

nd,Q,V

〈
m − d − 1

eQ

〉

Tm. (2)

Lemma 1.

FV (T) =
3T − 1
(1 − T)2

(gY − 1) dimV +
2T − 1
(1 − T)2

dimV
∑

Q

(

1 − 1
eQ

)

.

Proof. The result follows from the well-known formulas
∞∑

m=0

(2m − 1)Tm =
3T − 1
(1 − T)2

, and
∞∑

m=0

(m − 1)Tm =
2T − 1
(1 − T)2

,

as well as the fact that
eQ−1∑

d=0

nd,Q,V = dimV .

To compute GV (T), we first prove the following auxiliary lemma.

Lemma 2. For A ∈ Z and 1 < e ∈ N, we have that
∞∑

m=0

〈
m + A

e

〉

Tm =
T

e(1 − T)2
+

vA

e(1 − T)
− T e−vA

(1 − T e)(1 − T)
,

where vA is the remainder of the division of A by e.

Proof. Recall that 〈x〉 = x − �x�. Write m = πe + v and A = πAe + vA, for
0 ≤ v, vA < e and π, πA ∈ Z. Then

〈
m + A

e

〉

=
v + vA

e
−

⌊
v + vA

e

⌋

,

and thus
∞∑

m=0

〈
m + A

e

〉

Tm =
e−1∑

v=0

∞∑

π=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

(T e)π T v

=
1

1 − T e

e−1∑

v=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

T v.

Next, we remark that since
⌊

v + vA

e

⌋

=

{
0 if 0 ≤ v + vA ≤ e − 1
1 if e ≤ v + vA < 2e

,

90 H. Charalambous et al.

we have that

e−1∑

v=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

T v =
e−1∑

v=0

v + vA

e
T v −

e−1∑

v=e−vA

T v

=
1
e

e−1∑

v=0

vT v +
vA

e

e−1∑

v=0

T v − T e−vA

vA−1∑

v=0

T v.

Each of the three sums is given by

1
e

e−1∑

v=0

vT v =
eT e+1 − T e+1 − eT e + T

e(1 − T)2
= − T e

(1 − T)
+

T (1 − T e)
e(1 − T)2

,

vA

e

e−1∑

v=0

T v =
vA(1 − T e)
e(1 − T)

,

T e−vA

vA−1∑

v=0

T v = T e−vA
1 − T vA

1 − T
=

T e−vA

1 − T
− T e

1 − T
.

Observe that the first term of the first sum cancels out with the second term of
the third sum, and thus

∞∑

m=0

〈
m + A

e

〉

Tm =
1

1 − T e

(
T (1 − T e)
e(1 − T)2

+
vA(1 − T e)
e(1 − T)

− T e−vA

1 − T

)

=
T

e(1 − T)2
+

vA

e(1 − T)
− T e−vA

(1 − T e)(1 − T)
.

Corollary 1. Let GV (T) be as in Eq. (2) and fQ,V (T) =
∑eQ−1

d=0 nd,Q,V T d.
Then

GV (T) =
dimV · T

(1 − T)2
∑

Q

1
eQ

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

(
fQ,V (T)
1 − T eQ

)

.

Equivariant Hilbert Series of Canonical Rings of Curves 91

Proof. Observe that if 0 ≤ d ≤ eQ−1, the remainder of the division of A = −d−1
by eQ is vA = eQ − d − 1. Thus, applying Lemma 2 for A = −d − 1 we obtain

∞∑

m=0

∑

Q

eQ−1∑

d=0

nd,Q,V

〈
m − d − 1

eQ

〉

Tm =
∑

Q

eQ−1∑

d=0

nd,Q,V

∞∑

m=0

〈
m − d − 1

eQ

〉

Tm

=
∑

Q

eQ−1∑

d=0

nd,Q,V

(
T

eQ(1 − T)2
+

eQ − d − 1
eQ(1 − T)

− T d+1

(1 − T eQ)(1 − T)

)

=
∑

Q

eQ−1∑

d=0

nd,Q,V T

eQ(1 − T)2
+

(

1 − 1
eQ

)
nd,Q,V

1 − T
− nd,Q,V d

eQ(1 − T)
− nd,Q,V T d+1

(1 − T eQ)(1 − T)

=
∑

Q

fQ,V (1)T
eQ(1 − T)2

+
(

1 − 1
eQ

)
fQ,V (1)
1 − T

− f ′
Q,V (1)

eQ(1 − T)
− fQ,V (T)T

(1 − T eQ)(1 − T)
.

Using again the fact that fQ,V (1) =
eQ−1∑

d=0

nd,Q,V = dimV gives the desired result.

Proof (of Theorem 3). Let FV (T) and GV (T) be as in Eq. (2). By Lemma 1 and
Corollary 1 we have that

FV (T) =
3T − 1
(1 − T)2

(gY − 1) dimV +
2T − 1
(1 − T)2

dimV
∑

Q

(

1 − 1
eQ

)

,

GV (T) =
dimV · T

(1 − T)2
∑

Q

1
eQ

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

(
fQ,V (T)
1 − T eQ

)

.

Adding the second term of FV (T) to the second term of GV (T) gives

(2T − 1) dimV

(1 − T)2
∑

Q

(

1 − 1
eQ

)

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

=
dimV · T

(1 − T)2
∑

Q

(

1 − 1
eQ

)

=
dimV · T

(1 − T)2
#B − dimV · T

(1 − T)2
∑

Q

1
eQ

,

and the last term above cancels out with the first term of GV (T). Thus

FV (T) + GV (T) =
3T − 1
(1 − T)2

(gY − 1) dimV +
T

(1 − T)2
dimV |B|

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T)
1 − T eQ

.

92 H. Charalambous et al.

As a corollary we obtain the below algorithm.

Algorithm 2: Computing the equivariant Hilbert series {HSX ,V (T) : V ∈
Irr(G)}.
Inputs:
1. The character table [χV (g)]V ∈Irr(G)

g∈G
of G over k.

2. The action of G on the closed points of X.

Output: A list of rational functions {HV (t) : V ∈ Irr(G)}
Method:

1. Compute the ramification locus R and the branch locus B of π : X → Y .
2. Compute gY using the Riemann-Hurwitz formula [17, Theorem 3.4.13].
3. For each Q ∈ B

(a) Compute the ramification index eQ.
(b) For each V ∈ Irr(G) and each 0 ≤ d ≤ eQ − 1 compute

nd,Q,V = 〈χd
P ,ResGGP

(χV)〉 and fQ,V (T) =
∑

d

nd,Q,V T d.

4. For each V ∈ Irr(G), compute HSX ,V (T) using Theorem 3.

There are two advantages of Algorithm 2 over Algorithm 1. Firstly it can be
used in the cases in which explicit k-bases for polydifferentials are not known; sec-
ondly the inner products of step 3(b) are taken over the decomposition groups GP

which are strictly smaller than the full automorphism group G. On the other
hand, its disadvantages are that one needs to compute the ramification data of
the cover π : X → Y , a problem which is wide open in its full generality, and
that computing the multiplicities nd,Q,V is not always a straightforward task.
We shall demonstrate how this is done in the next section by applying our results
to Fermat curves.

3 The Case of Fermat Curves

Let Fn be a Fermat curve with affine model xn + yn + 1 = 0, defined over an
algebraically closed field k of characteristic p ≥ 0. We assume that n ≥ 4, p > 3
and n−1 is not a power of p. To describe the automorphism group G = Autk(X),
we write

A := Z/nZ × Z/nZ = {σα,β : 0 ≤ α, β ≤ n − 1}
S3 = 〈s, t : s3 = t2 = 1, tst = s−1〉 = {1, s, s2, t, st, ts}.

and note that S3 acts on A by conjugation as:

h ∈ S3 s s2 t ts st

h−1σα,βh σβ−α,−α σ−β,α−β σ−α,β−α σβ,α σα−β,−β

Equivariant Hilbert Series of Canonical Rings of Curves 93

Remark 2. An automorphism σ : Fn → Fn acts on functions f ∈ k(Fn) by
σ(f) = f ◦σ−1. The group acts on the left on points, so (σ1σ2)P = σ1(σ2P), and
the action on functions satisfies (σ1σ2f) = f◦(σ1σ2)−1 = f◦σ−1

2 ◦σ−1
1 = σ1(σ2f).

In [11] and [18] the authors prove that Fn has genus g = (n−1)(n−2)
2 , automor-

phism group G = A � S3 and that the action of G on the function field k (Fn),
i.e., the field k(x, y) subject to the equation xn + yn + 1 = 0, is given by

g ∈ G σα,β s s2 t ts st

g(x, y)
(
ζα
n x, ζβ

ny
) (

y
x , 1

x

) (
1
y , x

y

) (
1
x , y

x

)
(y, x)

(
x
y , 1

y

)

where ζn is a fixed primitive n-th root of unity. The above gives us the second
required input item for Algorithm 2. Regarding the first, we use the character
table of G that was computed in [1, Proposition 3]. Recall that S3 has three
irreducible representations: the trivial representation, the sign representation
and the standard representation, denoted by ρtriv, ρsgn and ρstan respectively.

Proposition 1. The irreducible representations of G are given in the table
below,

Rep. Degree Character χ(σα,βx), where x ∈ S3

θ νn
3 , νn

3 ,ρ 1 ζ
νn
3 (α+β)χρ(x)

θ νn
3 , νn

3 ,ρstan 2 ζ
νn
3 (α+β)χstan(x)

θκ,κ,ρ 3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζκ(α+β) + ζκ(α−2β) + ζκ(β−2α) , if x = 1
ζκ(α+β)χρ(x) , if x = ts

ζκ(α−2β)χρ(x) , if x = t

ζκ(β−2α)χρ(x) , if x = st

0 , if x = s, s2

θκ,λ,ρtriv 6

⎧
⎪⎨

⎪⎩

(
ζκα+λβ + ζ−(κ+λ)α+κβ + ζλα−(κ+λ)β+
ζλα+κβ + ζ−(κ+λ)α+λβ + ζκα−(κ+λ)β

)

, if x = 1

0 , if x �= 1

where ν ∈ {0, 1, 2}, ρ ∈ {ρtriv, ρsgn}, κ, λ ∈ Z/nZ, κ, λ �= νn
3 , κ �= λ, κ �=

−2λ, λ �= −2κ and the representations corresponding to κ, λ ∈ {n
3 , 2n

3 } appear
only when 3 | n.

In what follows, we fix all primitive roots of unity to be compatible with the
chosen ζn, in the sense that if n | i, then ζi must satisfy ζ

i/n
i = ζn, whereas if

i | n then ζi = ζ
n/i
n .

Proposition 2. The quotient Fn/G is isomorphic to P1
k, the branch locus of

Fn → P1
k consists of three points P∞, P1, P0. The points Q∞ = (ζ2n, 0), Q1 =

94 H. Charalambous et al.

(1, n
√−2), Q0 = (ζ46n, ζ26n) of Fn lie above each of the three mentioned points, and

their isotropy groups and monodromy generators are given in the following table.

point group monodromy
Q∞ = (ζ2n, 0) Z/2nZ σ1,1t

Q1 = (1, n
√−2) Z/2Z t

Q0 = (ζ46n, ζ26n) Z/3Z σ−1,−1s
2

Proof. The proof can be found at the appendix.

The above implies that, in the notation of Theorem 3, we have gY = 0 and
|B| = 3. Thus the third and fourth term of HSX ,V simplify as follows

3T − 1
(1 − T)2

(gY − 1) dimV +
T

(1 − T)2
dimV |B| = dimV

(1 − T)2
.

Theorem 4. With the above notation, we have that

HSX ,V (T) = NV ∗,1+δV T +
dimV

(1 − T)2
− 1

1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T)
1 − T eQ

,

where δV = 1 for V = Vtriv and 0 otherwise, the polynomials fQ,V (T) are given
in the table below

V ∈ Irr(G) fQ∞,V (T) fQ0,V (T) fQ1,V (T)

θ0,0,ρtriv 1 1 1

θ0,0,ρsgn Tn 1 T

θn
3 , n

3 ,ρtriv T
4n
3 T 1

θn
3 , n

3 ,ρsgn T
n
3 T T

θ 2n
3 , 2n

3 ,ρtriv
T

2n
3 T 2 1

θ 2νn
3 , 2νn

3 ,ρsgn
T

5n
3 T 2 T

θ νn
3 , νn

3 ,ρstan T
νn
3 + Tn+ νn

3 1 + T + T 2 − T ν 1 + T

θκ,κ,ρtriv Tκ + Tn+κ + T [−2κ]n 1 + T + T 2 2 + T

θκ,κ,ρsgn Tκ + Tn+κ + T [−2κ]n+n 1 + T + T 2 1 + 2T

θκ,λ,ρtriv

Tκ + Tλ + Tn+κ + Tn+λ

+T [−(κ+λ)]n + T [−(κ+λ)]n+n
2(1 + T + T 2) 3 + 3T

and [x]n denotes the smallest non-negative remainder of the division of x by n.

Equivariant Hilbert Series of Canonical Rings of Curves 95

The proof of the above will be given separately for each of fQ∞,V , fQ0,V , fQ1,V ,
by considering all irreducible representations of Proposition 1. To do so, one
needs to calculate first the multiplicities nd,Q,V , Q ∈ {Q∞, Q0, Q1} as follows:

1. For each Q, write GQ = {σi
Q : 0 ≤ i ≤ eQ} where σQ is the local monodromy

and eQ is the ramification index, both taken from Proposition 2.
2. For each 0 ≤ i ≤ eQ, find σαi,βi

∈ A and xi ∈ S3 such that σi
Q = σαi,βi

xi.
3. Fix a primitive root of unity ζeQ

compatible with ζn as discussed above.
4. Compute nd,Q,V = 〈ResGGQ

(χV) , χd
Q〉 = ∑eQ−1

i=0 χV

(
σi

P

)
ζ−id
eQ

.

3.1 The Polynomials fQ∞,V (T)

By Proposition 2, Q∞ = (ζ2n, 0) and GQ∞ is generated by the monodromy
element σ1,1t. Since (σ1,1t)

2 = σ0,1, we have that

(σ1,1t)2k = σ0,k and (σ1,1t)2k+1 = σ1,k+1t, for 0 ≤ k ≤ n − 1,

and thus, for 0 ≤ d ≤ 2n − 1, we have that

nd,Q∞,V = 〈ResGGQ∞
(χV) , χd

Q∞〉

=
1
2n

n−1∑

	=0

ζ
2	(−d)
2n χV (σ0,) +

1
2n

n−1∑

	=0

ζ
(2	+1)(−d)
2n χV (σ1,	+1t).

• When V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn}, Proposition 1 gives

χV (σ0,) = ζ
νn�
3

n = ζ
2νn�

3
2n and χV (σ1,	+1t) = ζ

νn(�+2)
3

n χρ(t) = ζ
2νn(�+2)

3
2n χρ(t).

Thus, we compute

nd,Q∞,V =
1
2n

n−1∑

	=0

ζ
2	(−d)
2n ζ

2νn�
3

2n +
1
2n

n−1∑

	=0

ζ
(2	+1)(−d)
2n ζ

2νn(�+2)
3

2n χρ(t)

=
1
2n

n−1∑

	=0

ζ
2	(νn

3 −d)
2n +

1
2n

n−1∑

	=0

ζ
2	(νn

3 −d)+(4νn
3 −d)

2n χρ(t)

=

{
1
2 + 1

2ζ
4νn
3 −d

2n χρ(t) , if n | νn
3 − d

0 , otherwise.

The only two values of d such that 0 ≤ d ≤ 2n − 1 and n | νn
3 − d are d = νn

3
and d = n + νn

3 . So

fQ∞,V (T) =
(
1
2
+

1
2
ζνn
2n χρ(t)

)

T
νn
3 +

(
1
2
+

1
2
ζ
(ν−1)n
2n χρ(t)

)

Tn+ νn
3 .

Notice that for ν ∈ {0, 1, 2} we always have that {ζνn
2n , ζ

(ν−1)n
2n } = {−1, 1}.

96 H. Charalambous et al.

• When V = θ νn
3 , νn

3 ,ρstan , Proposition 1 gives

χV (σ0,) = 2ζ
2νn�

3
2n and χV (σ1,	+1t) = 0.

We compute as above

nd,Q∞,V =
1
n

n−1∑

	=0

ζ
2	(νn

3 −d)
2n + 0 =

{
1 , if n | νn

3 − d

0 , otherwise
,

and thus
fQ∞,V (T) = T

νn
3 + Tn+ νn

3 .

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, Proposition 1 gives

χV (σ0,) = 2ζκ	
n + ζ−2κ	

n = 2ζ2κ	
2n + ζ−4κ	

2n and

χV (σ1,	+1t) = ζ−κ(2	+1)
n χρ(t) = ζ

−2κ(2	+1)
2n χρ(t).

We then have

nd,Q∞,V =
1
n

n−1∑

	=0

ζ
2	(κ−d)
2n +

1
2n

n−1∑

	=0

ζ
−2	(2κ+d)
2n +

1
2n

n−1∑

	=0

ζ
−2	(2κ+d)
2n ζ

−(2κ+d)
2n χρ(t)

=

⎧
⎪⎨

⎪⎩

1 , if n | κ − d
1
2 + 1

2ζ
−(2κ+d)
2n χρ(t) , if n | 2κ + d

0 otherwise.

The first case gives d = κ or d = n + κ, while the second gives d = [−2k]n or
d = n + [−2k]n so

fQ∞,V (T) = Tκ + Tn+κ +
(
1
2
+

1
2
χρ(t)

)

T [−2κ]n +
(
1
2

− 1
2
χρ(t)

)

T [−2κ]n+n.

• Finally, for V = θκ,λ,ρtriv we have that

χV (σ0,) = 2ζ2λ	
2n + 2ζ2κ	

2n + 2ζ−2(κ+λ)	
2n and χV (σ1,	+1t) = 0.

Thus

nd,Q∞,V =
1
n

n−1∑

	=0

(
ζ
2	(λ−d)
2n + ζ

2	(κ−d)
2n + ζ

−2	(κ+λ+d)
2n

)

=

{
1 , if n | λ − d or n | κ − d or n | κ + λ + d

0 , otherwise

and so

fQ∞,V (T) = Tκ + Tλ + Tn+κ + Tn+λ + T [−(κ+λ)]n + T [−(κ+λ)]n+n.

Equivariant Hilbert Series of Canonical Rings of Curves 97

3.2 The Polynomials fQ0,V (T)

By Proposition 2, Q0 = (ζ46n, ζ26n) and GQ0 is generated by the monodromy
element σ−1,−1s

2. For d = 0, 1, 2 we have

nd,Q0,V = 〈ResGGQ0
(χV) , χd

Q0
〉

=
1
3

(
χV (1) + ζ−d

3 χV (σ−1,−1s) + ζ
2(−d)
3 χV

(
(σ−1,−1s

2)2
))

.

• For both V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn} we have

nd,Q0,V =
1
3

(
1 + ζ−d

3 ζ
− 2νn

3
n + ζ

2(−d)
3 ζ

− 4νn
3

n

)
=

1
3

(
1 + ζ−d−2ν

3 + ζ−2d−4ν
3

)

=

{
1 , if d ≡ −2ν mod 3 ≡ ν mod 3
0 , otherwise.

and so fQ0,V (T) = T [ν]3 = T ν .

• When V = θ νn
3 , νn

3 ,ρstan we have

nd,Q0,V =
1
3

(
2 − ζ−d−2ν

3 − ζ−2d−4ν
3

)
=

1
3

(
3 − 1 − ζ−d−2ν

3 − ζ−2d−4ν
3

)

=

{
1 , if d �≡ −2ν mod 3
0 , otherwise

and so fQ0,V (T) = 1 + T + T 2 − T [−2ν]3 = 1 + T + T 2 − T ν .

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, we have nd,Q0,V = 1 for d ∈ {0, 1, 2} and
so fQ0,V = 1 + T + T 2.

• When V = θκ,λ,ρtriv , nd,Q,V = 2 for d ∈ {0, 1, 2} and so fQ0,V = 2(1+T +T 2).

3.3 The Polynomials fQ1,V (T)

By Proposition 2, Q1 = (1, n
√−2) and GQ1 is generated by the monodromy

element t. For d ∈ {0, 1} we have

nd,Q1,V = 〈ResGGQ1
(χV) , χd

Q1
〉

=
1
2

(
χV (1) + (−1)−dχV (t)

)
=

1
2

(
dimV + (−1)dχV (t)

)

• When V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn, ρstan}, we get

fQ1,V (T) =

⎧
⎪⎨

⎪⎩

1 , if ρ = ρtriv

T , if ρ = ρsgn

1 + T , if ρ = ρstan.

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, we get

fQ1,V (T) =

{
2 + T , if ρ = ρtriv

1 + 2T , if ρ = ρsgn.

• Finally, when V = θκ,λ,ρtriv , fQ1,V (T) = 3 + 3T .

98 H. Charalambous et al.

4 Implementation and Examples

Let Fn be a Fermat curve over k, with the assumptions on n and k as in the
previous section. By Petri’s Theorem 1, there exists a short exact sequence

0 → IX := kerφ ↪→ S := Sym
(
H0(X,ΩX)

) φ
� SX :=

∞⊕

m=0

H0(X,Ω⊗m
X) → 0,

which is split over kG, since char(k) � |G|.
In this section, we present our Sage [16] program3,4, which, as mentioned in

the introduction, computes for each V ∈ Irr(G):

1. HSX ,V (T), by implementing the formulas of Theorem 4.
2. HS,V (T), by implementing Molien’s formula (see Eq. 1).
3. HIX ,V (T) = HS,V (T) − HSX ,V (T), by subtracting the two above results.

The computation of HSX ,V (T) follows by Theorem 4. First we implement the
difference HSX ,V (T)−NV ∗,1−δV T for each V ∈ Irr(G). Then we read each NV ∗1
from the implementation of HSX ,V ∗(T)− NV,1 − δV ∗T and add T if V is trivial.
We remark that implementing the algorithm for n = 6 we retrieve same results
as in [1, Table 1, pg. 18], where we computed the kG-structure of H0(X,Ω⊗m

X)
using an alternative approach. For example, the series for V = θ0,1,triv is

HSX ,V (T) =
T 3

T 5 − 2T 4 + T 3 + T 2 − 2T + 1
.

To implement Molien’s formula, it is required to input the character table of
G and the representation G → GL

(
H0(X,ΩX)

)
. The former is taken directly

from Proposition 1, while the latter was implemented using the action of G on
a basis {ωi,j} of H0(X,ΩX) which we computed in [1, Prop. 6]:

σα,β(ωi,j) s(ωi,j) t(ωi,j) ts(ωi,j) st(ωi,j) s2(ωi,j)

ζα(i+1)+β(j+1)ωi,j ωn−3−(i+j),i −ωn−3−(i+j),j −ωj,i −ωi,n−3−(i+j) ωj,n−3−(i+j)

The output is much more complicated than HSX ,V (T): for instance when n = 6
and V = θ0,1,triv we obtain a rational function with numerator of degree 18 and
denominator of degree 30.

The final step is to compute the equivariant Hilbert series of IX using Petri’s
Theorem 1. For n = 6 and V = θ0,1,triv, HIX ,V (T) = HS,V (T) − HSX ,V (T) has
power series expansion

8T
3
+ 20T

4
+ 49T

5
+ 130T

6
+ 319T

7
+ 667T

8
+ 1363T

9
+ 2557T

10
+ higher order terms.

The interpretation is that the representation θ0,1,triv appears, for example, 2557
times in the decomposition of the degree 10 graded piece of IX into irreducible
summands.
3 http://users.uoa.gr/ kontogar/Code/EquivariantSage.ipynb.
4 http://users.uoa.gr/ kontogar/Code/EquivariantSage.pdf.

http://users.uoa.gr/~kontogar/Code/EquivariantSage.ipynb
http://users.uoa.gr/~kontogar/Code/EquivariantSage.pdf

Equivariant Hilbert Series of Canonical Rings of Curves 99

5 Appendix - The Ramification Data of Fermat Curves

In this section we give the details for the proof of Proposition 2. We shall work
over k = C for simplicity, even though the arguments are valid over any alge-
braically closed field of characteristic prime to the order of G. Recall that all
roots of unity are fixed, as per the discussion preceding Proposition 2.

The Fermat curve can be seen as double Kummer cover of the projective
line P1. We will work with Galois extensions of the corresponding function fields
and in this way we have the Kummer extension of function fields C(Fn)/C(x),
where C(Fn) is the extension obtained by the rational function field C(x) by
adjoining the quantity y = (−1−xn)

1
n . Then we can consider the cyclic extension

of function fields C(x)/C(xn). The ramification in such extensions is well known,
see for example [9,10], namely there is ramification in the cover C (Fn) /C (Fn)

A

over the points xn = −1, xn = 0, xn = ∞, where A = Z/nZ × Z/nZ.
Since G = Aut(Fn) = A � S3, the Galois extension C(Fn)/C(Fn)G cor-

responding to the cover Fn → Fn/G has the intermediate subfield C(Fn)A =
C(xn), and C(Fn)A/C(Fn)G is Galois with Galois group the symmetric group S3.
Moreover, the extension C(Fn)A/C(Fn)G corresponds to a ramified cover P1 →
P1 ramified over three points. Such covers can be explained in terms of the j
invariant, see [19]. Indeed, if we set X = −xn then the group S3 can be realized
by the six Möbius automorphisms:

X �→
{

X,
1
X

, 1 − X,
1

1 − X
,

X

1 − X
,
X − 1

X

}

.

The fixed points of these maps are given in the following table:

transform order equation fixed points
1
X

2 X2 − 1 = 0 1, −1

1 − X 2 2X − 1 1
2
, ∞

X
X−1

2 X2 − 2X = 0 0, 2
1

1−X
, X−1

X
3 X2 − X + 1 = 0 ζ6,

1
ζ6

and the function

j(X) =
4
27

(X2 − X + 1)3

X2(X − 1)2

is a generator of the fixed field C(X)S3 = C(Fn)G = C(j). The fixed points
of the S3-cover P1 → P1 are P(j=0), P(j=1), P(j=∞). The map j maps the fixed
points as follows:

X j(X)
0, 1,∞ �−→ ∞
−1, 2, 1

2 �−→ 1
ζ6,

1
ζ6

�−→ 0

100 H. Charalambous et al.

In Fig. 1 we display the ramification diagram above the point P(j=∞) and in
Fig. 2 the respective diagram above the points P(j=1) and P(j=0). Note that in
the first row we denote by Pi,i′ the i-th ramification point above P(X=i′), for
i′ ∈ {0, 1,∞}, the labels in the vertical lines of the first column indicate the
Galois groups, whereas in all other columns they indicate ramification indices.

Fig. 1. Ramification diagram for P(j=∞)

Fig. 2. Ramification diagram for P(j=1) and P(j=∞)

Each of the points P(X=−1), P(X=2), P(X= 1
2)

, P(X=ζ6), P(X= 1
ζ6

) has n2 points
in the Fermat curve. For instance the point X = −xn = ζ6 is lifted to the
points (x, y) where x = (−ζ6)1/n = ζ	

nζ2nζ6n = ζ6	+4
6n , for 0 ≤ � ≤ n − 1, and

similarly, yn = −1 − xn = −1 + ζ6 = ζ26 , since ζ26 − ζ6 + 1 = 0. Therefore,
for 0 ≤ k ≤ n − 1, y = ζk

nζ26n = ζ6k+2
6n . This means that the set of points

{(ζ6	+4
6n , ζ6k+2

6n) : 0 ≤ k, � < n} are the n2 points above the point P(X=ζ6).
We will now select an arbitrary point above each P(j=∞), P(j=1), P(j=0) and

for each such point we will find the cyclic subgroup and the monodromy element.
Recall that by Remark 2, automorphisms σ ∈ G act on functions f ∈ C (Fn) by
σ(f) = f ◦ σ−1.
• Consider the point Q∞ = (ζ2n, 0) above P(j=∞). The isotropy subgroup is a
cyclic group of order 2n. For example we can verify that it is fixed by the element
σQ = σ1,1t. Further, since (σ1,1t)

2 = σ0,1, we have that

(σ1,1t)2k = σ0,k and (σ1,1t)2k+1 = σ1,k+1t, for 0 ≤ k ≤ n − 1

Equivariant Hilbert Series of Canonical Rings of Curves 101

A local uniformizer at Q∞ is y, which is acted on by (σ1,1t)2 = σ0,1 by y �→ ζny.
Hence, the monodromy element at Q∞ is σ1,1t.
• Consider the point Q1 above P(j=1) given by affine coordinates (1, n

√−2), which
is fixed by the automorphism t acting on functions as t(x) = 1/x, t(y) = y/x.
Since the decomposition group at Q1 is a cyclic group of order 2 the monodromy
at Q1 is the element t.
• A point Q0 = (x0, y0) above P(j=0) is given by X = ζ6, that is, xn

0 = −ζ6,
therefore x0 = (−ζ6)1/n = ζ	

nζ2nζ6n = ζ6	+4
6n , for 0 ≤ � ≤ n − 1. Similarly

yn
0 = −1−xn = −1+ζ6 = ζ26 , since ζ26−ζ6+1 = 0. Therefore, y0 = ζk

nζ26n = ζ6k+2
6n ,

for 0 ≤ k ≤ n − 1.
Let s be the automorphism acting on functions by s(x) = y/x, s(y) = 1/x,

so that s2(x) = 1/y, s2(y) = x/y. Observe that the point with coordinates
(x0, y0) =

(
ζ46n, ζ26n

)
is sent by σ1,1s to (x0, y0). Indeed,

(
ζ46n, ζ26n

) s�−→ (
ζ2−4
6n , ζ−4

6n

) σ1,1�−→ (
ζ46n, ζ26n

)
.

The function x − x0 = x − ζ46n is a local uniformizer at (x0, y0). By Remark 2,
σ1,1s acts on functions as σ−1,−1s

2 and thus

σ−1,−1s
2(x − ζ46n) = σ−1,−1

(
1
y

− ζ46n

)

=
ζ66n

y
− ζ46n = −ζ46n

y − ζ26n

y

= −ζ46n

y − ζ26n

ζ26n + (y − ζ26n)

= −ζ26n(y − ζ26n)

(

1 +
∞∑

ν=1

−1
ζ26n

(y − ζ26n)
ν

)

. (3)

On the other hand Taylor expansion of the Fermat equation at (x0, y0) gives

0 = xn+yn+1 = xn
0+yn

0+1+nxn−1
0 (x−x0)+nyn−1

0 (y−y0))+higher order terms,

that is
ζ
4(n−1)
6n (x − ζ46n) + ζ

2(n−1)
6n (y − ζ26n) mod m2

(x0,y0)

and this combined with Eq. (3) gives

σ−1,−1s
2(x − ζ46n) = ζ26nζ

2(n−1)
6n (x − ζ46n) = ζ3(x − ζ46n),

i.e., σ−1,−1s
2 is indeed the monodromy at the point Q0 = (x0, y0).

References

1. Charalambous, H., Karagiannis, K., Karanikolopoulos, S., Kontogeorgis, A.: The
equivariant Hilbert series of the canonical ring of Fermat curves. Indagationes
Math. (2022). https://doi.org/10.1016/j.indag.2022.06.001

2. Chevalley, C., Weil, A., Hecke, E.: Über das verhalten der integrale 1. gattung bei
automorphismen des funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10(1),
358–361 (1934). https://doi.org/10.1007/BF02940687

https://doi.org/10.1016/j.indag.2022.06.001
https://doi.org/10.1007/BF02940687

102 H. Charalambous et al.

3. Eisenbud, D.: Green’s conjecture: an orientation for algebraists. In: Free Resolu-
tions in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990),
Res. Notes Math., vol. 2, pp. 51–78. Jones and Bartlett, Boston (1992)

4. Ellingsrud, G., Lønsted, K.: An equivariant Lefschetz formula for finite reductive
groups. Math. Ann. 251(3), 253–261 (1980). https://doi.org/10.1007/BF01428945

5. Green, M.L.: Koszul cohomology and the geometry of projective varieties. J. Differ.
Geom. 19(1), 125–171 (1984). http://projecteuclid.org/euclid.jdg/1214438426

6. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52.
Springer, New York (1977). https://doi.org/10.1007/978-1-4757-3849-0

7. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite
Field. Princeton Series in Applied Mathematics, Princeton University Press,
Princeton (2008)

8. Köck, B.: Galois structure of Zariski cohomology for weakly ramified covers of
curves. Am. J. Math. 126(5), 1085–1107 (2004)

9. Kontogeorgis, A.: The group of automorphisms of cyclic extensions of rational
function fields. J. Algebra 216(2), 665–706 (1999)

10. Kontogeorgis, A.I.: The group of automorphisms of the function fields of the curve
xn + ym + 1 = 0. J. Number Theory 72(1), 110–136 (1998)

11. Leopoldt, H.W.: Über die Automorphismengruppe des Fermatkörpers. J. Number
Theory 56(2), 256–282 (1996)

12. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in
Mathematics, vol. 6. Oxford University Press, Oxford (2002).Translated from the
French by Reinie Erné, Oxford Science Publications

13. Pries, R., Stevenson, K.: A survey of Galois theory of curves in characteristic p. In:
WIN–Women in Numbers, Fields Institute Communications, vol. 60, pp. 169–191.
American Mathematical Society, Providence (2011). https://doi.org/10.1090/bull/
1594

14. Saint-Donat, B.: On Petri’s analysis of the linear system of quadrics through
a canonical curve. Math. Ann. 206, 157–175 (1973). https://doi.org/10.1007/
BF01430982

15. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics.
Bull. Am. Math. Soc. (N.S.) 1(3), 475–511 (1979). https://doi.org/10.1090/S0273-
0979-1979-14597-X

16. Stein, W., et al.: Sage Mathematics Software (Version 8.9). The Sage Development
Team (2019). http://www.sagemath.org

17. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)
18. Tzermias, P.: The group of automorphisms of the Fermat curve. J. Number Theory

53(1), 173–178 (1995)
19. Yoshida, M.: Hypergeometric Functions, My Love. Aspects of Mathematics, E32,

Friedr. Vieweg & Sohn, Braunschweig (1997). https://doi.org/10.1007/978-3-322-
90166-8

https://doi.org/10.1007/BF01428945
http://projecteuclid.org/euclid.jdg/1214438426
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1090/bull/1594
https://doi.org/10.1090/bull/1594
https://doi.org/10.1007/BF01430982
https://doi.org/10.1007/BF01430982
https://doi.org/10.1090/S0273-0979-1979-14597-X
https://doi.org/10.1090/S0273-0979-1979-14597-X
http://www.sagemath.org
https://doi.org/10.1007/978-3-322-90166-8
https://doi.org/10.1007/978-3-322-90166-8

Symbolic-Numeric Algorithm
for Calculations in Geometric Collective

Model of Atomic Nuclei

Algirdas Deveikis1, Alexander A. Gusev2(B), Sergue I. Vinitsky2,3,
Yuri A. Blinkov3, Andrzej Góźdź4, Aleksandra Pȩdrak5, and Peter O. Hess6,7

1 Vytautas Magnus University, Kaunas, Lithuania
2 Joint Institute for Nuclear Research, Dubna, Russia

gooseff@jinr.ru
3 RUDN University, 6 Miklukho-Maklaya, 117198 Moscow, Russia

4 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland
5 National Centre for Nuclear Research, Warsaw, Poland

6 Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, C.U., A.P. 70-543,
04510 Mexico D.F., Mexico

7 Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany

Abstract. We developed a symbolic–numeric algorithm involving a set
of effective symbolic and numerical procedures for calculations of low
lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunc-
tions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3)
basis in Geometric Collective Model. We give implementation of the algo-
rithm and procedures in Wolfram Mathematica. We present benchmark
calculations of energy spectrum, quadrupole moment and the reduced
upwards transition probability B(E2) for the nucleus 186Os.

Keywords: Orthonormal non-canonical basis · Groups
U(5)⊃SO(5)⊃SO(3) · Irreducible representations · Gram-Schmidt
orthonormalization · Geometric Collective Model · Spectral
characteristic · Atomic nuclei

1 Introduction

The Bohr–Mottelson (B-M) collective model [2,3] has gained widespread accep-
tance in calculations of vibrational-rotational quadrupole spectra and electro-
magnetic transitions in atomic nuclei [4,8,17]. Among others it was applied for
such nuclei as: uranium [14], Pt, Os and W isotopes [15]. Some results were also
obtained for the super-heavy deformed nuclei [12] where a fit of microscopically
derived potential energy surfaces proposed in [9,21–23] has been performed with
the help of numerical (FORTRAN) application of the geometric collective model
(GCM) [13,20].

Key problems in such numerical large-scale calculations of spectral charac-
teristics of the GCM with the octahedral Oh point symmetry as well as the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 103–123, 2022.
https://doi.org/10.1007/978-3-031-14788-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_7

104 A. Deveikis et al.

general Bohr Hamiltonian [18,19] are round-off errors appearing in calculation
of high-power polynomials. These polynomials with alternating coefficients and
strong numerical cancellations are observed in the Gram–Schmidt orthonormal-
ization of the nonorthogonal set of basis eigenfunctions that we investigated
in [7] using both integer and floating point arithmetics implemented in Wolfram
Mathematica [25].

In the present paper, we propose some development of effective symbolic pro-
cedures for calculations of the spectral characteristic of atomic nuclei in GCM.
We give the implementation of the developed procedures in Wolfram Mathe-
matica and performance of benchmark calculations. We analyze round-off errors
in calculation of high-power polynomials with alternating coefficients. We show
that strong cancellation in Gram–Schmidt orthonormalization usually pose seri-
ous problems in numerical calculations [7,14,15,20,26,27].

The structure of the paper is following. In Sect. 2, we describe the statement
of the problem separated into subsections corresponding to procedures (subrou-
tines) involving the GCM code. We give the benchmark examples of their execu-
tion summing up them in the Tables that show computer memory and execution
time with respect to ranges of the quantum numbers involved in the runs: con-
struction of GCM Hamiltonian, construction of orthonormal U(5)⊃O(5)⊃O(3)
basis, calculation of β- and γ-dependent matrix elements, and composition of
Hamiltonian matrices of algebraic eigenvalue problem. In Sect. 3, benchmark
calculations of energy spectrum, quadrupole moment and the reduced upwards
transition probability B(E2) for 186Os are presented. Finally, in Sect. 4, the sum-
mary of main results and conclusions are given. In Appendices A and B, the sets
of input parameters for atomic nuclei and boundary value problem for GCM
model are presented.

The CPU times of the benchmark calculations give required estimates for
choosing appropriate versions of the presented symbolic-numeric algorithms and
programs. The computations were performed with Wolfram Mathematica 10.1
on PC Intel i7-36030QM, CPU 2.40 GHz, RAM 8 GB, 64-bit Windows 8.

2 The Statement of the Problem and Subroutines

Hamiltonian. The classical nuclear collective Hamiltonian constructed in the so
called laboratory frame has the general form [20]

Ĥ = T̂ (π, α) + V̂ (α). (1)

Quantum description of the collective motions in GCM is performed by using
the quadrupole deformation coordinates, α̂[2] = α2m,m = −2,−1, 0, 1, 2, and the
corresponding conjugate momenta, π̂[2] = π2m,m = −2,−1, 0, 1, 2, subjected to
commutation relations [π̂[2]

m , α̂
[2]
m′] = −ı�δmm′ . The kinetic energy is constructed

to contain the two lowest-order terms proportional to the square of the momenta
determined in a nonstandard form accepted in [20]:

T̂ =
1

B2
[π̂ × π̂][0] +

P3

3

{[
[π̂ × α̂][2] × π̂

][0]}
, (2)

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 105

where {. . .} means the sum over all permutations, and B2 and P3 are kinetic-
energy parameters. For such nonstandard definition of the parameter B2 with
respect to standard one (see Eq. (2)), it will be multiplied by factor 2/

√
5. So,

in the practice of GCM calculations, the rescaled parameter B̄2 = 2B2/
√

5 is
really used. The tensor product of spherical tensors A[l1] and B[l2] is defined as

[A[l1] ⊗ B[l2]][l] =
∑

m1,m2

(l1m1l2m2|lm)A[l1]
m1

B[l2]
m2

,

where (l1m1l2m2|lm) are SO(3) Clebsch–Gordan coefficients [24]. All terms in
the Hamiltonian are coupled to angular momentum 0, i.e., to rotational scalars.

Potential Energy. For the potential energy we use a polynomial expansion up
to the sixth order in the deformation variables β and γ specified by the intrinsic
deformation coordinates â[2] = a2m′ . The intrinsic frame is defined as coinciding
to principal axes of the nucleus. It is determined by a set of three Euler angles
Ω ∈ S3(Ω) and new deformation variable α2m =

∑
m′ D2∗

mm′(Ω)a2m′ , where
D2∗

mm′(Ω) denotes the Wigner functions of irreducible representations of SO(3)
group [24] (marker ∗ denotes the complex conjugate operation). The choice of
principal axes requires the following constraints: a2−2 = a22, a2−1 = a21 = 0.
The β and γ variables are defined as: a20 = β cos γ, a22 = (1/

√
2)β sin γ. The

potential energy is assumed in the following form:

V̂ (β, γ) =
6∑

ρ=2

2∑
m=0

βρ cosm(3γ)V̂ρ,m, (3)

where potential parameters V̂ρ,m read as:

V̂2,0 = C2
1√
5
; V̂3,1 = −C3

√
2
35 ; V̂4,0 = C4

1
5 ;

V̂5,1 = −C5

√
2

175 ; V̂6,2 = C6
2
35 ; V̂6,0 = D6

1
5
√
5
.

(4)

Introducing these parameters the potential V̂ (β, γ) takes the form

V̂ (β, γ) = C2
1√
5
β2 − C3

√
2
35β3 cos(3γ) + C4

1
5β4

−C5

√
2

175β5 cos(3γ) + C6
2
35β6 cos2(3γ) + D6

1
5
√
5
β6.

(5)

For practical reason, we rescale V̂ρ,m to Vρ,m in oscillator units of length with
respect to the β variable using basis parameters of mass B′

2 and stiffness C ′
2:

V (β, γ) =
6∑

ρ=2

2∑
m=0

βρ cosm(3γ)Vρ,m, Vρ,m = V̂ρ,m ×
(

�√
B′

2C
′
2

)ρ/2

. (6)

Basis States and a Range of the Set of Quantum Numbers. We choose as basic
functions the eigenfunctions of the five-dimensional harmonic oscillator

Ĥ5 =
√

5
2B′

2

[π̂ × π̂][0] +
√

5C ′
2

2
[α̂ × α̂][0]. (7)

106 A. Deveikis et al.

Table 1. The degeneracy dλL = μmax − μmin + 1 for a number of L and λ. The first
row of the table is formed by the values of λ and the first column of the table is
formed by the values of the angular momentum L. The next columns in non empty
square contains the degeneracy dλL depending on accessible values of momentum L
and seniority λ.

L, λ 5 10 15 20 25 30 35 40 45 50

0 1 1 1

2 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

10 1 2 2 2 2 2 2 2 2 2

15 1 3 2 2 3 2 2 3 2

20 1 2 4 4 3 4 4 3 4

25 1 3 4 4 4 4 4 4

30 1 2 4 6 5 5 6 5

35 1 3 4 6 6 5 6

Table 2. The example of calculations of the total number of states defined by quantum
numbers νλ for a number of L up to the specified value of the νmax. The first row of
the table is formed by the values of νmax and the first column of the table is formed by
the value of the angular momentum L. The next columns contains the total number of
states for corresponding values of L and νmax.

L, νmax 5 10 15 20 25 30 35 40 45 50

0 5 14 27 44 65 91 120 154 192 234

2 7 22 45 77 117 165 222 287 360 442

5 2 12 30 57 92 135 187 247 315 392

10 1 12 36 72 121 182 256 342 441 552

15 0 2 16 42 81 132 196 272 361 462

20 0 1 12 36 72 121 182 256 342 441

25 0 0 2 16 42 81 132 196 272 361

30 0 0 1 12 36 72 121 182 256 342

35 0 0 0 2 16 42 81 132 196 272

The basis states can be characterized by irreducible representations of the
U(5) ⊃O(5) ⊃O(3)⊃O(2) chain of groups [7]:

– ν is the number of phonons,
– λ is the number of phonons that are not coupled pairwise to zero (seniority),
– L and M are the numbers of the angular momentum and its projection,
– μ is the additional quantum number, denoting the maximal number of phonon

triplets coupled to the angular momentum L = 0 and counting degenerated
states for L ≥ 6:

ν = 0, 1, 2, . . . , νmax, λ = ν, ν−2, . . . , 1 or 0, μ = μmin, μmin+1, . . . , μmax.
(8)

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 107

Here νmax is some chosen as the maximum number of phonons. The range of μ
(i.e., μmin and μmax) for given λ and L is determined by inequalities:

L/2 ≤ λ − 3μ ≤ L, L = even, (L + 3)/2 ≤ λ − 3μ ≤ L, L = odd. (9)

The solution of inequalities Eqs. (9) gives a range of accessible values of μ at
given accessible λ and L:

μmin = max
(
0, Ceiling

(
λ−L
3

))
, μmax = Floor

(
λ−(L+3(L mod 2))/2

3

)
, (10)

where Ceiling(μ) is the lowest integer but not lower than μ and Floor(μ) is
the largest integer not greater than μ.

2.1 The Representation of the Wave Functions in Coordinate Space

The five-dimensional equation of the B-M collective model (7) in the intrinsic
frame β ∈ R1

+ and γ,Ω ∈ S4 with respect to Ψ int
νλμLM ∈ L2(R1

+

⊗
S4) with the

measure dτ = β4 sin(3γ)dβdγdΩ reads as

{H(BM)−EBM
ν }Ψ int

νλμLM = 0, H(BM) =
�
2

2B′
2

(

− 1

β4

∂

∂β
β4 ∂

∂β
+

Λ̂2

β2

)

+
C′

2

2
β2. (11)

Here EBM
ν ≡ EL

ν = �ω′
2(ν + 5

2) are the eigenvalues of the five-dimensional har-
monic oscillator, ω′

2 =
√

C ′
2/B′

2 is the oscillation frequency, � is Planck constant,
Λ̂2 is the quadratic Casimir operator of O(5) in L2(S4(γ,Ω)) at nonnegative
integers ν = 2nβ + λ, i.e., at even and nonnegative integers ν − λ determined as

(Λ̂2−λ(λ+3))Ψ int
νλμLM = 0, Λ̂2 = − 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

3∑

k=1

(ˆ̄Lk)2

4 sin2(γ− 2
3
kπ)

, (12)

where the nonnegative integer λ is the seniority (8) and (ˆ̄Lk)2 are the angular
momentum operators of O(3) along the principal axes in intrinsic frame, i.e.,
with commutator [ˆ̄Li,

ˆ̄Lj] = −ıεijk
ˆ̄Lk [7].

Eigenfunctions |νλμLM〉 of the five-dimensional oscillator (7) in the intrinsic
frame (11) have the form

Ψ int
νλμLM (β, γ,Ω) = 〈βγΩ|νλμLM〉 =

∑
K(even)

Φint
νλμLK(β, γ)D(L)∗

MK (Ω), (13)

where D(L)∗
MK (Ω) are the orthonormal Wigner functions with measure dΩ,

D(L)∗
MK (Ω) =

√
2L + 1

8π2

D
(L)∗
MK (Ω)+(−1)LD

(L)∗
M,−K(Ω)

1+δK0
; (14)

108 A. Deveikis et al.

summation over K runs even values K in range:

K = 0, 2, . . . , L for even integer L : 0 ≤ L ≤ Lmax, (15)
K = 2, . . . , L − 1 for odd integer L : 3 ≤ L ≤ Lmax.

Φint
νλμLK(β, γ) are the nonorthogonal components with overlap 〈φ̂λμ′L(γ)|φ̂λμL(γ)〉

Φint
νλμLK(β, γ) = Cλμ

L Fνλ(β)φ̂λμL
K (γ), (16)

determined by (17), (18) and normalization factor Cλμ
L = (〈φ̂λμL(γ)|

φ̂λμL(γ)〉)−1/2.

2.2 γ-Dependent Part of the Basis States

The components φ̂λμL
K (γ) = (−1)Lφ̂λμL

−K (γ) for even K and φ̂λμL
K (γ) = 0 for

odd L and K = 0 as well as for odd K are determined below according to
papers [5,6,17,26]. It should be noted that for these components, L �= 1, |K| ≤ L
for L = even and |K| ≤ L − 1 for L = odd:

φ̂
λμL
K (γ) =

nmax∑

n=0

F
στμ
nλL(γ)

[
G

nL
|K|(γ)δL,even + Ḡ

nL
|K|(γ)δL,odd

]
; (17)

K = Kmin, Kmin+2, . . . , Kmax; Kmin =

{
0, L = even,
2, L = odd;

Kmax =

{
L, L = even,
L−1, L = odd;

nmax =

{
L/2, L = even,
(L−3)/2, L = odd;

δL,even =

{
1, L = even,
0, L = odd;

δL,odd =

{
0, L = even,
1, L = odd;

where L/2 ≤ λ−3μ ≤ L for L = even, and (L+3)/2 ≤ λ−3μ ≤ L for L = odd;

2.3 Wave Function for γ Degree of Freedom φ̂λμL
K (γ)

Components ḠnL
K (γ), GnL

K (γ) and F στμ
nλL(γ) in Eq. (17) are calculated by

Ḡ
nL
K (γ) =

L−3∑

k=3−L,2

〈L − 3, 3, k, K − k|LK〉GnL−3
|k| (γ) sin 3γ(δK−k,2 − δK−k,−2);

G
nL
K (γ) = (−

√
2)

n
L−2n∑

k=2n−L,2

〈L − 2n, 2n, k, K − k|LK〉S(L−2n)/2
|k| (γ)S

n
|K−k|(−2γ);

S
r
K(γ) =

[
(2r+K)!(2r−K)!

(4r)!

]1/2

(
√
6)

r
r!

[r/2+K/4]∑

q=K/2

(
1

2
√
3

)2q−K/2

× 1

(r − 2q + K/2)!(q − K/2)!q!
(cos γ)

r+K/2−2q
(sin γ)

2q−K/2
;

F
στμ
nλL(γ) = (−1)

μ+τ−n
2

−n/2
[(μ+τ−n)/2]∑

r=0

C
στμ
rnλL2

−r
(cos 3γ)

μ+τ−n−2r
;

C
στμ
rnλL =

3nσ!λ!(−1)r2r(2μ + 2τ − 2r + δL,odd)!(3r)!

2μ+nn!(2λ + 1)!r!(μ + τ − r)!(μ + τ − n − 2r)!

×
min(σ,λ,3r−τ+n)∑

s=max(n−τ,0)

(−1)s4s(τ + s)!(2λ + 1 − 2s)!

s!(σ − s)!(τ − n + s)!(3r − τ + n − s)!(λ − s)!
,

where Sr
K(γ) is taken to be equal 0, if sin γ = 0 or cos γ = 0, F στμ

nλL(γ) is taken
to be equal 0, if cos 3γ = 0, Cστμ

rnλL is taken to be equal 0, if μ + τ − n − 2r < 0.
It has been implemented in Ref. [7].

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 109

2.4 Gram–Schmidt Orthogonalization of the Functions φ̂λμL
K (γ)

Using implementation [7] of orthogonalization of the functions φ̂λμL
K (γ) with the

Gram–Schmidt method the reduced overlap (a scalar product with integration
over γ) is required

〈φ̂λμ′L(γ)|φ̂λμL(γ)〉 =
∫ π

0

dγ sin(3γ)
Kmax∑

K=Kmin,2

2φ̂λμ′L
K (γ)φ̂λμL

K (γ)
1 + δK,0

. (18)

It should be noted that the definition of the reduced overlap integral (18) will be
the same for original φ̂λμL(γ) as well as for orthogonalized functions φλμL

K (γ).
The degeneracy labelled by μ for the nuclear calculations is small in relevant

cases as presented in Table 1, therefore, the original Gram–Schmidt method may
be adopted to orthogonalize the functions φ̂λμL

K (γ). For large μ, the modified
Gram–Schmidt methods will be applied [7].

Application of the Gram–Schmidt method gives the orthogonalized functions

φλμL
K (γ) = φ̂λμL

K (γ) −
μ−1∑

μ′=μmin

φλμ′L
K (γ)

〈φλμ′L(γ)|φ̂λμL(γ)〉
〈φλμ′L(γ)|φλμ′L(γ)〉 . (19)

This procedure should be applied for all available indexes μ in boundaries
given in Eq. (10) and indexes K in boundaries given in Eq. (17).

As produced by the procedure outlined in Eq. (19), the wave functions
φλμL

K (γ) are trigonometric polynomials of sin(γ) and cos(γ). For the algebraic
integration over the variable γ, it is then sufficient to expand the sin(3γ) and
the additional cos(3γ) and to implement the following three definite integrals:

∫ π

0

sin2m(γ)dγ =
(2m−1)!!

2mm!
π,

∫ π

0

sin2m+1(γ)dγ =
2m+1m!

(2m+1)!!
,

∫ π

0

sinm(γ) cos(γ)dγ = 0,

for any integer m. For example, the normalization integral for L = 0, λ = 27
and μ = 9 is equal to 2

57 and shows less than 0.001 sec. computation time on
Mathematica. At the same time, direct symbolic integration of this normalization
integral takes 436.781 s.

2.5 The Normalized Components F λ
nβ

(β)

The normalized components Fλ
nβ

(β) with the number of nodes nβ = (ν − λ)/2,
adapted for calculations of rescaled matrix elements V (β, γ) from (6), read as

Fλ
nβ

(β) =

√
2nβ !

Γ
(
nβ + λ + 5

2

)βλ exp
(
−1

2
β2

)
L

λ+ 3
2

nβ (β2), (20)

where L
λ+ 3

2
nβ (β2) is the associated Laguerre polynomial [1].

110 A. Deveikis et al.

Table 3. The example of calculations of the matrix elements (27) for a number of L
and fixed νmax = 30. The columns of the table are formed by the value of the angular
momentum L, the total number of states {νλμ} defined by quantum numbers νλμ,
the total number of states {λμ} defined by quantum numbers λμ, the total number
#MeT of matrix elements (27) in upper triangles of their matrices with m = 1, 2, the
number #MeN of nonzero matrix elements among #MeT that are given by Eq. (28),
the cumulative number #MeZ of angular matrix elements that are calculated equal to
0 among #MeN matrix elements, the maximum memory in MB used to store interme-
diate data for the current Mathematica session in computation of the overlap integrals,
and the CPU time.

L {νλμ} {λμ} #MeT #MeN #MeZ memory CPU time

0 91 11 132 30 0 0 MB 0.17 s

6 271 37 1406 266 15 3.48 MB 4.09 s

10 326 49 2450 495 80 4.18 MB 28.33 s

15 259 47 2256 534 109 4.45 MB 45.47 s

20 305 62 3906 1010 322 6.26 MB 2.60 min

25 193 50 2550 788 227 6.06 MB 3.08 min

30 174 51 2652 853 138 7.75 MB 5.07 min

In Table 2, we present an example of calculations of the number of func-
tions (20) for a number of L up to the specified value of the νmax under con-
dition (9). The presented results show the general tendency: with larger ν, the
number of states increases and the calculations involve larger L. If we require
larger L the number ν has to be sufficiently large.

2.6 Hamiltonian Matrix Elements and Algebraic Eigenvalue
Problem

For the calculation of the matrix elements of the kinetic energy T the gradient
formula [11] is applied taking into account the rescaled parameter B̄2 = 2B2/

√
5:

TL
ν′λ′μ′,νλμ = (−1)

|ν′−ν|
2

1
2

�

√
B′

2C
′
2

1
B̄2

〈ν′λ′|β2|νλ〉δλ′,λδμ′,μ (21)

−
√

2
35

�
3
2 (B′

2C
′
2)

1
4
P3

3
〈ν′λ′|β3|νλ〉〈λ′μ′L| cos(3γ)|λμL〉 (

δ|ν′−ν|,1 − 3δ|ν′−ν|,3
)
.

The potential energy matrix elements V read as

V L
ν′λ′μ′,νλμ =

6∑
ρ=2

2∑
m=0

Vρ,m〈ν′λ′|βρ|νλ〉〈λ′μ′L| cosm(3γ)|λμL〉. (22)

Matrix elements of the quantum Hamiltonian (1) read as

HL
ν′λ′μ′,νλμ = TL

ν′λ′μ′,νλμ + V L
ν′λ′μ′,νλμ. (23)

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 111

The eigenvalues EL
n and the eigenfunctions ΨL

n of the quantum Hamiltonian
H = T + V (1) are calculated by solving the Schrödinger equation

(H − EL
n)ΨL

n = 0. (24)

We seek eigenfunctions ΨL
n of Hamiltonian (1) in the form of expansion over the

basis functions Ψ int
νλμ(β, γ,Ω) (13)

ΨL
n (β, γ,Ω) =

∑
νλμ

Ψ int
νλμ(β, γ,Ω)Dνλμ,n(L). (25)

Eigenenergies EL
n are calculated as an algebraic eigenvalue problem

∑
νλμ

(HL
ν′λ′μ′,νλμ − δν′νδλ′λδμ′μEL

n)Dνλμ,n(L) = 0. (26)

Here Dνλμ,n(L) is the eigenvector of Hamiltonian (23) for the n′th state with the
angular momentum L. In Eq. (26), indices ν, λ and μ enumerate the total basis.
The total number of different collections of (ν, λ and μ) for given L, and up
to given νmax is the total dimension of the basis. These values are presented in
Tables 3, 4, and 7. In Table 7, Dim is this total number of different (ν, λ and μ) for
listed L and up to given νmax = 30, i.e., the dimension of the Hamiltonian matrix.

2.7 Matrix Elements 〈λ′μ′L| cosm (3γ)|λμL〉
For computation of potential energy matrix elements the matrix elements of
powers m = 0, 1, 2 of cos(3γ) should be evaluated, that are defined as

〈λ′μ′L| cosm(3γ)|λμL〉 =
1√

〈φλ′μ′L(γ)|φλ′μ′L(γ)〉〈φλμL(γ)|φλμL(γ)〉

×
∫ π

0

dγ sin(3γ) cosm(3γ)
Kmax∑

K=Kmin,2

2φλ′μ′L
K (γ)φλμL

K (γ)
1 + δK,0

. (27)

Here summation boundaries are the same as in Eq. (18). Obviously this
integral is equal to δλμ,λ′μ′ when m = 0. It should be pointed out that only
small part of these integrals are not equal to 0. There are useful simple conditions
that allow identify the large part of these integrals that are equal to zero. The
appropriate selection rules are

λ + λ′ + (m mod 2) = odd,
|λ − λ′| ≤ 3n and 3n ≤ λ + λ′, where n = m,m − 2, . . . , 1 or 0. (28)

Using conditions (28) saves a lot of computation resources and makes it possi-
ble to avoid calculation of most of integrals (27) that actually are equal to 0.
Nevertheless, these conditions are not precise and some of matrix elements that
pass their test may appear to be equal to 0 after their computation. An example

112 A. Deveikis et al.

Table 4. The example of calculations of the matrix elements (27) for a number of νmax

and fixed L = 18. The first column of the table is formed by value of the νmax, other
columns are denoted as in Table 3.

νmax {νλμ} {λμ} #MeT #MeN #MeZ memory CPU time

10 2 2 6 3 0 0 MB 0.17 s

15 23 12 156 73 2 3.51 MB 5.80 s

20 81 28 812 312 52 3.93 MB 29.14 s

25 181 45 2070 632 170 4.92 MB 1.12 min

30 323 62 3906 953 294 5.97 MB 1.94 min

35 506 78 6162 1253 405 7.08 MB 2.86 min

40 731 95 9120 1577 530 8.50 MB 4.08 min

45 998 112 12656 1898 654 10.02 MB 5.68 min

50 1306 128 16512 2198 765 11.62 MB 7.65 min

of calculations of the matrix elements (27) is presented in Tables 3 and 4. Each
evaluation is performed after quitting the Mathematica kernel. {νλμ} is the total
number of states defined for given νmax by quantum numbers in Eq. (8) under
conditions in Eqs. (9) and (10); {λμ} is the total number of states defined only
by indices λ and μ, and this number is equal to the total number of different
pairs of λ and μ among the states {νλμ}; #MeT – the cumulative number of
angular matrix elements in the upper triangles of matrices for cosm(3γ) with
m = 1, 2 on states {λμ}, here the number of matrix elements with m = 0 are
not included, since they all are equal to 1 by definition; #MeN is the number of
nonzero matrix elements among #MeT that are given by Eq. (28); #MeZ is the
cumulative number of angular matrix elements that are evaluated by equal to 0
by direct computation.

2.8 Matrix Elements 〈ν′λ′|βρ |νλ〉
For the first case |λ − λ′| ≤ ρ, matrix elements 〈ν′λ′|βρ|νλ〉 read as:

∫ ∞

0
F

λ′
n′

β
(β)β

ρ
F

λ
nβ

(β)β
4
dβ =

[
n′

β !nβ !

Γ
(
n′

β + λ′ + 5
2

)
Γ

(
nβ + λ + 5

2

)
] 1

2
(29)

×(−1)
n′

β+nβ Γ
(1

2
(ρ + λ

′ − λ + 2)
)

Γ
(1

2
(ρ + λ − λ

′
+ 2)

)

×
∑

σ

Γ
(1
2 (ρ + λ′ + λ + 5) + σ

)

σ!(n′
β − σ)!(nβ − σ)!Γ

(
σ + 1

2 (ρ + λ′ − λ) − nβ + 1
)

1

Γ
(

σ + 1
2 (ρ + λ − λ′) − n′

β + 1
)

the summation bounds for ρ + λ′ − λ even are:

max
(
n′

β − (ρ + λ − λ′)/2, nβ − (ρ + λ′ − λ)/2, 0
) ≤ σ ≤ min(n′

β , nβ),

the summation bounds for ρ + λ′ − λ odd are:

0 ≤ σ ≤ min(n′
β , nβ).

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 113

Table 5. An example of calculations of the matrix elements over β given by Eqs. (29)
and (30) for a number of νmax when ρ = 1, . . . , 6. The columns of the table are formed
by the value of νmax, the total number of states {νλ} is defined by the quantum
numbers νλ up to the specified value of νmax, the total number #Me(β) of different
matrix elements over β, the maximum memory in MB used to store intermediate data
for the current Mathematica session in computation of the matrix elements, and the
CPU time.

νmax {νλ} #Me(β) memory CPU time

10 36 495 0 MB 0.30 s

20 121 2690 3.27 MB 1.78 s

40 441 12630 5.70 MB 9.06 s

60 961 29970 5.54 MB 24.26 s

80 1681 54710 5.69 MB 49.47 s

100 2601 86850 5.74 MB 1.44 min

For the second case |λ − λ′| > ρ and the pair of quantities n′
β , λ′ and nβ , λ

are interchanged when λ > λ′:

∫ ∞

0
F

λ′
n′

β
(β)β

ρ
F

λ
nβ

(β)β
4
dβ =

[
n′

β !nβ !

Γ
(
n′

β + λ′ + 5
2

)
Γ

(
nβ + λ + 5

2

)
] 1

2
(30)

×(−1)
nβ

Γ
(1
2 (ρ + λ′ − λ + 2)

)

Γ
(1
2 (−ρ + λ′ − λ)

)
∑

σ

(−1)
σ

Γ
(1
2 (ρ + λ′ + λ + 5) + σ

)
Γ

(
1
2 (λ

′ − λ − ρ) + n′
β − σ

)

σ!(n′
β − σ)!(nβ − σ)!Γ

(
σ + 1

2 (ρ + λ′ − λ) − nβ + 1
)

the summation bounds for ρ+λ′−λ even are: max
(
nβ −(ρ+λ′−λ)/2, 0

) ≤ σ ≤
min(n′

β , nβ), the summation bounds for ρ+λ′ −λ odd are: 0 ≤ σ ≤ min(n′
β , nβ).

There are selection rules for the matrix elements over the variable β. The
matrix elements are equal to zero when

|ν′ − ν| > ρ, ρ and |ν′ − ν| have unequal parities,
|λ′ − λ| > ρ, |ν′ − ν| and |λ′ − λ| have unequal parities, (31)
ρ = 4 and |λ′ − λ| �= 0, ρ = 5 and |λ′ − λ| = 5.

The formulas of the matrix elements over β Eqs. (29) and (30) are very effective
comparing with direct symbolic integration approach. For example, symbolic
integration of the matrix element with n′

β = 126, λ′ = 121, nβ = 125, λ = 120,
and ρ = 120 takes 23.80 s, when Mathematica timing for a computation with
Eqs. (29) and (30) returns zero.

In Table 5, we present an example of memory consumption and CPU time of
calculations of the matrix elements over β for a number of ν and fixed range of
ρ. This interval ρ = 1, . . . , 6 represents all powers of ρ in the expression of the
potential energy for the approach adopted in this paper. It should be stressed
that the presented procedure is very effective and could be applied for large scale
calculations since the quantum numbers managed significantly outperform the
ones considered for very large values, e.g., λ∼100 and μ∼10.

In Table 6, we present the illustration how the accuracy of calculations depends
on the number of significant digits used in computations. The presented results

114 A. Deveikis et al.

Table 6. An example of calculations of relative accuracy of the matrix elements over β
given by Eq. (30) for a number of ρ when ν = 100, λ = 70, ν′ = 60, λ′ = 5. The first
row specifies the number of significant digits used in the corresponding computation.
The n.a. indicates that the calculations could not be performed with specified number
of significant digits.

ρ, precision 25 26 27 28 32 36 40

1 2.4 · 10−1 1.8 · 10−2 3.0 · 10−3 3.4 · 10−5 3.7 · 10−8 1.5 · 10−12 2.1 · 10−16

3 n.a. 4.8 · 10−2 2.4 · 10−5 2.4 · 10−5 1.3 · 10−7 1.9 · 10−11 1.7 · 10−15

5 n.a. 2.1 · 10−3 2.1 · 10−3 1.2 · 10−3 1.1 · 10−7 1.3 · 11−10 1.2 · 10−16

7 n.a. n.a. 1.3 · 10−1 1.2 · 10−3 1.9 · 10−7 1.4 · 10−10 4.8 · 10−15

8 n.a. n.a. n.a. 4.5 · 10−2 2.4 · 10−6 1.4 · 10−10 2.2 · 10−14

gives the background for assertion that large scale calculations of this kind may be
performed only symbolically.

3 Benchmark Calculations of GCM for 186Os Nucleus

3.1 The Example of Calculations of Eigenenergies ELπ

n (in MeV)

The eigenstates Lπ
n are characterized by the angular momentum L, parity π = ± =

(±1) [4] and sequence number n for fixed angular momentum starting at the lowest
state. The calculated eigenvalues ELπ

n of rotational bands of 186Os nucleus are the
same as may be produced by the FORTRAN program [20]. In these calculations,
the following values of parameters were used: C2 = −564.76, C3 = 733.01, C4 =
13546., C5 = −8535.1, C6 = −41635.,D6 = 0., and C ′

2 = C2S = 100. (in
MeV), B2 = 112.48 and B′

2 = B2S = 90. (in 10−42MeV s2), P3 = −0.0531 (in
10+42MeV/s2), � = 6.58211828 (in 10−22MeV s), νmax = NPH = 30 in expan-
sion of (25). In Table 7, we show a comparison of calculated eigenenergies from
algebraic eigenvalue problem (26) and experimental eigenenergies from [15,20].
They are in a good agreement that confirm consistent choice of the parameters of
GCM model and our version of the GCM code.

3.2 The Quadrupole Moment Q and Transitions B(E2)

The quadrupole operator Q
(2)
m is defined as

Q(2)
m = ρ0R

5
0

(
α[2]

m − 10√
70π

[α[2] × α[2]][2]m

)
, (32)

where ρ0 = 3Ze/(4πR3
0), R0 = r0A

1/3, r0 = 1.1fm.
The quadrupole moment of nth level with specified L reads as

Qn(L) = ρ0R
5
0

√
16π

5

(
L 2 L

−L 0 L

)
10−2

×
(

α[2]
n,n(L, L) − 10√

70π
[α[2] × α[2]][2]n,n(L, L)

)
, (33)

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 115

Table 7. First column shows the labels Lπ
n of eigenstates of a given rotational band,

where L is the angular momentum, and π = ± is the parity. Dim is a number of
components of the eigenvector Dνλμ,n in Eq. (26), i.e., Dim is the total number of
different (ν, λ and μ) for listed L and up to given νmax, as well as the dimension of
Hamiltonian matrix. Energy calc. are the eigenenergies of algebraic eigenvalue problem,
Δ Energy calc.=Energy calc.(Lπ

n) - Energy calc.(0+
1) are the eigenenergies counted of

eigenenergy of ground state 0+
1 , Δ Energy exp. are the experimental eigenenergies of

rotational bands of 186Os nucleus, all eigenenergies are in MeV.

Level Code Dim Energy calc. CPU time Δ Energy calc. Δ Energy exp.

0+gs 0+1 91 −5.683 5.33 s 0.000 0.000

2+gs 2+1 165 −5.546 23.78 s 0.138 0.137

4+gs 4+1 225 −5.260 58.70 s 0.424 0.433

6+gs 6+1 271 −4.854 1.58min 0.829 0.867

2+γ 2+2 −4.937 0.746 0.767

3+γ 3+1 75 −4.750 4.19 s 0.934 0.910

4+γ 4+2 −4.596 1.087 1.070

5+γ 5+1 135 −4.343 17.22 s 1.340 1.275

4+γ 4+3 −4.174 1.509 1.352

6+γ 6+2 −4.164 1.520 1.492

where
(

L 2 L
−L 0 L

)
is 3-j symbol [24]. The reduced upwards transition probability

B(E2) is calculated by the expression

Bn2,n1(E2, L2 → L1) =
10−4

2L2 + 1

×
[
ρ0R

5
0

(
α[2]

n2,n1(L2, L1) − 10√
70π

[α[2] × α[2]][2]n2,n1(L2, L1)

)]2

. (34)

3.3 Matrix Elements α[2]
n2,n1

(L2, L1) and [α[2] × α[2]][2]n2,n1
(L2, L1)

Matrix elements α
[2]
n2,n1(L2, L1) and [α[2] × α[2]][2]n2,n1(L2, L1) are given by the

following expressions

α[2]
n2,n1(L2, L1) =

√
(2L1 + 1)(2L2 + 1)

√
�

√
B′

2C
′
2

×
∑

ν1λ1μ1

∑

ν2λ2μ2

〈ν2λ2L2|β|ν1λ1L1〉〈λ2μ2L2|α[2]|λ1μ1L1〉 (35)

×Dν1λ1μ1,n1(L1)Dν2λ2μ2,n2(L2),

[α[2] × α[2]][2]n2,n1(L2, L1) =

√
1

7

√
(2L1 + 1)(2L2 + 1)

�
√

B′
2C

′
2

×
∑

ν1λ1μ1

∑

ν2λ2μ2

〈ν2λ2L2|β2|ν1λ1L1〉Dν1λ1μ1,n1(L1) (36)

×〈λ2μ2L2|[α[2] × α[2]][2]|λ1μ1L1〉Dν2λ2μ2,n2(L2).

116 A. Deveikis et al.

Here Dνiλiμi,ni
(Li) is the eigenvector of the Hamiltonian (23) for the nith state

with angular momentum Li from the algebraic eigenvalue problem (26).

3.4 Matrix Elements 〈λ1μ1L1|α[2]|λ2μ2L2〉
Matrix elements of α[2] are calculated by means of the reduced Wigner coeffi-
cients in the chain O(5)⊃O(3) [7]

〈λ1μ1L1|α[2]|λ2μ2L2〉 = (−1)L2−L1 1√
2L1 + 1

1

N

×
Ks∑

K=−Ks(2)

K1s∑

K1=−K1s(2)

K2s∑

K2=−K2s(2)

〈2, K, L2, K2|L1, −K1〉 (37)

×
∫ π

0

φλ1μ1L1
K1

(γ)φλ=1μ=0 L=2
K (γ)φλ2μ2L2

K2
(γ) sin(3γ)dγ,

where 〈2,K, L2,K2|L1,−K1〉 is Clebsch–Gordan coefficient [24], φλ=1μ=0L=2
K (γ)

are the orthogonalized functions calculated from Eq. (19) at λ = 1, μ = 0, L =
2. For all K, the summation bounds and normalization factors N are defined as
follows:

Ks =

{
L, L = even,

L − 1, L = odd;
N =

{ 〈λ1μ1L1|λ1μ1L1〉, (λ1μ1L1) = (λ2μ2L2),√
〈λ1μ1L1|λ1μ1L1〉〈λ2μ2L2|λ2μ2L2〉, otherwise.

The angular brackets 〈λμL|λμL〉 here represent the overlap integrals Eq. (18)
〈φλμL(γ)|φλμL(γ)〉 of the corresponding functions φλμL(γ).

3.5 Matrix Elements 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉
Matrix elements of [α[2] × α[2]][2] are calculated also by means of the reduced
Wigner coefficients

〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉 =

√
2

9(2L2 + 1)

1

N

×
Ks∑

K=−Ks(2)

K1s∑

K1=−K1s(2)

K2s∑

K2=−K2s(2)

〈L1, K1, 2, K|L2, −K2〉 (38)

×
∫ π

0

φλ1μ1L1
K1

(γ)φλ=2μ=0 L=2
K (γ)φλ2μ2L2

K2
(γ) sin(3γ)dγ,

where φλ=2μ=0L=2
K (γ) are the orthogonalized functions calculated from Eq. (19)

at λ = 2, μ = 0, L = 2.
The selection rules for the matrix elements α[2] and [α[2] × α[2]][2] are:

λ+λ1+λ2 even , λ>|λ1−λ2|, λ<λ1+λ2, L>|L1−L2|, L<L1+L2. (39)

The columns of Table 8 are formed by the values of the angular momen-
tum L2, #MeT is the total number of matrix elements for given L2 and
L1 = L2 − 2, L2 − 1, L2, except for the first row where the L1L2 = 02, 22, 23,
#MeZ is the number of zero matrix elements that are calculated equal to 0
among the #MeT matrix elements, and the CPU time.

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 117

Table 8. The CPU time of calculation of the matrix elements 〈λ1μ1L1|α[2]|λ2μ2L2〉
and 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉 for a number of L2 and fixed νmax = 30.

〈λ1μ1L1|α[2]|λ2μ2L2〉 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉
L2 #MeT #MeZ CPU time L2 #MeT #MeZ CPU time

3 59 0 1.80 s 3 77 0 2.56 s

4 113 0 7.86 s 4 167 0 12.06 s

5 72 0 5.80 s 5 105 0 8.16 s

6 213 8 24.42 s 6 317 0 35.66 s

7 152 9 20.33 s 7 225 0 28.64 s

8 333 40 56.45 s 8 490 8 1.34 min

9 253 30 48.70 s 9 377 7 1.14 min

10 466 100 1.91 min 10 690 36 2.74 min

Table 9. Values of the quadrupole moments Qn(L)(in eb) of 186Os for a number of L
and fixed νmax = 30.

n, L 2 4 5 6

1 −1.51 −1.85 0.953 −1.95

2 1.46 −0.517 −0.912 −1.02

3 −0.929 2.13 0.421 0.915

3.6 An Example of Calculations of The Qn(L)(in eb) of 186Os

The required states are characterized by their angular momentum L and
sequence number n for fixed angular momentum starting at the lowest state. The
calculated values of the quadrupole moment Qn(L)(in eb) of 186Os from (33)
shown in Table 9 are the same as may be produced by the FORTRAN pro-
gram [20].

3.7 An Example of Calculations of the B(E2) (in e2b2) of 186Os

The states are characterized by their angular momentum L and sequence number
n for fixed angular momentum starting at the lowest state. The transitions are
indicated as ni → nj . The calculated values B(E2) = Bn2,n1(E2, L2 → L1)
(in e2b2) of 186Os come from Eq. (34) for a number of (L1L2) transitions and
fixed νmax = 30 shown in Table 10 are the same as may be produced by the
FORTRAN program [20]. CPU time for calculation of all Q and B(E2) for up
to L = 6 and with the number of states n = 3 is 64 s. (with previously prepared
data files for angular matrix elements and eigenvectors of Hamiltonian).

3.8 Finding the Optimal Basis Parameters [20]

As a basis in this code we use the eigenfunctions (13)–(20) of the five-dimensional
harmonic oscillator (11), which are respectively parameterized in terms of the

118 A. Deveikis et al.

Table 10. Values of the B(E2) = Bn2,n1(E2, L2 → L1) (in e2b2) of 186Os for a number
of (L1L2) transitions and fixed νmax = 30.

transitions (0,2) (2,2) (2,3)

1 → 1 2.99 0.801 0.0207

2 → 1 0.0228 0.0779 1.32

3 → 1 0.00835 0.00182 0.151

1 → 2 0.0389 0.0778 0.00000291

2 → 2 0.249 0.746 0.00131

3 → 2 0.000121 0.0000199 0.0000855

1 → 3 0.00526 0.00182 0.000429

2 → 3 0.248 0.0000199 0.0261

3 → 3 0.0573 0.300 0.00386

Table 11. The values of the phenomenological potential parameters C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for N = 184 isotones are determined by fitting [9].

298114 300116 302118 304120 306122 308124

C2 7579.22 7661.89 7744.29 7826.40 7908.23 7989.76

C3 3.25 ·10−4 −1.62 ·10−3 −1.61 ·10−3 −4.83 ·10−4 2.20 ·10−3 3.51 ·10−4

C4 −2.93 ·10−1 1.98 ·10−1 1.84 ·10−1 −1.16 ·10−1 −8.39 ·10−1 −3.13 ·10−1

C5 −4.11 ·10−3 2.05 ·10−2 2.04 ·10−2 6.10 ·10−3 −2.80 ·10−2 −4.44 ·10−3

C6 1.65 ·10−4 −7.81 ·10−4 −7.72 ·10−4 −2.22 ·10−4 1.09 ·10−3 1.70 ·10−4

D6 1.79 −2.08 −1.98 4.46 ·10−1 6.15 1.96

B2 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0

basis parameters C ′
2 and B′

2. For a finite set of basic vectors, the parameters
have to be chosen to get satisfactory convergence of the calculated energies and
B(E2)-values. To find the best set of basis parameters one has to diagonalize
a given Hamiltonian (23) and minimize the sum of (lowest) energy eigenval-
ues EL

n by varying the basis parameters(see e.g. [16]). Since this procedure is
quite time-consuming, we use another scheme that takes much less time and
turned out to be also effective: we minimize only the sum of the first NUM
diagonal matrix elements of the Hamiltonian for spin I = 0 and take B′

2 fixed at
B2. The integer variable NUM should be equal to the number of the lowest L = 0
basis wave functions which contribute most to the first excited states. (Default:
NUM = 10). The minimum is found by increasing a do–loop variable S, defined
as S = (C ′

2B
′
2/�

2)1/4, successively by 0.5. In the case of failure to find reasonable
basis parameters, the program is stopped and should be reruned with changed
boundaries for S. In particular, for 186Os: S = 12.005370, where � = 0.6582183
(in 10−22MeV s) , B′

2 = 90(in 10−42MeV s2), C ′
2 = 100 (in MeV).

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 119

Table 12. The values of the phenomenological potential parameters, C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for 152Sm, 154Sm,186Os, 188Os, 190Os, 194Pt and 196Pt
are determined by fitting [9].

152Sm 154Sm 186Os 188Os 190Os 194Pt 196Pt

C2 −422.74 −464.74 −564.76 −398.83 −363.64 −161.58 −169.88

C3 493.92 311.25 733.01 −380.74 −372.59 368.36 748.09

C4 7983.60 6454.70 13546. 18295.43 19391.83 2610.08 5704.92

C5 370.53 88.25 −8535.1 −17660.53 −19246.82 −130535.32 −315802.62

C6 8279.78 3842.18 −41635. 74725.61 80003.64 583687.93 975896.18

D6 −28041.74 −17430.86 0 −54507.20 −70794.69 997672.28 1841446.68

B2 62.714 63.823 112.48 165.514 173.035 203.613 223.380

P3 0 0 −0.0531 0 0 0 0

Table 13. The values of the phenomenological potential parameters, C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for Nobelium isotopes 248No, 250No, 252No, 254No,
256No, and 258No are determined by fitting [9].

248No 250No 252No 254No 256No 258No

C2 −742.30 −740.31 −742.30 −820.82 −785.78 −755.83

C3 308.99 308.17 183.87 307.77 220.57 172.21

C4 19029.74 18978.78 17371.12 19240.37 18948.17 19152.27

C5 6261.17 6244.40 8478.34 3008.90 4202.27 3693.95

C6 6020.57 6004.45 15304.34 7515.07 4820.42 −20225.25

D6 −39632.38 −39525.07 −11301.10 −58453.68 −42470.76 −20383.43

B2 226.573 83.289 240.795 226.573 226.573 226.573

P3 0 0 0 0 0 0

Table 14. The values of the phenomenological potential parameters for Seaborgium
isotopes 258Sg, 260Sg, 262Sg, 264Sg, 266Sg, 268Sg, 270Sg, 272Sg are determined by
fitting [9].

258Sg 260Sg 262Sg 264Sg 266Sg 268Sg 270Sg 272Sg

C2 −889.78 −862.28 −858.57 −707.00 −881.27 −953.97 −948.53 −816.63

C3 302.98 273.96 156.35 −244.07 −191.92 −135.38 −236.13 −249.84

C4 21572.37 21479.99 23326.53 15852.44 22306.53 24457.98 27362.39 29458.02

C5 −181.54 −958.25 603.74 4107.14 1057.65 554.98 −106.83 1252.04

C6 5756.03 4802.92 −15191.44 5714.98 2767.59 2200.10 7677.81 2858.93

D6 −91050.30 −85406.47 −92394.99 −42886.06 −87378.21 −101284.80 −124100.10 −136456.34

B2 226.573 226.573 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0 0 0

120 A. Deveikis et al.

Table 15. The values of the phenomenological potential parameters for Hassium iso-
topes 264Hs, 266Hs, 268Hs , 270Hs, 272Hs, 274Hs, 276Hs are determined by fitting [9].

264Hs 266Hs 268Hs 270Hs 272Hs 274Hs 276Hs

C2 −910.55 −960.16 −957.77 −974.18 −967.13 −892.06 −528.93

C3 −237.56 −306.53 −305.77 −401.01 −293.31 −366.77 401.95

C4 23771.37 25603.20 25539.27 25146.02 27982.38 28476.76 31704.06

C5 870.21 530.39 529.12 465.71 −2668.59 1589.99 26.09

C6 −8701.36 8602.71 8581.15 20760.67 39469.35 9918.38 27748.59

D6 −90319.19 −114091.97 −113806.31 −105793.07 −140708.47 −134891.91 −156859.49

B2 226.573 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0 0

4 Conclusions

We have developed a symbolic method implemented as a code GCM in the Wol-
fram Mathematica to compute energy spectrum, quadrupole momentum, and
electromagnetic transitions in Geometric Collective Model. The symbolic nature
of the developed methods allows one to avoid the numerical round-off errors
in the calculation of spectral characteristics (especially close to resonances) of
quantum systems under consideration and to study their analytic properties
for understanding the dominant symmetries. Efficiency of the elaborated proce-
dures and the code is shown by benchmark calculations of 186Os nucleus and
demonstrate quick performance even on a laptop.

The GCM code can be applied to study the properties of super-heavy nuclei
using an approach proposed in the papers [9,12]. Sets of the input parameters
for some atomic nuclei and super–heavy nuclei are given in Appendix A.

To point out further investigations of the considered GCM model for atomic
nuclei in the framework of the Computer Algebra System (CAS) of the bound-
ary value problem (BVP) corresponding to quantum Hamiltonian Eq. (11) is pre-
sented in Appendix B. Solution of this problem by the finite element method
(FEM) implemented in a suitable CAS code, for example, GCMFEM code [10]
gives a possibility to compare GCM results with GCMFEM ones using the alter-
native FEM reduction of the BVP to algebraic problems and input parameters
from Appendix A.

Acknowledgments. The work was partially supported by the RUDN University
Strategic Academic Leadership Program, the Bogoliubov–Infeld program, and grant of
Plenipotentiary of the Republic of Kazakhstan in JINR. AD is grateful to Prof. A. Góźdź
for hospitality during visits in Institute of Physics, Maria Curie-Sk�lodowska University
(UMCS). POH acknowledges financial support from DGAPA-UNAM (IN100421).

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 121

A Appendix. Sets of Input Parameters for Atomic Nuclei

To denote approximately a range of applicability of the GCM code and to make
it more friendly for users, we will accompany it by the sets of input files with
the values of sets of parameters for atomic nuclei given in the papers [9,12,20].

For example, we present some of them in Tables 11, 12, 13, 14, 15, and 16.
In Table 11 the macroscopic potential parameters are given. The value of C2

is increased as we approach to double closed shell. Even the potential depends
more on the quadratic term over β, it is not completely quadratic even if one
approaches very close the double closed shell. Because of the great similarity,
the authors only depict the PES of the 298114 and 304120 in Figs. 29 and 30
in Ref. [9]. The PES is perfectly spherical, thus, the spectrum will be that of
a five-dimensional oscillator: The energy scales as �

√
C2/B2. The first excited

state is a 2+ state at the energy �
√

C2/B2 and at twice this energy, there are
three degenerate states with spin and parity 0+, 2+ and 4+. The first 3+ state
is three times the energy of the first 2+ state. For completeness, in Fig. 31 in
Ref. [9], the authors depict the spectrum of the 298114 nucleus as predicted by
the GCM [9].

Table 16. The values of the phenomenological potential parameters for 184W are
determined by fitting [12].

C2 C3 C4 C5 C6 D6 B2 P3

−521.77 −337.80 14306.01 −502.64 1902.26 −60439.94 112.697 0

The only parameter, which cannot be deduced is the collective mass B2 of the
geometrical model [8]. This parameter has to be adjusted to, e.g., a particular
state in the ground state band. Also assuming for neighboring nuclei the same
value of B2 is in general far more accurate than using the Cranking Model. For
the case of nuclei in the island of stability, one will use a generic value, i.e.,
results will scale with B2 (as it is pointed out in page 128 in Ref. [9]).

B Appendix. Boundary Value Problem for GCM Model

The equation of geometric collective model (GCM) with respect to components
ΦL

nK = ΦL
nK(β, γ) and eigenvalue EL

n (in MeV), B̄2 = 2B2/
√

5 in (10−42MeV s2)
and C2 in (MeV) are mass and stiffness parameters, variable β in (fm), reads as

122 A. Deveikis et al.

(T (β, γ)+T L
K(β, γ)+V̂ (β, γ)−EL

n)ΦL
nK(β, γ) =

∑

K′=K±2even

V L
KK′(β, γ)ΦL

vK′(β, γ), (40)

T (β, γ) =
�
2

2B̄2

(
− 1

β4

∂

∂β
β4 ∂

∂β
− 1

β2 sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ

)
+K(β, γ),

T L
K(β, γ) = +

�
2

2B̄2

[
(L(L + 1) − K2)

(
2B̄2

4J1
+

2B̄2

4J2

)
+

K22B̄2

2J3

]
,

V L
KK′(β̄, γ) = − �

2

2B̄2

[
2B̄2

8J1
−2B̄2

8J2

]
CL

KK′ , CL
KK′ = δK′K−2C

L
KK−2+δK′K+2C

L
KK+2,

CL
KK−2 = (1 + δK2)

1/2[(L + K)(L − K + 1)(L + K − 1)(L − K + 2)]1/2,

CL
KK+2 = (1 + δK0)

1/2[(L − K)(L + K + 1)(L − K − 1)(L + K + 2)]1/2,

and the moments of the inertia denoted as Jk = 4B̄(k)β
2 sin2(γ− 2

3kπ), where
k = 1, 2, 3 and B̄(k) = B̄2 is a mass parameter, with potential function V̂ (β, γ)
from (3), (4) and (5), and input set of parameters from Tables 11, 12, 13, 14,
15 and 16 in Appendix A, and additional kinetic function K(β, γ) determined
in [11,14,17,20,23]. The bounded components φL

vK are subjected to homoge-
neous Neumann or Dirichlet boundary conditions at the boundary points of
interval γ = 0 and γ = π/3 for zero or odd values of L (for details of boundary
conditions on interval of the β variable see [18,19,23]), and orthonormalization
conditions (see Eq. (15))

∫ βmax

β=0

∫ π/3

0

∑

Keven

ΦL
n′K(β, γ)ΦL

nK(β, γ) sin(3γ)dγβ4dβ = δn′n. (41)

The BVP (40)–(41) will be solved by the FEM implemented in the CAS code.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1972). https://dlmf.nist.gov/33.22#vii

2. Bohr, A.: The coupling of nuclear surface oscillations to the motion of individual
nucleons. Mat. Fys. Medd. Dan. Vid. Selsk. 26(14) (1952)

3. Bohr, A., Mottelson, B.: Collective and individual-particle aspects of nuclear struc-
ture. Mat. Fys. Medd. Dan. Vid. Selsk. 27(16) (1953)

4. Bohr, A., Mottelson, B.R.: Nuclear Structure, vol. 2. W A Bejamin Inc., New York;
Amsterdam (1970)

5. Chacón, E., Moshinsky, M., Sharp, R.T.: U(5) ⊃ O(5) ⊃ O(3) and the exact
solution for the problem of quadrupole vibrations of the nucleus. J. Math. Phys.
17, 668–676 (1976)

6. Chacón, E., Moshinsky, M.: Group theory of the collective model of the nucleus.
J. Math. Phys. 18, 870–880 (1977)

7. Deveikis, A., et al.: Symbolic-numeric algorithm for computing orthonormal basis
of O(5)×SU(1,1) group. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov,
E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 206–227. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60026-6 12

8. Eisenberg, J.M., Greiner, W.: Nuclear Theory, vol. 1, 3rd edn. North-Holland,
Amsterdam (1987)

https://dlmf.nist.gov/33.22#vii
https://doi.org/10.1007/978-3-030-60026-6_12

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model 123

9. Ermamatov, M.J., Hess, P.O.: Microscopically derived potential energy surfaces
from mostly structural considerations. Ann. Phys. 37, 125–158 (2016)

10. Gusev, A.A., Chuluunbaatar, G., Chuluunbaatar, O., Vinitsky, S.I., Blinkov,
Yu.A., Hess, P.O.: Interpolation Hermite Polynomials in Parallelepipeds and FEM
Applications Extended Abstract in CASC-2022 and in Mathematics in Computer
Science (2022)

11. Hess, P.O.: A gradient formula for the group U(2l + l). J. Phys. G: Nucl. Phys.
4(3), L59–L63 (1978)

12. Hess, P.O., Ermamatov, M.: In search of a broader microscopic underpinning of
the potential energy surface in heavy deformed nuclei. J. Phys. Conf. Ser. 876,
012012 (2017)

13. Hess, P.O.: The power of the geometrical model of the nucleus. In: Hess, P.O.,
Stöcker H. (eds.) Walter Greiner Memorial Volume, pp. 183–197. World Scientific,
Singapore (2018). https://www.worldscientific.com/worldscibooks/10.1142/10828

14. Hess, P.O., Seiwert, M., Maruhn, J., Greiner, W.: General Collective Model and
its Application to 238

92 U. Z. Phys. A 296, 147–163 (1980)
15. Hess, P.O., Maruhn, J., Greiner, W.: The general collective model applied to the

chains of Pt, Os and W isotopes. J. Phys. G Nucl. Phys. 7, 737–769 (1981)
16. Löwdin, P.O.: Studies in perturbation theory. X. Lower bounds to energy eigen-

values in perturbation-theory ground state. Phys. Rev. A 139, 357–360 (1965)
17. Moshinsky, M., Smirnov, Y.F.: The Harmonic Oscillator in Modern Physics. HAP,

Netherlands (1996)
18. Próchniak, L., Zajac, K.K., Pomorski, K., et al.: Collective quadrupole excitations

in the 50<Z, N<82 nuclei with the general Bohr Hamiltonian. Nucl. Phys. A 648,
181–202 (1999)

19. Próchniak, L., Rohoziński, S.G.: Quadrupole collective states within the Bohr col-
lective Hamiltonian. J. Phys. G: Nucl. Part. Phys. 36, 123101 (2009)

20. Troltenier, D., Maruhn, J.A., Hess, P.O.: Numerical application of the geometric
collective model. In: Langanke, K., Maruhn, J.A., Konin, S.E. (eds.) Computa-
tional Nuclear Physics, vol. 1, pp. 116–139. Springer, Heidelberg (1991). https://
doi.org/10.1007/978-3-642-76356-4 6

21. Troltenier, D.: The generalized collective model; Das generalisierte Kollektivmod-
ell. Ph.D. thesis, University of Francfurt, p. 55 (1992)

22. Troltenier, D., Draayer, J.P., Babu, B.R.S., Hamilton, J.H., Ramayya, A.V., Ober-
acker, V.E.: The 108,110,112Ru isotopes in the generalized collective model. Nucl.
Phys. A 601, 56–68 (1996)

23. Troltenier, D., Maruhn, J.A., Greiner, W., Hess, P.O.: A general numerical solu-
tion of collective quadrupole surface motion applied to microscopically calculated
potential energy surfaces. Z. Phys. A Hadrons Nuclei 343, 25–34 (1992)

24. Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angu-
lar Momentum. Nauka, Leningrad (1975); World Scientific, Singapore (1988)

25. Wolfram Research Inc: Mathematica, Version 13.0.0, Champaign, IL (2022).
https://www.wolfram.com/mathematica/

26. Yannouleas, C., Pacheco, J.M.: An algebraic program for the states associated with
the U(5)⊃O(5)⊃O(3) chain of groups. Comput. Phys. Commun. 52, 85–92 (1988)

27. Yannouleas, C., Pacheco, J.M.: Algebraic manipulation of the states associated
with the U(5)⊃O(5)⊃O(3) chain of groups: orthonormalization and matrix ele-
ments. Comput. Phys. Commun. 54, 315–328 (1989)

https://www.worldscientific.com/worldscibooks/10.1142/10828
https://doi.org/10.1007/978-3-642-76356-4_6
https://doi.org/10.1007/978-3-642-76356-4_6
https://www.wolfram.com/mathematica/

Analyses and Implementations
of Chordality-Preserving Top-Down

Algorithms for Triangular Decomposition

Mingyu Dong and Chenqi Mou(B)

LMIB–School of Mathematical Sciences, Beihang University, Beijing 100191, China
{mingyudong,chenqi.mou}@buaa.edu.cn

Abstract. When the input polynomial set has a chordal associated
graph, top-down algorithms for triangular decomposition are proved to
preserve the chordal structure. Based on these theoretical results, sparse
algorithms for triangular decomposition were proposed and demonstrat-
ed with experiments to be more efficient in case of sparse polynomial
sets. However, existing implementations of top-down triangular decom-
position are not guaranteed to be chordality-preserving due to operations
which potentially destroy the chordality. In this paper, we first analyze
the current implementations of typical top-down algorithms for trian-
gular decomposition in the Epsilon package to identify these chordality-
destroying operations. Then modifications are made accordingly to guar-
antee new implementations of such algorithms are chordality-preserving.
In particular, the technique of dynamic checking is introduced to ensure
that the modifications also keep the computational efficiency. Experimen-
tal results with polynomial sets from biological systems are also reported.

Keywords: Triangular decomposition · Chordal graph · Sparsity ·
Implementation

1 Introduction

Symbolic computation, also called computer algebra, is an interdisciplinary sub-
ject of mathematics and computer science which studies how to solve mathe-
matical problems in terms of symbolic objects by using algorithms and their
implementations [11]. As an indispensable method in symbolic computation, tri-
angular decomposition transforms any multivariate polynomial set into finitely
many triangular sets or systems which are in the triangular shape with respect
to their greatest variables and thus much easier to solve, making operations with
polynomial systems like solving them algorithmically feasible [1,16,32,37].

After the introduction of characteristic set, a special kind of triangular set,
by Ritt [28,29], solid development on the theories, methods, and algorithms of

This work was partially supported by the National Natural Science Foundation of
China (NSFC 11971050) and Beijing Natural Science Foundation (Z180005).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 124–142, 2022.
https://doi.org/10.1007/978-3-031-14788-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_8

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 125

triangular decomposition has been witnessed in the last decades [2,3,7–9,12,
13,17–19,30,31,38], accompanied by many successful applications of triangular
decomposition in scientific and engineering areas, e.g., in automated reasoning
of geometric theorems [9,36], stability analysis of biological systems [27,35], and
cryptography [5,13,15] etc. Well-known implementations for triangular decom-
position include the Epsilon package for top-down triangular decomposition for
Maple [33], the RegularChains library for regular decomposition in Maple [20],
the wsolve package for characteristic decomposition [34], and the built-in imple-
mentations of triangular decomposition in Singular [14].

This paper focuses on top-down algorithms for triangular decomposition
which preserve the chordal structure. The connections between chordal graphs
and triangular sets were first established by Cifuentes and Parrilo in their study
on the chordal network of polynomial systems by associating a graph to a poly-
nomial set [10]. They also showed that algorithms due to Wang [30,31] are more
efficient when the input polynomial set has a chordal associated graph. Their
works inspired Mou and his collaborators to study chordal graphs in top-down
algorithms for triangular decomposition: they proved that such algorithms pre-
serve the chordal structure and thus are also sparsity-preserving, explaining the
experimental observations by Cifuentes and Parrilo [22]. Then based on these
theoretical results top-down algorithms for sparse triangular decomposition were
proposed and applied to solve large polynomial systems arising from stability
analysis of biological systems [23–25]. Furthermore, algorithms for incremental
triangular decomposition and for cylindrical algebraic decomposition were also
proved to preserve the chordal structure, leading to more efficient algorithm
variants in the sparse case [6,21].

Though those algorithms for triangular decomposition are proved to be chor-
dality-preserving at the algorithmic level, in real computation with their exist-
ing implementations, instances where chordality is destroyed are reported. This
means that in the implementations of these top-down algorithms for triangu-
lar decomposition, there exist procedures or operations which are against the
overall top-down strategy of the algorithm, introducing unwanted relationships
between the variables in the polynomial sets. In this paper, we first analyze the
current implementations of top-down algorithms for triangular decomposition in
the Epsilon package to identify the operations which destroy the chordal struc-
ture and then modify them accordingly to have real chordality-preserving imple-
mentations for top-down triangular decomposition. Furthermore, we introduce
the technique of dynamic checking to make the best use of simplification which
speeds up the computation of triangular decomposition considerably while keep-
ing the implementations chordality-preserving. The effectiveness and efficiency of
our modified implementations were demonstrated with experiments with bench-
mark polynomial systems in the ODEbase database for biological models1.

To our best knowledge, the implementations we present in this paper are
the first ones for chordality-preserving top-down triangular decomposition in
the community of symbolic computation. It is planned to incorporate these

1 https://odebase.cs.uni-bonn.de/ODEModelApp.

https://odebase.cs.uni-bonn.de/ODEModelApp

126 M. Dong and C. Mou

implementations into the next release of the Epsilon package. We believe that the
four operations we identify in the original implementations in the Epsilon package
to potentially destroy the chordality-preserving property of an implementation of
top-down triangular decomposition are also useful as references to those who plan
to apply chordal graphs in top-down elimination methods like those for cylindrical
algebraic decomposition.

2 Preliminaries

Let K be a computable field. Denote by K[x] the polynomial ring in the variables
x1, . . . , xn over K. We fix a variable ordering x1 < · · · < xn unless otherwise spec-
ified. For a polynomial F ∈ K[x], the greatest variable that effectively appears in
it is called the leading variable of F and denoted by lv(F). Let xk = lv(F). Then
F can also be regarded as a univariate polynomial in xk, with coefficients from
K[x1, . . . , xk−1], and accordingly it can be written as F =

∑dk

i=0 Cix
i
k, where

Ci ∈ K[x1, . . . , xk−1], dk = deg(F, xk), and Cdk
�= 0. The leading coefficient Cdk

here is called the initial of F , denoted by ini(F), and plays an important role in
the theory of triangular decomposition.

2.1 Triangular Set and Triangular Decomposition

Definition 1. Let T = [T1, . . . , Tr] be an ordered polynomial set in K[x]. If
none of T1, . . . , Tr is constant and lv(T1) < · · · < lv(Tr), then T is called a
triangular set in K[x].

Clearly the following polynomial set forms a triangular set in K[x1, . . . , x4]

[x2 + x1, (x2
2 − x2

1 + 2)x3, (x3 + x2)x4 + x3 − 1]. (1)

One can impose additional conditions on the polynomials and their initials
in a triangular set to make it even stronger and have more desirable properties.
Commonly used triangular sets include regular sets (or called regular chains) [8,
17,38], simple sets [3,26,31], irreducible sets [32, Sect. 4.1], and normal sets [32,
Sect. 5.2], etc.

Let P, Q ⊂ K[x] be two polynomial sets. We are interested in the zeros
defined by P as equations and Q as inequations. To be specific, we study the
system of equations P = 0 and inequations Q �= 0 for all P ∈ P and Q ∈ Q
and denote this system by P = 0 and Q �= 0 accordingly. Let K be the algebraic
closure of K. Then we denote by Z(P) the common zeros of the polynomials in P
in K and denote Z(P/Q) := Z(P) \Z(S), where S =

∏
Q∈Q Q. As one may find,

the definition Z(P/Q) is indeed the zero set of P = 0 and Q �= 0.

Definition 2. Let (T ,U) be a pair of polynomial sets in K[x]. Then it is called
a triangular system if T is a triangular set, say T = [T1, . . . , Tr], and for each
i = 2, . . . , r and any xi−1 ∈ Z([T1, . . . , Ti−1]/U), we have ini(Ti)(xi−1) �= 0.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 127

Definition 3. Let P and Q be two finite polynomial sets in K[x]. Then the
process to compute finite many triangular systems (T1, T1), . . . , (Ts,Us) such that
Z(P/Q) =

⋃s
i=1 Z(Ti/Ui) is called triangular decomposition of P and Q.

When the triangular set T in a system (T ,U) is regular, simple, irreducible, or
normal, the corresponding triangular system is also called so. Triangular decom-
position to different kinds of triangular systems is also named after the resulting
triangular systems. For example, in this paper, we are interested in top-down
algorithms for regular and simple decomposition which decomposes a polynomial
set into regular sets and simple sets, respectively.

Top-down algorithms for triangular decomposition refer to those handle the
polynomials in a decreasing order with respect to their leading variables so that
when handling the polynomials with a certain leading variable, those with strictly
greater leading variables keep the same and newly generated polynomials in the
process are only of smaller leading variables. The readers are referred to [23] for
a formal definition of top-down triangular decomposition.

2.2 Sparse Triangular Decomposition Based on Chordal Graphs

Consider an undirected graph G = (V,E), where V := {x1, . . . , xn} and E are,
respectively, the sets of its vertices and edges. An edge in E connecting two
vertices xi and xj is denoted by (xi, xj). Since G is an undirected graph, we
have (xi, xj) = (xj , xi). Let S be a non-empty subset of V . Then the subgraph
with its vertices in S and edges consisting of the edges in E whose endpoints
belong to S is called the induced subgraph of G with respect to S and denoted
by G[S]. If an induced subgraph G[S] is complete, meaning that all the vertices
are connected with edges, then we say that S forms a clique in G.

Definition 4. Let G = (V,E) be an undirected graph with V = {x1, . . . , xn}
and xi1 < xi2 < · · · < xin be an ordering of all the vertices. If for each j =
i1, i2, · · · , in, the set {xj} ∪ {xk : xk < xj and (xk, xj) ∈ E} forms a clique in G,
then this vertex ordering is called a perfect elimination ordering of G. If G has
some perfect elimination ordering, then it is said to be chordal.

There exist effective algorithms, e.g., the MCS (maximum cardinality search)
algorithm [4], to test whether a given graph is chordal, returning also a perfect
elimination ordering in the affirmative case. The specifications of the MCS algo-
rithm are formulated in Algorithm 1 for later references.

Algorithm 1: MCS algorithm (B,σ) := MCS(G)
Input: G, a graph
Output: (B,σ): if G is chordal, then B = True and σ is one perfect

elimination ordering of G, otherwise B = False and σ = ∅

For a non-chordal graph G = (V,E), one can make it chordal by adding a set
of new edges E′. The process to find a minimal set E′ of edges for G so that G′ :=
(V,E ∪ E′) is chordal is called chordal completion of G. We denote this process

128 M. Dong and C. Mou

by G′ = ChordalComp(G). Here by minimal we mean that any strict subset E′′

of E′ cannot make G′′ = (V,E ∪ E′′) chordal. The resulting supergraph G′ is
also called a chordal completion of G if no ambiguity may happen.

In Fig. 1 below, the subgraph (a) is not chordal and (b) is a chordal com-
pletion of it with a perfect elimination ordering x1 < x2 < x3 < x4 < x5. Note
that (c) is not a chordal completion of (a) even though it is a chordal graph, for
the set of added edges is not minimal.

Fig. 1. A chordal graph and its chordal completion (Color figure online)

For a polynomial F ∈ K[x], denote by supp(F) the set of the variables F con-
tains; similarly for a polynomial set F ⊂ K[x] we define supp(F) = {supp(F) :
F ∈ F}. In the following way a graph is associated to F .

Definition 5. Let F ⊂ K[x] be a polynomial set. Set V = supp(F) and E =
{(xi, xj) : there exists F ∈ F such that xi, xj ∈ supp(F)}. Then the graph G =
(V,E) is called the associated graph of F , denoted by G(F).

The associated graph of the polynomial set (1) is illustrated as below in
Fig. 2. One can see that the associated graph of a polynomial set F reflects how
the variables in F are interconnected, and, thus, the definition below for variable
sparsity via associated graphs is natural.

Fig. 2. Associated graph of (1)

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 129

Definition 6. Let F ⊂ K[x] be a polynomial set and G(F) = (V,E) be its
associated graph. Then the variable sparsity of F is defined to be sv := |E|/

(
2

|V |
)
.

It is proved that if the input polynomial set has a chordal associated graph
and a perfect elimination ordering of this graph is used as the variable ordering,
top-down algorithms for triangular decomposition preserve the variable sparsity
of the polynomial sets in the process of decomposition and, thus, the following
algorithmic framework for sparse triangular decomposition is proposed in [23]
and verified to be more efficient for polynomial systems which are sparse with
respect to their variables [24]. In Algorithm 2 below, RegDec() represents a top-
down algorithm for regular decomposition. It is called an algorithmic framework
because by simply replacing RegDec() with any other top-down algorithm for
triangular decomposition, say one for simple decomposition, one will have a
sparse version of that top-down algorithm.

Algorithm 2: Top-down algorithm for sparse regular decomposition
(σ, ψ) = SparseRegDec(F)
Input: F ∈ K[x], a sparse polynomial set with respect to the variables
Output: (σ, Ψ), a perfect elimination ordering σ and triangular

decomposition Ψ of F with respect to σ
1 (B,σ) := MCS(G(F));
2 if B = False then
3 G′ := ChordalComp(G(F));
4 (B,σ) := MCS(G′);

5 Ψ := RegDec(F ,σ);
6 return (σ, Ψ);

3 Chordality in Top-Down Triangular Decomposition

In this paper, we focus on three typical top-down algorithms for triangular
decomposition which have been implemented in the Epsilon package: they are the
algorithms for regular decomposition (denoted by RegSer), for simple decomposi-
tion (by SimSer), and for triangular decomposition (by TriSer). These algorithms,
detailed in [32] and proved to be chordality-preserving [23,25], rely heavily on
subresultants for polynomial elimination in the decomposition and, thus, share
a similar underlying structure.

We applied sparse algorithms for triangular decomposition in the frame-
work of Algorithm 2 with the implementations in the Epsilon package of these
three algorithms to polynomial systems arising from biological models in the
database ODEbase in our experiments. For each studied polynomial system F , a
finite number of triangular systems (T1,U1), . . . , (Ts,Us) will be computed after
the triangular decomposition, and we want to check whether all the associated
graphs G(T1), . . . , G(Ts) are indeed subgraphs of the input chordal graph that
is either G(F) or its chordal completion. In fact, in our experiments, instances
with extra added edges not contained in the input chordal graph were reported.

130 M. Dong and C. Mou

Example 1. Consider the following polynomial system in Model BM483

{100x3−x1−10−5x2
1x4+10−5x1x4+ 0.2x6,−5×10−6x2

2x3+5×10−6x2x3+0.1x5

100x4−x2−10−5x2
2x3+10−5x2x3+0.2x5,−5×10−6x2

1x4+5×10−6x1x4+0.1x6,

5×10−6x2
2x3−5×10−6x2x3−0.1x5, 5×10−6x2

1x4−5×10−6x1x4−0.1x6,

x1−100x3, x2−100x4}.

The associated graph of this polynomial set is shown below in Fig. 3 and it is a
chordal graph with one perfect elimination ordering x1 < x3 < x6 < x4 < x2 <
x5.

Fig. 3. A chordal associated graph

With this perfect elimination ordering as the variable order, the RegSer func-
tion in Epsilon package returns the following two triangular systems

([x1−100x3, x
2
1x4−x1x4−20000x6, x2−100x4, 100x2

4x1−x1x4−20000x5],
{x1, x1−1}), ([x2

1−x1, x1−100x3, x6, x2−100x4, 100x2
4x1−x1x4−20000x5], ∅).

Their associated graphs are shown in (a) and (b) of Fig. 4 respectively.

Fig. 4. Associated graph (Color figure online)

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 131

As one may find, the red edge in these two graphs does not appear in
Fig. 3. This means that, even though the top-down algorithm RegSer for reg-
ular decomposition is proved theoretically to preserve the chordal structure of
the input polynomial set, there may still exist specific operations in the actual
implementation of this algorithm which can destroy the chordality-preserving
property. In fact, out of 40 polynomial systems we picked from the ODEbase
database, our experiments found 7 to produce extra added edges in some asso-
ciated graphs of the returned triangular systems output by the RegSer function
in the Epsilon package.

4 When is the Chordality Destroyed?

In this section, we report our study and analyses on the source codes of the
implementations of the functions RegSer, SimSer, and TriSer for top-down trian-
gular decomposition in the Epsilon package. In total, we found the following 4
operations which may destroy the chordality in these implementations.

4.1 Simplifying a Polynomial Set with Its Binomials

Let P be a polynomial set appearing in the process of triangular decomposition
which represents the equations P = 0. In case there exists some simple polyno-
mial in P like a binomial, we can simplify P with this simple polynomial. This
operation is formulated as Simplify(P) as follows.

Simplify(P)
1. Consider each polynomial T in the polynomial set P representing P = 0.
2. If T is a binomial, write T = c1t1 + c2t2, with the term t1 greater than t2.
3. For any polynomial P ∈ P\{T}, replace every occurrence t1 in P , if any,

with − c2
c1

t2.

Example 2. Take the polynomial set (1) as input, we have
Input: Simplify(

{
x2 + x1, (x2

2 − x2
1 + 2)x3, (x3 + x2)x4 + x3 − 1

}
)

Output: {x2 + x1, 2x3,−x1x4 − 1}
Clearly after the operation the output polynomial set is simpler. However,

with the associated graph of the output polynomial set shown in Fig. 5, one can
find an added edge in red compared with Fig. 2.

132 M. Dong and C. Mou

Fig. 5. Associated graph with one added edge after simplification (Color figure online)

Example 3. When computing regular decomposition of the polynomial system in
Model BM483 in ODEbase database with the function RegSer in the Epsilon pack-
age with the variable ordering x1 < x3 < x6 < x4 < x2 < x5. A triangular set

T = [x1 − 100x3, x2 − 100x4, 100x3x
2
4 − x3x4 − 200x5,

x2
1x4 − x1x4 + 100000x1 − 10000000x3 − 20000x6]

is simplified with Simplify(). With the binomial x1 − 100x3, the substitution
x3 = x1/100 into other polynomials in T results in a new triangular set

T ′ = [x1 −100x3, x2 −100x4, 100x1x
2
4 −x1x4 −20000x5, x

2
1x4 −x1x4 −20000x6].

One can find that the vertices x1 and x5 appear in 100x1x
2
4 − x1x4 − 20000x5

in T ′ now, introducing a new edge (x1, x5) in G(T ′).

4.2 Simplifying a Polynomial System with Binomials

In the process of top-down triangular decomposition, when the handling down
to the variable xk+1 from xn has finished, there are many stored polynomial
systems (P,Q) such that for i = n, . . . , k + 1, the number of polynomials in P
with leading variable xi is at most 1. This means that triangular decomposition
has been done for P down to xk+1. At this point, the polynomials in both
P and Q may be simplified with a simple polynomial T ∈ P if lv(T) ≤ xk.
This operation, formulated as Filter((T ,U), xk) below, is similar to Simplify() in
Sect. 4.1, except that the substitution here is by the other term of the binomial.

Filter((P,Q), xk)
1. Consider each polynomial T in the polynomial set P representing P = 0.
2. If T is a binomial and lv(T) ≤ xk, write T = c1t1 + c2t2, with the term t1

greater than t2.
3. For any polynomial P in P ∪ Q \ {T}, replace every occurrence t2 in P , if

any, with − c1
c2

t1.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 133

Example 4. The following example shows that this operation can potentially
destroy the chordality.
Input: Filter(({x4 + x2, x3 + x1 + x2, x

2
4 − x2

2 + x3}, {x1, x2, x4}), x4)
Output: ({x4 + x2, x3 + x1 − x4, x3}, {x1, x4})

One can find that both the equation and inequation sets become simpler
after this operation. The associated graphs of the input and output polynomial
sets are shown in (a) and (b) of Fig. 6 respectively, with the newly added edges
colored in red.

Fig. 6. Associated graph with one added edge after simplification (Color figure online)

4.3 Reducing Inequation Polynomials with a Polynomial
in the Triangular Set

In top-down triangular decomposition, reduction like the pseudo-division and
subresultant (see, e.g., Sects. 1.2–1.3 of [32] for the definitions of these funda-
mental operations in triangular decomposition) is applied to the polynomials
whose leading variables are the one of interest, say xk. After the reduction, only
one polynomial T whose leading variable equals xk is left, and this polynomial T
is an element in the triangular set. Whenever such a polynomial T is found, one
can perform reduction on all the current polynomials in Q representing inequa-
tions Q �= 0 in the decomposition to simplify Q. This operation is formulated as
Reduce(Q, T) below, in which prem(Q,T) computes the pseudo-remainder of Q
with respect to T in lv(T).

Reduce(Q, T)
1. For each Q ∈ Q, replace Q with prem(Q,T).

Example 5. We report our experimental results with the function TriSer applied
to the polynomial system in Model BM335 in ODEbase database, where the
operation Reduce() introduced an extra edge in the process of decomposition.

Figure 7(a) is the associated graph of the input polynomial system in Model
BM335 and it is not chordal. Then chordal completion is applied to it with

134 M. Dong and C. Mou

MCS(), resulting in a chordal graph as (b), with added edges colored in blue,
and the following perfect elimination ordering

x2<x6<x1< x5<x4<x3<x7<x23<x12<x8<x29<x22<x9<x18<x10<x27

<x11<x25<x13<x26<x28<x14<x21<x24 <x17<x16<x20<x19<x15.

Then performing pseudo division of Q = −943230000000000x1x5 −437100x8

in the inequation polynomial set Q by T = x2(101200000000x1x5+403x6) results
in prem(Q,T, x5) = 41317575x2x6 − 4808100x2x8. One can find that in the
resulting graph shown in (c), an edge in red connecting x2 and x8 is added and
it is not included in the chordal graph (b).

Fig. 7. One added edge with reduction on inequation polynomials (Color figure online)

4.4 Reducing a Triangular System with a Polynomial
in the Triangular Set

In top-down triangular decomposition, whenever a triangular system (T ,U) is
constructed, one can simplify it by performing pseudo-division on all the poly-
nomials in T and U by any polynomial in T . This operation is formulated as
ReduceTS((T ,U)) below.

ReduceTS((T ,U))
1. For each polynomial T ∈ T , replace P with prem(P, T) for each

P ∈ T ∪ U \ {T}.

Example 6.
Input: ReduceTS(([x2

2 + x1, x
5
3 − x1, x

10
3 x4 + x2], {x3}))

Output: ([x2
2 + x1, x

5
3 − x1, x

2
1x4 + x2], {x3})

The associated graphs of the input and output polynomial sets are shown in
(a) and (b) of Fig. 8 respectively, with one added edge colored in red.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 135

Fig. 8. Associated graph with one added edge after reduction (Color figure online)

4.5 Analysis on the Four Operations

As one can easily find, the occurrences of added edges in the functions in
Sects. 4.1–4.2 are all due to simplification via substitution. It is worth mentioning
that neither algebraic simplification with binomials in Sects. 4.1–4.2 nor reduc-
ing inequation polynomials with a polynomial in the triangular set in Sect. 4.3
appears in the original descriptions of top-down algorithms for triangular decom-
position. These operations are found in the implementations of such algorithms
only for the efficiency consideration. Similarly, reducing a triangular system is
not included in the original descriptions of top-down algorithms for triangular
decomposition either. This operation in the implementation is to make a trian-
gular system perfect, a stronger notion than our target triangular system. To be
short, this operation is for the quality of the output after triangular decomposi-
tion. To conclude, the existences of all these four identified “bad” operations in
the implementations do not affect the correctness of the implementations.

5 Chordality-Preserving Implementations
and Experiments

As analyzed above, all the four identified operations which potentially destroy
the chordal structure in triangular decomposition do not affect the correctness of
the implementations. Then one straightforward method to construct chordality-
preserving implementations of top-down algorithms for triangular decomposition
is merely removing the related codes.

5.1 Removing Chordality-Destroying Operations

Take our modifications to the function RegSer for regular decomposition in Epsilon
package for example. We simply removed related codes of the four chordality-
destroying operations in the implementations, resulting in a new function which
we name RegSerC. Then we tested this new function with the benchmark polyno-
mial systems fromODEbase database to see whether it indeed preserves chordality
and to compare its efficiency against the original RegSer function.

136 M. Dong and C. Mou

The experimental results are summarized in Table 1, and all the experiments
in this paper were carried out on a Macbook Pro laptop with a 2 GHz quad core
i5 CPU and 16 GB 3733 MHz MHz LPDDR4 memory under the operating sys-
tem MacOS Catalina 10.15.5. In this table, the timings (CPU time in seconds),
number of branches in the computed triangular decomposition, and number of
branches with added edges compared with the input chordal graph are recorded
in the columns “Time”, “#Bran”, and “#Edge”, respectively. In particular, the
number “XXX-i” in the column “No.” means that the corresponding ID in the
ODEbase is BIOMD0000000XXX with the ith perfect elimination ordering (the
specific ordering is not provided due to its length) and a dash “—” in the column
“Time” means that the corresponding computation does not finish within 2 h.

From this table, we have the following observations: (1) There is no added
edge reported with the new function RegSerC for all the finished computation,
meaning that (at least) experimentally this function is chordality-preserving;
(2) There are considerable efficiency decreases with this new function against
the original RegSer one, for all tested systems. Take Model BM332 for example,
in total we tested it with 5 perfect elimination orderings: the RegSer function
finishes the computation around 312 s on average, while for 4 out of 5 variable
orderings, the new RegSerC function cannot finish within 2 h. For the remaining
ordering, the computation time with RegSerC is 6.71 times of that with RegSer.

5.2 Further Optimization with Dynamic Checking

Simply removing related codes of chordality-destroying operations can indeed
guarantee that the chordality is preserved but unfortunately it also diminishes
the efficiency of the implementations. This means that algebraic simplification
and reduction are quite effective to improve the computational efficiency. Or in
other words, we should keep as much algebraic simplification and reduction as
possible in the implementations while still preserving the chordality. Following
this strategy we introduce the technique of dynamic checking to test whether
some extra edge will be added if some specific algebraic simplification or reduc-
tion is performed. This test is in fact quite easy: for example, if algebraic simpli-
fication is applied to a polynomial F with a binomial T to have a new polynomial
F ′, then a simple comparison of G(F ′) to the input chordal graph would tell us
whether some extra edge would be added.

As an example, we formulate the technique of dynamic checking with Simplify
in Sect. 4.1. Other algebraic simplification and reduction with dynamic checking
are the same and we omit their formal descriptions.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 137

Algorithm 3: Algebraic simplification with dynamic checking
Input: A polynomial set F ⊂ K[x], the input chordal graph G
Output: A polynomial set F ′ ⊂ K[x] after simplification

1 for T ∈ F do
2 if T is a binomial then
3 Write T = c1t1 + c2t2, with the term t1 greater than t2;
4 for F ∈ F \ {T} do
5 F ′ := polynomial obtained by replacing t1 in F by − c2

c1
t2;

6 if G(F ′) ⊆ G then
7 F := F ′;

8 return F ;

Table 1. Experiments with chordality-preserving top-down implementations for regu-
lar decomposition

No. #Var
RegSer RegSerCO RegSerC

Time #Bran #Edge Time #Bran #Edge Time #Bran #Edge
220-1 58 91.73 1728 288 99.99 1728 0 273.55 1728 0
220-2 58 256.41 5184 1944 307.00 5184 0 450.24 5184 0
332-1 78 328.96 2125 985 376.91 2176 0 — — —
332-2 78 248.33 2082 998 272.08 2083 0 — — —
332-3 78 244.08 3130 1692 284.24 3160 0 — — —
332-4 78 215.94 2719 1030 245.37 2719 0 — — —
332-5 78 522.94 3680 1312 642.25 3708 0 2423.99 3732 0
333-1 54 22.82 314 72 25.37 302 0 503.07 319 0
333-2 54 26.52 251 72 28.38 251 0 80.02 299 0
333-3 54 29.85 393 96 35.24 393 0 — —
333-4 54 11.93 197 87 14.45 197 0 75.35 260 0
333-5 54 22.97 269 44 26.04 269 0 151.04 366 0
334-1 74 321.06 2223 117 353.48 2223 0 — — —
334-2 74 235.91 1640 1081 279.44 1640 0 — — —
334-3 74 502.42 3183 1175 544.60 3183 0 — — —
334-4 74 257.60 2313 590 274.76 2313 0 1719.56 2552 0
335-1 34 8.22 262 90 8.22 262 0 14.91 205 0
335-2 34 7.03 256 81 7.86 256 0 12.32 196 0
362 34 14.68 500 165 14.80 500 0 30.36 450 0

431-1 27 5.21 66 21 5.29 67 0 18.11 78 0
431-2 27 3.05 42 7 3.45 42 0 10.07 58 0
475-1 23 5.50 40 8 4.43 38 0 8.10 38 0
475-2 23 2.02 42 6 2.20 42 0 4.14 48 0
478-1 33 5.82 67 20 5.88 80 0 9.24 80 0
478-2 33 1.30 34 7 1.44 34 0 1.64 34 0
504-1 75 83.15 142 142 94.04 240 0 2055.42 586 0
504-2 75 112.63 295 284 119.07 319 0 1972.26 2778 0
599-1 30 40.54 46 36 39.75 46 0 — — —
599-2 30 — — — — — — — — —
599-3 30 30.60 50 30 31.07 50 0 — — —

138 M. Dong and C. Mou

Denote by RegSerCO the new function integrated with algebraic simplifica-
tion and reduction with dynamic checking. We experimented with RegSerCO
with the same polynomial systems, comparing with RegSer and RegSerC, and
the experimental results are recorded in Table 1 too. It can be seen that this
new function RegSerCO also preserves the chordal structure in the process of tri-
angular decomposition as RegSerC, at the same time, the efficiency loss is under
control compared with RegSer: the computation time with RegSerCO is about
1.15 times on average of that with RegSer.

5.3 Chordality-Preserving Implementations for SimSer and TriSer
Functions

We did similar modifications to the two functions SimSer and TriSer in the Epsilon
package by introducing algebraic simplification and reduction with dynamic

Table 2. Experiments with chordality-preserving top-down implementations for simple
decomposition

SimSer SimSerCO

No. Time #Bran #Edge Time #Bran #Edge

220-1 141.06 2016 228 152.78 2016 0

220-2 329.39 6048 2160 395.78 6048 0

332-1 262.13 2082 998 303.69 2083 0

332-2 321.88 3628 2068 405.18 3590 0

333-1 23.53 314 72 24.04 302 0

333-2 27.52 251 83 27.52 251 0

333-3 42.63 450 118 47.25 450 0

333-4 15.98 218 89 18.36 218 0

333-5 31.86 283 54 36.22 283 0

335-1 7.97 262 90 8.85 262 0

335-2 8.03 256 81 8.05 256 0

362-1 26.56 635 213 26.83 636 0

362-2 23.67 874 442 26.64 861 0

362-3 21.99 602 209 22.97 602 0

431-1 7.30 74 23 7.35 72 0

431-2 3.31 45 9 3.26 45 0

431-3 2.76 28 11 2.89 28 0

475-1 5.25 38 4 5.03 36 0

475-2 4.86 42 6 2.86 42 0

475-3 3.94 72 24 4.62 74 0

475-4 2.36 42 18 2.61 42 0

478-1 7.62 97 22 8.00 110 0

478-2 1.64 43 8 1.72 43 0

478-3 1.60 40 0 1.76 40 0

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 139

checking to have two new functions SimSerCO and TriSerCO respectively. The
results of our experiments with these two new functions are recorded in Tables 2
and 3, respectively.

It can be seen that both these two new functions SimSerCO and TriSerCO
preserve the chordality of the input polynomial systems and keep the same level
of efficiency compared with the original functions: computation with SimSerCO
is 1.17 times on average of that with SimSer (slightly slower), and computation
with TriSer is 0.94 times on average of that with TriSer (slightly faster).

Table 3. Experiments with chordality-preserving top-down implementations for trian-
gular decomposition

TriSer TriSerCO

No. Time #Bran #Edge Time #Bran #Edge

220-1 1710.22 1728 288 1566.92 1728 0

220-2 — — — — — —

332-1 4193.24 1902 977 3948.40 1883 0

332-2 — — — — — —

333-1 48.01 248 72 48.86 236 0

333-2 46.20 241 74 49.54 178 0

333-3 99.65 343 84 105.40 343 0

333-4 19.61 162 85 24.64 162 0

333-5 37.62 196 44 41.06 196 0

335-1 19.57 245 102 20.00 245 0

335-2 17.89 244 81 19.38 244 0

362-1 52.49 393 158 54.59 394 0

362-2 69.67 483 225 71.99 448 0

362-3 49.82 392 163 58.70 389 0

431-1 8.33 64 26 8.78 55 0

431-2 3.47 41 7 3.85 41 0

431-3 2.81 28 12 2.74 26 0

475-1 4.86 40 8 4.54 38 0

475-2 2.24 42 6 2.42 42 0

475-3 3.84 54 26 4.37 54 0

475-4 1.74 42 18 2.09 42 0

478-1 4.86 40 8 4.54 38 0

478-2 2.24 42 6 2.42 42 0

478-3 2.20 38 0 2.13 38 0

140 M. Dong and C. Mou

6 Concluding Remarks and Future Work

In our experiments with sparse triangular decomposition, instances are found
such that existing implementations of top-down triangular decomposition
destroy the chordal structure of the input polynomial system, which is incon-
sistent with the proved theoretical results of the chordality-preserving property
of such algorithms. The main contribution of this paper is the real chordality-
preserving implementations of top-down triangular decomposition based on the
Epsilon package, and they are, to our best knowledge, the first chordality-
preserving ones for this kind of triangular decomposition. In order to achieve
this, we first analyze the current implementations in the Epsilon package to iden-
tify four chordality-destroying operations. Corresponding modifications to these
four operations with dynamic checking lead to chordality-preserving implemen-
tations. Experimental results with polynomial sets from biological systems show
that these implementations are indeed chordality-preserving and their efficiency
is comparable to original implementations.

In the future, more implementations for top-down triangular decomposition,
like those for irreducible decomposition in which factorization over algebraic
field extensions is essential, are planned to be investigated and further trans-
formed into chordality-preserving ones. Furthermore, since the choice of a spe-
cific perfect elimination ordering also influences the computational efficiency of
sparse triangular decomposition, we also plan to study the underlying reasons
for the influence.

Acknowledgments. The authors would like to thank Prof. Dongming Wang for his
insightful comments on the implementations in Epsilon package and the referees for their
helpful comments resulting in improvements on the previous version of this paper.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

2. Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a
comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154
(1999)

3. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symb. Comput. 47(10),
1233–1266 (2012)

4. Berry, A., Blair, J., Heggernes, P., Peyton, B.: Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)

5. Chai, F., Gao, X.S., Yuan, C.: A characteristic set method for solving Boolean
equations and applications in cryptanalysis of stream ciphers. J. Syst. Sci. Com-
plex. 21(2), 191–208 (2008)

6. Chen, C.: Chordality preserving incremental triangular decomposition and its
implementation. In: Bigatti, A.M., Carette, J., Davenport, J.H., Joswig, M., de
Wolff, T. (eds.) ICMS 2020. LNCS, vol. 12097, pp. 27–36. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-52200-1 3

https://doi.org/10.1007/978-3-030-52200-1_3

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 141

7. Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive
triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75187-8 7

8. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

9. Chou, S.-C., Gao, X.-S.: Ritt-Wu’s decomposition algorithm and geometry theorem
proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 89

10. Cifuentes, D., Parrilo, P.: Chordal networks of polynomial ideals. SIAM J. Appl.
Algebra Geom. 1(1), 73–110 (2017)

11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, Springer, New York (1997). https://doi.org/10.1007/978-
3-319-16721-3

12. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in
algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204,
pp. 289–290. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-
3 279

13. Gao, X.S., Huang, Z.: Characteristic set algorithms for equation solving in finite
fields. J. Symb. Comput. 47(6), 655–679 (2012)

14. Greuel, G.M., Pfister, G., Bachmann, O., Lossen, C., Schönemann, H.: A Singular
Introduction to Commutative Algebra. Springer, Heidelberg (2002). https://doi.
org/10.1007/978-3-662-04963-1

15. Huang, Z., Lin, D.: Attacking bivium and trivium with the characteristic set
method. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 77–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21969-6 5

16. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms
I: polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol.
2630, pp. 1–39. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45084-
X 1

17. Kalkbrener, M.: A generalized Euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

18. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discret. Appl. Math. 33(1–3), 147–160 (1991)

19. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2),
117–131 (1992)

20. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE.
ACM SIGSAM Bull. 39(3), 96–97 (2005)

21. Li, H., Xia, B., Zhang, H., Zheng, T.: Choosing the variable ordering for cylindrical
algebraic decomposition via exploiting chordal structure. In: Proceedings of ISSAC
2021, pp. 281–288 (2021)

22. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition
in top-down style. In: Proceedings ISSAC 2018, pp. 287–294 (2018)

23. Mou, C., Bai, Y., Lai, J.: Chordal graphs in triangular decomposition in top-down
style. J. Symb. Comput. 102, 108–131 (2021)

24. Mou, C., Ju, W.: Sparse triangular decomposition for computing equilibria of bio-
logical dynamic systems based on chordal graphs. In: IEEE/ACM Transactions
Computational Biology and Bioinformatics (2022)

https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/3-540-52885-7_89
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/3-540-45084-X_1

142 M. Dong and C. Mou

25. Mou, C., Lai, J.: On the chordality of simple decomposition in top-down style. In:
Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol.
11989, pp. 138–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43120-4 12

26. Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite
fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)

27. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1(3), 507–539 (2008)

28. Ritt, J.: Differential Equations from the Algebraic Standpoint. AMS (1932)
29. Ritt, J.: Differential Algebra. AMS (1950)
30. Wang, D.: An elimination method for polynomial systems. J. Symb. Comput.

16(2), 83–114 (1993)
31. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Com-

put. 25(3), 295–314 (1998)
32. Wang, D.: Elimination Methods. Texts and Monographs in Symbolic Computation,

Springer Science & Business Media, New York (2001). https://doi.org/10.1007/
978-3-7091-6202-6

33. Wang, D.: Epsilon: A library of software tools for polynomial elimination. In: Math-
ematical Software, pp. 379–389. World Scientific (2002)

34. Wang, D.: wsolve: A Maple package for solving system of polynomial equations
(2004). http://www.mmrc.iss.ac.cn

35. Wang, D., Xia, B.: Stability analysis of biological systems with real solution clas-
sification. In: Proceedings of ISSAC 2005, pp. 354–361 (2005)

36. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Autom. Reason. 2(3), 221–252 (1986)

37. Wu, W.T.: A zero structure theorem for polynomial-equations-solving and its appli-
cations. In: Davenport, J.H. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 44–44.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51517-8 84

38. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. In: Artificial Intelligence in Mathematics,
pp. 147–156 (1994)

https://doi.org/10.1007/978-3-030-43120-4_12
https://doi.org/10.1007/978-3-030-43120-4_12
https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6
http://www.mmrc.iss.ac.cn
https://doi.org/10.1007/3-540-51517-8_84

Accelerated Subdivision for Clustering
Roots of Polynomials Given

by Evaluation Oracles

Rémi Imbach1 and Victor Y. Pan2(B)

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
remi.imbach@laposte.net

2 Lehman College and Graduate Center of City University of New York,
New York, USA

victor.pan@lehman.cuny.edu

Abstract. In our quest for the design, the analysis and the implemen-
tation of a subdivision algorithm for finding the complex roots of uni-
variate polynomials given by oracles for their evaluation, we present sub-
algorithms allowing substantial acceleration of subdivision for complex
roots clustering for such polynomials. We rely on approximation of the
power sums of the roots in a fixed complex disc by Cauchy sums, each
computed in a small number of evaluations of an input polynomial and its
derivative, that is, in a polylogarithmic number in the degree. We describe
root exclusion, root counting, root radius approximation and a procedure
for contracting a disc towards the cluster of root it contains, called ε-
compression. To demonstrate the efficiency of our algorithms, we combine
them in a prototype root clustering algorithm. For computing clusters of
roots of polynomials that can be evaluated fast, our implementation com-
petes advantageously with user’s choice for root finding, MPsolve.

Keywords: Polynomial root finding · Subdivision algorithms · Oracle
polynomials

1 Introduction

We consider the

ε-Complex Root Clustering Problem (ε-CRC)
Given: a polynomial p ∈ C[z] of degree d, ε > 0
Output: � ≤ d couples (Δ1,m1), . . . , (Δ�,m�) satisfying:

- the Δj ’s are pairwise disjoint discs of radii ≤ ε,
- for any 1 ≤ j ≤ �, Δj and 3Δj contain mj > 0 roots of p,
- each complex root of p is in a Δj for some j.

Victor’s research has been supported by NSF Grant CCF 1563942 and PSC CUNY
Award 63677 00 51.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 143–164, 2022.
https://doi.org/10.1007/978-3-031-14788-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_9

144 R. Imbach and V. Y. Pan

Here and hereafter root(s) stands for root(s) of p and are counted with mul-
tiplicities, 3Δj for the factor 3 concentric dilation of Δj , and p is a Black box
polynomial: its coefficients are not known, but we are given evaluation oracles,
that is, procedures for the evaluation of p, its derivative p′ and hence the ratio
p′/p at a point c ∈ C with a fixed precision. Such a black box polynomial can
come from an experimental process or can be defined by a procedure, for example
Mandelbrot’s polynomials, defined inductively as

Man1(z) = z, Mank(z) = z Mank−1(z)2 + 1.

Mank(z) has degree d = 2k − 1 and d non-zero coefficients but can be evaluated
fast, i.e., in O(k) arithmetic operations. Any polynomial given by its coefficients
can be handled as a black box polynomial, and the evaluation subroutines for p, p′

and p′/p are fast if p is sparse or Mandelbrot-like. One can solve root-finding
problems and in particular the ε-CRC problem for black box polynomials by
first retrieving the coefficients by means of evaluation-interpolation, e.g., with
FFT and inverse FFT, and then by applying the algorithms of [2,4,11,13,19].
Evaluation-interpolation, however, decompresses the representation of a polyno-
mial, which can blow up its input length, in particular, can destroy sparsity. We
do not require knowledge of the coefficients of an input polynomial, but instead
use evaluation oracles.

Functional root-finding iterations such as Newton’s, Weierstrass’s (also
known as Durand-Kerner’s) and Ehrlich’s iterations – implemented in
MPsolve [4] – can be applied to approximate the roots of black box polynomi-
als. Applying such iterations, however, requires initial points, which the known
algorithms and in particular MPsolve obtain by computing root radii, and for
that it needs the coefficients of the input polynomial.

Subdivision Algorithms. Let i stand for
√−1, c ∈ C, c = a+ ib and r, w ∈ R,

r and w positive. We call box a square complex interval of the form B(c, w) :=
[a− w

2 , a+ w
2]+ i[b− w

2 , b+ w
2] and disc D(c, r) the set {x ∈ C | |x− c| ≤ r}. The

containing disc D(B(c, w)) of a box B(c, w) is D(c, (3/4)w). For a δ > 0 and a
box or a disc S, δS denotes factor δ concentric dilation of S.

We consider algorithms based on iterative subdivision of an initial box B0

(see [2,3,12]) and adopt the framework of [2,3] which relies on two basic subrou-
tines: an Exclusion Test (ET) – deciding that a small inflation of a disc contains
no root – and a Root Counter (RC) – counting the number of roots in a small
inflation of a disc. A box B of the subdivision tree is tested for root exclusion
or inclusion by applying the ET and RC to D(B), which can fail and return −1
when D(B) has some roots near its boundary circle. In [2], ET and RC are
based on the Pellet’s theorem, requiring the knowlege of the coefficients of p
and shifting the center of considered disc into the origin (Taylor’s shifts); then
Dandelin-Lobachevsky-Gräffe iterations, aka root-squaring iterations, enable the
following properties for boxes B and discs Δ:

(p1) if 2B contains no root, ET applied to D(B) returns 0,
(p2) if Δ and 4Δ contain m roots, RC applied to 2Δ returns m.

Accelerated Subdivision Algorithms for Oracle Polynomials 145

(p1) and (p2) bound the depth of the subdivision tree. To achieve quadratic con-
vergence to clusters of roots, [2] uses a complex version of the Quadratic Interval
Refinement iterations of J. Abbott [1], aka QIR Abbott iterations, described in
details in Algorithm 7 of [3] and, like [12], based on extension of Newton’s iter-
ations to multiple roots due to Schröder. [8] presents an implementation of [2]
in the C library Ccluster1, which slightly outperforms MPsolve for initial boxes
containing only few roots.

In [6] we applied an ET based on Cauchy sums approximation. It satisfies (p1)
and instead of coefficients of p involves O(log2 d) evaluations of p′/p with pre-
cision O(d) for a disc with radius in O(1); although the output of this ET is
only certified if no roots lie on or near the boundary of the input discs, in our
extensive experiments it was correct when we dropped this condition.

1.1 Our Contributions

The ultimate goal of our work is to design an algorithm for solving the ε-CRC
problem for black box polynomials which would run faster in practice than the
known solvers, have low and possibly near optimal Boolean complexity (aka bit
complexity). We do not achieve this yet in this paper but rather account for the
advances along this path by presenting several sub-routines for root clustering.
We implemented and assembled them in an experimental ε-CRC algorithm which
outperforms the user’s choice software for complex root finding, MPsolve, for
input polynomials that can be evaluated fast.

Cauchy ET and RC. We describe and analyze a new RC based on Cauchy
sum computations and satisfying property (p2) which only require the knowledge
of evaluation oracles. For input disc of radius in O(1), it requires evaluation of
p′/p at O(log2 d) points with precision O(d) and is based on our ET presented
in [6]; the support for its correctness is only heuristic.

Disc Compression. For a set S, let us write Z (S, p) for the set of roots in S
and # (S, p) for the cardinality of Z (S, p); two discs Δ and Δ′ are said equivalent
if Z (Δ, p) = Z (Δ′, p). We introduce a new sub-problem of ε-CRC:

ε-Compression into Rigid Disc (ε-CRD)
Given: a polynomial p ∈ C[z] of degree d, ε > 0, 0 < γ < 1,

a disc Δ s.t. Z (Δ, p) �= ∅ and 4Δ is equivalent to Δ.
Output: a disc Δ′ ⊆ Δ of radius r′ s.t. Δ′ is equivalent to Δ and:

- either r′ ≤ ε,
- or # (Δ, p) ≥ 2 and Δ′ is at least γ-rigid, that is

max
α,α′∈Z(Δ′,p)

|α − α′|
2r′ ≥ γ.

1 https://github.com/rimbach/Ccluster.

https://github.com/rimbach/Ccluster

146 R. Imbach and V. Y. Pan

The ε-CRD problem can be solved with subdivision and QIR Abbott iteration,
but this may require, for an initial disk of radius r, up to O(log(r/max(ε′, ε)))
calls to the ET in the subdivision if the radius of convergence of the cluster in Δ
for Schröder’s iteration is in O(ε′).

Table 1. Runs of CauchyQIR, CauchyComp and MPsolve on Mignotte and Mandelbrot
polynomials

CauchyQIR CauchyComp MPsolve

d log10(ε
−1) t n tN t n tC t

Mignotte polynomials, a = 16

1024 5 1.68 30850 0.44 0.96 16106 0.27 1.04

1024 10 2.08 30850 0.58 1.07 16106 0.37 1.30

1024 50 2.17 30850 0.71 2.70 16105 1.96 4.84

2048 5 3.84 62220 0.90 2.13 32148 0.51 4.08

2048 10 4.02 62220 1.03 2.36 32148 0.70 5.09

2048 50 4.51 62220 1.25 5.62 32147 3.78 17.1

Mandelbrot polynomials

1023 5 10.4 30877 0.86 6.23 18701 0.41 27.2

1023 10 10.1 30920 0.91 6.45 18750 0.59 30.0

1023 50 10.3 30920 1.06 8.64 18713 2.71 45.7

2047 5 24.3 62511 1.95 15.2 39296 1.39 229.

2047 10 26.4 62952 2.31 15.5 39358 1.71 246.

2047 50 26.1 62952 2.64 20.4 39255 6.22 380.

We present and analyze an algorithm solving the ε-CRD problem for γ = 1/8
based on Cauchy sums approximation and on an algorithm solving the following
root radius problem: for a given c ∈ C, a given non-negative integer m ≤ d and
a ν > 1, find r such that rm(c, p) ≤ r ≤ νrm(c, p) where rm(c, p) is the smallest
radius of a disc centered in c and containing exactly m roots of p. Our compres-
sion algorithm requires only O(log log(r/ε)) calls to our RC, but a number of
evaluations and arithmetic operations increasing linearly with log(1/ε).

Experimental Results. We implemented our algorithms2 within Ccluster
and assembled them in two algorithms named CauchyQIR and CauchyComp for
solving the ε-CRC problem for black box polynomials. Both implement the sub-
division process of [2] with our heuristically correct ET and RC. CauchyQIR
uses QIR Abbott iterations of [3] (with Pellet’s test replaced by our RC), while
CauchyComp uses our compression algorithm instead of QIR Abbott iterations.

2 they are not publicly realeased yet.

Accelerated Subdivision Algorithms for Oracle Polynomials 147

We compare runs of CauchyQIR and CauchyComp to emphasize the practical
improvements allowed by using compression in subdivision algorithms for root
finding. We also compare running times of CauchyComp and MPsolve to demon-
strate that subdivision root finding can outperform solvers based on functional
iterations for polynomials that can be evaluated fast. MPsolve does not cluster
roots of a polynomial, but approximate each root up to a given error ε. Below
we used the latest version3 of MPsolve and call it with: mpsolve -as -Ga -j1
-oN where N stands for max(1, 	log10(1/ε)
).

All the timings given below have to be understood as sequential running
times on a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux.
We highlight with boldface the best running time for each example. We present
in Table 1 results obtained for Mandelbrot and Mignotte polynomials of increas-
ing degree d for decreasing error ε. The Mignotte polynomial of degree d and
parameter a is defined as

Migd,a(z) = zd − 2(2
a
2 −1z − 1)2.

In Table 1, we account for the running time t for the three above-mentionned
solvers. For CauchyQIR (resp. CauchyComp), we also give the number n of exclu-
sion tests in the subdivision process, and the time tN (resp. tC) spent in QIR
Abbott iterations (resp. compression). Mignotte polynomials have two roots with
mutual distance close to the theoretical separation bound; with the ε used in
Table 1, those roots are not separated.

1.2 Related Work

The subdivision root-finders of Weyl 1924, Henrici 1974, Renegar 1987, [3,12],
rely on ET, RC and root radii sub-algorithms and heavily use the coefficients
of p. Design and analysis of subdivision root-finders for a black box p have been
continuing since 2018 in [16] (now over 150 pages), relying on the novel idea and
techniques of compression of a disc and on novel ET, RC and root radii sub-
algorithms, and partly presented in [5,6,10,14,15], and this paper. A basic tool
of Cauchy sum computation was used in [20] for polynomial deflation, but in a
large body of our results only Thm. 5 is from [20]; we deduced it in [5,16] from
a new more general theorem of independent interest. Alternative derivation and
analysis of subdivision in [16] (yielding a little stronger results but presently not
included) relies on Schröder’s iterations, extended from [12]. The algorithms are
analyzed in [10,14–16], under the model for black box polynomial root-finding
of [9]. [5,6] complement this study with some estimates for computational pre-
cision and Boolean complexity. We plan to complete them using much more
space (cf. 46 pages in each of [20] and [3]).4 Meanwhile we borrowed from [3]
3 3.2.1 available here: https://numpi.dm.unipi.it/software/mpsolve.
4 In [20, Sect. 2], called “The result”, we read: “The method is involved and many

details still need to be worked out. In this report also many proofs will be omitted.
A full account of the new results shall be given in a monograph” which has actually
never appeared. [3] deduced a posteriori estimates, depending on root separation
and Mahler’s measure, that is, on the roots themselves, not known a priori.

https://numpi.dm.unipi.it/software/mpsolve

148 R. Imbach and V. Y. Pan

Pellet’s RC (involving coefficients), Abbott’s QIR and the general subdivision
algorithm with connected components of boxes extended from [12,18]. With our
novel sub-algorithms, however, we significantly outperform MPsolve for polyno-
mials that can be evaluated fast; all previous subdivision root-finders have never
come close to such level. MPsolve relies on Ehrlich’s (aka Aberth’s) iterations,
whose Boolean complexity is proved to be unbounded because iterations diverge
for worst case inputs [17], but divergence never occurs in decades of extensive
application of these iterations.

1.3 Structure of the Paper

In Sect. 2, we describe power sums and their approximation with Cauchy sums.
In Sect. 3, we present and analyze our Cauchy ET and RC. Section 4 is devoted
to root radii algorithms and Sect. 5 to the presentation of our algorithm solv-
ing the ε-CRD problem. We describe the experimental solvers CauchyQIR and
CauchyComp in Sect. 6, numeric results in Sect. 7 and conclude in Sect. 8. We
introduce additional definitions and properties in the rest of this section.

1.4 Definitions and Two Evaluations Bounds

Troughout this paper, log is the binary logarithm and for a positive real num-
ber a, let loga = max(1, log a).

Annuli, Intervals. For c ∈ C and positives r ≤ r′ ∈ R, the annulus A (c, r, r′)
is the set {z ∈ C | r′ ≤ |z − c| ≤ r′}.

Let R be the set {[a − w
2 , a + w

2] | a,w ∈ R, w ≥ 0} of real inter-
vals. For a = [a − w

2 , a + w
2] ∈ R the center c (a), the width w (a) and the

radius r (a) of a are respectively a, w and w/2.
Let C be the set { a + i b| a, b ∈ R} of complex intervals. If c ∈ C,

then w (c) (resp. r (c)) is max(w (a) ,w (b)) (resp w (c) /2). The cen-
ter c (c) of c is c (a) + ic (b).

Isolation and Rigidity of a Disc are defined as follows [12,16].

Definition 1. (Isolation) Let θ > 1. The disc Δ = D(c, r) has isolation θ
for a polynomial p or equivalently is at least θ-isolated if Z

(
1
θΔ, p

)
= Z (θΔ, p),

that is, Z (A (c, r/θ, rθ) , p) = ∅.
Definition 2. (Rigidity) For a disc Δ = D(c, r), define

γ(Δ) = max
α,α′∈Z(Δ,p)

|α − α′|
2r

and remark that γ(Δ) ≤ 1. We say that Δ has rigidity γ or equivalently is at
least γ-rigid if γ(Δ) ≥ γ.

Accelerated Subdivision Algorithms for Oracle Polynomials 149

Oracle Numbers and Oracle Polynomials. Our algorithms deal with num-
bers that can be approximated arbitrarily closely by a Turing machine. We call
such approximation automata oracle numbers and formalize them through inter-
val arithmetic.

For a ∈ C we call oracle for a a function Oa : N → C such that
a ∈ Oa (L) and r (Oa (L)) ≤ 2−L for any L ∈ N. In particular, one has
|c (Oa (L)) − a| ≤ 2−L. Let OC be the set of oracle numbers which can be
computed with a Turing machine. For a polynomial p ∈ C[z], we call evaluation
oracle for p a function Ip : (OC,N) → C, such that if Oa is an oracle for a and
L ∈ N, then p(a) ∈ Ip (Oa, L) and r (Ip (Oa, L)) ≤ 2−L. In particular, one has
|c (Ip (Oa, L)) − p(a)| ≤ 2−L.

Consider evaluation oracles Ip and Ip′ for p and p′. If p is given by d′ ≤ d+1
oracles for its coefficients, one can easily construct Ip and Ip′ by using, for
instance, Horner’s rule. However for procedural polynomials (e.g. Mandelbrot),
fast evaluation oracles Ip and Ip′ are built from procedural definitions.

To simplify notations, we let Ip (a, L) stand for Ip (Oa, L). In the rest
of the paper, P (resp. P ′) is an evaluation oracle for p (resp. p′); P (a, L)
(resp. P ′ (a, L)) will stand for Ip (Oa, L) (resp. Ip′ (Oa, L)).

Two Evaluation Bounds. The lemma below provides estimates for values
of |p| and |p′/p| on the boundary of isolated discs. See [7, Appendix A.1] for a
proof.

Lemma 3. Let D(c, r) be at least θ-isolated, z ∈ C, |z| = 1 and g be a positive
integer. Let lcf (p) be the leading coefficient of p. Then

|p(c + rzg)| ≥ |lcf (p) |r
d(θ − 1)d

θd
and

∣
∣
∣
∣
p′(c + rzg)
p(c + rzg)

∣
∣
∣
∣ ≤ dθ

r(θ − 1)
.

2 Power Sums and Cauchy Sums

Definition 4. (Power sums of the roots in a disc) The h-th power sum of
(the roots of) p in the disc D(c, r) is the complex number

sh (p, c, r) =
∑

α∈Z(Δ,p)

#(α, p) αh, (1)

where #(α, p) stands for the multiplicity of α as a root of p.

The power sums sh (p, c, r) are equal to Cauchy’s integrals over the boundary
circle ∂D(c, r); by following [20] they can be approximated by Cauchy sums
obtained by means of the discretization of the integrals: let q ≥ 1 be an integer
and ζ be a primitive q-th root of unity. When p(c+ rζg) �= 0 for g = 0, . . . , q −1,
and in particular when D(c, r) is at least θ-isolated with θ > 1, define the Cauchy
sum s̃h

q (p, c, r) as

s̃h
q (p, c, r) =

r

q

q−1∑

g=0

ζg(h+1) p
′(c + rζg)

p(c + rζg)
. (2)

150 R. Imbach and V. Y. Pan

For conciseness of notations, we write sh for sh (p, 0, 1) and s̃h
q for

s̃h
q (p, 0, 1). The following theorem, proved in [6,20], allows us to approximate

power sums by Cauchy sums in D(0, 1).

Theorem 5. For θ > 1 and integers h, q s.t. 0 ≤ h < q let the unit disc D(0, 1)
be at least θ-isolated and contain m roots of p. Then

|s̃h
q − sh| ≤ mθ−h + (d − m)θh

θq − 1
. (3)

Fix e > 0. If q ≥ 	logθ(
d

e
)
 + h + 1 then |s̃h

q − sh| ≤ e. (4)

Remark that s0 (p, c, r) is the number of roots of p in D(c, r) and s1 (p, c, r) /m
is their center of gravity when m = #(D(c, r), p).

Next we extend Theorm 5 to the approximation of 0-th and 1-st power sums
by Cauchy sums in any disc, and define and analyze our basic algorithm for the
computation of these power sums.

2.1 Approximation of the Power Sums

Let Δ = D(c, r) and define pΔ(z) as p(c+rz) so that α is a root of pΔ in D(0, 1)
if and only if c + rα is a root of p in Δ. Following Newton’s identities, one has:

s0 (p, c, r) = s0 (pΔ, 0, 1) , (5)
s1 (p, c, r) = cs0 (pΔ, 0, 1) + rs1 (pΔ, 0, 1) . (6)

Next since p′
Δ(z) = rp′(c + rz), one has

s̃h
q (p, c, r) =

1
q

q−1∑

g=0

ζg(h+1) p
′
Δ(ζg)

pΔ(ζg)
= s̃h

q (pΔ, 0, 1)

and can easily prove:

Corollary 6. (of theorm 5) Let Δ = D(c, r) be at least θ-isolated. Let q > 1,
s∗
0 = s̃0

q (p, c, r) and s∗
1 = s̃1

q (p, c, r). Let e > 0. One has

|s∗
0 − s0 (p, c, r) | ≤ d

θq − 1
. (7)

If q ≥ 	logθ(1 +
d

e
)
 then |s∗

0 − s0 (p, c, r) | ≤ e. (8)

Let Δ contain m roots.

|mc + rs∗
1 − s1 (p, c, r) | ≤ rdθ

θq − 1
. (9)

If q ≥ 	logθ(1 +
rθd

e
)
 then |mc + rs∗

1 − s1 (p, c, r) | ≤ e. (10)

Accelerated Subdivision Algorithms for Oracle Polynomials 151

2.2 Computation of Cauchy Sums

Next we suppose that D(c, r) and q are such that p(c + rζg) �= 0 ∀0 ≤ g < q,
so that s̃h

q (p, c, r) is well defined. We approximate Cauchy sums with evalua-
tion oracles P, P ′ by choosing a sufficiently large L and computing the com-
plex interval:

s̃h
q (p, c, r, L) =

r

q

q−1∑

g=0

Oζg(h+1)(L)
P ′ (c + rζg, L)
P (c + rζg, L)

. (11)

s̃h
q (p, c, r, L) is well defined for L > max0≤g<q (− log2(p(c + rζg))) and con-

tains s̃h
q (p, c, r). The following result specifies L for which we obtain that

r (s̃h
q (p, c, r, L)) ≤ e for an e > 0. See [7, Appendix A.2] for a proof.

Lemma 7. For strictly positive integer d, reals r and e and θ > 1, let

L (d, r, e, θ) := max
(

(d + 1) log
θ

er(θ − 1)
+ log(26rd), 1

)

∈ O

(
d

(
log

1
re

+ log
θ

θ − 1

))
.

If L ≥ L (d, r, e, θ) then r (s̃h
q (p, c, r, L)) ≤ e.

In the sequel let L (d, r) stand for L (d, r, 1/4, 2).

2.3 Approximating the Power Sums s0, s1, . . . , sh

Our Algorithm 1 computes, for a given integer h, approximations to power sums
s0, s1, . . . , sh (of pΔ in D(0, 1)) up to an error e, based on Eqs. (2) and (4).

Algorithm 1 satisfies the following proposition. See [7, Appendix A.3] for a
proof.

Proposition 8. Algorithm 1 terminates for an L ≤ L (d, r, e/4, θ).
Let ApproxShs(P,P ′,Δ, θ, h, e) return (success, [s0, . . . , sh]). Let Δ =
D(c, r) and pΔ(z) = p(c + rz). If θ > 1, one has:

(a) If A(c, r/θ, rθ) contains no root of p, then success = true and for all i ∈
{0, . . . , h}, w (si) < e and si contains si (pΔ, 0, 1).

(b) If e ≤ 1 and D(c, rθ) contains no root of p then success = true and for all
i ∈ {0, . . . , h}, si contains the unique integer 0.

(c) If e ≤ 1 and A(c, r/θ, rθ) contains no root of p, s0 contains the unique
integer s0 (p, c, r) = # (Δ, p).

(d) If success = false, then A(c, r/θ, rθ) and D(c, rθ) contain (at least) a
root of p.

(e) If success = true and ∃i ∈ {0, . . . , h}, s.t. si does not contain 0 then
A(c, r/θ, rθ) and D(c, rθ) contains (at least) a root of p.

152 R. Imbach and V. Y. Pan

Algorithm 1. ApproxShs(P,P ′,Δ, θ, h, e)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. Δ = D(c, r),

θ ∈ R, θ > 1, h ∈ N, h ≥ 0, e ∈ R, e > 0.
Ensure: a flag success ∈ {true, false}, a vector [s0, . . . , sh].
1: e′ ← e/4, q ← �logθ(4d/e)� + h + 1

2: � ← rd(θ−1)d

θd , �′ ← dθ
r(θ−1)

3: L ← 1
4: [s0, . . . , sh] ← [C, . . . ,C]
5: while ∃i ∈ {0, . . . , h} s.t. w (si) ≥ e do
6: L ← 2L
7: for g = 0, . . . , q − 1 do
8: Compute intervals P (c + rζg, L) and P ′ (c + rζg, L)

9: if ∃g ∈ {0, . . . , q − 1} s.t. |P (c + rζg, L) | < � or
∣
∣
∣

P′(c+rζg,L)
P(c+rζg,L)

∣
∣
∣ > �′ then

10: return false, [s0, . . . , sh]

11: if ∃g ∈ {0, . . . , q − 1} s.t. �
2

∈ |P (c + rζg, L) | or 2�′ ∈
∣
∣
∣

P′(c+rζg,L)
P(c+rζg,L)

∣
∣
∣ then

12: continue
13: for i = 0, . . . , h do
14: s∗

i ← s̃i
q (p, c, r, L) //as in Eq. (11)

15: si ← s∗
i + [−e′, e′] + i[−e′, e′]

16: return true, [s0, . . . , sh]

3 Exclusion Test and Root Counters

In this section we define and analyse our base tools for disc exclusion and root
counting. We recall in Subsect. 3.1 and Subsect. 3.2 the RC and the ET presented
in [6]. In Subsect. 3.3, we propose a heuristic certification of root counting in
which the assumed isolation for a disc Δ is heuristically verified by applying
sufficiently many ETs on the contour of Δ.

For d ≥ 1, r > 0 and θ > 1, define

C (d, r, e, θ) := log(L (d, r, e, θ)) logθ(d/e) (12)

and C (d, r) = C (d, r, 1/4, 2).

3.1 Root Counting with Known Isolation

For a disc Δ which is at least θ-isolated for θ > 1, Algorithm 2 computes the num-
ber m of roots in Δ as the unique integer in the interval of width < 1 obtained by
approximating 0-th cauchy sum of pΔ in the unit disc within error < 1/2.

Proposition 9. Let Δ = D(c, r). CauchyRC1(P,P ′,Δ, θ) requires evaluation
of P and P ′ at O(C (d, r, 1, θ)) points and O(C (d, r, 1, θ)) arithmetic operations,
all with precision less than L (d, r, 1/4, θ). Let m be the output of the latter call.

(a) If A (c, r/θ, rθ) contains no roots of p then m = #(Δ, p).
(b) If m �= 0 then p has a root in the disc θΔ.

Accelerated Subdivision Algorithms for Oracle Polynomials 153

Algorithm 2. CauchyRC1(P,P ′,Δ, θ)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. Δ = D(c, r),

θ ∈ R, θ > 1.
Ensure: An integer m ∈ {−1, 0, . . . , d}.
1: (success, [s0]) ← ApproxShs(P, P ′, Δ, θ, 0, 1)
2: if success = false or s0 contains no integer then
3: return −1

4: return the unique integer in s0

Proposition 9 is a direct consequence of Proposition 8: in each execution
of the while loop in ApproxShs(P,P ′,Δ, θ, 0, 1), P and P ′ are evaluated at
O(logθ d/e) points and the while loop executes an O(log(L (d, r, 1, θ))) number
of times.

3.2 Cauchy Exclusion Test

We follow [6] and increase the chances for obtaining a correct result for the
exclusion of a disc with unknown isolation by approximating the first three
power sums of pΔ in D(0, 1) in Algorithm 3. One has:

Proposition 10. Let Δ = D(c, r). CauchyET(P,P ′,Δ) requires evaluation of
P and P ′ at O(C (d, r)) points and O(C (d, r)) arithmetic operations, all with
precision less than L (d, r). Let m be the output of the latter call.

(a) If D(c, 4r/3) contains no roots of p then m = 0. Let B be a box so that 2B
contains no root and suppose Δ = D(B); then m = 0.

(b) If m �= 0 then p has a root in the disc (4/3)Δ.

Algorithm 3. CauchyET(P,P ′,Δ)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. Δ = D(c, r).
Ensure: An integer m ∈ {−1, 0}.
1: (success, [s0, s1, s2]) ← ApproxShs(P, P ′, Δ, 4/3, 2, 1)
2: if success = false or 0 /∈ s0 or 0 /∈ s1 or 0 /∈ s2 then
3: return −1

4: return 0

3.3 Cauchy Root Counter

We begin with a lemma illustrated in Fig. 1. See [7, Appendix A.4] for a proof.

Lemma 11. Let c ∈ C and ρ−, ρ+ ∈ R. Define μ = ρ++ρ−
2 , ρ = ρ+−ρ−

2 , w = μ
ρ ,

v = 	2πw
 and cj = c + μej 2πi
v for j = 0, . . . , v − 1. Then the re-union of the

discs D(cj , (5/4)ρ) covers the annulus A (c, ρ−, ρ+).

154 R. Imbach and V. Y. Pan

ρ+

ρ = ρ+−ρ−
2

μ = ρ++ρ−
2

c

ρ−

5
4ρ

c1

c0

cv−1

2π
v

Fig. 1. Illustration for Lemma 11. In bold line, the inner and outer circles of the annulus
covered by the v discs D(cj , (5/4)ρ).

For a disc D(c, r) and a given a > 1, we follow Lemma 11 and cover the
annulus A (c, r/a, ra) with v discs of radius r 5(a−1/a)

4∗2 centered at v equally spaced
points of the boundary circle of D(c, r a+1/a

2). Define

f−(a, θ) =
1
2
(a(1 − 5

4
θ) +

1
a
(1 +

5
4
θ)) (13)

and
f+(a, θ) =

1
2
(a(1 +

5
4
θ) +

1
a
(1 − 5

4
θ)), (14)

then the annulus A (c, rf−(a, θ), rf+(a, θ)) covers the θ-inflation of those v discs.
Algorithm 4 counts the number of roots of p in a disc and satisfies:

Proposition 12. The call CauchyRC2(P,P ′,Δ, a) amounts to 	2π a2+1
a2−1
 calls

to CauchyET and one call to CauchyRC1.
Let Δ = D(c, r) and A be the annulus A

(
c, rf−(a, 4

3), rf+(a, 4
3)

)
. Let m be

the output of the latter call.

(a) If A contains no root then m ≥ 0 and Δ contains m roots.
(b) If m �= 0, then A contains a root.

We state the following corollary.

Accelerated Subdivision Algorithms for Oracle Polynomials 155

Algorithm 4. CauchyRC2(P,P ′,Δ, a)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. Δ = D(c, r).

a ∈ R, a > 1.
Ensure: An integer m ∈ {−1, 0, . . . , d}.

// Verify that Δ is at least a-isolated with CauchyET
1: ρ− ← 1

a
r, ρ+ = ar.

2: ρ ← ρ+−ρ−
2

, μ ← ρ++ρ−
2

, w ← μ
ρ
, v ← �2πw�, ζ ← exp(2πi

v
)

3: for i = 0, . . . , v − 1 do
4: ci ← c + μζi

5: if CauchyET(P, P ′, D(ci,
5
4
ρ)) returns −1 then

6: return −1 // A
(

c, rf−(a, 4
3
), rf+(a, 4

3
)
)

contains a root

// Δ is at least a-isolated according to CauchyET
7: return CauchyRC1(P, P ′, Δ, a)

Corollary 13. (of Proposition 12) Let θ = 4/3 and a = 11/10. Remark that

f−(a, θ) =
93
110

> 2−1/4 and f+(a, θ) =
64
55

.

The call CauchyRC2(P,P ′,Δ, a) amounts to 	2π a2+1
a2−1
 = 67 calls to Cauchy-

ET for discs of radius 21
176r ∈ O(r) and one call to CauchyRC1 for Δ. This

requires evaluation of P and P ′ at O(C (d, r)) points, and O(C (d, r)) arithmetic
operations, all with precision less than L (d, r).

4 Root Radii Algorithms

4.1 Approximation of the Largest Root Radius

For a monic p of degree d and bit-size τ = log ‖p‖1, we describe a naive approach
to the approximation of the largest modulus rd of a root of p. Recall Cauchy’s
bound for such a polynomial: rd ≤ 1 + 2τ . The procedure below finds an r so
that rd < r and either r = 1 or r/2 < rd when p is given by the evaluation
oracles P,P ′.
1: r ← 1, m ← −1
2: while m ≤ d do
3: m ← CauchyRC2(P,P ′,D(0, r), 4/3)
4: if m < d then
5: r ← 2r

As a consequence of Proposition 12 each execution of the while loop terminates
and the procedure terminates after no more than O(τ) execution of the while
loop. It requires evaluation of P and P ′ at O(τC (d, r)) points and O(τC (d, r))
arithmetic operations all with precision less than L (d, r). Its correctness is
implied by correctness of the results of CauchyRC2 which is in turn implied
by correctness of the results of CauchyET.

156 R. Imbach and V. Y. Pan

4.2 Approximation of the (d + 1 − m)-th Root Radius

For a c ∈ C and an integer m ≥ 1, we call (d + 1 − m)-th root radius from c
and write it rm(c, p) the smallest radius of a disc centered in c and containing
exactly m roots of p.

Algorithm 5 approximates rm(c, p) within the relative error ν. It is based on
the RC CauchyRC2 and reduces the width of an initial interval [l, u] containing
rm(c, p) with a double exponential sieve.

Algorithm 5. RootRadius(P,P ′,Δ,m, ν, ε)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A disc

Δ = D(c, r), an integer m ≥ 1, ν ∈ R, ν > 1, and ε ∈ R such that 0 < ε ≤ r/2
Ensure: r′ > 0
1: choose a s.t. ν− 1

4 < f−(a, 4
3
) < f+(a, 4

3
) < 2 // when ν = 2 take a = 11/10

2: l ← 0, u ← r
// Find a lower bound to rd+1−m(c, p)

3: m′ ← CauchyRC2(P, P ′, D(c, ε), a)
4: if m′ = m then
5: return ε
6: else
7: l ← f−(a, 4

3
)ε

// Apply double exponential sieve to get l ≤ rd+1−m ≤ u ≤ νl
8: while l < u/ν do

9: t ← (lu)
1
2

10: m′ ← CauchyRC2(P, P ′, D(c, t), a)
11: if m′ = m then
12: u ← t
13: else
14: l ← f−(a, 4

3
)t

15: return u

The correctness of Algorithm 5 for given input parameters is implied by
correctness of the results of CauchyRC2 which is in turn implied by correctness
of the results of CauchyET. Algorithm 5 satisfies the proposition below. See [7,
Appendix A.5] for a proof.

Proposition 14. The call RootRadius(P,P ′,D(c, r),m, ν, ε) terminates after
O(log log(r/ε)) iterations of the while loop. Let Δ = D(c, r) and r′ be the output
of the latter call.

(a) If Δ contains at least a root of p then so does D(c, 2r′).
(b) If Δ contains m roots of p and CauchyRC2 returns a correct result each

time it is called in Algorithm 5, then either r′ = ε and rm(c, p) ≤ ε, or
rm(c, p) ≤ r′ ≤ νrm(c, p).

Accelerated Subdivision Algorithms for Oracle Polynomials 157

5 A Compression Algorithm

We begin with a geometric lemma illustrated in Fig. 2.

Lemma 15. Let c ∈ C and r, ε, θ ∈ R satisfying 0 < ε ≤ r/2 and θ ≥ 2. Let
c′ ∈ D(c, r+ε

θ) and u = max
(|c − c′| + r

θ , r
)
. Then

D
(
c,

r

θ

)
⊆ D (c′, u) ⊆ D

(
c,

7
4
r

)
⊂ D(c, rθ).

c

r

u

c′

rθr/θ

r+ε
θ

Fig. 2. Illustration for Lemma 15 with θ = 2 and ε = r/4. c′ is on the boundary circle
of D(c, (r + ε)/2), and u := |c − c′| + r/θ.

The following lemma is a direct consequence of Lemma 15 because
s1 (p, c, r) /m is the center of gravity of the roots of p in D(c, r).

Lemma 16. Let D(c, r) be at least θ ≥ 2-isolated and contain m roots. Let s∗
1

approximate s1(p, c, r) such that |s∗
1 − s1(p, c, r)| ≤ mε

θ and ε ≤ r
2 . Then for

c′ = s∗
1

m and u = max
(|c − c′| + r

θ , r
)
, the disc D(c′, u) contains the same roots

of p as D(c, r).

Algorithm 6 solves the ε-CRD problem for γ = 1/8. It satisfies the proposition
below. See [7, Appendix A.6] for a proof.

Proposition 17. The call Compression(P,P ′,Δ, ε) where Δ = D(c, r)
requires evaluation of P and P ′ at O

(
C (d, ε) loglog r

ε

)
points and the same

number of arithmetic operations, all with precision less than L (d, ε/4). Let
m,D(c′, r′) be the output of the latter call.

(a) If Δ is at least 2-isolated and Z (Δ, p) �= ∅, and if the call to RootRadius
returns a correct result, then D(c′, r′) is equivalent to Δ, contains m roots
of p and satisfies: either r′ ≤ ε, or D(c′, r′) is at least 1/8-rigid.

(b) If m′ > 0 then D(c′, 2r′) contains at least a root of p.

158 R. Imbach and V. Y. Pan

Algorithm 6. Compression(P,P ′,Δ, ε)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A disc

Δ = D(c, r), and a strictly positive ε ∈ R.
Ensure: An integer m and a disc D(c′, r′).
1: θ ← 2, ε′ ← ε/2θ
2: (success, [s0, s1]) ← ApproxShs(P, P ′, Δ, θ, 1, min(ε′, 1))
3: if not success or s0 does not contain an integer > 0 then
4: return −1, ∅
5: m ← the unique integer in s0
6: if r/2 < ε then
7: return m, D(c, r/2)

8: c′ ← c (s1) /m // |c′ − s1(p, c, r)/m| < ε/4θ
9: if m = 1 then

10: m ← CauchyRC1(P, P ′, D(c′, 2ε′), 2)
11: return m, D(c′, 2ε′)

12: u ← max
(|c − c′| + r

θ
, r

)

13: r′ ← RootRadius(P, P ′, D(c′, u), 4
3
, m, θ, ε/2)

14: return m, D(c′, r′)

6 Two Cauchy Root Finders

In order to demonstrate the efficiency of the algorithms presented in this paper,
we describe here two experimental subdivision algorithms, named CauchyQIR
and CauchyComp, solving the ε-CRC problem for oracle polynomials based on
our Cauchy ET and RCs. Both algorithms can fail –in the case where CauchyET
excludes a box of the subdivision tree containing a root – but account for such a
failure. Both algorithm adapt the subdivision process described in [2]. CauchyQIR
uses QIR Abbott iterations to ensure fast convergence towards clusters of roots.
CauchyComp uses ε-compression presented in Sect. 5. In both solvers, the main
subdivision loop is followed by a post-processing step to check that the output
is a solution of the ε-CRC problem. The main subdivision loop does not involve
coefficients of input polynomials but use evaluation oracles instead. However, we
use coefficients obtained by evaluation-interpolation in the post-processing step
in the case where some output discs contain more than one root. We observe no
failure of our algorithms in all our experiments covered in Sect. 7.

6.1 Subdivision Loop

Let B0 be a box containing all the roots of p. Such a box can be obtained by
applying the process described in Subsect. 4.1.

Sub-Boxes, Component and Quadrisection. For a box B(a + ib, w), let
Children1(B) be the set of the four boxes {B((a±w/4)+ i(b±w/4), w/2)}, and

Childrenn(B) :=
⋃

B′∈Childrenn−1(B)

Children1(B′).

Accelerated Subdivision Algorithms for Oracle Polynomials 159

A box B is a sub-box of B0 if B = B0 or if there exist an n ≥ 1 s.t. B ∈
Childrenn(B0). A component C is a set of connected sub-boxes of B0 of equal
widths. The component box B(C) of a component C is the smallest (square) box
subject to C ⊆ B(C) ⊆ B0 minimizing both Re(c (B(C))) and Im(c (B(C))).
We write D(C) for D(B(C)). If S is a set of components (resp. discs) and δ > 0,
write δS for the set {δD(A) (resp. A) | A ∈ S}.

Definition 18. Let Q be a set of components or discs. We say that a component
C (resp. a disk Δ) is γ-separated (or γ-sep.) from Q when γD(C) (resp. γΔ)
has empty intersection with all elements in Q.

Remark 19. Let Q be a set of components and C /∈ Q a component. If Z (C, p) =
Z ({C} ∪ Q, p) and C is 4-separated from Q then 2D(C) is at least 2-isolated.

Subdivision Process. We describe in Algorithm 7 a subdivision algorithm
solving the ε-CRC problem. The components in the working queue Q are sorted
by decreasing radii of their containing discs. It is parameterized by the flag
compression indicating whether compression or QIR Abbott iterations have to
be used. In QIR Abbott iterations of Algorithm 7 in [3], we replace the Graeffe
Pellet test for counting roots in a disc Δ by CauchyRC2(P,P ′,Δ, 4/3). If a
QIR Abbott iteration in step 12 fails for input Δ,m, it returns Δ. Steps 20–21
prevent C to artificially inflate when a compression or a QIR Abbott iteration
step does not decrease D(C). For a component C, Quadrisect(C) is the set of
components obtained by grouping the set of boxes

⋃

B∈C

{B′ ∈ Children1(B) | CauchyET(P,P ′,D(B′)) = −1}

into components.
The while loop in steps 4-22 terminates because all our algorithms terminate,

and as a consequence of (a) in Proposition 9: any component will eventually be
decreased until the radius of its containing disc reaches ε/2.

6.2 Output Verification

After the subdivision process described in steps 1–22 of Algorithm. 7, R is a set
of pairs of the form {(Δ1,m1), . . . , (Δ�,m�)} satisfying, for any 1 ≤ j ≤ �:

– Δj is a disc of radii ≤ ε, mj is an integer ≥ 1,
– Δj contains at least a root of p,
– for any 1 ≤ j′ ≤ � s.t. j′ �= j, 3Δj ∩ Δj′

= ∅.

The second property follows from (b) of Proposition 10 and (b) of Proposition 17
when compression is used. Otherwise, remark that a disk Δ in the output of QIR
Abbott iteration in step 12 of Algorithm 7 verifies CauchyRC2(P,P ′,Δ, 4/3) >
0 and apply (b) of Proposition 12. The third property follows from the if state-
ment in step 15 of Algorithm 7. Decompose R as the disjoint union R1 ∪ R>1

where R1 is the subset of pairs (Δi,mi) of R where mi = 1 and R>1 is the subset
of pairs (Δi,mi) of R where mi > 1, and make the following remark:

160 R. Imbach and V. Y. Pan

Algorithm 7. CauchyRootFinder(P,P ′, ε, compression)
Require: P and P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A

(strictly) positive ε ∈ R, a flag compression ∈ {true, false}.
Ensure: A flag success and a list R = {(Δ1, m1), . . . , (Δ�, m�)}
1: B0 ← box s.t. # (B, p) = d as described in Subsect. 4.1
2: Q ← {B0} // Q is a queue of components
3: R ← {} // R is the empty list of results
4: while Q is not empty do
5: C ← pop(Q)
6: if C is 4-separated from Q then
7: if compression then
8: m, D(c, r) ← Compression(P, P ′, 2D(C), ε/2)
9: else

10: m ← CauchyRC1(P, P ′, 2D(C), 2)
11: if m > 0 then
12: D(c, r) ← QIR Abbott iteration for D(C), m

13: if m ≤ 0 then
14: return fail, ∅
15: if r ≤ ε/2 and D(c, 2r) is 3-sep. from 2Q and is 1-sep. from 6Q then
16: push(R, (D(c, 2r), m))
17: continue
18: else
19: C′ ← component containing D(c, r)
20: if C′ ⊂ C then
21: C ← C′

22: push(Q, Quadrisect(C))

23: success ← verify R as described in Subsect. 6.2
24: return success, R

Remark 20. If m1 + . . . + m� = d and for any (Δi,mi) ∈ R>1, Δi contains
exactly mi roots of p, then R is a correct output for the ε-CRC problem with
input p of degree d and ε.

According to Remark 20, checking that R is a correct output for the ε-CRC
problem for fixed input p of degree d and ε amount to check that the mi’s add
up to d and that for any Δi ∈ R>1, Δi contains exactly mi roots of p. For this
last task, we use evaluation-interpolation to approximate the coefficients of p
and then apply the Graeffe-Pellet test of [2].

7 Experiments

We implemented Algorithm 7 in the C library Ccluster. Call CauchyComp (resp.
CauchyQIR) the implementation of Algorithm 7 with compression = true (resp.
false). In the experiments we conducted so far, CauchyComp and CauchyQIR
never failed.

Accelerated Subdivision Algorithms for Oracle Polynomials 161

Test Suite. We experimented CauchyComp, CauchyQIR and MPsolve on Man-
delbrot and Mignotte polynomials as defined in Sect. 1 as well as Runnel and
random sparse polynomials. Let r = 2. The Runnel polynomial is defined induc-
tively as

Run0(z) = 1, Run1(z) = z, Runk+1(z) = Runk(z)r + z Runk−1(z)r2

It has real coefficients, a multiple root (zero), and can be evaluated fast. We
generate random sparse polynomials of degree d, bitsize τ and � ≥ 2 non-
zero terms as follows, where pi stands for the coefficient of the monomial of
degree i in p: p0 and pd are randomly chosen in [−2τ−1, 2τ−1], then � − 2 inte-
gers i1, . . . , i�−1 are randomly chosen in [1, d−1] and pi1 , . . . , pi�−1 are randomly
chosen in [−2τ−1, 2τ−1]. The other coefficients are set to 0.

Results. We report in Table 1 results of those experiments for Mandelbrot
and Mignotte polynomials with increasing degrees and increasing values of
log10(ε−1). We account for the running time t for the three above-mentionned
solvers. For CauchyQIR (resp. CauchyComp), we also give the number n of exclu-
sion tests in the subdivision process, and the time tN (resp. tC) spent in QIR
Abbott iterations (resp. compression).

Our compression algorithm allows smaller running times for low values of
log10(ε−1) because it compresses a component C on the cluster it contains as of
2D(C) is 2-isolated, whereas QIR Abbott iterations require the radius Δ to be
near the radius of convergence of the cluster for Schröder’s iterations.

We report in Table 2 the results of runs of CauchyComp and MPsolve for
polynomials of our test suite of increasing degree, for log10(ε−1) = 16. For ran-
dom sparse polynomials, we report averages over 10 examples. The column tV
accounts for the time spent in the verification of the output of CauchyComp
(see Subsect. 6.2); it is 0 when all the pairs (Δj ,mj) in the output verify mj = 1.
It is > 0 when there is at least a pair with mj > 1.

The maximum precision L required in all our tests was 106, which makes us
believe that our analysis in Proposition 8 is very pessimistic. Our experimental
solver CauchyComp is faster than MPsolve for polynomials that can be evaluated
fast.

162 R. Imbach and V. Y. Pan

Table 2. Runs of CauchyComp and MPsolve on polynomials of our test suite for
log10(ε

−1) = 16

CauchyComp MPsolve

d t n tC tV t

Mandelbrot polynomials

255 1.31 5007 0.21 0.00 0.58

511 3.25 10679 0.64 0.00 4.13

1023 6.47 18774 0.84 0.00 31.7

2047 16.2 39358 2.35 0.00 267.

Runnels polynomials

341 2.55 4967 0.38 0.00 0.45

682 5.66 9392 0.87 0.02 3.32

1365 12.6 18030 2.00 0.05 26.2

2730 29.7 35612 4.26 0.12 236.

Mignotte polynomials, a = 16

256 0.29 4131 0.15 0.00 0.21

512 0.58 8042 0.27 0.00 0.70

1024 1.24 16105 0.55 0.02 2.99

2048 2.69 32147 1.05 0.04 11.6

10 randomSparse polynomials with 3 terms and bitsize 256

767 .902 10791. .415 0.0 .602

1024 1.35 15526. .560 0.0 1.36

1535 2.04 21244. .861 0.0 2.35

2048 2.98 30642. 1.16 0.0 4.10

10 randomSparse polynomials with 5 terms and bitsize 256

2048 4.77 29583. 1.60 0.0 4.09

3071 6.92 43003. 2.45 0.0 10.0

4096 9.82 56659. 3.38 0.0 24.0

6143 17.7 86857. 5.40 0.0 44.5

10 randomSparse polynomials with 10 terms and bitsize 256

3071 11.9 44714. 4.09 0.0 10.3

4096 17.5 58138. 5.82 0.0 17.6

6143 29.1 85451. 8.93 0.0 51.9

8192 40.6 116289. 12.4 0.0 66.5

8 Conclusion

We presented, analyzed and verified practical efficiency of two basic subroutines
for solving the complex root clustering problem for black box polynomials. One
is a root counter, the other one is a compression algorithm. Both algorithms are
well-known tools used in subdivision procedures for root finding.

We propose our compression algorithm not as a replacement of QIR Abbott
iterations, but rather as a complementary tool: in future work, we plan to use

Accelerated Subdivision Algorithms for Oracle Polynomials 163

compression to obtain a disc where Schröder’s/QIR Abbott iterations would
converge fast. The subroutines presented in this paper laid down the path toward
a Cauchy Root Finder, that is, an algorithm solving the ε-CRC problem for black
box polynomials.

References

1. Abbott, J.: Quadratic interval refinement for real roots. ACM Commun. Comput.
Algebra 48(1/2), 3–12 (2014)

2. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, pp. 71–78. ACM (2016)

3. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the Pellet test and Newton iteration. J.
Symbol. Comput. 86, 51–96 (2018)

4. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

5. Imbach, R., Pan, V.Y.: New practical advances in polynomial root clustering. In:
Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol.
11989, pp. 122–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43120-4 11

6. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root finding. In:
Proceedings of the 45th International Symposium on Symbolic and Algebraic Com-
putation, pp. 249–256 (2020)

7. Imbach, R., Pan, V.Y.: Accelerated subdivision for clustering roots of polynomials
given by evaluation oracles. arXiv preprint 2206.08622 (2022)

8. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8 28

9. Louis, A., Vempala, S.S.: Accelerated Newton iteration: roots of black box polyno-
mials and matrix eigenvalues. In: IEEE 57th Annual Symposium on Foundations
of Computer Science, pp. 732–740 (2016)

10. Luan, Q., Pan, V.Y., Kim, W., Zaderman, V.: Faster numerical univariate poly-
nomial root-finding by means of subdivision iterations. In: Boulier, F., England,
M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp.
431–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 25

11. Moroz, G.: Fast real and complex root-finding methods for well-conditioned poly-
nomials. arXiv preprint 2102.04180 (2021)

12. Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s quadtree
construction and improved Newton’s iteration. J. Complex. 16, 213–264 (2000)

13. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. J. Symbol. Comput. 33, 701–733 (2002)

14. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M.,
Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019.
LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26831-2 26

https://doi.org/10.1007/978-3-030-43120-4_11
https://doi.org/10.1007/978-3-030-43120-4_11
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-030-60026-6_25
https://doi.org/10.1007/978-3-030-26831-2_26
https://doi.org/10.1007/978-3-030-26831-2_26

164 R. Imbach and V. Y. Pan

15. Pan, V.Y.: Acceleration of subdivision root-finding for sparse polynomials. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020.
LNCS, vol. 12291, pp. 461–477. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60026-6 27

16. Pan, V.Y.: New progress in polynomial root-finding. arXiv preprint 1805.12042
(2022)

17. Reinke, B.: Diverging orbits for the Ehrlich-Aberth and the Weierstrass root find-
ers. arXiv preprint 2011.01660 (2020)

18. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of
polynomials. J. Complex. 3(2), 90–113 (1987)

19. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symbol.
Comput. 73, 46–86 (2016)

20. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Manuscript. University of Tübingen, Germany (1982)

https://doi.org/10.1007/978-3-030-60026-6_27
https://doi.org/10.1007/978-3-030-60026-6_27

On Equilibrium Positions in the Problem
of the Motion of a System of Two Bodies

in a Uniform Gravity Field

Valentin Irtegov and Tatiana Titorenko(B)

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov Street, Irkutsk 664033, Russia

{irteg,titor}@icc.ru

Abstract. In the problem of motion of a system of two rigid bodies
connected by a spherical hinge in a uniform gravity field, the conditions
for the existence of two- and one-dimensional invariant manifolds are
presented, and the manifolds themselves are found with the use of com-
puter algebra tools. From a mechanical point of view, these solutions
correspond to equilibrium positions of the system. Their instability in
the first approximation is proved.

1 Introduction

This work continues the study [5]. The rotation of the system of two connected
rigid bodies S1 and S2 (see Fig. 1) in a uniform gravity field is considered. The
first body has a fixed point O1. The bodies are connected by an ideal spherical
hinge O2.

Fig. 1. .

To describe the motion of the mechanical system, the following coordinate
systems are introduced: the inertial O1XY Z (its Z axis with the unit vec-
tor ν is directed vertically upwards), the moving frames O1x1y1z1 and O2x2y2z2
attached rigidly to the bodies S1 and S2, respectively. The xi, yi, zi (i = 1, 2)
axes are directed along the principal inertia axes of the bodies. The positions of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 165–184, 2022.
https://doi.org/10.1007/978-3-031-14788-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_10

166 V. Irtegov and T. Titorenko

O1x1y1z1 with respect to O1XY Z and O2x2y2z2 with respect to O1x1y1z1 are
defined by Euler’s angles ψ1, θ1, ϕ1 and ψ2, θ2, ϕ2.

The mechanical system studied in [5] is characterized as follows: the distribu-
tion of mass in the bodies is arbitrary, the connection point O2 does not lie on the
principal axes of inertia of the body S1, but the centers of masses of the bodies P1

and P2 belong to their principal axes of inertia. The equations of motion for the
system have been derived with the help of the software package [1] written in
the language of computer algebra system (CAS) “Mathematica”. First, according
to a geometric description of the mechanical system, its characteristic function
(the Lagrange function) in symbolic form has been constructed, then, using this
function as a starting point, the equations of motion have been obtained. The
problem of their qualitative analysis was stated. Within the framework of solving
this problem, solutions of the equations corresponding to permanent rotations
of the system have been found, and the sufficient conditions of their stability in
the sense of Lyapunov have been derived.

In the present work, the above mechanical system is studied in a more general
case. We assume that the centers of masses of the bodies do not lie on their
principal axes of inertia. The equations of motion of the system are derived
analogously to the previous case. The problem of qualitative analysis of the
equations is stated. In the present paper, we restrict ourselves by considering
equilibrium solutions of the equations. Two techniques are used to find them:
from the stationary conditions for the family of the first integrals of the problem,
and, directly, from the equations of motion. The stability of the solutions is
analyzed on the base of Lyapunov’s stability theorems in the first approximation.
All computations are performed with the aid of CAS “Mathematica”.

As was mentioned in [5], similar problems arise in many applications, e.g.,
in modelling and the study of dynamical properties of various technical devices
and instruments. Such problems are considered, e.g., in [2,3].

The paper is organized as follows. In Sect. 2, the Lagrange function and
the equations of motion with their first integrals for the mechanical system in
question are given. In Sect. 3, we seek equilibrium positions of the system, using
the stationary conditions of the first integrals. In Sect. 3.2, the same problem is
solved with the help of the equations of motion. In Sect. 4, the stability of the
solutions is analyzed. In Sect. 5, we give a conclusion.

2 The Lagrange Function and the Equations of Motion

The Lagrange function of the mechanical system under consideration derived by
the technique [5] has the form: L = T + U, where

2T = A1p
2
1 + B1q

2
1 + C1r

2
1 + A2(b11p1 + p2 + b12q1 + b13r1)2

+B2(b21p1 + b22q1 + b23r1 + q2)2

+C2(b31p1 + b32q1 + b33r1 + r2)2 + m2(d21 + d22 + d23)

+2m2

[
a2 [(b31p1 + b32q1 + b33r1 + r2)(b23d1 + b22d2 + b21d3)

On Equilibrium Positions in the Problem of the Motion of Two Bodies 167

−(b21p1 + b22q1 + b23r1 + q2)(b33d1 + b32d2 + b31d3)]
−b2[(b31p1 + b32q1 + b33r1 + r2)(b13d1 + b12d2 + b11d3)
−(b11p1 + b12q1 + b13r1 + p2)(b33d1 + b32d2 + b31d3)]
+c2 [(b21p1 + b22q1 + b23r1 + q2)(b13d1 + b12d2 + b11d3)

−(b11p1 + b12q1 + b13r1 + p2)(b23d1 + b22d2 + b21d3)]
]
,

U = −g
[
m1(a1a13 + b1a23 + c1a33) + m2

(
a13(a2b11 + b2b21 + c2b31 + s1)

+a23(a2b12 + b2b22 + c2b32 + s2) + a33(a2b13 + b2b23 + c2b33 + s3)
)]

are the kinetic energy and the force function of the system, respectively.
Here d1 = p1s2 − q1s1, d2 = r1s1 − p1s3, d3 = q1s3 − r1s2; ai, bi, ci (i = 1, 2)

are the coordinates of the centers of masses of the bodies; s1, s2, s3 are the coordi-
nates of the connection point O2; Ai, Bi, Ci (i = 1, 2) are the principal moments
of inertia of the bodies; m1,m2 are the masses of the bodies; g is the accelera-
tion due to gravity; pi = ψ̇i sin ϕi sin θi + θ̇i cos ϕi, qi = ψ̇i cos ϕi sin θi − θ̇i sin ϕi,
ri = ϕ̇i + ψ̇i cos θi are the projections of the vector of angular velocity of the body
Si onto the axes Oixiyizi; α = ‖akl‖, β = ‖bkl‖ are the cosine matrices 3 × 3
of angles between the axes O1XY Z and O1x1y1z1, and the axes O1x1y1z1 and
O2x2y2z2, respectively. Their elements are related to Euler’s angles ψi, θi, ϕi as
follows:

akl = ζ
(1)
kl , bkl = ζ

(2)
kl (k, l = 1, 2, 3), where

ζ
(i)
11 = cos ϕi cos ψi − cos θi sin ϕi sin ψi,

ζ
(i)
12 = cos ψi cos θi sin ϕi + cos ϕi sin ψi, ζ

(i)
13 = sin ϕi sin θi,

ζ
(i)
21 = − cos ψi sin ϕi − cos ϕi cos θi sin ψi,

ζ
(i)
22 = cos ϕi cos ψi cos θi − sin ϕi sin ψi,

ζ
(i)
23 = cos ϕi sin θi, ζ

(i)
31 = sinψi sin θi, ζ

(i)
32 = − cos ψi sin θi,

ζ
(i)
33 = cos θi (i = 1, 2).

(1)

The equations of motion produced by the package according to the formulae

d

dt

(∂L

∂ω(i)

)
=

∂L

∂ω(i)
× ω(i) +

∂L

∂α(i)
× α(i) +

∂L

∂β(i)
× β(i) +

∂L

∂γ(i)
× γ(i),

α̇(i) = α(i) × ω(i), β̇
(i)

= β(i) × ω(i), γ̇(i) = γ(i) × ω(i) (i = 1, 2),

where ω(i) = (pi, qi, ri), αT (1) = (a11, a21, a31), βT (1)
= (a12, a22, a32), γT (1) =

(a13, a23, a33), αT (2)=(b11, b21, b31), βT (2)
=(b12, b22, b32), γT (2)=(b13, b23, b33),

are written as:

[A1 + A2b
2
11 + B2b

2
21 + b31(C2b31 + 2(a2b23 − b2b13)m2s2)

+m2(s2(2(b2b11 − a2b21)b33 + 2c2(b13b21 − b11b23) + s2)
+2(b2(b12b31−b11b32) + a2(b21b32−b22b31)+c2(b11b22−b12b21))s3+s23)] ṗ1
+[A2b11 + m2((b2b32 − c2b23)s2 + (c2b22 − b2b32)s3)] ṗ2

168 V. Irtegov and T. Titorenko

+[A2b11b12 + B2b21b22 + C2b31b32 + (b2b13 − a2b23)b31m2s1
+(a2b21b32−b2b11b32 + c2(b11b23−b13b21))m2s1−m2(b2(b13b32 − b12b32)
+a2(b22b32 − b23b32) + c2(b12b23 − b13b22) + s1)s2] q̇1
+[B2b21 + m2((c2b13 − a2b32)s2 + (a2b32 − c2b12)s3)] q̇2
+[A2b11b13+B2b21b23+C2b31b32+(a2b22b31+b2(b11b32−b12b31))m2s1
−(a2b21b32 + c2(b11b22 − b12b21))m2s1 − m2(b2(b13b32 − b12b32)
+a2(b22b32 − b23b32) + c2(b12b23 − b13b22) + s1)s3] ṙ1
+[C2b31 + m2((a2b23 − b2b13)s2 + (b2b12 − a2b22)s3)] ṙ2 + Φ1 = 0,

[A2b11b12 + B2b21b22 + C2b31b32 + m2s1(b2b13 − a2b23)b31
+m2s1 (a2b21b33 − b2b11b33 + c2(b11b23 − b13b21))
−m2s2 (b2(b13b32 − b12b33) + a2(b22b33 − b23b32)
+c2(b12b23 − b13b22) + s1)] ṗ1
+[A2b12 + m2(s1(c2b23 − b2b33) + s3(b2b31 − c2b21))] ṗ2
+[B1 + A2b

2
12 + B2b

2
22 + b32(C2b32 + 2m2s1 (b13b2 − a2b23))

+m2(s1(2(a2b22b33 − b2b12b33 + c2(b12b23 − b13b22)) + s1)
+2(b2(b12b31−b11b32)+a2(b21b32−b22b31)+c2(b11b22−b12b21))s3+s23)] q̇1
+[B2b22 + m2(s1(a2b33 − c2b13) + s3(b11c2 − a2b31))] q̇2
+[A2b12b13 + B2b22b23 + C2b32b33 + m2s2(b2(b11b32 − b12b31)
+a2(b22b31 − b21b32) + c2(b12b21 − b11b22)) − m2s3(b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23) + s2)] ṙ1
+[C2b32 + m2(s1(b2b13 − a2b23) + s3(a2b21 − b2b11))] ṙ2 + Φ2 = 0,

[A2b11b13 + B2b21b23 + C2b31b33 + m2s1 (a2b22b31 + b2(b11b32 − b12b31))
−m2s1 (a2b21b32 + c2(b11b22 − b12b21)) − m2s3 (b2(b13b32 − b12b33)
+a2(b22b33 − b23b32) + c2(b12b23 − b13b22) + s1)] ṗ1
+[A2b13 + m2(s1(b2b32 − c2b22) + s2(c2b21 − b2b31))] ṗ2
+[A2b12b13 + B2b22b23 + C2b32b33 + m2s2 (b2(b11b32 − b12b31)
+a2(b22b31 − b21b32) + c2(b12b21 − b11b22))−m2s3 (b2(b11b33−b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23) + s2)] q̇1
+[B2b23 + m2(s1(c2b12 − a2b32) + s2(a2b31 − c2b11))] q̇2
+[C1 + A2b

2
13 + B2b

2
23 + C2b

2
33 + m2(s1(2(b2(b13b32 − b12b33)

+a2(b22b33−b23b32) + c2(b12b23−b13b22)) + s1) + 2(b2(b11b33−b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23))s2 + s22)] ṙ1
+[C2b33 + m2(s1(a2b22 − b2b12) + s2(b2b11 − a2b21))] ṙ2 + Φ3 = 0,

[A2b11 + m2(s2(b2b33 − c2b23) + s3(c2b22 − b2b32))] ṗ1 + A2ṗ2
+[A2b12 + m2(s1(c2b23 − b2b33) + s3(b2b31 − c2b21))] q̇1
+[A2b13 + m2(s1(b2b32 − c2b22) + s2(c2b21 − b2b31))] ṙ1 + Φ4 = 0,

[B2b21 + m2(s2(c2b13 − a2b33) + s3(a2b32 − c2b12))] ṗ1
+[B2b22 + m2(s1(a2b33 − c2b13) + s3(c2b11 − a2b31))] q̇1 + B2q̇2
+[B2b23 + m2(s1(c2b12 − a2b32) + s2(a2b31 − c2b11))] ṙ1 + Φ5 = 0,

[C2b31 + m2(s2(a2b23 − b2b13) + s3(b2b12 − a2b22))] ṗ1
+[C2b32 + m2(s1(b2b13 − a2b23) + s3(a2b21 − b2b11))] q̇1
+[C2b33+m2(s1(a2b22−b2b12)+s2(b2b11−a2b21))] ṙ1+C2ṙ2+Φ6 = 0;

(2)

ȧ11 = a21r1 − a31q1, ȧ12 = a22r1 − a32q1, ȧ13 = a23r1 − a33q1,
ȧ21 = a31p1 − a11r1, ȧ22 = a32p1 − a12r1, ȧ23 = a33p1 − a13r1,
ȧ31 = a11q1 − a21p1, ȧ32 = a12q1 − a22p1, ȧ33 = a13q1 − a23p1,

(3)

On Equilibrium Positions in the Problem of the Motion of Two Bodies 169

ḃ11 = b21r1 − b31q1, ḃ12 = b22r1 − b32q1, ḃ13 = b23r1 − b33q1,

ḃ21 = b31p1 − b11r1, ḃ22 = b32p1 − b12r1, ḃ23 = b33p1 − b13r1,

ḃ31 = b11q1 − b21p1, ḃ32 = b12q1 − b22p1, ḃ33 = b13q1 − b23p1.

(4)

Here Φi (i = 1, . . . , 6) are the quadratic polynomials of pj , qj , rj (j = 1, 2). These
are rather cumbersome and are given in Appendix.

Equations (2)–(4) admit the following first integrals.

– The integrals of energy and kinetic moment:

H = T − U = h, V =
∂L

∂ω(1)
· γ(1) = c,

where h and c are some constants.
– The geometric integrals:

V1 = a2
11 + a2

21 + a2
31 = 1, V7 = b211 + b221 + b231 = 1,

V2 = a2
12 + a2

22 + a2
32 = 1, V8 = b212 + b222 + b232 = 1,

V3 = a2
13 + a2

23 + a2
33 = 1, V9 = b213 + b223 + b233 = 1,

V4 = a11a12 + a21a22 + a31a32 = 0, V10 = b11b12 + b21b22 + b31b32 = 0,
V5 = a11a13 + a21a23 + a31a33 = 0, V11 = b11b13 + b21b23 + b31b33 = 0,
V6 = a12a13 + a22a23 + a32a33 = 0, V12 = b12b13 + b22b23 + b32b33 = 0.

(5)

We pose the problem of finding the stationary solutions and invariant mani-
folds (IMs) [4] for Eqs. (2)–(4) and the investigation of their stability.

3 Finding Stationary Solutions and IMs

It is shown [4] that stationary solutions and IMs can be obtained from both
the stationary conditions of the problem’s first integrals and, directly, from the
equations of motion. Let us use the first technique.

3.1 The Usage of Stationary Conditions

Compose the linear combination of the integrals

2Ω = 2λ0H − λ1V3 − λ2V7 − λ3V8 − λ4V9 − 2(λ5V10 + λ6V11 + λ7V12)

and write down the necessary conditions of extremum for the integral Ω with
respect to the variables p1, p2, q1, q2, r1, r2, a13, a23, a33, b11, b12, b13, b21, b22, b23,
b31, b32, b33:

∂Ω/∂pi = 0, ∂Ω/∂qi = 0, ∂Ω/∂ri = 0 (i = 1, 2),
∂Ω/∂ak3 = 0, ∂Ω/∂bkl = 0 (k, l = 1, 2, 3). (6)

The variables a11, a12, a21, a22, a31, a32 are sought with the help of the inte-
grals V1, V2, Vj (j = 4, 5, 6) under the corresponding values of a13, a23, a33.

170 V. Irtegov and T. Titorenko

Solutions of Eqs. (6) allow us to determine the stationary solutions and IMs
of the differential equations (2)–(4) corresponding to the integral Ω. As was
mentioned before, we are interested in equilibrium solutions. In order to find
them, we put pi = qi = ri = 0 (i = 1, 2) in (6). The equations take the form:

λ0g (a1m1 + m2(a2b11 + b2b21 + c2b31 + s1)) − λ1a13 = 0,
λ0g (b1m1 + m2(a2b12 + b2b22 + c2b32 + s2)) − λ1a23 = 0,
λ0g(c1m1 + m2(a2b13 + b2b23 + c2b33 + s3)) − λ1a33 = 0,
λ0a2g m2a13 − λ2b11 − λ5b12 − λ6b13 = 0,
λ0a2g m2a23 − λ3b12 − λ5b11 − λ7b13 = 0,
λ0a2g m2a33 − λ4b13 − λ6b11 − λ7b12 = 0,
λ0b2g m2a13 − λ2b21 − λ5b22 − λ6b23 = 0,
λ0b2g m2a23 − λ3b22 − λ5b21 − λ7b23 = 0,
λ0b2g m2a33 − λ4b23 − λ6b21 − λ7b22 = 0,
λ0c2g m2a13 − λ2b31 − λ5b32 − λ6b33 = 0,
λ0c2g m2a23 − λ3b32 − λ5b31 − λ7b33 = 0,
λ0c2g m2a33 − λ4b33 − λ6b31 − λ7b32 = 0.

(7)

The resulting system is multiparametric (20 parameters) that leads to cumber-
some expressions in the process of computation.

For the polynomials of system (7), under the following constraints on the
parameters of the problem

a1 = −m2s1
m1

, b1 = −m2s2
m1

, c1 = −m2s3
m1

and the relations b21 = b12, b31 = b13, b32 = b23 (we assume that the cosine
matrix β is symmetric), a Gröbner basis was constructed with respect to an
eliminating ordering of the variables with the help of the built-in function

GroebnerBasis[polys1, {b11, b33}, {λ2, λ3, λ4, λ5, λ6, λ7, a13, a23, a33},

CoefficientDomain → RationalFunctions,
MonomialOrder → EliminationOrder]

Here polys1 is the list of the polynomials of system (7).
After the transformation of the basis into a lexicographical one by means of

GroebnerBasis[polys2, {λ2, λ3, λ4, λ5, λ6, λ7, a13, a23, a33, b11, b33},

CoefficientDomain → RationalFunctions],

where polys2 is the list of polynomials obtained at the previous step, we have a
system dividing into two subsystems. One of them is presented below.

c2(a2b12 + b2(b22 − b33)) + c22b23 − b2(a2b13 + b2b23) = 0,
a2
2b12 − b2(b12b2 + b13c2) + a2(b2(b22 − b11) + c2b23) = 0,

λ1b2a33 − λ0gm2c2(a2b12 + b2b22 + c2b23) = 0,
λ0gm2 (a2b12 + b2b22 + b23c2) − a23λ1 = 0,
λ0gm2a2(a2b12 + b2b22 + c2b23) − λ1b2a13 = 0,
b2c2g

2m2
2λ

2
0 − λ1λ7 = 0, a2c2g

2m2
2λ

2
0 − λ1λ6 = 0,

(8)

On Equilibrium Positions in the Problem of the Motion of Two Bodies 171

a2b2g
2λ2

0m
2
2 − λ1λ5 = 0, c22 g2m2

2λ
2
0 − λ1λ4 = 0,

b22 g2λ2
0m

2
2 − λ1λ3 = 0, a2

2 g2m2
2λ

2
0 − λ1λ2 = 0.

All computations have been performed on a computer with an Intel Core i7
CPU (3.6 GHz) and 32 GB of RAM. The total computation time is 46 s.

Then, expressions (5) are added to the first five equations of system (8) and
a lexicographical basis for the polynomials of the resulting system with respect
to a11 > a12 > a21 > a22 > a31 > a13 > a23 > a33 > b11 > b33 > b13 > b22 >
b23 > λ1 is constructed. Again we obtain a system splitting into two subsystems.
Below, both subsystems are represented.

(a2
2 + b22 + c22) g2m2

2λ
2
0 − λ2

1 = 0,
a2
2b

2
12 + b22(b

2
12 + b223) + c22b

2
23 + 2(a2c2b12b23 ∓ a2b2b12 ∓ b2c2b23) = 0,

−a2b12 − b2(b22 ∓ 1) − c2b23 = 0,
a2
2(b2b13 + c2b12) + b22(a2b23 + c2b12) + c22(a2b23 + b2b13) ∓ 2a2b2c2 = 0,

−a2
2(a2b12 − b2(b33 ± 1) + c2b23) + b22(c2b23 − a2b12) + b2c

2
2(b33 ∓ 1) = 0,

−a2
2b2(b11 ∓ 1) + b22(c2b23 − a2b12) + c22(a2b12 − b2(b11 ± 1) + c2b23) = 0,

(a2
2 + b22 + c22) gm2λ0a33 ∓ c2λ1 = 0,

±b2λ1 − (a2
2 + b22 + c22) gm2λ0a23 = 0,

±a2λ1 − (a2
2 + b22 + c22) gm2λ0a13 = 0,

(a2
2 + b22)(a

2
31 + a2

32 − 1) + c22(a
2
31 + a2

32) = 0,
a2
2(a

2
22 + a2

32 − 1) + (b2a22 + c2a32)2 = 0,
(a2

2+b22)(a21+a32(a22a31−a21a32))+b2c2a31+c22a32(a22a31−a21a32) = 0,
a2a12 + b2a22 + c2a32 = 0,
a2(a2

2a11 + a2c2a31 + b22a11)(a2
32 − 1) + [b2(a2

2 + b22)a22a31 + c22(a2a11a32

+b2a22a31) + c2(b22a31 + c22a31)a32]a32 = 0.

(9)

Next, we find λ1 = ±
√

a2
2 + b22 + c22 m2gλ0 from the first equation of (9).

Under the above values of λ1, the latter 13 equations of each of the subsystems
together with equations pi = qi = ri = 0 (i = 1, 2) and the relations b21 = b12,
b31 = b13, b32 = b23 determine the four IMs of codimension 22 of the differential
equations (2)–(4). It is verified by direct computation according to the definition
of IM. Let us consider one of these IMs, e.g., the one defined by the equations

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,
b21 − b12 = 0, b31 − b13 = 0, b32 − b23 = 0,
a2
2b

2
12 + b22(b

2
12 + b223) + c22b

2
23 + 2(a2c2b12b23 + a2b2b12 + b2c2b23) = 0,

−a2b12 − b2(b22 + 1) − c2b23 = 0,
a2
2(b2b13+c2b12)+b22(a2b23 + c2b12) + c22(a2b23 + b2b13) + 2a2b2c2 = 0,

−a2
2(a2b12−b2(b33−1) + c2b23) + b22(c2b23−a2b12) + b2c

2
2(b33 + 1) = 0,

−a2
2b2(b11 + 1) + b22(c2b23−a2b12) + c22(a2b12−b2(b11−1) + c2b23) = 0,√
a2
2 + b22 + c22 a33 + c2 = 0,√

a2
2 + b22 + c22 a23 + b2 = 0,√

a2
2 + b22 + c22 a13 + a2 = 0,

(a2
2 + b22)(a

2
31 + a2

32 − 1) + c22(a
2
31 + a2

32) = 0,

(10)

172 V. Irtegov and T. Titorenko

a2
2(a

2
22 + a2

32 − 1) + (b2a22 + c2a32)2 = 0,
(a2

2 + b22)(a21 + a32(a22a31−a21a32)) + b2c2a31 + c22a32(a22a31−a21a32) = 0,
a2a12 + b2a22 + c2a32 = 0,
a2(a2

2a11 + a2c2a31 + b22a11)(a2
32 − 1) + [b2(a2

2 + b22)a22a31 + c22(a2a11a32

+b2a22a31) + c2(b22a31 + c22a31)a32]a32 = 0.

The differential equations ȧ32 = 0, ḃ12 = 0 on this IM have the following
family of solutions:

a32 = a0
32 = const, b12 = b012 = const. (11)

From a geometric point of view, Eqs. (10) in the space R24 define a two-
dimensional surface whose points correspond to the fixed points of the phase
space of the system under study.

Next, let us find λj (j = 2, . . . , 7) from the latter six equations of (8) when
λ1 =

√
a2
2 + b22 + c22 m2gλ0 and substitute them into the integral Ω. Having

added a combination of the integrals V1, V2 to the resulting expression, we have:

Ω1 = λ0

[
H − 1

2

√
a2
2 + b22 + c22 gm2V3 − gm2(a2

2V7 + b22V8 + c22V9)
2
√

a2
2 + b22 + c22

−gm2(a2b2V10 + a2c2V11 + b2c2V12)√
a2
2 + b22 + c22

]
− λ8V

2
1 − λ9V

2
2 . (12)

Using the maps of an atlas on IM (10), e.g.,

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,

a11 =
a2c2z1 ± b2za32

(a2
2 + b22) z1/2

, a12 = −a2c2a32 ∓ b2z1
a2
2 + b22

, a13 = −a2z
−1/2,

a21 =
b2c2z1 ∓ a2za32

(a2
2 + b22) z1/2

, a22 = −b2c2a32 ± a2z1
a2
2 + b22

, a23 = −b2z
−1/2,

a31 = −z1z
−1/2, a33 = −c2z

−1/2,

b11 = −a2(a2 + b2b12) + c2z2
a2
2 + c22

, b13 =
a2z2 − (a2 + b2b12) c2

a2
2 + c22

,

b21 = b12, b22 =
c2z2 − b2(a2b12 + b2)

b22 + c22
, b23 = −a2c2b12 + b2(c2 + z2)

b22 + c22
,

b31 =
a2z2 − (a2 + b2b12) c2

a2
2 + c22

, b32 = −a2c2b12 + b2(c2 + z2)
b22 + c22

,

b33 =
1

(a2
2 + c22)(b

2
2 + c22)

[a2
2(b2(b2 + a2b12) − c2z2)

+b2(a2(b22 + 2c22)b12 + b2c2z2) − c42],

it is not difficult to show that the integral Ω1 takes a stationary value on this IM.
Here z1 = [(1 − a2

32)(a
2
2 + b22) − c22a

2
32]

1/2, z2 = [c22 − b12(a2
2b12 + 2a2b2 + (b22 +

c22)b12)]
1/2, z = a2

2 + b22 + c22.

On Equilibrium Positions in the Problem of the Motion of Two Bodies 173

Equations (10) together with (11) allow one to obtain up to the eight families
of solutions of the equations of motion (2)–(4). We represent one of them, e.g.,

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,

a11 =
a2c2D1 + a0

32b2D

(a2
2 + b22)D1/2

, a12 = −a2a
0
32c2 − b2D1

a2
2 + b22

, a13 = −a2D
−1/2,

a21 =
b2c2D1 − a2a

0
32D

(a2
2 + b22)D1/2

, a22 = −a0
32b2c2 + a2D1

a2
2 + b22

, a23 = −b2D
−1/2,

a31 = −D1D
−1/2, a32 = a0

32, a33 = −c2D
−1/2,

b11 = −a2(a2 + b2b
0
12) + c2D2

a2
2 + c22

, b12 = b012, b13 =
a2D2 − (a2 + b2b

0
12) c2

a2
2 + c22

,

b21 = b012, b22 =
c2D2 − b2(a2b

0
12 + b2)

b22 + c22
, b23 = −a2c2b

0
12 + b2(c2 + D2)

b22 + c22
,

b31 =
a2D2 − (a2 + b012b2) c2

a2
2 + c22

, b32 = −a2c2b
0
12 + b2(c2 + D2)

b22 + c22
,

b33 =
1

(a2
2 + c22)(b

2
2 + c22)

[a2
2(b2(b2 + a2b

0
12) − c2D2)

+b2(a2(b22 + 2c22)b
0
12 + b2c2D2) − c42]. (13)

The rest of the solutions differs from the above by the signs of the expressions.
Here a0

32 and b012 are the parameters of the families, D1 = [(1 − a02

32)(a
2
2 + b22) −

a02

32c
2
2]

1/2, D2 = [c22 − b012(a
2
2b

0
12 + 2a2b2 + b012(b

2
2 + c22))]

1/2, D = a2
2 + b22 + c22.

Solutions (13) are real, in particular, when the following conditions hold:

a2 �= 0, b2 �= 0, c2 �= 0 and − σ1 ≤ a0
32 ≤ σ1 and − σ2 ≤ b012 ≤ σ2,

where σ1 =
√

(a2
2 + b22)D−1, σ2 =

√
(a2

2 + c22)(b
2
2 + c22) D−1, σ = a2b2 D−1.

It is easy to verify by direct computation that the integral Ω1 also takes a
stationary value on the elements of the family of solutions (13). From a mechan-
ical point of view, the elements of this family correspond to equilibria of the
mechanical system under consideration.

By means of relations (1), the family of solutions (13) can be represented in
the initial variables (Euler’s angles). Since these solutions are rather cumbersome
we give here the expressions obtained under some constraints on the parameters
of the problem. For instance, under the following conditions

b012 = − 2a2b2
2a2

2 + b22
, c2 = a2,

the one-parametric families of solutions correspond to the family of solutions (13)
in the initial variables:

ϕ1 = ± arccos

(
± b2√

a2
2 + b22

)
, ψ1 = ± arccos

(
±a0

32

√
2a2

2 + b22√
a2
2 + b22

)
,

174 V. Irtegov and T. Titorenko

θ1 = ∓ arccos

(
− a2√

2a2
2 + b22

)
, ϕ2 = ∓ arccos

(
± 2a2√

4a2
2 + b22

)
,

ψ2 = ∓ arccos

(
∓ 2a2√

4a2
2 + b22

)
, θ2 = ∓ arccos

(
− 2a2

2

2a2
2 + b22

)
, (14)

where a0
32 is the parameter of the families.

When b012 = 2a2b2
a2
2+2b22

, c2 = b2, we have the families of solutions:

ϕ1 = ± arccos

(
± b2√

a2
2 + b22

)
, ψ1 = ± arccos

(
±a0

32

√
a2
2 + 2b22√

a2
2 + b22

)
,

θ1 = ∓ arccos

(
− a2√

a2
2 + 2b22

)
, ϕ2 = ∓ arccos

(
± a2

2 + b22√
(a2

2 + b22)2 + a2
2b

2
2

)
,

ψ2 = ∓ arccos

(
∓ a2

2 + b22√
(a2

2 + b22)2 + a2
2b

2
2

)
,

θ2 = ∓ arccos
(

a2
2

(
1

a2
2 + 2b22

− 2
a2
2 + b22

))
. (15)

Substituting expressions (14) and (15) into the equations of motion (2)–(4) writ-
ten in Euler’s variables shows that these equations are identically satisfied.

3.2 The Usage of the Equations of Motion

When pi = qi = ri = 0 (i = 1, 2), the equations of motion (2) take the form:

a33(b1m1 + m2(a2b12 + b2b22 + c2b32 + s2))
−a23(c1m1 + m2(a2b13 + b2b23 + c2b33 + s3)) = 0,
a13(c1m1 + m2(a2b13 + b2b23 + c2b33 + s3))
−a33m2(a2b11 + b2b21 + c2b31 + s1) − m1a1a33 = 0,
a23(a1m1 + a23m2(a2b11 + b2b21 + c2b31 + s1))
−a13(b1m1 + m2(a2b12 + b2b22 + c2b32 + s2)) = 0,
b2(a13b31 + a23b32 + a33b33) − c2(a13b21 + a23b22 + a33b23) = 0,
c2(a13b11 + a23b12 + a33b13) − a2(a13b31 + a23b32 + a33b33) = 0,
a2(a13b21 + a23b22 + a33b23) − b2(a13b11 + a23b12 + a33b13) = 0.

(16)

System (16) is multiparametric (11 parameters).
We assume that the elements of the cosine matrix β are related as follows:

b1m1 + m2(a2b12 + b2b22 + c2b32 + s2) = 0,
a1m1 + m2(a2b11 + b2b21 + c2b31 + s1) = 0,
b2b31 − c2b21 = 0, c2b12 − a2b32 = 0, a2b22 − b2b12 = 0.

(17)

Add relations (17) and (5) to Eqs. (16) and construct a lexicographical basis
with respect to a11 > a12 > a21 > a22 > a23 > a31 > a13 > a33 > b11 > b12 >

On Equilibrium Positions in the Problem of the Motion of Two Bodies 175

b13 > b21 > b22 > b23 > b31 > b32 > b33 > s1 > s2 > s3 for the polynomials of
the resulting system. As a result, we have the system of equations dividing into
two subsystems. Both subsystems are given below:

−c1m1 − m2s3 = 0, −a1m1 − m2s1 = 0,
(b1m1 + m2s2)2 − (a2

2 + b22 + c22)m2
2 = 0,

b22 − (b22 + c22) b233 = 0,
−b1c2m1 − m2((a2

2 + b22 + c22) b32 + c2s2) = 0,
a2
2c

2
2 − (b22 + c22)(a

2
2 + b22 + c22) b231 = 0,

b2b23 + c2b33 = 0,
b1b2m1 + (a2

2 + b22 + c22)m2b22 + b2m2s2 = 0,
b2b31 − c2b21 = 0, b13 = 0,
−a2

2b12m2 − b12(b22 + c22)m2 − a2(b1m1 + m2s2) = 0,
−a2c2b11 − (b22 + c22) b31 = 0,
a33 = 0, a13 = 0, 1 − a2

31 − a2
32 = 0, a23 ± 1 = 0,

a22 = 0, a21 = 0, a2
12 + a2

32 − 1 = 0,
a11 + (a12a31 − a11a32) a32 = 0.

(18)

From the first three equations of system (18), we find the constraints on the
parameters of the problem

s1 = −a1m1

m2
, s2 = −b1m1 ±

√
a2
2 + b22 + c22 m2

m2
, s3 = −c1m1

m2

under which the latter 17 equations of the system together with the relations
pi = qi = ri = 0 (i = 1, 2) determine the four one-dimensional IMs of the
equations of motion (2)–(4). It is easy to verify by direct computation according
to the definition of IM. Below, the equations of one of these IMs are represented.

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,
b22 − (b22 + c22) b233 = 0,

−b1c2m1 − m2(a2
2 + b22 + c22) b32 + c2(b1m1 +

√
a2
2 + b22 + c22 m2) = 0,

a2
2c

2
2 − (b22 + c22)(a

2
2 + b22 + c22) b231 = 0,

b2b23 + c2b33 = 0,

b1b2m1 + (a2
2 + b22 + c22)m2b22 − b2(b1m1 +

√
a2
2 + b22 + c22 m2) = 0,

b2b31 − c2b21 = 0, b13 = 0,

(a2

√
a2
2 + b22 + c22 − a2

2b12 − b12(b22 + c22))m2 = 0,
−a2c2b11 − (b22 + c22) b31 = 0,
a33 = 0, a13 = 0, 1 − a2

31 − a2
32 = 0, a23 − 1 = 0,

a22 = 0, a21 = 0, a2
12 + a2

32 − 1 = 0,
a11 + (a12a31 − a11a32) a32 = 0.

(19)

The differential equation ȧ32 = 0 on IM (19) has the family of solutions:

a32 = a0
32 = const. (20)

Thus, from a geometrical point of view, Eqs. (19) in the space R24 define
a curve whose points correspond to the fixed points of the phase space of the
system under study.

176 V. Irtegov and T. Titorenko

Applying the technique [5], we find the combination of the integrals

2Ω2 = 2λ0H − λ2V
2
1 − λ3V

2
2 − λ4V

2
3 − λ5V

2
7

−gm2λ0

√
a2
2 + b22 + c22 V8 − λ7V

2
9

which takes a stationary value on IM (19). It can be verified by direct compu-
tation, using the maps of an atlas on this IM, e.g.,

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,

a11 = ∓a32, a12 = ∓
√

1 − a2
32, a13 = 0, a21 = 0,

a22 = 0, a23 = 1, a31 = −
√

1 − a2
32, a33 = 0,

b11 = D̄D̄1, b12 = a2D̄, b13 = 0,
b21 = −a2b2D̄D̄−1

1 , b22 = b2D̄, b23 = ∓c2D̄
−1
1 ,

b31 = −a2c2D̄D̄−1
1 , b32 = c2D̄, b33 = ±b2D̄

−1
1 .

Here D̄ = (a2
2 + b22 + c22)

−1/2, D̄1 = (b22 + c22)
1/2.

Equations (19) together with (20) allow one to obtain up to the eight families
of solutions for the equations of motion (2)–(4). One of them is given by:

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,

a11 = −a0
32, a12 = −

√
1 − a02

32, a13 = 0, a21 = 0, a22 = 0,

a23 = 1, a31 = −
√

1 − a02
32, a32 = a0

32, a33 = 0,

b11 =

√
b22 + c22√

a2
2 + b22 + c22

, b12 =
a2√

a2
2 + b22 + c22

, b13 = 0,

b21 = − a2b2√
(b22 + c22)(a

2
2 + b22 + c22)

, b22 =
b2√

a2
2 + b22 + c22

,

b23 = − c2√
b22 + c22

, b31 = − a2c2√
(b22 + c22)(a

2
2 + b22 + c22)

,

b32 =
c2√

a2
2 + b22 + c22

, b33 =
b2√

b22 + c22
. (21)

Here a0
32 is the parameter of the family.

The integral Ω2 takes a stationary value on the elements of the family of
solutions (21). From a mechanical point of view, the elements of this family
correspond to equilibria of the mechanical system under consideration.

The following families of solutions correspond to the family of solutions (21)
in the initial variables:

ϕ1 = 0, ψ1 = − arccos(−a0
32), θ1 =

π

2
, ϕ2 = 0,

ψ2 = arccos

(√
b22 + c22√

a2
2 + b22 + c22

)
, θ2 = − arccos

(
b2√

b22 + c22

)
;

ϕ1 = ±π, ψ1 = arccos(a0
32), θ1 = −π

2
, ϕ2 = ±π,

On Equilibrium Positions in the Problem of the Motion of Two Bodies 177

ψ2 = − arccos

(
−

√
b22 + c22√

a2
2 + b22 + c22

)
, θ2 = arccos

(
b2√

b22 + c22

)
.

4 On the Stability of Solutions

The integrals Ω1 and Ω2 taking stationary values both on IMs (10) and (19)
and the elements of the families of solutions (13) and (21) can be used to obtain
the sufficient conditions of their stability by the Routh–Lyapunov method [6].
In such a way, the sufficient conditions of stability for the permanent rotation of
the system of two bodies were derived in [5]. In this work, such approach did not
allow us to solve the question of stability for the solutions. The stability anal-
ysis of solutions (13) and (21) has been performed by the linear approximation
method [7].

First, let us investigate the family of solutions (21). This problem is solved
on the IM given by the equations [5]:

V1 − 1 = 0, V2 − 1 = 0, V4 − 1 = 0, V5 − 1 = 0, V6 − 1 = 0,
b11b12 + b21b22 + b31b32 = 0, b11b13 + b21b23 + b31b33 = 0,
b12b13 + b22b23 + b32b33 = 0, b13 − b21b32 + b22b31 = 0.

(22)

We write the equations of motion (2)–(4) on IM (22). To do this, the vari-
ables a11, a12, a21, a22, a31, b11, b13, b23, b33 are eliminated from them with the
help of (22). The differential equations in the Poisson form take the form:

ȧ32 =
a32a33(a23p1 − a13q1) +

√
(a2

13 + a2
23)(1 − a2

32) − a2
32a

2
33 (a13p1 + a23q1)

a2
13 + a2

23

,

ȧ13 = a23r1 − a33q1, ȧ23 = a33p1 − a13r1, ȧ33 = a13q1 − a23p1,

ḃ21 = b31p2 +
(b21b22 + b31b32) r2

b12
, ḃ31 = −b12b21p2 + b21b22q2 + b31b32q2

b12
,

ḃ12 = b22r2 − b32q2, ḃ22 = b32p2 − b12r2, ḃ32 = b12q2 − b22p2.

The differential equations in the Lagrange form are rather cumbersome and are
not given here.

The following family of solutions

p1 = 0, p2 = 0, q1 = 0, q2 = 0, r1 = 0, r2 = 0,

a32 = a0
32, a13 = 0, a23 = 1, a33 = 0,

b12 =
a2√

a2
2 + b22 + c22

, b21 = − a2b2√
(b22 + c22)(a

2
2 + b22 + c22)

,

b22 =
b2√

a2
2 + b22 + c22

, b31 = − a2c2√
(b22 + c22)(a

2
2 + b22 + c22)

,

b32 =
c2√

a2
2 + b22 + c22

(23)

corresponds to solutions (21) on IM (22).

178 V. Irtegov and T. Titorenko

Let us consider the special case a2 = b2 = c2. Taking into account the above
restrictions, we write the differential equations linearized in the neighbourhood
of the elements of the family of solutions (23):

(
A1+

1
6
(4A2+ B2 + C2) +

(b21 + c21)m2
1

m2
− 3c22m2

)
ẏ10 +

√
2

(A2√
3

−
√

2z1

)
ẏ11

+
(2A2− B2− C2

3
√

2
− a1b1m

2
1

m2

)
ẏ12 +

(
z1− B2√

6

)
ẏ13 +

(B2− C2

2
√

3
− a1c1m

2
1

m2

)
ẏ14

+
(
z1 − C2√

6

)
ẏ15 +

√
3
2

c2m2g(y9 − y7) = 0,

(2A2 − B2 − C2

3
√

2
− a1b1m

2
1

m2

)
ẏ10 +

(A2√
3

+
√

2 a1c2m1

)
ẏ11

+
(1

3
(A2 + 3B1 + B2 + C2) +

(a2
1 + c21)m2

1

m2

)
ẏ12 +

(B2√
3

− z2

)
ẏ13

+
(C2 − B2√

6
− b1c1m

2
1

m2

)
ẏ14 +

(C2√
3

+ z3

)
ẏ15 = 0,

(B2 − C2

2
√

3
− a1c1m

2
1

m2

)
ẏ10 +

(C2 − B2√
6

− b1c1m
2
1

m2

)
ẏ12 +

√
6z1 − B2√

2
ẏ13

+
(1

2
(B2 + 2C1 + C2) +

(a2
1 + b21)m2

1

m2
− 3c22m2

)
ẏ14 +

C2 − √
6z1√

2
ẏ15

+
c2m2g√

2
(y7 + y9 − 2y5) = 0,

√
2

(A2√
3

−
√

2z1

)
ẏ10 + A2ẏ11 +

(A2√
3

+
√

2 a1c2m1

)
ẏ12

+c2m2g (
√

2y4 − y7 + y9) = 0,
(
z1 − B2√

6

)
ẏ10 +

(B2√
3

− z2

)
ẏ12 + B2ẏ13 +

√
6z1 − B2√

2
ẏ14

+c2m2g
(√

3 y2 − y4√
2

+ y5 − y9

)
= 0,

(
z1 − C2√

6

)
ẏ10 +

(C2√
3

+ z3

)
ẏ12 +

C2 − √
6 z1√

2
ẏ14 + C2ẏ15

+c2m2g
(
y7 −

√
3 y2 − y4√

2
− y5

)
= 0,

ẏ1 −
√

1 − a02
32 y12 = 0, ẏ2 − y14 = 0, ẏ3 = 0, ẏ4 + y10 = 0,

ẏ6 +
y11 + 2y15√

6
= 0, ẏ8 − y11 + 2y13√

6
= 0, ẏ5 +

y13 − y15√
3

= 0,

ẏ7 +
y15 − y11√

3
= 0, ẏ9 +

y11 − y13√
3

= 0. (24)

On Equilibrium Positions in the Problem of the Motion of Two Bodies 179

Here yi (i = 1, . . . , 15) are the deviations from the unperturbed motion, z1 =
c2(b1m1 +

√
3c2m2)/

√
2, z2 = c2m1(a1 +

√
3c1)/

√
2, z3 = c2m1(

√
3c1 − a1)/

√
2.

The characteristic equation of system (24) is

|Aλ + B| = λ7(f0λ8 + f2λ
6 + f4λ

4 + f6λ
2 + f8) = 0,

where A, B are the matrices of the 15th order: A is the matrix composed of the
coefficients of the derivatives of system (24), B is the matrix of the coefficients
of yi; f0, f2, f4, f6, f8 are the expressions of a1, b1, c1, c2, g, Al, Bl, Cl,ml(l = 1, 2).
These are rather cumbersome and are not represented here.

Let us find the number of linearly independent eigenvectors corresponding
to the multiple root λ = 0. To do this, we compute the rank of the matrix
Aλ + B when λ = 0, using the built-in function MatrixRank. The rank r is
10 (the “Maple” function Rank gives the same result). The number of linearly
independent eigenvectors is 15 − r = 5. The multiple of the root λ = 0 is 7.
Thus, the Jordan form of the matrix of linear system (24) is non-diagonal. The
instability of the elements of the family under study in the linear approximation
thus follows.

In an analogous way, the instability in the linear approximation for the ele-
ments of the family of solutions (13) in the special case c2 = b2 = a2, b012 = −2/3,
s1 = −s2 was proved.

5 Conclusion

In the problem of the rotation of two connected rigid bodies in a uniform gravity
field, the Lagrange function and the equations of motion for the mechanical
system have been derived in a symbolic form with the help of the software
package written in the CAS “Mathematica” language. Using the Gröbner basis
method, the stationary solutions and IMs of the equations have been found.
From a mechanical point of view, these solutions correspond to equilibria of
the mechanical system. Their instability in the linear approximation has been
proved. Many questions concerning the stability of the obtained solutions remain
yet unresolved. The analysis of the dynamics of the mechanical system in other
force fields is also of interest. They will be addressed in our future work.

Appendix

Φ1 = q1r2[(A2 − B2)(b12b21 + b11b22) + b33C2 − m2((b2(b12−b23b31 + b21b33)
−a2(b22 + b13b31 − b11b33))s1 − (b2(b11 − b23b32 + b22b33)
−a2(b21 + b13b32 − b12b33)) s2)]
+p2q1[A2b13 + (b22b31 + b21b32)(B2 − C2) + m2((b2(b32 − b13b21
+b11b23)− c2(b22 + b13b31 − b11b33))s1 − (b2(b31 − b13b22 + b12b23)
−c2(b21 + b13b32 − b12b33))s2)]
−p1r1[A2b11b12 + B2b21b22 + C2b31b32 − m2((b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23))s1 + (b2(b13b32 − b12b33)
+a2(b22b33 − b23b32) + c2(b12b23 − b13b22) + s1)s2)]

180 V. Irtegov and T. Titorenko

+q1q2[B2b23 − (b12b31 + b11b32)(A2−C2) + m2((a2(b13b21−b11b23−b32)
+c2(b12 − b23b31 + b21b33))s1 + (a2(b31 − b13b22 + b12b23)
−c2(b11 − b23b32 + b22b33))s2)]
+p2q2[(B2 − A2)b31 + m2((b13b2 + a2b23)s2 − (b12b2 + a2b22)s3)]
+p2r2[(A2 − C2)b21 + m2((a2b33 + b13c2)s2 − (a2b32 + b12c2)s3)]
+q2r2[(C2 − B2)b11 + m2((b2b33 + b23c2)s2 − (b2b32 + b22c2)s3)]
+p2r1[(b23b31 + b21b33)(B2 − C2)− A2b12 + m2((b2(b12b21 − b11b22 + b33)
−c2(b23 − b12b31 + b11b32))s1 + (c2(b21 + b13b32 − b12b33)
−b2(b31 − b13b22 + b12b23))s3)]
−m2[c2(p

2
2 + q22)(b33s2 − b32s3) + b2(p

2
2 + r22)(b23s2 − b22s3)

+a2(q
2
2 + r22)(b13s2 − b12s3)]

−2p1r2[−b11(A2 − B2)b21 + m2((a2(b13b31 − b11b33) + b2(b23b31 − b21b33))s2
+(a2(b11b32 − b12b31) + b2(b21b32 − b22b31))s3)]
+r1r2[(A2 − B2)(b13b21 + b11b23)− C2b32 + m2((a2(b23 − b12b31 + b11b32)
−b2(b13 + b22b31 − b21b32))s1 + (a2(b21 + b13b32 − b12b33) + b2(b11 − b23b32
+b22b33))s3)]
+2p1p2[(B2 − C2)b21b31 + m2((b2(b13b21 − b11b23) + (b13b31 − b11b33)c2)s2
+(b2(b11b22 − b12b21) + c2(b11b32 − b12b31))s3)]
−2p1q2[A2b11b31 − b11b31C2 + m2((a2(b13b21 − b11b23) + c2(b21b33 − b23b31))s2
+(a2(b11b22 − b12b21) + c2(b22b31 − b21b32))s3)]
−q2r1[B2b22 + (b13b31 + b11b33)(A2 − C2) + m2((a2(b12b21 − b11b22 + b33)
−c2(b13 + b22b31 − b21b32))s1 + (a2(b13b22 − b12b23 − b31) + c2(b11 − b23b32
+b22b33))s3)]
+p1q1[A2b11b13 + B2b21b23 + b31b33C2 − m2((b2(b12b31 − b11b32)
+a2(b21b32 − b22b31) + c2(b11b22 − b12b21))s1 + (b2(b13b32 − b12b33)
+a2(b22b33 − b23b32) + c2(b12b23 − b13b22) + s1)s3)]
+q21 [A2b12b13 + B2b22b23 + b32b33C2 + m2((b2(b11b32 − b12b31)
+a2(b22b31 − b21b32) + c2(b12b21 − b11b22))s2 − (b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23) + s2)s3)]
−r21[A2b12b13 + B2b22b23 + C2b32b33 − m2((b2(b12b31 − b11b32)
+a2(b21b32 − b22b31) + c2(b11b22 − b12b21))s2 + (b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23) + s2)s3)]
+q1r1[C1 − B1 − A2(b

2
12 − b213)− B2(b

2
22 − b223)− C2(b

2
32 − b233)

+m2(s2(2(b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + (b13b21 − b11b23)c2) + s2) + 2(b2(b11b32 − b12b31)
+a2(b22b31 − b21b32) + c2(b12b21 − b11b22))s3 − s23)]
+g[m1(b1a33 − c1a23) + m2(a33(a2b12 + b2b22 + c2b32 + s2)
−a23(a2b13 + b2b23 + c2b33 + s3))],

Φ2 = p1r2[(A2 − B2)(b12b21 + b11b22)− C2b33 + m2((a2(b13b31 − b11b33 − b22)
+b2(b12 + b23b31 − b21b33))s1 + (a2(b21 − b13b32 + b12b33)− b2(b11 + b23b32
−b22b33))s2)]
+p1p2[(b22b31 + b21b32)(B2 − C2)− A2b13 + m2((c2(b22 − b13b31 + b11b33)
−b2(b13b21 − b11b23 + b32))s1 + (b2(b13b22 − b12b23 + b31)− c2(b21 − b13b32
+b12b33))s2)]
−p1q2[B2b23 + (A2 − C2)(b12b31 + b11b32)− m2((a2(b13b21 − b11b23 + b32)
−c2(b12 + b23b31 − b21b33))s1 − (a2(b13b22 − b12b23 + b31)− c2(b11 + b23b32
−b22b33))s2)]

On Equilibrium Positions in the Problem of the Motion of Two Bodies 181

+q1r1[A2b11b12 + B2b21b22 + C2b31b32 + m2((a2(b21b33 − b23b31)
+b2(b13b31 − b11b33)− c2(b13b21 − b11b23))s1 − (a2(b22b33 − b23b32)
+b2(b13b32 − b12b33) + c2(b12b23 − b13b22) + s1)s2)]
+r22m2[(a2b13 + b2b23)s1 − (a2b11 − b2b21)s3]
−p2q2[(A2 − B2)b32 + m2((a2b23 + b2b13)s1 − (a2b21 + b2b11)s3)]
+q22m2[(a2b13 + c2b33)s1 − (a2b11 + c2b31)s3]
+p2

2m2[(b2b23 + c2b33)s1 − (b2b21 + c2b31)s3]
+2q1r2[(A2 − B2)b12b22 − m2((a2(b12b33 − b13b32) + b2(b22b33 − b23b32))s1
+(a2(b11b32 − b12b31) + b2(b21b32 − b22b31))s3)]
+r1r2((A2 − B2)(b13b22 + b12b23) + C2b31 + m2((a2(b23 − b12b31 + b11b32)
−b2(b13 + b22b31 − b21b32))s2 − (a2(b22 − b13b31 + b11b33)− b2(b12 + b23b31
−b21b33))s3))
+p2r2[(A2 − C2)b22 − m2((a2b33 + b13c2)s1 − (a2b31 + c2b11)s3)]
−q2r2((B2 − C2)b12 + m2((b2b33 + c2b23)s1 − (b2b31 + c2b21)s3))
−2q1q2[(A2 − C2)b12b32 + m2((a2(b12b23 − b13b22) + c2(b23b32 − b22b33))s1
+(a2(b11b22 − b12b21) + c2(b22b31 − b21b32))s3)]
+p2r1[A2b11 + (B2 − C2)(b23b32 + b22b33) + m2((b2(b12b21 − b11b22 + b33)
−c2(b23 − b12b31 + b11b32))s2 − (b2(b13b21 − b11b23 + b32) + c2(b22 − b13b31
+b11b33))s3)]
+q2r1[B2b21 − (b13b32 + b12b33)(A2 − C2)− m2((a2(b12b21 − b11b22 + b33)
−c2(b13 + b22b31 − b21b32))s2 − (a2(b13b21 − b11b23 + b32)− c2(b12 + b23b31
−b21b33))s3)]
+2p2q1[b22b32(B2 − C2) + m2((b2(b12b23 − b13b22) + c2(b12b33 − b13b32))s1
+(b2(b11b22 − b12b21) + c2(b11b32 − b12b31))s3)]
+r21[A2b11b13 + B2b21b23 + C2b31b33 + m2((a2(b22b31 − b21b32)
+b2(b11b32 − b12b31) + c2(b12b21 − b11b22))s1 − (a2(b22b33 − b23b32)
+b2(b13b32 − b12b33) + c2(b12b23 − b13b22) + s1)s3)]
−p2

1(A2b11b13 + B2b21b23 + C2b31b33 − m2((a2(b21b32 − b22b31)
+b2(b12b31 − b11b32) + c2(b11b22 − b12b21))s1 + (a2(b22b33 − b23b32)
+b2(b13b32 − b12b33) + c2(b12b23 − b13b22) + s1)s3))
+p1q1(−A2b12b13 − B2b22b23 − C2b32b33 + m2((a2(b21b32 − b22b31)
+b2(b12b31 − b11b32) + c2(b11b22 − b12b21))s2 + (a2(b23b31 − b21b33)
+b2(b11b33 − b13b31) + c2(b13b21 − b11b23) + s2)s3))
+p1r1[A1 − C1 + A2(b

2
11 − b213) + B2(b

2
21 − b223) + C2(b

2
31 − b233)

−m2 ((2(a2(b22b33 − b23b32) + b2(b13b32 − b12b33) + c2(b12b23 − b13b22))
+s1)s1 − (2(a2(b21b32 − b22b31) + b2(b12b31 − b11b32) + c2(b11b22 − b12b21))
+s1)s1 + s3)s3)]−g[m1(a1a33−c1a13)−m2(a13(a2b13 + b2b23 + c2b33 + s3)
−a33(a2b11 + b2b21 + c2b31 + s1))],

Φ3 = r22 m2[(a2b11 + b2b21)s2 − (a2b12 + b2b22)s1]
+q22 m2[(a2b11 + c2b31)s2 − (a2b12 + c2b32)s1]
+p2

2 m2[(b2b21 + c2b31)s2 − (b2b22 + c2b32)s1]
+p2q2 [(B2 − A2)b33 + m2((b2b12 + a2b22)s1 − (b2b11 + a2b21)s2)]
+2r1r2 [b13(A2 − B2)b23 + m2((a2(b13b32 − b12b33) + b2(b23b32 − b22b33))s1
+(a2(b11b33 − b13b31) + b2(b21b33 − b23b31))s2)]
+p2r2 [b23(A2 − C2) + m2((a2b32 + c2b12)s1 − (a2b31 + c2b11)s2)]
+q2r2 [(C2 − B2)b13 + m2((b2b32 + b22c2)s1 − (b2b31 + b21c2)s2)]
−2p2r1 [(C2 − B2)b23b33 + m2((b2(b13b22 − b12b23) + c2(b13b32 − b12b33))s1

182 V. Irtegov and T. Titorenko

+(b2(b11b23 − b13b21) + c2(b11b33 − b13b31))s2)]
+2q2r1 [(C2 − A2)b13b33 + m2((a2(b13b22 − b12b23) + c2(b22b33 − b23b32))s1
+(a2(b11b23 − b13b21) + c2(b23b31 − b21b33))s2)]
+p2

1 [A2b11b12 + B2b21b22 + C2b31b32 + m2((b2(b13b31 − b11b33)
+a2(b21b33 − b23b31) + c2(b11b23 − b13b21))s1 − (b2(b13b32 − b12b33)
+a2(b22b33 − b23b32) + c2(b12b23 − b13b22) + s1)s2)]
−q21 [A2b11b12 + B2b21b22 + C2b31b32 − m2((b2(b11b33 − b13b31)
+a2(b23b31 − b21b33) + c2(b13b21 − b11b23))s1 + (b2(b13b32 − b12b33)
+a2(b22b33 − b23b32) + c2(b12b23 − b13b22) + s1)s2)]
+q1r2 [(A2 − B2)(b13b22 + b12b23)− C2b31 + m2((b2(b13 − b22b31 + b21b32)
−a2(b23 + b12b31 − b11b32))s2 + (a2(b22 + b13b31 − b11b33)
−b2(b12 − b23b31 + b21b33))s3)]
+p1r2 [(A2 − B2)(b13b21 + b11b23) + C2b32 + m2((b2(b13 − b22b31 + b21b32)
−a2(b23 + b12b31 − b11b32))s1 + (a2(b21
−b13b32 + b12b33)− b2(b11 + b23b32 − b22b33))s3)]
+p2q1 [(b23b32 + b22b33)(B2 − C2)− A2b11 + m2((b2(b12b21 − b11b22 − b33)
+c2(b23 + b12b31 − b11b32))s2 + (b2(b32 − b13b21 + b11b23)
−c2(b22 + b13b31 − b11b33))s3)]
+p1p2 [A2b12 + (B2 − C2)(b23b31 + b21b33) + m2((c2(b23 + b12b31 − b11b32)
−b2(b33 − b12b21 + b11b22))s1 + (b2(b13b22 − b12b23 + b31)
−c2(b21 − b13b32 + b12b33))s3)]
−q1q2 [B2b21 + (A2 − C2)(b13b32 + b12b33)− m2((a2(b33 − b12b21 + b11b22)
−c2(b13 − b22b31 + b21b32))s2 + (a2(b13b21 − b11b23 − b32)
+c2(b12 − b23b31 + b21b33))s3)]
+p1q2(B2b22 − (A2 − C2)(b13b31 + b11b33) + m2((a2(b33 − b12b21 + b11b22)
−c2(b13 − b22b31 + b21b32))s1 − (a2(b31 + b13b22 − b12b23)
−c2(b11 + b23b32 − b22b33))s3))
−q1r1 [A2b11b13 + B2b21b23 + C2b31b33 − m2((a2(b21b32 − b22b31)
+b2(b12b31 − b11b32) + c2(b11b22 − b12b21))s1 + (a2(b22b33 − b23b32)
+b2(b13b32 − b12b33) + c2(b12b23 − b13b22) + s1)s3)]
+p1r1 [A2b12b13 + B2b22b23 + C2b32b33 + m2((a2(b22b31 − b21b32)
+b2(b11b32 − b12b31) + c2(b12b21 − b11b22))s2 − (a2(b23b31 − b21b33)
+b2(b11b33 − b13b31) + c2(b13b21 − b11b23) + s2)s3)]
−p1q1 [A1 − B1 − A2(b

2
11 − b212) + B2(b

2
21 − b222) + C2(b

2
31 − b232)

−m2((2(a2(b22b33−b23b32) + b2(b13b32−b12b33) + c2(b12b23−b13b22)) + s1)s1
+(2(b2(a2(b21b33 − b23b31) + b13b31 − b11b33) + c2(b11b23−b13b21))− s2)s2)]
+g(m1(a1a23 − b1a13) + m2(a23(a2b11 + b2b21 + c2b31 + s1)
−a13(a2b12 + b2b22 + c2b32 + s2))),

Φ4 = (A2 − B2 + C2)(b21p1 + b22q1 + b23r1) r2
−(A2 + B2 − C2)(b31p1 + b32q1 + b33r1) q2 + (C2 − B2) q2r2
+r21 [(C2 − B2)b23b33 + m2((b2(b13b22 − b12b23) + c2(b13b32 − b12b33))s1
+(b2(b11b23 − b13b21) + c2(b11b33 − b13b31))s2)]
−p1q1[(B2 − C2)(b22b31 + b21b32)− m2((b2(b13b21 − b11b23)
+c2(b13b31 − b11b33))s1 + (b2(b12b23 − b13b22) + c2(b12b33 − b13b32))s2)]
+p2

1 [(C2 − B2)b21b31 + m2((b2(b11b23 − b13b21) + c2(b11b33 − b13b31))s2
+(b2(b12b21 − b11b22) + c2(b12b31 − b11b32))s3)]
−q21 [(B2 − C2)b22b32 − m2((b2(b13b22 − b12b23) + c2(b13b32 − b12b33))s1

On Equilibrium Positions in the Problem of the Motion of Two Bodies 183

+(b2(b12b21 − b11b22) + c2(b12b31 − b11b32))s3)]
−q1r1 [(B2 − C2)(b23b32 + b22b33)− m2((b2(b11b22 − b12b21)
+c2(b11b32 − b12b31))s2 + (b2(b13b21 − b11b23) + (b13b31 − b11b33)c2)s3)]
−p1r1 [(b23b31 + b21b33)(B2 − C2)− m2((b2(b11b22 − b12b21)
+c2(b11b32 − b12b31))s1 + (b2(b12b23 − b13b22) + c2(b12b33 − b13b32))s3)]
+gm2(b2(a13b31 + a23b32 + a33b33)− c2(a13b21 + a23b22 + a33b23)),

Φ5 = (A2 + B2 − C2)(b31p1 + b32q1 + b33r1) p2

+(A2 − B2 − C2)(b11p1 + b12q1 + b13r1) r2 + (A2 − C2) p2r2
+r21 [(A2 − C2) b13b33 + m2((a2(b12b23 − b13b22) + c2(b23b32 − b22b33))s1
+(a2(b13b21 − b11b23) + c2(b21b33 − b23b31))s2)]
+p1q1 [(A2 − C2)(b12b31 + b11b32) + m2((a2(b11b23 − b13b21)
+c2(b23b31 − b21b33))s1 + (a2(b13b22 − b12b23) + c2(b22b33 − b23b32))s2)]
+q21 [b12b32(A2 − C2) + m2((a2(b12b23 − b13b22) + c2(b23b32 − b22b33))s1
+(a2(b11b22 − b12b21) + c2(b22b31 − b21b32))s3)]
+p2

1 [(A2 − C2) b11b31 + m2((a2(b13b21 − b11b23) + c2(b21b33 − b23b31))s2
+(a2(b11b22 − b12b21) + c2(b22b31 − b21b32))s3)]
+q1r1 [(A2 − C2)(b13b32 + b12b33) + m2((a2(b12b21 − b11b22)
+c2(b21b32 − b22b31))s2 + (a2(b11b23 − b13b21) + c2(b23b31 − b21b33))s3)]
+p1r1 [(A2 − C2)(b13b31 + b11b33) + m2((a2(b12b21 − b11b22)
+c2(b21b32 − b22b31))s1 + (a2(b13b22 − b12b23) + c2(b22b33 − b23b32))s3)]
−gm2 [a2(a13b31 + a23b32 + a33b33)− c2(a13b11 + a23b12 + a33b13)],

Φ6 = −(A2 − B2 − C2)(b11p1 + b12q1 + b13r1) q2
−(A2 − B2 + C2)(b21p1 + b22q1 + b23r1) p2 − (A2 − B2)p2q2
−r21 [(A2 − B2)b13b23 − m2((a2(b12b33 − b13b32) + b2(b22b33 − b23b32))s1
+(a2(b13b31 − b11b33) + b2(b23b31 − b21b33))s2)]
−p1q1 [(A2 − B2)(b12b21 + b11b22)− m2((a2(b11b33 − b13b31)
+b2(b21b33 − b23b31))s1 + (a2(b13b32 − b12b33) + b2(b23b32 − b22b33))s2)]
−q21 [(A2 − B2)b12b22 − m2((a2(b12b33 − b13b32) + b2(b22b33 − b23b32))s1
+(a2(b11b32 − b12b31) + b2(b21b32 − b22b31))s3)]
−p2

1 [(A2 − B2)b11b21 − m2((a2(b13b31 − b11b33) + b2(b23b31 − b21b33))s2
+(a2(b11b32 − b12b31) + b2(b21b32 − b22b31))s3)]
−q1r1 [(A2 − B2)(b13b22 + b12b23)− m2((a2(b12b31 − b11b32)
+b2(b22b31 − b21b32))s2 + (a2(b11b33 − b13b31) + b2(b21b33 − b23b31))s3)]
−p1r1 [(A2 − B2)(b13b21 + b11b23)− m2((a2(b12b31 − b11b32)
+b2(b22b31 − b21b32))s1 + (a2(b13b32 − b12b33) + b2(b23b32 − b22b33))s3)]
+gm2(a2(a13b21 + a23b22 + a33b23)− b2(a13b11 + a23b12 + a33b13)).

References

1. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software Pack-
age LinModel for the Analysis of the Dynamics of Large Dimensional Mechani-
cal Systems. Certificate of State Registration of Software Programs. FGU-FIPS.
2008610622 (2008)

184 V. Irtegov and T. Titorenko

2. Burov, A.A.: Linear invariant relations in the problem of the motion of a bun-
dle of two bodies. Dokl. Phys. 65(4), 147–148 (2020). https://doi.org/10.1134/
S1028335820040035

3. Gutnik, S.A., Sarychev, V.A.: Application of computer algebra methods to inves-
tigation of stationary motions of a system of two connected bodies moving in a
circular orbit. Comput. Math. Math. Phys. 60(1), 74–81 (2020). https://doi.org/
10.1134/S0965542520010091

4. Irtegov, V.D., Titorenko, T.N.: About stationary movements of the generalized
Kovalevskaya top and their stability. Mech. Solids 54(1), 81–91 (2019). https://
doi.org/10.3103/S0025654419010072

5. Irtegov, V., Titorenko, T.: On the study of the motion of a system of two connected
rigid bodies by computer algebra methods. In: Boulier, F., England, M., Sadykov,
T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 266–281. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 15

6. Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected
Works, USSR Acad. Sci., Moscow-Leningrad 1, 276–319 (1954). (in Russian)

7. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis,
London (1992)

https://doi.org/10.1134/S1028335820040035
https://doi.org/10.1134/S1028335820040035
https://doi.org/10.1134/S0965542520010091
https://doi.org/10.1134/S0965542520010091
https://doi.org/10.3103/S0025654419010072
https://doi.org/10.3103/S0025654419010072
https://doi.org/10.1007/978-3-030-60026-6_15

An Interpolation Algorithm
for Computing Dixon Resultants

Ayoola Jinadu(B) and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{ajinadu,mmonagan}@sfu.ca

Abstract. Given a system of polynomial equations with parameters, we
present a new algorithm for computing its Dixon resultant R. Our algo-
rithm interpolates the monic square-free factors of R one at a time from
monic univariate polynomial images of R using sparse rational function
interpolation. In this work, we use a modified version of the sparse mul-
tivariate rational function interpolation algorithm of Cuyt and Lee.

We have implemented our new Dixon resultant algorithm in Maple
with some subroutines coded in C for efficiency. We present timing results
comparing our new Dixon resultant algorithm with Zippel’s algorithm
for interpolating R and a Maple implementation of the Gentleman &
Johnson minor expansion algorithm for computing R.

Keywords: Dixon resultant · Parametric polynomial systems ·
Resultant · Sparse rational function interpolation · Kronecker
substitution

1 Introduction

Let X = {x1, x2, · · · , xn} denote the set of variables and let Y = {y1, y2, · · · , ym}
be the set of parameters with n ≥ 2 and m ≥ 0. Let F = {f1, f2, · · · , fn} ⊂
Q[X,Y] be a parametric polynomial system where fi is a polynomial in vari-
ables X with coefficients in Q[Y]. Let I = 〈f1, f2, · · · , fn〉 be the ideal generated
by F . The Dixon resultant [5,6] of F in x1 is the determinant of the Dixon
matrix (see Sect. 2) and it is a polynomial in the elimination ideal I ∩Q[Y][x1].
It is used to eliminate n − 1 variables from a polynomial system in n variables.

Let R =
∑d

k=0 rk(y1, · · · , ym)xk
1 ∈ Q[Y][x1] be the Dixon resultant of F in x1

where d = deg(R, x1) > 0. Let C = gcd(r0, · · · , rd) be the polynomial content
of R. In this paper we will compute the monic square-free factors of R. The monic
square-free factorization of R is a factorization of the form r̂

∏l
j=1 Rj

j such that

1. r̂ = C/L for some L ∈ Q[Y],
2. each Rj is monic and square-free in Q(Y)[x1], i.e., gcd(Rj , R

′
j) = 1, and

3. gcd(Ri, Rj) = 1 for i �= j.

This monic square-free factorization exists and it is unique [8, Section 14.6]. Note,
the factors Rj are not necessarily irreducible over Q. The monic square-free part
S of R is the product of the monic square-free factors Rj , that is, S =

∏l
j=1 Rj .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 185–205, 2022.
https://doi.org/10.1007/978-3-031-14788-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_11

186 A. Jinadu and M. Monagan

In this paper we present a new Dixon resultant algorithm that interpolates
the monic square-free factors Rj one at a time and does not interpolate R. We
interpolate the Rj ’s because it is cheap to compute a square-free factorization of a
monic image of R and the square-free factorization factors will be consistent from
one image to the next with high probability. Interpolating the Rj ’s instead of R
results in a huge gain because all unwanted repeated factors and the polynomial
content are removed. The advantage of our algorithm over other known polynomial
interpolation algorithms [2,25] is that the number of polynomial terms in Rj to be
interpolated is much less than in R. Furthermore, the number of primes used by our
algorithm in the sparse interpolation step when we apply the Chinese remainder
theorem is reduced. Thus the number of black box1 probes required to interpo-
late the monic square-free factors Rj is much fewer than the number required to
interpolate R. We give a real example from [14].

Example 1. [14, robot arms system, page 17] Let

C = −65536
(
al2 + 1

)8
l82

(
al2l22 + 2al2l2l3 + al2l23 + l22 − 2l2l3 + l23

)4
︸ ︷︷ ︸

polynomial content

,

A1 = t21 + 1,

A2 = (al2l21 + 2al2l1x − al2l22 − 2al2l2l3 − al2l23 + al2x2 + al2y2 + l21 + 2l1x − l22

+ 2l2l3 − l23 + x2 + y2)t21 +
(−4al2l1y − 4l1y

)
t1 + al2l21 − 2al2l1x − al2l22

− 2al2l2l3 − al2l23 + al2x2 + al2y2 + l21 − 2l1x − l22 + 2l2l3 − l23 + x2 + y2,

A3 = (aa2 + 2aal2)t
2
1 + aa2 − 4aal1 + 2aal2 + 4l21 − 4l1l2,

A4 = (aa2 − 2aal2)t
2
1 + aa2 − 4aal1 − 2aal2 + 4l21 + 4l1l2,

where X = {t1, t2, b1, b2} are the variables, t1 is the main variable and Y =
{aa, al, l1, l2, l3, x, y} are the parameters. The Dixon resultant R of the robot
arms system in t1 has 6, 924, 715 terms in expanded form and it factors as

CA24
1 A4

2A
2
3A

2
4.

Our new Dixon resultant algorithm computes R1, R2 and R3 where R1 = A1, R2 =
monic(A2, t1) and R3 = monic(A3A4, t1). The largest coefficient of R1, R2

and R3 is the leading coefficient of A2 which has only 14 terms! Notice that
R1 and R2 are irreducible over Q but R3 is not.

Our motivation to investigate Dixon resultants stems from sets of parametric
polynomial systems listed in [11,12,14,15]. Lewis tried to solve these polynomial
systems using Gröbner bases and Triangular sets in Maple and Magma, but
they often failed badly; they took a very long time to execute and often ran out

1 A black box is a computer program that takes as input a list of integers together with
a prime and outputs the evaluation of the represented object modulo the prime. Black
box representations are space efficient. The represented object such as a polynomial,
a rational function, and a determinant of a matrix of polynomials is assumed to be
unknown. A function call to the black box is referred to as a black box probe.

An Interpolation Algorithm for Computing Dixon Resultants 187

of memory. The failure of these methods is due to the intermediate expression
swell caused by the parameters. This led Lewis to develop the Dixon-EDF (Early
Detection Factor) algorithm [14] which is a variant of the Gaussian elimination.
It is a modified row reduction of the Dixon matrix that factors out the gcd of each
pivot row at each step. The Dixon-EDF method is able to detect factors of the
Dixon resultant early. One can interrupt it part way to switch to another method.
Lewis often switches to the Gentleman & Johnson minor expansion algorithm
[7] to finish the computation. The drawback of the Dixon-EDF method is that
it is not automatic and expression swell may occur when computing in Q[Y, x1].

Our first contribution is a new algorithm that computes the monic square-
free factors Rj of R from monic univariate images in x1 using sparse multivariate
rational function interpolation to interpolate the coefficients of Rj in Q(Y) mod-
ulo primes and uses Chinese remaindering and rational number reconstruction
[8,18] to recover the rational coefficients of Rj . We have modified the sparse
rational function interpolation algorithm of Cuyt and Lee [4] for this purpose.
The only interpolation method that has been applied to Dixon resultants that
we are aware of was done by Kapur and Saxena in [12]. They used Zippel’s
sparse interpolation [25] to interpolate R. Zippel’s method does O(mD̂t) black
box probes for the first image modulo a prime, where m is the number of param-
eters, D̂ = deg(R, x1) +

∑m
i=1 deg(R, yi) and t = #R. But one has to recover

the integer coefficients of R which may need more primes. Using the support of
the result obtained for the first prime, the integer coefficients can be recovered
using O(t) probes to the black box for each subsequent prime [25].

Our second contribution is a Maple + C implementation of our algorithm.
For our benchmark problem (Heron5d system [22]), the Gentleman & Johnson
algorithm ran out of space (>64 GB), Zippel’s algorithm takes more than 105 s
and our new algorithm takes 23.12 s on 1 core.

We provide an overview of our Dixon resultant algorithm. Let r̂
∏l

j=1 Rj
j

be the monic square-free factorization of R. For 1 ≤ j ≤ l, our algorithm will
compute each Rj in the form

Rj = x
dTj

1 +
Tj−1∑

k=0

fjk(y1, y2, · · · , ym)
gjk(y1, y2, · · · , ym)

x
djk
1 ∈ Q(y1, y2, · · · , ym)[x1],

where gcd(fjk, gjk) = 1, fjk, gjk ∈ Q[y1, y2, · · · , ym] and dTj
= deg(Rj , x1).

If more primes are needed to recover the Rj ’s, one can set up a system
of linear equations using the support found with the first prime to solve for the
coefficients of fjk and gjk before doing Chinese remaindering. This method costs
O(

∑l
k=1

∑Tj

k=1 d3j,k) arithmetic operations in Zp, where p is the prime and dj,k =
#fjk+#gjk is the total number of unknowns in the k-th rational coefficient of Rj .

Instead, we reduce this cost to O(
∑l

j=1

∑Tj

k=1 d2j,k) arithmetic operations in Zp

as follows. We pick α and β in Z
m
p at random, a shift s ∈ [1, p − 2] at random

and probe the black box to compute

G(αi, x1, z) := x
dTj

1 +
Tj−1∑

k=0

fjk(zβ1 + αs+i
1 , · · · , zβm + αs+i

m)
gjk(zβ1 + αs+i

1 , · · · , zβm + αs+i
m)

x
djk
1 ∈ Zp(z)[x1]

188 A. Jinadu and M. Monagan

for 0 ≤ i < N and N = maxl
j=1maxTj−1

k=0 {#fjk,#gjk}. Then for 1 ≤ j ≤ l,

we collect the #fjk (or #gjk) rational coefficients modulo p from G(αi, x1, 0)
and set up a shifted transposed Vandermonde system [9,25] to solve for the
coefficients of fjk and gjk for each Rj .

In a preliminary stage of this work, we first designed our algorithm to interpo-
late the monic square-free part S =

∏l
j=1 Rj from the monic univariate images

of R in x1. But we discovered that when l > 1, interpolating the Rj ’s instead
of S often reduces the number of black box probes required. These savings are
realized because there is a further reduction in the number of terms in the largest
polynomial coefficient of Rj to be interpolated compared to the monic product
S. Also, the same monic univariate images that yield the first monic square-free
factor R1 can re-used for subsequent monic square-free factors in R.

Table 1 contains the number of black box probes required for interpolating S
versus interpolating the monic square-free factors Rj one at a time for the robot
arms problem [14] and it shows a significant reduction in the number of black
box probes when the main variable is t1, t2 or b2.

Table 1. Interpolating S versus interpolating the square-free factors Rj

Main variable t1 t2 b1 b2

Interpolating square-free part S 222, 301 3, 137, 373 116, 741 5, 531, 491

Interpolating square-free-factors Rj one at a time 19, 241 1, 210, 889 116, 741 1, 335, 853

Savings in # of probes 203, 060 1, 926, 484 0 4, 195, 638

of terms in the largest coefficient of Rj 14 691 85 624

of terms in the largest coefficient of S 106 2, 200 85 2, 388

Notice in column b1 that both methods used the same number of black box
probes. This is because the number of terms in the largest polynomial coefficient
of Rj and S are the same. Thus no savings is realized even though the number
of the monic square-free factors for this case is more than 1.

Paper Outline

In Sect. 2, we present a Dixon resultant formulation for polynomial systems.
In Sect. 3, we give an overview of the rational function interpolation algorithm
of Cuyt and Lee [4] and we modify it to use Kronecker substitutions to com-
bat the large prime and unlucky evaluation point problems that occurs when
the adopted sparse polynomial algorithm in Cuyt and Lee’s method is the Ben-
Or/Tiwari sparse polynomial algorithm [2]. Our algorithms without their failure
probability bounds are presented in Sect. 4. In Sect. 5, we explain how we eval-
uate the polynomial entries in the Dixon matrix which is the most expensive
part of our algorithm and we compare our new Dixon resultant algorithm with a
Maple implementation of the Gentleman & Johnson minor expansion algorithm
and a Maple+C implementation of Zippel’s algorithm to interpolate R on the
parametric polynomial systems from [14,15].

An Interpolation Algorithm for Computing Dixon Resultants 189

2 Dixon Resultants

Let xα = xα1
1 xα2

2 · · · xαn
n and let {x̄1, x̄2, · · · , x̄n} be a set of new variables. For

each i ∈ {0, 1, 2, · · · , n}, we define πi(xα) = x̄α1
1 x̄α2

2 · · · x̄αi
i x

αi+1
i+1 x

αi+2
i+2 · · · xαn

n such
that π0(xα) = xα. Extending the map πi naturally to polynomials, we have

πi(f(x1, x2, · · · , xn)) = f(x̄1, x̄2, · · · , x̄i, xi+1, xi+2 · · · , xn).

There are three major steps involved in computing the Dixon resultant of a
polynomial system. The first step is to construct the cancellation matrix [5,6].
We refer to the determinant of the cancellation matrix as the Dixon polynomial.
The Dixon polynomial acts as the link between the cancellation matrix and the
Dixon matrix. Although it is important to select the order of the n−1 variables to
eliminate because the order affects the size and degree of the Dixon polynomial,
we do not focus on the optimal order. Further information about the optimal
order can be found in [3,17].

Definition 2. Given a polynomial system F , let Xe = {x2, · · · , xn} be the set of
variables to be eliminated and let x1 be the main variable to appear in the Dixon
resultant. Let Xe = {x̄2, x̄3 · · · , x̄n} be the set of the new variables corresponding
to Xe. We define the n × n cancellation matrix

C =

⎛

⎜
⎜
⎜
⎝

π0(f1(Xe)) π0(f2(Xe)) . . . π0(fn(Xe))
π1(f1(Xe)) π1(f2(Xe)) . . . π1(fn(Xe))

...
...

...
πn−1(f1(Xe)) πn−1(f2(Xe)) . . . πn−1(fn(Xe))

⎞

⎟
⎟
⎟
⎠

. (1)

Definition 3. Let P =
∏n−1

i=1 (Xei
− Xei

) and let ΔXe
=

det(C)
P

. We refer to

ΔXe
∈ Q[Y, x1][Xe,Xe] as the Dixon polynomial of F with respect to Xe.

The determinant of the cancellation matrix det(C) is a multiple of the Dixon
polynomial ΔXe

. One must not compute ΔXe
by expanding det(C) then dividing

by P because det(C) which equals P ×ΔXe
, is much bigger than ΔXe

, since there
are 2n−1 terms in P when P is expanded. Instead, we follow Lewis [16] and create
a new cancellation matrix Ĉ using the identity

Row (Ĉ1) = Row(C1), Row (Ĉi+1) =
Row (Ci+1) − Row (Ci)

Xei
− Xei

(2)

for i = n − 1, n − 2 · · · 1 and then compute the determinant of Ĉ which produces
the Dixon polynomial. The second step in Dixon’s method is to construct the
Dixon matrix from the Dixon polynomial. To do this, we rewrite the Dixon
polynomial as a bilinear form. We give the following definition to formalize this.

Definition 4. Let V be a monomial column vector in variables Xe when ΔXe

is viewed as a polynomial in variables Xe and let V be a monomial row vector

190 A. Jinadu and M. Monagan

in Xe when ΔXe
is viewed as a polynomial in variables Xe. A Dixon polynomial

ΔXe
∈ Q[Y, x1][Xe,Xe] can be written in bilinear form as ΔXe

= V DV and
matrix D is the Dixon matrix with entries in Q[Y, x1]. The Dixon resultant
R ∈ Q[Y, x1] is the determinant of the Dixon matrix D.

Example 5. Let F = {x2
2 + x2

3 − y2
3 , (x2 − y1)

2 + x2
3 − y2

2 , −x3y1 + 2x1} with
variables X = {x1, x2, x3} and parameters Y = {y1, y2, y3}. Let Xe = {x2, x3}
be the variables to be eliminated and let Xe = {x̄2, x̄3} be the new variables
corresponding to Xe. Using the identity 2, it follows that the cancellation matrix

Ĉ =

⎡

⎣
x2
2 + x2

3 − y2
3 (x2 − y1)

2 + x2
3 − y2

2 −x3y1 + 2x1

x2 + x̄2 x2 − 2y1 + x̄2 0
x3 + x̄3 x3 + x̄3 −y1

⎤

⎦

and the Dixon polynomial

ΔXe = y1

(−2x2y1 + y2
1 − y2

2 + y2
3

)
x̄2 + y1

(
x2y

2
1 − x2 y2

2 + x2 y2
3 − 2y1 y2

3 + 4x1x3

)

+ y1 (−2x3y1 + 4x1) x̄3.

The Dixon polynomial ΔXe
expressed in bilinear form yields

V DV = [x2 x3 1]

[−2y2
1 0 y3

1 − y1y
2
2 + y1y

2
3

0 −2y2
1 4x1y1

y3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y2

1y2
3

] [
x̄2

x̄3

1

]

.

Finally, the Dixon resultant R = det(D) is

2y4
1(16x2

1 + y4
1 − 2y2

1y2
2 − 2y2

1y2
3 + y4

2 − 2y2
2y2

3 + y4
3).

An alternative method for constructing the Dixon matrix D can be found
in [23,24]. This method also avoids the intermediate expression swell as it con-
structs D as the product of a transformation matrix F and a Sylvester matrix Ŝ
using an extended recurrence formula.

The last step of the Dixon’s method is to compute the determinant of the
Dixon matrix D. Unfortunately, the Dixon matrix obtained may be rectangular
thus eliminating the possibility of computing its determinant or it may be sin-
gular thus providing no information about the solutions of F . Dixon’s method
was originally designed to compute Dixon resultants of n + 1 generic n-degree
polynomials in n variables. However, for geometric problems arising in practice,
the Dixon resultant is almost always zero because these systems do not have a
generic degree shape [11]. These problems were addressed by Kapur, Saxena and
Yang in [11]. They proved that the determinant of any maximal minor M of the
Dixon matrix D is an element of the elimination ideal I ∩ Q[Y][x1]. Thus, once
a Dixon matrix D is constructed, we find any minor of D of maximal rank, and
compute its determinant. Hence, the requirement for F to be generic n-degree
in Dixon’s method is no longer necessary.

Our idea to select a maximal minor M of a Dixon matrix D proceeds as
follows. We pick a 62 bit prime p and choose β ∈ Z

m+1
p at random. Then we

compute B = D(β) and identify a maximal minor from B in D with high proba-
bility. This requires Gaussian elimination over Zp only and in contrast to Kapur,
Saxena and Yang [11] crucially avoids doing polynomial arithmetic in Q[Y, x1].

An Interpolation Algorithm for Computing Dixon Resultants 191

3 Modified Interpolation Using Kronecker Substitution

Let f =
∑t

k=1 akMk(x1, · · · , xn) ∈ Z[x1, · · · , xn] with ak �= 0 be a sparse
polynomial. The Ben-Or/Tiwari algorithm [2] interpolates f using 2T points
{(2j , 3j , · · · , pj

n) : 0 ≤ j ≤ 2T − 1} where pn is the n-th prime assuming a
term bound T ≥ t is known. In this work, the Ben-Or/Tiwari algorithm is the
preferred polynomial algorithm for the Cuyt and Lee’s rational function interpo-
lation algorithm [4] because it requires the fewest number of black box probes.

Let mi = Mi(2, 3, · · · , pn) be the monomial evaluations. The Ben-Or/Tiwari
algorithm is done modulo a prime p satisfying p > maxt

i=1mi ≤ pd
n where

d = deg f. However, such a prime p may be too large to use machine arith-
metic. For example, suppose n = 8 and deg(f, xi) = 11. Then the prime p
required by the Ben-Or/Tiwari sparse polynomial algorithm must be larger than
211311 · · · 1911 = 7.2 × 1077. This is the primary disadvantage of using the Ben-
Or/Tiwari algorithm. Also, one has to deal with unlucky evaluation points prob-
lem posed by using points (2j , 3j , · · · , pj

n) in modular GCD algorithms [9].
We avoid these problems in the Cuyt and Lee sparse multivariate rational

function interpolation algorithm by using Kronecker substitution to map a mul-
tivariate rational function into a univariate rational function and we evaluate at
powers of a generator of Z∗

p instead of powers of prime (2j , 3j , · · · , pj
n). To invert

a Kronecker substitution, we need to know the partial degrees of a multivariate
rational function A = f/g for all variables involved.

3.1 Partial Degrees of A = f/g in Each Variable

Let A = f/g be a rational function in variables y1, · · · , ym. Let dfi
≥ deg(f, yi)

and dgi
≥ deg(g, yi) be partial degree bounds. Let A be viewed as

A = f/g =
∑dfi

k=0 ak(y1, · · · , yi−1, yi+1, yi+2, · · · , ym)yk
i

∑dgi

k=0 bk(y1, · · · , yi−1, yi+1, yi+2, · · · , ym)yk
i

such that f, g ∈ Z[y1, y2, · · · , yi−1, yi+1, yi+2, · · · , ym][yi]. Let p be a prime and
let z be a new variable. Let α = (α1, · · · , αi−1, αi+1, · · · , αm) ∈ (Zp \ {0})m−1

be selected at random. To obtain partial degree bounds for each dfi
and dgi

, we
use enough distinct points for z selected at random from Zp \ {0} and compute

Hi(z) := Hfi
/Hgi

= A(α1, · · · , αi−1, θz + β, αi+1, · · · , αn) ∈ Zp(z)

such that dfi
= deg(Hfi

, z) and dgi
= deg(Hgi

, z) where β, θ ∈ Zp are chosen at
random. Observe that if LC(Hfi

, z)(α) = 0 or LC(Hgi
, z)(α) = 0 then the wrong

partial degrees would be obtained. For example, let A = f/g = (2−y3)y
2
1y2+y1

y1+y2
and

suppose we want to determine deg(A, y1). Let prime p = 3137 and let z be a new
variable. Let H1(z) := Hf1/Hg1 = A(θz + β, α2, α3) = (2−α3)(θz+β)2α2+θz+β

θz+β+α2
.

Observe that if α3 = 2 then LC(Hf1 , z)(α2, 2) = 0 for any β, θ, α2 ∈ Zp.
The wrong partial degree bound of f will be returned in this case since
H1(z) = A(θz + β, α2, 2) = θz+β

θz+α2+β . Thus it is important that we pick prime
p
 deg f deg g and α randomly.

192 A. Jinadu and M. Monagan

3.2 Algorithm by Cuyt and Lee

Let K be a field and let A = f/g ∈ K(y1, · · · , ym) be a sparse multivariate ratio-
nal function with gcd(f, g) = 1. Cuyt and Lee’s rational function algorithm [4]
reduces interpolation of sparse rational functions to sparse polynomials interpo-
lation. The first step in their algorithm is to introduce a homogenizing variable z
to form the auxiliary rational function

A(y1z, · · · , ymz) =
f0 + f1(y1, · · · , ym)z + · · · + fdeg f (y1, · · · , ym)zdeg f

g0 + g1(y1, · · · , ym)z + · · · + gdeg g(y1, · · · , ym)zdeg g
.

In the case when constant terms g0 and f0 are both zero, one has to pick
β ∈ (K \ {0})m and perform a basis shift to obtain auxiliary rational function
Â(y1, · · · , ym, z) := A(y1z + β1, · · · , ymz + βm) so that

Â(y1, · · · , ym, z) =
f0 + f1(y1, · · · , ym)z + · · · + fdeg f (y1, · · · , ym)zdeg f

g0 + g1(y1, · · · , ym)z + · · · + gdeg g(y1, · · · , ym)zdeg g
.

The basis shift forces the auxiliary rational function to have non-zero constant
terms f0 and g0. This is important because their method normalizes on f0 or g0.
That is they write

Â(y1, · · · , ym, z) =
f0
g0

+ f1(y1,···,ym)
g0

z + · · · + fdeg f (y1,···,ym)
g0

zdeg f

1 + g1(y1,···,ym)
g0

z + · · · + gdeg g(y1,···,ym)
g0

zdeg g

Thus for a black box rational function A = f/g, we interpolate Â using univariate
dense auxiliary rational functions

Â(αj , z) =
f0
g0

+ f1(α
j)

g0
z + · · · + fdeg f (α)

g0
zdeg f

1 + g1(αj)
g0

z + · · · + gdeg g(αj)
g0

zdeg g
∈ K(z)

for j = 0, 1, 2, · · · . To interpolate Â(αj , z) we use deg f + deg g + 2 black box
probes on z. Since the sparsity of A = f/g is destroyed by the basis shift, Cuyt
and Lee adjust the coefficients of the lower degree terms in the numerator and
denominator of Â(αj , z) by the contributions from the higher degree terms before
the coefficients interpolation step is performed. We will show how to do this in
our Dixon resultant algorithm (See Subroutine Remove-Shift on page 196). Thus
using an appropriate sparse polynomial interpolation algorithm such as [2,25],
the adjusted coefficients of the auxiliary rational functions produces the desired
rational function A = f/g that was represented by a black box.

3.3 Kronecker Substitution

Using a Kronecker substitution in Cuyt and Lee’s method, we reduce the problem
of interpolating a sparse multivariate rational function into a univariate rational
function interpolation.

An Interpolation Algorithm for Computing Dixon Resultants 193

Definition 6. Let K be an integral domain and let A = f/g ∈ K(y1, · · · , ym).
Let r = (r1, r2, · · · , rm−1) ∈ Z

m−1 with ri > 0. Let Kr : K(y1, · · · , ym) → K(y)
be the Kronecker substitution

Kr(A) =
f(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)
g(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)

.

Let di = max{(deg f, yi),deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di

for 1 ≤ i ≤ m − 1 then Kr is invertible, g �= 0 and Kr(A) = 0 ⇐⇒ f = 0.

Definition 7. Let K be a field and let A = f/g ∈ K(y1, · · · , ym) such that
gcd(f, g) = 1. Let z be the homogenizing variable and let r = (r1, · · · , rm−1) with
ri > di = max{(deg f, yi),deg(g, yi)}. Let Kr be the Kronecker substitution and
let

F (y, z) =
f(zy, zyr1 , · · · , zyr1r2···rm−1)
g(zy, zyr1 , · · · , zyr1r2···rm−1)

∈ K[y](z).

Following the presentation of auxiliary rational functions in [4], we need to guar-
antee the existence of a constant term in the denominator of F (y, z). Thus we
use a basis shift β ∈ (K\{0})m and instead define an auxiliary rational function

F (y, z) :=
f(zy + β1, zyr1 + β2, · · · , zyr1r2···rm−1 + βm)
g(zy + β1, zyr1 + β2, · · · , zyr1r2···rm−1 + βm)

∈ K[y](z) (3)

with Kronecker substitution Kr.

Although the degree of the mapped rational function Kr(A) is exponential in y,
the degree of the auxiliary functions with Kronecker substitution F (y, z) in z
through which Kr(A) is interpolated remains the same. Consequently, the num-
ber of terms and the number of probes needed to interpolate A = f/g does not
change. To recover the exponents in y we require prime p >

∏m
i=1 ri.

Example 8. Let

A = f/g =
y1 + y2 + y3

y1 + y3
∈ Z3137(y1, y2, y3).

Observe that di = max{deg(f, yi), deg(g, yi)} = 1 for 1 ≤ i ≤ 2. Let r = (2, 2)
where ri > di and let β = (2, 3, 5) be a basis shift. Let Kr(A) = A(y, y2, y4) =
y4+y2+y

y4+y . Then F (y, z) = A(zy+2, zy2+3, zy4+5) = (y4+y2+y)z+10
(y4+y)z+7 ∈ Z3137[y](z)

is an auxiliary rational function with Kronecker substitution Kr.

3.4 Bad Evaluation Points

Definition 9. Let p be prime and let A = f/g ∈ Zp(y1, · · · , ym) with gcd(f, g) =
1. Let α ∈ Zp \ {0} and β ∈ (Zp \ {0})m with A(β) ∈ Zp. Let i ≥ 0 and let

F (yi, z) :=
fi(y, z)
gi(y, z)

=
f(zyi + β1, zy(r1)i + β2, · · · , zy(r1r2···rm−1)i + βm)
g(zyi + β1, zy(r1)i + β2, · · · , zy(r1r2···rm−1)i + βm)

194 A. Jinadu and M. Monagan

be the i-th auxiliary rational function with Kronecker substitution Kr. We say
that α ∈ Zp is a bad evaluation point if deg(fi(α, z)) < deg f or deg(gi(α, z)) <
deg g. That is LC(fi, z)(y = α) = 0 or LC(gi, z)(y = α) = 0.

Example 10. Let

A = f/g =
2891y1 + y2 + y3

y2
2 + y1 + y3

∈ Z3137(y1, y2, y3).

Clearly gcd(f, g) = 1. The rational function A = f/g does not have a constant
term in the numerator or denominator. Let β = (5, 2, 3) ∈ Z3137 serve as the
basis shift for A. Let r = (2, 3) and let Kr(A) = A(y, y2, y6) = y6+y2+2891y

y6+y4+y .
Then an auxiliary rational function F (y, z) with Kronecker substitution Kr is

F (y, z) =
f1(y, z)
g1(y, z)

=
1912 + (y6 + y2 + 2891y)z
12 + y4z2 + (y6 + 4y2 + y)z

∈ Z3137[y](z).

If α = 3 is randomly picked in Z
∗
3137, then the auxiliary rational function

F (3, z) =
f1(α, z)
g1(α, z)

=
1108

z2 + 2217z + 1162
∈ Z3137(z).

Thus deg(f1(α, z)) < 1 which implies that α = 3 is a bad evaluation point.

We avoid bad evaluation points with high probability in our Dixon resultant
algorithm by picking any generator α ∈ Z

∗
p and a random shift s ∈ [1, p − 2]

where p is prime and instead compute F (αs+j , z) for j = 0, 1, 2, · · · [9].

4 The Dixon Resultant Algorithm

For the purpose of description in this paper, we assume that there is one monic
square-free factor to be interpolated. That is, our algorithms are presented to
interpolate only one square-free factor. The implementation of our algorithm
handles more than one monic square-free factor. Let

S = xdT
1 +

T−1∑

k=0

fk(y1, · · · , ym)
gk(y1, · · · , ym)

xdk
1 . (4)

Definition 11. Let M be a Dixon matrix of polynomials in Z[x1, y1, · · · , ym].
For our algorithms, a black box BB : Z

m+1
p → Zp is a program that takes a

prime p and α ∈ Z
m+1
p as inputs and outputs det(M(α)) mod p.

The implication of the black box representation of det(M) is that informa-
tion such as number of terms and variable degrees are unknown. The degree
bounds needed are degrees [d0, · · · , dT] as defined in Eq. 4, total degree bounds
for the rational function coefficients fk(y1,···,ym)

gk(y1,···,ym) and the maximum partial degrees

max
(
maxT−1

k=0 (deg(fk, yi),deg(gk, yi))
)

of S with respect to each variable yi. For
lack of space, we will not present the algorithms to compute these degree bounds.

An Interpolation Algorithm for Computing Dixon Resultants 195

We now present our Dixon resultant algorithm labelled as algorithm Dixon-
Res. It calls Algorithms SparseKron, MQRFR and Subroutines PolyInterp, Rat-
Fun, Remove-Shift, VanderSolver, BMStep. The MQRFR algorithm is the Max-
imal Quotient Rational Function Reconstruction algorithm in [13, page 186].
Algorithm 1: DixonRes

Input: A prime p and a black box BB : Zm+1
p → Zp

Output: A square-free factor S ∈ Q[x1, y1, · · · , ym] of R or FAIL.

1 Compute T and d = [d0, · · · , dT] as defined in 4 and D̂ = deg(det M, x1).

2 Compute ek = deg(fk) + deg(gk) + 2 for 0 ≤ k ≤ T − 1.

3 Let emax = maxT−1
k=0 {ek} and assume that e0 ≥ e1, · · · ≥ eT−1.

4 Compute Dyi
= max

(
maxT−1

k=0 (deg(fk, yi), deg(gk, yi))
)

for 1 ≤ i ≤ m − 1.

5 Initialize ri = Dyi
+ 1 for 1 ≤ i ≤ m. // Prime p >

∏m
j=1 ri.

6 Let Kr : Zp(y1, · · · , ym)[x1] → Zp(y)[x1] be the Kronecker substitution Kr(S) where S is as

defined in 4 and r = (r1, r2, · · · , rm−1).

7 Pick a random basis shift β ∈ (Zp \ {0})m such that BB(β) ∈ Zp.

8 Pick a random shift s ∈ [1, p − 2] and any generator α for Z
∗
p.

9 Pick θ ∈ Z
emax
p , δ ∈ Z

D̂+1
p at random and set k = 0.

10 for i = 1, 2, · · · while k ≤ T − 1 do

11 Ŷi ← (αs+i−1, α(s+i−1)r1 , · · · α(s+i−1)(r1r2···rm−1)).

12 Let Zi = [Ŷiθj + β ∈ Z
m
p : 1 ≤ j ≤ emax] be the evaluation points.

13 Hi ← PolyInterp(BB, Zi, δ, dT , emax) // |Hi|= emax

14 if Hi = FAIL return FAIL end

15 if i ∈ {2, 4, 6, 10, 16, 26, · · ·} then

16 for j = 1, 2, . . . , i do

17 Aj ← RatFun(Hj , θ, dk, ek, p) //Aj = Nj(z)/N̂j(z) ∈ Zp(z).

18 if deg(Nj , z)
= deg(fk) or deg(N̂j , z)
= deg(gk) then

19 return FAIL // αs+j−1 is a bad evaluation point

20 end

21 end

22 Fk ← BMStep([coeff(Nj , zdeg(fk)) : 1 ≤ j ≤ i], α, s, r).

23 Gk ← BMStep([coeff(N̂j , zdeg(gk)) : 1 ≤ j ≤ i], α, s, r)

24 if Fk
= FAIL and Gk
= FAIL then

25 fk ← Remove-Shift(Fk, [Ŷ1, · · · , Ŷi], [N1, · · · , Ni], α, s, β, r)

26 gk ← Remove-Shift(Gk, [Ŷ1, · · · , Ŷi], [N̂1, · · · , N̂i], α, s, β, r)

27 if fk
= FAIL and gk
= FAIL then

28 k ← k + 1// We have interpolated the k-th coefficient of S.

29 end

30 end

31 end

32 end

33 Ŝ ← x
dT
1 +

∑T−1
k=0

fk(y1,···,ym)
gk(y1,···,ym)x

dk
1 // Ŝ = S mod p where S is as defined in 4

34 L ← LCM {gk ∈ Zp[y1, y2, · · · , ym] : 0 ≤ k ≤ T − 1}
35 M ← Ŝ × L ∈ Zp[x1, y1, y2, · · · , ym]. // Clear the denominators

36 Apply rational number reconstruction to the coefficients of M mod p to get S

37 if S
= FAIL then

38 return S

39 else

40 S ← SparseKron(BB, Ŝ, M, {(deg fk, deg gk) : 0 ≤ k ≤ T − 1}, emax, D̂, dT)

41 if S
= FAIL then return S else return FAIL end

42 end

196 A. Jinadu and M. Monagan

Subroutine 2: Remove-Shift : The effect of the basis shift β is corrected

Input: F ∈ Zp[y1, · · · , ym], basis shift β ∈ (Zp \ {0})m, shift s ∈ [1, p − 2] and r
which defines the Kronecker substitution Kr.

Input: [Ŷj ∈ Z
m
p : 1 ≤ j ≤ i], [Nj ∈ Zp[z] : 1 ≤ j ≤ i] and a generator α for Z

∗
p

Output: fk ∈ Zp[y1, · · · , ym] or FAIL
1 (A, fk) ← (F , F)
2 Initialize Γj = 0 for j = 1, 2, · · · , i.
3 for d = deg(F) − 1, deg(F) − 2, · · · , 0 do

4 if A �= 0 then

5 Pick θ ∈ Z
d+2
p at random.

6 for j = 1, 2, · · · , i do
7 Compute polynomial evaluations :

{Zj,t = A(Ŷj,1θt + β1, · · · , Ŷj,mθt + βm) mod p : 1 ≤ t ≤ d + 2}.
8 Interpolate W j ∈ Zp[z] using points (θt, Zj,t : 1 ≤ t ≤ d + 2).

9 Γj ← Γj + W j

10 end

11 end
12 if d �= 0 then

13 Compute P =
[
coeff(Nj , z

d) − coeff(Γj , z
d) mod p : 1 ≤ j ≤ i

]
.

// The Pj ’s are adjusted to correct the effect of the basis shift β.//
14 if [Pj = 0 : 1 ≤ j ≤ i] then

15 A = 0 // There is no monomial of total degree d.
16 else

17 A ← BMStep([P1, · · · , Pi], α, s, r). // A ∈ Zp[y1, · · · , ym].

18 if A = FAIL then return FAIL end // More Pj ’s are needed.

19 end

20 else

21 A ← coeff(N1, z
0) − coeff(Γ1, z

0) mod p// We get the constant term.
22 end

23 fk ← fk + A.

24 end
25 return fk.

Subroutine 3: BMStep

Input: P = [Pj ∈ Zp : 1 ≤ j ≤ i] , i is even, α ∈ Zp, shift s ∈ [1, p − 2] and r
which defines the Kronecker substitution Kr.

Output: F̄ ∈ Zp[y1, y2, · · · , ym] or FAIL.
1 Run the Berlekamp-Massey algorithm on P to obtain the polynomial λ(z).
2 if deg(λ, z) = i

2
then return FAIL end // More images are needed

3 Compute the roots of λ(z) in Zp[z] to obtain the monomial evaluations m̂i.
4 Let m̂ ⊂ Zp be the set of monomial evaluations m̂i and let t = |m̂|.
5 if t �= deg(λ, z) then return FAIL end // λ(z) is wrong.
6 Solve αei = m̂i for ei with ei ∈ [0, p − 2] // The exponents are found here.

7 Let M̂ = [yei : i = 1, 2 · · · , t] // These are the monomials

8 F ←VanderSolver (m̂, [P1, · · · Pt], s, M̂) // F ∈ Zp[y].
9 F̄ ← K−1

r (F) ∈ Zp[y1, · · · , ym].// Invert the Kronecker map Kr.
10 return F̄

An Interpolation Algorithm for Computing Dixon Resultants 197

We use the Berlekamp-Massey algorithm [1] to find the term bounds for the
leading term polynomials in fk(y1, · · · , ym) and gk(y1, · · · , ym) by computing the
corresponding feedback polynomial λ(z) after i = 2, 4, 6, · · · , · · · points and we
wait until deg(λ, z) < i

2 . The condition deg(λ, z) < i
2 ensures that λ(z) is correct

with high probability. This process of determining these term bounds is done by
the two calls to Subroutine BMStep in Lines 24 and 25 of Algorithm DixonRes.
If Subroutine BMStep succeeds in getting the correct term bound with high
probability then the output Fk or Gk is not equal to FAIL. By design it follows
that the polynomials Fk or Gk are the highest degree terms in the numerator
and denominator of fk(y1,···,ym)

gk(y1,···,ym) .
Next, Algorithm DixonRes sends the leading term polynomials Fk and Gk

to Subroutine Remove-Shift in Lines 27 and 28 to interpolate other lower
degree polynomial terms in fk(y1, · · · , ym) and gk(y1, · · · , ym). However, the
term bound that was sufficient for interpolating the leading term polynomials
might be too small for other lower degree polynomial terms in fk(y1, · · · , ym) and
gk(y1, · · · , ym). If this happens then Subroutine Remove-Shift will output FAIL.
Thus more univariate images and auxiliary rational functions are computed in
Algorithm DixonRes and a new term bound is found.

We need to solve shifted transposed Vandermonde systems using Subrou-
tine VanderSolver [9] because Algorithms DixonRes and SparseKron randomized
their evaluation points with a shift s ∈ [1, p− 2]. To solve the shifted transposed
Vandermonde system

V a =

⎡
⎢⎢⎢⎢⎣

m̂s
1 m̂s

2 · · · m̂s
t

m̂s+1
1 m̂s+1

2 · · · m̂s+1
t

..

.
..
.

..

.
..
.

m̂s+t−1
1 m̂s+t−1

2 · · · m̂s+t−1
t

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2

..

.
at

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v0
v1
..
.

vt−1

⎤
⎥⎥⎥⎦ = B,

where m̂i are the monomial evaluations, we use Zippel’s O(t2) algorithm [25] to
first solve the transposed Vandermonde system

Wc =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
m̂1 m̂2 · · · m̂t

.

..
.
..

.

..
.
..

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1
c2
.
.
.
ct

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v0
v1
.
.
.

vt−1

⎤
⎥⎥⎥⎦ = B,

which yields c = W−1B. Notice that V = WD where D is a t×t diagonal matrix
with entries Dii = m̂s

i . Thus we obtain the unknown coefficients ai using ai =
m̂−s

i ci since V a = B =⇒ (WD)a = B =⇒ (Da) = W−1B = c =⇒ a = D−1c.

Subroutine 4: RatFun : Rational function interpolation using MQRFR [13]

Input: H = [Hj ∈ Zp[x1] : 1 ≤ j ≤ emax], θ ∈ Z
emax
p and degrees dk, ek.

Output: A(z) =
N(z)

N̂(z)
∈ Zp(z) such that N̂(z) = 1 +

∑deg(N̂,z)
j=1 ajz

j ∈ Zp[z].

1 m(z) ← ∏ek
i=1(z − θi) ∈ Zp[z].

2 Interpolate U ∈ Zp[z] using points (θi, coeff(Hi, x
dk
1) : 1 ≤ i ≤ ek).

3 A(z) ← MQRFR(m, U, p)
4 return A(z).

198 A. Jinadu and M. Monagan

Algorithm 5: SparseKron

Comment: If Algorithm DixonRes does not succeed in getting the square free factor,

then SparseKron gets more images using the support from Algorithm

DixonRes with new primes, performs Chinese remaindering + rational

number reconstruction.

Input: Ŝ = x
dT
1 +

∑T−1
k=0

fk(y1,y2,···,ym)
gk(y1,y2,···,ym)

x
dk
1 ∈ Zp1 (y1, · · · , ym)[x1]

Input: M ∈ Zp1 [x1, y1, · · · , ym] where prime p1 is from Algorithm DixonRes

Input: Degree bounds {(deg(fk), deg(gk)) : 0 ≤ k ≤ T − 1} and emax.

Input: D̂ = deg(det M, x1) + 1, and dT = deg(S, x1) as defined in 4.

Input: Black box BB : Zm+1
q → Zq where q �= p1.

Output: Square-free factor F̄ ∈ Q[x1, y1, · · · , ym] or FAIL.

1 Let N = maxT−1
k=0 {#fk, #gk} and set (p, P) ← (p1, p1).

2 do

3 Get a new 62 bit prime q > P.

4 Pick β, α ∈ (Zq \ {0})m , δ ∈ ZD̂
q , θ ∈ Z

emax
q and s ∈ [1, q − 2] at random.

5 for i = 0, 1, · · · , N − 1 do

6 Set α∗
i = (αs+i

1 , αs+i
2 · · · , αs+i

m).

7 Let Zi = [βθj + α∗
i ∈ Zm

q : 1 ≤ j ≤ emax] be the evaluation points.

8 Hi ← PolyInterp(BB, Zi, δ, dT , emax)

9 if Hi = FAIL then return FAIL end

10 end

11 for k = 0, 1, · · · , T − 1 do

12 m̂ ← [M̂i(α) : 1 ≤ i ≤ n̂] where n̂ = #fk and M̂ = supp(fk).

13 m̄ ← [M̄i(α) : 1 ≤ i ≤ n̄] where n̄ = #gk and M̄ = supp(gk).

14 if the monomial evaluations m̂i or m̄i are not distinct then

15 return FAIL.

16 end

17 for j = 0, 1, 2, · · · , N − 1 do

18 Bj ← RatFun(Hj , dk, θ, ek, q) // Bj = Nj(z)/N̂j(z) ∈ Zq(z).

19 if deg(Nj , z) �= deg(fk) or deg(N̂j , z) �= deg(gk) then

20 return FAIL.

21 end

22 (Uj(z), Vj(z)) ← (Nj(z) × LC(N̂j , z), N̂j(z) × LC(N̂j , z))

23 (aj , bj) ← (Uj(0), Vj(0)) // aj , bj ∈ Zq

24 Fk ←VanderSolver(m̂, [a1, · · · , an̂], s, M̂).

25 Gk ←VanderSolver(m̄, [b1, · · · , bn̄], s, M̄).

26 end

27 end

28 Ŝ ← x
dT
1 +

∑T−1
k=0

Fk(y1,y2,···,ym)
Gk(y1,y2,···,ym)

x
dk
1 ∈ Zq(y1, · · · , ym)[x1]

29 L ← LCM {Gk ∈ Zq [y1, y2, · · · , ym] : 0 ≤ k ≤ T − 1}
30 M ← Ŝ × L ∈ Zq [x1, y1, y2, · · · , ym]. // Clear the denominators.

31 Solve F̂ ≡ M mod p and F̂ ≡ M mod q using the Chinese remainder algorithm

and set p = p × q.

32 Apply rational number reconstruction on coefficients of F̂ mod p to get F

33 if F �= FAIL then return F end

34 (M, P) ← (F̂ , q)

35 end

An Interpolation Algorithm for Computing Dixon Resultants 199

Subroutine 6: VanderSolver

Input: Vectors m̂, b ∈ Z
t
p, shift s ∈ [1, p − 2] and monomials [M1, · · · , Mt]

Output: F ∈ Zp[y1, · · · , ym]
1 Let Vij = m̂s+j−1

i for 1 ≤ i, j ≤ t.
2 Solve V a = b for the coefficients ai using Zippel’s O(t2) algorithm [26].

3 return F =
∑t

i=1 aiMi

Subroutine 7: PolyInterp

Input: Black box BB : Zm+1
p → Zp.

Input: Z = [Zj ∈ Z
m
p : 1 ≤ j ≤ emax], δ ∈ Z

D̂+1
p , degree dT = deg(det S, x1).

Output: H = [monic(Hj) ∈ Zp[x1] : 1 ≤ j ≤ emax] or FAIL.
1 for j = 1, 2, . . . , emax do

2 Compute Gj = (BB(δi, Zj) : 1 ≤ i ≤ D̂ + 1).

3 Interpolate Bj ∈ Zp[x1] using points (δi, Gj,i : 1 ≤ i ≤ D̂ + 1).

4 Compute the square-free part Hj = Bj/gcd(Bj , B
′
j).

5 if deg(Hj , x1) �= dT then return FAIL end

6 end
7 return [monic(H1), · · · , monic(Hemax)].

5 Implementation Notes and Benchmarks

We have implemented our new Dixon resultant algorithm in Maple. To improve
the overall efficiency, we have implemented in C major subroutines such as eval-
uating a Dixon matrix at integer points modulo prime p, computing the determi-
nant of an integer matrix over Zp and performing dense rational function inter-
polation using the MQRFR algorithm modulo a prime [13]. Thus each probe to
the black box is computed using C code. Our C code supports primes up to 63
bits in length.

5.1 Speeding Up Evaluation of the Dixon Matrix

In our experiments, the most expensive step in our algorithm was, and still is,
evaluating the Dixon matrix M modulo a prime. Let p be a prime and let M be
a t × t matrix of polynomials in Z[z1, . . . , zn]. We need to compute det(M(α))
mod p for many α ∈ Z

n
p . Often, over 80% of the time is spent computing M(α)

mod p. The Maple command

> Eval(M,{seq(z[i]=alpha[i]}) mod p;

does what we want, however, because we want our implementation to handle
many variables and fail with low probability, we want to use the largest primes
the hardware can support which are 63 bit primes if we use signed 64 bit inte-
gers. Unfortunately, Eval uses hardware arithmetic for p < 231, otherwise, it
uses software arithmetic which is relatively very slow. Also, Eval evaluates each
polynomial in M independently, that is, if M1,1 = 2z3

1z2 and M2,2 = z3
1 + 5z3

200 A. Jinadu and M. Monagan

say, Eval computes α3
1 twice. To speed up evaluations we have written a C pro-

gram to compute M(α) for p < 263 using hardware arithmetic. In Maple, we
first precompute a vector of degrees

D =
[

max
1≤i,j≤t

deg(Mij , zk) : 1 ≤ k ≤ n

]

.

For each α ∈ Z
n
p we call our C program from Maple with inputs M,α,D, p. To

save multiplications our C program first computes power arrays

Pk =
[
αi

k : 0 ≤ i ≤ Dk

]
for 1 ≤ k ≤ n

then uses these Pk to evaluate Mi,j(α) for 1 ≤ i, j ≤ t. Maple uses two data
structures for polynomials, the SUM-OF-PROD data structure and the POLY
data structure. POLY was added to Maple in 2013 by Monagan and Pearce [19]
to speed up polynomial arithmetic. Figure 1 shows the POLY data structure for
the polynomial f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5. Figure 2 shows how the
same polynomial is represented in the SUM-OF-PROD data structure. All boxes
in Figs. 1 and 2 represent arrays. The first entry in each box is a header word;
it encodes the object type and the array length.

Fig. 1. Maple’s POLY representation for f = 9 xy3z − 4 y3z2 − 6 xy2z − 8 x3 − 5

Fig. 2. Maple’s SUM-OF-PROD representation for f = 9 xy3z−4 y3z2−6 xy2z−8 x3−5

In POLY, if M = zd1
1 zd2

2 · · · zdn
n is a monomial in f , then M is encoded as

the integer d2nb +
∑n−1

i=0 2ibdi where d =
∑n

i=1 di and b = �64/(n + 1)�. For
example, the monomial xy3z with d = 5, b = 16, n = 3 is encoded as the integer
5 · 248 + 232 + 3 · 216 + 1. This is depicted as 5131 in Fig. 1. This encoding allows
Maple to compare two monomials in the graded monomial ordering using a single
64 bit integer comparison. Also, provided overflow does not occur, Maple can
multiply two monomials using a single 64 bit integer addition.

An Interpolation Algorithm for Computing Dixon Resultants 201

When does Maple use POLY instead of SUM-OF-PROD? If a polynomial f
has (i) all integer coefficients, (ii) more than one term, (iii) is not linear, and
(iv) all monomials in f can be encoded in a 64 bit integer using B bits for di

and 64 − nB bits for d, then it is encoded using POLY otherwise the SUM-OF-
PROD representation is used. In a typical Dixon matrix both representations
are used so we have to handle both and we need to know the details of both
representations.

Also important for efficiency is how to multiply in Zp. We do not use the
hardware division instruction which is very slow. Instead we use Roman Pearce’s
assembler implementation of Möller and Granlund [20] which replaces division
with two multiplications and other cheap operations.

Table 2. Timings showing improvements for Heron5d and Tot systems

System Eval Determinant Total C-Eval New Total

Heron5d 70.17s (66.2%) 9.74s (9.18%) 106.07s 18.02s (3.89x) 42.82s (2.48x)

Tot 635.75s (83.3%) 37.66s (4.9%) 763.2s 32.36s (19.64x) 150s (5.08x)

Table 2 shows the improvement obtained using our C code for evaluating a
Dixon matrix M at integer points modulo a prime for both Tot and Heron5d
systems. Column Eval contains the timings using Eval command and column C-
Eval is the timings for the case when our C code was used. Column Determinant
is the amount of time spent computing the determinant of integer matrices
modulo a prime. Column Total contains the total CPU timings using Eval and
column New Total is the new total CPU timings for both polynomial systems
when the C code for matrix evaluation was used.

5.2 Timings

We present two tables for our Dixon resultant algorithm. Table 3 contains
basic information about the polynomial systems that is stored on the web at
www.cecm.sfu.ca/∼mmonagan/code/DixonRes. This web address also contain
our Maple and C codes and they are freely available for use. Table 3 includes
timings comparing three methods. Columns 1–4 contain names of the polyno-
mial systems, the number of equations in each system, the dimension of the
Dixon matrix D and the rank of its maximal minor M respectively. The number
of terms in the product of all the monic square-free factors in expanded form
when the denominators are cleared is denoted by #S, the number of terms in
R labelled #R is in column 7 and column 6 labelled tmax = max(#fjk,#gjk).
In column 8 named as DRes, we report the timings of our Dixon resultant algo-
rithm. Column 9 contain timings of an efficient Maple implementation of the
Gentleman & Johnson minor expansion method. The timings of a hybrid imple-
mentation of Zippel’s sparse algorithm in Maple + C are given in column 11. All

www.cecm.sfu.ca/~mmonagan/code/DixonRes

202 A. Jinadu and M. Monagan

our experiments were performed on an Intel Xeon E5-2680 v2 processor using 1
core. The first prime used in our code is the 62 bit prime p = (250)(61)(67) + 1.

Table 3. DixonRes versus Minor Expansion and Zippel’s Interpolation

System #Eq n/m dim D/Rank #S tmax #R DRes Minor Cleaned Zippel

Robot-t1 4 4/7 (32 × 48)/20 450 14 6924715 7.34s 2562.6s 188.4s > 105s

Robot-t2 4 4/7 (32 × 48)/20 13016 691 16963876 316.99s ! 2559.6s > 105s

Robot-b1 4 4/7 (32 × 48)/20 334 85 6385205 27.78s 182.4s 15.15s > 105s

Robot-b2 4 4/7 (32 × 48)/20 11737 624 16801877 241.61s ! 2452.8s > 105s

Heron5d 15 14/16 (707 × 514)/399 823 822 12167689 23.12s ! ! > 105s

Flex-v1 3 3/15 (8 × 8)/8 5685 2481 45773 201s 5.09s NA 308684.76s

Flex-v2 3 3/15 (8 × 8)/8 12101 2517 45773 461.4s 5.02s NA 308684.76s

Perimeter 6 6/4 (16 × 16)/16 1980 303 9698 49.97s 18.23 NA 2360.27s

Pose 4 4/8 (13 × 13)/12 24068 8800 24068 461.4s 4.48s NA 21996.25s

Pendulum 3 2/3 (40 × 40)/33 4667 243 19899 45.46s 1721.50s NA 2105.321s

Tot 4 4/5 (85 × 94)/56 8930 348 52982 82.11s ! ! 17370.07s

Image3d 10 10/9 (178 × 152)/130 130 84 1456 2.34s 1.04s NA 53.68s

Heron3d 6 5/7 (16 × 14)/13 23 22 90 0.411s 0.014s NA 0.738s

Nachtwey 6 6/5 (11 × 18)/11 244 106 244 7.23s 0.424s NA 5.36s

Storti 6 5/2 (24 × 113)/20 12 4 32 0.177s 229.945s NA 0.053s

! = ran out of memory, NA= Not Attempted

The Gentleman & Johnson minor expansion algorithm uses a lot of space. To
reduce space and speed it up, we first divide each row i of the Dixon matrix M
by the gcd of the entries in row i. Then we permute the Dixon matrix M by
putting the sparsest columns at the left of the matrix. We call this method the
cleaned version of the Gentleman & Johnson method. The timings for it are
presented in column 10 labelled as Cleaned.

Our DixonRes algorithm outperforms Zippel’s sparse interpolation. This was
expected because #R is much larger than tmax. Another reason is because more
primes are needed to recover integer coefficients in R compared to the Rj ’s. Our
algorithm is not always faster than the Gentleman & Johnson algorithm. The
evaluation cost of the Dixon matrix is still the bottleneck of our algorithm while
the determinant computation takes roughly 10% of the total time.

Some Dixon matrices have a block diagonal form and often, the determinant
of all the blocks produce the same Dixon resultant R. For the timings recorded
in Tables 2 and 3, we always compute the determinant of the smallest block
after confirming that all blocks produce the same Dixon resultant. So, both #S
and #R are the number of terms due to the determinant of the smallest block
obtained. However for the Tot system, the 25× 25 block matrix did not produce
all the monic square-free factors Rj so we had to compute the determinant of
the 31×31 block matrix. Details about the block structure of the Dixon matrices
are provided in Table 4.

In Table 4, we provide details about block sizes of each Dixon matrix M
and the number of black box probes required by our Dixon resultant algorithm
to successfully interpolate the Rj ’s. The quantity Q in Table 4 is the number
of black box probes done to obtain all degree bounds needed by Algorithm
DixonRes. In Table 4, the quantity p1 is the number of probes needed to get the

An Interpolation Algorithm for Computing Dixon Resultants 203

Table 4. Block structure and # of probes used by Algorithm DixonRes and Zippel’s
interpolation

System Block Structure Q p1 p2 Zippel-probes

Robot-t1 [8, 8] 3641 13000 - -

Robot-t2 [12] 5685 705796 - -

Robot-b1 [8, 8] 3901 91000 - -

Robot-b2 [12] 5489 529984 - -

Heron5d [49, 52, 48, 50, 49, 53, 50, 48] 307 62928 - -

Flex-v1 [8] 1693 588060 - 3310871

Flex-v2 [8] 5017 2664948 - 3310871

Perimeter [16] 1243 225828 - 230773

Pose [12] 1072 525636 - 569513

Pendulum [17, 16] 8971 114920 - 128322

Tot [31, 25] 4261 420000 - 742099

Image3d [13, 14, 14, 15, 18, 19, 18, 19] 401 12320 - 29415

Heron3d [6, 7] 133 1392 - 3071

Nachtwey [11] 576 39780 18020 12983

Storti [20] 273 816 - 343

first image of the Rj ’s. If the rational number reconstruction process fails on the
first image, then more primes are needed. The number of black box probes used
for the second prime is p2. One prime is typically enough to interpolate the Rj ’s.
Zippel-probes represents the number of probes used by Zippel’s algorithm to
interpolate R. Note that the block structure depends on the variable elimination
order. For example, we record that the block structure for Robot-b1 is [8, 8]. For
a different variable elimination order, we get [8, 4, 4].

6 Conclusion

We have designed and implemented a new Dixon resultant algorithm that com-
putes the monic square-free factors of the Dixon resultant R of a parametric
polynomial system using sparse interpolation tools. We have shown that there
is a huge reduction in the number of terms when the monic square-free fac-
tors of R are interpolated instead of interpolating R. We have also shown that
a Kronecker substitution can be used to reduce the problem of interpolating
a multivariate rational function using Cuyt and Lee’s method to a univariate
rational function interpolation.

We implemented our algorithm in Maple and implemented several subrou-
tines in C including the evaluation of the Dixon matrix modulo a prime. Our
benchmarks showed that our algorithm is much faster than Zippel’s sparse inter-
polation. We are currently working on the complexity analysis and the failure
probability of our new Dixon resultant algorithm.

204 A. Jinadu and M. Monagan

References

1. Atti, N.B., Lombardi, H., Diaz-Toca, G.M.: The Berlekamp-Massey algorithm
revisited. Appli. Alebra Eng. Commun. 17(4), 75–82 (2006)

2. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polyno-
mial interpolation.In: Proceedings of STOC 2020, pp. 301–309, ACM (1988)

3. Chtcherba, A.D., Kapur, D.: On the efficiency and optimality of dixon-based resul-
tant methods. In: Proceedings of ISSAC 2002, pp. 29–36, ACM (2002)

4. Cuyt, A., Lee, W.-S.: Sparse interpolation of multivariate rational functions. J.
Theoretical Comp. Sci. 412, 1445–1456 (2011)

5. Dixon, A.: On a form of the Eliminant of two quantics. Proc. Lond. Math. Soc. 2,
468–478 (1908)

6. Dixon, A.: The eliminant of three quantics in two independent variables. Proc.
Lond. Math. Soc. 2, 49–69 (1909)

7. Gentleman, W.M., Johnson, S.C.: The evaluation of determinants by expansion by
minors and the general problem of substitution. Math. Comput. 28(126), 543–548
(1974)

8. Gerhard, J., Von zur Gathen, J.: Modern Computer Algebra. Cambridge University
Press, New York (2013)

9. Hu, J., Monagan, M.: A fast parallel sparse polynomial GCD algorithm. In: Pro-
ceedings of ISSAC 2016, pp. 271–278, ACM (2016)

10. Kapur, D., Saxena, T.: Extraneous factors in the dixon resultant formulation. In:
Proceedings of ISSAC 1997 pp. 141–148, ACM (1997)

11. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using dixon
resultants. In: Proceedings of ISSAC 1994, pp. 99–107, ACM (1994)

12. Kapur, D., Saxena, T.: Comparison of various multivariate resultant formulations.
In: Proceedings of ISSAC 1995, pp. 187–194, ACM (1995)

13. Khodadad, S., Monagan, M.: Fast rational function reconstruction. In: Proceedings
of ISSAC 2006, pp. 184–190, ACM (2006)

14. Lewis, R.H.: Dixon-EDF: the premier method for solution of parametric polynomial
systems. In: Kotsireas, I.S., Mart́ınez-Moro, E. (eds.) ACA 2015. SPMS, vol. 198,
pp. 237–256. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56932-1
16

15. Lewis, R.H.: Resultants, implicit parameterizations, and intersections of surfaces.
In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS,
vol. 10931, pp. 310–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96418-8 37

16. Lewis, R.: Private Communication
17. Lewis, R.: New Heuristics and Extensions of the Dixon Resultant for Solving Poly-

nomial Systems, pp. 16–20. ACA, Montreal (2019)
18. Monagan, M.: Maximal quotient rational reconstruction: an almost optimal algo-

rithm for rational reconstruction. In: Proceedings of ISSAC 2004, pp. 243–249,
ACM (2004)

19. Monagan, M., Pearce, R.: The design of Maple’s sum-of-products and POLY
data structures for representing mathematical objects. Commun. Comput. Algebra
48(4), 166–186, ACM (2014)

20. Möller, N., Grandlund, T.: Improved division by invariant integers. Trans. Comput.
60(2), 165–175, IEEE (2011)

21. Storti, D.: Algebraic skeleton transform: a symbolic computation challenge, Sub-
mitted to Faculty Papers and Data, Mech. Eng. Res. Works Arch. http://hdl.
handle.net/1773/48587

https://doi.org/10.1007/978-3-319-56932-1_16
https://doi.org/10.1007/978-3-319-56932-1_16
https://doi.org/10.1007/978-3-319-96418-8_37
https://doi.org/10.1007/978-3-319-96418-8_37
http://hdl.handle.net/1773/48587
http://hdl.handle.net/1773/48587

An Interpolation Algorithm for Computing Dixon Resultants 205

22. Tot, J.: Private Communication
23. Xiaolin, Q., Dingxiong, W., Lin, T., Zhenyi, J.: Complexity of constructing Dixon

resultant matrix. Int. J. Comput. Math. 94, 2074–2088 (2017)
24. Zhao, S., Fu, H.: An extended fast algorithm for constructing the Dixon resultant

matrix. Sci. China Ser A Math. 48, 131–143 (2005)
25. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)

Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

26. Zippel, R.: Interpolating Polynomials from their values. J. Symbol. Comput. 9,
375–403 (1990)

https://doi.org/10.1007/3-540-09519-5_73

Distance Evaluation to the Set
of Matrices with Multiple Eigenvalues

Elizaveta Kalinina(B) and Alexei Uteshev

Faculty of Applied Mathematics, St. Petersburg State University,
7–9 Universitetskaya nab., St. Petersburg 199034, Russia

{e.kalinina,a.uteshev}@spbu.ru
http://www.apmath.spbu.ru

Abstract. The problem of finding the Frobenius distance in the R
n×n

matrix space from a given matrix to the set of matrices possessing mul-
tiple eigenvalues is considered. Two approaches are discussed: the one
is reducing the problem to a constrained optimization problem in R

n

with a quartic objective function, and the other one is connected with
the singular value analysis for an appropriate matrix in R

2n×2n. Several
examples are presented including classes of matrices where the distance
in question can be explicitly expressed via the matrix eigenvalues.

Keywords: Wilkinson’s problem · Real perturbations · Frobenius
norm · 2-norm

1 Introduction

Given a matrix A ∈ R
n×n with distinct eigenvalues, we intend to find the dis-

tance from A to the set D of real matrices with multiple eigenvalues as well as the
corresponding minimal perturbation, i.e., a matrix E∗ ∈ R

n×n of the minimal
norm such that B∗ = A + E∗ ∈ D.

The problem under consideration is known as Wilkinson’s problem [21] and
the desired distance, further denoted as d(A, D), is called the Wilkinson distance
of A [2,15]. Wilkinson’s problem is closely related to ill-conditioning of eigenvalue
problems. The ill-conditioning of a linear system is determined by the distance of
the coefficient matrix from the set of singular matrices. For eigenvalue problems,
the set of matrices with multiple eigenvalues plays the role of singularity [23].
The Wilkinson distance can be considered as a measure of sensitivity of the
worst-conditioned eigenvalue of A. By eigenvalue perturbation theory, a matrix
that is close to a defective matrix has an eigenvalue with large condition number.
Conversely, any matrix with an ill-conditioned eigenvalue is close to a defective
matrix [18,22].

For the spectral and the Frobenius norms, the problem has been studied
intensively by Wilkinson [22–24] as well as by other researchers [2,4,5,10,14,18].
In the works [1,3,13,15], generalizations of Wilkinson’s problem for the cases of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 206–224, 2022.
https://doi.org/10.1007/978-3-031-14788-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_12&domain=pdf
http://orcid.org/0000-0003-0288-3938
http://orcid.org/0000-0002-8344-3266
https://doi.org/10.1007/978-3-031-14788-3_12

Distance to Matrices with Multiple Eigenvalues 207

prescribed eigenvalues or multiplicities and matrix pencils are studied. However,
several aspects of the problem still need further clarification.

The present paper is devoted to the stated problem for the case of Frobenius
norm. It is organized as follows.

In Sect. 2, we start with algebraic background for the stated problem. We first
detail the structure of the set D in the matrix space. The cornerstone notion
here is the discriminant of a characteristic polynomial of a matrix. Being a
polynomial function in the entries of the matrix, the discriminant permits one
to translate the problem of evaluation of d(A, D) to that of finding the distance
from a point to an algebraic manifold in the matrix space. This makes it possible
to attack the problem within the framework of the approach already exploited by
the present authors in the preceding studies [11,12] on the distance to instability
in the matrix space. The approach is aimed at the construction of the so-called
distance equation, i.e., the univariate equation whose zero set contains all
the critical values of the squared distance function. Its construction is theoreti-
cally feasible via application of symbolic methods for elimination of variables in
an appropriate multivariate algebraic system. Unfortunately, the practical real-
ization faces the variable flood difficulty, where the number of variables grows
rapidly with the order of the matrix.

To bypass this, we reformulate the problem in terms of the minimal pertur-
bation matrix. In Sect. 3, we prove that this matrix is a rank 1 matrix. Then we
reduce the problem of its finding to that of a constrained optimization n-variate
problem with an objective function of order 4. Some examples are presented
illuminating the applicability of the developed algorithm.

The discovered property of the perturbation matrix makes it possible to look
at the problem from the other side. Generically, the 2-norm of a matrix does not
equal its Frobenius norm. However, for the rank 1 matrix (and this is exactly the
case of the minimal perturbation matrix), these norms coincide. This allows one
to verify the results obtained in the framework of symbolic approach with the
counterpart obtained for the 2-norm case [14]. This issue is discussed in Sect. 4
while in Sect. 5, both approaches are illustrated for three classes of matrices
where the distance d(A, D) can be explicitly expressed via the eigenvalues of A.
These happen to be symmetric, skew-symmetric and orthogonal matrices. Quite
unexpected for the authors became the fact that, for some classes, each of their
representative had a continuum of nearest matrices in D.

Notation. For a matrix A ∈ R
n×n, fA(λ) denotes its characteristic polynomial,

adj(A) stands for its adjoint matrix, d(A, D) denotes the distance from A to the
set D of matrices possessing a multiple eigenvalue. E∗ and B∗ = A+E∗ stand for,
correspondingly, the (minimal) perturbation matrix and the nearest to A matrix
in D (i.e., d(A, D) = ‖A − B∗‖); we then term by λ∗ the multiple eigenvalue of
B∗. I (or In) denotes the identity matrix (of the corresponding order). D (or
Dλ) denotes the discriminant of a polynomial (with subscript indicating the
variable).

Remark. All the computations were performed in CAS Maple 15.0. (LinearAl-
gebra package and functions discrim, and resultant). Although all the approx-

208 E. Kalinina and A. Uteshev

imate computations have been performed within the accuracy 10−40, the final
results are rounded to 10−6.

2 Algebraic Preliminaries

It is well-known that in the (n + 1)-dimensional space of the polynomial f(λ) =
a0λ

n + a1λ
n−1 + · · · + an, n ≥ 2 coefficients, the manifold of polynomials with

multiple zeros is defined by the equation

D(a0, a1, . . . , an) = 0 where D := Dλ(f(λ)) (1)

denotes the discriminant of the polynomial. Discriminant can be represented in
different ways, for instance, as the Sylvester determinant

Dλ(a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4) =

1
42

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 2a2 3a3 4a4 0 0
0 a1 2a2 3a3 4a4 0
0 0 a1 2a2 3a3 4a4

0 0 4a0 3a1 2a2 a3

0 4a0 3a1 2a2 a3 0
4a0 3a1 2a2 a3 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The discriminant D(a0, a1, . . . , an) is a homogeneous polynomial over Z of order
2n − 2 in its variables, and it is irreducible over Z.

The following result [16] is much less known.

Theorem 1 (Jacobi). If f(λ) possesses a unique multiple zero λ∗ and its
multiplicity equals 2, then the following ratio is valid

1 : λ : λ2 : · · · : λn =
∂D

∂an
:

∂D

∂an−1
:

∂D

∂an−2
: · · · :

∂D

∂a0
. (2)

To solve the problem stated in Introduction, one needs to transfer the discrim-
inant manifold (1) into the matrix space. The corresponding manifold is then
defined by a homogeneous polynomial of order n(n − 1) in the matrix entries:

D(B) := Dλ(fB(λ)) = 0 . (3)

We will further denote this manifold in R
n2

as D. The problem of distance
evaluation between a given matrix A and D can be viewed as a constrained
optimization problem:

d2(A, D) = min
B∈Rn×n

‖B − A‖2 subject to (3) . (4)

Consider the Lagrange function for this problem

F (B,μ) := ‖B − A‖2 − μD(B) .

Distance to Matrices with Multiple Eigenvalues 209

Evidently, ∂F/∂μ = 0 is equivalent to (3). Differentiation with respect to the
entries of B yields

2(bjk − ajk) − μ∂D(B)/∂bjk = 0 for {j, k} ⊂ {1, . . . , n}. (5)

Since the system (3)–(5) is an algebraic one, it admits application of symbolic
methods of elimination of variables. We attach to the considered system an
extra equation

z = ‖B − A‖2 (6)

and then aim at finding the so-called distance equation

F(z) = 0

resulting from the elimination of all the variables but z from this system. Positive
zeros of this equation are the critical values of the squared distance function for
the problem (4).

Example 1. For the matrix A = [ajk]2j,k=1 with the characteristic polynomial
fA(λ), the system (5) is linear with respect to {bjk}2j,k=1 and the distance equa-
tion is easily computed as

F(z) := 4096(a12 − a21)2
[

(a11 − a22)2 + (a12 + a21)2
]

×
{

[4z − Dλ(fA(λ))]2 − 16(a12 − a21)2z
}

= 0. (7)

It turns out that for any matrix A such that Dλ(fA(λ)) �= 0, the distance equa-
tion is the quadratic one (7) where d2(A, D) equals its minimal zero.

For the matrix

A =
[

s t
−t s

]

where t > 0,

polynomial F(z) vanishes identically. Equation (7) possesses a multiple zero,
namely z = t2, and d(A, D) = t. Surprisingly, this distance is provided by a
continuum of perturbation (and thus nearest in D) matrices, namely

E∗ =
t

2

[
sin ϕ −1 + cos ϕ

1 + cos ϕ − sin ϕ

]

, where ϕ ∈ [0, 2π).

This example causes an anxious expectation of difficulties to appear while solv-
ing the stated distance evaluation problem for the case of orthogonal or skew-
symmetric matrices A. ��

For a general case, computation of the distance equation via the solution
of the system (3)–(5)–(6) is a hardly executable task due to a drastic increase
in the number of variables (i.e., the entries of matrix B) to be eliminated. To
overcome this difficulty, let us reformulate the problem in terms of the entries of
the perturbation matrix.

210 E. Kalinina and A. Uteshev

3 Distance Equation and Perturbation Matrix

Theorem 2. Matrices E∗ are B∗ are linked by the equality

E∗ = κ [f∗(B∗)]
�

, (8)

were

f∗(λ) :=
fB∗(λ)
λ − λ∗

,

and κ ∈ R is some scalar.

Proof. We start with system (5) resulting from application of the Lagrange
method to problem (4). Compute ∂D(B)/∂bjk as a composite function with
the coefficients of characteristic polynomial fB(λ) = λn + p1λ

n−1 + · · · + pn

treated as intermediate variables:

∂D(B)
∂bjk

=
∂D(B)

∂p0

∂p0
∂bjk

+
∂D(B)

∂p1

∂p1
∂bjk

+ · · · +
∂D(B)

∂pn

∂pn

∂bjk
.

(We set here p0 := 1 and thus the first term in the right-hand side is just 0).
Under the condition D(B) = 0 (i.e., the matrix B = B∗ possesses a multiple
eigenvalue λ∗), the Jacobi ratio (2) is fulfilled

1 : λ∗ : λ2
∗ : · · · : λn

∗ =
∂D

∂pn
:

∂D

∂pn−1
:

∂D

∂pn−2
: · · · :

∂D

∂p0
.

Therefore,
∂D

∂p�
= κλn−�

∗ for � ∈ {1, . . . , n}

and for some constant κ ∈ R. Consequently

∂D(B)
∂bjk

= κ

(

λn
∗

∂p0
∂bjk

+ λn−1
∗

∂p1
∂bjk

+ · · · +
∂pn

∂bjk

)

= κ
∂fB(λ∗)

∂bjk
.

The preceding considerations lead to a conclusion that the system of Eqs. (5) is
equivalent to the matrix equation

2(B∗ − A) = μκ ∂fB(λ∗)/∂B
∣
∣
B=B∗

.

Next utilize the formula of differentiation of characteristic polynomial with
respect to the matrix [19]:

∂fB(λ)/∂B = [adj(λI − B)]� .

Equality (8) then follows from the representation of the adjoint matrix for λ∗I −
B∗ as f∗(B∗) with f∗(λ) standing for the quotient on division of fB(λ) by λ−λ∗.

Corollary 1. Matrices E�
∗ and B∗ commute and

(λ∗I − B∗)E�
∗ = On×n.

Distance to Matrices with Multiple Eigenvalues 211

Corollary 2. If A does not have a multiple eigenvalue, then E∗ is the rank 1
matrix with only zero eigenvalues.

Proof. Matrix f∗(B∗) = adj(λ∗I − B∗) is the rank 1 matrix, since its columns
are the eigenvectors of the matrix B∗ corresponding to λ∗ (Cayley–Hamilton
theorem).

We next prove that tr(adj(λ∗I − B∗) = 0. For any matrix B with spectrum
{λj}n

j=1, matrix adj(λI − B) has the spectrum [17] (part VII, problem 48):

{
fB(λ)
λ − λj

}n

j=1

.

Thus,
tr(E∗) = tr(adj(λ∗I − B∗)) = f ′

B∗(λ∗) = 0.

Corollary 3. Matrix E∗ is normal to B∗, i.e., tr(B�
∗ E∗) = 0.

Corollary 4. tr(B∗) = tr(A).

Theorem 3. The value d2(A, D) is contained in the set of critical values of the
function

G(U) := U�AA�U − (

U�AU
)2

subject to U�U = 1, U ∈ R
n (9)

If U∗ is the vector providing d2(A, D), then the perturbation matrix can be com-
puted by the formula

E∗ = U∗U�
∗ (κI − A) where κ := U�

∗ AU∗. (10)

Proof. Due to Corollary 2, the singular value decomposition for the perturbation
matrix E is represented as

E = σU · V � (11)

under restrictions
U�U = 1, V �V = 1, U�V = 0. (12)

From the condition tr((A + E)E�) = 0 we deduce that σ = − tr(AV U�) =
−U�AV. Formulate the constrained optimization problem

min(−U�AV) subject to (12). (13)

The derivatives of the corresponding Lagrange function

L(U, V, μ1, μ2, μ3) := −U�AV − μ1(U�U − 1) − μ2(V �V − 1) − μ3U
�V

result in the system of linear equations

∂L/∂U = −AV − 2μ1U − μ3V = On×1, (14)
∂L/∂V = −A�U − 2μ2V − μ3U = On×1 (15)

212 E. Kalinina and A. Uteshev

with respect to U and V . Multiplication of (14) by U� and (15) by V � results
(in accordance with (12)) in

μ3 = −V �AV = −U�AU. (16)

Multiplication of (14) by U� while (15) by V � yields

− 2μ1 = −2μ2 = U�AV = −σ (17)

and, provided this value is not 0,

V = − 1
2μ2

(A� + μ3I)U. (18)

Substituting (18) in (11) and taking into account (16), we arrive at (10).
If μ1 = μ2 = 0 then system (14)–(15) is reduced to AV = −μ3V,A�U =

−μ3U . This implies that the matrix A should possess a real eigenvalue κ1 with
the corresponding right and left eigenvectors V1 and U1 satisfying the condition
U�
1 V1 = 0. We claim that, in this case, matrix A has a multiple eigenvalue. For

the sake of simplicity, we prove this statement under an extra assumption that
all the eigenvalues κ1, . . . , κn of A are real. Suppose, by contradiction, that they
are distinct. One has then

κ1U
�
1 Vj = U�

1 AVj = κjU
�
1 Vj ⇒ U�

1 Vj = 0 for j ∈ {2, . . . , n}
and for Vj standing for the right eigenvector corresponding to κj . Therefore,
U1 is normal to all the vectors V1, V2, . . . , Vn composing a basis of R

n. The
contradiction proves the assertion. The statement of the theorem remains valid
with the corresponding critical value of (9) equal to 0. ��

To find the critical values of the function (9), the Lagrange multipliers method
is to be applied with the objective function G(U) − μ(U�U − 1). This results
into the system

AA�U − (

U�AU
)

(A + A�)U − μU = On×1 (19)

where every equation is now just cubic with respect to the entries of U . This
is an essential progress compared to the system (3)–(5)–(6), and makes it fea-
sible to manage the procedure of elimination of variables from the system (19)
accomplished with z − G(U) = 0 and U�U = 1 (at least for the matrices of the
order n ≤ 8).

Unfortunately, the new system possesses some extraneous solutions, i.e., those
not corresponding to the critical values of the distance function.

Example 2. For the matrix

A =
[

0 1
13 −6

]

,

the system
u2
1 + u2

2 = 1, u2∂G/∂u1 − u1∂G/∂u2 = 0

Distance to Matrices with Multiple Eigenvalues 213

possesses solutions

u1 = ± 1
58

√

2900 + 82
√

22, u2 = ± 1
58

√

464 − 87
√

22

that yield the value z = 0. The true distance equation is given by (7), and
d2(A, D) = −12

√
58 + 94 is provided by another solution of the system, namely

u1 = ± 1
58

√

1682 + 203
√

58, u2 = ± 1
58

√

1682 − 203
√

58.

��
The appearance of such extraneous solutions is caused by the non-equivalence

of the passage from the original stated problem to that from Theorem 3.
For instance, representation (10) is deduced under an extra condition of non-
vanishing of value (17).

Example 3. For the Frobenius matrix

A =

⎡

⎣

0 1 0
0 0 1

−91 −55 −13

⎤

⎦ ,

the distance equation

F(z) := 33076090700402342058246544 z6−377039198861306289080145178864z5

+ 937864902703881321034450183916 z4 − 771868276098720970149792503999 z3

+ 211070978787821517684022650624 z2 − 510584100140452518540394496 z

+ 319295875259784560640000 = 0

possesses the following real zeros

z1 ≈ 0.739335, z2 ≈ 0.765571, z3 ≈ 0.980467, z4 ≈ 11396.658548.

One has d(A, D) =
√

z1 ≈ 0.859846 and

E∗ ≈
⎡

⎣

0.198499 −0.195124 −0.530440
0.204398 −0.200922 −0.546202

−0.000907 0.000891 0.002424

⎤

⎦ ,

B∗ = A + E∗ ≈
⎡

⎣

0.198499 0.804875 −0.530440
0.204398 −0.200923 0.453797

−91.000907 −54.999108 −12.997576

⎤

⎦ .

The latter matrix possesses the double eigenvalue λ∗ ≈ 0.824777. ��

214 E. Kalinina and A. Uteshev

Example 4. For the matrix

A =

⎡

⎢
⎢
⎣

5 −36 −57 85
80 90 74 27
9 −91 81 65

−12 78 5 −63

⎤

⎥
⎥
⎦

,

the distance equation is represented by the order 12 irreducible over Z polyno-
mial F(z) with the absolute value of coefficients up to 10100. Its real zeros are

z1 ≈ 87.614714, z2 ≈ 2588.509661, z3 ≈ 17853.256334, z4 ≈ 32194.078324.

One has d(A, D) =
√

z1 ≈ 9.360273 and

E∗ ≈

⎡

⎢
⎢
⎣

3.350324 −0.177130 −3.704042 −0.328216
2.489713 −0.131630 −2.752569 −0.243906
2.565863 −0.135656 −2.836760 0.251366
3.898666 −0.206121 −4.310276 0.381935

⎤

⎥
⎥
⎦

,

with the matrix

B∗ = A + E∗ ≈

⎡

⎢
⎢
⎣

8.350324 −36.177130 −60.704042 84.671784
82.489713 89.868370 71.247430 26.756094
11.565863 −91.135656 78.163240 64.748634
−8.101333 77.793879 0.689724 −63.381935

⎤

⎥
⎥
⎦

possessing the double eigenvalue λ∗ ≈ 69.081077. ��
Some empirical conclusions resulting from about 30 generated matrices of

the orders up to n = 20. Generically,

(a) The extraneous factor equals zn, and on its exclusion one has
(b) the order of the distance equation F(z) = 0 equals n(n−1), and, if computed

symbolically w.r.t. the entries of A, F(0) has a factor [Dλ(fA(λ))]2;
(c) d2(A, D) equals the minimal positive zero of this equation.

Complete computational results for some examples are presented in [20]. For
the matrices A with integer entries within [−99,+99] (generated by Maple 15.0.
RandomMatrix package) we point out some complexity estimates for the dis-
tance equation computation (PC AMD FX-6300 6 core 3.5 GHz)

n deg F(z) coefficient size number of real zeros timing (s)

5 20 ∼10170 10 0.03

10 90 ∼10780 28 0.13

20 380 ∼103500 36 1940

The adequacy of the results has been extra checked via the nearest matrix B∗
computation. This matrix should

Distance to Matrices with Multiple Eigenvalues 215

(a) possess a double eigenvalue;
(b) have the value ‖B∗ − A‖ equal to the square root of the least positive zero

of F(z);
(c) satisfy the system of equations (3)–(5) (this property has been tested only

for the orders n ≤ 8);
(d) have the number of real eigenvalues which differs from that of the matrix A

at most by 2.

4 Singular Values

Let A ∈ R
n×n be a nonsingular matrix with the singular value decomposition

as follows
A = WDnV �, (20)

where Dn = diag {σ1, σ2, . . . , σn}, with singular values σ1 ≥ σ2 ≥ . . . ≥ σn > 0.
The following result [6,8] gives us the distance to the nearest matrix with

rank k < n.

Theorem 4. One has

min
rankB=k

||A − B|| = ||A − Ak|| =

⎧

⎪⎨

⎪⎩

σk+1, for the 2-norm,
[

n∑

i=k+1

σ2
i

]1/2

for the Frobenius norm.

Here
Ak = WDkV �, Dk = diag {σ1, σ2, . . . , σk, 0, . . . , 0}.

According to this theorem, the Frobenius distance from the nonsingular A to
the set of matrices with multiple eigenvalues satisfies the following inequality:

d(A, D) ≤
√

σ2
n−1 + σ2

n.

As for the distance d(A, D) in the 2-norm, the following result [14] is known:

Theorem 5. Let the singular values of the matrix

M =
[

A − λIn γIn

On×n A − λIn

]

(21)

be ordered like σ1(λ, γ) ≥ σ2(λ, γ) ≥ . . . ≥ σ2n(λ, γ) ≥ 0. Then one has

d(A, D) = min
λ∈C

max
γ≥0

σ2n−1(λ, γ).

It is well-known that for the matrix A ∈ R
n×n, n ≥ 2, Frobenius norm and

the 2-norm are related by the inequality [7]

||A||2 ≤ ||A||F ≤ √
n||A||2.

216 E. Kalinina and A. Uteshev

It is also known, that ||A||2 = ||A||F iff rank(A) = 1. According to Corollary 2,
both norms coincide for the minimal perturbation E∗. This results in an algo-
rithm for d(A, D) computation that is an alternative to that treated in Sect. 3.

To find singular values of the matrix (21), i.e., zeros of the polynomial

det(MM� − μI2n) (22)

= det
[

(A − λIn)(A − λIn)� + γ2In − μIn γ(A − λIn)�

γ(A − λIn) (A − λIn)(A − λIn)� − μIn

]

treated with respect to μ, is a nontrivial task. We will restrict our consideration to
the classes of matrices A where application of Schur formula for the determinant
of the block matrix (22) is possible, i.e., transforming it into

det(μ2In − μ[2(A − λIn)(A − λIn)� + γ2In] + [(A − λIn)(A − λIn)�]2). (23)

These happen to be symmetric, skew-symmetric, and orthogonal matrices. Sin-
gular values of the matrix (21) can be expressed explicitly via the eigenvalues of
this matrix.

5 Distance via Matrix Eigenvalues

5.1 Symmetric Matrix

Theorem 6. Let A be a symmetric matrix with distinct eigenvalues λ1, λ2,
. . . , λn. Then

d(A, D) =
1
2

min
1≤k<�≤n

|λk − λ�|.

If this minimum is attained at the eigenvalues λ2 and λ1, λ2 > λ1, then the
perturbation can be found as

E∗ =
1
4
(λ2 − λ1)(P1 + P2)(P1 − P2)�, (24)

where P1 and P2 are the eigenvectors of A corresponding to λ1 and λ2 respectively
with ‖P1‖ = ‖P2‖ = 1.

Remark. Generically, matrices E∗ and B∗ = A+E∗ are not the symmetric ones.

Proof. For j ∈ {1, . . . , m}, denote Pj the eigenvector of A corresponding to λj

with ‖Pj‖ = 1. Then P = (P1, P2, . . . , Pn) is the orthogonal matrix such that

P�AP = Λ where Λ = diag {λ1, λ2, . . . , λn}.

Since the orthogonal transformation does not influence the Frobenius distance,
we reduce d(A, D) to d(Λ, D).

Distance to Matrices with Multiple Eigenvalues 217

In this case, Λ − λI = (Λ − λI)� and these matrices commute. Hence, the
expression (23) is valid. Therefore, the singular values of the matrix (21) are the
zeros of the polynomials

μ2 − μ(2(λj − λ)2 + γ2) + (λj − λ)4, j ∈ {1, 2, . . . , n},

namely

μ
(j)
1,2 =

2(λj − λ)2 + γ2 ± γ
√

γ2 + 4(λj − λ)2

2
.

Differentiating w.r.t. γ, we get the single stationary point γ = 0. According
to [14], to find the 2-norm distance from A−λI to the manifold of matrices with
multiple zero eigenvalue, one should find the singular values σn and σn−1 for
the matrix (A − λI). They are |λk − λ| and |λ� − λ| for some k, �. The minimal
w.r.t. λ value of σn−1 comes up to |λk − λ�|/2 where λk − λ = λ − λ�.

Assume that
min

1≤k<�≤n
|λk − λ�| = |λ1 − λ2|.

Denote

Q :=

⎡

⎢
⎢
⎢
⎢
⎣

1√
2

− 1√
2

0 . . . 0
1√
2

1√
2

0 . . . 0
0 0 1 . . . 0

.
0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

, then Q�ΛQ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1+λ2
2

λ2−λ1
2 0 . . . 0

λ2−λ1
2

λ1+λ2
2 0 . . . 0

0 0 1 . . . 0
.
0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

.

For this matrix, Ẽ∗ =

⎡

⎢
⎢
⎣

0 λ1−λ2
2 0 . . . 0

0 0 0 . . . 0
.
0 0 0 . . . 0

⎤

⎥
⎥
⎦

. Obviously, we get

E∗ = QPẼ∗P�Q� =
λ1 − λ2

4
(P1 + P2)(P1 − P2)�.

��
Example 5. For the matrix

A =
1
9

⎡

⎣

−269 −98 76
−98 −296 22

76 22 −209

⎤

⎦ ,

one has

λ1 = −45, λ2 = −25, λ3 = −16 , P1 = [2/3, 2/3,−1]�, P2 = [−1/3, 2/3, 2/3]�.

d(A, D) =
| − 25 + 16|

2
=

9
2

and E∗ =

⎡

⎣

−3/4 3/4 0
−3/4 3/4 0

−3 3 0

⎤

⎦ .

218 E. Kalinina and A. Uteshev

5.2 Skew-Symmetric Matrix

Theorem 7. Let the nonzero eigenvalues of a skew-symmetric matrix A be

±b1i,±b2i, . . . ,±bmi where 0 < b1 < b2 < . . . < bm.

Then
d(A, D) = b1

and the minimal perturbation can be found as

E∗ = −b1(P1)�(P1)�, (25)

where P1 is the eigenvector of A corresponding to the eigenvalue b1i with ‖(P1)‖
=‖�(P1)‖ = 1.

Proof. For j ∈ {1, . . . , m}, denote Pj the eigenvector of A corresponding to bji
with ‖(Pj)‖ = ‖�(Pj)‖ = 1. If A possesses the zero eigenvalue, denote by P0

the corresponding eigenvector with ‖P0‖ = 1. Then the orthogonal matrix

P = ((P1),�(P1),(P2),�(P2), . . . ,(Pm),�(Pm), {P0})

is such that

P�AP = Υ where Υ := diag {Υ1, Υ2, . . . , Υm, {0}},

Υk :=
[

0 bk

−bk 0

]

, k ∈ {1, 2, . . . ,m}

(we set in braces the entries of the matrices corresponding to the case of existence
of zero eigenvalue for A).

Since an orthogonal transformation does not influence the Frobenius distance,
we reduce d(A, D) to d(Υ, D). In this case,

(Υ − λI)(Υ − λI)� = diag {Υ̃1, Υ̃2, . . . , Υ̃m, {0}},

where

Υ̃k :=
[

bk + λ2 0
0 b2k + λ2

]

for k ∈ {1, . . . , m}.

It is evident that

(Υ − λI)(Υ − λI)�(Υ − λI) = (Υ − λI)2(Υ − λI)�.

Hence, the expression (23) is valid.
Therefore, the singular values of matrix (21) are the zeros of the polynomials

μ2 − μ(2(λ + bk)2 + γ2) + (λ2 + b2k)2, k ∈ {1, 2, . . . ,m},

namely

μ
(k)
1,2 =

1
2

[

2(λ + bk)2 + γ2 ± γ
√

γ2 + 4(λ2 + b2k)
]

.

Distance to Matrices with Multiple Eigenvalues 219

Differentiating w.r.t. γ, we get a single stationary point γ = 0. According to [14],
to find the 2-norm distance from Υ −λI to the manifold of matrices with multiple
zero eigenvalue, it is sufficient to compute the singular values σn and σn−1 of
this matrix. They are

either σn = σn−1 =
√

b2k + λ2 for some k, or σn−1 =
√

b2k + λ2, σn = |λ|.

The minimal w.r.t. λ value of σn−1 comes up to b1 when λ = 0.
The corresponding perturbation

E∗ = P

⎡

⎢
⎢
⎣

0 −b1 0 . . . 0
0 0 0 . . . 0

.
0 0 0 . . . 0

⎤

⎥
⎥
⎦

P� = −b1(P1)�(P1)�.

��
Corollary 5. In the notation of Theorem 7, the distance d(A, D) is provided by
a continuum of perturbations E∗ contained in the set

{−b1(η(P1) + θ�(P1))(−η�(P1) + θ(P1))� | {η, θ} ⊂ R, η2 + θ2 = 1
}

.

5.3 Orthogonal Matrix

Theorem 8. Let n ≥ 3, and the eigenvalues of an orthogonal matrix A, other
than ±1, be

cos α1 ± i sin α1, cos α2 ± i sin α2, . . . , cos αm ± i sin αm, (26)

where 0 < sin α1 ≤ sin α2 ≤ . . . ≤ sin αm. Then

d(A, D) = sinα1 , (27)

and the minimal perturbation can be found as

E∗ = −(sin α1)(P1)�(P1)�, (28)

where P1 is the eigenvector of A corresponding to the eigenvalue cos α1 + i sin α1

with ||(P1)|| = ||�(P1)|| = 1.

We present two independent proofs for this result: the first one following from
Theorem 3 while the second one exploiting the considerations of Sect. 4.

Proof. I. Since AA� = I, the objective function (9) can be transformed into

G(U) = 1 − (

U�AU
)2

,

and system (19) is then replaced by
(

U�AU
) (

A� + A
)

U − μU = O. (29)

220 E. Kalinina and A. Uteshev

Multiply it by U�A�:
(

U�AU
) [

U�(A�)2U + 1 − μ
]

= 0,

and we get two alternatives:

either U�AU = 0 or μ = 1 + U�A2U.

If the second alternative takes place, substitute the expression for μ into (29):
(

U�AU
)

(A� + A)U − (1 + U�A2U)U = O.

Wherefrom it follows that

(A� + A)U =
1 + U�A2U

U�AU
U. (30)

If there exists a solution U = U∗ �= O for this equation, then U∗ is necessarily
an eigenvector of A� + A corresponding to the eigenvalue

ν∗ = (1 + U�
∗ A2U∗)/(U�

∗ AU∗).

Matrix A� + A is a symmetric one with the eigenvalues 2 cos α1, . . . , 2 cos αm

of the multiplicity 2 and, probably, ±2. Substitution U = U∗ into (30) and
multiplication by U�

∗ yields

ν∗ = 2U�
∗ AU∗ = 2 cos αj for some j.

Therefore, the critical values of the function G(U) are in the set {1−cos2 αj}m
j=1.

This results in (27).
The alternative U�

∗ AU∗ = 0 for U�
∗ U∗ = 1 corresponds to the case where A

possesses eigenvalues ±i. The result (27) remains valid. ��
Proof. II. For j ∈ {1, . . . , m}, denote by Pj the eigenvectors of A corresponding
to the eigenvalue cos αj ± i sin αj with ||(Pj)|| = ||�(Pj)|| = 1. Denote P[1] and
P[−1] the eigenvectors corresponding to the eigenvalues 1 and −1 correspondingly
(if any) with ‖P[1]‖ = ‖P[−1]‖ = 1. Then the orthogonal matrix

P = ((P1),�(P1),(P2),�(P2), . . . ,(Pm),�(Pm), {P[1], P[−1]})

is such that

P�AP = Ω where Ω = diag {Ω1, Ω2, . . . , Ωm, {1,−1}},

where

Ωk :=
[

cos αk sin αk

− sin αk cos αk

]

for k ∈ {1, 2, . . . ,m}

(we set in braces the entries of the matrices corresponding to the case of existence
of either of eigenvalues 1 or −1 or both for A).

Distance to Matrices with Multiple Eigenvalues 221

Since the orthogonal transformation does not influence the Frobenius dis-
tance, we reduce d(A, D) to d(Ω, D). In this case,

(Ω − λI)(Ω − λI)� = diag {Ω̃1Ω̃2, . . . , Ω̃m, {1, 1}},

where

Ω̃k :=
[

(cos αk − λ)2 0
0 (cos αk − λ)2

]

for k ∈ {1, 2, . . . ,m}.

It is evident that

(Ω − λI)(Ω − λI)�(Ω − λI) = (Ω − λI)2(Ω − λI)�.

Hence, expression (23) is valid. In this case, the singular values of the matrix (21)
are the zeros of the polynomials

μ2 − μ(2((cos αk − λ)2 + sin2 αk) + γ2) + (cos αk − λ)2 + sin2 αk),

namely:

μ
(k)
1,2 =

2((cos αk − λ)2 + sin2 αk) + γ2 ± γ
√

γ2 + 4((cos αk − λ)2 + sin2 αk)

2
.

Differentiating w.r.t. γ, we get a single stationary point γ = 0. According to [14],
to find the 2-norm distance from Ω−λI to the manifold of matrices with multiple
zero eigenvalue, one should find the singular values σn and σn−1 of this matrix.
They are either

σn = σn−1 =
√

(cos αk − λ)2 + sin2 αk

for some k or

σn−1 =
√

(cos αk − λ)2 + sin2 αk, σn = |1 − λ| .

The minimal value of σn−1 w.r.t. λ comes up to sin α1 in both cases.
The minimal perturbation

E∗ = P

⎡

⎢
⎢
⎢
⎣

0 − sin α1 0 . . . 0
0 0 0 . . . 0
...

...
0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

P� = −(sin α1)(P1)�(P1)�.

��
Corollary 6. In the notation of Theorem 8, the distance d(A, D) is provided by
a continuum of perturbations E∗ contained in the set
{

(− sin α1)(η(P1) + θ�(P1))(−η�(P1) + θ(P1))� | {η, θ} ⊂ R, η2 + θ2 = 1
}

.

222 E. Kalinina and A. Uteshev

Example 6. For the matrix

A =
1
3

⎡

⎣

−2 −2 1
1 −2 −2

−2 1 −2

⎤

⎦ ,

one has

λ1,2 = −1
2

± i

√
3

2
, λ3 = −1, P1 =

[

− 2√
6
,

1√
6
,

1√
6

]�
+ i

[

− 1√
2
,

1√
2
, 0

]�
.

Here d(A, D) =
√

3/2 ≈ 0.866025 and there are infinite number correspond-
ing perturbation matrices (10) generated by columns U∗ chosen from the span
of (P1) and �(P1). For instance:

U∗ := (P1)
⇓

E∗ =

⎡

⎣

0 1/2 −1/2
0 −1/4 1/4
0 −1/4 1/4

⎤

⎦ ;

U∗ := �(P1)
⇓

E∗ =

⎡

⎣

1/4 1/4 −1/2
−1/4 −1/4 1/2

0 0 0

⎤

⎦ .

In the both cases, spectrum of matrix B∗ is {−1,−1/2,−1/2}. ��

Remark. In all the cases, where the distance d(A, D) is achieved at γ = 0
and two minimal singular values of the matrix (21) coincide, i.e., σ2n−1(λ, 0) =
σ2n(λ, 0), we have found the rank 1 minimal perturbation whilst in the work [14]
it is described as a rank 2 matrix.

6 Conclusions

We have investigated Wilkinson’s problem for the distance evaluation from a
given matrix to the set of matrices possessing multiple eigenvalues. The structure
of the perturbation matrix is clarified that gives us an opportunity to compute
symbolically the distance equation with the zero set containing the critical values
of the squared distance function.

Computational complexity of the proposed solution is (traditionally to ana-
lytical approach) high. Although this payment should be agreed with regard
to the reliability of the computation results, we still hope to reduce it in fur-
ther investigations.

There exists a definite similarity of the considered problem to that of Routh–
Hurwitz distance to instability computation. For instance, the approach sug-
gested in Sect. 3 has its counterpart in the one developed by Ch. Van Loan
for the distance to instability problem [11,12]. This is also a subject of subse-
quent discussions.

Acknowledgments. The authors are grateful to Prof. Evgenii V. Vorozhtsov and to
the anonymous referees for valuable suggestions that helped to improve the quality of
the paper.

Distance to Matrices with Multiple Eigenvalues 223

References

1. Ahmad, S.S., Alam, R.: On Wilkinson’s problem for matrix pencils. ELA 30, 632–
648 (2015)

2. Alam, R., Bora, S.: On sensitivity of eigenvalues and eigendecompositions of matri-
ces. Linear Algebra Appl. 396, 273–301 (2005)

3. Armentia, G., Gracia, J.-M., Velasco, F.-E.: Nearest matrix with a prescribed eigen-
value of bounded multiplicities. Linear Algebra Appl. 592, 188–209 (2020)

4. Demmel, J.W.: Computing stable eigendecompositions of matrices. Linear Algebra
Appl. 79, 163–193 (1986)

5. Demmel, J.W.: On condition numbers and the distance to the nearest ill-posed
problem. Numer. Math. 51, 251–289 (1987)

6. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1, 211–218 (1936)

7. Golub, G., Van Loan, Ch.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

8. Higham, N.G.: Matrix nearness problems and applications. In: Applications of
matrix theory, pp. 1–27. Oxford University Press, New York (1989)

9. Horn, R.A., Johnson, Ch.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2013)

10. Lippert, R.A., Edelman, A.: The computation and sensitivity of double eigenval-
ues. In: Chen, Z., Li, Y., Micchelli, C.A., Xu, Y. (eds.) Advances in Computa-
tional Mathematics: Proceedings, pp. 353–393. Gaungzhou International Sympo-
sium, Dekker, New York (1999)

11. Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y.: Routh – Hurwitz stability of
a polynomial matrix family. Real perturbations. In: Boulier, F., England, M.,
Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 316–
334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 18

12. Kalinina, E., Uteshev, A.: On the real stability radius for some classes of matrices.
In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021.
LNCS, vol. 12865, pp. 192–208. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85165-1 12

13. Kokabifar, E., Loghmani, G.B., Karbassi, S.M.: Nearest matrix with prescribed
eigenvalues and its applications. J. Comput. Appl. Math. 298, 53–63 (2016)

14. Malyshev, A.: A formula for the 2-norm distance from a matrix to the set of
matrices with multiple eigenvalues. Numer. Math. 83, 443–454 (1999)

15. Mengi, E.: Locating a nearest matrix with an eigenvalue of prespecified algebraic
multiplicity. Numer. Math. 118, 109–135 (2011)

16. Netto, E.: Rationale Funktionen einer Veränderlichen; ihre Nullstellen. In: Meyer,
W.F. (Ed.) Encyklopadie der Mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen, Teubner, Leipzig, Germany, 1898–1904, vol. 1, pp. 227–254 (1898).
https://doi.org/10.1007/978-3-663-16017-5 7

17. Pólya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer, Berlin
(1976). https://doi.org/10.1007/978-3-642-61983-0

18. Ruhe, A.: Properties of a matrix with a very ill-conditioned eigenproblem. Numer.
Math. 15, 57–60 (1970)

19. Turnbull, H.W.: Matrix differentiation of the characteristic function. Proc. Edinb.
Math. Soc. Second Ser. II, 256–264 (1931)

20. Uteshev, A.: Notebook (2022). http://vmath.ru/vf5/matricese/optimize/
distancee/casc2022ex. Accessed 21 June 2022

https://doi.org/10.1007/978-3-030-60026-6_18
https://doi.org/10.1007/978-3-030-85165-1_12
https://doi.org/10.1007/978-3-030-85165-1_12
https://doi.org/10.1007/978-3-663-16017-5_7
https://doi.org/10.1007/978-3-642-61983-0
http://vmath.ru/vf5/matricese/optimize/distancee/casc2022ex
http://vmath.ru/vf5/matricese/optimize/distancee/casc2022ex

224 E. Kalinina and A. Uteshev

21. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, New
York (1965)

22. Wilkinson, J.H.: Note on matrices with a very ill-conditioned eigenproblem. Numer.
Math. 19, 176–178 (1972)

23. Wilkinson, J.H.: On neighbouring matrices with quadratic elementary divisors.
Numer. Math. 44, 1–21 (1984)

24. Wilkinson, J.H.: Sensitivity of eigenvalues. Util. Math. 25, 5–76 (1984)

On Boundary Conditions Parametrized
by Analytic Functions

Markus Lange-Hegermann1(B) and Daniel Robertz2

1 Technische Hochschule Ostwestfalen-Lippe, inIT (Institute Industrial IT), Lemgo,
Germany

markus.lange-hegermann@th-owl.de
2 Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, Aachen,

Germany

daniel.robertz@rwth-aachen.de

Abstract. Computer algebra can answer various questions about par-
tial differential equations using symbolic algorithms. However, the inclu-
sion of data into equations is rare in computer algebra. Therefore,
recently, computer algebra models have been combined with Gaussian
processes, a regression model in machine learning, to describe the behav-
ior of certain differential equations under data. While it was possible to
describe polynomial boundary conditions in this context, we extend these
models to analytic boundary conditions. Additionally, we describe the
necessary algorithms for Gröbner and Janet bases of Weyl algebras with
certain analytic coefficients. Using these algorithms, we provide exam-
ples of divergence-free flow in domains bounded by analytic functions
and adapted to observations.

Keywords: Gaussian processes · Boundary conditions · Gröbner
bases · Partial differential equations

1 Introduction

Differential algebra is concerned with structural properties of systems of ordinary
and partial differential equations (ODEs and PDEs) and provides algorithms for
their analysis [1,31]. The properties unveiled by these algorithms correspond
to intrinsic properties of the solutions of the system. At the same time these
algorithms isolate equations of interest via elimination, transform systems into
normal forms [8], describe singularities [24], allow to investigate control-theoretic
properties [22,23], or detect the size of solution sets [17,18,20].

Usually, PDEs come with additional information on the evaluation of func-
tions. For example in inverse problems, parameters in differential equations are
being estimated from data points. Or in theoretical and numerical methods for
PDEs, boundary conditions, i.e., evaluations of functions on manifolds, ensure
well-posedness. Data points and boundary conditions have rarely been addressed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 225–245, 2022.
https://doi.org/10.1007/978-3-031-14788-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_13

226 M. Lange-Hegermann and D. Robertz

by algebraic means, with the exception of modeling of boundary conditions by
integro-differential operators [35,38].

Seemingly disconnected from these algebraic algorithms are Gaussian Pro-
cesses (GPs) [34], a general regression technique, which arise as limit of large
neural networks [29] and generalize linear (ridge) regression, Kriging, and many
spline models. GPs describe probability distributions on function spaces. As
such,

(1) they can be conditioned on observations given as data points using Bayes’
rule in closed form, which avoids overfitting,

(2) they admit an extensive dictionary between their mathematical properties
and their covariance function, which allows to prescribe intended behavior,

(3) form the maximum entropy prior distribution under the assumption of a
finite mean and variance in the unknown behavior, and

(4) the class of GPs is closed under various operations like conditioning,
marginalization, and linear operators.

They are typically used in applications when data is rare or expensive to pro-
duce, e.g., in active learning [50], biology [11], anomaly detection [3] or engi-
neering [45]. The mean function of the posterior is used for regression and the
variance quantifies uncertainty. In that sense, they allow to deal with data, noise,
and uncertainty in a way algebraic algorithms usually cannot.

The inclusion of algebraic methods for differential equations into covariance
functions of GPs began by divergence-free and curl-free vector fields [25,40],
extended to electromagnetic fields [43,47] and strain fields [14]. These approaches
were formalized in [15], building on [39]. Then, [19] used Gröbner bases and
worked out the necessity of systems being controllable. Boundary conditions
were added to the setup in [21], restricted to simple polynomial boundaries.

In this paper, we develop algebraic algorithms suitable for this framework to
deal with analytic boundary conditions. These algorithms might take

(i) parametrizable linear systems of differential equations,
(ii) assumptions on the solutions of the differential equations, e.g. smoothness,
(iii) various forms of boundary conditions specified by analytic functions, and
(iv) (noisy or noiseless) evaluations of functions at finitely many points

as inputs. They yield a probability distribution on the solution space of the
differential equation given by a GP, which has the above properties (1)–(4).

Our approach is as follows. We construct a first parametrization of the solu-
tion set of the system of differential equations by finding a matrix whose row
nullspace is generated by the equations of the given system. We take a second
parametrization of the boundary condition. Then, we construct a parametriza-
tion of the intersection of the images of these two parametrizations. Algorith-
mically, this requires Gröbner bases over a Weyl algebra enlarged by various
analytic functions, for which we develop the necessary theory and algorithms.
After this symbolic approach, numeric algorithms incorporate measurement data
into the GP.

On Boundary Conditions Parametrized by Analytic Functions 227

In this setup, ODEs are trivial, both algebraically, as parametrizable linear
systems of ODEs with constant or variable coefficients are isomorphic to free
systems due to the Jacobson form [12], and also from the stochastic point of
view, as boundary conditions in ODEs can be modelled by conditioning on data
points [16]. Hence, we focus on PDEs.

From the point of view of machine learning, the results of this paper allow
to incorporate information into the covariance structure of a GP prior. This
prior is supported by solutions of the differential equation and the boundary
conditions. In particular, rare measurement data can refine and improve this
prior knowledge, instead of being necessary to learn this prior knowledge.

The contributions of this paper can be summarized as follows:

(a) we develop Gröbner basis algorithms for Weyl algebras over certain rings of
analytic functions (cf. Sects. 5 and 6),

(b) we study boundary conditions parametrized by analytic functions, in par-
ticular how they constrain GPs (cf. Sect. 7), and

(c) we construct GP priors for solution sets of PDEs including boundary con-
ditions (cf. Sect. 8).

2 Gaussian Processes

A Gaussian Process (GP) g = GP(μ, k) defines a probability distribution on the
evaluations of functions D → R

� where D ⊆ R
d ≡ R

1×d such that function values
g(x1), . . . , g(xn) at points x1, . . . , xn ∈ D are jointly (multivariate) Gaussian.
A GP g is specified by a mean function μ : D → R

� : x �→ E(g(x)) and a
positive semidefinite1 covariance function

k : D × D −→ R
�×�
�0 : (x, x′) �−→ E

(
(g(x) − μ(x))(g(x′) − μ(x′))T

)
.

Any finite set of evaluations of g follows the multivariate Gaussian distribution
⎡

⎢
⎣

g(x1)
...

g(xn)

⎤

⎥
⎦ ∼ N

⎛

⎜
⎝

⎡

⎢
⎣

μ(x1)
...

μ(xn)

⎤

⎥
⎦ ,

⎡

⎢
⎣

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

⎤

⎥
⎦

⎞

⎟
⎠ .

Now, one knows where a function value g(x) is supposed to be (mean μ(x)), which
ignorance we have about g(x) (variance k(x, x)), and how two function values
g(x1) and g(x2) are related (covariance k(x1, x2)). GPs are popular functional
priors in Bayesian inference due to their maximum entropy property [13].

Assume the probabilistic regression model y = g(x) for a GP g = GP(0, k).
Normalizing the data to mean zero justifies assuming a prior mean function zero.

1 The function k is positive (semi)definite if and only if for any x1, . . . , xn ∈ D the
matrix K = (k(xi, xj))i,j ∈ R

n�×n� is positive (semi)definite, i.e., K � 0.

228 M. Lange-Hegermann and D. Robertz

Conditioning the GP on training data points (xi, yi) ∈ D ×R
1×� for i = 1, . . . , n

by Bayes’ theorem yields the posterior

p(g(x) = y | g(xi) = yi) =
p(g(xi) = yi | g(x) = y)

p(g(xi) = yi)
· p(g(x) = y),

where i always runs from 1 to n. All of these distributions are multivariate
Gaussian. Hence, the posterior p(g(x) = y | g(xi) = yi) is again a GP and can
be computed in closed form via linear algebra:

GP
(

x �→ yk(X,X)−1k(X,x),

(x, x′) �→ k(x, x′) − k(x,X)k(X,X)−1k(X,x′)
)
, (1)

where y ∈ R
1×�n denotes the row vector obtained by concatenating the yi and

k(x,X) ∈ R
�×�n resp. k(X,x) ∈ R

�n×� resp. k(X,X) ∈ R
�n×�n
�0 denote the

(covariance) matrices obtained by concatenating the blocks k(x, xj) resp. k(xj , x)
resp. k(xi, xj) to a matrix. In case of noisy data (yi)j , one adds the noise vari-
ance var((yi)j) to the ((i − 1)� + j)-th diagonal entry of k(X,X). The Cholesky
decomposition improves numerical stability regarding the inversion of the posi-
tive definite matrix k(X,X) [34]. In the posterior (1), the mean function can be
used as regression model and its variance as model uncertainty.

The class of GPs is closed under linear operators once mild assumptions hold,
e.g. the derivative of a GP with differentiable realizations is again a GP.

Fig. 1. Left: a regression plot (mean and the 2σ confidence bands) of a GP with mean
zero and squared exponential covariance function conditioned on the points (−2, −1)
and (2, 1) with noise variance of 0.12. Right: the GP is additionally conditioned on
derivative 1 with noise 0.12 at both data points.

D

Y Z

b◦g∈b∗G

g∈G

b

Given a set of functions G ⊆ Y D and b : Y → Z, then the
pushforward is b∗G = {b ◦ f | f ∈ G} ⊆ ZD. The pushforward
of a stochastic process g : D → Y by b : Y → Z is defined as

b∗g : D −→ Z : d �−→ (b ◦ g)(d).

On Boundary Conditions Parametrized by Analytic Functions 229

Lemma 1 ([21, Lemma 2.2]). Let F and G be spaces of functions defined
on a set D with product σ-algebra of the function evaluations. Let g =
GP(μ(x), k(x, x′)) with realizations in F and B : F → G a linear, measur-
able operator which commutes with expectation w.r.t. the measure induced by g
on F and by B∗g on G. Then, the Gaussian Process (GP) B∗g of g under B is
a GP with

B∗g = GP(Bμ(x), Bk(x, x′)(B′)T) ,

where B′ denotes the operation of B on functions with argument x′.

Example 1. Let g = GP(0, k(x, x′)) be a GP with realizations (a.s.) in the set
C1(R,R) of differentiable functions. The pushforward GP

[
∂
∂x

]
∗ g := GP

(
0,

∂2

∂x∂x′ k(x, x′)
)

describes derivatives of the GP g [6, §5.2]. The one-argument derivative
∂
∂xk(x, x′) yields the cross-covariance between on the one hand a function eval-
uation g(x′) of g at x′ ∈ R and on the other hand its derivative (

[
∂
∂x

]
∗ g)(x)

evaluated at x ∈ R. We use this to include data of derivatives into a model in
Fig. 1.

3 Solution Sets of Operator Equations

This section discusses how GPs describe the real vector space F = C∞(D,R),
a candidate set of solutions for the linear differential equations, and how such
GPs interplay with linear operators. Assume that D ⊂ R

d is compact and F is
endowed with the usual Fréchet topology generated by the separating family

‖f‖a := sup
i∈Z

d
≥0

|i|≤a

sup
x∈D

∣
∣
∣
∣
∂|i|

∂xi
f(x)

∣
∣
∣
∣ (2)

of seminorms for all a ∈ Z≥0, where i = (i1, . . . , id) ∈ Z
d
≥0 is a multi-index with

|i| = i1 + . . . + id. The squared exponential covariance function

kF : Rd × R
d −→ R : (xi, xj) �−→ exp

(

−1
2

d∑

a=1

(xi,a − xj,a)2
)

(3)

induces an adapted GP prior in F = C∞(D,R).

Proposition 1. The scalar GP gF = GP(0, kF) has realizations dense (a.s.)
in F with respect to the Fréchet topology defined by Eq. (2).

230 M. Lange-Hegermann and D. Robertz

Proof. We show that the realizations of gF are densely contained in F in three
steps: first, the realizations are contained in F , i.e., smooth; second, the elements
of the reproducing kernel Hilbert space (RKHS)2 H(gF) of the GP gF , are
realizations; and third, the RKHS H(gF) is dense in F .

First, show that the realizations of gF lie in F . They are continuously differen-
tiable, as kF is twice continuously differentiable [6, (9.2.2)]. Continue inductively,
as the covariance ∂2

∂x∂x′ kF (x, x′) of the derivative of gF is again smooth.
For the second step, we note that C∞(D,R) is Radon as D is compact, hence

gF induces a Radon measure on F . For any Radon measure, H(gF) is contained
in the topological support of the measure induced by gF by [4, Thm. 3.6.1]. For
this, F = C∞(D,R) needs to be locally convex, which it is being Fréchet.

For the third step, by [41, Prop. 4], H(gF) is continuously contained in F
and dense by [41, Thm. 12, Prop. 42] or [41, after proof of Cor. 38]. ��

The following three R-algebras R model linear operator equations by mak-
ing F a left R-module. Sections 5 and 6 introduce Gröbner bases for such rings.

Example 2. The polynomial ring R = R[∂x1 , . . . , ∂xd
] models linear PDEs with

constant coefficients, where ∂xi
acts on F = C∞(D,R) via partial derivative

with respect to xi.

Example 3. Let f1, . . . , fn ∈ F be functions. The ring R = R[f1, . . . , fn] is com-
mutative and models boundary conditions by multiplication, see Sect. 7.

Example 4. Let F ⊆ F be an R-algebra closed under partial derivatives. To
combine linear differential equations with boundary conditions, consider the
Weyl algebra R = R[F]〈∂x1 , . . . , ∂xd

〉. The non-commutative relation ∂xi
f =

f∂xi
+ ∂f

∂xi
represents the product rule of differentiation for f ∈ F and 1 ≤ i ≤ d.

Operators defined over these three rings satisfy the assumptions of Lemma 1:
multiplication commutes with expectations and the dominated convergence the-
orem implies that expectation commutes with derivatives, as realizations of gF
are continuously differentiable. Furthermore, these rings act continuously on F :
the Fréchet topology makes derivation continuous by construction, and multipli-
cation by elements in F is bounded as D is compact, which implies continuity
in the Fréchet space F . In particular, we have the following:

Corollary 1. Let F = C∞(D,R) be the space of smooth functions defined on
a compact set D ⊂ R

d. Let g = GP(μ(x), k(x, x′)) with realizations in F�′′
and

B : F�′′ → F� a linear operator over one of the operator rings in Examples 2, 3,
or 4. Then, the pushforward GP B∗g is again Gaussian with

B∗g = GP(Bμ(x), Bk(x, x′)(B′)T) ,

where B′ denotes the operation of B on functions with argument x′.
2 For GP(0, k), the set H0(g) generated as a vector space by the x �→ k(xi, x) for

xi ∈ D with scalar product 〈k(xi, −), k(xj , −)〉 := k(xi, xj) is a pre-Hilbert space.
Its closure H(g) is the reproducing kernel Hilbert space of the GP g [2].

On Boundary Conditions Parametrized by Analytic Functions 231

4 Parametrizations

We consider solution sets of linear differential equations, how to parametrize
them by a suitable matrix B and thereby describe them by a GP B∗g. Let R be
one of the rings from the previous section, F the left R-module C∞(D,R) and
A ∈ R�′×�. Define the solution set solF (A) := {f ∈ F�×1 | Af = 0} of A. We
say that a GP is in a function space, if its realizations are a.s. contained in said
space. We first describe the interplay of GPs and solution sets of operators.

Lemma 2 ([19, Lemma 2.2]). Let g = GP(μ, k) be a GP in F�×1. Then g is a
GP in the solution set solF (A) of A ∈ R�′×� if and only if both μ is contained
in solF (A) and A∗(g − μ) is the constant zero process.

This lemma motivates how to construct GPs with realizations in solF (A):
find a B ∈ R�×�′′

with AB = 0 [15]. Then, taking any GP g = GP(0, k) in
F�′′×1, the realizations of B∗g are (possibly strictly) contained in solF (A), as
A∗(B∗g) = (AB)∗g = 0∗g = 0. One prefers to enlarge B to approximate all
solutions in solF (A) by B∗g, i.e., the realizations of B∗g should be dense in
solF (A). Call B ∈ R�×�′′

a parametrization of solF (A) if solF (A) = BF�′′×1.
Such a parametrization does not always exist, e.g., for the matrix A =

[
∂x1

]
.

Proposition 2 ([21, Proposition 3.5]). Let B ∈ R�×�′′
be a parametrization

of solF (A). Let g�′′×1
F be the GP of �′′ i.i.d. copies of gF , the GP with squared

exponential covariance kF (3). Then, B∗g�′′×1
F has realizations dense in solF (A).

We summarize how to algorithmically decide whether a parametrization
exists and how to compute it in the positive case. Computations directly over the
space of functions F are infeasible. Hence, we compute over R instead. Inferring
results over F is possible once F is an injective3 R-module, i.e., HomR(−,F) is
exact. Luckily, for PDEs with constant coefficients we have the following:

Theorem 1 ([7,26] [31, §(54)]). Let R = R[∂x1 , . . . , ∂xd
] be as in Example 2

and D ⊂ R
d convex. Then, F = C∞(D,R) is an injective R-module.

With this in mind, we recall the construction of parametrizations.

Theorem 2 ([49, Thm. 2] [31, §7.(24)] [5,32,33,37]). Let R be a ring and F
an injective left R-module. Let A ∈ R�′×�. Let B be the right nullspace of A and
A′ the left nullspace of B. Then solF (A′) is the largest subset of solF (A) that is
parametrizable, B parametrizes solF (A′), and solF (A) is parametrizable if and
only if the rows of A and A′ generate the same row module, i.e., if all rows of
A′ are contained in the row module generated by A.

3 In algebraic system theory, one usually works with injective cogenerators F [32].
Injective cogenerators allow to infer back from analysis in F to algebra over R. In
our setting, this step back is superfluous, as the algebra cannot encode data points.

232 M. Lange-Hegermann and D. Robertz

Gröbner bases turn Theorem 2 effective, as they allow to compute the right
nullspace B of A, the left nullspace A′ of B and decide whether the rows of A′

are contained in the row space of A over R. We have the following criterion.

Theorem 3 ([31, §7.(21)]). A system solF (A) is parametrizable if and only if
it is controllable. If A is not parametrizable, then the solution set solF (A′) is the
subset of controllable behaviors in solF (A), where A′ is defined as in Theorem 2.

Solution sets of differential equations and polynomial boundary conditions
can be intersected [21].

Theorem 4 ([21, Theorem 5.2]). Let B1 ∈ R�×�′′
1 and B2 ∈ R�×�′

2 . Denote

by C :=
[
C1

C2

]
∈ R(�′

1+�′
2)×m the right-nullspace of the matrix B :=

[
B1 B2

] ∈
R�×(�′

1+�′
2). Then B1C1 = −B2C2 parametrizes solutions of B1F�′

1 ∩ B2F�′
2 .

Here, B1 might be a matrix of differential operators and B2 a matrix of
polynomial functions, and we consider both matrices over a common ring R.

5 Rings of Differential Operators over Differential
Algebras

We have considered parametrizations by differential operators and in Sect. 7 we
consider parametrizations of boundary conditions by analytic functions. For their
combination in Sect. 8, we now extend classical Gröbner and Janet bases.

Let D ⊂ R
d be connected and denote by δ1, . . . , δd the commuting derivations

in the coordinate directions of Rd. Let K be a differential algebra over the real
numbers4 R generated by analytic functions f1, . . . , fr : D → R. For algorithmic
reasons assume that K is finitely presented as a differential algebra over R as

K = R{f1, . . . , fr} ∼= R{F1, . . . , Fr}/P,

where P is a prime differential ideal of R{F1, . . . , Fr}, generated by

{ δjFi − gi,j | i = 1, . . . , r, j = 1, . . . , d }, (4)

where gi,j ∈ R[F1, . . . , Fr] are (non-differential) polynomials in F1, . . . , Fr, and
the above isomorphism is given by fi �→ Fi + P . In particular, the generators
f1, . . . , fr of K are algebraically independent over R. Then K is isomorphic to
R[f1, . . . , fr] as an R-algebra, and K is Noetherian, factorial, and a GCD domain.

Example 5. For the differential algebra K = Q{x, y, exp(x2 + y2 − 1)} with
derivations δ1 = ∂/∂x, δ2 = ∂/∂y we have K ∼= Q{F1, F2, F3}/P , where

δ1F1 − 1, δ2F1, δ1F2, δ2F2 − 1, δ1F3 − 2F1F3, δ2F3 − 2F2F3

4 Of course, the constructions in this and the following section work over any suffi-
ciently algorithmic differential field of characteristic zero, not only R. In practice,
we assume to work over a computable subfield of R.

On Boundary Conditions Parametrized by Analytic Functions 233

generate the prime differential ideal P such that

Q{F1, F2, F3} −→ K : F1 �−→ x, F2 �−→ y, F3 �−→ exp(x2 + y2 − 1)

is an epimorphism of differential algebras over Q mapping precisely P to zero.

Definition 1. Let the ring of differential operators R = K〈∂1, . . . , ∂d〉 be the
iterated Ore extension of K defined by

∂i a = a ∂i + δi(a), a ∈ K, i = 1, . . . , d,
∂i ∂j = ∂j ∂i, i, j = 1, . . . , d.

Remark 1. The ring R is (left) Noetherian, because K is Noetherian (cf., e.g., [28,
Thm. 1.2.9 (iv)]). Moreover, R has the left Ore property, i.e., every pair of non-
zero elements of R has a non-zero common left multiple [28, Thm. 2.1.15], which,
in particular, implies the existence of a skew field of fractions of R.

We define the set of monomials of R as

Mon(R) = { fα1
1 . . . fαr

r ∂β1
1 . . . ∂βd

d | α1, . . . , αr, β1, . . . , βd ∈ Z≥0 }.

It is a basis of R as an R-vector space: every p ∈ R has a unique representation

p =
∑

m∈Mon(R)

cm m, (*)

where cm ∈ R and only finitely many cm are non-zero.
A monomial ordering < on R is a total ordering on Mon(R) satisfying

f0
1 . . . f0

r ∂0
1 . . . ∂0

d = 1 < m for all 1 �= m ∈ Mon(R),
m1 < m2 ⇒ fi m1 < fi m2 for all m1,m2 ∈ Mon(R), i = 1, . . . , r,
m1 < m2 ⇒ m1 ∂j < m2 ∂j for all m1,m2 ∈ Mon(R), j = 1, . . . , d.

For every 0 �= p ∈ R the <-greatest monomial m occurring with non-zero coef-
ficient cm in the representation (*) of p is called the leading monomial of p and
is denoted by lm(p). Its coefficient cm is called the leading coefficient of p and is
denoted by lc(p). For a subset S of R we let lm(S) = { lm(s) | 0 �= s ∈ S }.

Example 6. The weighted degree-reverse-lexicographical ordering < with weights
w = (w1, . . . , wr+d) ∈ Q

r+d
>0 (weighted deg-rev-lex) is defined by

fα1
1 . . . fαr

r ∂
αr+1
1 . . . ∂

αr+d

d < f
α′

1
1 . . . f

α′
r

r ∂
α′

r+1
1 . . . ∂

α′
r+d

d

⇐⇒
(

−
r+d∑

j=1

wiαi, αr+d, . . . , α1

)

>lex

(

−
r+d∑

j=1

wiα
′
i, α

′
r+d, . . . , α

′
1

)

,

where αi, α
′
i ∈ Z≥0 and >lex compares tuples lexicographically.

234 M. Lange-Hegermann and D. Robertz

Example 7. We let the elimination ordering < on R (eliminating ∂1, . . . , ∂d) be

fα1
1 . . . fαr

r ∂β1
1 . . . ∂βd

d < f
α′

1
1 . . . f

α′
r

r ∂
β′
1

1 . . . ∂
β′

d

d

⇐⇒
(

∂β1
1 . . . ∂βd

d ≺∂ ∂
β′
1

1 . . . ∂
β′

d

d or

∂β1
1 . . . ∂βd

d = ∂
β′
1

1 . . . ∂
β′

d

d and fα1
1 . . . fαr

r ≺f f
α′

1
1 . . . f

α′
r

r

)
,

where αi, α′
i, βj , β′

j ∈ Z≥0 and where ≺∂ and ≺f are the deg-rev-lex ordering
on the polynomial algebras Q[∂1, . . . , ∂d] and Q[f1, . . . , fr], respectively.

Assumption 1. The monomial ordering < on R is chosen such that the leading
monomial of

∂j fi = fi ∂j + δj(fi) = fi ∂j + gi,j

with respect to > is fi ∂j, for all i = 1, . . . , r and j = 1, . . . , d. (Recall that
fi ∂j + gi,j is the representation (*) of ∂j fi taking the generators (4) of the
prime differential ideal P into account.)

In what follows, we make Assumption 1, which is met if > is a degree-reverse-
lexicographical ordering with weights (v1, . . . , vr, w1, . . . , wd) satisfying

wj ≥ max
i=1,...,r

(
r∑

k=1

vk degfk
(gi,j) − vi

)

for all j = 1, . . . , d,

or if > is an elimination ordering as in Example 7.
Before introducing Janet bases for left ideals of R we recall the concept of

Janet division, which we formulate for ideals of the free commutative semigroup
(Z≥0)r+d in our context. Note that if I is a non-zero left ideal of R, then the
exponent vectors (α1, . . . , αr, β1, . . . , βd) of all elements of lm(I) form an ideal of
(Z≥0)r+d due to the definition of a monomial ordering and Assumption 1. The
bijection between Mon(R) and (Z≥0)r+d may as well be chosen to be, e.g.,

ε : Mon(R) −→ (Z≥0)r+d : fα1
1 . . . fαr

r ∂β1
1 . . . ∂βd

d �−→ (β1, . . . , βd, α1, . . . , αr),

which is the bijection we usually work with.
Recall that every ideal of (Z≥0)r+d is finitely generated; moreover, it has a

unique minimal generating set. For k ∈ {1, . . . , r+d} we denote by 1k the multi-
index with 1 in position k and 0 elsewhere. Following M. Janet (cf., e.g., [36])
we make the following definition in terms of exponent vectors.

Definition 2. Let A ⊂ (Z≥0)r+d be finite and α = (α1, . . . , αr+d) ∈ A. Then
ε−1(1k) is said to be multiplicative for the monomial ε−1(α) if and only if

αk = max{α′
k | (α′

1, . . . , α
′
r+d) ∈ A with α′

1 = α1, . . . , α′
k−1 = αk−1 }.

Let M ⊂ Mon(R) be finite. Then for every m ∈ M we obtain a partition
μ(m,M) � μ(m,M) of {f1, . . . , fr, ∂1, . . . , ∂d}, where each element of μ(m,M)
is multiplicative for m and each element of μ(m,M) is non-multiplicative for m.

On Boundary Conditions Parametrized by Analytic Functions 235

Example 8. Let r = 2, n = 1, M = { f1 f2
2 , f2

1 f2, f2 ∂2
1 , f1 ∂2

1 }. Using the above
bijection ε we obtain

μ(f1 f2
2 ,M) = { f2 }, μ(f2

1 f2,M) = { f1, f2 },
μ(f2 ∂2

1 ,M) = { ∂1, f2 }, μ(f1 ∂2
1 ,M) = { ∂1, f1, f2 }.

Definition 3. Let M ⊂ Mon(R) be finite. We define two supersets of M in
Mon(R) as follows:

〈M 〉 =
⋃

m∈M

{ fφ1
1 . . . fφr

r m∂ψ1
1 . . . ∂ψd

d | φi, ψj ∈ Z≥0 },

[M] =
⊎

m∈M

{ fφ1
1 . . . fφr

r m∂ψ1
1 . . . ∂ψd

d | φi, ψj ∈ Z≥0,

φi = 0 if fi �∈ μ(m,M) and ψj = 0 if ∂j �∈ μ(m,M) },

where the latter union is disjoint by construction of Janet division. The set M
of monomials is said to be Janet complete if [M] = 〈M 〉.

Any finite subset M of Mon(R) has a unique smallest (finite) Janet complete
superset of M , which we call the Janet completion of M [36, Subsect. 2.1.1].

Definition 4. Let I be a non-zero left ideal of R. Using the notation of Def-
inition 3, a finite generating set G ⊂ R \ {0} for I is called a Gröbner basis
for I with respect to the monomial ordering < if 〈 lm(G) 〉 = lm(I). If moreover,
lm(G) is Janet complete, i.e., [lm(G)] = 〈 lm(G) 〉 = lm(I), then G is called a
Janet basis for I with respect to <.

Assumption 1 facilitates a multivariate polynomial division in R.

Remark 2. Suppose L ⊂ R \ {0} is finite and lm(L) is Janet complete. Let
p1 ∈ R \ {0}. If lm(p1) ∈ [lm(L)], then there exists a unique p2 ∈ L such that

lm(p1) = fφ1
1 . . . fφr

r lm(p2) ∂ψ1
1 . . . ∂ψd

d

for certain φi, ψj ∈ Z≥0, where φi = 0 if fi �∈ μ(lm(p2), lm(L)) and ψj = 0
if ∂j �∈ μ(lm(p2), lm(L)). Therefore, subtracting lc(p1) fφ1

1 . . . fφr
r ∂ψ1

1 . . . ∂ψd

d p2
from lc(p2) p1 yields either zero or an element of R whose leading monomial is less
than lm(p1). Since a monomial ordering < does not admit infinitely descending
chains of monomials, this reduction procedure always terminates.

Iterated reduction, as just defined, modulo a Gröbner basis or a Janet basis
for the left ideal I allows to decide membership to I.

Proposition 3. Let G be a Gröbner basis or a Janet basis for the left ideal I of
R with respect to any monomial ordering <, and let p ∈ R. Then we have p ∈ I
if and only if the remainder of reduction of p modulo G is zero.

236 M. Lange-Hegermann and D. Robertz

Remark 3. Given a finite generating set L for a non-zero left ideal I of R and
given a monomial ordering < as above, a Janet basis for I with respect to
< can be computed in finitely many steps [36]. After a preliminary pairwise
reduction of elements of L ensuring that the leading monomials of elements
of L are pairwise different and that ε(lm(L)) is the unique minimal generating
set of the ideal of (Z≥0)r+d it generates, multiplicative and non-multiplicative
variables are determined for each leading monomial (with respect to lm(L)) and
L is replaced by its Janet completion. Reduction of left multiples of elements of L
by non-multiplicative variables may yield non-zero remainders in I. Augmenting
L by such elements results in a larger ideal ε(lm(L)) of (Z≥0)r+d than previously.
Since every ascending chain of such ideals becomes stationary after finitely many
steps, by iteration of these steps, one obtains a generating set G for I whose left
multiples by non-multiplicative variables reduce to zero modulo G, which is a
Janet basis for I with respect to <.

6 Module-Theoretic Constructions

The techniques of Sect. 5 can be extended to effectively deal with finitely pre-
sented left (and right) R-modules and module homomorphisms between them.

Let R be as in the previous section and q ∈ N. We choose the standard basis
e1, . . . , eq of the free left R-module R1×q and define the set of monomials

Mon(R1×q) = { fα1
1 . . . fαr

r ∂β1
1 . . . ∂βd

d ek | αi, βj ∈ Z≥0, k = 1, . . . , q }.

Then every element of R1×q has a unique representation as in (*), where Mon(R)
is replaced by Mon(R1×q). By generalizing the notion of monomial ordering
defined in Sect. 5 to total orderings on Mon(R1×q), one can extend the reduction
procedure described in Remark 2 and indeed any algorithm computing Gröbner
or Janet bases for left ideals of R to one that computes Gröbner or Janet bases
for submodules R1×pA of R1×q, where A ∈ Rp×q. In particular, membership
to such a submodule can be decided by reduction, and therefore, computations
with residue classes in R1×q/R1×pA can be performed effectively.

We recall some relevant monomial orderings on R1×q.

Example 9. A monomial ordering ≺ on R can be extended to monomial orderings
< on R1×q in different ways, for example, by defining

m1 ek < m2 el ⇐⇒
(

m1 ≺ m2 or
(
m1 = m2 and k > l

))

(“term-over-position”), or by defining

m1 ek < m2 el ⇐⇒
(

k > l or
(
k = l and m1 ≺ m2

))

(“position-over-term”), where m1, m2 ∈ Mon(R) and k, l ∈ {1, . . . , q}.

On Boundary Conditions Parametrized by Analytic Functions 237

Example 10. Let s ∈ {1, . . . , q − 1} and ≺1, ≺2 be monomial orderings on R1×s

and R1×(q−s), with standard bases e1, . . . , es and es+1, . . . , eq, respectively. A
monomial ordering < on R1×q eliminating e1, . . . , es is defined by

m1 ek < m2 el ⇐⇒
(

l ≤ s < k or
(
k ≤ s and l ≤ s and m1 ek ≺1 m2 el

)
or

(
k > s and l > s and m1 ek ≺2 m2 el

))
,

where m1, m2 ∈ Mon(R) and k, l ∈ {1, . . . , q}.

Remark 4. Let ϕ : R1×a → R1×b be a homomorphism of left R-modules, rep-
resented by a matrix A ∈ Ra×b. A Janet basis for the nullspace of ϕ can be
computed as follows. Join the two standard bases of R1×a and R1×b to obtain
the basis e1, . . . , ea, ea+1, . . . , ea+b of R1×a ⊕ R1×b ∼= R1×(a+b). Let < be
a monomial ordering on R1×(a+b) as defined in Example 10 for q = a + b,
s = a and certain ≺1 and ≺2, i.e., eliminating e1, . . . , ea. Then let J0 be a
Janet basis, with respect to <, for the submodule of R1×(a+b) generated by the
rows of the matrix (A Ia) ∈ Ra×(b+a), where Ia is the identity matrix. Now
J := {w ∈ R1×a | (0, w) ∈ J0 } is a Janet basis for the nullspace of ϕ with
respect to ≺2 (cf. also [37, Ex. 3.10], [36, Ex. 3.1.27]).

Remark 5. An involution θ : R → R of R allows to reduce computations with
right R-modules to computations with left R-modules. More precisely, if we have
θ(r1 + r2) = θ(r1) + θ(r2) and θ(r1 r2) = θ(r2) θ(r1) and θ(θ(r)) = r for all r1,
r2, r ∈ R, then any right R-module M is turned into a left R-module M̃ := M
(as abelian groups) via r m := mθ(r), where r ∈ R, m ∈ M̃ , and vice versa. The
involution θ is extended to matrices by (cf. also [37, Rem. 3.11])

θ(A) := (θ((Atr)i,j))1≤i≤q,1≤j≤p ∈ Rq×p, A ∈ Rp×q.

Since for A ∈ Rp×q, B ∈ Rq×r we have AB = 0 if and only if θ(B) θ(A) = 0, the
computation of nullspaces of homomorphisms of right R-modules is reduced to
the situation described in Remark 4. For R introduced in Definition 1 we choose

θ : R → R, θ|K := idK , θ(∂j) := −∂j , j = 1, . . . , d.

7 Parametrizing Boundary Conditions

This section constructs parametrizations of functions satisfying certain boundary
conditions, independent of the parametrization of differential equations.

We restrict ourselves to boundary conditions parametrized by analytic func-
tions for two reasons. First, this allows algebraic algorithms. Second, due to the
limiting behaviour of GPs when conditioning on more data points, closed sets of
functions are preferable, see Theorem 6. For approximate resp. asymptotic resp.

238 M. Lange-Hegermann and D. Robertz

partially unknown boundary conditions for GPs see [42] resp. [44] resp. [10]. For
a theoretic approach to endow RKHS with boundary information see [30].

Let again F = C∞(D,R) with Fréchet topology from (2) be the set of smooth
functions on D ⊂ R

d compact, K = R{f1, . . . , fr} with analytic functions fi :
D → R, and let R ⊇ K be the Ore extension of K.

This section is based on two theorems. The first one describes closed modules
satisfying a Nullstellensatz via their Taylor expansion. Denote by Tp the Taylor
series of a (vector or matrix of) smooth function(s) around a point p ∈ D.

Theorem 5 (Whitney’s Spectral Theorem; [48], [46, V Theorem 1.3]). An
F-module M ≤ C∞(D,R)� has topological closure M =

⋂
p∈D T−1

p (Tp(M)).

The second theorem specifies that analytic functions generate closed modules.

Theorem 6 ([27, Theorem 4], [46, VI Theorem 1.1]). Let C be an m × n-
matrix of analytic functions on D ⊂ R

d and φ ∈ (C∞(D,R))m. Then there is a
ψ ∈ (C∞(D,R))n with φ = C · ψ if and only if for all p ∈ D the Tp(φ) are an
R[[x1 − p1, . . . , xd − pd]]-linear combination of the columns of T (C).

7.1 Boundary Conditions for Function Values of Single Functions

We begin parametrizing functions which are zero on an analytic set M , e.g.
Dirichlet boundary conditions which prescribe values at the boundary ∂D.

We define boundaries M ⊆ D implicitly via

M = V(I) := {m ∈ D | b(m) = 0 for all b ∈ I} ⊆ D,

where I � K is an ideal of equations. For any analytic set M ⊆ D we have
M = V(I(M)), where I(M) = {b ∈ F� | b(m) = 0 for all m ∈ M} ⊆ F is
the (closed and radical) ideal of functions vanishing at M . If I is radical (it is
automatically closed by Theorem 6, as generated by analytic functions), then
I(V(I)) = I. Hence, any set of analytic function defined on D which generates
a radical ideal parametrizes functions vanishing at its zero set. More formally:

Proposition 4. Let B′ ∈ K1×� be a row of analytic functions whose entries
generate a radical F-ideal I = B′F� ≤ F of smooth functions. Then, I is the set{
f ∈ F | f|V(I) = 0

}
of smooth functions vanishing at V(I).

Proof. The condition f|V(I) = 0 restricts the zeroth order Taylor coefficients
by homogeneous equations. All functions satisfying such restrictions are con-
tained in the closure I of I by Whitney’s Spectral Theorem 5. The F-module
parametrization I = B′F� uses analytic functions as generators, which ensures
that the ideal I is already equal to its closure I by Theorem 6. ��

We now compare constructions of rows B′ of functions in Proposition 4.

On Boundary Conditions Parametrized by Analytic Functions 239

Example 11. Functions F = C∞([0, 1]d,R) with Dirichlet boundary conditions
f(∂D) = 0 at the boundary of the domain D = [0, 1]d are parametrized by

B′
1 =

[∏d
i=1 xi(xi − 1)

]
(5)

over K = R{x1, . . . , xn} = R[x1, . . . , xn], by

B′
2 =

[
1 − exp

(
(−1)d+1 ·

∏d
i=1 xi(xi−1)

δ

)]
(6)

over K = R{exp(x2
1), exp(x1), x1, . . . , exp(x2

d), exp(xd), xd}, or by5

B′
3 =

⎡

⎢
⎣

√√
√
√
√
∏d

i=1

⎛

⎝1 +
exp

(

− x2
i

δ

)

−2 exp

(

− x2
i

−xi+1
δ

)

+exp
(

− (xi−1)2

δ

)

exp(− 1
δ)−1

⎞

⎠

⎤

⎥
⎦ (7)

for any δ > 0. See [9, Section 3] for the special case d = 2 in (5). For practical
differences of these formalizations of boundary conditions see Remark 6.

Block diagonal matrices parametrize boundaries of a vector of � > 1 func-
tions. Also, restrictions on sets with higher codimension can be defined.

Example 12. The following three matrices
[
1 − exp

(
− |x|

δ

)
1 − exp

(
− |y|

δ

)]
,

[
1 − exp

(
−

√
x2+y2

δ

)]
, and

[
1 − exp

(
−x2+y2

δ

)]
parametrize functions f ∈

F = C∞(R3,R) with f(0, 0, z) = 0. The last parametrization is analytic.

7.2 Boundary Conditions for Derivatives and Vectors

Boundary conditions with vanishing derivatives can be constructed using multi-
plicities in the (no longer radical) ideal. The proof of the following proposition
again follows from Theorems 5 and 6, in a similar way to Proposition 4.

Proposition 5. Let B′ ∈ K�×�′
be a matrix of analytic functions whose columns

generate an F-module M = B′F�′ ≤ F� of smooth functions. Then,
{

f ∈ F�
∣
∣
∣∀p ∈ D ∃ai ∈ R[[x1 − pi, . . . , xd − pd]]

∀1 ≤ i ≤ � : Tp(fi) =
�′
∑

j=1

Tp(bij)aj

}

is the closed set of smooth functions sharing the same vanishing lower order
Taylor coefficients as the columns of B′.

5 B′
3 is obtained as the product of the standard deviations obtained by conditioning d

one-dimensional squared exponential covariances to the data points (0, 0) and (1, 0).

240 M. Lange-Hegermann and D. Robertz

Example 13. Functions F = C∞([0, 1]d,R) with Dirichlet boundary conditions
f(∂D) = 0 and Neumann boundary condition ∂f

∂n (∂D) = 0 for n the normal to
the boundary ∂D of the domain D = [0, 1]d are parametrized by

B′ =
[
1 − exp

(
(−1)d+1 ·

∏d
i=1 x2

i (xi−1)2

δ

)]
, (8)

constructed by squaring the exponent from the parametrization in (6), or

B′ =

⎡

⎣∏d
i=1

⎛

⎝1 +
exp

(

− x2
i

δ

)

−2 exp

(

− x2
i −xi+1

δ

)

+exp

(

− (xi−1)2

δ

)

exp(− 1
δ)−1

⎞

⎠

⎤

⎦ , (9)

constructed by the squaring of the parametrization (7) for any δ > 0.

Remark 6. In applications, the non-polynomial parametrizations from Exam-
ples 11 and 13 are more suitable. We demonstrate the effect by pushforward
GPs obtained from these parametrizations in Fig. 2.

The polynomial pushforward from Example 11 yields the variance x2 ·(x−1)2,
which strongly varies in the input interval [0, 1]. The analytic pushforwards from
Example 11 also set the variance to zero at the boundary, but quickly return to
the original variance, and never exceed it. Even the speed of returning to the
original variance can be controlled by changing the parameter δ.

Fig. 2. GPs, represented by their mean function and two standard deviations. Upper
left: a GP g with mean zero and square exponential covariance function. Upper middle:
pushforward of the GP g by x · (x − 1) has a strong global influence. Upper right
resp. lower left: pushforward of the GP g by (6) resp. (7). Lower middle resp. right:
pushforward of the GP g by (8) resp. (9) set the function and its derivative to zero at
the boundary. Set δ := 1

100
.

On Boundary Conditions Parametrized by Analytic Functions 241

Fig. 3. The mean fields of the GP for divergence-free fields in the interior of y2 =
sin(x)4 from Example 14, which are conditioned on the data (−1, 0) at (π

2
, 0) (left) and

on (1, 0) resp. (0, 1) at (π
4
, 0) resp. (π

2
, 0). The data is plotted artificially larger in gray.

The flow at the analytic boundary is zero.

8 Examples

Now, we intersect (Theorem 4) solution sets of differential equations and analytic
boundary conditions (Sect. 7) using the algorithms from Sects. 5 and 6.

Example 14. Consider divergence-free fields in the region in R
2 bounded by f :=

y2 − sin(x)4 for x ∈ [0, π]. Hence, consider

A =
[
∂x ∂y

]
, B1 =

[
∂y

−∂x

]
, B2 =

[
f 0
0 f

]
.

The Matrix C =

⎡

⎣
f2

∂yf
−∂xf

⎤

⎦ from Theorem 4 yields the parametrization

[
∂yf2

−∂xf2

]
=
[

f2∂y + 4 · f · y
−f2∂x + 8 · f · sin(x)3 cos(x)

]

v

Fig. 4. The mean fields of the GP for divergence-free fields from Example 15, which
are conditioned on v = (0, −1) at (0, 1). The flow at the left and right boundary is
zero, at the bottom resp. top there is flow into resp. out of the region. Both the data
point resp. the inhomogeneous boundary conditions are plotted artificially larger in
gray resp. dark gray.

242 M. Lange-Hegermann and D. Robertz

and the push forward covariance

k · f ·
[
16y1y2 + 4δy · (f1y2 − f2y1) − (δ2y − 1) · f (f1δy + 4y1) · fsc2

(f2δy − 4y2) · fsc1 fsc1 · fsc2 −f · (2δ2x − 1)

]

of the squared exponential covariance function k = exp(− 1
2 ((x1 − x2)2 + (y1 −

y2)2)), where f1 = f(x1, y1), f2 = f(x2, y2), f = f1 ·f2, δx = x1−x2, δy = y1−y2,
sc(x) = 8 sin(x)3 cos(x), fsc1 = sc(x1) − δx · f1, and fsc2 = sc(x2) + δx · f2. For
an illustration of this covariance see Fig. 3.

Example 15. Consider divergence-free fields in the compact domain D bounded
by −π

2 ≤ y ≤ π
2 and 3 sin(y) ≤ x ≤ 3 sin(y) + 2. Hence, consider

A =
[
∂x ∂y

]
, B1 =

[
∂y

−∂x

]
, B2 =

[
f 0
0 f

]

for f = (y − π
2) · (y + π

2) · (x − 3 sin(y)) · (x − 3 sin(y) − 2). As the first entry

in the column C is f2, such fields can be parametrized by
[

∂yf2

−∂xf2

]
. Pushing

forward the squared exponential covariance function yields a covariance too big
to display.

To encode non-zero boundary conditions we use a non-zero mean. Using the
potential p := − 1

4 · (3 sin(y) − x + 3) · (3 sin(y) − x)2 yields the divergence-free

μ :=
[− 9

4 · cos(y) · (3 sin(y) − x + 2) · (3 sin(y) − x)
− 3

4 · (3 sin(y) − x + 2) · (3 sin(y) − x)

]
=
[

∂y

−∂x

]
p

satisfying the left and right boundaries and non-zero flow through at top and
bottom. The GP GP(μ, k) hence models of divergence-free fields in D with no
flow on the sinoidal boundary left or right, but flow into D from the bottom and
out of D at the top of the region. See Fig. 4 for a demonstration.

Acknowledgment. The authors thank Andreas Besginow for discussions and the
anonymous reviewers for helpful comments, both of which improved the contents of
this paper.

References

1. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symb. Comput. 47(10),
1233–1266 (2012)

2. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer, Boston (2004)

3. Berns, F., Lange-Hegermann, M., Beecks, C.: Towards Gaussian processes for auto-
matic and interpretable anomaly detection in industry 4.0. In: Proceedings of the
International Conference on Innovative Intelligent Industrial Production and Logis-
tics - IN4PL (2020)

On Boundary Conditions Parametrized by Analytic Functions 243

4. Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol.
62. American Mathematical Society, Providence (1998)

5. Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear
control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16(5),
319–376 (2005)

6. Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Dover
Publications Inc., Mineola (2004)

7. Ehrenpreis, L.: Solution of some problems of division. I. Division by a polynomial
of derivation. Am. J. Math. 76, 883–903 (1954)

8. Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: The MAPLE package TDDS for
computing Thomas decompositions of systems of nonlinear PDEs. Comput. Phys.
Commun. 234, 202–215 (2019)

9. Graepel, T.: Solving noisy linear operator equations by Gaussian processes: appli-
cation to ordinary and partial differential equations. In: Proceedings of the Twen-
tieth International Conference on International Conference on Machine Learning,
pp. 234–241 (2003)

10. Gulian, M., Frankel, A., Swiler, L.: Gaussian process regression constrained by
boundary value problems. Comput. Methods Appl. Mech. Eng. 388, Paper No.
114117, 18 (2022)

11. Honkela, A., et al.: Genome-wide modeling of transcription kinetics reveals patterns
of RNA production delays. In: Proceedings of the National Academy of Sciences
(2015)

12. Jacobson, N.: The Theory of Rings. American Mathematical Society Mathematical
Surveys, vol. II. American Mathematical Society (1943)

13. Jaynes, E.T.: Probability Theory. Cambridge University Press, Cambridge (2003)
14. Jidling, C., et al.: Probabilistic modelling and reconstruction of strain. Nucl.

Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 436, 141–155
(2018)

15. Jidling, C., Wahlström, N., Wills, A., Schön, T.B.: Linearly constrained gaussian
processes. In: Advances in Neural Information Processing Systems (2017)

16. John, D., Heuveline, V., Schober, M.: GOODE: a Gaussian off-the-shelf ordinary
differential equation solver. In: Proceedings of the 36th International Conference
on Machine Learning (2019)

17. Lange-Hegermann, M.: Counting solutions of differential equations. Ph.D. thesis,
RWTH Aachen (2014)

18. Lange-Hegermann, M.: The differential dimension polynomial for characterizable
differential ideals. In: Böckle, G., Decker, W., Malle, G. (eds.) Algorithmic and
Experimental Methods in Algebra, Geometry, and Number Theory, pp. 443–453.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70566-8 18

19. Lange-Hegermann, M.: Algorithmic linearly constrained Gaussian processes. In:
Advances in Neural Information Processing Systems (2018)

20. Lange-Hegermann, M.: The differential counting polynomial. Found. Comput.
Math. 18(2), 291–308 (2018)

21. Lange-Hegermann, M.: Linearly constrained Gaussian processes with boundary
conditions. In: International Conference on Artificial Intelligence and Statistics.
PMLR (2021)

22. Lange-Hegermann, M., Robertz, D.: Thomas decompositions of parametric non-
linear control systems. IFAC Proc. Vol. 46(2), 296–301 (2013)

https://doi.org/10.1007/978-3-319-70566-8_18

244 M. Lange-Hegermann and D. Robertz

23. Lange-Hegermann, M., Robertz, D.: Thomas decomposition and nonlinear control
systems. In: Quadrat, A., Zerz, E. (eds.) Algebraic and Symbolic Computation
Methods in Dynamical Systems. ADD, vol. 9, pp. 117–146. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38356-5 4

24. Lange-Hegermann, M., Robertz, D., Seiler, W.M., Seiß, M.: Singularities of alge-
braic differential equations. Adv. Appl. Math. 131, Paper No. 102266, 56 (2021)

25. Macêdo, I., Castro, R.: Learning divergence-free and curl-free vector fields with
matrix-valued kernels. Instituto Nacional de Matematica Pura e Aplicada, Brasil,
Technical report (2008)

26. Malgrange, B.: Existence et approximation des solutions des équations aux dérivées
partielles et des équations de convolution (1955/56). http://aif.cedram.org/item?
id=AIF 1955 6 271 0

27. Malgrange, B.: Division des distributions. Séminaire Schwartz (1959)
28. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Graduate

Studies in Mathematics, vol. 30. American Mathematical Society, Providence
(2001)

29. Neal, R.M.: Priors for infinite networks. In: Neal, R.M. (ed.) Bayesian Learning for
Neural Networks, pp. 29–53. Springer, New York (1996). https://doi.org/10.1007/
978-1-4612-0745-0 2

30. Nicholson, J., Kiessler, P., Brown, D.A.: A kernel-based approach for modelling
Gaussian processes with functional information. arXiv preprint arXiv:2201.11023
(2022)

31. Oberst, U.: Multidimensional constant linear systems. Acta Appl. Math. 20(1–2),
1–175 (1990)

32. Quadrat, A.: Systèmes et Structures - Une approche de la théorie mathématique
des systèmes par l’analyse algébrique constructive. Habilitation thesis, Université
de Nice (Sophia Antipolis), France, April 2010

33. Quadrat, A.: Grade filtration of linear functional systems. Acta Appl. Math. 127,
27–86 (2013)

34. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

35. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to
integro-differential operators. In: ISSAC 2009–Proceedings of the 2009 Interna-
tional Symposium on Symbolic and Algebraic Computation, pp. 287–294. ACM,
New York (2009)

36. Robertz, D.: Formal Algorithmic Elimination for PDEs. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11445-3

37. Robertz, D.: Recent progress in an algebraic analysis approach to linear systems.
Multidimension. Syst. Signal Process. 26(2), 349–388 (2014). https://doi.org/10.
1007/s11045-014-0280-9

38. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symb. Comput.
43(8), 515–544 (2008)

39. Särkkä, S.: Linear operators and stochastic partial differential equations in Gaus-
sian process regression. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.)
ICANN 2011. LNCS, vol. 6792, pp. 151–158. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21738-8 20

40. Scheuerer, M., Schlather, M.: Covariance models for divergence-free and curl-free
random vector fields. Stoch. Models 28(3), 433–451 (2012)

https://doi.org/10.1007/978-3-030-38356-5_4
http://aif.cedram.org/item?id=AIF_1955__6__271_0
http://aif.cedram.org/item?id=AIF_1955__6__271_0
https://doi.org/10.1007/978-1-4612-0745-0_2
https://doi.org/10.1007/978-1-4612-0745-0_2
http://arxiv.org/abs/2201.11023
https://doi.org/10.1007/978-3-319-11445-3
https://doi.org/10.1007/s11045-014-0280-9
https://doi.org/10.1007/s11045-014-0280-9
https://doi.org/10.1007/978-3-642-21738-8_20
https://doi.org/10.1007/978-3-642-21738-8_20

On Boundary Conditions Parametrized by Analytic Functions 245

41. Simon-Gabriel, C.J., Schölkopf, B.: Kernel distribution embeddings: universal ker-
nels, characteristic kernels and kernel metrics on distributions. J. Mach. Learn.
Res. 19, Paper No. 44, 29 (2018)

42. Solin, A., Kok, M.: Know your boundaries: constraining Gaussian processes by
variational harmonic features. In: Proceedings of the 22nd International Conference
on Artificial Intelligence and Statistics (2019)

43. Solin, A., Kok, M., Wahlström, N., Schön, T.B., Särkkä, S.: Modeling and inter-
polation of the ambient magnetic field by Gaussian processes. IEEE Trans. Robot.
34(4), 1112–1127 (2018)

44. Tan, M.H.Y.: Gaussian process modeling with boundary information. Statist.
Sinica 28(2), 621–648 (2018)

45. Thewes, S., Lange-Hegermann, M., Reuber, C., Beck, R.: Advanced Gaussian pro-
cess modeling techniques. In: Design of Experiments (DoE) in Powertrain Devel-
opment (2015)

46. Tougeron, J.C.: Idéaux de fonctions différentiables. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Springer, Heidelberg (1972). https://doi.org/10.1007/978-
3-662-59320-2

47. Wahlström, N., Kok, M., Schön, T.B., Gustafsson, F.: Modeling magnetic fields
using Gaussian processes. In: Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (2013)

48. Whitney, H.: On ideals of differentiable functions. Am. J. Math. 70, 635–658 (1948)
49. Zerz, E., Seiler, W.M., Hausdorf, M.: On the inverse syzygy problem. Commun.

Algebra 38(6), 2037–2047 (2010)
50. Zimmer, C., Meister, M., Nguyen-Tuong, D.: Safe active learning for time-series

modeling with Gaussian processes. In: Advances in Neural Information Processing
Systems (2018)

https://doi.org/10.1007/978-3-662-59320-2
https://doi.org/10.1007/978-3-662-59320-2

Computing the Integer Hull of Convex
Polyhedral Sets

Marc Moreno Maza and Linxiao Wang(B)

University of Western Ontario, London, ON, Canada
{mmorenom,lwang739}@uwo.ca

Abstract. In this paper, we discuss a new algorithm for computing the
integer hull PI of a rational polyhedral set P , together with its imple-
mentation in Maple and in the C programming language. Our implemen-
tation focuses on the two-dimensional and three-dimensional cases. We
show that our algorithm computes the integer hull efficiently and can
deal with polyhedral sets with large numbers of integer points.

Keywords: Polyhedral set · Integer hull · Parametric polyhedron

1 Introduction

The integer points of rational polyhedral sets are of great interest in various
areas of scientific computing. Two such areas are combinatorial optimization (in
particular integer linear programming) and compiler optimization (in particu-
lar, the analysis, transformation and scheduling of for-loop nests in computer
programs), where a variety of algorithms solve questions related to the points
with integer coordinates belonging to a given polyhedron. Another area is at the
crossroads of computer algebra and polyhedral geometry, with topics like toric
ideals and Hilbert bases, see for instance [24] by Thomas.

One can ask different questions about the integer points of a polyhedral set,
ranging from “whether or not a given rational polyhedron has integer points”
to “describing all such points”. Answers to that latter question can take various
forms, depending on the targeted application. For plotting purposes, one may
want to enumerate all the integer points of a 2D or 3D polytope. Meanwhile, in
the context of combinatorial optimization or compiler optimization, more concise
descriptions are sufficient and more effective.

For a rational convex polyhedron P ⊆ Q
d, defined either by the set of its

facets or by that of its vertices, one such description is the integer hull PI of P ,
that is, the convex hull of P ∩ Z

d. The set PI is itself polyhedral and can be
described either by its facets, or its vertices. One important family of algorithms
for computing the vertex set of PI relies on the so-called cutting plane method,
originally introduced by Gomory in [10] to solve integer linear programs (ILP)
and mixed-integer programming (MILP) problems. This method is based on find-
ing a sequence of linear inequalities (cuts) to reduce the feasible region to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 246–267, 2022.
https://doi.org/10.1007/978-3-031-14788-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_14

Computing the Integer Hull of Convex Polyhedral Sets 247

original ILP problem. Chvátal [6] and Schrijver [22] gave a geometrical descrip-
tion of the cutting plane method and developed a procedure to compute PI

based on it. Schrijver gave a full proof and a complexity study of this method
in [20]. Another approach for computing PI uses the branch and bound method,
introduced by Land and Doig in the early 1960s in [15]. This method recursively
divides P into sub-polyhedra, then the vertices of the integer hull of each part
of the partition are computed.

There are also authors studying the relations between the vertices of PI

and the vertices of P . The authors of [11] provided an algorithm for finding the
vertices of a polytope associated to the Knapsack integer programming problem.
This algorithm computes boxes covering the input polyhedron and such that
each box contains at most one vertex of PI . Following that same approach, the
authors [4] could give an upper bound on the number of those boxes, as well as
a running estimate for enumerating the integer vertices of a polytope.

Since an integer hull is the convex hull of all the integer points within a polyhe-
dral set, a straightforward way of computing the integer hull is enumerating all its
integer points, followed by a convex hull computation. There is a family of studies
focusing on enumerating or counting the lattice points of a given polyhedral set. A
well-known theory on that latter subject was proposed by Pick [18]. In particular,
the celebrated Pick’s theorem provides a formula for the area of a simple polygon P
with integer vertex coordinates, in terms of the number of integer points within P
and on its boundary. In the 1990s, Barvinok [3] created an algorithm for counting
the integer points inside a polyhedron, which runs in polynomial time, for a fixed
dimension of the ambient space. Later studies such as [27] gave a simpler approach
for lattice point counting, which divides a polygon into right-angle triangles and
calculates the number of lattice points within each such triangle.

Verdoolaege et al. present in [25] a novel method for lattice point counting,
based on Barvinok’s decomposition for counting the number of integer points
in a non-parametric polytope. In [23], Seghir, Loechner and Meister deal with
the more general problem of counting the number of images by an affine integer
transformation of the lattice points contained in a parametric polytope. In 2004,
the software package LattE presented in [16] for lattice point enumeration offers
the first implementation of Barvinok’s algorithm. Other algorithms, such as [12]
by Jing and Moreno Maza, compute an irredundant representation of the integer
points of P in terms of “simpler” polyhedral sets, each of them given by a
triangular-by-block system of linear inequalities.

Normaliz [5] is a software library for the computation of Hilbert bases of
rational cones and the normalizations of affine monoids. The Hilbert basis of a
convex cone C is a minimal set of integer vectors such that every integer vector
in C is a conical combination of the vectors in the Hilbert basis with integer
coefficients. The computation of a Hilbert basis of a simplicial cone can be done
by enumerating all lattice points of paralleltopes. From there, Normaliz provides
a command for computing the integer hull of a given polyhedral set based on
enumeration and convex hull computation.

Polymake [1] is a software system that includes several algorithms for con-
vex hull computation and lattice points enumeration (including those of LattE

248 M. M. Maza and L. Wang

and Normaliz). Polymake uses these algorithms to compute the integer hulls of
various kinds of input polyhedral sets.

Since the integer hull PI of P is completely determined by its vertices, it
is natural to ask for the number of vertices in an integer hull of a polyhedron.
The earliest study by Cook, Hartmann, Kannan and McDiarmid, in [8], shows
that the number of vertices of PI is related to the size (as defined in [20]) of
the coefficients of the inequalities that describe P . Let x = p/q be a rational
number, where p and q are coprime integers, the size of x is defined as

size(x) = 1 + �(log(|p| + 1))� + �(log(|q| + 1))�.

For a linear inequality anxn + · · · + a1x1 + a0 ≤ 0, its size is
∑

size(ai). For a
polyhedron P = {x | Ax ≤ �b} where A ∈ Q

m×n and �b ∈ Q
m. Cook, Hartmann,

Kannan and McDiarmid showed that the number of vertices of the integer hull
of P is bounded over by 2mn(6n2ϕ)n−1 where ϕ is the maximum size of any of the
m inequalities. More recent studies such as [26] and [4] use different approaches
to reach similar or slightly improved estimates. We also discussed this question
in our CASC 2021 paper [17].

In this paper, we present our algorithm for computing PI and we report on
the performance of its implementation as a new command of Maple’s library
PolyhedralSets [19] as well as in the C programming language. We present
benchmarks for both implementations in Sect. 6. Our results show that our
algorithm is very efficient comparing to the well known library Normaliz [5]
especially when the input polyhedral set is large in volume.

Our algorithm has three main steps:

Normalization: during this step, we construct a new polyhedral set Q from P
as follows. Consider in turn each facet F of P :
1. if the hyperplane H supporting F contains an integer point, then H is a

hyperplane supporting a facet of Q,
2. otherwise one slides H towards the center of P along the normal vector

of F , stopping as soon as one hits a hyperplane H ′ containing an integer
point, then making H ′ a hyperplane supporting a facet of Q.

The resulting polyhedral set Q clearly has the same integer hull as P ; com-
puting Q is a preparation phase for the following step.

Partitioning: during this step, we search for integer points inside Q so as to
partition P into smaller polyhedral sets, the integer hulls of which can easily
be computed. We observe that every vertex of Q which is an integer point
is also a vertex of QI . Now, for every vertex V of Q which is not an integer
point we look, on each facet F to which V belongs, for an integer point CV,F

that is “close” to V (ideally as close as possible to V). All the points CV,F

together with the vertices of Q are used to build that partition of Q. Each
part of the partition is a polyhedron R which:
1. either has integer points as vertices (making the computation of the inte-

ger hull RI trivial),
2. or has a small volume so that any algorithm (including exhaustive search)

can be applied to compute RI .

Computing the Integer Hull of Convex Polyhedral Sets 249

Merging: Once the integer hull of each part of the partition is computed and
given by the list of its vertices, an algorithm for computing the convex hull
of a set points, such as QuickHull [2], can be applied to deduce PI .

The paper is organized as follows. Section 2 is a brief review of polyhedral
geometry. Sections 4 and 5 present our algorithms in the 2D and 3D cases,
respectively. Section 3.2 gathers key arguments supporting our algorithm, essen-
tially based on the concept of the Hermite Normal Form of a matrix. Section 6
reports on our experimentation with the proposed algorithms.

2 Preliminaries

In this review of polyhedral geometry, we follow the concepts and notations of
Schrijver’s book [20], As usual, we denote by Z, Q and R the ring of integers, the
field of rational numbers and the field of real numbers. Unless specified otherwise,
all matrices and vectors have their coefficients in Z. A subset P ⊆ Q

d is called a
convex polyhedron (or simply a polyhedron) if P = {x ∈ Q

d | Ax ≤ �b} holds, for a
matrix A ∈ Q

m×d and a vector �b ∈ Q
m, where m and d are positive integers; we

call the linear system {Ax ≤ �b} an H-representation of P . Hence, a polyhedron
is the intersection of finitely many affine half-spaces. Here an affine half-space is
a set of the form {x ∈ Q

d | �wtx ≤ δ} for some nonzero vector �w ∈ Z
d and an

integer number δ.
A non-empty subset F ⊆ P is a face of P if F = {x ∈ P |A′x = �b′} for some

subsystem A′x ≤ �b′ of Ax ≤ �b. A face of P , distinct from P , and with maximum
dimension is a facet of P . The lineality space of P is {x ∈ Q

d | Ax = �0} and
P is said pointed if its lineality space has dimension zero. Note that, in this
paper, we only consider pointed polyhedra. For a pointed polyhedron P , the
inclusion-minimal faces are the vertices of P .

We are interested in computing PI the integer hull of P , that is, the smallest
convex polyhedron containing the integer points of P . In other words, PI is the
intersection of all convex polyhedra containing P ∩Z

d. Assume that P is pointed.
Then, P = PI if and only if every vertex of P is integral, see [21]. Thus, the
convex hull of all the vertices of PI is PI itself.

3 Two Core Constructions of our Algorithm

In this section, we emphasize two constructions supporting respectively the nor-
malization and partitioning steps of our algorithm. Both constructions deal with
“algebraic aspects”, that is, with the fact that we are solving for the integer
solutions of a system of linear inequalities. These two constructions are inspired
respectively by [17] and [12].

250 M. M. Maza and L. Wang

3.1 Normalization

Considering the rational polyhedron P = {x ∈ Q
d | Ax ≤ �b}, with the notations

of Sect. 2, we observe that one can compute a vector �e ∈ Z
m so that the rational

polyhedron Q = {x ∈ Q
d | Ax ≤ �e} satisfies:

1. PI = QI , and
2. the supporting hyperplane of every facet of Q has at least one integer point.

Notice that this does not necessarily means that the new facet has an inte-
ger point.

In the introduction, the construction of Q is referred as the normalization step.
We construct Q from P as follows:

1. consider each facet F of P in turn; if the hyperplane H supporting F does not
contain an integer point, then one “slides” H towards the center of P along
the normal vector of F , stopping as soon as a hyperplane H ′ containing an
integer point is reached, otherwise keep H unchanged;

2. the resulting polyhedron is Q, for which rational consistency must be checked,
which can be done efficiently using a method based on linear programming.

The “sliding process” described above informally is performed as follows. Let
the equation below define the hyperplane H supporting F :

a1x1 + · · · + adxd = b, (1)

where a1, . . . , ad, b can be assumed to be integers. The fact that Z is an Euclidean
domain (and thus a principal ideal domain) implies that H has integer points if
and only if we have:

gcd(a1, . . . , ad) | b. (2)

If the hyperplane H supporting F does not have integer points and P is included
in the half-space a1x1 + · · · + adxd ≤ b, then H ′ is given by:

a1x1 + · · · + adxd ≤ g � b

g
	, (3)

with g := gcd(a1, . . . , ad).
Summing things up, we denote by Normalization(P) a function call return-

ing the polyhedron Q.

3.2 Partitioning

The other algebraic construction in our algorithm supports the partition step
briefly explained in the introduction. The underlying question is the following:
given a vertex V of P which is not an integer point and given a facet F of P to
which V belongs, find on F an integer point CV,F , if any, which is “close” to V
(ideally as close to V as possible).

If P is two-dimensional, thus, if F is one-dimensional, then the question is
easily answered by elementary arguments, see our previous paper [17]. If P has

Computing the Integer Hull of Convex Polyhedral Sets 251

dimension d ≥ 3, thus, if F has dimension d − 1, then we take advantage of
the Hermite normal form of a matrix. In the sequel of this section, we review
this concept. and use it to compute the integer hull of a facet of a polyhedron.
Finally, we solve the question of finding an integer point CV,F on F (if any) as
close as possible to V .

Hermite Normal Form. Consider a positive integer p ≤ d and a linear system
Cx = s where C ∈ Z

p×d is a full row-rank matrix and s ∈ Z
p is a vector. There

exists a uni-modular matrix U ∈ Z
d×d so that CU = [0H] where 0 ∈ Z

p×(d−p)

is the null matrix and H is the column-style Hermite normal form of C. We
write U = [ULUR] where UL ∈ Z

d×(d−p) and UR ∈ Z
d×p. Therefore, the matrix

H ∈ Z
p×p is non-singular and the following properties hold:

1. Cx = s has integer solutions if and only if H−1s is an integer vector,
2. every integer solution of Cx = s has the form URH−1s+ULz, where z ∈ Z

d−p

is arbitrary.

Determining the Integer Hull of a Facet. Let �ctx = s be the equation of the
hyper-plane supporting F , thus with �ct ∈ Z

d and s ∈ Z. Let U ∈ Z
d×d be a uni-

modular matrix so that�ctU = [0H] where 0 ∈ Z
1×(d−1) is the null matrix and H is

the column-style Hermite normal form of�ct regarded as a matrix ofZ1×d. We write
U = [ULUR] where UL ∈ Z

d×(d−1) and UR ∈ Z
d×1. Let v := URH−1s. Then, from

the above paragraph on Hermite Normal Form, we know that the integer points
of the hyper-plane supporting F are of the form x = v + ULz where z ∈ Z

d−1 is
arbitrary. The facet F is described by a system of linear inequalities in Q

d with x
as unknown vector. Substituting v+ULz for x yields a system of linear inequalities
inQ

d−1 (with z as unknown vector) representing a rational polyhedron G ⊆ Q
d−1.

With these notations and hypotheses, we have the following.

Theorem 1. The vertices of the integer hull GI of G are in one-to-one corre-
spondence with the vertices of the integer hull FI of F via the map

RF :
{
Q

d−1 → Q
d

z �−→ x = v + ULz.
(4)

In particular, we have RF (GI) = FI .

Proof � The proof follows from seven claims.

Claim 1. RF is injective. Indeed, the matrix U is uni-modular, thus the columns
of U are linearly independent, and the map z �−→ ULz is injective.

Claim 2. The image of RF is F . Since RF is an injective affine map from Q
d−1

to Q
d, it follows that the image of RF is an affine space of dimension d − 1.

Therefore, in order to prove the claim, it suffices to prove that for every z ∈ Z
d−1

we have RF (z) ∈ F . Since F ∩ Z
d = ∅ (as a consequence of the normalization

https://en.wikipedia.org/wiki/Hermite_normal_form

252 M. M. Maza and L. Wang

step of our algorithm) there exists z0 ∈ Z
d−1 so that x0 := v + ULz0 ∈ F ∩ Z

d

holds. Let z ∈ Z
d−1. Define x := RF (z). We have:

x = v + ULz0 + UL(z − z0) = x0 + UL(z − z0).

We deduce:
�ctx = �ctx0 + �ctUL(z − z0) = s + 0 = s,

which proves that RF (z) ∈ F holds.

Claim 3. R−1
F (H) is a half-space of Q

d−1 for any half-space H of Q
d. Indeed,

for any x ∈ Q
d of the form v + ULz, with z ∈ Q

d−1, we have

�atx ≥ b ⇐⇒ �atULz ≥ b − �atv,

where H : �atx ≥ b is an arbitrary half-space of Qd.

Claim 4. The integer points of F are in one-to-one correspondence with the
integer points of Z

d−1. This claim follows directly from the properties of the
Hermite Normal Form.

Claim 5. R−1
F (S) is a polyhedron of Qd−1 for any polyhedron S of Qd. Indeed,

let S := ∩i Hi be a polyhedron of Qd−1 given as the intersection of finitely many
half-spaces of Qd−1. We have

R−1
F (S) = R−1

F (∩i Hi) = ∩i R
−1
F (Hi).

The conclusion follows with Claim 3.

Claim 6. RF (T) is a polyhedron of Qd for any polyhedron T of Qd−1. The proof
is similar to that of Claim 5.

Claim 7. We have: RF (GI) = FI . Let S be the set of all polyhedra of Qd con-
taining F ∩ Z

d. Let T be the set of all polyhedra of Qd−1 containing G ∩ Z
d,

where G = R−1
F (F). Then, by definition of FI and GI , we have:

FI =
⋂

S∈S
S and GI =

⋂

T∈T
T.

From Claim 5, we have:

R−1
F (FI) =

⋂

S∈S
R−1

F (S) ⊇
⋂

T∈T
T = GI .

From Claim 6, and since RF is injective,we have:

RF (GI) =
⋂

T∈T
RF (T) ⊇

⋂

S∈S
S = FI .

Therefore, we have RF (GI) = FI . Now we can prove the theorem. Since RF is
a bijective affine map from Q

d−1 to F , it maps affine subspaces of dimension
0 ≤ d′ < d of Q

d−1 to affine subspaces of dimension d′ of F . Combined with
Claims 5 and 6, this latter observation implies that faces of dimension 0 ≤ d′ < d
of GI are mapped to faces of dimension d′ of FI . Therefore, the vertices of GI

are in one-to-one correspondence with the vertices of FI .

Computing the Integer Hull of Convex Polyhedral Sets 253

Theorem 1 shows that one can reduce the computation of the vertices of FI

to computing the vertices of GI .
Based on that observation, we denote by HNFProjection(F, d) a function call

returning the ordered pair (G,RF).

Finding an Integer Point CV,F on F (If Any) Close to V . Let us return
now to the question of finding an integer point CV,F on F (if any) as close as
possible to V . A second consequence of Theorem 1 is that we can compute an
integer point CV,F simply by choosing a point RF (W) at minimum Euclidean
distance to V , where W ranges in the set of the vertices of GI . As mentioned,
such a point may not be an integer point of F at minimum Euclidean distance
to V , but if F is large enough (that is, if its area is large enough) then CV,F is
a good approximate solution to this optimization problem.

4 Integer Hull of a 2D Polyhedral Set

In this section, we present our algorithm for computing the integer hull of a 2D
polyhedral set. We first give a high-level introduction of the algorithm, then we
present its sub-routines, a more precise presentation of the general algorithm
together with the implementation details.

As introduced in Sect. 1, our main idea is to partition the input 2D-polyhedral
set into several smaller areas, compute the integer hulls of each area and find a
convex hull of all these integer hulls.

In Sect. 2, we explained that an integer hull is a convex polyhedral set whose
vertices are all integer points. Therefore, given a polyhedral set that is not an
integer hull, if we can replace each fractional vertex with some integer ones, we
will obtain the integer hull of the input polyhedral set. Of course, during this
replacement process, we should not exclude any integer points, otherwise the
result would not be valid.

To replace the fractional vertices, we need to look at the areas around those
vertices that are the corners of the input polyhedral set. We do that by partition-
ing the input such that each fractional vertex is included in a “small” triangle,
for which the integer hull is computed by a straightforward method.

Other than these corners, there is the central part of the input, ideally this
should be the part that covers most of the area of the input. To make the
computation of the central part easier, we construct the partition by ensuring
the central area is already an integer hull. In the final step, we combine the
corner parts and the central part using a convex hull algorithm to compute the
final output.

To meet all the requirements above, we propose the following method to parti-
tion the input. First, we normalize the input using procedure Normalization(P).
For each fractional vertex, we find the closest integer point to it on each of its
adjacent facets. For a 2D polyhedral set, each vertex has exactly two adjacent
facets, therefore, two “closest integer points”. We partition the input by con-
necting each of these closest integer point pairs. Thus, in most cases a corner

254 M. M. Maza and L. Wang

part would be a triangle with vertices of a fractional vertex and its two closest
integer points. In some special cases when some facets contain no integer point,
we combine the adjacent vertices and their closest integer points to form a poly-
hedral set has two and only two integer vertices. The central part is an integer
hull with vertices of all these closest integer points and all the integer vertices
of the input.

The details of the sub-routines as well as the general algorithm are given in
the following sections.

4.1 Algorithm

In this section, we consider an input polyhedral set P defined by a system of
linear inequalities ⎧

⎪⎪⎨

⎪⎪⎩

a11x1 + a21x2 ≤ b1,
a12x1 + a22x2 ≤ b2,

· · ·
a1nx1 + a2nx2 ≤ bn,

where gcd(a1i, a2i, bi) = 1 for i ∈ {1, . . . , n}. We assume that this represen-
tation of P is irredudant, that is, the defining linear inequalities of P are in
one-to-one correspondence with the facets of P . In this paper, we follow the
convention of Maple’s PolyhedralSets library and refer to these inequalities
as the relations of P .

Following the informal description of the algorithm above, for each fractional
vertex, we need to find the closest integer points on the facets adjacent to this
vertex. But we first notice that it is possible that the supporting hyperplane of
a facet, and therefore the facet itself, do not have any integer points. Therefore,
the first step of our algorithm is to normalize the relations of the input using
the “sliding process” described in Sect. 3.1.

In the next step, closestIntegerPoints (Algorithm 1), we find the closest
integer point to each fractional vertex on its adjacent facets. From the proof of
Lemma 1 in [17] we know that, on a line a1x + a2y = b, a point is an integer
point if and only if it has x value of x ≡ b

a1
mod a2. We can use this observation

to find the closest integer point on a line to a given point. We also deal with the
case where a facet does not contain any integer point.

Next, we need to construct the corner polyhedral sets and compute their
integer hulls. Then, we find the convex hull of all these integer hulls (see Algo-
rithm 2). Lemma 4 in [17] shows that the vertices of this final convex hull are
the vertices of PI .

For a fractional vertex V [i], if neither VC [i][1] nor VC [i][2] is NULL, then the
corner is a triangle with vertices [V [i], VC [i][1], VC [i][2]]. If one or both of VC [i][1]
and VC [i][2] are NULL, which means there is no integer point on one or both
adjacent facets of V [i], we construct the corner as follow.

Computing the Integer Hull of Convex Polyhedral Sets 255

Algorithm 1: Compute the closest integer points to each fractional vertex
on its adjacent facets
1 Function closestIntegerPoints(V)

Input: V , a list of the vertices of P
Output: VC , a list of pairs where VC [i][1] and VC [i][2] store the closest

integer points of vertex V [i] on its two adjacent facets.
2 for i = 1, . . . , n do
3 Let V [i1] and V [i2] be the vertices adjacent to V [i]
4 for j = 1, 2 do
5 if there are integer points between [V [i], V [ij]] then
6 VC [i][j] ← closest integer point to V [i] on [V [i], V [ij]]

7 else
8 VC [i][j] ← NULL

9 return VC

1. Let VP be an empty set.
2. Let’s say facet f is adjacent to V [i] and does not contain integer point, we

add both vertices of f , V [i] and V [j], to VP .
3. Check the adjacent facets of all the vertices in VP , if some of them does not

contain integer point go to step 2, until no new fractional vertex can be added
to VP .

4. For every vertex in VP add any existing “closest integer point” to VP .
5. In the end, VP contains several fractional points and at most two integer

points and we construct a polyhedral set with VP as the vertex set.

To compute the integer hull of a corner, we use a brute-force method that
searches for all the integer points within the corner polyhedral set and then
compute the convex hull of all these points. [8] has showed that, the size and
shape of the corner polyhedral set only depends on the coefficients, aij , of the
relations of the input but not the constant terms bi. This implies that the size
of the area that we need to do exhaustive search on is not related to the size of
the input polyhedral set P so that the time complexity of our algorithm is not
related to the volume of the input polyhedral set.

With all the sub-routines introduced above, we present our integer hull algo-
rithm (Algorithm 3) for 2D polyhedral sets. We discuss some of the implemen-
tation details in Sect. 6.

4.2 An Example

In this section, we use the following example to show how our 2D algorithm
works. The input is a polyhedral set defined by

⎧
⎨

⎩

2x + 5y ≤ 64,
−7x − 5y ≤ −20,
3x − 6y ≤ −7.

256 M. M. Maza and L. Wang

Algorithm 2: Construct and compute the integer hulls of the corner poly-
hedral sets
1 Function cornerIntegerHulls(V)

Input:
– V , the list of the vertices of the input polyhedral set
– VC , the output from Algorithm 1

Output: A list of the vertices of the integer hull of P
2 VI ← {}
3 for i = 1, . . . , n do
4 if V [i] is an integer point then
5 VI ← VI ∪ {V [i]}
6 else
7 T ← ConstructCorner(V [i], VC)

/* create a corner polyhedral set as we described above */

8 A ← AllIntegerPoints(T) /* find all the integer points in

T */

9 Vtmp ← ConvexHull(A)
/* compute the vertices of the convex hull of A */

10 VI ← VI ∪ {Vtmp}
11 return ConvexHull(VI)

The first step we need to do is to normalize the facets. In this example, there is
only one facet which is given by the relation 3x − 6y ≤ −7. We replace it with
3x − 6y ≤ −9 (see Fig. 1).

Next we need to find the closest integer points to each fractional vertex on
its adjacent facets. In our case, all three vertices are fractional, so we need to
find two integer points for each (see Fig. 2a). And as we discussed in Sect. 4, the
center part of the input is already an integer hull, so no action needed for this
area. As we can see in Fig. 2b, the center part takes most of the volume of the
input, by doing so we cut down the size of the problem.

Then we just need to compute the integer hulls of the small corner triangles
and use the results to compute the final output (see Fig. 3).

5 Integer Hull of a 3D Polyhedral Set

With the 2D algorithm in place, we can move on to a higher dimension. In this
section, we present our integer hull algorithm for 3D polyhedral sets. The general
idea behind the algorithm is the same as that of the 2D algorithm. We want to
partition the input into smaller polyhedral sets and separate the parts into two
categories, the ones with fractional vertices for which we need to compute the

Computing the Integer Hull of Convex Polyhedral Sets 257

Algorithm 3: Compute the integer hull of a given 2D polyhedral set
1 Function IntegerHull2D(P)

Input: P , a 2D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner cases
3 Q ← Normalization(P)
4 V ← Vertices(Q)
5 VC ← closestIntegerPoints(V)
6 I ← cornerIntegerHulls(V, VC)
7 return I

x

y

(a) Input is a polyhedral set

x

y

3x
− 6y

= −7
3x

− 6y
= −9

(b) Normalize the input

Fig. 1. Input and replaceNonIntegerFacets

integer hulls as sub-problems and the other ones that are already integer hulls
themselves. After processing all the sub-problems, we combine the results of all
the parts together and compute the final result.

5.1 Algorithm

The first step of the 3D algorithm is the same as that in Sect. 4.1. We normalize
the facets as is in Sect. 3.1. Similarly, we want to find the closest integer points
to the fractional vertices on their adjacent facets. Every fractional vertex and its
closest integer points would form a small polyhedral set. For example, Fig. 4a is
an example input and the green areas in Fig. 4b are the polyhedral sets formed
by fractional vertices and their closest integer points.

Figure 5a shows the center part of the input, this is a polyhedral set with
vertices that are all the closest integer points. In the 2D problem, the corner
polyhedral sets and the center part formed a partition of the input. But in the
3D case, there are areas that are not covered by these parts, to be precise, these
are the areas near the edges (see Fig, 5b).

In order to form a complete partition, we need another set of sub-polyhedral
sets. As is shown in Fig. 6a, for an edge that has at least one fractional vertex, the

258 M. M. Maza and L. Wang

x

y

(a) For a fractional vertex, find the in-
teger point on each adjacent facet that
is closest to it and construct a triangle
with the three points

x

y

(b) The center part is already an inte-
ger hull so we don’t need to do anything

Fig. 2. Partition the input

x

y

(a) Apply the previous two steps to
each fractional vertex

x

y

(b) Find the convex hull of all the re-
sult vertices from the previous steps

Fig. 3. Compute the integer hulls of the parts and the final result

two vertices of the edge and the closest integer points to the fractional vertices
(or vertex) form a polyhedral set. If we construct one such polyhedral set for
each edge, we can cover all the missing areas in Fig. 5b.

For the parts that are not integer hulls already, we use a brute-force method
to compute their integer hulls, that is, we use exhaustive search to find all the
integer points within the part and compute the convex hull of the points. To
cut down the area that needs exhaustive search, we further partition the edge
polyhedral sets if possible. If there are integer points on an edge, we find the
closest one to each fractional vertex and partition the polyhedral set into three
parts, see Fig. 6b for an example.

Finding, on a given segment S, the integer point closest to a given vertex
of S is relatively simple in the 2D problem, but in the 3D case, we need to
address the following, more complicated, question: finding, on a given bounded

Computing the Integer Hull of Convex Polyhedral Sets 259

Fig. 4. Input and fractional vertices

3D polyhedron F , an integer point closest to a given vertex of F . A natural step
towards answering this question is to represent all the integer points of F , which,
itself, is an integer hull problem. Since the 3D polyhedron F is “flat”, we can
project it to a 2D ambient space and use our algorithm from Sect. 4.

Here we use the procedure HNFProjection(F, d) which is introduced in detail
in Sect. 3.2. Recall that this procedure will return an ordered pair (G,RF) where
RF gives the map between a 3D point to a 2D point.

Having a 2D polyhedral set FP , we use our Algorithm 3 to compute the
vertices of the integer hull of FP . Although the HNF method keeps the integer
points in the projection, it can not keep the distance among the points in general,
so we must find the original image of the vertices of the integer hull of FP .

Now that we have the integer hull of a facet, we can search for the closest
integer points to each of its vertices. Here we decide to use the closest vertex
of the integer hull instead of the actual closest integer point. Using the closest
integer vertex might slow down the later steps but only by a very small amount.
Searching for the actual point would be another optimization problem and this
would be less efficient looking at the whole picture.

As mentioned above, in order to form a complete partition of the input
polyhedral set, we need to carefully consider every edge that has at least one
fractional vertex. To this end, we use Algorithm 1 to find the closest integer
points to a fractional vertex on its adjacent edges. Now that we have all the
“closest integer points” we need, we can construct the parts that are the “blue”,
“red” and “green” regions in Figs. 4, 5 and 6. Since all the vertices of the “red”
polyhedral set are integer points, work remains to be done only in the “green”
and “blue” polyhedral sets.

Before we present the complete algorithm, there are some corner cases that
need to be considered. Similar to our 2D problem, the input polyhedral set could
be not fully dimensional. Again we use Hermite Normal Form (HNF) to project

260 M. M. Maza and L. Wang

Fig. 5. The center part and the corners

the input to 2D space, and deal with it as a 2D problem. Another corner case
would be after applying Normalization: no facets have integer points, in this
case we use the brute-force approach for the whole input.

With all the sub-routines in order, here is our algorithm, Algorithm 5, for
computing the integer hull of a bounded 3D polyhedral set.

6 Implementation and Experimentation

We have implemented both the 2D and 3D algorithms in both Maple and the
C/C++ programming language. The Maple version is available in 2022 release
of Maple as the IntegerHull command of the PolyhedralSets library. In this
section, we discuss implementation details and the experimentation with our
implementations. All the benchmarks are done on an Intel i5-8300H CPU at
2.30 GHz with 16 GB of memory. As we discussed in Sect. 1, there are studies
(such as [11] and [4]) developing approaches to enumerate the vertices of PI using
their relations with the vertices of P but to our knowledge no implementation of
such methods exist. So in the following sections we compare our implementation
with the existing implementation of the naive method (enumeration of all integer
points, followed by the computation of their convex hull) for verification and
proof of concept.

6.1 The Maple Implementation

For the Maple version, we use the functions provided by the PolyhedralSets
library for polyhedral set manipulation such as construction, getting the ver-
tices and faces. To obtain the adjacency information among the faces we need to
compute the face lattice of the input polyhedral set; the PolyhedralSets library

Computing the Integer Hull of Convex Polyhedral Sets 261

Fig. 6. Polyhedral sets that cover the edge areas

provides the command Graph for that task. We compare our Maple implemen-
tation with another Maple package. In the 2019 Maple Conference, Jing and
Moreno-Maza introduced the ZPolyhedralSets package, presented in [13]. A
ZPolyhedralSet is the intersection of a polyhedral set and a lattice. The integer
hull of a polyhedral set is equal to a ZPolyhedralSet when the ZPolyhedralSet
is defined using the standard integer lattice (which represents all the points with
integer coordinates).

The ZPolyhedralSet package provides the EnumerateIntegerPoints com-
mand, which finds and outputs all the integer points within a ZPolyhedralSet
object. Given a polyhedral set, to obtain the same result that our algorithm com-
putes, which is the list of the vertices of the integer hull, we use the command
EnumerateIntegerPoints to find all the integer points within the input, then
we the command use ConvexHull from ComputationalGeometry to compute
the vertices.

Table 1 shows the time spent in our algorithm (IntegerHull) and the above
two-step method (EIP+CH) to obtain the same result. The inputs are triangles
with different volumes. As we discussed in Sect. 2, the cost for finding all the
integer points is related to the volume of the input and we can see the trend in
the “EIP+CH” columns. Time spent by our algorithm does not seem to depend
on the volume of the input.

From Algorithm 3, we can see that the complexity of our algorithm depends
on the number of facets and the number of fractional vertices in the input.
Table 2 shows the running time of both algorithms (IntegerHull and EIP+CH)
when the inputs are hexagons. The running time for IntegerHull is roughly
double the time for triangle inputs.

262 M. M. Maza and L. Wang

Algorithm 4: Compute the closest integer points on a facet F to the
vertices on it in a 3D polyhedral set
1 Function closestIntegerPoints3D(F, V)

Input:
• F , a facet of P in the form of a PolyhedralSet object
• V , a list of the vertices of P

Output: VC , a list where VC [i] is the integer point on F which is the closest
to V [i], if V [i] is in F , and [] otherwise

2 FP , RF ← HNFProjection(F, 3)
/* Make a projection FP of the 3D bounded plane F onto 2D space

using Hermite Normal Form */

3 Vtmp ← IntegerHull2D(FP)
/* Find the vertices of the integer hull of FP */

4 VF ← IntegerPointIn3D(Vtmp, RF)
/* Find the orignal image of the points in Vtmp */ using the map

RF

5 n ← |V |
6 for i = 1, . . . , n do
7 if V [i] in F and VF �= [] then
8 VC [i] ← closest point to V [i] in VF

9 else
10 VC [i] ← []

11 return VC

Tables 3 and 4 show the running times of the same two algorithms when the
input is a tetrahedron and a bipyramid respectively. The result is similar to that
of the 2D algorithm where the running time increases if there are more facets
and vertices. One thing that we need to notice is that the running time of our
algorithm grows as the volume increases, this is due to the way we deal with
the parts that are around the edges. As we discussed in Sect. 5.1, if there is no
integer point on an edge, the sub-polyhedral set would include the whole edge
and its volume depends on the length of the edge. Recall that we use exhaustive
search for the sub-polyhedral sets thus the running time depends on the volume
of the input polyhedral set.

6.2 The C/C++ Implementation

For the C/C++ implementation, we follow the representations in the C library
cddlib by Komei Fukuda [9] for the polyhedral set computations. GMP rational
arithmetic is used until the integer coordinates are obtained to ensure correct-
ness. Our implementation can take polyhedral sets in either the V-representation
or the H-representation as input; cddlib is used for representation conversion
and some redundancy removal.

Computing the Integer Hull of Convex Polyhedral Sets 263

Algorithm 5: Compute the integer hull of a given 3D polyhedral set
1 Function IntegerHull3D(P)

Input: P , a 3D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner case: P is not fully dimensional
3 Q ← Normalization(P)
4 V ← Vertices(Q)
5 P ← Q
6 F ← Facets(P)
7 for each F [i] in F do
8 VC [i] ← closestIntegerPoints3D(F[i], V)

/* VC is a 2D list where VC [i][j] contains the closest integer

point to V [j] on F [i] */

9 E ← Edges(P)
10 for each E[i] in E do
11 VE ← closestIntegerPointsOnEdge(E[i], V)

12 Vlist ← PartitionP(V, VC , VE)
/* Vlist = [V1, . . . , Vn] where Vi contains the vertices of one part */

13 I ← {}
14 for each Vlist[i] in Vlist do
15 Plist ← PolyhedralSet(Vlist[i])
16 AI ← AllIntegerPoints(Plist)
17 I ← I

⋃
ConvexHull(AI)

18 return ConvexHull(I)

As we have discussed in Sect. 3.2 we use part of the algorithm in [12] to
partition the polyhedral sets and we follow that same article for the enumeration
of the integer points in the corners. We implemented Algorithm 2.4.10 in [7] and
Algorithm 3 in [12] for the procedure HNFProjection. We also implemented the
algorithm introduced by Kaibel and Pfetsch in [14] for the computations of the
face lattice.

To verify our implementation, we compare our results with that of the Nor-
maliz library [5]. We also implemented a naive procedure based on enumeration
and convex hull computation to obtain the integer hull. Note that Algorithm 3
in [12] only enumerate the integer points inside the given polyhedral set while for
Normaliz, if the input is not homogeneous Normaliz homogenizes it by raising
the input to a higher dimension, therefore, Normaliz enumerates more points
than we do for the same input.

Tables 5 and 6 show the time spent in these three different approaches for
computing the integer hulls of the same inputs. Since the I/O formats are differ-
ent for Normaliz and cddlib, we only measured the timings for the integer hull
computation part but not the I/O parts of the programs. Especially, for Normaliz
we only timed the function call “MyCone.compute(ConeProperty::IntegerHull)”.

264 M. M. Maza and L. Wang

Table 1. Integer hulls of triangles

Volume 27.95 111.79 11179.32

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.172 0.410 0.244 0.890 0.159 58.083

Table 2. Integer hulls of hexagons

Volume 58.21 5820.95 23283.82

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.303 0.752 0.275 31.357 0.304 123.159

The examples are named as xdy z, where x is the dimension of the input (all
the examples are full dimensional). Each y represents a set of examples that are
of the same shape which means these polyhedral sets Ax <= b share the same
coefficient matrix A while the vector b varies. xdy 0 is the smallest (volume wise)
example in a set, for z = 1, 2, 3, vector b get multiplied by 2, 5, 10 respectively.
For the 2D examples, 2d1 has 6 vertices, 2d2 has 4 vertices and 2d3 has 3 vertices.
And for the 3D examples, 3d1 has 12 facets, 8 vertices and 18 edges, 3d2 has 4
facets, 4 vertices and 6 edges and 3d3 has 6 facets, 5 vertices and 9 edges.

The result is consistent with our observation in [17]. For the same family of
input, the time spent by our algorithm is relatively stable while for both our
naive implementation and Normaliz, the larger the volume of the input is, the
more time they need to do the computation since often time larger polyhedral
sets contain more integer points for enumeration.

Table 3. Integer hulls of tetrahedrons (4 facets, 4 vertices and 6 edges)

Volume 447.48 6991.89 55935.2

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.202 6.892 1.498 67.814 1.517 453.577

Table 4. Integer hulls of triangular bipyramids (6 facets, 5 vertices and 9 edges)

Volume 412.58 7050.81 60417.63

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.476 5.711 1.573 60.233 1.728 512.101

Computing the Integer Hull of Convex Polyhedral Sets 265

Table 5. Timing (ms) for computing integer hull of 2D examples

example IntegerHull Naive Normaliz

2d1 0 0.451 0.565 2.837

2d1 1 0.478 0.657 1216.238

2d1 2 0.396 0.682 740.559

2d1 3 0.443 1.134 472.447

2d2 0 0.413 1.128 1258.422

2d2 1 0.411 2.714 1242.081

2d2 2 0.393 16.079 2622.995

2d2 3 0.449 47.145 10218.368

2d3 0 0.284 0.768 835.730

2d3 1 0.339 1.676 462.116

2d3 2 0.286 6.883 1559.401

2d3 3 0.324 25.637 5072.894

Table 6. Timing (ms) for computing integer hull of 3D examples

example IntegerHull Naive Normaliz

3d1 0 51.727 11.396 274.364

3d1 1 52.034 13.483 1018.449

3d1 2 60.821 21.106 2330.534

3d1 3 54.350 79.219 15346.996

3d2 0 4.488 0.826 851.495

3d2 1 4.615 0.923 956.666

3d2 2 4.624 1.527 793.192

3d2 3 5.522 4.394 1318.150

3d3 0 11.049 21.235 7862.109

3d3 1 16.001 145.068 N/A

3d3 2 23.822 2082.559 N/A

3d3 3 24.162 N/A N/A

7 Conclusion and Future Work

In this paper, we introduced a new algorithm for computing the integer hull
of a convex polyhedral set. Our algorithm takes into consideration geometric
properties of the input polyhedral set in order to make the computation more
efficient. We implemented the proposed algorithm for two-dimensional and three-
dimensional input in both Maple and C/C++. The efficiency of this algorithm
depends mainly on the shape of the input while the size of the input has little

266 M. M. Maza and L. Wang

impact. We show in Sect. 6 that our algorithm can deal with inputs of very large
volumes that algorithms depending on enumeration can not process.

The main steps of our algorithm are normalization, partition and merging.
Our algorithm can be stated for polyhedral sets of arbitrary dimension and a
Maple implementation is work in progress. Another on-going development is
an algebraic complexity analysis of our algorithm.

We sketch below our algorithm for computing the integer hull of a d-dimen-
sional convex polyhedral set P :

1. normalize the input using the procedure introduced in Sect. 3.1,
2. for each vertex, find the closest integer points to it on each of its adjacent

faces,
3. for each face of dimension from 0 to d − 2, construct a “corner polyhedral

set” using the integer points we obtained from step 2,
4. compute the integer hull of each corner polyhedral set,
5. compute the convex hull of all the integer hulls from step 4,
6. this convex hull is the integer hull of P .

References

1. Assarf, B., Gawrilow, E., Herr, K., Joswig, M., Lorenz, B., Paffenholz, A., Rehn,
T.: Computing convex hulls and counting integer points with polymake. Math.
Program. Comput. 9(1), 1–38 (2017)

2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

3. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

4. Berndt, S., Jansen, K., Klein, K.: New bounds for the vertices of the integer hull.
In: Le, H.V., King, V. (eds.) 4th Symposium on Simplicity in Algorithms, SOSA
2021, Virtual Conference, January 11–12, 2021. pp. 25–36. SIAM (2021)

5. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz: algorithms for
rational cones and affine monoids . J. Algebra 324 (2010)

6. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
cret. Math. 4(4), 305–337 (1973)

7. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 8. Springer-
Verlag, Berlin (1993). https://doi.org/10.1007/978-3-662-02945-9

8. Cook, W.J., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in
polyhedra. Combinatorica 12(1), 27–37 (1992)

9. Fukuda, K.: cdd. c: C-implementation of the double description method for com-
puting all vertices and extremal rays of a convex polyhedron given by a system of
linear inequalities. Department of Mathematics, Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland (1993)

10. Gomory, Ralph E..: Outline of an algorithm for integer solutions to linear programs
and an algorithm for the mixed integer problem. In: Jünger, M., et al. (eds.) 50
Years of Integer Programming 1958-2008, pp. 77–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-540-68279-0 4

11. Hayes, A.C., Larman, D.G.: The vertices of the knapsack polytope. Discret. Appl.
Math. 6(2), 135–138 (1983)

https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-540-68279-0_4

Computing the Integer Hull of Convex Polyhedral Sets 267

12. Jing, R.-J., Moreno Maza, M.: Computing the integer points of a polyhedron, I:
algorithm. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2017. LNCS, vol. 10490, pp. 225–241. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66320-3 17

13. Jing, R., Moreno Maza, M.: The z polyhedra library in maple. In: Gerhard, J., Kot-
sireas, I.S. (eds.) Maple in Mathematics Education and Research - Third Maple
Conference, MC 2019, Waterloo, Ontario, Canada, October 15–17, 2019, Proceed-
ings of the Communications in Computer and Information Science, vol. 1125, pp.
132–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-81698-8

14. Kaibel, V., Pfetsch, M.E.: Computing the face lattice of a polytope from its vertex-
facet incidences. Comput. Geom. 23(3), 281–290 (2002)

15. Land, A., Doig, A.: An automatic method of solving discrete programming prob-
lems. Econometric 28, 497–520 (1960)

16. Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point count-
ing in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004)

17. Moreno Maza, M., Wang, L.: On the pseudo-periodicity of the integer hull of para-
metric convex polygons. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov,
E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 252–271. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85165-1 15

18. Pick, G.: Geometrisches zur zahlenlehre. Sitzenber. Lotos (Prague) 19, 311–319
(1899)

19. Maple polyhedralsets package (2021), https://www.maplesoft.com/support/help/
maple/view.aspx?path=PolyhedralSets

20. Schrijver, A. (Ed.): Theory of Linear and Integer Programming. Wiley, New York
(1986)

21. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1999)
22. Schrijver, A., et al.: On cutting planes. Combinatorics 79, 291–296 (1980)
23. Seghir, R., Loechner, V., Meister, B.: Integer affine transformations of parametric

Z-polytopes and applications to loop nest optimization. ACM Trans. Archit. Code
Optim. 9(2), 8:1–8:27 (2012)

24. Thomas, R.R.: Integer programming: Algebraic methods. In: Floudas, C.A., Parda-
los, P.M. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1624–1634. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-74759-0

25. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

26. Veselov, S., Chirkov, A.Y.: Some estimates for the number of vertices of integer
polyhedra. J. Appl. Ind. Math. 2(4), 591–604 (2008)

27. Yanagisawa, H.: A simple algorithm for lattice point counting in rational polygons
(2005)

https://doi.org/10.1007/978-3-319-66320-3_17
https://doi.org/10.1007/978-3-319-66320-3_17
https://doi.org/10.1007/978-3-030-81698-8
https://doi.org/10.1007/978-3-030-85165-1_15
https://www.maplesoft.com/support/help/maple/view.aspx?path=PolyhedralSets
https://www.maplesoft.com/support/help/maple/view.aspx?path=PolyhedralSets
https://doi.org/10.1007/978-0-387-74759-0

A Comparison of Algorithms for Proving
Positivity of Linearly Recurrent Sequences

Philipp Nuspl1(B) and Veronika Pillwein2

1 Doctoral Program Computational Mathematics, Johannes Kepler University,
Linz, Austria

philipp.nuspl@jku.at
2 Research Institute for Symbolic Computation, Johannes Kepler University,

Linz, Austria
veronika.pillwein@risc.jku.at

Abstract. Deciding positivity for recursively defined sequences based
on only the recursive description as input is usually a non-trivial task.
Even in the case of C-finite sequences, i.e., sequences satisfying a linear
recurrence with constant coefficients, this is only known to be decidable
for orders up to five. In this paper, we discuss several methods for proving
positivity of C-finite sequences and compare their effectiveness on input
from the Online Encyclopedia of Integer Sequences (OEIS).

Keywords: Difference equations · Inequalities · Holonomic sequences

1 Introduction

A sequence is called D-finite (or P -recursive or holonomic), if it satisfies a lin-
ear recurrence with polynomial coefficients. These sequences appear in many
applications, e.g., in combinatorics or as coefficient sequences of special func-
tions [7,32]. They are interesting from the symbolic computation point of view,
as they can be represented by a finite amount of data – the recurrence coef-
ficients and sufficiently many initial values. Several closure properties hold for
holonomic sequences and there exist summation algorithms that work with this
representation for input and output. These methods are used to automatically
prove and derive identities for holonomic sequences. When it comes to automatic
proving of inequalities on holonomic sequences, there are not many algorithms
available. Gerhold and Kauers [10] introduced a method in 2005 that can be used
for sequences satisfying (a system of) recurrences including in particular holo-
nomic sequences. This method (together with variations of it) has been applied
successfully on several examples [17,29,31]. Still, a priori it is not known in
general whether the procedure terminates [22].

The research was funded by the Austrian Science Fund (FWF) under the grant W1214-
N15, project DK15.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 268–287, 2022.
https://doi.org/10.1007/978-3-031-14788-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_15

Positivity of Linearly Recurrent Sequences 269

In this paper, we restrict our study to C-finite sequences, i.e., holonomic
sequences with constant coefficients, and the problem of proving positivity. This
is known to be decidable for integer linear recurrences of order 2 [12], order 3 [23],
order at most 5 and is related to difficult number theoretic problems for higher
order [28]. We give an overview on some methods which can be used to prove
the positivity of C-finite sequences, including the Gerhold–Kauers method and
the most used variation (Algorithms 1 and 2 below). Other methods are based
on theoretical results that, as far as we know, have not yet been implemented
and tested on practical input on a larger scale. For testing the effectiveness of
these different algorithms, we use input from the Online Encyclopedia of Integer
Sequences (OEIS) [27] that are likely candidates for positive sequences. Our
implementations are done both in SageMath and Mathematica and the source
files as well as testing data are made available online (see links in Sect. 4).

2 Preliminaries

We introduce some notations and definitions that will be used throughout the
paper. We always assume that Q ⊆ K � R is some number field. We denote
the field of algebraic numbers by Q and the field of real algebraic numbers by
A := Q ∩ R. We denote the K-vector space of sequences by KN and let σ denote
the shift operator σ((c(n))n∈N) := (c(n + 1))n∈N.

2.1 Linear Recurrence Sequences

We denote the Ore algebra of shift operators by K[x]〈σ〉. Let A =
∑r

i=0 pi(x)σi ∈
K[x]〈σ〉. If pr �= 0, then r is called the order of A and maxi=0,...,r deg(pi) is called
the degree of A. The operator A acts on a sequence c ∈ KN in the natural way as

Ac = (p0(n)c(n) + · · · + pr(n)c(n + r))n∈N.

A sequence c ∈ KN is called D-finite (or P -recursive or holonomic) if there
is a non-zero operator A ∈ K[x]〈σ〉 with Ac = 0, i.e., the sequence satisfies a
linear recurrence with polynomial coefficients. We call A an annihilating operator
of c. It is well known that D-finite sequences form a computable difference ring
[21]. The minimal possible order r of an annihilating operator is also called the
order of the sequence c. The degree of c is then just defined as the degree of
this operator.

A D-finite sequence c is called C-finite if it satisfies a linear recurrence with
constant coefficients, i.e., if there are γ0, . . . , γr ∈ K with γr �= 0 such that

γ0c(n) + · · · + γrc(n + r) = 0, for all n ∈ N. (1)

Again, the order of c as a C-finite sequence is the minimal r (note that the order
of c considered as a C-finite sequence can be different from the order considered
as a D-finite sequence, cf. Lemma 3). The set of C-finite sequences is again a
computable difference ring. Every such sequence can be uniquely described by
the coefficients of the recurrence γ0, . . . , γr and sufficiently many initial values
c(0), . . . , c(r − 1).

270 P. Nuspl and V. Pillwein

2.2 Characteristic Polynomial

For an operator A =
∑r

i=0 pi(x)σi ∈ K[x]〈σ〉 the characteristic polynomial is
defined as

χ(A) := lcx

(
r∑

i=0

pi(x)yi

)

∈ K[y].

The roots of χ(A) are called eigenvalues and usually govern the asymptotic
behavior of sequences which are annihilated by A [22].

We can extend the notion of the characteristic polynomial to the
left-Noetherian ring K(x)〈σ〉. For a univariate polynomial p ∈ K[x] we denote
by coeff (p, i) ∈ K the coefficient of xi in p. For a rational function p(x)

q(x) with
coprime p, q ∈ K[x] we define the degree as deg(p/q) = deg(p) − deg(q) and call

lc(p/q) := coeff (p/q,deg(p/q)) := lc(p)/ lc(q)

the leading coefficient of p/q. Now, for an operator A =
∑r

i=0
pi(x)
qi(x)

σi ∈ K(x)〈σ〉
with deg(A) := maxi=0,...,r deg(pi/qi) we define the characteristic polynomial as

χ(A) :=
r∑

i=0
deg(pi/qi)=deg(A)

lc(pi/qi)yi ∈ K[y].

Next, in Lemma 1 and Lemma 2, we state some basic properties of the
characteristic polynomial. Since we could not find references for those, we add
the proofs for sake of completeness.

Lemma 1. Let A,B ∈ K(x)〈σ〉. Then χ(AB) = χ(A)χ(B).

Proof. Let A :=
∑r

i=0 pi(x)σi ∈ K(x)〈σ〉 and B :=
∑s

j=0 qj(x)σj ∈ K(x)〈σ〉 and
dA := maxi=0,...,r deg pi, dB := maxj=0,...,s deg qj ∈ Z their respective degrees.
We show that AB has degree dA + dB. By the definition of multiplication in
K(x)〈σ〉 and the properties of the degree of a rational function, the degree of AB
is certainly bounded by dA+dB. Let i′, j′ be maximal such that deg pi′ = dA and
deg qj′ = dB. We show that the coefficient of σi′+j′

of AB has degree dA + dB.
This coefficient is given by

∑i′+j′

l=0 pl(x)qi′+j′−l(x + l). Because of the choice
of i′, j′ we have

deg(pl(x)qi′+j′−l(x)) = deg(pl(x)) + deg(qi′+j′−l(x + l)) < dA + dB

for all l �= i′. For l = i′, we have deg(pl(x)qi′+j′−l(x)) = dA + dB, so by the
properties of the degree we have

deg

⎛

⎝
i′+j′
∑

l=0

pl(x)qi′+j′−l(x + l)

⎞

⎠ = max
l=0,...,i′+j′

(deg (pl(x)) + deg (qi′+j′−l(x + l)))

= dA + dB.

Positivity of Linearly Recurrent Sequences 271

Next, we show that all coefficients of χ(A)χ(B) and χ(AB) agree.
Let i ∈ {0, . . . , r + s}. Then,

coeff (χ(A), i) = coeff (pi(x), dA) , coeff (χ(B), i) = coeff (qi(x), dB)

and therefore

coeff (χ(A)χ(B), i) =
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .

In the first part of the proof, we have shown that AB has degree dA + dB.
Therefore,

coeff (χ(AB), i) = coeff

⎛

⎝
i∑

j=0

pj(x)qi−j(x + j), dA + dB

⎞

⎠

=
i∑

j=0

coeff (pj(x)qi−j(x + j), dA + dB)

=
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x + j), dB)

=
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .

�	
Suppose A is an annihilator of a and B an annihilator of b. Then, the least

common left multiple lclm(A,B) is an annihilator of a + b [19].

Lemma 2. Let A,B ∈ K[x]〈σ〉. Then
χ(A) | χ(lclm(A,B)) and χ(B) | χ(lclm(A,B)).

In particular, we have

lcm(χ(A), χ(B)) | χ(lclm(A,B)).

Proof. Let C ∈ K(x)〈σ〉 be such that CA = lclm(A,B). Then, with Lemma 1
we have

χ(lclm(A,B)) = χ(CA) = χ(C)χ(A).

�	
Example 1. In Lemma 2, divisibility cannot be replaced with equality. Consider
A := 1 + σ and B := x + (x + 1)σ. Then,

χ(A) = χ(B) = 1 + y,

but
χ(lclm(A,B)) = χ(x + (2x + 2)σ + (x + 2)σ2) = 1 + 2y + y2.

272 P. Nuspl and V. Pillwein

An operator A =
∑r

i=0 piσ
i ∈ K[x]〈σ〉 is called balanced if

deg p0 = deg pr = max
i=0,...,r

deg pi.

Equivalently, A is balanced if and only if the degree of χ(A) ∈ K[y] equals the
order of A and the trailing coefficient of χ(A) is non-zero, i.e., y � χ(A).

2.3 Positivity

Suppose we are given a C-finite sequence c in terms of a recurrence and suffi-
ciently many initial values. Our goal is to prove c(n) > 0 for all n ∈ N (i.e., show
that c is positive) or to find an index n0 ∈ N such that c(n0) ≤ 0. The very
same methods can always be applied to show non-negativity instead of strict
positivity of a sequence.

If b, c are C-finite sequences, then the inequality b > c (or b ≥ c) can easily
be reduced to the positivity problem. The sequence b−c is again C-finite. Hence,
proving the equivalent positivity problem b − c > 0 (or b − c ≥ 0) shows the
original inequality.

Suppose c is C-finite satisfying the recurrence (1). Let k ∈ N be minimal
such that γk �= 0. Now, define c̃ := σkc. Then, c̃ is again C-finite satisfying
the recurrence

γk c̃(n) + · · · + γr c̃(n + r − k) = 0, for all n ∈ N.

The sequence c is positive if and only if the sequence c̃ and the initial values
c(0), . . . , c(k − 1) are positive. Therefore, we can (and will) always assume that
a C-finite sequence c is given by a recurrence with coefficients γ0, . . . , γr with
γ0, γr �= 0. Such a sequence c can then always be written as a polynomial-linear
combination of exponential sequences. One can compute polynomials p1, . . . , pm

∈ Q[x] and pairwise distinct non-zero constants λ1, . . . , λm ∈ Q such that

c(n) =
m∑

i=1

pi(n)λn
i , for all n ∈ N. (2)

These λi are called the eigenvalues of c and they are the roots of the characteristic
polynomial

∑r
i=0 γiy

i ∈ K[y] of the minimal order recurrence of c. More precisely,
if λi is a root of multiplicity di, then deg(pi) = di − 1. Hence, r =

∑m
i=1 di [21].

Two sequences b, c which are non-zero from some term on are called asymptot-
ically equivalent if limn→∞

b(n)
c(n) = 1. In this case, we write b ∼ c. The asymptotic

behavior of c is governed by the k eigenvalues of maximal modulus, we call them
the dominant eigenvalues. We assume |λ1| = · · · = |λk| > |λk+1| ≥ · · · ≥ |λm|.
Let d := maxi=1,...,k deg pi. Then, c(n) ∼ nd

∑k
i=1 coeff (pi, d) λn

i [21].
In the special case that we have a unique dominant eigenvalue (i.e., k = 1)

we have c(n) ∼ γndλn
1 for some γ [21]. Hence, c can only be a positive sequence

Positivity of Linearly Recurrent Sequences 273

if γ, λ1 ∈ A and γ > 0, λ1 > 0. Then, c is positive if and only if c(n)/λn
1 is

positive. Therefore, it is sufficient to show positivity of a sequence

p(n) +
s∑

i=1

(
oi(n)ξn

i + oi(n)ξi
n
)

+
l∑

i=1

qi(n)ρn
i (3)

with p ∈ A[x], o1, . . . , os ∈ Q[x], q1, . . . , ql ∈ A[x] and constants ξ1, . . . , ξs ∈
Q, ρ1, . . . , ρl ∈ A where the leading coefficient of p is positive [28].

3 Algorithms

In this section we give an overview over some methods which can be used to
prove positivity of a C-finite sequence. Algorithms 1 and 2 introduced below in
Sects. 3.1, 3.2 can be applied to D-finite sequences. As such they can be used
to prove positivity of C-finite sequences. However, sometimes C-finite sequences
satisfy a D-finite recurrence of lower order, which is better suited as input for
these methods. In Sect. 3.3, we discuss when such a D-finite recurrence exists. A
method based on the combination of Algorithms 1 and 2 as well as on the closed
form of a C-finite sequence is introduced in Sect. 3.5. The methods described in
Sects. 3.4 and 3.6 also make use of the closed form of C-finite sequences. They
are based on known results, but we believe that they had not been implemented
so far.

3.1 Algorithm 1

In 2008 [10], a method based on cylindrical algebraic decomposition [1,3,5,6]
(CAD) was introduced which can be used to show positivity of sequences that can
be defined recursively along some discrete parameter. This procedure, however,
is not guaranteed to terminate. For D-finite sequences of small order conditions
which guarantee the termination of the algorithm were found [22,30].

We give a short description of Algorithm 1 from [22]. For a D-finite sequence c
of order r, the Q(x)-vector space which is generated by the shifts of c is finitely
generated [21]. In fact, it is generated by c, . . . , σr−1c, i.e.,

〈σic | i ∈ N〉Q(x) = 〈c, . . . , σr−1c〉Q(x).

Hence, for all ρ ∈ N there are rational functions qρ,0(x), . . . , qρ,r−1(x) ∈ K(x)
with c(n + ρ) =

∑r−1
i=0 qρ,i(n)c(n + i) for all n ∈ N. The idea now is to check

with CAD whether c(n), . . . , c(n+ r −1) > 0 implies c(n+ r) > 0 where c(n+ r)
can be written in terms of the c(n), . . . , c(n + r − 1). If this is true, then by
induction it would be sufficient to check finitely many initial values to deduce
positivity of the entire sequence. If, however, this cannot be shown, then we can
add c(n + r) > 0 to the hypothesis and show c(n + r + 1) > 0. This process is

274 P. Nuspl and V. Pillwein

iterated. In the iteration step ρ ≥ r we try to show positivity of the formula

Φ(ρ, c) := ∀y0, . . . , yr−1, x ∈ R :

⎛

⎝x ≥ 0 ∧
ρ−1∧

j=0

r−1∑

i=0

qj,i(x)yi > 0

⎞

⎠

=⇒
r−1∑

i=0

qρ,i(x)yi > 0.

Formula Φ(ρ, c) is a generalized induction formula over the reals. It is certainly
sufficient to prove the initial induction step and has the advantage of being a
valid input for CAD. Here, we give a slightly adjusted version which searches for
an index n0 such that the sequence σn0c is positive, i.e., it checks whether the
sequence is eventually positive (hence, we denote the algorithm by Algorithm 1e).
If such an n0 can be found by the algorithm, then it is sufficient to check the
initial values c(0), . . . , c(n0 − 1) of the sequence to prove positivity of c.

Algorithm 1e. Adjusted version of Algorithm 1 from [22]
Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d ← c
while n < r or ¬Φ(n, d) do

if d(n) > 0 then
n ← n + 1

else
n0 ← n0 + n + 1
d ← σn+1d
n ← 0

return n0

Clearly, Algorithm 1e is not guaranteed to terminate. E.g., if the input
sequence c is negative, then the algorithm never terminates. Suppose the
sequence c is eventually positive, i.e., there exists an n0 ∈ N such that σn0c is
positive. Since χ(c) = χ(σn0c), the same termination conditions for Algorithm 1
in [22] now also apply to Algorithm 1e.

Example 2. The sequence A001903 is C-finite of order 3 satisfying

c(n) − c(n + 1) + c(n + 2) − c(n + 3) = 0

with initial values c(0) = 1, c(1) = 7, c(2) = 9. Algorithm 1e terminates for this
sequence for n = 4 showing that c is positive.

http://oeis.org/A001903

Positivity of Linearly Recurrent Sequences 275

3.2 Algorithm 2

Algorithm 2 in [22] again uses CAD to prove positivity of a D-finite sequence.
The idea is to check whether there is a μ > 0 such that c(n + 1) ≥ μc(n) for
all n ∈ N. By induction, if there is a μ > 0 such that c(n+1) ≥ μc(n), . . . , c(n+
r−1) ≥ μc(n+r−2) implies c(n+r) ≥ μc(n+r−1), then it is again sufficient to
check finitely many initial values to prove positivity of c. Hence, the important
step in the algorithm is to use CAD to check whether there exists a μ > 0 such
that the formula

Ψ(ξ, μ, c) := ∀y0, . . . , yr−1 ∈ R ∀x ∈ R≥ξ :

(

y0 > 0 ∧
r−2∧

i=0

yi+1 ≥ μyi

)

=⇒
r−1∑

i=0

qi(x)yi ≥ μyr−1

is valid where qi ∈ K(x) are such that c(n+r) =
∑r−1

i=0 qi(n)c(n+i) for all n ∈ N.
Again, we give a slightly adjusted version which searches for an index n0 such

that the sequence σn0c is positive. If the input sequence c is eventually positive,
then the same termination conditions as for Algorithm 2 in [22] apply in this
adjusted version.

Algorithm 2e. Adjusted version of Algorithm 2 from [22]
Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d ← c
Ψ(ξ, μ) ← quantifier free formula equivalent to Ψ(ξ, μ, d)
for n = 0, 1, . . . do

if d(n) ≤ 0 then
n0 ← n0 + n + 1
d ← σn+1d
Ψ(ξ, μ) ← quantifier free formula equivalent to Ψ(ξ, μ, d)
n ← 0

else if ∃μ > 0:
r−2∧

i=0

d(n + i + 1) ≥ μd(n + i) ∧ Ψ(n, μ) then

return n0

Example 3. The sequence A005682 is C-finite of order 6 satisfying

c(n) + c(n + 2) − 2c(n + 5) + c(n + 6) = 0

with initial values c = 〈1, 2, 4, 8, 15, 28, . . . 〉. Algorithm 2e terminates for this
sequence at n = 0 showing that c is positive. Algorithm 1e cannot show positivity
of c in 60 s.

http://oeis.org/A005682

276 P. Nuspl and V. Pillwein

3.3 D-finite Reduction

Clearly, every C-finite sequence is also D-finite. Sometimes, C-finite sequences
satisfy shorter D-finite recurrences. In these cases, it can be helpful to use this
shorter D-finite recurrence as the next example shows.

Example 4. Let c be the sequence defined by c(n) = n2 + 1 for all n ∈ N

(A002522). If c is considered as a C-finite sequence of order 3, then neither
Algorithm 1e nor Algorithm 2e terminate in 60 s. If c is, however, considered as
a D-finite sequence of order 1 and degree 2, then both algorithms terminate and
show that c is indeed positive.

The next lemma shows that we can find a shorter D-finite recurrence of a
C-finite sequence c if and only if c has eigenvalues of higher multiplicities or
equivalently the characteristic polynomial of c is not squarefree.

Lemma 3. Let c be a C-finite sequence of order r with y � χ(c). Then, c is
D-finite of order m < r if and only if χ(c) is not squarefree.

Proof. Suppose c is given as in (2).
⇐=: The sequences pi(n)λn

i are D-finite of order 1 and degree di over Q.
Hence, by the bounds for closure properties of D-finite sequences, c(n) is D-
finite of order at most m over Q [21]. [9, Lemma 2] shows that the sequence is
then also D-finite over K with the same order and degree. In particular, if χ(c)
is not squarefree, then r =

∑m
i=1 di > m.

=⇒: Suppose c satisfies a D-finite recurrence of order m < r and degree d

m∑

i=0

pi(n)c(n + i) = 0 for all n ∈ N (4)

with pi(n) =
∑d

k=0 pi,knk where not all pi,k are zero. Furthermore, suppose
that c is C-finite of order r with pairwise distinct eigenvalues λ1, . . . , λr ∈ Q,
i.e., c(n) can be written as c(n) =

∑r
j=1 γjλ

n
j for some γj ∈ Q. Using this closed

form in (4) yields

d∑

k=0

⎛

⎝
m∑

i=0

r∑

j=1

pi,kγjλ
n+i
j

⎞

⎠ nk = 0. (5)

Let γk,j :=
∑m

i=0 pi,kγjλ
i
j , then (5) is equivalent to

∑d
k=0

(∑r
j=1 γk,jλ

n
j

)
nk = 0.

For n = 0, . . . , r(d+1)− 1 we get a homogeneous linear system for the γk,j . The
corresponding matrix is regular [24, Theorem 2.2.1],[13, Proposition 2.11], so
γk,j = 0 for all k, j. Let k be such that pi,k �= 0 for some i. Then,

0 =
r∑

j=1

λn
j

m∑

i=0

pi,kγjλ
i
j =

m∑

i=0

r∑

j=1

pi,kγjλ
n+i
j =

m∑

i=0

pi,kc(n + i).

Hence, c satisfies a C-finite recurrence of order m < r, a contradiction to c being
C-finite of order r. �	

http://oeis.org/A002522

Positivity of Linearly Recurrent Sequences 277

The proof of Lemma 3 shows that precisely the polynomial factors can be
reduced in the D-finite recurrence, i.e., the m in the statement of Lemma 3 is
the number of distinct eigenvalues of the sequence, which is also denoted by m
in Eq. (2). The degree of the D-finite recurrence can be bounded by

(m(m + 1) − m) max
i=1,...,m

di = m2 max
i=1,...,m

di ≤ r3

using [18, Theorem 2].
In practice, we can easily check whether χ(c) is squarefree by checking

whether χ(c) and its derivative are coprime. The shorter D-finite recurrence
can then be either found by guessing or by computing it explicitly from the
closed form of c.

3.4 Classical Algorithm for Sequences with Unique Dominant
Eigenvalue

If a C-finite sequence has a unique dominant eigenvalue, checking positivity
of the sequence is known to be decidable [28]. In this section, we give a full
description of such an algorithm based on that result.

As discussed in Sect. 2.3 we can assume that a C-finite sequence c is given in
its closed form representation, i.e., as

c(n) = p(n) + r(n), (6)

where p ∈ A[x] with lc(p) > 0 and r(n) =
∑m

i=1 pi(n)λn
i with pi ∈ Q[x], λi ∈ Q

and 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. The idea is now to compute an ε ∈ (0, 1)
and n0, n1 ∈ N such that |r(n)| < (1 − ε)n for n ≥ n0 and p(n) ≥ (1 − ε)n for
n ≥ n1. Then, clearly c(n) is positive from max(n0, n1) on. The initial values
can be checked separately again.

Algorithm C. Positivity for sequences with dominant eigenvalues [28]
Input : C-finite sequence c of the form (6)
output: true if c(n) > 0 for all n ∈ N and false otherwise
ε ← 1−|λ1|

2

compute n0 such that |r(n)| < (1 − ε)n for all n ≥ n0

compute n1 such that p(n) ≥ (1 − ε)n for all n ≥ n1

if c(n) > 0 for n = 0, . . . ,max(n0, n1) then
return true

else
return false

For a polynomial pi(x) =
∑di

j=0 γi,jx
j ∈ A of degree di we can easily compute

a constant ci ∈ A such that |pi(n)| ≤ cin
di for all n ≥ 1. For example, we can

choose ci :=
∑di

i=0|γi,j |. Let c :=
∑m

i=1 ci and d := max(d1, . . . , dm), i.e., the

278 P. Nuspl and V. Pillwein

maximal multiplicity of the eigenvalues λ1, . . . , λm. Furthermore, let ε := 1−|λ1|
2 .

Then, 1 − ε = |λ1| + ε.
First, we show how n0 can be found such that |r(n)| < (1 − ε)n for n ≥ n0.

Let μ := |λ1|+ε
|λ1| . If d = 0, then

|r(n)| ≤ c|λ1|n < (1 − ε)n ⇐⇒ log(c)
log(μ) < n.

Hence, we can choose n0 := � log(c)
log(μ)� in this case. If d > 0, then

|r(n)| ≤ c nd|λ1|n < (1 − ε)n ⇐⇒ log(c1/d) < n
d log(μ) − log(n).

The derivative of the right-hand side of this inequality is positive if n > d
log(μ) ,

i.e., from � d
log(μ)� on the sequence on the right-hand side is monotonously increas-

ing. Hence, if the inequality is true for some n0 ≥ � d
log(μ)�, then it is true for all

n ≥ n0. Checking these values one by one, we will find a suitable n0 eventually.
If the polynomial p(x) = p0 is just constant, then p(n) ≥ (1 − ε)n if and

only if n ≥ log(p0)
log(1−ε) . Otherwise, we can compute the largest real root x1 of the

derivative of p(x). If p(n1) ≥ (1 − ε)n1 for any n1 ≥ �x1�, then the inequality
holds for all n ≥ n1.

Example 5. The sequence A000126 is C-finite of order 4 satisfying

c(n) − c(n + 1) − 2c(n + 2) + 3c(n + 3) − c(n + 4) = 0

with initial values c = 〈1, 2, 4, 8, . . . 〉. The sequence has the unique dominant
root 1+

√
5

2 . Algorithm 1e and Algorithm 2e do not terminate in 60 s whereas
Algorithm C terminates after checking the first 14 terms.

3.5 Combination of Algorithm 1 and Algorithm 2

In the case that the C-finite sequence has a unique dominant eigenvalue, we
can combine the closed form representation of the sequence together with Algo-
rithm 1e and Algorithm 2e. As we know that the polynomial term p(n) in (3) cer-
tainly dominates the exponential terms, we can find indices ni using Algorithm 1e
and Algorithm 2e from which on the exponential sequences are dominated by
the polynomial term. These input sequences have very low order (maximum
order 3). Therefore, the termination criteria in [22] show that these algorithms
terminate in most instances.

As Algorithm 2e terminates for essentially all sequences of order 2, the real
algebraic part of Algorithm P certainly terminates.

Theorem 1. Algorithm P terminates if s = 0, i.e., if all eigenvalues of c are
real algebraic.

http://oeis.org/A000126

Positivity of Linearly Recurrent Sequences 279

Algorithm P. Positivity for sequences with dominant eigenvalues
Input : C-finite sequence c of the form (3)
output: true if c(n) > 0 for all n ∈ N and false otherwise
for i ← 1 to s do

ni,Q ← Algorithm 1e applied to p(n)
s+l

+ oi(n)ξ
n
i + oi(n)ξi

n

for i ← 1 to l do
ni,A ← Algorithm 2e applied to p(n)

s+l
+ qi(n)ρ

n
i

n0 ← max(n1,Q, . . . , ns,Q, n1,A, . . . , nl,A)

if c(n) > 0 for n = 0, . . . , n0 then
return true

else
return false

Proof. Each sequence h(n) := p(n)
s+l + qi(n)ρn

i is the sum of two balanced D-finite
sequences g, f over A satisfying the recurrences

−p(n + 1)g(n) + p(n)g(n + 1) = 0, −qi(n + 1)ρif(n) + qi(n)f(n + 1) = 0

with characteristic polynomials

χ(G) = lc(p)(y − 1), χ(F) = lc(qi)(y − ρi),

where G,F denote the annihilating operators of g, f , respectively. As these char-
acteristic polynomials are coprime, Lemma 2 yields

χ(H) = χ(G)χ(F) = γ(y − 1)(y − ρi)

for some constant γ where H denotes the annihilating operator of h. In particular,
H is balanced. Furthermore, h ∼ p(n) by construction. With [22, Theorem 3],
Algorithm 2e terminates with input h. �	

It is conjectured that Algorithm 1e terminates for sequences of order 3 if the
eigenvalues are complex. This is the case if we apply Algorithm 1e. Hence, if
the conjecture is true, Algorithm P terminates for all C-finite sequences with a
unique dominant eigenvalue.

Theorem 2. Assume Conjecture 1 from [22] is true. Then, Algorithm P termi-
nates.

Proof. The proof of Theorem 1 already shows that the algorithm terminates for
the real algebraic eigenvalues. Analogously, in the complex case, the sequences
h(n) := p(n)

s+l + oi(n)ξn
i + oi(n)ξi

n
are D-finite of order 3 with a balanced annihi-

lating operator H with characteristic polynomial

χ(H) = γ(y − 1)(y − ξi)(y − ξi)

for some constant γ. With Conjecture 1, Algorithm 1e terminates on this
input. �	

280 P. Nuspl and V. Pillwein

Example 6. The sequence A002248 is C-finite of order 4 satisfying the recurrence

4c(n) − 8c(n + 1) + 7c(n + 2) − 4c(n + 3) + c(n + 4) = 0

with initial values c = 〈2, 8, 14, 16, . . . 〉. The sequence has the unique dominant
eigenvalue 2. Neither Algorithm 1e nor Algorithm 2e terminate in 60 s. However,
both Algorithm C and Algorithm P terminate in negligible time.

3.6 Decomposition into Non-degenerate Sequences

A C-finite sequence c is called degenerate if the ratio λi

λj
of two distinct eigen-

values λi, λj is a root of unity. Every C-finite sequence c can be written as the
interlacing of non-degenerate and zero-sequences c1, . . . , ck [8, Theorem 1.2]. For
proving inequalities for C-finite sequences this decomposition often turned out
useful [26,28,35]. For proving positivity of c we can compute this decomposition
and prove positivity for every subsequence c1, . . . , ck.

One can explicitly compute the eigenvalues of a C-finite sequence and check
whether the ratio of two eigenvalues is a root of unity [4]. Hence, a naive algo-
rithm can decompose a sequence c into k subsequences

c1(n) = c(kn), . . . , ck(n) = c(kn + k − 1)

and check whether all these subsequences are either zero or non-degenerate.
Eventually, for large enough k, this is the case. This already works well in practice
as we see in Sect. 4. A more efficient algorithm is given in [36].

If decomposition into subsequences is used together with Algorithm C or
Algorithm P, then it is more efficient to check whether every subsequence has a
unique dominant root (which can be done numerically with arbitrary-precision
arithmetic) instead for checking degeneracy. The main bottleneck (cf. Example 8)
is usually the computations of the subsequences. Hence, an efficient implementa-
tion should certainly aim to minimize the computations of these subsequences.

Example 7. The sequence A000115 is C-finite of order 8 and satisfies the recur-
rence

c(n) − c(n + 1) − c(n + 2)+c(n + 3)
−c(n + 5) + c(n + 6) + c(n + 7)−c(n + 8) = 0.

with initial values c = 〈1, 1, 2, 2, 3, 4, 5, 6, . . . 〉. It has 6 dominant eigenvalues
and is degenerate. It can be decomposed into 10 non-degenerate sequences with
unique dominant eigenvalues. For these subsequences, Algorithm C and Algo-
rithm P both have no problem showing positivity.

4 Comparison

As far as we are aware the only implementations of the algorithms presented in
Sect. 3 are implementations of the Gerhold–Kauers method for Mathematica in

http://oeis.org/A002248
http://oeis.org/A000115

Positivity of Linearly Recurrent Sequences 281

the package SumCracker [16] and for SageMath [34]. We have implemented the
presented algorithms in SageMath (using QEPCAD-B) and in Mathematica and
tested them on C-finite sequences which could be obtained from the OEIS by
guessing.

4.1 Test Set

We used guessing on the terms given in the OEIS to check for each sequence
whether it is C-finite. To have reasonable certainty that the guessed recurrence
is indeed correct we make sure that the corresponding linear systems are overde-
termined with at least 15 more equations than variables. We take the first 1000
of these sequences for which the first 500 terms are strictly positive and are
therefore highly likely to be positive altogether1.

The maximal order of these sequences is 42. The following table shows the
number of sequences of each given order:

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15

73 134 117 139 120 80 87 36 47 27 31 14 17 10 10 58

More than half of these sequences, 567, have a unique dominant eigenvalue.
There are 102, 40, 70, 32 sequences with 2, 3, 4, 5 distinct dominant eigenvalues,
respectively. Hence, there are 139 sequences with more than 6 distinct domi-
nant eigenvalues.

About half of the sequences, 513, have a characteristic polynomial which
is not squarefree. By Lemma 3 these are the sequences which have a shorter
D-finite recurrence.

4.2 SageMath Implementation

The methods for proving inequalities for C-finite sequences (and in a limited
way for D-finite sequences) are part of the rec_sequences package which is
itself based on the ore_algebra package [20]. SageMath provides an interface to
QEPCAD-B which allows CAD computations [2,33]. This is used in the imple-
mentations of Algorithm 1 and Algorithm 2. For Algorithm C, we rely on fast
arbitrary-precision arithmetic using the library Arb which is included in Sage-
Math [15]. To decompose a sequence into subsequences with a unique domi-
nant eigenvalue, we decompose the sequence into k subsequences and check,
using arbitrary-precision arithmetic, whether all of these have a unique domi-
nant eigenvalue. If they do not have a unique dominant eigenvalue, we increase k
by one. The main bottleneck when decomposing is by far the computation of
the subsequences. Checking whether a subsequence has a unique dominant eigen-
value or proving positivity of a sequence with a unique dominant eigenvalue using
Algorithm C only takes negligible time in our examples.
1 A table with these sequences and additional information is given on the web-

site https://www3.risc.jku.at/people/pnuspl/PositivityCFinite. It also contains the
detailed results of the SageMath and Mathematica tests.

https://www3.risc.jku.at/people/pnuspl/PositivityCFinite

282 P. Nuspl and V. Pillwein

The package is publicly available2. We give a list of the methods that can
be used on C-finite sequences to show positivity. Every method has a parameter
strict which is True by default and indicates whether strict positivity or non-
negativity should be shown. The additional parameter time can be used to give
an upper bound (in seconds) after which the algorithms should be terminated,
the default value is −1, indicating that they should not stop prematurely.

– is_positive_algo1 implements Algorithm 1 from [22]. As an additional
parameter bound can be specified which gives an upper bound on the number
of iterations.

– is_positive_algo2 implements Algorithm 2 from [22]. Again, bound can be
specified. This method is also implemented for general D-finite sequences and
can be called using is_positive on D-finite sequences.

– is_positive_dominant_root implements Algorithm C for sequences with a
unique dominant eigenvalue.

– is_positive_dominant_root_decompose first tries to decompose the
sequence into sequences with a unique dominant eigenvalue and zero
sequences and calls Algorithm C on each of those.

– is_positive is a combination of all these algorithms which additionally uses
a reduction to D-finite sequences if possible. This method is also applied if
the comparison operators >, <, >=, <= are used.

The following example session shows how the methods can be used.

sage: from rec_sequences.CFiniteSequenceRing import *
sage: C = CFiniteSequenceRing (QQ)
sage: f = C([1,1,-1], [0,1]) # Fibonacci numbers
sage: f.is_positive(strict=False)
True
sage: var("n")
sage: c1 = C(n^2+1) # A002522
sage: c1 >= 0 # use is_positive implicitly
True
sage: c2 = C([1, -1, -1, 1, 0, -1, 1, 1, -1],
sage: [1, 1, 2, 2, 3, 4, 5, 6]) # A000115
sage: c2.is_positive_dominant_root_decompose ()
True
sage: c = C(1/100 * (-3)^n + 100 * 2^n)
sage: c > 0
False

Using the above mentioned methods, 987 out of the 1000 sequences from the
test set could be proven to be positive where each method was given 60 s. The
following table gives an overview on the number of sequences which could be

2 The package can be obtained from https://github.com/PhilippNuspl/rec_sequences.
Extensive documentation and instructions for the installation can be found under
the same link. The version used to run the experiments is available at https://github.
com/PhilippNuspl/rec_sequences/tree/v0.1-exp.

https://github.com/PhilippNuspl/rec_sequences
https://github.com/PhilippNuspl/rec_sequences/tree/v0.1-exp
https://github.com/PhilippNuspl/rec_sequences/tree/v0.1-exp

Positivity of Linearly Recurrent Sequences 283

proven to be positive by each method (“Comb.” stands for a combination of the
algorithms and a “D” indicates that decomposition of the sequence is used):

Algo. 1 Algo. 2 Algo. C D, Algo. C Comb.

384 327 566 984 986

It is clear that decomposing the sequences and using Algorithm C is the most
powerful method. The implementation of Algorithm C is very fast and takes at
most 0.3 s for every example we considered.

Example 8. The sequence A008628 is C-finite of order 13 satisfying

c(n) − c(n + 1) − 2c(n + 2) + c(n + 3) + 2c(n + 4) − c(n + 6)
+c(n + 7) − 2c(n + 9) − c(n + 10) + 2c(n + 11) + c(n + 12) − c(n + 13) = 0

with initial values = c = 〈1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 38, 49〉. If the sequence
is decomposed into 30 subsequences, then all of the subsequences have a unique
dominant root and positivity of these subsequences can be shown easily with
Algorithm C. It takes about 2min to show positivity of the sequence c and 98%
of the time is used to compute the subsequences in the decomposition.

Allowing more than 60 s for each sequence, all 1000 sequences can be shown
to be positive using decomposition into subsequences with a unique dominant
eigenvalue and Algorithm C for these subsequences.

4.3 Mathematica Implementation

The Mathematica package Positivity encompasses several of the algorithms
described in Sect. 3. It is part of RISCErgoSum which is a collection of Mathemat-
ica packages developed at RISC3. The package GeneratingFunctions is used
to compute closure properties of C-finite sequences [25]. Our package, there-
fore, uses the same syntax as Mallinger’s package for defining sequences. For the
quantifier elimination steps in Algorithm 1e and Algorithm 2e, we use the Math-
ematica method Resolve. It might be interesting to compare different quantifier
elimination procedures for our concrete examples. Following, we give a list of the
methods contained in the Positivity package. All methods can be used in a
strict version to show strict positivity of a sequence (this is the default) or a non-
strict version to show non-negativity of a sequence using the parameter Strict
set to False. If the parameter Verbose is set to True, then more information
about the different computation steps are printed.
3 It can be obtained from https://www3.risc.jku.at/research/combinat/software/

ergosum/RISC/PositiveSequence.html. A demo notebook can be found on the same
webpage. The source code is available on GitHub. The version used to run the experi-
ments is available at https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-
exp.

http://oeis.org/A008628
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/PositiveSequence.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/PositiveSequence.html
https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-exp
https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-exp

284 P. Nuspl and V. Pillwein

– KPAlgorithm1 implements Algorithm 1e, i.e., for a C-finite or D-finite
sequence an index n0 is returned from which the sequence is guaranteed to be
positive. If the parameter Eventual is set to False, then the traditional Algo-
rithm 1 from [22] is executed which returns True if the sequence is positive
or False if the sequence is not positive.

– KPAlgorithm2 implements Algorithm 2e and Algorithm 2 from [22], analo-
gous to KPAlgorithm1.

– AlgorithmDominantRootClassic is an implementation of Algorithm C.
– AlgorithmDominantRootCAD provides an implementation of Algorithm P.
– AlgorithmClassic and AlgorithmCAD first decompose the sequence into non-

degenerate and zero sequences and check positivity of these subsequences with
AlgorithmDominantRootClassic and AlgorithmDominantRootCAD, respec-
tively.

– PositiveSequence combines some of the previous algorithms.

The methods can be used in the following way:

In[1]:= << RISC`Positivity`
In[2]:= f = RE[{{0, 1, 1,−1}, {0, 1}}, c[n]];
In[3]:= PositiveSequence[f, Strict → False] (∗Fibonacci∗)

Out[3]= True

In[4]:= c1 = SeqFromExpr[n2 + 1, c[n]];

In[5]:= PositiveSequence[c1] (∗A002522∗)

Out[5]= True

In[6]:= c2 = RE[{{0, 1,−1,−1, 1, 0,−1, 1, 1,−1}, {1, 1, 2, 2, 3, 4, 5, 6}}, c[n]];
In[7]:= AlgoClassic[c2] (∗A000115∗)

Out[7]= True

In[8]:= c3 = SeqFromExpr[1/100 ∗ (−3)n + 100 ∗ 2n , c[n]];

In[9]:= PositiveSequence[c3]

Out[9]= False

Comparing the different algorithms on the test set we see similar results as
in the SageMath implementation. Every method was again aborted after 60 s.
980 out of the 1000 sequences could be shown to be positive by at least one of
the methods. The following table shows the number of sequences which could be
proven positive by each method:

Positivity of Linearly Recurrent Sequences 285

Algo. 1 Algo. 2 Algo. C Algo. P D, Algo. C D, Algo. P Comb.

387 325 526 528 940 942 980

A more precise comparison of Algorithm C and Algorithm P shows that the
two methods are not only equally powerful on the test set, but their runtime for
the individual examples is also very similar. One can, however, expect that this
is due to the specific implementation as the next example indicates. Hence, if
provided by the computer algebra system, implementations based on numerical
arbitrary-precision computations should be prefered over implementations based
on algebraic number computations or quantifier elimination methods.

Example 9. The C-finite sequence A003520 is C-finite of order 5 satisfying

c(n) + c(n + 4) − c(n + 5) = 0

with initial values c(0) = · · · = c(4) = 1. The sequence has a unique dominant
root. The Mathematica implementations of Algorithm C and Algorithm P both
take several seconds. The SageMath implementation based on arbitrary-precision
ball arithmetic instead of computations with algebraic numbers takes less than
0.1 s.

Increasing the time shows that the combined algorithm can show the posi-
tivity of 996 sequences with a time limit of 12 hours per sequence.

5 Conclusions

Summarizing, we have investigated some well known and new methods for show-
ing positivity of C-finite sequences. To our knowledge, most of these algorithms
were never implemented and it was not clear how well they perform on practical
examples. It turned out that the methods are already powerful enough to prove
the positivity of most C-finite sequences from the OEIS in reasonable time.

The given algorithms already cover most of the sequences appearing in com-
binatorial examples. One can, however, construct examples of non-degenerate
sequences which have multiple dominant eigenvalues. For sequences with up to 5
dominant eigenvalues, positivity is still known to be decidable [28]. Other algo-
rithms for showing positivity are given for instance in [11] and [14]. It would
certainly be interesting to check whether and how these methods can be applied
and implemented in practice and how their runtime compares to the algorithms
presented here.

Acknowledgments. We like to thank Ralf Hemmecke for providing helpful feedback
on the Mathematica implementation. We thank the referees for their careful reading and
their valuable suggestions that helped improve the quality of the paper. In particular,
the suggestion of one of the reviewers to use arbitrary-precision arithmetic greatly
improved the implementation of the classical method for showing positivity.

http://oeis.org/A003520

286 P. Nuspl and V. Pillwein

References

1. Basu, S., Roy, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geome-
try. Algorithms and Computation in Mathematics, Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-33099-2

2. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bull. 37(4), 97–108 (2003)

3. Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic
Decomposition. Texts & Monographs in Symbolic Computation, Springer, Vienna
(1998). https://doi.org/10.1007/978-3-7091-9459-1

4. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-
02945-9

5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

6. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

7. Olver, F.W.J., et al.: NIST Digital Library of Mathematical Functions. Release
1.1.0 of 2020–12-15 (2021). http://dlmf.nist.gov

8. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences.
Mathematical Surveys and Monographs, American Mathematical Society, Provi-
dence, USA (2015)

9. Gerhold, S.: Combinatorial Sequences: Non-Holonomicity and Inequalities. Ph.D.
Thesis, Johannes Kepler University Linz (2005)

10. Gerhold, S., Kauers, M.: A Procedure for proving special function inequalities
involving a discrete parameter. In: Proceedings of ISSAC 2005, Beijing, China,
24–27 July 2005. pp. 156–162 (2005)

11. Gourdon, X., Salvy, B.: Effective asymptotics of linear recurrences with rational
coefficients. Discrete Math. 153(1–3), 145–163 (1996)

12. Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent
sequences. Discrete Appl. Math. 154(3), 447–451 (2006)

13. Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s Problem: On the
Border Between Decidability and Undecidability. Technical Report (2005)

14. van der Hoeven, J.: Fuchsian holonomic sequences (2021). https://hal.archives-
ouvertes.fr/hal-03291372/

15. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Trans. Comput. 66, 1281–1292 (2017)

16. Kauers, M.: SumCracker: a package for manipulating symbolic sums and related
objects. J. Symb. Comput. 41(9), 1039–1057 (2006)

17. Kauers, M.: Computer algebra and power series with positive coefficients. In: Pro-
ceedings of FPSAC 2007, pp. 1–7 (2007)

18. Kauers, M.: Bounds for D-finite closure properties. In: Proceedings of ISSAC 2014,
Kobe, Japan, pp. 288–295. Association for Computing Machinery, New York, NY,
USA (2014)

19. Kauers, M.: Algorithms for D-finite functions. In: JNCF 2015, Cluny, France (2015)
20. Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage. In: Computer

Algebra and Polynomials: Applications of Algebra and Number Theory, pp. 105–
125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15081-9_6

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-07407-4_17
http://dlmf.nist.gov
https://hal.archives-ouvertes.fr/hal-03291372/
https://hal.archives-ouvertes.fr/hal-03291372/
https://doi.org/10.1007/978-3-319-15081-9_6

Positivity of Linearly Recurrent Sequences 287

21. Kauers, M., Paule, P.: The Concrete Tetrahedron. Texts and Monographs in Sym-
bolic Computation, Springer, Vienna (2011). https://doi.org/10.1007/978-3-7091-
0445-3

22. Kauers, M., Pillwein, V.: When can we detect that a P-finite sequence is positive?
In: Proceedings of ISSAC 2010, Munich, Germany, pp. 195–201. Association for
Computing Machinery, New York, NY, USA (2010)

23. Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence
sequences. Discrete Appl. Math. 157(15), 3239–3248 (2009)

24. Li, H.C.: Studies on Generalized Vandermonde Matrices: Their Determinants,
Inverses, Explicit LU Factorizations, with Applications. Ph.D. Thesis, National
Chengchi University (2006)

25. Mallinger, C.: Algorithmic Manipulations and Transformations of Univariate Holo-
nomic Functions and Sequences. Diplomarbeit, Johannes Kepler University Linz
(1996)

26. Mignotte, M., Shorey, T.N., Tijdeman, R.: The distance between terms of an alge-
braic recurrence sequence. J. für die reine und angewandte Mathematik 349, 63–76
(1984)

27. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2022).
http://www.oeis.org

28. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: SODA 2014: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 366–379 (2014)

29. Pillwein, V.: Positivity of certain sums over Jacobi kernel polynomials. Adv. Appl.
Math. 41(3), 365–377 (2008)

30. Pillwein, V.: Termination conditions for positivity proving procedures. In: Proceed-
ings of ISSAC 2013, Boston, USA, 26–29 June 2013. pp. 315–322 (2013)

31. Pillwein, V.: On the positivity of the Gillis-Reznick-Zeilberger rational function.
Adv. Appl. Math. 104, 75–84 (2019)

32. Stanley, R.P.: Enumerative Combinatorics: Vol. 2, Cambridge Studies in Advanced
Mathematics, Cambridge University Press (1999)

33. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.4) (2022). https://www.sagemath.org

34. Uray, M.J.: On proving inequalities by cylindrical algebraic decomposition. Annales
Univ. Sci. Budapest. Sect. Comp, pp. 231–252 (2020)

35. Vereshchagin, N.K.: Occurrence of zero in a linear recursive sequence. Mat. Zametki
38(2), 609–615 (1985)

36. Yokoyama, K., Li, Z., Nemes, I.: Finding roots of unity among quotients of the
roots of an integral polynomial. In: Proceedings of ISSAC 1995, Montreal, Quebec,
Canada, 10–12 July 1995. pp. 85–89 (1995)

https://doi.org/10.1007/978-3-7091-0445-3
https://doi.org/10.1007/978-3-7091-0445-3
http://www.oeis.org
https://www.sagemath.org

Stability Analysis of Periodic Motion
of the Swinging Atwood Machine

Alexander Prokopenya(B)

Institute of Information Technology, Warsaw University of Life Sciences – SGGW,
Nowoursynowska 159, 02-776 Warsaw, Poland

alexander prokopenya@sggw.edu.pl

Abstract. The swinging Atwood machine is a conservative Hamiltonian
system with two degrees of freedom that is essentially nonlinear. A gen-
eral solution of its equations of motion cannot be written in symbolic
form, only in some special case it is integrable. A very interesting pecu-
liarity of the system is an existence of a state of dynamical equilibrium
when the oscillating body of smaller mass balances a body of larger mass.
This state is described by periodic solution of the equations of motion
that is constructed in the form of power series in a small parameter.
In this paper, we investigate the system dynamics in the neighbour-
hood of the periodic solution. Its perturbed motion is described in linear
approximation by the fourth order system of differential equations with
periodic coefficients. We computed a fundamental matrix for this system
and found its characteristic exponents in the form of power series in a
small parameter. We have shown that owing to oscillations the state of
dynamical equilibrium of the swinging Atwood machine is stable in lin-
ear approximation. All the relevant symbolic calculations are performed
with the aid of the computer algebra system Wolfram Mathematica.

Keywords: Swinging Atwood’s machine · Periodic solution ·
Characteristic exponents · Stability · Computer algebra · Mathematica

1 Introduction

The swinging Atwood machine (SAM) is a well-known device that is obtained
from a simple Atwood machine [1] when one body of mass m1 is allowed to
oscillate in a plane while the other body of mass m2 > m1 moves along a vertical
(see [2] and Fig. 1). Owing to oscillations the system acquires two degrees of
freedom and becomes essentially nonlinear; a general solution of its equations of
motion cannot be written in symbolic form. As the system demonstrates very
interesting dynamics, it has been a subject of many studies (see, for example, [3–
10]). Detailed investigations have shown that only for the mass ratio m2/m1

being equal to three the system is integrable (see [5,7,9–11]). Numerical analysis
of the equations of motion has shown that, depending on the mass ratio and
initial conditions, the SAM can demonstrate different types of motion, namely,
periodic, quasi-periodic, and chaotic (see [3,6,8,10]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 288–299, 2022.
https://doi.org/10.1007/978-3-031-14788-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_16&domain=pdf
http://orcid.org/0000-0001-9760-5185
https://doi.org/10.1007/978-3-031-14788-3_16

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 289

In [12] we studied numerically the equations of motion of the SAM and
showed that a physical reason for such behaviour of the system is an increase
of an averaged tension of the thread during oscillation. As this tension depends
on the amplitude of oscillation one can choose initial conditions such that quasi-
periodic motion of the system can take place. Although a simple Atwood’s
machine with two bodies of different mass cannot be in a state of equilib-
rium (see [1]), owing to oscillations the system has a dynamic equilibrium state
described by a periodic solution of the equations of motion (see [13]). If both
bodies are allowed to oscillate in a plane the system acquires additional degree
of freedom and demonstrates a quasi-periodic motion even in the case of equal
masses m2 = m1 (see [14,15]). Note that such unusual behaviour of the swinging
Atwood machine is possible only due to oscillations of the bodies resulting in
nonlinearity of the equations of motion.

In the present paper, we consider the SAM in case of small difference of
masses of the bodies and planar oscillation of the mass m1. Our main purpose
is to study the stability of periodic motion of the SAM. It should be noted
that the constructing and investigation of periodic solutions of the equations
of motion often imply rather cumbersome symbolic computations, which are
convenient to carry out using computer algebra systems (see, for example, [16–
18]). In this work, all symbolic calculations are performed with the aid of the
computer algebra system Wolfram Mathematica (see [19]).

The paper is organized as follows. In Sect. 2 we describe the model and derive
the equations of motion in the form that is convenient for applying the perturba-
tion theory. Then in Sect. 3 we demonstrate shortly an algorithm for constructing
the periodic solution in the form of power series in a small parameter. Section 4 is
devoted to the investigation of stability of periodic solution in linear approxima-
tion. Integrating the linearized system of four differential equations with periodic
coefficients which describes the perturbed motion, we compute the fundamental
matrix in the form of power series in a small parameter and find the charac-
teristic exponents for the system. At last, we summarize the obtained results in
Sect. 5.

2 Model Description

The swinging Atwood machine under consideration consists of two small mass-
less pulleys and two bodies of masses m1 ≤ m2 attached to opposite ends of a
massless inextensible thread (see Fig. 1). The body m1 is allowed to swing in ver-
tical plane and it behaves like a pendulum of variable length while the body m2

is constrained to move only along a vertical. Note that in case of a pulley of finite
radius used in the simple Atwood machine a length of the pendulum changes
not only due to rotation of the pulley but due to the thread winding on the pul-
ley during oscillation, as well. The last effect was investigated theoretically and
experimentally in [10] and it does not modify qualitatively the system motion.
Replacing one pulley of finite radius by the two pulleys of negligible radius, we
obtain the swinging Atwood machine, where the pendulum length varies only

290 A. Prokopenya

due to rotation of the pulleys. Placing the pulleys at some distance between each
other enables to avoid collisions of the bodies during oscillations but does not
change the physical properties of the system.

Fig. 1. The SAM with two small pulleys

The Lagrangian function of the system is (see [14])

L =
m1 + m2

2
ṙ2 +

m1

2
r2ϕ̇2 − m2gr + m1gr cos ϕ, (1)

where the dot over a symbol denotes the total derivative of the corresponding
function with respect to time, g is a gravity acceleration, r is the distance between
the pulley and the mass m1, and the angle ϕ determines the deviation of the
mass m1 from the vertical.

To simplify analysis of the system it is expedient to introduce dimensionless
variables. As we expect the body m1 in the state of dynamic equilibrium behaves
like a pendulum of a length R0, the distance r can be made dimensionless by
using R0 as a characteristic distance, whereas the time t can be made dimen-
sionless by using the inverse of the pendulum’s natural frequency

√
g/R0. Thus,

making the substitutions r → rR0, t → t
√

R0/g, where r and t denote now
the dimensionless variables, and dividing the Lagrangian by constant m1gR0,
we rewrite (1) in the form

L =
2 + ε

2
ṙ2 +

1
2
r2ϕ̇2 − (1 + ε)r + r cos ϕ, (2)

where the parameter ε = (m2 − m1)/m1 represents the ratio of the masses
difference to the mass m1. Note that the Lagrangian (2) depends on a single
dimensionless parameter ε which we shall assume to be small (0 ≤ ε � 1).

Using (2), we obtain the equations of motion in the Lagrangian form
(see [20])

(2 + ε)r̈ = −ε − (1 − cos ϕ) + rϕ̇2,

rϕ̈ = − sin ϕ − 2ṙϕ̇. (3)

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 291

One can easily check that system (3) has an equilibrium solution r = const,
ϕ = 0 only in the case of equal masses (ε = 0). This equilibrium state is unstable,
and the system leaves it as soon as the mass m1 gets even very small initial
velocity (see [12]). On the other hand, in the case of different masses, the constant
term ε > 0 in the right-hand side of the first Eq. (3) causes the uniformly
accelerated motion of the Atwood machine in the absence of oscillations as it
is in the classical Atwood’s machine (see [1]). However, if the masses difference
is sufficiently small one can expect that an averaged value of the oscillating
functions in the right-hand side of the first Eq. (3) compensates the constant ε,
and the smaller oscillating mass m1 can balance the larger mass m2. Our aim is
to demonstrate that such a state of dynamical equilibrium of the system exists
and it is described by the periodic solution of system (3).

3 Periodic Solution

To simplify the calculations we assume that the oscillations are small (|ϕ| � 1)
and replace the sine and cosine functions by their expansions in power series
accurate to the sixth order inclusive. As we will see later, such expansions are
necessary to construct periodic solution accurate to the third order in ε. Then
the system (3) takes the form

(2 + ε)r̈ = −ε − 1
2
ϕ2 + rϕ̇2 +

1
24

ϕ4 − 1
720

ϕ6,

rϕ̈ = −ϕ − 2ṙϕ̇ +
1
6
ϕ3 − 1

120
ϕ5. (4)

It is obvious that constant term ε in the right-hand side of the first Eq. (4)
can vanish only if the amplitude of ϕ is proportional to

√
ε. In this case, the

oscillating part of the distance r will be proportional to ε. Doing the substitution

r(t) → 1 + εr(t), ϕ(t) → √
εϕ(t), (5)

we reduce system (4) to the form

2r̈ = −1 − 1
2
ϕ2 + ϕ̇2 + ε(−r̈ + rϕ̇2 +

1
24

ϕ4) − 1
720

ε2ϕ6, (6)

ϕ̈ + ϕ = −ε(rϕ̈ + 2ṙϕ̇ − 1
6
ϕ3) − 1

120
ε2ϕ5. (7)

One can readily check that a general solution to nonlinear system (6)–(7)
cannot be found in symbolic form. As parameter ε is assumed to be small the
Poincaré–Lindstedt perturbation technique for obtaining periodic solutions may
be applied (see [21,22]). Note that in the case of ε = 0, Eq. (7) becomes inde-
pendent of (6) and determines harmonic oscillations of the angle ϕ. Obviously,
the amplitude of the corresponding function ϕ(t) may be chosen in such a way
that the constant part of the function in the right-hand side of (6) vanishes.
Therefore, the corresponding solution r(t) to (6) will be a bounded oscillating

292 A. Prokopenya

function. Taking into account the higher order terms in the right-hand sides
of (6)–(7) for ε > 0 results in the appearance of corrections to zero-order solu-
tions. Thus, we can look for an approximate solution to system (6)–(7) in the
form of power series in ε:

r(t) = r0(t) + εr1(t) + ε2r2(t) + ε3r3(t) + . . . , (8)
ϕ(t) = ϕ0(t) + εϕ1(t) + ε2ϕ2(t) + ε3ϕ3(t) + (9)

Computation of unknown functions rj(t), ϕj(t) in (8)–(9) is done in rather
standard way but requires quite tedious symbolic computations (see [22]), which
in this paper are performed using Wolfram Mathematica. Substituting (8)–(9)
into (6)–(7) and collecting coefficients of equal powers of ε, we obtain the fol-
lowing system of linear differential equations:

ϕ̈0 + ϕ0 = 0, (10)

2r̈0 = −1 − 1
2
ϕ2
0 + ϕ̇2

0, (11)

ϕ̈1 + ϕ1 = r0ϕ0 − 2ṙ0ϕ̇0 +
1
6
ϕ3
0, (12)

2r̈1 = −r̈0 + 2ϕ̇0ϕ̇1 + r0ϕ̇
2
0 − ϕ0ϕ1 +

1
24

ϕ4
0, (13)

ϕ̈2 + ϕ2 = r0ϕ1 + r1ϕ0 − 2ṙ0ϕ̇1 − 2ṙ1ϕ̇0 + 2r0ṙ0ϕ̇0

− r20ϕ0 +
1
2
ϕ2
0ϕ1 − 1

6
r0ϕ

3
0 − 1

120
ϕ5
0, (14)

2r̈2 = −r̈1 + 2ϕ̇0ϕ̇2 + ϕ̇2
1 + 2r0ϕ̇0ϕ̇1 + r1ϕ̇

2
0

− 1
2
ϕ2
1 − ϕ0ϕ2 +

1
6
ϕ3
0ϕ1 − 1

720
ϕ6
0, . . . (15)

Obviously, Eqs. (10)–(15) may be solved in succession. Without loss of gen-
erality, we may assume that at the initial instant of time, the body m1 is on
the vertical (ϕ(0) = 0) and has some initial velocity w0 > 0. The corresponding
solution of Eq. (10) is

ϕ0(t) = w0 sin t. (16)

On substituting (16) into (11) we obtain

2r̈1 = −1 +
w2

0

4
+

3
4
w2

0 cos 2t. (17)

As we are looking for an oscillating function r1(t) the amplitude w0 is chosen
from the condition that the constant term in the right-hand side of (17) vanishes.
Due to this condition we set w0 = 2 and solve Eq. (17) with initial condition
ṙ1(0) = 0. Then we obtain

r1(t) = r10 − 3
8

cos 2t, (18)

where r10 is an arbitrary constant.

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 293

On substituting (16) and (18) with w0 = 2 into (12) and reducing the trigono-
metric functions, we obtain

ϕ̈1 + ϕ1 =
(

2r10 − 1
8

)
sin t − 53

24
sin 3t. (19)

Equation (19) describes the forced oscillations of a pendulum, and to avoid an
increase of the amplitude we need to eliminate a resonance term in the right-
hand side. So putting r10 = 1/16 and solving differential equation (19) with
initial condition ϕ1(0) = 0, we find

ϕ1(t) =
(

w1 +
53
96

)
sin t +

53
192

sin 3t, (20)

where w1 is an arbitrary constant.
On substituting (16), (18), and (20) into (13) and reducing the trigonometric

functions, we derive the following differential equation

2r̈2 =
53
96

+ w1 +
(

3w1 +
37
64

)
cos 2t +

105
64

cos 4t. (21)

Again the unknown w1 is chosen from the condition of vanishing constant terms
in the right-hand side of (21), therefore, w1 = −53/96. Then integrating (21)
with the initial condition ṙ2(0) = 0, we find

r2(t) = r20 +
69
512

cos 2t − 105
2048

cos 4t, (22)

where r20 is another arbitrary constant.
In order to find the solution more accurately we have to repeat such calcu-

lations step by step, solving successively linear differential equations (14), (15),
and so on for the functions ϕk(t) and rk(t) under the initial conditions ϕk(0) = 0,
ṙk(0) = 0, k = 1, 2, Each of the solutions ϕk(t), rk(t) will contain an arbi-
trary constant which appears during integration and should be found from the
condition that constant terms in the equation for rk+1(t) and resonance terms in
the equation for ϕk+1(t) vanish. We have done the calculations up to the third
order in ε, and the corresponding periodic solutions are given by

rp(t) = 1 +
ε

16
(1 − 6 cos 2t) − ε2

2048
(261 − 276 cos 2t + 105 cos 4t)

+
ε3

131072
(4275 − 8166 cos 2t + 5067 cos 4t − 1510 cos 6t), (23)

ϕp(t) =
√

ε

(
2 sin t +

53ε

192
sin 3t +

ε2

16384
(2959 sin t

− 1699 sin 3t +
5813

5
sin 5t

))
. (24)

294 A. Prokopenya

It follows from (23)–(24) that the initial length of the thread

rp(0) = 1 − 5ε

16
− 45

1024
ε2 − 167

65536
ε3, (25)

and the initial angular velocity

ϕ̇p(0) =
√

ε

(
2 +

53ε

64
+

3675ε2

16384

)
, (26)

corresponding to the periodic solution depend on parameter ε; for larger ε or
larger masses difference, the initial velocity must increase to provide a larger
amplitude of oscillations. Dependence of the initial length rp(0) on ε means that
the frequency of oscillation depends on the amplitude; such dependence is typical
of nonlinear oscillations (see [20,22]).

4 Stability Analysis

The existence of periodic solution to equations of motion (4) means that for given
value of parameter ε, one can choose initial conditions (25), (26), ṙp(0) = 0, and
ϕp(0) = 0 such that the system is in the state of dynamical equilibrium when
the bodies oscillate near some equilibrium positions. Note that for ε > 0, the
system under consideration has no static equilibrium state when the coordi-
nates r(t), ϕ(t) are some constants. So it is natural to investigate whether the
system will remain in the neighborhood of the equilibrium if the initial conditions
are perturbed or whether the periodic solution (23)–(24) is stable.

It should be noted that studying the stability of periodic solution is much
more complicated in comparison to the case of equilibrium state stability and
the relevant symbolic computations become much more cumbersome. First of all,
we need to derive the equations of perturbed motion in the form of four first-
order differential equations. Using (2) and doing the Legendre transformation
(see [20]), we define the Hamiltonian in case of |ϕ| � 1

H =
p2r

2(2 + ε)
+

p2ϕ
2r2

+ εr +
r

2

(
ϕ2 − 1

12
ϕ4 +

1
360

ϕ6

)
. (27)

The equations of motion written in the Hamiltonian form are

ṙ =
∂H
∂pr

=
pr

2 + ε
, ṗr = −∂H

∂r
= −ε − 1

2
ϕ2

(
1 − 1

12
ϕ2 +

1
360

ϕ4

)
+

p2ϕ
r3

,

ϕ̇ =
∂H
∂pϕ

=
pϕ

r2
, ṗϕ = −∂H

∂ϕ
= −rϕ

(
1 − 1

6
ϕ2 +

1
120

ϕ4

)
, (28)

where pr, pϕ are the conjugate momenta to r, ϕ, respectively.
One can readily check that periodic solution (23)–(24) satisfy Eqs. (28). To

investigate its stability we define new canonical variables q1, q2, p1, p2 according
to the rule

r → rp + q1, ϕ → ϕp + q2, pr → pr0 + p1, pϕ → pϕ0 + p2, (29)

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 295

where the momenta pr0 = (2 + ε)ṙp, pϕ0 = r2pϕ̇p are obtained by substitut-
ing (23)–(24) into (28). Doing the canonical transformation (29) and expanding
the Hamiltonian (27) into power series in terms of q1, q2, p1, p2 up to second
order inclusive, we represent it in the form

H̃ = H0 + H1 + H2 + . . . , (30)

where Hk is the kth order homogeneous polynomial with respect to canonical
variables q1, q2, p1, p2 which are considered as small perturbations of periodic
solution (23)–(24). Note that zero-order term H0 in (30) can be omitted as a
function of time which does not influence the equations of motion. The first-
order term H1 is equal to zero because periodic solution (23)–(24) satisfy the
unperturbed equations of motion (28). Therefore, the first non-zero term in the
expansion (30) is a quadratic one that is

H2 =
p21

2(2 + ε)
+

3p2ϕ0

2r4p
q21 +

p22
2r2p

+
rp

2
q22

(
1 − 1

2
ϕ2

p +
1
24

ϕ4
p

)

− 2pϕ0

r3p
q1p2 + q1q2

(
ϕp − 1

6
ϕ3

p +
1

120
ϕ5

p

)
. (31)

The quadratic part H2 of the Hamiltonian determines the linearized equa-
tions of the perturbed motion which is convenient to write in the matrix form

ẋ = J · H(t, ε)x, (32)

where xT = (q1, q2, p1, p2) is a 4-dimensional vector, J =
(

0 E2

−E2 0

)
, E2 is the

second-order identity matrix, and the fourth-order matrix-function H(t, ε) is

H(t, ε) =

⎛

⎜⎜⎜⎜
⎝

3p2
ϕ0

r4
p

ϕp 0 − 2pϕ0
r3

p

ϕp rp 0 0
0 0 1

2+ε 0
− 2pϕ0

r3
p

0 0 1
r2

p

⎞

⎟⎟⎟⎟
⎠

. (33)

Note that the elements of matrix (33) are obtained by differentiation of H2:

Hi,j =
∂2H2

∂xi∂xj
, i, j = 1, 2, 3, 4.

It is clear that matrix H(t, ε) is periodic function of time, and so the per-
turbed motion of the system is described by the linear system of four differential
equations with periodic coefficients (32).

4.1 Computing the Monodromy Matrix

The systems of linear differential equations with periodic coefficients and their
general properties have been studied quite well (see [23]). The behavior of solu-
tions to system (32) is determined by its characteristic multipliers which are the

296 A. Prokopenya

eigenvalues of the monodromy matrix X(2π, ε), where X(t, ε) is a fundamental
matrix for system (32) satisfying the initial condition X(0) = E4. As periodic
solution (23)–(24) is represented by power series in parameter ε, the matrix
H(t, ε) can also be represented in the form of power series

H(t, ε) = H0(t) +
√

εH1(t) + εH2(t) + ε3/2H3(t) + . . . , (34)

where Hk(t), k = 0, 1, 2, . . . , are continuous periodic fourth-order square matrices
which are obtained by substitution of solution (23)–(24) into (33) and expanding
each element of the matrix H(t, ε) into power series in ε.

The fundamental matrix X(t, ε) can be sought in the form of power series

X(t, ε) = X0(t) +
√

εX1(t) + εX2(t) + ε3/2X3(t) + . . . , (35)

where Xk(t), k = 0, 1, 2, . . . , are continuous matrix functions. On substitut-
ing (34) and (35) into (32) and collecting coefficients of equal powers of ε, we
obtain the following sequence of differential equations:

Ẋ0 = JH0X0(t), (36)

Ẋk − JH0Xk =
k∑

j=1

JHj(t)Xk−j(t), (k ≥ 1). (37)

The functions Xk(t) must satisfy the following initial conditions:

X0(0) = E4, Xk(0) = 0 (k ≥ 1). (38)

As H0 is a constant matrix, Eq. (36) has a solution

X0(t) = exp(JH0t). (39)

Making a substitution
Xk(t) = exp(JH0t)Yk(t), (40)

we transform Eq. (37) to the form

Ẏk =
k∑

j=1

exp(−JH0t)JHj(t) exp(JH0t)Yk−j(t), (k ≥ 1), (41)

where initial conditions for the functions Yk(t) are

Y0(0) = E4, Yk(0) = 0 (k ≥ 1). (42)

Now we can easily integrate Eq. (41) and its solution satisfying the initial con-
ditions (42) is given by

Yk(t) =
k∑

j=1

∫ t

0

exp(−JH0τ)JHj(τ) exp(JH0τ)Yk−j(τ)dτ, (k ≥ 1). (43)

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 297

As the right-hand side of Eq. (43) determining Yk(t) depends only on
Y0, Y1, . . . , Yk−1 the functions Yk(t) may be computed in succession. Such com-
putations are performed with Wolfram Mathematica but the results are very
bulky and we do not show them here. Finally, the monodromy matrix X(2π, ε)
of system (32) can be found in the form

X(2π, ε) = exp(2πJH0)
∞∑

j=1

Yk(2π)εk/2. (44)

4.2 Characteristic Multipliers

Characteristic multipliers for system (32) are the eigenvalues of the monodromy
matrix (44) and to find them we need to compute the monodromy matrix first.
To find X0(t) it is not necessary to compute the exponential function of the
matrix JH0t according to (39). It is much easier to solve Eq. (36) with initial
conditions (38) and

H0 =

⎛

⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1

⎞

⎟⎟
⎠,

the corresponding solution is

X0(t) =

⎛

⎜⎜
⎝

1 0 t/2 0
0 cos t 0 sin t
0 0 1 0
0 − sin t 0 cos t

⎞

⎟⎟
⎠.

But the next steps require to multiply and integrate matrices as it follows
from (43) and to do quite cumbersome symbolic calculations. So application
of the computer algebra system Wolfram Mathematica turned out to be very
helpful. We do not show here the intermediate results of calculations because
they are quite bulky. Using the monodromy matrix which was computed up to
the third order in parameter ε, we can write the characteristic equation deter-
mining the characteristic multipliers for system (32) in the form

det(X(2π, ε) − ρE4) = (ρ − 1)2(ρ2 + 2Bρ + 1) = 0, (45)

where

B = −2 + 3π2ε − 3π2

16
(17 + 4π2)ε2 +

3π2

5120
(4845 + 2720π2 + 128π4)ε3.

Solving (45), we obtain four characteristic multipliers

ρ1,2 = 1,

ρ3,4 = 1 ± iπ
√

3ε − 3π2

2
ε ∓ i

π
√

3
32

(17 + 16π2)ε3/2 +
3π2

32
(17 + 4π2)ε2.

298 A. Prokopenya

Note that two characteristic multipliers ρ1,2 = 1 determine two independent
periodic solutions to system (32). One can readily check that the absolute value
of the second couple of the characteristic multipliers ρ3,4 is equal to 1. They are
complex conjugate and determine two purely imaginary characteristic exponents

λ3,4 =
1
2π

log ρ = ±i

√
3ε

2

(
1 − 17

32
ε +

85
256

ε2
)

.

According to Floquet–Lyapunov theory (see [23]), four linearly independent solu-
tions to system (32) with 2π-periodic matrix may be represented in the form

x1(t) = f1(t), x2(t) = f2(t), x3(t) = exp(λ3t)f3(t), x4(t) = exp(λ4t)f4(t), (46)

where fk(t), (k = 1, 2, 3, 4) are 2π-periodic functions. Therefore, in the case of ε >
0 solutions (46) describe the perturbed motion of the system in the bounded
domain in the neighborhood of the periodic solution (23)–(24). It means this
solution is stable in linear approximation, and so the SAM is an example of
mechanical system in which the equilibrium state is stabilized by oscillations.

5 Conclusion

In the present paper, we have considered a swinging Atwood machine in the case
when one body of smaller mass is permitted to oscillate in a vertical plane. Such
a system has a state of equilibrium only in the case of equal masses but this state
is unstable. Doing necessary symbolic computations, we have demonstrated that
owing to oscillations the system has a dynamic equilibrium state described by a
periodic solution of the equations of motion. It is a very interesting peculiarity
of the system which takes place only due to the nonlinearity of the equations
of motion.

We have found the initial conditions under which the equations of motion
have periodic solution and proved its linear stability. Simulation of the system
shows that this periodic motion is stable but its stability in Lyapunov sense
still should be proved; so the problem requires further investigation. Note that
the stability analysis of periodic solutions is a very complicated problem which
involves quite tedious symbolic computations; so the application of computer
algebra systems for doing such calculations is very helpful. In this work, we
realized all the symbolic computations with the aid of the computer algebra
systems Wolfram Mathematica.

References

1. Atwood, G.: A Treatise on the Rectilinear Motion and Rotation of Bodies. Cam-
bridge University Press, Cambridge (1784)

2. Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s machine. Am. J.
Phys. 52(10), 895–903 (1984)

Stability Analysis of Periodic Motion of the Swinging Atwood Machine 299

3. Tufillaro, N.B.: Motions of a swinging Atwood’s machine. J. Phys. 46(9), 1495–
1500 (1985)

4. Tufillaro, N.B.: Collision orbits of a swinging Atwood’s machine. J. Phys. 46(12),
2053–2056 (1985)

5. Tufillaro, N.B.: Integrable motion of a swinging Atwood’s machine. Am. J. Phys.
54(2), 142–143 (1986)

6. Tufillaro, N.B., Nunes, A., Casasayas, J.: Unbounded orbits of a integrable swinging
Atwood’s machine. Am. J. Phys. 56(12), 1117–1119 (1988)

7. Casasayas, J., Nunes, A., Tufillaro, N.B.: Swinging Atwood’s machine: integrability
and dynamics. J. Phys. 51(16), 1693–1702 (1990)

8. Nunes, A., Casasayas, J., Tufillaro, N.B.: Periodic orbits of the integrable swinging
Atwood’s machine. Am. J. Phys. 63(2), 121–126 (1995)

9. Yehia, H.M.: On the integrability of the motion of a heavy particle on a tilted cone
and the swinging Atwood’s machine. Mech. Res. Commun. 33(5), 711–716 (2006)

10. Pujol, O., Pérez, J.P., Ramis, J.P., Simo, C., Simon, S., Weil, J.A.: Swinging
Atwood machine: Experimental and numerical results, and a theoretical study.
Phys. D 239(12), 1067–1081 (2010)

11. Elmandouh, A.A.: On the integrability of the motion of 3D-Swinging Atwood
machine and related problems. Phys. Lett. A 380(9), 989–991 (2016)

12. Prokopenya, A.N.: Motion of a swinging Atwood’s machine: simulation and analysis
with Mathematica. Math. Comput. Sci. 11(3), 417–425 (2017). https://doi.org/10.
1007/s11786-017-0301-9

13. Prokopenya, A.N.: Construction of a periodic solution to the equations of motion of
generalized Atwood’s machine using computer algebra. Program. Comput. Softw.
46(2), 120–125 (2020). https://doi.org/10.1134/S0361768820020085

14. Prokopenya, A.N.: Modelling Atwood’s machine with three degrees of freedom.
Math. Comput. Sci. 13(1–2), 247–257 (2019). https://doi.org/10.1007/s11786-018-
0357-1

15. Prokopenya, A.N.: Searching for equilibrium states of Atwood’s machine with two
oscillating bodies by means of computer algebra. Program. Comput. Softw. 47(1),
43–49 (2021). https://doi.org/10.1134/S0361768821010084

16. Prokopenya, A.N.: Determination of the stability boundaries for the Hamiltonian
systems with periodic coefficients. Math. Model. Anal. 10(2), 191–204 (2005).
https://doi.org/10.1080/13926292.2005.9637281

17. Prokopenya, A.N.: Some symbolic computation algorithms in cosmic dynamics
problems. Program. Comput. Softw. 32(2), 71–76 (2006). https://doi.org/10.1134/
S0361768806020034

18. Prokopenya, A.N.: Symbolic computation in studying stability of solutions of linear
differential equations with periodic coefficients. Program. Comput. Softw. 33(2),
60–66 (2007). https://doi.org/10.1134/S0361768807020028

19. Wolfram, S.: An Elementary Introduction to the Wolfram Language, 2nd edn.
Wolfram Media, Champaign (2017)

20. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley,
Boston (2000)

21. Grimshaw, R.: Nonlinear Ordinary Differential Equations. Blackwell Scientific
Publications, Oxford (1990)

22. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)
23. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic

Coefficients. Wiley, New York (1975)

https://doi.org/10.1007/s11786-017-0301-9
https://doi.org/10.1007/s11786-017-0301-9
https://doi.org/10.1134/S0361768820020085
https://doi.org/10.1007/s11786-018-0357-1
https://doi.org/10.1007/s11786-018-0357-1
https://doi.org/10.1134/S0361768821010084
https://doi.org/10.1080/13926292.2005.9637281
https://doi.org/10.1134/S0361768806020034
https://doi.org/10.1134/S0361768806020034
https://doi.org/10.1134/S0361768807020028

New Heuristic to Choose a Cylindrical
Algebraic Decomposition Variable
Ordering Motivated by Complexity

Analysis

Tereso del Ŕıo and Matthew England(B)

Coventry University, Coventry, UK

delriot@uni.coventry.ac.uk, Matthew.England@coventry.ac.uk

Abstract. It is well known that the variable ordering can be critical to
the efficiency or even tractability of the cylindrical algebraic decomposi-
tion (CAD) algorithm. We propose new heuristics inspired by complex-
ity analysis of CAD to choose the variable ordering. These heuristics are
evaluated against existing heuristics with experiments on the SMT-LIB
benchmarks using both existing performance metrics and a new met-
ric we propose for the problem at hand. The best of these new heuris-
tics chooses orderings that lead to timings on average 17% slower than
the virtual-best: an improvement compared to the prior state-of-the-art
which achieved timings 25% slower.

1 Introduction

1.1 Cylindrical Algebraic Decomposition

A Cylindrical Algebraic Decomposition (CAD) of Rn is a decomposition of Rn

into semi-algebraic cells that are cylindrically arranged. A cell being semi-
algebraic means that it can be described by polynomial constraints. CADs are
defined relative to a variable ordering, for example, xn � xn−1 � · · · � x1.
Then the cylindrical property means that the projections of any two cells in R

n

onto a subspace R
i, i < n with respect to this variable ordering, are either equal

or disjoint. I.e. the cells in R
n are arranged into cylinders above cells in R

n−1,
which are themselves arranged into cylinders above R

n−2 and so on.
It can be very useful to find such decompositions satisfying a property such as

sign-invariance for an input set of polynomials (i.e. each polynomial has constant
sign in each cell). The principle is that given an infinite space, a sign-invariant
decomposition gives a finite set of regions on each of which our system of study
has invariant behaviour, and thus can be analyzed by testing a single sample
point. When such a decomposition is also cylindrical and semi-algebraic we can
use it to perform tasks like quantifier elimination.

Collins in 1975 [13] was the first to propose a feasible algorithm to build such
sign-invariant decompositions for a given set of polynomials. This algorithm has

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 300–317, 2022.
https://doi.org/10.1007/978-3-031-14788-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_17

New Heuristic to Choose a CAD Variable Ordering 301

two phases, projection and lifting, each of them consisting of n steps, where n is
the number of variables in the given set of polynomials Sn.

In the first step of the projection phase the given set of polynomials, Sn is
passed to a CAD projection operator to obtain a set of polynomials Sn−1 in
n− 1 variables (without the biggest variable xn). This process is iterated until a
set of polynomials S1 only in the variable x1 is left: at this point the projection
phase ends.

In the first step of the lifting phase a CAD of R1 is created by computing
the t ordered roots of S1, denoted r1, . . . , rt, and building the CAD of R1 out of
the cells (−∞, r1), [r1], (r1, r2), . . . , (rn−1, rn), [rn], (rn,∞). Note that a sample
point can be taken from each of those cells.

For each of those cells, the sample point is substituted into the set of poly-
nomials S2 to obtain a set of polynomials in one variable. Then using this set
a stack of cells is built on top of each cell by following the instructions in the
previous paragraph. These stacks are combined later into a CAD of R2 and by
iterating this process a CAD of R

n is eventually built, concluding the lifting
phase and the algorithm.

The proof of correctness of CAD (allowing the conclusion of sign-invariance)
relies on proving that the decompositions built over the sample point are rep-
resentative of the behaviour over the entire cell: to conclude this the projection
operator must produce polynomials whose zeros indicate where the behaviour
would change. One representation of a CAD is as a tree of cells of increasing
dimension; whose leaves are the cells in R

n, nodes the cells in lower dimension,
and branches representing the cylinders over projections.

Since the introduction of CAD by Collins, many improvements have been
made to the algorithm. We do not detail them all here but refer the reader to
the overview of the first 20 years in [14] and to e.g. the introduction of [3] for some
of the more recent advances. We note in particular the recent developments in
CAD projection [26] and the recent application of CAD technology within SMT
and verification technology e.g. [24], [1] which has inspired new adaptations of
the CAD algorithm such as [6]. The work of this paper is presented for traditional
CAD, but we expect it would transfer easily to these recent contexts.

1.2 CAD Variable Ordering

It is well known that the variable ordering given can have a huge impact on the
time and resources needed to build the CAD (see e.g. [15,19,23]). We demon-
strate this for a very simple example in Fig. 1, where one choice leads to three
times the number of cells than the other. In fact, [7] shows that the choice of
variable ordering can even change the theoretical complexity for certain classes
of problems.

Depending on the application the CAD is to be used for, we have a free or con-
strained choice of variable ordering. For example, to use a CAD for real quantifier
elimination it is necessary to project variables in the order they are quantified, but
there is freedom to swap the order of variables in quantifier blocks, and also to swap
the order of the free (unquantified) variables and parameters. Making use of this

302 T. del Ŕıo and M. England

Fig. 1. CADs sign-invariant for x2−y in the two possible orderings. The ordering y � x
generates the CAD on the left with only three cells (the coloured regions and the curve
between). The ordering x � y generates the CAD on the right with nine cells (the four
coloured regions along with four line segments and the turning point of the curve).

freedom is an important optimisation. This paper aims to present a new heuristic
to pick the variable ordering for the construction of a CAD.

1.3 Plan of the Paper

We continue in Sect. 2 by describing the previous heuristics developed for the
problem. Then in Sect. 3 the proposed heuristics are presented. We then move
onto our experimental evaluation: in Sect. 4 the methodology is detailed and in
Secti. 5 the results obtained are analyzed. We finish with our conclusions and
suggestions for future work in Sect. 6.

2 Previous Heuristics

Due to how critical the variable ordering can be, a variety of heuristics have
already been proposed for making the choice. We will focus on two of these
which are widely considered to constitute the current state-of-the-art: the Brown
heuristic, presented in [5], and sotd, presented in [15]. We describe these in full
over the coming subsections.

We acknowledge there are additional human-designed heuristics in the litera-
ture, but these are either even more expensive than sotd e.g. [4,27], or designed
relative to a very specific CAD implementation e.g. [16].

We also acknowledge that there exists a family of machine learning methods
to take this decisions e.g. [8,12,19,22,23] which have been shown to outperform
the human-designed heuristics. We do not compare against these directly but
note that the lessons learnt in this paper could inform another generation of
these machine learnt heuristics.

2.1 The Brown Heuristic

The Brown heuristic was proposed by Brown in the notes to his ISSAC 2004
tutorial [5, Section 5.2]. It chooses to project the variable with:

New Heuristic to Choose a CAD Variable Ordering 303

1. lowest degree; breaking ties with
2. lowest value of the highest total degree term in which the variable appears;

breaking ties with
3. lowest number of terms containing the variable.

Should there remain ties after the third measure then [5] does not specify what
to do: we name the variables x1, x2, . . . according to the order in which they
appear in the description of the problem and our implementation of the Brown
heuristic chooses the variable with the lowest subindex first.

The text in [5] is also unclear on whether these measures are applied only
to the input polynomials to produce the complete ordering, or whether they are
applied to select an ordering one variable at a time, each time being applied to the
polynomials obtained from projection with the last variable. Our implementation
does the latter: this requires no additional projection computation above that
required to build a single CAD, and matches the projection computation used
by our new heuristic allowing for a fair comparison later.

For an example, let us consider the set S3 = {x3
3 +x2

3 +x2 −x1
4, x2

3 −x1}.
In S3 the variable x1 has degree 4, but x3 and x2 both have degree 3 so they tie
in the first feature. However, x3 reaches this maximum in only one term, while
x2 does so in two of them and hence x3 will be the first CAD projected variable.
The CAD projection of S3 with respect to x3 is S2 = {x2

3 +x2 −x1
4, x2

3 −x1}.
In S2 the variable x1 has degree 4 while x2 has degree 3, so x2 is the second
variable to be projected. This determines the variable ordering chosen with our
implementation of the Brown heuristic: x3 � x2 � x1.

The motivation of the Brown heuristic is to try to make the next projected
set of polynomials as small as possible. The heuristic is “cheap” as the measures
it uses require only easy to calculate characteristics of the input polynomials,
and no algebraic computations such as projection.

Moreover, the Brown heuristic has been shown to achieve similar accuracy to
more complicated heuristics [21,23], like the one introduced in the next section.
This means that when we include the cost of running the heuristics themselves,
the Brown heuristic is actually superior.

Nevertheless, as will be seen later, it is possible to propose better heuristics
by looking at the bigger picture rather than focusing on the next projected set.

2.2 The sotd Heuristics

The acronym sotd stands for ‘sum of total degrees’. The heuristic sotd consists of
computing the whole CAD projection of the input polynomials in every possible
variable ordering and choosing the ordering whose projection has the smallest
sum of total degrees throughout all the monomials in all the polynomials of
the projection [15].

For example, given the set of polynomials S3 defined above and following
variable ordering x3 � x1 � x2, then we find S2 as defined above and them
projection with respect to x1 gives S1 = {x2, x2

2 + 1, x2
11 − x2

2 − 1}. The sum
of all the degrees in the projected sets for this ordering is 43. It turns out that

304 T. del Ŕıo and M. England

this is lowest such value possible from any of the six possible orderings. Hence
the sotd heuristic would choose this variable ordering.

This heuristic is not very desirable at first glance, because O(n!) projection
steps are needed to make the choice, far more than the n projections used to
make a single CAD. This problem was spotted by the authors of [15] leading
them to develop a “greedy” version of the heuristic in the same paper. This
was greedy in the sense that instead of selecting the entire ordering at once
using information from the whole projection phase for each possible ordering; it
computed the ordering one variable at a time by comparing their metric on the
output of a single projection step for each possible variable from the remaining
ones. This version only requires n(n+1)

2 number of projections, still more than
the amount of projection normally used to build a CAD. In our experiments,
the choices it makes are much poorer than those made by sotd with the full
projection information. In fact, some experiments show it even performs worse
than the Brown heuristic, despite having more projection information available
to make its choice. We see this later in our experiments (Table 1).

The metric sotd, i.e. summing all the degrees in a set of polynomials, was
originally constructed as a measure of the overall size of a polynomial set. In [15]
it was used along with other measures to demonstrate the effect of variable
ordering on CAD computation. It was found to have a strong correlation with
those other CAD complexity measures, but unlike them, it did not require the
computation of the entire CAD. This led to its proposal for using it as a heuristic.

Thus, it seems the sotd measure was not designed primarily for use in a CAD
variable ordering heuristics, allowing a gap for the new results of the present
paper which presents a measure that is designed this way. This lack of tailoring
to CAD can be seen in the way sotd and its greedy version give the same
importance to all degrees found in the projected sets of polynomials regardless
of the variable carrying that degree, whereas CAD works iteratively one variable
at a time (treating the others as part of the coefficients when projection and
substituting them for the sample point when lifting). Thus different variables
carry different weights of effect on CAD computation.

In the next section, it will be shown how better heuristics can be proposed
which take into account the potential growth in complexity of the polynomials
we observe in CAD projection.

3 Our New Proposed Heuristics

It has been shown in [15] that the number of cells of a CAD is strongly correlated
with the time taken to build that CAD. Hence the most recent CAD complexity
analyses in e.g. [3,17,18,25] have studied a bound on the maximum number of
cells that can be generated.

The idea of the proposed heuristic is to make a corresponding estimate on
this maximum number of cells of the final CAD for each of the possible orderings
and pick the ordering that minimizes this value.

New Heuristic to Choose a CAD Variable Ordering 305

We explain how this number can be computed or estimated if the whole
CAD projection is known for each ordering. However, as CAD projection of
polynomials can be an expensive operation, a greedy version of this heuristic
that does not require any CAD projections to make the choice is also proposed.

3.1 Heuristic Motivated by a Complexity Analysis: mods

Define the degree sum of a variable x in a set of polynomials S = {p1, . . . , pn} as

Dx(S) =
n∑

i=1

dx(pi), (1)

where dx(p) is the degree of x in the polynomial p. Thus the maximum number of
unique real roots that the polynomials in S can have with respect to x, is Dx(S).

To compute a CAD with the variable ordering xn � · · · � x1 for the set of
polynomials Sn, the set Sn must be projected with respect to xn to obtain the
set Sn−1; and in the same fashion the sets Sn−2, Sn−3, . . . , S1 are computed.

Thus when following the creation of a CAD as described in Sect. 1, in the
first lifting step at most 2Dx1(S1)+1 cells can be created because x1 will have at
most Dx1(S1) roots in S1. Subsequently at most (2Dx1(S1)+1) · (2Dx2(S2)+1)
cells will be built in the second lifting step (a similar limit applied for each stack
above a cell from R

1).
Hence, at the end of the lifting phase, when the CAD is completed, an upper

bound on the number of cells is
n∏

i=1

(
2Dxi

(Si) + 1
)
. (2)

As discussed earlier, the number of cells in a CAD is strongly correlated
with the time needed to build such CAD. Therefore, choosing the ordering that
minimizes the maximum number of cells in the final CAD sounds like a good
idea if we want to choose a fast ordering. Hence, we want to choose the ordering
that minimizes (2).

We note that the dominant term of (2) is

n∏

i=1

Dxi
(Si), (3)

which we refer to as the multiplication of degree sum (mods). By minimis-
ing (2) we are likely minimising this and so we refer to the heuristic that picks
an ordering to minimise (2) as mods. As with our implementation of the Brown
heuristic, we apply this to choose one variable at a time, projecting with respect
to that variable after the choice and then applying the measure to the projection
polynomials to make the next choice. In case where there is a tie on the measure
then we pick the variable with the lowest subindex.

306 T. del Ŕıo and M. England

Consider our example set of polynomials S3 = {x3
3+x2

3+x2−x1
4, x2

3−x1}.
The degree sum of x1 in S3 is

Dxe
(S3) = dxe

(x3
3 + x2

3 + x2 − x1
4) + dxe

(x2
3 − x1) = 3 + 0 = 3.

Suppose we built a CAD using the variable ordering x3 � x1 � x2. Then as
before we obtain S2 = {−x2

3 + x1, x1
4 − x2

3 − x2} for which Dx1(S2) = 5,
and S1 = {x2, x2

2 + 1, x2
11 − x2

2 − 1} for which Dx2(S1) = 14. Therefore, for
this example CAD the product (2) evaluates to 2233. It turns out that is the
lowest value of (2) for all the possible orderings. Hence mods would have chosen
this ordering.

3.2 Creating a Greedy Version of mods

As with sotd, the heuristic mods is relatively expensive, requiring the use of
CAD projection operations in all different variable orderings. To reduce its cost
we present a greedy version of this heuristic, that will simply choose to project
the variable with the lowest degree sum (see (1)) in the set of polynomials1.

This heuristic will be referred to as gmods. Note that unlike greedy-sotd,
gmods does not use any projection information beyond that required to build
a single CAD. The metric it is based on uses only easily extracted information
from the polynomials. It is thus similar in cost to our implementation of the
Brown heuristic.

For example, given the set of polynomials S3 above we have Dx1(S3) = 5,
Dx2(S3) = 6 and Dx3(S3) = 3. Thus gmods will select x3 as the first variable
for CAD projection. The CAD projection of S3 with respect to x3 gives S2 as
above. In S2 the variable x1 has degree sum 5 while x2 has degree sum 6, so
x1 is the second variable to be projected, determining completely the variable
ordering that gmods chooses: x3 � x1 � x2.

3.3 Heuristic Motivated by Expected Number of Cells

Our mods heuristic is motivated to reduce the maximum number of cells that
could be computed according to a complexity analysis. It is natural to ask
whether we could be more accurate and seek take decisions according to an
expected value of the number of cells rather than the maximum?

To calculate the maximum number of cells that can be generated, the degree
of the polynomials has been used because it is the maximum number of real roots
that a polynomial can have, so we may consider the expected number of roots of a
polynomial. According to [20], the expected number of real roots for polynomials
of small degree is proportional to the logarithm of its degree, at least for their
definition of random polynomials. However, for a linear polynomial, this relation

1 We note that this measure applied only to the original polynomials is one of the
features that was generated algorithmically to train different machine learning clas-
sifiers to take decisions on sets of polynomials in [21].

New Heuristic to Choose a CAD Variable Ordering 307

would predict zero roots when it should be one, and so to address this we suggest
a heuristic following this approach should add one before taking the logarithm.

Thus we hypothesise an expected number of cells in the final CAD as below
(following the approach of Sect. 3.1):

n∏

i=1

(2 log(Dxi
(Si) + 1) + 1). (4)

As before, we define a heuristic to pick the ordering that minimizes (4). Given
the similarity to mods and the use of the logarithm we refer to this as logmods.

For example, consider the set of polynomials S3 as before and the variable
ordering x3 � x1 � x2 to produce S2 and S1 as before. We find Dx3(S3) = 3,
Dx1(S2) = 5, and Dx2(S1) = 14. Therefore, (4) evaluates to 15.43, and it turns
out that is the lowest value for all possible orderings, hence, logmods would
choose this variable ordering.

4 Experiments and Benchmarking

4.1 Benchmarking

The three-variable problems in the QF NRA category of the SMT-LIB [2] are
used to build a dataset for comparing the different heuristics.

For each of those problems and all possible orderings, we timed (see Sect. 4.1)
how long it takes to build a sign-invariant CAD for the polynomials involved,
discarding the problems in which the creation of the CAD timed out for all
orderings. After building all the possible CADs, a dataset of “unique” problems
is created (see Sect. 4.1).

Of the 5942 original problems, in 343 of them, all the orderings timed out.
And out of the remaining 5599 problems, only 1019 unique problems were found.
These 1019 problems will be used as benchmarks to compare the heuristics
presented in Sects. 2 and 3.

CAD Implementation. For our experiments we used the function Cylindri
calAlgebraicDecompose in the Maple 2022 Library RegularChains, whose
implementation is described in [10]. This actually implements a somewhat differ-
ent CAD algorithm to the classical approach described above. Instead of project-
ing and lifting it first decomposes complex space and then refines this to a CAD
[11], with the current implementation doing the complex decomposition incre-
mentally by polynomial [9]. As reported in these papers, this approach can avoid
some superfluous cell divisions. However, there is still the same choice of variable
ordering to be made which can be crucial [12] with the Brown heuristic observed
previously to work similarly well for the regular chains based algorithms [23].

308 T. del Ŕıo and M. England

Timings. Timings are performed following the methodology of [19]. For each of
the possible variable orderings, the polynomials defining the problems were given
as input to the CAD in Maple with a time limit of 30 s. If none of the orderings
finishes, all the orderings are attempted again with a time limit of 60 s.

Projection times are timed individually using our implementation in Maple
of McCallum CAD projection (that returns the polynomials factorized) with a
time limit of 10 s: these times are used to give a more meaningful comparison of
heuristics that requires us to compute all the projections, with heuristics that
do not need to do so.

Every CAD call was made in a separate Maple session launched from and
timed in Python, to avoid Maple’s caching of intermediate results from one
benchmark or ordering that may help another. From each timing, 0.075 s were
removed: the average time that Maple takes to open on the computer when
called from Python. It was removed as this is not a cost that would normally be
paid but as a consequence of the benchmarking.

Uniqueness. When studying the dataset it was observed that many examples
were very similar to each other. Similar in the sense that they were described by
very similar polynomials, resulting in CADs with equivalent tree structures for
every variable ordering, making it likely that all aspects of the CAD generation
were similar. It is well observed that there exist these families of very similar
benchmarks in the SMT-LIB. Treating each of them as an independent bench-
mark could result in skewed experimental results. E.g. a heuristic that happens
to perform well on a large family of almost identical benchmarks would receive
a huge but unwarranted boost in the analysis if we do not take care.

To avoid this, the samples with the same number of cells in the CADs for all
possible variable orderings are clustered and only one of them is included in the
dataset. This ensures that there are no two problems with an equivalent CAD
tree structure for each variable ordering.

4.2 Evaluation Metrics

Existing Evaluation Metrics. The most obvious metric to evaluate the
choices of our heuristics is the total time taken to build CADs for all the prob-
lems with the orderings chosen by that heuristic: this metric will be referred
to as total-time. Also, another metric that will be used to compare the differ-
ent heuristics is the number of problems completed before timeout using the
orderings chosen by the heuristic.

In previous studies such as [21] accuracy, i.e. the percentage of times that
the fastest ordering is chosen, is used as one of the main metrics. However, as
discussed in [22], for our context, accuracy is not the most meaningful metric.
This is because it is well observed that the second-best ordering may only be
very marginally worse than the best ordering and so picking that should also be
considered accurate. Further, the timings may include small amounts of compu-
tational noise which change the ranking of orderings in such subsets and thus
the accuracy score.

New Heuristic to Choose a CAD Variable Ordering 309

In [22] the authors proposed to address this by considering a heuristic as
successful if it identifies any ordering that takes no more than 20% additional
time than the optimal. This fitted their work on a machine learning classification
problem, but this definition is not suitable for regression, or use to evaluate a
continuous range of possibilities. It considers equally inaccurate an ordering that
is 30% slower and an ordering that is three or four times slower, and even an
ordering that timed out. We thus propose a new metric for use in the evaluation
in place of accuracy.

Markup. We suggest measuring the amount of time that the chosen ordering
takes above the time of the optimal ordering, as a percentage of the optimal
ordering:

heuristic time − optimal time
optimal time

.

This allows for problems of different sizes to be evaluated relative to their possible
solutions. For example, suppose Problem A’s optimal ordering took 10 s and
Problem B’s took 20 s. If the chosen ordering for Problem A took 2 s longer
than optimal then the score would be 0.2; while if that happened for Problem
B the score would be 0.1, recognizing that the excess 2 s is a less substantial
markup for the larger problem.

However, this can lead to distortions for problems where the optimal order-
ing is really fast. For example, if the optimal ordering takes 0.02 s and the
chosen ordering takes 4 s then the metric above would give that problem a very
huge influence over the final score. To avoid that situation, and taking into con-
sideration that anything below a second would likely be acceptable to use for
constructing a CAD, we propose instead to add one to all the timings, i.e.

Markup =
(heuristic time + 1) − (optimal time + 1)

optimal time + 1
.

This measure still allows the evaluation of relative potential but reduces distor-
tions from fast examples and computational noise. In the example above, the
metric would evaluate to 3.9 instead of 199. We refer to this as Markup, i.e. a
measure of how far from the optimal this choice was.

Markup combines the benefits of both accuracy and total-time. Like total-
time does it can measure not only if a choice was worse than the virtual-best but
also how worse it was. But it adapts better to the different sizes of examples,
unlike total-time where performing slightly worse in a difficult problem can have
more impact on the metric than performing really bad in an easy example. Like
accuracy it gives the same relevance to all the instances, but unlike accuracy it
does not define a choice as simply either right or wrong.

Timeouts. For computing markup and total-time we must decide how to deal
with cases where the chosen variable ordering leads to a timeout in CAD com-
putation. In this case, when an ordering does not finish within the time limit
given it will be assumed that it would have taken twice the time limit given.

310 T. del Ŕıo and M. England

4.3 Metrics and Expensive Heuristics

Note that some of our heuristics are cheap, manipulating over data easily
extracted from the polynomial, while others are expensive, requiring the use
of CAD projection and thus algebraic computations. When analyzing an expen-
sive heuristic we have the choice of ignoring the cost of the heuristic or taking
it into account. It is clear that the latter is more realistic because without pay-
ing this cost it would not be possible to make the choice. However, the former
way of analyzing the heuristic also brings some interesting insight. Therefore,
when presenting the metrics for these heuristics (Table 1), the metric without
including the cost of the heuristic will be shown between brackets.

For example, the number of examples marked as complete stands for the num-
ber of problems in which the CAD was constructed with the heuristic’s choice of
variable ordering before the timeout. To adjust this in expensive heuristics, we
count as timeouts the problems in which the time taken to choose the ordering
plus the time taken to build the CAD did not exceed the time limit. As the more
realistic value, the latter is outside brackets and the former within.

5 Results and Analysis

The results given by the analysis of the different heuristics to choose the variable
ordering for the 1019 benchmarks are summarized in Table 1, and a survival plot
comparing the heuristics is presented in Fig. 2. To produce the survival plot, for
each heuristic the times taken to solve the problems with the variable ordering
chosen by the heuristic are sorted into increasing order to form a sequence (ti),
discarding the timed-out problems; and the points (k,

∑k
i=1 ti) are then plotted.

This plot encapsulates visually a lot of information about the success of the
heuristics on a given dataset (it does not say anything about heuristics relative
performance on particular problem instances).

Table 1. Evaluation metrics for the different heuristics to choose the variable orderings
for CAD. For the expensive heuristics, the metrics without taking into account the cost
of the heuristic can be seen between brackets. In bold, the best measure of the metric
out of all the heuristics.

Name Accuracy Total time Markup # Completed

sotd 0.43 11007(9656) 1.56(1.16) 931(946)

mods 0.64 8137(6637) 0.57(0.13) 979(990)

logmods 0.49 9085(7535) 0.91(0.47) 968(983)

greedy-sotd 0.4 15669(15533) 2.55(2.51) 840(841)

brown 0.56 7590 0.25 974

gmods 0.58 6945 0.17 987

New Heuristic to Choose a CAD Variable Ordering 311

Fig. 2. Survival plot comparing heuristics on the benchmarks they can tackle before
timeout

The first thing to note is that any heuristic is significantly better than making
a random choice, giving further evidence on the critical need for attention to this
decision. We give further analysis on the heuristics grouped by their relative costs.

5.1 Expensive Heuristics: sotd vs mods

As discussed earlier, one of the strategies that can be taken to choose an ordering
is to compute all the projection phases for each variable ordering beforehand and
base the decision on this information. Our new heuristic mods and the existing
heuristic sotd follow this strategy. This approach requires a huge cost: it is
possible to observe in Table 1 that one-fifth and one-seventh of the time taken
to do a CAD by the ordering suggested by mods and sotd respectively is invested
on deciding the ordering.

They both use the same information to take the decision, however, as can
be seen in Table 1, mods outperforms sotd in all the presented metrics. The
proposed heuristic picks the best ordering for almost two-thirds of the problems,
while the existing one does so in less than half of them. The choices of mods
reduce the total time by almost fifty minutes and solve almost 50 problems more
with respect to the choices done by sotd.

Moreover, the ordering chosen by mods took on average 58% more time than
the best ordering, while the choice of sotd took on average 160% more than it.
Meaning that for a problem where the virtual-best ordering takes 10 s it is
expected that the ordering proposed by mods takes 15.8 s while 26 s are expected
from the ordering proposed by sotd.

When we compare mods to logmods we see that logmods is outperformed
in all measured metrics. We thus conclude that the expected number of real

312 T. del Ŕıo and M. England

roots for the polynomials in our benchmark set does not match well that of the
random polynomials studied in [20].

5.2 Cheaper Heuristics: gmods vs brown

The heuristics presented in Sect. 5.1 exerted a large amount of effort to solve the
problem of choosing the ordering, at odds with the behaviour of most algorithm
optimization heuristics.

We now look at the cheaper heuristics: greedy-sotd which greatly reduces
the amount of projection information used to make a decision (compared to sotd
and mods) and brown and gmods which do not use any such information beyond
that required to build the single CAD.

We first note that even without taking into account the higher cost of
greedy-sotd, it is greatly outperformed by the two heuristics that do not make
use of projection information at all. When comparing brown and gmods: both
heuristics have similar accuracies, however, the choices of gmods reduce the total
time by ten minutes, and solves 13 problems more with respect to the choices of
brown. Moreover, the ordering chosen by gmods took on average 17% more time
than the best ordering, while the choice of brown took on average 25% more
than it. Meaning that for a problem where the optimal ordering takes 10 s it
is expected that the ordering proposed by gmods takes 11.7 s while 12.5 s are
expected from the ordering proposed by brown.

To further understand how these two heuristics compare, and if there are
subsets of problems in which one of them performs better than the other, an
adversarial plot is presented in Fig. 3. This plots for each benchmark the time
taken by the two heuristics against each other. In that figure, it can be observed
that most of the points are close to the diagonal line, implying that both heuris-
tics perform similarly for most of the instances. However, it can be also observed
that for some problems the ordering suggested by gmods timed out while brown
proposed an ordering that completes and vice versa. This phenomenon is more
common in favour of gmods but leaves open the possibility of a combination or
meta-heuristic outperforming either.

5.3 Expensive vs Cheap Approach: mods vs gmods

It can be observed looking at the accuracies in Table 1 that mods picks better
orderings than gmods and is superior in all other metrics if the cost of the heuris-
tic is not taken into account (looking at the values between brackets in the same
table). I.e. it has the strongest predictive power. However, as discussed in Sect.
4.2, accuracy is not the most interesting metric and gmods outperforms mods in
all fair comparisons that take the cost of the heuristic into account.

In Fig. 2 we see that greedy-sotd outperforms sotd at first, solving many
problems in a shorter time, but in the long run sotd ends up solving more in
total. In fact, it is possible to observe that the greedy heuristics start ahead
of the expensive heuristics. This implies that it is especially disadvantageous

New Heuristic to Choose a CAD Variable Ordering 313

Fig. 3. Adversarial plot comparing gmods and brown.

to compute all projections when working on easy problems, and motivates a
separate analysis excluding the easiest problems.

The results when we restrict to only the hardest 134 problems (those whose
optimal time need more than 10 s) are plotted in Fig. 4. Now mods performs
almost as well as brown. This further highlights the superiority of gmods over
the rest in this particularly relevant slice of the problems where easy problems
are excluded. Thus these expensive heuristics may still have a role as we expand
our analysis to still harder problems.

Fig. 4. Survival plot comparing heuristics on harder benchmarks only

314 T. del Ŕıo and M. England

6 Final Thoughts

6.1 Conclusions

The new heuristics motivated in this paper by the complexity analysis of CAD
have clearly become the new state-of-the-art to choose the variable ordering
for CAD. This leads to the most important conclusion of the paper: theoretical
complexity analyses of an algorithm are a very powerful tool not just to compare
algorithms but also to optimize them. These results also show that the benefits
of a greedy or lazy approach in algebraic computation.

We would also highlight how out of the 5599 problems of three variables
in the QF NRA category of the SMTLIB library, only 1019 were found to be
unique (in the sense of Sect. 4.1). I.e. three-quarters, at least of the three-variable
problems in the QF NRA category, are from the point of view of CAD copies of
other problems in that category. Their differences may be important when using
SAT solvers to study the logic, or other incomplete methods, but for an analysis
of a complete solver they should be merged as in our methodology.

Finally, we note that logmods failed in our experiments, implying that for
the polynomials found in the QF NRA category of the SMTLIB library the
expected number of roots is not proportional to the logarithm of their degree, and
therefore they do not follow the same distribution as studied in [20]. This is not
that surprising given it is well documented that polynomials from applications
are often different to those generated from a simple random generator.

6.2 Future Work

An obvious future work is to experiment with the new heuristics on problems
with more variables, higher degree, or data from other sources. We see a number
of avenues beyond this for more research.

First we note that the results here should feed into work on machine learning
methods to make such optimization decision. In fact, it would be interesting to
study the extend to which the metrics presented here were used in the machine
learning classifiers of [21] who created similar metrics among hundreds via an
automated method. We are also interested in building simpler ML models using
a restricted set of features. These could be more interpretable and thus offer
further insights on how the features connect.

Next, we note that the actual CAD complexity analyses in e.g. [3,17,18,25]
were performed not on the projection polynomials as a single set but an optimal
arrangement of them. This is known as the (m,d)-property and stems from the
PhD thesis of McCallum. It would be interesting to see if there is any heuristic
that can be deduced from the analysis involving this property.

We are also interested to look if the additional information encoded in mods
could be obtained more cheaply than using CAD projections. Especially since
the heuristic does not use all the information in these projections, only degree
information. This would allow us to make choices only 13% slower on average

New Heuristic to Choose a CAD Variable Ordering 315

than the virtual best (based on the results between brackets − without heuris-
tic cost − in Table 1). Alternatively, another greedy version of mods could be
developed, in which, similarly to greedy-sotd, instead of computing the whole
projection phase for each possible variable ordering, a projection step is done for
each available variable.

Acknowledgments. The authors would like to thank AmirHosein Sadeghi-
manesh for his interesting conversations and his constructive criticism, and for
sharing his Maple code to perform CAD projections. We also thank the anony-
mous reviewers whose comments helped us improve the paper.

The research of the first author is supported financially from a scholarship of
Coventry University. The research of the second author is supported by EPSRC
Grant EP/T015748/1, Pushing Back the Doubly-Exponential Wall of Cylindrical
Algebraic Decomposition (the DEWCAD Project).

Research Data and Code Statement

Data and code necessary to generate the figures and results presented in this
paper are available at: https://doi.org/10.5281/zenodo.6750528.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633 (2021).
https://doi.org/10.1016/j.jlamp.2020.100633

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016), www.SMT-LIB.org

3. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth
table invariant cylindrical algebraic decomposition. J. Symbol. Comput. 76, 1–35,
100633 (2016). https://doi.org/10.1016/J.JSC.2015.11.002

4. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising Problem For-
mulation for Cylindrical Algebraic Decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 19–34. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39320-
4 2

5. Brown, C.W.: Companion to the tutorial cylindrical algebraic decomposition. In:
International Symposium on Symbolic and Algebraic Computation - ISSAC (2004).
www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

6. Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC, pp. 85–92. Association for Computing Machinery (2015). https://doi.org/
10.1145/2755996.2756654

7. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, ISSAC, pp. 54–60 (2007). https://doi.org/
10.1145/1277548.1277557

https://doi.org/10.5281/zenodo.6750528.
https://doi.org/10.1016/j.jlamp.2020.100633
www.SMT-LIB.org
https://doi.org/10.1016/J.JSC.2015.11.002
https://doi.org/10.1007/978-3-642-39320-4_2
https://doi.org/10.1007/978-3-642-39320-4_2
www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1277548.1277557

316 T. del Ŕıo and M. England

8. Brown, C.W., Daves, G.C.: Applying machine learning to heuristics for real poly-
nomial constraint solving. In: Bigatti, A.M., Carette, J., Davenport, J.H., Joswig,
M., de Wolff, T. (eds.) ICMS 2020. LNCS, vol. 12097, pp. 292–301. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-52200-1 29

9. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical
algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathe-
matics, pp. 199–221. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43799-5 17

10. Chen, C., Moreno Maza, M.: Cylindrical Algebraic decomposition in the
RegularChains library. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol.
8592, pp. 425–433. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44199-2 65

11. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC, pp. 95–102 (2009).
https://doi.org/10.1145/1576702.1576718

12. Chen, C., Zhu, Z., Chi, H.: Variable ordering selection for cylindrical algebraic
decomposition with artificial neural networks. In: Bigatti, A.M., Carette, J., Dav-
enport, J.H., Joswig, M., de Wolff, T. (eds.) ICMS 2020. LNCS, vol. 12097, pp.
281–291. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52200-1 28

13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

14. Collins, G.E.: Quantifier Elimination by Cylindrical Algebraic Decomposition -
Twenty Years of Progress. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elim-
ination and Cylindrical Algebraic Decomposition. Texts and Monographs in Sym-
bolic Computation, pp. 8–23. Springer, Vienna (1998). https://doi.org/10.1007/
978-3-7091-9459-1 2

15. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Pro-
ceedings of the 2004 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC, pp. 111–118. ACM Press, New York, New York, USA (2004).
https://doi.org/10.1145/1005285.1005303

16. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.:
Problem formulation for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton,
A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 45–60.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3 5

17. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational con-
straints in cylindrical algebraic decomposition. In: Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC, pp. 165–172 (2015).
https://doi.org/10.1145/2755996.2756678

18. England, M., Bradford, R., Davenport, J.H.: Cylindrical algebraic decomposition
with equational constraints. J. Symbol. Comput. 100, 38–71 (2020). https://doi.
org/10.1016/j.jsc.2019.07.019

19. England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady,
E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 93–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 7

20. Fairley, W.B.: The number of real roots of random polynomials of small degree.
Indian J. Stat. Ser. B 38(2), 144–152 (1976), www.jstor.org/stable/25052004

https://doi.org/10.1007/978-3-030-52200-1_29
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/978-3-662-44199-2_65
https://doi.org/10.1007/978-3-662-44199-2_65
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/978-3-030-52200-1_28
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-7091-9459-1_2
https://doi.org/10.1007/978-3-7091-9459-1_2
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-319-08434-3_5
https://doi.org/10.1145/2755996.2756678
https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1007/978-3-030-23250-4_7
www.jstor.org/stable/25052004

New Heuristic to Choose a CAD Variable Ordering 317

21. Florescu, D., England, M.: Algorithmically generating new algebraic features of
polynomial systems for machine learning. In: CEUR Workshop Proceedings 2460
(2019). https://doi.org/10.48550/1906.01455

22. Florescu, D., England, M.: Improved cross-validation for classifiers that make algo-
rithmic choices to minimise runtime without compromising output correctness. In:
Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol.
11989, pp. 341–356. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43120-4 27

23. Huang, Z., England, M., Wilson, D.J., Bridge, J., Davenport, J.H., Paulson,
L.C.: Using machine learning to improve cylindrical algebraic decomposition.
Math. Comput. Sci. 13(4), 461–488 (dec 2019). https://doi.org/10.1007/s11786-
019-00394-8

24. Kremer, G., Ábrahám, E.: Fully incremental cylindrical algebraic decomposition.
J. Symbol. Comput. 100, 11–37 (2020). https://doi.org/10.1016/j.jsc.2019.07.018

25. Li, H., Xia, B., Zhang, H., Zheng, T.: Choosing the variable ordering for cylindrical
algebraic decomposition via exploiting chordal structure. In: Proceedings of the
International Symposium on Symbolic and Algebraic Computation, ISSAC, pp.
281–288 (2021). https://doi.org/10.1145/3452143.3465520

26. McCallum, S., Parusiński, A., Paunescu, L.: Validity proof of Lazard’s method
for CAD construction. J. Symbol. Comput. 92, 52–69 (2019). https://doi.org/10.
1016/j.jsc.2017.12.002

27. Wilson, D., England, M., Bradford, R., Davenport, J.H.: Using the distribution
of cells by dimension in a cylindrical algebraic decomposition. In: Proceedings -
16th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2014, pp. 53–60 (2015). https://doi.org/10.1109/SYNASC.
2014.15

https://doi.org/10.48550/1906.01455
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1145/3452143.3465520
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1109/SYNASC.2014.15
https://doi.org/10.1109/SYNASC.2014.15

An Implementation of Parallel
Number-Theoretic Transform Using Intel

AVX-512 Instructions

Daisuke Takahashi(B)

Center for Computational Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

daisuke@cs.tsukuba.ac.jp

Abstract. In this paper, we propose an implementation of the parallel
number-theoretic transform (NTT) using Intel Advanced Vector Exten-
sions 512 (AVX-512) instructions. The butterfly operation of the NTT
can be performed using modular addition, subtraction, and multiplica-
tion. We show that a method known as the six-step fast Fourier trans-
form algorithm can be applied to the NTT. We vectorized NTT kernels
using the Intel AVX-512 instructions and parallelized the six-step NTT
using OpenMP. We successfully achieved a performance of over 83 giga-
operations per second on an Intel Xeon Platinum 8368 (2.4GHz, 38 cores)
for a 220-point NTT with a modulus of 51 bits.

Keywords: Number-theoretic transform · Modular multiplication ·
Intel AVX-512 instructions

1 Introduction

The fast Fourier transform (FFT) [5] is an algorithm that is widely used today in
scientific and engineering computing. FFTs are often computed using complex
or real numbers, but it is known that these transforms can also be computed
in a ring and a finite field [14]. Such a transform is called the number-theoretic
transform (NTT). The NTT is used for homomorphic encryption, polynomial
multiplication, and multiple-precision multiplication.

Efficient arithmetic for NTTs has been proposed [7]. The number theory
library (NTL) [15] is a C++ library for performing number-theoretic computa-
tions and implements NTT. Although the NTL is thread-safe, the parallel NTT
is not supported. Spiral-generated modular FFTs have been proposed [11,12] and
experiments were performed using 32-bit integers and 16-bit primes with Intel
SSE4 instructions. An implementation of NTT using the Intel AVX-512IFMA
(Integer Fused Multiply-Add) instructions has been proposed [2]. This imple-
mentation is available as the Intel Homomorphic Encryption (HE) Acceleration
Library [3], an open-source C++ library that provides efficient implementations
of integer arithmetic on finite fields. Intel HEXL targets the typical data size

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 318–332, 2022.
https://doi.org/10.1007/978-3-031-14788-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_18&domain=pdf
http://orcid.org/0000-0003-1357-5770
https://doi.org/10.1007/978-3-031-14788-3_18

An Implementation of Parallel Number-Theoretic Transform 319

n = [210, 217] of NTTs used in homomorphic encryption [2] and is not parallelized
by OpenMP.

In contrast, we consider accelerating NTT for larger data sizes by paralleliza-
tion, targeting polynomial multiplication and multiple-precision multiplication.
In this paper, we vectorize NTT kernels using the Intel AVX-512 instructions
and parallelize NTT using OpenMP.

The remainder of this paper is organized as follows. Section 2 describes the
number-theoretic transform (NTT). Section 3 presents the vectorization of the
NTT kernels. Section 4 presents the proposed implementation of the parallel
NTT. Section 5 presents the performance results. Finally, Sect. 6 presents con-
cluding remarks.

2 Number-Theoretic Transform (NTT)

The discrete Fourier transform (DFT) is given by

y(k) =
n−1∑

j=0

x(j)ωjk
n , 0 ≤ k ≤ n − 1, (1)

where ωn = e−2πi/n and i =
√−1.

The DFT can be defined over rings and fields other than the complex
field [14]. Equation (1) can be expressed in a field Fp = Z/pZ, where p is a
prime number:

y(k) =
n−1∑

j=0

x(j)ωjk
n mod p, 0 ≤ k ≤ n − 1, (2)

in which ωn is the primitive n-th root of unity. For example, if ωn = 157 for
n = 16 and p = 1297 (= 81 × 16 + 1), then ω16

n ≡ 1 mod 1297 and ω
16/2
n = ω8

n ≡
1296 �≡ 1 mod 1297.

The n-point NTT in Eq. (2) is directly computed by O(n2) arithmetic opera-
tions, but by applying an algorithm similar to the FFT, the number of arithmetic
operations can be reduced to O(n log n). Applications of the Stockham algo-
rithm [4,16], known as an out-of-place FFT algorithm, to radix-2, 4, and 8 NTTs
are shown in Algorithms 1, 2, and 3, respectively. The multiplication by ω

n/4
n

in line 13 of Algorithm 2 can be performed by a trivial multiplication by −i in
the radix-4 FFT. As a result, the total number of real arithmetic operations for
the n-point FFT is reduced from 5n log2 n in the radix-2 FFT to 4.25n log2 n
in the radix-4 FFT. However, the number of arithmetic operations cannot be
reduced by increasing the radix because there is no such trivial multiplication
in the NTT. Intel HEXL includes radix-2 and 4 NTT implementations.

When computing the NTT, modular multiplication takes up most of the
computation time. Modular multiplication includes modulo operations, which
are slow due to the integer division process. However, Montgomery multiplica-
tion [13] and Shoup’s modular multiplication [7] are known to avoid this problem.

320 D. Takahashi

Algorithm 1. Stockham radix-2 NTT algorithm
Input: n = 2q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/2
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: Xt(k + 2jm) ← (c0 + c1) mod p
9: Xt(k + 2jm + m) ← ωjm

n (c0 − c1) mod p
10: end for
11: end for
12: l ← l/2
13: m ← 2m
14: end for

Shoup’s modular multiplication [7] is shown in Algorithm 4. In Algorithm 4, if β
is a power-of-two integer, the truncated quotient of dividing AB′ by β in line 1
can be calculated by right shifting, and the remainder of dividing (AB − qN)
by β in line 2 can be calculated by bit masking.

The decimation-in-frequency butterfly operation of the NTT is shown in the
following expression:

{
X = (x + y) mod p,
Y = ω(x − y) mod p.

The value of Y in the butterfly operation can be calculated in Algorithm 4
using A = x − y, B = ω, and N = p. Here, the value of B′ = �ωβ/p� can be
calculated in advance.

When convolution is performed for polynomials using NTT, the modulus also
needs to increase as the degree increases. If the modulus does not fit into the size
of the machine word (e.g., 32 or 64 bits), it is known that the convolution can
be performed by computing NTTs on multiple moduli and then reconstructing
the moduli using the Chinese remainder theorem.

3 Vectorization of NTT Kernels

Intel Advanced Vector Extensions 512 (AVX-512) [8] is a 512-bit vector instruc-
tion set that consists of multiple extensions that can be implemented indepen-
dently. All Intel AVX-512 implementations require only the core extension Intel
AVX-512F (Foundation). The most direct way to use Intel AVX-512 instructions
is to insert assembly-language instructions inline into the source code. How-
ever, this can be time-consuming and tedious. Intel thus provides API extension

An Implementation of Parallel Number-Theoretic Transform 321

Algorithm 2. Stockham radix-4 NTT algorithm
Input: n = 4q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/4
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: c2 ← Xt−1(k + jm + 2lm)
9: c3 ← Xt−1(k + jm + 3lm)
10: d0 ← (c0 + c2) mod p
11: d1 ← (c0 − c2) mod p
12: d2 ← (c1 + c3) mod p

13: d3 ← ω
n/4
n (c1 − c3) mod p

14: Xt(k + 4jm) ← (d0 + d2) mod p
15: Xt(k + 4jm + m) ← ωjm

n (d1 + d3) mod p
16: Xt(k + 4jm + 2m) ← ω2jm

n (d0 − d2) mod p
17: Xt(k + 4jm + 3m) ← ω3jm

n (d1 − d3) mod p
18: end for
19: end for
20: l ← l/4
21: m ← 4m
22: end for

sets, referred to as intrinsics [9], to facilitate implementation. The GCC [6],
Clang [19], and Intel C compilers [9] support automatic vectorization using Intel
AVX-512 instructions.

The NTT kernels include modular addition, subtraction, and multiplication.
The modular addition c = (a + b) mod N for 0 ≤ a, b < N can be replaced
by the addition c = a + b and the conditional subtraction c − N when c ≥ N .
Such conditional subtraction involves a branch. However, the branch can be
avoided by replacing it with the minimum operation min(c, c − N) for unsigned
integer values c and N with wrap-around two’s complement arithmetic [18].
The Intel AVX-512F instruction set supports the vpminuq instruction for the
64-bit unsigned integer minimum operation. Here, it is sufficient that each of a
and b be less than 263 in order for the calculation of c = a + b not to overflow
with the 64-bit unsigned integer addition. Similarly, the modular subtraction
c = (a− b) mod N for 0 ≤ a, b < N can be replaced by the subtraction c = a− b
and the minimum operation c = min(c, c+N) for unsigned integer values a, b, c,
and N with wrap-around two’s complement arithmetic.

Figures 1 and 2 show the modular additions and subtractions of packed 63-
bit integers using Intel AVX-512 intrinsics. The intrinsics support the m512i
data type in Figs. 1 and 2. The m512i data type can hold 64 8-bit integer

322 D. Takahashi

Algorithm 3. Stockham radix-8 NTT algorithm
Input: n = 8q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/8
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: c2 ← Xt−1(k + jm + 2lm)
9: c3 ← Xt−1(k + jm + 3lm)
10: c4 ← Xt−1(k + jm + 4lm)
11: c5 ← Xt−1(k + jm + 5lm)
12: c6 ← Xt−1(k + jm + 6lm)
13: c7 ← Xt−1(k + jm + 7lm)
14: d0 ← (c0 + c4) mod p
15: d1 ← (c0 − c4) mod p
16: d2 ← (c2 + c6) mod p

17: d3 ← ω
n/4
n (c2 − c6) mod p

18: d4 ← (c1 + c5) mod p
19: d5 ← (c1 − c5) mod p
20: d6 ← (c3 + c7) mod p

21: d7 ← ω
n/4
n (c3 − c7) mod p

22: e0 ← (d0 + d2) mod p
23: e1 ← (d0 − d2) mod p
24: e2 ← (d4 + d6) mod p

25: e3 ← ω
n/4
n (d4 − d6) mod p

26: e4 ← (d1 + d3) mod p
27: e5 ← (d1 − d3) mod p

28: e6 ← ω
n/8
n (d5 + d7) mod p

29: e7 ← ω
3n/8
n (d5 − d7) mod p

30: Xt(k + 8jm) ← (e0 + e2) mod p
31: Xt(k + 8jm + m) ← ωjm

n (e4 + e6) mod p
32: Xt(k + 8jm + 2m) ← ω2jm

n (e1 + e3) mod p
33: Xt(k + 8jm + 3m) ← ω3jm

n (e5 + e7) mod p
34: Xt(k + 8jm + 4m) ← ω4jm

n (e0 − e2) mod p
35: Xt(k + 8jm + 5m) ← ω5jm

n (e4 − e6) mod p
36: Xt(k + 8jm + 6m) ← ω6jm

n (e1 − e3) mod p
37: Xt(k + 8jm + 7m) ← ω7jm

n (e5 − e7) mod p
38: end for
39: end for
40: l ← l/8
41: m ← 8m
42: end for

An Implementation of Parallel Number-Theoretic Transform 323

Algorithm 4. Shoup’s modular multiplication algorithm [7]
Input: A, B, N such that 0 ≤ A, B < N, N < β/2

precomputed B′ = �Bβ/N�
Output: C = AB mod N
1: q ← �AB′/β�
2: C ← (AB − qN) mod β
3: if C ≥ N then
4: C ← C − N
5: return C.

Fig. 1. Modular additions of packed 63-bit integers using Intel AVX-512 intrinsics

values, 32 16-bit integer values, 16 32-bit integer values, or 8 64-bit integer
values. In addition, the intrinsics mm512 add epi64() and mm512 sub epi64()
correspond to the vpaddq and vpsubq instructions, respectively.

We consider performing modular multiplication c = ab mod N using Shoup’s
modular multiplication. If we set β = 264 in Algorithm 4, then the upper 64-bit
half of the 64-bit × 64-bit → 128-bit unsigned integer multiplication is required.
The Intel AVX-512DQ (Doubleword and Quadword) instruction set [8] supports
the vpmullq instruction for the lower 64-bit half of the 64-bit × 64-bit → 128-
bit integer multiplication, but does not support the upper 64-bit half of the
64-bit × 64-bit → 128-bit unsigned integer multiplication.

The Intel AVX-512F instruction set supports the vpmuludq instruction,
which performs 32-bit × 32-bit → 64-bit unsigned integer multiplication. The
upper 64-bit half of the 64-bit × 64-bit → 128-bit unsigned integer multi-
plication can be implemented by dividing the multiplicand and multiplier of
a 64-bit unsigned integer into the upper and lower 32-bit unsigned integers,
respectively, and using the vpmuludq instruction for 32-bit × 32-bit → 64-

Fig. 2. Modular subtractions of packed 63-bit integers using Intel AVX-512 intrinsics

324 D. Takahashi

Fig. 3. The upper 64-bit half of the 64-bit × 64-bit → 128-bit unsigned integer multi-
plications of packed 64-bit integers using Intel AVX-512 intrinsics

bit unsigned integer multiplication. Figure 3 shows the upper 64-bit half of
the 64-bit × 64-bit → 128-bit unsigned integer multiplications of packed 64-
bit integers using Intel AVX-512 intrinsics. The intrinsics mm512 and epi64(),
mm512 set1 epi64(), mm512 srli epi64(), and mm512 mul epu32() corre-
spond to the vpandq, vpbroadcastq, vpsrlq, and vpmuludq instructions,
respectively.

Figure 4 shows Shoup’s modular multiplications of packed 63-bit integers
using Intel AVX-512 intrinsics, which correspond to β = 264 in Algorithm 4.
In this program, the function mm512 mulhi epu64() shown in Fig. 3 is used.
The intrinsic mm512 mullo epi64() corresponds to the vpmullq instruction.
The conditional subtraction on lines 3 and 4 of Algorithm4 is also performed

Fig. 4. Shoup’s modular multiplications of packed 63-bit integers using Intel AVX-512
intrinsics

An Implementation of Parallel Number-Theoretic Transform 325

__m512i _mm512_mulmod_epu64(__m512i a, __m512i b, __m512i bb, __m512i N)
/* Compute (a * b) mod N. Precomputed bb = floor((b * 2^52) / N).

Requires 0 <= a, b < N < 2^51. */
{

__m512i c, q;

q = _mm512_madd52hi_epu64(_mm512_set1_epi64(0), a, bb);
c = _mm512_sub_epi64(

 _mm512_madd52lo_epu64(_mm512_set1_epi64(0), a, b),
 _mm512_madd52lo_epu64(_mm512_set1_epi64(0), q, N));

c = _mm512_and_epi64(c, _mm512_set1_epi64(0x000FFFFFFFFFFFFF));
c = _mm512_min_epu64(c, _mm512_sub_epi64(c, N));

return c;
}

Fig. 5. Shoup’s modular multiplications of packed 51-bit integers using Intel AVX-512
intrinsics

Table 1. Inner-loop operations for radix-2, 4, and 8 NTT kernels

Radix-2 Radix-4 Radix-8

Loads 2 4 8

Stores 2 4 8

Modular multiplications 1 4 12

Modular additions/subtractions 2 8 24

Total arithmetic operations 3 12 36

Byte/Operation ratio 10.667 5.333 3.556

using the vpsubq and vpminuq instructions in the same way as in the modular
addition.

Intel AVX-512IFMA instructions [8] are supported by the Cannon Lake, Ice
Lake, and Tiger Lake microarchitectures. The Intel AVX-512IFMA instruction
set supports the vpmadd52luq and vpmadd52huq instructions, which multiply
52-bit unsigned integers and produce the low and high halves, respectively, of
a 104-bit intermediate result. These halves are added to 64-bit accumulators.
Since such operations are not supported in the C language, it is necessary to use
Intel AVX-512 intrinsics or insert assembly-language instructions inline into the
source code in order to use the Intel AVX-512IFMA instructions.

Figure 5 shows Shoup’s modular multiplications of packed 51-bit integers
using Intel AVX-512 intrinsics, which correspond to β = 252 in Algorithm 4. The
intrinsics mm512 madd52lo epu64() and mm512 madd52hi epu64() correspond
to the vpmadd52luq and vpmadd52huq instructions, respectively.

The Stockham radix-2, 4, and 8 NTTs are vectorized using the functions in
Figs. 1, 2, 3, 4, and 5. Table 1 shows the inner-loop operations for radix-2, 4, and 8
NTT kernels. As mentioned in Sect. 2, the radix-4 or 8 NTT does not reduce the
number of arithmetic operations compared to the radix-2 NTT. However, in view

326 D. Takahashi

of the Byte/Operation ratio, the radix-8 NTT is preferable to the radix-2 and 4
NTTs. Although higher radix NTTs require more registers to hold intermediate
results, processors that support the Intel AVX-512 instructions have 32 ZMM
512-bit registers.

A power-of-two point NTT (except for the 2-point NTT) can be performed
by a combination of radix-8 and radix-4 steps containing at most two radix-4
steps. In other words, the power-of-two NTTs can be performed as a length
n = 2p = 4q8r (p ≥ 2, 0 ≤ q ≤ 2, r ≥ 0).

4 Parallel Implementation of Number-Theoretic
Transform

In Eq. (2), if n has factors n1 and n2 (n = n1 × n2), then the indices j and k
can be expressed as:

j = j1 + j2n1, k = k2 + k1n2. (3)

We can define x and y in Eq. (2) as two-dimensional arrays (in column-major
order):

x(j) = x(j1, j2), 0 ≤ j1 ≤ n1 − 1, 0 ≤ j2 ≤ n2 − 1, (4)
y(k) = y(k2, k1), 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1. (5)

Substituting the indices j and k in Eq. (2) with the indices in Eq. (3), and
using the relation of n = n1 × n2, we can derive the following equation:

y(k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

x(j1, j2)ωj2k2n1
n ωj1k2

n ωj1k1n2
n mod p. (6)

In the same way as the six-step FFT algorithm [1,20], the following six-step
NTT algorithm is derived from Eq. (6):

Step 1: Transposition
x1(j2, j1) = x(j1, j2).

Step 2: n1 individualn2-point multicolumn NTTs

x2(k2, j1) =
n2−1∑

j2=0

x1(j2, j1)ωj2k2n1
n mod p.

Step 3: Twiddle factor multiplication
x3(k2, j1) = x2(k2, j1)ωj1k2

n mod p.

Step 4: Transposition
x4(j1, k2) = x3(k2, j1).

Step 5: n2 individualn1-point multicolumn NTTs

x5(k1, k2) =
n1−1∑

j1=0

x4(j1, k2)ωj1k1n2
n mod p.

Step 6: Transposition
y(k2, k1) = x5(k1, k2).

An Implementation of Parallel Number-Theoretic Transform 327

In the six-step NTT algorithm, two multicolumn NTTs are performed in
steps 2 and 5. The locality of the memory reference in the multicolumn NTT is
high. On the other hand, the three transpose steps (steps 1, 4, and 6) are typically
the chief bottlenecks in cache-based processors. We can use cache blocking to
reduce the number of cache misses in matrix transposition. An example of matrix
transposition with cache blocking is shown in Fig. 6. Parameter NBLK is the
blocking parameter. In Fig. 6, the outermost loop length may not have sufficient
parallelism for manycore processors. A loop collapsing makes the length of a loop
long by collapsing nested loops into a single-nested loop. By using the OpenMP
collapse clause, the parallelism of the outermost loop can be expanded [17].

We parallelized the six-step NTT using OpenMP. Figure 7 shows a parallel
implementation of the six-step NTT. In this program, transpose() is a function
to transpose a matrix, mulmod() is a function to perform a modular multiplica-
tion, ntt2() is the Stockham NTT, and a variable omega is the primitive n-th
root of unity.

5 Performance Results

For performance evaluation, we compared the performance of the following six
implementations:

– Proposed implementation of the Stockham NTT (AVX-512DQ) with a mod-
ulus of 63 bits

– Proposed implementation of the six-step NTT (AVX-512DQ) with a modulus
of 63 bits

– Proposed implementation of the Stockham NTT (AVX-512IFMA) with a
modulus of 51 bits

– Proposed implementation of the six-step NTT (AVX-512IFMA) with a mod-
ulus of 51 bits

Table 2. Specifications of the platform

Platform Intel Xeon Platinum processor

Number of cores 38

Number of threads 76

CPU type Intel Xeon Platinum 8368

Ice Lake 2.4GHz

L1 cache (per core) I-cache: 32 KB

D-cache: 48 KB

L2 cache (per core) 1.25 MB

L3 cache 57 MB

Main memory DDR4-3200 256 GB

Theoretical peak performance 2.918 TFlops

OS Linux 4.18.0-305.25.1.el8 4.x86 64

328 D. Takahashi

Fig. 6. Example of matrix transposition with cache blocking

Fig. 7. Parallel implementation of the six-step NTT

– Intel HEXL 1.2.4 (AVX-512DQ) with a modulus of 62 bits
– Intel HEXL 1.2.4 (AVX-512IFMA) with a modulus of 50 bits

Intel HEXL uses a modified Shoup butterfly [7] that requires p < β/4 to
reduce the number of conditional subtractions [2]. Therefore, the modulus sizes

An Implementation of Parallel Number-Theoretic Transform 329

of Intel HEXL (AVX-512DQ) with β = 264 and Intel HEXL (AVX-512IFMA)
with β = 252 are 62 bits and 50 bits, respectively.

The specifications of the platform are shown in Table 2. Note that Hyper-
Threading [10] was enabled on the platform. The Intel C compiler (version
19.1.3.304) was used for the proposed implementations. The compiler options
were icc -O3 -xICELAKE-SERVER -fno-alias -qopenmp. The compiler option
-O3 enables optimizations for speed and more aggressive loop transformations.
The compiler option -xICELAKE-SERVER specifies the generation of instructions
for the Ice Lake microarchitecture. The compiler option -fno-alias specifies
that aliasing is not assumed in a program. The compiler option -qopenmp spec-
ifies the enabling of the compiler to generate multi-threaded code based on the
OpenMP directives. Intel HEXL could not be built successfully with the Intel
C/C++ compiler, so the GNU C/C++ compiler (version 8.3.1) was used for
Intel HEXL. The compiler option was gcc -O3.

Since the proposed implementation of the Stockham NTT is not parallelized,
it was executed in a single thread. The proposed implementation of the six-
step NTT was run with 1 to 76 threads. In the proposed implementations of
the Stockham NTT and six-step NTT, the number of repetitions was doubled
until the elapsed time of the forward NTT was greater than 1 second, and the
average elapsed time was measured. The table for twiddle factors was prepared in
advance. Since Intel HEXL does not support parallel execution, it was executed
in a single thread. The performance of Intel HEXL was measured using the
benchmark program included in the Intel HEXL source code.

On the Intel Xeon Platinum 8368, the environment variable KMP AFFINITY=
granularity=fine,compact was specified. The giga-operations per second
(Gops) values are each based on (3/2)n log2 n for a transform of size n = 2m.
This Gops value is calculated with modular addition, subtraction, and multipli-
cation as one operation each, but several instructions are required to actually
perform modular addition, subtraction, and multiplication.

Figure 8 shows the performance of NTTs using Intel AVX-512DQ instruction.
As shown in Fig. 8, the proposed implementations of the Stockham NTT and
six-step NTT (AVX-512DQ) are slower than Intel HEXL (AVX-512DQ) in a
single-thread execution. One possible reason for this is that the modulus size of
the proposed implementations of the Stockham NTT and six-step NTT (AVX-
512DQ) is 63 bits, while the modulus size of Intel HEXL (AVX-512DQ) is 62
bits, reducing the number of instructions. While the six-step NTT is suitable for
parallelization, it requires three matrix transpositions, and the overhead of these
matrix transpositions is the reason why the proposed implementation of the six-
step NTT is slower than the proposed implementation of the Stockham NTT in
a single-thread execution. The Intel Xeon Platinum 8368 processor used in this
performance evaluation has 57 MB of L3 cache, so up to 220-point NTT fits into
the L3 cache. Although the six-step NTT and matrix transposition with cache
blocking are effective when the data do not fit into the cache, Intel HEXL was
only able to execute up to 222-point NTT, which may not have demonstrated the
superiority of the proposed implementation of the six-step NTT. The proposed

330 D. Takahashi

Fig. 8. Performance of NTTs using Intel AVX-512DQ instruction (Intel Xeon Platinum
8368, 38 cores)

Fig. 9. Performance of NTTs using Intel AVX-512IFMA instruction (Intel Xeon Plat-
inum 8368, 38 cores)

implementation of the six-step NTT (AVX-512DQ) is faster than Intel HEXL
(AVX-512DQ) for n ≥ 213 on 76 threads.

Figure 9 shows the performance of NTTs using Intel AVX-512IFMA instruc-
tions. The proposed implementations of the Stockham NTT and six-step NTT
(AVX-512IFMA) are slower than Intel HEXL (AVX-512IFMA) in a single-thread
execution, as shown in Fig. 9. One possible reason for this is that the modulus size
of the proposed implementations of the Stockham NTT and six-step NTT (AVX-
512IFMA) is 51 bits, while the modulus size of Intel HEXL (AVX-512IFMA) is
50 bits, reducing the number of instructions. The proposed implementation of
the six-step NTT (AVX-512IFMA) is faster than Intel HEXL (AVX-512IFMA)
for n ≥ 214 on 76 threads.

An Implementation of Parallel Number-Theoretic Transform 331

Fig. 10. Speedup for 222-point NTTs (Intel Xeon Platinum 8368, 38 cores)

Comparing Figs. 8 and 9, the proposed implementations of the Stockham
NTT and six-step NTT (AVX-512IFMA) are faster than the proposed imple-
mentations of the Stockham NTT and six-step NTT (AVX-512DQ). The rea-
son for this is that the proposed implementations of the Stockham NTT and
six-step NTT (AVX-512IFMA) require fewer instructions to perform Shoup’s
modular multiplication using the Intel AVX-512DQ instruction. However, the
modulus size is 63 bits for the proposed implementations of the Stockham NTT
and six-step NTT (AVX-512DQ), while the modulus size is reduced to 51 bits
for the proposed implementations of the Stockham NTT and six-step NTT
(AVX-512IFMA).

Figure 10 shows the speedup for 222-point NTTs on the Intel Xeon Platinum
8368 when 1 to 76 threads are used. The results indicate that Hyper-Threading
is effective for the proposed implementations of the six-step NTT (AVX-512DQ
and AVX-512IFMA).

6 Conclusion

In this paper, we proposed the implementation of the parallel NTT using Intel
AVX-512 instructions. The butterfly operation of the NTT can be performed
using modular addition, subtraction, and multiplication. We showed that a
method known as the six-step FFT algorithm could be applied to the NTT. We
vectorized NTT kernels using the Intel AVX-512 instructions and parallelized
the six-step NTT using OpenMP. We succeeded in obtaining a performance of
over 83 Gops on an Intel Xeon Platinum 8368 (2.4 GHz, 38 cores) for a 220-point
NTT with a modulus of 51 bits. These performance results demonstrate that the
implemented parallel NTT uses cache memory effectively and exploits the Intel
AVX-512 instructions.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP19K11989.

332 D. Takahashi

References

1. Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomput. 4, 23–35
(1990)

2. Boemer, F., Kim, S., Seifu, G., de Souza, F.D.M., Gopal, V.: Intel HEXL: accel-
erating homomorphic encryption with Intel AVX512-IFMA52. In: Proceedings of
9th Workshop on Encrypted Computing & Applied Homomorphic Cryptography
(WAHC 2021), pp. 57–62 (2021)

3. Boemer, F., et al.: Intel HEXL. https://github.com/intel/hexl
4. Cochran, W.T., et al.: What is the fast Fourier transform? IEEE Trans. Audio

Electroacoust. 15, 45–55 (1967)
5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

Fourier series. Math. Comput. 19, 297–301 (1965)
6. Free Software Foundation Inc: GCC, the GNU Compiler Collection. https://gcc.

gnu.org/
7. Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symb. Comput.

60, 113–119 (2014)
8. Intel Corporation: Intel 64 and IA-32 architectures software developer’s manual,

volume 1: Basic architecture. https://software.intel.com/content/dam/develop/
public/us/en/documents/253665-sdm-vol-1.pdf (2020)

9. Intel Corporation: Intel C++ compiler 19.1 developer guide and ref-
erence (2020). https://software.intel.com/content/dam/develop/external/us/en/
documents/19-1-cpp-compiler-devguide.pdf

10. Marr, D.T., et al.: Hyper-threading technology architecture and microarchitecture.
Intel. Technol. J. 6, 1–11 (2002)

11. Meng, L., Johnson, J.: Automatic parallel library generation for general-size mod-
ular FFT algorithms. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2013. LNCS, vol. 8136, pp. 243–256. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-02297-0 21

12. Meng, L., Johnson, J.R., Franchetti, F., Voronenko, Y., Maza, M.M., Xie, Y.:
Spiral-generated modular FFT algorithms. In: Proceedings of 4th International
Workshop on Parallel and Symbolic Computation (PASCO 2010), pp. 169–170
(2010)

13. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44, 519–521 (1985)

14. Pollard, J.M.: The fast Fourier transform in a finite field. Math. Comput. 25,
365–374 (1971)

15. Shoup, V.: NTL: a library for doing number theory. https://libntl.org
16. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Comput. 1,

45–63 (1984)
17. Takahashi, D.: An implementation of parallel 1-D real FFT on Intel Xeon phi

processors. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 401–
410. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4 29

18. Takahashi, D.: Computation of the 100 quadrillionth hexadecimal digit of π on a
cluster of Intel Xeon phi processors. Parallel Comput. 75, 1–10 (2018)

19. The Clang Team: clang: a C language family frontend for LLVM. https://clang.
llvm.org/

20. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM
Press, Philadelphia, PA (1992)

https://github.com/intel/hexl
https://gcc.gnu.org/
https://gcc.gnu.org/
https://software.intel.com/content/dam/develop/public/us/en/documents/253665-sdm-vol-1.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/253665-sdm-vol-1.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/19-1-cpp-compiler-devguide.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/19-1-cpp-compiler-devguide.pdf
https://doi.org/10.1007/978-3-319-02297-0_21
https://doi.org/10.1007/978-3-319-02297-0_21
https://libntl.org
https://doi.org/10.1007/978-3-319-62392-4_29
https://clang.llvm.org/
https://clang.llvm.org/

Locating the Closest Singularity
in a Polynomial Homotopy

Jan Verschelde(B) and Kylash Viswanathan

Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, 851 S. Morgan St. (m/c 249), Chicago, IL 60607-7045, USA

{janv,kviswa5}@uic.edu

Abstract. A polynomial homotopy is a family of polynomial systems,
where the systems in the family depend on one parameter. If for one
value of the parameter we know a regular solution, then what is the
nearest value of the parameter for which the solution in the polynomial
homotopy is singular? For this problem we apply the ratio theorem of
Fabry. Richardson extrapolation is effective to accelerate the convergence
of the ratios of the coefficients of the series expansions of the solution
paths defined by the homotopy. For numerical stability, we recondition
the homotopy. To compute the coefficients of the series we propose the
quaternion Fourier transform. We locate the closest singularity comput-
ing at a regular solution, avoiding numerical difficulties near a singularity.

Keywords: Analytic continuation · Asymptotic expansion ·
Richardson extrapolation · Fabry · Fourier · Polynomial homotopy ·
Quaternion Taylor series · Singularity

1 Introduction

Polynomial homotopies define the deformation of polynomial systems, from sys-
tems with known solutions into systems that must be solved. We call a solution
regular if the matrix of all partial derivatives evaluated at the solution has full
rank, otherwise the solution is singular. We aim to locate the nearest singularity
starting at a regular solution. Applying the ratio theorem of Fabry, we can detect
singular points based on the coefficients of the Taylor series.

Theorem 1 (the ratio theorem of Fabry [11]). If for the series x(t) =
c0 + c1t + c2t

2 + · · · + cntn + cn+1t
n+1 + · · · , we have lim

n→∞ cn/cn+1 = z, then

– z is a singular point of the series, and
– it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.

Supported by the National Science Foundation under grant DMS 1854513.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 333–352, 2022.
https://doi.org/10.1007/978-3-031-14788-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_19

334 J. Verschelde and K. Viswanathan

While the proof of the theorem would take us deep into complex analysis [9,
Chapter XI], one can immediately verify that the ratio cn/cn+1 is the pole of
Padé approximants ([1,38]) of degrees [n/1], where n is the degree of the numer-
ator, with linear denominator.

The ratio theorem of Fabry provides a radar to detect singularities in an
adaptive step size control for continuation methods, as introduced in [39] (with
a parallel implementation in [40]) and reproduced by [41]. Earlier applications
of Padé approximants in deformation methods appeared in [20], in a symbolic
context, and in [35] in a numerical setting. Empirically, in the plain application
of this ratio theorem, already relatively few terms in the series appear to be
sufficient to take nearby singularities into account.

The problem considered in this paper can be stated as follows. How many
terms in the Taylor series do we need to locate the closest singularity with
eight decimal places of accuracy? Answering this question exactly is not possible
because of constants which differ for each series, but we can provide information
about the order of the number of terms, e.g.: tens or hundreds.

We show that Richardson extrapolation (see [3] for a general formalism)
effectively solves our problem. On monomial homotopies (defined in the next
section), we can separate our problem from the required accuracy of the coef-
ficients of the Taylor series. On examples, at 64 terms of the series, we obtain
eight decimal places of accuracy in the location of the radius of convergence. In
the third section, the justification for this successful application of Richardson
extrapolation is proven. This is the first contribution of this paper.

The second contribution of this paper is the introduction of the quaternion
Fourier transform [10,34] to compute the coefficients of the series. If we want to
locate a singularity to full double precision, then, on examples, it appears that
512 terms in the series are needed. The Fast Fourier Transform scales well.

In the fifth section, we consider the application of Richardson extrapolation
in an end game, when the path tracker approaches an isolated singular solution at
the end of the path. Power series methods for singular solutions in [28] introduced
the concept of the end game operation range. In this range, the continuation
parameter has values for which the Puiseux series expansions are valid and where
the numerical condition numbers still allow to compute sufficiently accurate
approximations of the points on the path. In fixed precision, this range may be
empty. Using multiple double precision for ill-conditioned problems is wasteful
due to the slow convergence of Newton’s method. For homotopies with a random
complex gamma constant, we introduce the notion of the last pole. With this
last pole, we recondition the homotopy with a shift and stretch transformation.

The new methods are illustrated in section six. Deflation restores the quadra-
tic convergence of Newton’s method for an isolated singular solution, of multi-
plicity μ. While [25] proves that μ is the upper bound on the number of defla-
tion steps, the numerical decision to apply deflation is left to a singular value
decomposition of the Jacobian matrix, which may not always be reliable enough.
Although deflation has been addressed by many (e.g. [4,5,7,8,15–17,26,27,30]),
the question on when to deflate is an open problem.

Locating the Closest Singularity in a Polynomial Homotopy 335

2 Monomial Homotopies

The examples of the homotopies in this section have only one singularity.
A monomial homotopy is defined by an exponent matrix A ∈ Z

n×n and an
n-dimensional coefficient vector c(t) of invertible power series:

h(x, t) = xA − c(t) = 0, (1)

with x = (x1, x2, . . . , xn), and the multi-index notation

aj = (a1,j , a2,j , . . . , an,j), xaj = x
a1,j
1 x

a2,j
2 · · · xan,j

n , (2)

where aj is the jth column of the matrix A.
For any specific value for t, the system h(x, t) = 0 reduces to a system with

exactly two monomials in every equation. The solving of such a system happens
via a unimodular coordinate transformation defined by the Hermite normal form
of A. Singular solutions can occur only when c(t) = 0, only for specific values
of t. While monomial homotopies have thus no direct practical use, they provide
good test cases to experiment with algorithms and to introduce new ideas.

2.1 A Square Root Homotopy

The simplest example of a monomial homotopy is

x2 − 1 + t = 0, with solution x(t) = ±√
1 − t. (3)

The two paths defined by this homotopy are shown in Fig. 1.

Fig. 1. Starting at x = ±1, the two paths converge to x = 0, as t moves from 0 to 1.

At t = 1, the two paths coincide at a double point. Our problem is to predict
for which value of t this singularity happens without computing x(t) for t ≈ 1.

336 J. Verschelde and K. Viswanathan

In the development of the solution x(t) =
√

1 − t in a Taylor series about
t = 0, let cn be the coefficient of tn. Then the application of the ratio theorem
of Fabry gives

cn

cn+1
=

2(n + 1)
2n − 1

=: f(n), lim
n→∞ f(n) = 1. (4)

As the limit of the ratios equals one, we can predict the location of the singu-
larity, already at the series development at t = 0. The main problem is the slow
convergence of the series. Table 1 illustrates that in order to gain one extra bit
of accuracy, we must double the value of n.

Table 1. f(n) = 2(n+1)
2n−1

converges slowly to one. The error column lists |f(n)−1|. The
last column is the ratio of two consecutive errors. As n doubles, the error is cut in half.

n f(n) error error ratio

2 2.00000000000000 1.00E+00

4 1.42857142857143 4.29E−01 2.3333E+00

8 1.20000000000000 2.00E−01 2.1429E+00

16 1.09677419354839 9.68E−02 2.0667E+00

32 1.04761904761905 4.76E−02 2.0323E+00

64 1.02362204724409 2.36E−02 2.0159E+00

128 1.01176470588235 1.18E−02 2.0079E+00

256 1.00587084148728 5.87E−03 2.0039E+00

512 1.00293255131965 2.93E−03 2.0020E+00

Observe we can rewrite f(n) of (4) as

f(n) =
2(n + 1)
2n − 1

=
2n − 1 + 3

2n − 1
= 1 +

3
2n − 1

= 1 +
3
2n

(
1

1 − 1
2n

)
(5)

= 1 +
3
2n

(
1 +

1
2n

+
(

1
2n

)2

+
(

1
2n

)3

+ · · ·
)

. (6)

As shown in Sect. 3, f(n) has an asymptotic expansion of the form

f(n) = 1 + γ1

(
1
n

)
+ γ2

(
1
n

)2

+ γ3

(
1
n

)3

+ · · · (7)

for some coefficients γ1, γ2, γ3, If we double the value for n, we have

f(2n) = 1 + γ1

(
1
2n

)
+ γ2

(
1
2n

)2

+ γ3

(
1
2n

)3

+ · · · (8)

Locating the Closest Singularity in a Polynomial Homotopy 337

and then we eliminate γ1 via a linear combination:

2f(2n)−f(n) = 1+2γ2

(
1
2n

)2

−γ2

(
1
n

)2

+2γ3

(
1
2n

)3

−γ3

(
1
n

)3

+ · · · , (9)

which results in an approximation with error O(1/n2).
This regular ratio of two consecutive errors allows for an effective applica-

tion of Richardson extrapolation. The input to Richardson extrapolation are
the values f(2), f(4), f(8), . . . , f(2N). The output is Ri,j , the triangular table of
extrapolated values. Then the extrapolation proceeds as follows:

1. The first column: Ri,1 = f(2i), for i = 1, 2, 3, . . . , N .
2. The next columns in the table are computed via

Ri,j =
2i−j+1Ri,j−1 − Rj−1,j−1

2i−j+1 − 1
, (10)

for i = i, i + 1, . . . , N and for j = 2, 3, . . . , N .

Table 2 shows the errors |Ri,j − 1| of the extrapolated values. Looking at the
diagonal of Table 2, we see that we gain about two decimal places of accuracy
at each doubling of n.

Table 2. Errors of Richardson extrapolation. The column E0 is the error column of
Table 1. The column Ej is the error obtained from extrapolating j times, applying
formula (10). At n = 64 we have 8 correct decimal places and at n = 512, the full
machine precision is attained.

n E0 E1 E2 E3 E4 E5 E6 E7 E8

2 1.0E+0

4 4.3E−1 1.4E−1

8 2.0E−1 6.7E−2 9.5E−3

16 9.7E−2 3.2E−2 4.6E−3 3.1E−4

32 4.8E−2 1.6E−2 2.3E−3 1.5E−4 4.9E−6

64 2.4E−2 7.9E−3 1.1E−3 7.5E−5 2.4E−6 3.8E−8

128 1.2E−2 3.9E−3 5.6E−4 3.7E−5 1.2E−6 1.9E−8 1.5E−10

256 5.9E−3 2.0E−3 2.8E−4 1.9E−5 6.0E−7 9.5E−9 7.5E−11 2.9E−13

512 2.9E−3 9.8E−4 1.4E−4 9.3E−6 3.0E−7 4.8E−9 3.8E−11 1.5E−13 4.4E−16

2.2 Two Paths Ending in a Cusp

Figure 2 is an example of a situation not covered by Theorem 1. Consider the
homotopy

h(x, t) = x2 − (t − 1)4 = (x − (t − 1)2)(x + (t − 1)2) = 0, (11)

which has the obvious two solutions x(t) = ±(t − 1)2.

338 J. Verschelde and K. Viswanathan

In this case, the power series for both paths are polynomials of degree two,
and there is no limit, as all coefficients cn = 0, for n > 2. In [32], an algo-
rithm to sweep an algebraic curve for singularities monitors the determinant
of the Jacobian matrix along the curve. If the path of the determinant of the
Jacobian matrix on the curve is concave up, then that is an indicator for unde-
tected singularities.

Fig. 2. Starting at x = ±1, the two paths converge to x = 0, as t moves from 0 to 1.

2.3 A Random 4-Dimensional Monomial Homotopy

In this section, we illustrate the need for multiple precision, even already in
relatively low dimensions and degrees. Consider

h(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x7
1x

7
2x

7
3x

7
4 = 1 − t,

x7
1x

3
2x

2
3 = 1 − t,

x5
2x3x4 = 1 − t,

x7
2x

2
3x

2
4 = 1 − t.

(12)

Storing the exponents of the monomials in the columns of A = [a1,a2,a3,a4],
xA = (xa1 ,xa2 ,xa3 ,xa4), the monomial homotopy h(x, t) can be written as

xA = (1 − t)e, e =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

7 7 0 0
7 3 5 7
7 2 1 2
7 0 1 2

⎤
⎥⎥⎦ , det(A) = −42. (13)

At t = 0, (1,1,1,1) is one of the 42 solutions, as 42 = |det(A)|, computed via the
Smith normal form of A.

Locating the Closest Singularity in a Polynomial Homotopy 339

In double precision, extrapolating on x1(t), the extrapolation does not get any
more accurate than six decimal places. Working with coefficients computed with
32 decimal places running the algorithms of [2] (implemented in PHCpack [42]),
the extrapolation gives eight decimal places of accuracy, similarly as in the square
root homotopy.

For the examples in this section, Richardson extrapolation results in an accu-
racy of 8 decimal places when n = 64 and for n = 512, we can locate to singularity
to the full double precision.

3 Asymptotic Expansions

Consider the coefficient cn of tn in the Taylor series. What happens if n grows:

∣∣∣∣ cn

cn+1

∣∣∣∣ →
⎧⎨
⎩

|z| < 1 : coefficients increase,
|z| = 1 : coefficients are constant,
|z| > 1 : coefficients decrease.

(14)

Let x(t) satisfy h(x(t), t) = 0, then in the series for x(t), we may assume that
for sufficiently large n, the magnitude of the nth coefficient is |z|n. If we then
set

t = |z|s (15)

then the coefficient of sn in the series x(s) will have a magnitude close to one.
By Lemma 1, the radius of convergence of the series x(s) equals one.

Lemma 1. Let x(t) be a power series with cn as the nth coefficient of tn and

lim
n→∞

cn

cn+1
= z ∈ C \ {0}. (16)

Then the series x(t = |z|s) has convergence radius equal to one.

Proof. Consider the effect of the substitution t = |z|s, respectively on the nth
and the (n + 1)th term in the series x(t):

cntn → cn|z|n︸ ︷︷ ︸
=: dn

sn, cn+1t
n+1 → cn+1|z|n+1︸ ︷︷ ︸

=: dn+1

sn+1. (17)

Then dn is the coefficient of sn in the series x(s) and∣∣∣∣ dn

dn+1

∣∣∣∣ =
∣∣∣∣ cn

cn+1

∣∣∣∣ 1
|z| .

By (16), lim
n→∞

∣∣∣∣ dn

dn+1

∣∣∣∣ = 1. Thus, x(s) has a convergence radius equal to one. ��

If interested only in the magnitude of the radius, then in the natural applica-
tion of Lemma (15), |z| is used. Using complex arithmetic, the series x(t = z · s)
has radius of convergence equal to one.

In practice, the transformation as defined in as defined in (15) has numerical
benefits. In theory, it implies that without loss of generality, we may assume that
all series we consider all have convergence radius one.

340 J. Verschelde and K. Viswanathan

Proposition 1. Assume x(t) is a series which satisfies the conditions of Theo-
rem 1, with a radius of convergence equal to one. Let cn be the coefficient of tn

in the series. Then |1 − cn/cn+1| is O(1/n) for sufficiently large n.

Proof. Expressing the Taylor series of x(t) as

x(t) = x(0) + x′(0)t +
x′′(0)

2!
t2 +

x′′′(0)
3!

t3 + · · · +
x(n)(0)

n!
tn + · · · (18)

leads to a formula for the coefficient of tn as

cn =
x(n)(0)

n!
and cn+1 =

x(n+1)(0)
(n + 1)!

. (19)

Then the error is∣∣∣∣1 − cn

cn+1

∣∣∣∣ =
∣∣∣∣1 −

(
x(n)(0)

x(n+1)(0)

)
(n + 1)

∣∣∣∣ ≈ 0, for large n. (20)

Under the assumption that the radius of convergence is equal to one, without
loss of generality we may assume that the singularity occurs at t = 1. Otherwise,
if t = z for some complex number z, with |z| = 1, we can rotate the coordinate
system so z = 1 in the rotated coordinate system. Therefore, we may assume
there is a power series p(t), so

x(t) =
p(t)
1 − t

= u(t)p(t), u(t) =
1

1 − t
= 1 + t + t2 + t3 + · · · . (21)

The p(t)/(1 − t) can be viewed as the limit of the Padé approximant of degree
[n/1], for n → ∞. This Padé approximant is well defined under the assumption of
Theorem 1. In the limit reasoning for n → ∞, we work with sufficiently large n,
but never take ∞ for n.

Applying Leibniz rule to the nth derivative of x(t) leads to

x(n)(t) =
n∑

k=0

(
n!

k!(n − k)!

)
u(n−k)(t)p(k)(t). (22)

At t = 0, we have u(n−k)(0) = (n − k)! and we obtain

x(n)(0) =
n∑

k=0

(
n!
k!

)
p(k)(0). (23)

We rewrite the expression for x(n+1)(0) as

x(n+1)(0) =
n+1∑
k=0

(
(n + 1)!

k!

)
p(k)(0) (24)

=
n∑

k=0

(n + 1)
(

n!
k!

)
p(k)(0) + p(n+1)(0) (25)

= (n + 1)x(n)(0) + p(n+1)(0). (26)

Locating the Closest Singularity in a Polynomial Homotopy 341

Then we can write (20) as
∣∣∣∣1 − cn

cn+1

∣∣∣∣ =
∣∣∣∣1 −

(
x(n)(0)

(n + 1)x(n)(0) + p(n+1)(0)

)
(n + 1)

∣∣∣∣ (27)

=

∣∣∣∣∣∣1 − 1

1 + 1
n+1

(
p(n+1)(0)
x(n)(0)

)
∣∣∣∣∣∣ . (28)

Note that we may divide by x(n)(0), because x(n)(0) 	= 0 by the assumption that
cn/cn+1 is well defined for all values of n, otherwise the limit would not exist.
Denote

C =
p(n+1)(0)
x(n)(0)

. (29)

Then the result follows from another series expansion:

1
1 + C

n+1

= 1 −
(

C

n + 1

)
+

(
C

n + 1

)2

− · · · . (30)

Substituting the right hand side of (30) into (28) gives

∣∣∣∣1 − cn

cn+1

∣∣∣∣ =

∣∣∣∣∣
(

C

n + 1

)
−

(
C

n + 1

)2

+ · · ·
∣∣∣∣∣ (31)

What remains to prove is that C does not depend on n. Dividing (26) by
x(n)(0) leads to

x(n+1)(0)
x(n)(0)

= n + 1 +
p(n+1)(0)
x(n)(0)

. (32)

The assumption that x(t) has a radius of convergence equal to one implies
cn+1 ≈ cn and that

x(n+1)(0)
x(n)(0)

= n + O(1), (33)

and thus we have

n + O(1) = n + 1 +
p(n+1)(0)
x(n)(0)

or equivalently
p(n+1)(0)
x(n)(0)

is O(1). (34)

Therefore C is a constant, independently of n. This shows that the error is
O(1/(n + 1)). For large n, O(1/(n + 1)) is O(1/n). ��

Observe that the above proof does not make any assumptions on the type of
homotopy used, other than the existence of a limit as in the theorem of Fabry.
Then the main result of this section can be stated as below.

Corollary 1. Assuming the convergence radius equals one, applying Richardson
extrapolation N times on a Taylor series truncated after n terms, results in an
O(1/nN+1) error on the radius of convergence.

342 J. Verschelde and K. Viswanathan

Proof. By Proposition 1, and in particular the expansion in (31), we have

1 + γ1

(
1
n

)
+ γ2

(
1
n

)2

+ γ3

(
1
n

)3

+ · · · (35)

as the expansion for the error to the limit 1.
For N = 1, the first extrapolated values have error O(1/n2), because the

leading terms of the errors are O(1/n) and running Richardson extrapolation
once (for j = 2 and i = 2, 3, . . . , N in (10)) eliminates this leading term.

Using the formulas in (10) to compute the next columns in the triangular
table eliminates the next terms in the error expansion in (35). After extrapolating
N − 1 more times, we then obtain an O(1/nN+1) error term. ��

The assumption that the radius of convergence equals one makes the Richard-
son extrapolation superfluous, as the outcome of the extrapolation is already
known. We can remove this assumption. Consider for example the homotopy
h(x, t) = x2 − 2 + t = 0 and x(t) =

√
2 − t as the positive solution branch. If cn

is the nth coefficient of the Taylor series, then

cn

cn+1
= 2

(
2(n + 1)
2n − 1

)
= 2f(n), (36)

where f(n) is the formula from (4). Similarly, for the homotopy h(x, t) = x2 −
1/2 + t = 0 and x(t) =

√
1/2 − t as the positive solution branch, with cn as the

nth coefficient of the Taylor series, we have

cn

cn+1
=

1
2

(
2(n + 1)
2n − 1

)
=

1
2
f(n). (37)

This implies that for those two examples, the series development of f(n) in 1/n
is multiplied respectively with 2 or 1/2, and that therefore Richardson extrapo-
lation applies.

Theorem 2. Let cn be the coefficient with tn in x(t) and denote f(n) =
cn/cn+1. If

lim
n→∞

cn

cn+1
= z ∈ C \ {0}, (38)

then

f(n) = z + γ1z

(
1
n

)
+ γ2z

(
1
n

)2

+ γ3z

(
1
n

)3

+ · · · . (39)

Proof. By Lemma 1, we transform x(t) into x(s) = x(t = z · s), which has
convergence radius one. Let dn be the coefficient of sn in x(s) and denote
g(n) = dn/dn+1. For g(n), we have the expansion (35):

g(n) = 1 + γ1

(
1
n

)
+ γ2

(
1
n

)2

+ γ3

(
1
n

)3

+ · · · . (40)

Locating the Closest Singularity in a Polynomial Homotopy 343

The above series development is unique. Therefore, transforming s = t/z, gives
the series (39). ��

Theorem 2 provides the justification for the application of Richardson extrap-
olation and the statement of Corollary 1 holds in theory for any series, not only
for those with radius of convergence equal to one. However, in practice, series
with a radius of convergence smaller than one will have very large coefficients
which cause numerical instabilities and unavoidably arithmetical overflow.

If the convergence radius of a power series equals one, then it is safe to calcu-
late the coefficients of the power series from sample points at nearby locations.

4 Fourier Series

In computational complex analysis [18], the discrete Fourier transform is applied
to compute the coefficients of the Taylor series. For general references on the
application of Fourier transforms in computer algebra and numerical analysis,
we refer to [14] and [6].

As described in [29], many derivatives are computed simultaneously with
an accuracy close to machine precision, for a suitable step size, using complex
arithmetic, extending the complex-step differentiation method [37] to higher
order derivatives. Figure 3 illustrates the problem: the step size must be smaller
than the radius of convergence. This problem is addressed in Sect. 5.2.

h

r

Fig. 3. The radius of convergence r and step size h. We want h � r.

To introduce the application of the discrete Fourier transform to compute
the Taylor series, consider the development of f at z, using step size hω:

f(z + hω) = f(z) + hωf ′(z) +
h2

2
ω2f ′′(z) +

h3

3!
ω3f ′′′(z)

+
h4

4!
ω4f (iv)(z) +

h5

5!
ω5f (v)(z) +

h6

6!
ω6f (vi)(z)

+
h7

7!
ω7f (vii)(z) +

h8

8!
ω8f (viii)(z) + · · · ,

344 J. Verschelde and K. Viswanathan

where ω is the eight complex root of unity: ω8 = 1. Regrouping in powers of ω
then gives

f(z + hω) = f(z) +
h8

8!
f (viii)(z) + · · ·

+ ω

(
hf ′(z) +

h9

9!
f (ix)(z) + · · ·

)

+ ω2

(
h2

2!
f ′′(z) +

h10

10!
f (x)(z) + · · ·

)

+ ω3

(
h3

3!
f ′′′(z) +

h11

11!
f (xi)(z) + · · ·

)

+ ω4

(
h4

4!
f (iv)(z) +

h12

12!
f (xii)(z) + · · ·

)

+ ω5

(
h5

5!
f (v)(z) +

h13

13!
f (xiii)(z) + · · ·

)

+ ω6

(
h6

6!
f (vi)(z) +

h14

14!
f (xiv)(z) + · · ·

)

+ ω7

(
h7

7!
f (vii)(z) +

h15

15!
f (xv)(z) + · · ·

)
.

For k from 1 to 7, the coefficients of ωk allow the extraction of the kth derivative
of f at z, at a precision of O(h8).

The Discrete Fourier Transform

DFTω : C
n → C

n

(f0, f1, . . . , fn−1)
→ (F (ω0), F (ω1), . . . , F (ωn−1)) (41)

takes the coefficients of the polynomial F with coefficients f0, f1, . . . , fn−1, where
ωn = 1 and returns the values of F at the powers of ω. The inverse of DFTω

returns the coefficients of ωk needed in the Taylor series of f(z + hω).
As illustrated by Table 3, the derivatives grow as fast as n! and therefore,

except for small n, we may not expect to obtain highly accurate values.
The step size of h = 0.5 used in Table 3 is a compromise value. Values of h

smaller than 0.5 give more accurate results for the lower order derivatives but
give then too inaccurate values for the higher order derivatives. The opposite
happens for values of h larger than 0.5.

Fortunately, we do not need the derivatives x(n)(0), but the coefficients of
the Taylor series, cn = x(n)(0)/n!. Table 4 shows the application of the DFT
to compute the series coefficients. Compared to the derivatives in Table 3, the
computations in double precision arithmetic give six decimal places of accuracy
for n = 64. The step size h = 0.85 gave the most accurate results.

In machine double precision, the results in Table 3 and Table 4 are close to
optimal, with the step sizes respectively equal to 0.5 and 0.85. Using those large
step sizes in multiprecision will not give more accurate results, but multiprecision
will allow to select smaller step sizes. In particular with 33 decimal places (using

Locating the Closest Singularity in a Polynomial Homotopy 345

Table 3. Derivatives of x(t) =
√

1 − t at t = 0. The approximate values are computed
with step size h = 0.5. The last column is the relative error.

n exact x(n)(0) approximation x(n)(0) error

0 1.000000000000 0.999999968596 3.14E−08

1 −0.500000000000 −0.500000028787 5.76E−08

2 −0.250000000000 −0.250000053029 2.12E−07

3 −0.375000000000 −0.375000147155 3.92E−07

4 −0.937500000000 −0.937500546575 5.83E−07

5 −3.281250000000 −3.281252546540 7.76E−07

6 −14.765625000000 −14.765639282757 9.67E−07

7 −81.210937500000 −81.211031230822 1.15E−06

8 −527.871093750000 −527.871798600561 1.34E−06

9 −3959.033203125000 −3959.039180858922 1.51E−06

10 −33651.782226562500 −33651.838679975779 1.68E−06

11 −319691.931152343750 −319692.518875707698 1.84E−06

12 −3356765.277099609375 −3356771.966430745088 1.99E−06

13 −38602800.686645507812 −38602883.297614447773 2.14E−06

14 −482535008.583068847656 −482536106.155545711517 2.27E−06

15 −6514222615.871429443359 −6514238371.741491317749 2.42E−06

16 −94456227930.135726928711 −94456466497.677398681641 2.53E−06

mpmath 1.1.0 [21] with SymPy 1.4 [23] in Python 3.7.3), the 16th derivative is
computed with an accuracy of 15 decimal places, with step size 0.1 and the error
on the 64th coefficient coefficient on the series drops to 10−11, with step size 0.5.

Instead of working with the same step size for all series coefficients, alterna-
tively, one could explore using different step sizes. In this context, one classical
and very common application of Richardson extrapolation is to improve the
accuracy of numerical differentiation.

When z is a complex number, the complex step derivative is generalized
in [24] and [33] with quaternion arithmetic. Using the quaternion Fourier trans-
form [10,34], the coefficients of the Taylor series can be computed.

Table 4. Coefficients cn of the Taylor series of x(t) =
√

1 − t at t = 0. The approximate
values are computed with step size h = 0.85. The last column is the relative error.

n exact cn approximation error

0 1.000000000000 0.999999986011 1.40E−08

1 −0.500000000000 −0.500000013671 2.73E−08

2 −0.125000000000 −0.125000013365 1.07E−07

4 −0.039062500000 −0.039062512786 3.27E−07

8 −0.013092041016 −0.013092052762 8.97E−07

32 −0.001576932599 −0.001576940258 4.86E−06

64 −0.000554221198 −0.000554226120 8.88E−06

346 J. Verschelde and K. Viswanathan

5 Polynomial Homotopies

The homotopies in this section have multiple singularities in the complex plane,
for complex values of t, with real part < 1, but only one singularity at t = 1.
Knowing the location of the last pole leads to the reconditioning of the homotopy
and to series with convergence radius equal to one.

5.1 The Last Pole

Let f(x) = 0 be the system we want to solve and assume we have at least one
solution of g(x) = 0. Then the homotopy

h(x, t) = γ(1 − t)g(x) + tf(x) = 0, t ∈ [0, 1], γ ∈ C, |γ| = 1, (42)

defines a path starting at t = 0, at a solution of g(x) = 0 and ending at t = 1, at
a solution of f(x) = 0. The constant γ is a random complex number. If g(x) = 0
has no singular solutions, then it follows from the main theorem of elimination
theory that all paths defined by h(x, t) = 0 are regular and bounded for t ∈ [0, 1),
except for finitely many complex values for t. In [36], this constructive argument
is illustrated by examples of homotopies of small degrees and dimension.

The key point is the existence of a polynomial H(t) of finite degree, with
H(0) 	= 0, as g(x) = 0 has no singular solutions. Moreover, by the random
complex choice of γ, all roots of H are in the complex plane, except for t = 1,
if the system f(x) = 0 has a singular solution. By construction of h(x, t) = 0,
we can introduce the notion of the last pole, as the complex number ρ, for which
H(ρ) = 0 and of all roots of H, ρ has the largest real part less than one.1

Figure 4 illustrates that ρ is the last complex singular value detected by the
radar of a path tracker which applies the theorem of Fabry to set its step size.

ρ

t
1

t0 < t∗

ρ

t
1

t0 = t∗

ρ

t
1

t∗ < t0

Fig. 4. Schematic of the last pole ρ marked by the hollow circle. At the center, at
t = t0 = t∗, ρ and 1 are at the same distance. At t0 < t∗, the proximity of ρ determines
the step size, while for t∗ < t0, the singularity at one will be detected.

By construction of the homotopy h(x, t) = 0, and in particular by the ran-
dom choice of the complex constant γ, the solution at t = t∗ is regular, and well
conditioned. This implies that Newton’s method for the series coefficients con-
verges quadratically. One could then already discover the singular solution for

1 If all real parts of the roots of H are larger than one, then we are in the case similar
to a monomial homotopy, a case that is then already solved.

Locating the Closest Singularity in a Polynomial Homotopy 347

t = 1, via the computation of a Padé approximant with quadratic denominator.
Via a perturbation argument, for t = t∗ +δ, for suitable δ > 0, the application of
the theorem of Fabry will detect t = 1 as a singular solution, without computing
x(t) for t ≈ 1.

5.2 Homotopy Reconditioning

Once the path tracker reaches a value for the continuation parameter t, that
is past the last pole towards an isolated singularity at t = 1, at the end of a
path, the coefficients of the power series will grow very fast, which is already an
indication for the trouble to come.

For the reliable numerical computation of the power series, consider the trans-
formation in the homotopy h(x, t) = 0:

t = rs + t0, r = 1 − t0, t0 = t∗ + δ, (43)

where t∗ is value as in Fig. 4, at the same distance from the last pole ρ and the
end point t = 1, and δ is a suitable positive value so at t0 = t∗+δ, the application
of the theorem of Fabry will detect t = 1 as the location for the closest singular
solution.

After applying (43), the series development of the path x(s) defined by the
homotopy h(x(s), s) = 0 will have convergence radius equal to one. The term
reconditioning is justified as the coefficients of the Taylor series in the recondi-
tioned homotopy do not grow exponentially fast.

6 Computational Experiments

The new methods are illustrated with computational experiments on two well
known examples in the literature, with ad hoc tools, using test procedures in
version 2.4.85 PHCpack [42] (with QDlib [19] and CAMPARY [22] for multiple
double arithmetic), version 1.1.1 of phcpy [31], version 1.4 of sympy [23], and
version 1.1.0 of mpmath [21], in Python 3.7.3. The computations were done on a
CentOS 6.10 Linux computer with 23.4 GB of memory and a 12-core Intel Xeon
X5690 at 3.47 GHz.

6.1 Ojika’s First Example

One example in [30] (known in benchmarks as ojika1, used in [16,25–27]) is

f(x, y) =
{

x2 + y − 3 = 0,
x + 0.125y2 − 1.5 = 0.

(44)

This system has one regular solution at (−3, 6) and a triple root at (1, 2). Using
γ = −0.917153159675641−0.398534919043474I, I =

√−1, in the homotopy (42)
with start system

g(x, y) =
{

x2 − 1 = 0,
y2 − 1 = 0 (45)

makes that the path starting at (1, 1) converges to the triple root.

348 J. Verschelde and K. Viswanathan

The value t0 after t∗ (the location of the last pole) that was used is t0 =
0.955647336181678. At this value for t, the coordinates of the corresponding
solution are

x ≈ 1.17998166418735 + 0.0181391513338172 I,

y ≈ 1.60871001974391 − 0.0423866308603763 I,

with the inverse of the condition number estimated at 8.9E-03. In double preci-
sion, a condition number of about 103 is within the range of what is considered
well conditioned. Observe that the coordinates of the solution corresponding
to t0 are far from the location of the triple root (1, 2).

The value for r = 1−t0 is 0.044352663818322036, which implies that, without
reconditioning, the magnitude of the Taylor series coefficients will increase with
about two decimal places. At that pace, as 264 ≈ 10+19, numerical difficulties
arise without reconditioning.

After reconditioning, with n = 64, the ratio, based on the power series for
the first coordinate x(s), is estimated at

1.0265192231142901 + 2.9197227799819557E−05 I

and the magnitude of the imaginary part corresponds to the magnitude of the
coefficients cn in the series of x(s). This mild decline of the exponents corre-
sponds to the over estimation of the radius at about 1.0265. Applying Richardson
extrapolation yields

0.9999729580138075 + 8.484367218447337E−06 I,

which thus locates the singularity with an error of 10−6.
The above computations were done in double precision. In double precision

(≈32 decimal places), with n = 512, the ratio is first estimated at 1.00326 and
Richardson extrapolation then improves the accuracy, to obtain an error of 10−6

on the value t = 1, the location of the singularity, confirming the result obtained
in double precision.

6.2 One Fourfold Root of Cyclic 9-Roots

The cyclic n-roots problem

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 + x1 + · · · + xn−1 = 0

i = 2, 3, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0

(46)

is a well known benchmark problem in polynomial system solving, which arose
in the study of biunimodular vectors [13]. The cyclic 9-roots problem was solved
in [12], and its roots of multiplicity four were used in the development of deflation

Locating the Closest Singularity in a Polynomial Homotopy 349

in [25]. This system was used to illustrate the computation of the multiplicity
structure in [8].

The start system g(x) = 0 in a homotopy to solve f(x) = 0 was obtained by
running the plain blackbox solver (the extended version is described in [43]) on
12 cores tracking 11,016 is less than two minutes. For reproducibility, the seed
in the random number generators was 7131. That g(x) was then used in the
homotopy (42) with γ = −0.917153159675641−0.398534919043474I, I =

√−1.
One path was selected that ended at one of the fourfold roots.

The value for t after t∗, the location of the last pole is t0 =
0.998315512784621, with coordinates of the corresponding solution

x0 ≈ +1.00000126517819 + 2.90396442439194E−07
x1 ≈ −2.61867609654276 − 2.06312686218454E−03
x2 ≈ −0.381725080860952 + 6.25420054941098E−05
x3 ≈ +1.00151501674915 + 1.11189386260303E−03
x4 ≈ +0.381629266681896 − 3.62839287359460E−04
x5 ≈ +2.62034316800711 + 2.49236777820171E−03
x6 ≈ +0.998483898493147 − 1.11096857563447E−03
x7 ≈ −2.61970187995193 − 4.30339092688366E−04
x8 ≈ −0.381870388949536 + 3.01610075581641E−04

with inverse condition number estimated at 5.3E-5. Although the homotopy
does not respect the permutation symmetry, the orbit structure of the solution
can already be observed, at the limited accuracy of about three decimal places.

The value for r = 1−t0 is 0.0016844872153789492 and without reconditioning
the homotopy, the coefficients in the power series expansions of the solution
increase at a very high pace. After reconditioning, with n = 32, the convergence
radius is estimated at

1.00000000099639 + 4.319265E−09 I

and confirmed in double precision. Because of the close proximity to the singu-
larity, no extrapolation is necessary in this case.

7 Conclusions

Richardson extrapolation is effective to locate the closest singularity as shown
by the asymptotic expansions on the ratio of two consecutive coefficients in the
Taylor series of the solution curves, under the condition of the theorem of Fabry.

The homotopy continuation parameter can always be adjusted so the con-
vergence radius of the power series equals one, which allows for a safe step size
selection in the application of the discrete Fourier transform to compute all
coefficients of the series efficiently and accurately.

Deflation restores the quadratic convergence of Newton’s method on an iso-
lated singular solution via reconditioning. The homotopy reconditioning using

350 J. Verschelde and K. Viswanathan

the location of the last pole provides an apriori justification for the application
of the deflation method via the Richardson extrapolation on the ratios of the
coefficients of power series.

The theorem of Fabry provides a radar to detect singularities. In this paper we
have shown that this radar can accurately locate the nearest singular solution of
a polynomial homotopy. We apply this radar at a safe distance from singularities,
at a regular solution where the quadratic convergence of Newton’s method holds.

Acknowledgments. Some of the results in this paper were presented by the first
author on 27 March 2022 in a preliminary report at the special session on Optimization,
Complexity, and Real Algebraic Geometry, which took place online. The authors thank
the organizers, Saugata Basu and Ali Mohammad Nezhad, for their invitation. We
thank the three reviewers of this paper for their useful comments which helped to
improve the exposition.

References

1. Baker, G.A., Jr., Graves-Morris, P.: Padé Approximants. Cambridge University
Press, Cambridge (1996)

2. Bliss, N., Verschelde, J.: The method of Gauss-Newton to compute power series
solutions of polynomial homotopies. Linear Algebra Appl. 542, 569–588 (2018)

3. Brezinski, C.: A general extrapolation algorithm. Numer. Math. 35, 175–187 (1980)
4. Burr, M., Leykin, A.: Inflation of poorly conditioned zeros of systems of analytic

functions. Arnold Math. J. 7, 431–440 (2021)
5. Cheng, J.S., Dou, X., Wen, J.: A new deflation method for verifying the isolated

singular zeros of polynomial systems. J. Comput. Appl. Math. 376, 112825 (2020)
6. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods. From

the Viewpoint of Backward Error Analysis. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-8453-0

7. Dayton, B.H., Li, T.Y., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Com-
put. 80(276), 2143–2168 (2011)

8. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Kauers, M. (ed.) Proceedings of the 2005 International Symposium
on Symbolic and Algebraic Computation, pp. 116–123. ACM (2005)

9. Dienes, P.: The Taylor Series. An Introduction to the Theory of Functions of a
Complex Variable. Dover, New York (1957)

10. Ell, T.A., Le Bihan, N., Sangwine, S.J.: Quaternion Fourier Transforms for Signal
and Image Processing. Wiley, Hoboken (2014)

11. Fabry, E.: Sur les points singuliers d’une fonction donnée par son développement
en série et l’impossibilité du prolongement analytique dans des cas très généraux.
Annales scientifiques de l’École Normale Supérieure 13, 367–399 (1896)

12. Faugère, J.C.: Finding all the solutions of Cyclic 9 using Gröbner basis techniques.
In: Computer Mathematics - Proceedings of the Fifth Asian Symposium (ASCM
2001). Lecture Notes Series on Computing, vol. 9, pp. 1–12. World Scientific (2001)

13. Führ, H., Rzeszotnik, Z.: On biunimodular vectors for unitary matrices. Linear
Algebra Appl. 484, 86–129 (2015)

14. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

https://doi.org/10.1007/978-1-4614-8453-0
https://doi.org/10.1007/978-1-4614-8453-0

Locating the Closest Singularity in a Polynomial Homotopy 351

15. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 17(1),
1–58 (2007)

16. Hao, Z., Jiang, W., Li, N., Zhi, L.: On isolation of simple multiple zeros and clusters
of zeros of polynomial systems. Math. Comput. 89(322), 879–909 (2020)

17. Hauenstein, J.D., Mourrain, B., Szanto, A.: On deflation and multiplicity structure.
J. Symb. Comput. 83, 228–253 (2017)

18. Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev.
21(4), 481–527 (1979)

19. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point
arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001),
pp. 155–162. IEEE Computer Society (2001)

20. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation techniques for
sparse systems. Found. Comput. Math. 9, 1–50 (2009)

21. Johansson, F.: mpmath: a Python library for arbitrary-precision floating-point
arithmetic. https://mpmath.org/

22. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: Cuda multiple
precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule,
P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42432-3 29

23. Joyner, D., Čert́ık, O., Meurer, A., Granger, B.E.: Open source computer algebra
systems: SymPy. ACM Commun. Comput. Algebra 45(4), 225–234 (2011)

24. Kim, J.E.: Approximation of directional step derivative of complex-valued func-
tions using a generalized quaternion system. Axioms 10(206), 14 p (2021)

25. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for iso-
lated singularities of polynomial systems. Theoret. Comput. Sci. 359(1–3), 111–122
(2006)

26. Li, N., Zhi, L.: Computing isolated singular solutions of polynomial systems: case
of breadth one. SIAM J. Numer. Anal. 50(1), 354–372 (2012)

27. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial
systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

28. Morgan, A.P., Sommese, A.J., Wampler, C.W.: A power series method for comput-
ing singular solutions to nonlinear analytic systems. Numer. Math. 63(3), 391–409
(1992)

29. Nasir, H.M.: Higher order approximations for derivatives using hypercomplex-
steps. Int. J. Adv. Comput. Sci. Appl. 6(1), 52–57 (2016)

30. Ojika, T.: Modified deflation algorithm for the solution of singular problems. I. A
system of nonlinear algebraic equations. J. Math. Anal. Appl. 123, 199–221 (1987)

31. Otto, J., Forbes, A., Verschelde, J.: Solving polynomial systems with phcpy. In:
Proceedings of the 18th Python in Science Conference, pp. 563–582 (2019)

32. Piret, K., Verschelde, J.: Sweeping algebraic curves for singular solutions. J. Com-
put. Math. 234(4), 1228–1237 (2010)

33. Roelfs, M., Dudal, D., Huybrechts, D.: Quaternionic step derivative: machine pre-
cision differentiation of holomorphic functions using complex quaternions. J. Com-
put. Appl. Math. 398, 113699 (2021)

34. Said, S., Le Bihan, N., Sangwine, S.J.: Fast complexified quaternion Fourier trans-
form. IEEE Trans. Signal Process. 56(4), 1522–1531 (2008)

35. Schwetlick, H., Cleve, J.: Higher order predictors and adaptive steplength control
in path following algorithms. SIAM J. Numer. Anal. 24(6), 1382–1393 (1987)

https://mpmath.org/
https://doi.org/10.1007/978-3-319-42432-3_29

352 J. Verschelde and K. Viswanathan

36. Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical alge-
braic geometry. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equa-
tions. Foundations, Algorithms and Applications, Algorithms and Computation in
Mathematics, vol. 14, pp. 301–337. Springer, Heidelberg (2005). https://doi.org/
10.1007/3-540-27357-3 8

37. Squire, W., Trapp, G.: SIAM Rev. 40(1), 110–112 (1998)
38. Suetin, S.P.: Padé approximants and efficient analytic continuation of a power

series. Russ. Math. Surv. 57, 43–141 (2002)
39. Telen, S., Van Barel, M., Verschelde, J.: A robust numerical path tracking algo-

rithm for polynomial homotopy continuation. SIAM J. Sci. Comput. 42(6), 3610-
A3637 (2020)

40. Telen, S., Van Barel, M., Verschelde, J.: Robust Numerical Tracking of One Path
of a Polynomial Homotopy on Parallel Shared Memory Computers. In: Boulier,
F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol.
12291, pp. 563–582. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60026-6 33

41. Timme, S.: Mixed precision path tracking for polynomial homotopy continuation.
Adv. Comput. Math. 47(5), Paper 75, 23 p (2021)

42. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999)

43. Verschelde, J.: A blackbox polynomial system solver on parallel shared memory
computers. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2018. LNCS, vol. 11077, pp. 361–375. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99639-4 25

https://doi.org/10.1007/3-540-27357-3_8
https://doi.org/10.1007/3-540-27357-3_8
https://doi.org/10.1007/978-3-030-60026-6_33
https://doi.org/10.1007/978-3-030-60026-6_33
https://doi.org/10.1007/978-3-319-99639-4_25
https://doi.org/10.1007/978-3-319-99639-4_25

A General Method of Finding New
Symplectic Schemes for Hamiltonian

Mechanics

Evgenii V. Vorozhtsov1(B) and Sergey P. Kiselev1,2

1 Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian
Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

{vorozh,kiselev}@itam.nsc.ru
2 Novosibirsk State Technical University, Novosibirsk 630092, Russia

Abstract. The explicit symplectic difference schemes are considered for
the numerical solution of molecular dynamics problems described by sys-
tems with separable Hamiltonians. A general method for finding symplec-
tic schemes of high order of accuracy using parametric Gröbner bases,
resultants, and permutations of variables is proposed. The implementa-
tion of the method is described by the example of four-stage partitioned
Runge–Kutta (PRK) schemes of the Forest–Ruth family. All required
symbolic calculations are performed using the computer algebra system
Mathematica. 96 new PRK schemes of Forest–Ruth family have been
obtained.

Keywords: Molecular dynamics · Symplectic difference schemes ·
Partitioned schemes · Gröbner bases · Resultants · Permutations

1 Introduction

The equations of molecular dynamics (MD) are ordinary Hamilton differential
equations describing the interaction of material particles. MD equations have an
exact analytical solution in a very limited number of cases [8]. Therefore, in the
general case, these equations are solved numerically using difference schemes in
which the differential operator is replaced by a difference operator.

When solving the Hamilton equations, it is natural to use difference schemes
that preserve the symplectic properties of these equations. Violation of this con-
dition leads to non-conservation of Poincaré invariants and the appearance of
non-physical instability in numerical calculations. It follows that the difference
operator of the numerical scheme must have the properties of a canonical trans-
formation. The corresponding difference schemes are called symplectic.

This work is a continuation of the works of the authors [15,16], which pro-
vide a detailed overview of the methods for constructing symplectic schemes.
In [15,16], symplectic schemes were considered in relation to the MD method,
in which the Hamiltonian of interacting particles splits into the sum of kinetic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 353–376, 2022.
https://doi.org/10.1007/978-3-031-14788-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_20

354 E. V. Vorozhtsov and S. P. Kiselev

and potential energy. It was shown that the problem of constructing symplectic
schemes of a given order of accuracy with a fixed number of stages is reduced to
the problem of finding the roots of a polynomial system of equations that arise
when the coefficients in the expression for the error of the scheme are turned to
zero. It turned out that the use of the Gröbner basis technique [1] implemented
in the Mathematica computer algebra system makes it possible to find the roots
of a system of polynomial equations in the case when its Vandermonde determi-
nant is zero. With the help of this technique, 21 new four-stage schemes of the
4th order of accuracy were obtained [16].

This paper presents a generalization of the method proposed in [15,16] to the
more general case when the Vandermonde determinant of a system of polynomial
equations is nonzero. The effectiveness of the proposed method is demonstrated
by the example of a four-stage scheme of the 4th order of accuracy. 96 new
symplectic four-stage schemes of the 4th order of accuracy of the Forest–Ruth
type were obtained. The error functional for several of the best new schemes is
two orders of magnitude smaller than for the Forest–Ruth scheme [6].

Verification of schemes is carried out by comparing the numerical solutions
with the exact solution of the test problem. It is shown that the new Forest–Ruth
four-stage schemes with the smallest norm of the leading error term provide a
more accurate preservation of a balance in total energy of the particle system
than the schemes of the same formal approximation order with a larger approx-
imation error.

2 Governing Equations

For simplicity, consider the Hamilton’s equations for a single particle in the
one-dimensional case:

dx/dt = p/m, dp/dt = f(x), f(x) = −∂H(x)/∂x, H =
p2

2m
+ V (x), (1)

where t is the time, x is the coordinate, p is the momentum, m is the particle
mass, f is the force acting on the particle, V (x) is the potential energy, p2/(2m)
is the kinetic energy, H is the Hamiltonian.

Hamilton’s equations (1) generate a one-parameter group of diffeomorphisms
x0 → x(t, x0) [5]. The smooth functions z(x, p) form the algebra of the Lie group
with respect to the Poisson bracket [5]

dz

dt
= {z,H}, {z,H} =

(
∂H

∂p

∂z

∂x
− ∂H

∂x

∂z

∂p

)
. (2)

Let us rewrite these equations in the operator form

dz

dt
= L̂z, L̂ =

(
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p

)
, (3)

where L̂ is the Liouville operator. Write the solution of Eq. (3) in the form

z(t) = Ûz(0), Û = exp(L̂t), L̂ = L̂1 + L̂2, L̂1 =
∂H

∂p

∂

∂x
, L̂2 = −∂H

∂x

∂

∂p
. (4)

A General Method of Finding New Symplectic Schemes 355

Propagators Û form a one-parameter Lie group and satisfy the group relations

Û(t1)Û(t2) = Û(t1 + t2), Û−1 = exp(−L̂t), Û(0) = I, Û Û−1 = I. (5)

Equations (4) underlie the propagator method of constructing symplectic
schemes [3,7,9,18].

3 Symplectic Partitioned Runge–Kutta Schemes

PRK schemes are based on the propagator method, which is determined by rela-
tions (4). In the case of a separable Hamiltonian, they have the following form:

z(t) = Ûz(0), Û = exp[(L̂1 + L̂2)t],

L̂1 =
p

m

∂

∂x
, L̂2 = f(x)

∂

∂p
, f(x) = −∂V

∂x
.

(6)

If the values zn = (xn, pn) are known at the nth time layer tn, then we obtain
at the (n + 1)th time layer tn+1 = tn + h

zn+1 = exp((L̂1 + L̂2)h)zn. (7)

Let us subdivide the passage from tn to tn+1 into K stages. Let us approximate
the propagator (7) by a product of propagators with the accuracy O(hλ+1):

exp[(L̂1+ L̂2)h] =
K∏

s=1

exp(dshL̂1) exp(cshL̂2)+O(hλ+1),
K∑

s=1

cs = 1,

K∑
s=1

ds = 1.

(8)
Thus, the solution at the (n + 1)th time layer is given with the accuracy of

O(hλ) by the equation

zn+1 =
K∏

s=1

exp(dshL̂1) exp(cshL̂2)zn,

zK = zn+1 = (xn+1, pn+1), z(0) = zn = (xn, pn).

(9)

We obtain from Eqs. (7) and (9) that at the passage from the (i − 1)th stage to
the ith stage, the following relations are valid [6]:

p(i) = p(i−1) + cihf(x(i−1)), x(i) = x(i−1) + di
h

m
p(i), i = 1, . . . ,K, (10)

which satisfy the condition J = ∂(pi,xi)
∂(pi−1,xi−1) = 1. Note that one can use instead

of (9) the expansion (in the notation of the work [18]) of the form

zn+1 =
K∏

s=1

exp(dshL̂2) exp(cshL̂1)zn, (11)

356 E. V. Vorozhtsov and S. P. Kiselev

which leads to the relations [18]

x(i) = x(i−1) + ci
h

m
p(i−1), p(i) = p(i−1) + dihf(x(i)), i = 1, . . . ,K, (12)

which also satisfy the condition J = 1. Equations (10) and (12) define the class of
explicit symplectic schemes the accuracy of which is determined by the number
of stages K and coefficients ci, di.

Below we show how new sets of parameters of a four-stage multiparameter
family of Forest–Ruth symplectic schemes (10) can be obtained analytically using
Gröbner bases. Some of these schemes have a much smaller norm of the leading
error term than the two four-stage schemes obtained in [6].

4 Forest–Ruth Scheme

Consider scheme (10) with K = 4. Using symbolic calculations, it is not difficult
to obtain an expression for the error δpn in the form [16]

δpn = hP1f(x) + (h2/2)P2u(t)f ′(x) + h3[P31f(x)f ′(x)/m + P32u
2f ′′(x)]/6

+ (h4u)/(24m){P41 · [f ′(x)]2 + 3P42f(x)f ′′(x) + P43mu2f (3)(x)}
− [h5/(120m2)](3P51f

2(x)f ′′(x) + f(x)(P52 · [f ′(x)]2 − 6P53mu2f (3)(x)
− mu2(5P54f

′(x)f ′′(x) + P55mu2f (4)(x))), (13)

where u(t) is the particle velocity. The expressions for P1, P2, P31, P32, P41, P42,
P43, P51, P52, P53, P54, and P55 are available in [16], and we give here only the
expression for P1 for the sake of brevity: P1 = 1 − c1 − c2 − c3 − c4.

Let us calculate the weighted root-mean-square value of five polynomials P5j ,
j = 1, . . . , 5:

P
(l)
5,rms =

[
(1/5)

5∑
j=1

(σjP5j)2
] 1

2 . (14)

Here σ1, . . . , σ5 are problem-independent factors affecting the polynomials P5j

in (13), σ1 = −3, σ2 = −1, σ3 = 6, σ4 = 5, σ5 = 1. The error δxn obtained when
calculating the coordinate xn+1 according to the scheme under consideration is
given by the formula

δxn = hp
m R1 + h2

2mR2f(x) + h3

6mR3u(t)f ′(x) + h4

24m2 [R41f(x)f ′(x)

+R42mu2f ′′(x)] h5u(t)
120m2 {R51[f ′(x)]2+ 3R52f(x)f ′′(x) + R53mu2f (3)(x)}.

(15)

The expressions for R1, R2, R3, R41, R42, R51, R52, and R53 are available in [16],
and we give here only the expression for R1 for the sake of brevity: R1 = 1 −
d1 − d2 − d3 − d4.

The system of equations P1 = 0, P2 = 0, P32 = 0, P43 = 0 is linear in ci,
i = 1, . . . , 4. It is easy to rewrite it in the form Pc = b, where c = (c1, c2, c3, c4)T ,

A General Method of Finding New Symplectic Schemes 357

Table 1. The values of the parameters of the Forest–Ruth schemes FRl (l = 1, . . . , 6)
obtained in the case of the zero determinant (17)

FRl ci di

FR1 d2 = −d1 1.681562217889354644 1.689032314592042095

0.014940193405374902 −1.689032314592042095

−1.471849481432093948 0.612326464931317799

FR2 d2 = −d1 0.462663328009943900 0.754092747422918106

0.582858838825948413 −0.754092747422918106

−1.983103761290466971 0.031209202772712671

FR3 d3 = −d2 0 ϕ+
1

ϕ−
2 −z/3

1/2 z/3

FR4 d3 = −d2 0 ϕ−
1

ϕ+
2 z/3

1/2 −z/3

FR5 d4 = 1 −0.298786423182561709 0.092128124809906823

0.781829095984937063 0.671234501323664155

0.560639906662391246 −0.763362626133570977

FR6 d4 = 1 0.447302683845444312 0.747066325751166375

0.599527283811444124 −0.771392086019630084

−2.142311455850704292 0.024325760268463710

Table 2. The values of the parameters of the Forest–Ruth schemes FRl, l = 7, . . . , 10
in the particular cases of c1 = 0 and d4 = 0

FRl c1 c2 c3 c4 d1 d2 d3 d4

FR7 c1 = 0 0 ϕ+
2

1
2

ϕ−
2 ϕ−

1
z
3

− z
3

ϕ+
1

FR8 c1 = 0 0 ϕ−
2

1
2

ϕ+
2 ϕ+

1 − z
3

z
3

ϕ−
1

FR9∗ c1 = 0 0 2ϕ3 ϕ4 2ϕ3 ϕ3
1
2

− ϕ3
1
2

− ϕ3 ϕ3

FR10∗ d4 = 0 ϕ3
1
2

− ϕ3
1
2

− ϕ3 ϕ3 2ϕ3 ϕ4 2ϕ3 0

b = (1, 1
2 , 1

3 , 1
4)T , and

P =

⎛
⎜⎜⎝

1 1 1 1
0 d1 d1 + d2 d1 + d2 + d3
0 d21 (d1 + d2)2 (d1 + d2 + d3)2

0 d31 (d1 + d2)3 (d1 + d2 + d3)3

⎞
⎟⎟⎠ . (16)

The determinant of this matrix is as follows:

detP = d1d2d3(d1 + d2)(d2 + d3)(1 − d4). (17)

358 E. V. Vorozhtsov and S. P. Kiselev

The values ci obtained from the system P1 = 0, P2 = 0, P32 = 0, P43 = 0 have
the form of fractional rational functions whose numerators are polynomials in
d1, . . . , d4, and denominator is the determinant (17). If detP = 0, then it will
be problematic to find expressions for ci. In this connection, all six particular
cases of the vanishing determinant (17) were considered in detail in [16]. The
following polynomial system was handled therein:

R1 = 0, P1 = 0, P2 = 0, P31 = 0, P32 = 0, P41 = 0, P42 = 0, P43 = 0. (18)

The number of equations in (18) is equal to the number of unknowns c1, c2, c3, c4,
d1, d2, d3, d4. We found with the aid of Gröbner bases six new analytical solutions
of the above system, which are summarized in Table 1. The values z, ζ, ϕ1, ϕ

±
2 , ϕ3

were calculated as follows:

z =
√

3, ζ = 21/3, ϕ±
1 = 1

6 (3 ± z), ϕ±
2 = 1

12 (3 ± 2z),
ϕ3 = 1

12 (4 + 2ζ + ζ2), ϕ4 = − 1
3 (1 + ζ)2.

(19)

In Table 1 and in further similar tables, we give for brevity only the first three
values of the parameters ci, di, i = 1, 2, 3. The numerical values of the parameters
c4 and d4 can be calculated using the formulas: c4 = 1 − c1 − c2 − c3, d4 =
1 − d1 − d2 − d3.

Earlier in the work [6], cases were considered when either c1 = 0 or d4 = 0;
at the same time, additional symmetry conditions of the scheme were imposed:
d2 = d3, d1 = d4 (at c1 = 0) and c2 = c3, c1 = c4 (at d4 = 0). We also considered
in [16] special cases when either c1 = 0 or d4 = 0, but did not impose symmetry
conditions. At c1 = 0, two solutions coincide with those obtained for d3 = −d2,
and the third solution coincides with the one given in [6]. For d4 = 0, a unique
real solution was obtained that coincides with the solution (4.9) from [6]. A
more detailed description of these solutions is given in [16], see also Table 2,
where symmetric schemes are marked with an asterisk.

Along with (14), we also introduce the functional X
(l)
5,rms, which represents

the weighted root-mean square value of three polynomials R5j , j = 1, 2, 3:

X
(l)
5,rms =

{[
R2

51 + (3R52)2 + R2
53

]
/3

}1/2
. (20)

This formula accounts for multiplier “3” before R52 in (15). In the following, we
will not give the magnitudes of the functionals P

(l)
5,rms and X

(l)
5,rms separately for

each scheme, but we will give them in a summary Table 19.
One can see from Table 19 that in the cases of symmetric schemes FR9 and

FR10, the value P
(l)
5,rms obtained from the leading term of the scheme error is

greater than in the cases of nonsymmetric schemes. Thus, although symmetric
schemes allow calculations in the direction of decreasing time (h < 0), they
are less accurate than nonsymmetric schemes (according to the latter schemes,
problems can be solved only at h > 0, i.e., moving in the direction of increasing
time).

A General Method of Finding New Symplectic Schemes 359

4.1 The General Case

In general, when the determinant (17) is nonzero, expressions for polynomi-
als (18) become more complicated. The Mathematica command

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c1, c2, c3, c4, d1, d2, d3, d4}]
(21)

has enabled the obtaining of the Gröbner basis {G1, . . . , G19}, which consists
of 19 polynomials. The polynomial system is termed zero-dimensional if it has
a finite number of complex solutions. A zero-dimensional system with as many
equations as variables is sometimes said to be well-behaved [10]. The Bézout
theorem asserts that a well-behaved system of n equations, which have degrees
d1, . . . , dn, has at most d1 · · · dn solutions. In our case, the polynomials P1, R1, P2,
P31, P32, P41, P42, and P43 have according to [16] the degrees 1, 1, 2, 3, 3, 4, 4, 4,
respectively. Thus, system (18) has at most 1152 complex and real roots counted
with their multiplicities.

Unfortunately, in the Gröbner basis obtained from (21), there is no univariate
polynomial. The shortest polynomials in the resulting basis are the polynomials
G1 and G2, moreover, G1 = G1(d3, d4), G2 = G2(d2, d3, d4). In order for the
system G1 = 0, G2 = 0 to have a common root, it is necessary that its resultant,
based on the Sylvester matrix, be zero [2,4]. The polynomials G1 and G2 depend
collectively on three variables d2, d3, and d4. It follows that one needs to consider
three options for excluding variables: excluding the variable d2, excluding the
variable d3, and excluding the variable d4. Therefore, we have considered three
resultants: Res(G1, G2, d4), Res(G1, G2, d3), Res(G1, G2, d2).

In the CAS Mathematica, the symbolic computation of the resultant is imple-
mented in the function Resultant[...]. The command Resultant[G1,G2,d4]
eliminates the variable d4. As a result, it has been found that

Res(G1, G2, d4) = A54d3F4(d3)F8(d3)F13(d2, d3)[F14(d3)]2F56(d3). (22)

Here A54 is a constant consisting of 54 decimal digits, F4(d3) = −1−16d3−96d23−
36d33 + 324d43. The value d3 = 0 is one of the solutions of the Eq. (22). However,
it was mentioned above that with this value of the parameter d3, the system (18)
is incompatible. The solution of the equation F4(d3) = 0 is in radicals, but its
substitution into system (18) leads to giant symbolic expressions.

On the other hand, the roots of this equation can be found numerically with
very high accuracy. But all the same, the real roots found are approximate. Sub-
stituting the root d3, given as a floating-point machine number, into the orig-
inal polynomial system (18) turns this system into a polynomial system with
approximate coefficients. In the review paper [11], problems related to obtaining
approximate Gröbner bases from polynomial systems with approximate coeffi-
cients were discussed. Here we note the following two problems.

• In principle, approximate solutions of the original polynomial system can
be obtained from the approximate Gröbner basis. But substituting the found

360 E. V. Vorozhtsov and S. P. Kiselev

solution into the original system leads to the residuals that are several decimal
orders of magnitude greater than machine rounding errors; this was shown in
a number of examples in [11].

• There exists the problem of ill-conditioned polynomials [12,17]. The presence
of errors in the coefficients of a poorly conditioned polynomial can even lead
to a change in the number of real roots of the polynomial equation [17].

In cases where it is not possible to find solutions to a polynomial system in
an analytical form, it is more reliable to search for these solutions by numerically
solving an optimization problem formulated directly for the polynomials included
in the original system. This methodology was described in [15,16].

Table 3. The values of the parameters of the Forest–Ruth schemes FRl (l = 11, . . . , 14)
obtained in the case of the zero resultant (23)

FRl ci di

FR11 d4 = 1/3 −3.793578045247588829 −2.015338965874309019

−0.002556494312384837 2.010225977249539346

4.023008448811463529 0.671779655291436340

FR12 d4 = 1/3 0.215291546204744457 1.145093955234638990

0.524182325872439832 −0.096729303489759326

−0.717640932851958484 −0.381697985078212997

FR13 d4 = 1/4 −0.456387075637887056 0.559356790721160223

−0.065655505000061227 −0.478888139152354456

0.903328999195627837 0.669531348431194233

FR14 d4 = 1/4 0.313736873232085596 0.817539342386075480

−0.440874365834237127 −1.966375102129151814

−0.007941192169999430 1.898835759743076334

For the resultant Res(G1, G2, d3), the following expression is obtained:

Res(G1, G2, d3) = 103129560704(3d4 − 1)9(4d4 − 1)5(1 − 9d4 + 24d24)
9

×F12(d2, d4)[F14(d4)]6.
(23)

Expressions for polynomials F12(d2, d4) and F14(d4) are not given here because
of their bulky appearance.

It follows from (23) that the value d4 = 1/3 is one of the roots of the equation
Res(G1, G2, d3) = 0. Substituting this value into the polynomial system (18)
significantly simplifies the appearance of the polynomials included in the system.
This makes it easy to find the corresponding Gröbner basis consisting of seven
polynomials G1, . . . , G7. The Gröbner polynomial G1 yields the following quartic
equation for c1: G(1) = −25 + 340c1 − 1920c21 + 3840c31 + 1152c41 = 0. Its roots
are expressed in radicals, we omit them for brevity. Two of these roots are real.
Since the Gröbner basis is triangular, the parameters d3, d2, d1, c4, c3, c2 are
easily found. The corresponding schemes in Table 3 are the schemes FR11 and

A General Method of Finding New Symplectic Schemes 361

FR12. The case of d4 = 1/4 was handled similarly to the foregoing case. The
corresponding schemes in Table 3 are the schemes FR13 and FR14. The roots of
the equation 1 − 9d4 + 24d24 = 0 are complex.

And finally, Res(G1, G2, d2) = 1. It is a polynomial of degree zero, that is,
it does not contain any of the variables d2, d3, d4. Therefore, this resultant is
useless when searching for solutions for these three variables.

Below we will show that with the help of parametric Gröbner bases, it is
possible to obtain several dozen of further exact solutions of polynomial systems
arising from the study of PRK schemes. At the same time, we can declare any of
the eight variables cj , dj , j = 1, . . . , 4 as a parameter. Following [10], we will call
the quantities that are not included in the set of parameters, the indeterminates.

Our goal is to search for schemes in the Forest and Ruth family for which the
functionals P5,rms and X5,rms are smaller than in the cases of symplectic schemes
described in [15,16]. Taking into account the previous considerations for working
with parametric Gröbner bases, we have developed and implemented a procedure
consisting of seven steps in the CAS Mathematica language.

Step 1. For certainty, consider the case when the variable c4 is declared as a
parameter. Then the Gröbner basis of system (18) is computed using the call

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c1, c2, c3, d1, d2, d3, d4}]
(24)

By default, in all subsequent calls to the function GroebnerBasis[...], lexico-
graphic ordering of monomials is used. We will show in the following that the
Gröbner basis of the same polynomial system also depends on the order of the
indeterminates in the call to the Mathematica function GroebnerBasis[...].

Step 2. The Gröbner basis {G1, G2, . . . , GN} (N > 2) obtained with the
aid of the call (24) has no univariate polynomial. The first two polynomials
G1 and G2 have the smallest length. We introduce for further convenience the
notation: αj = cj , αj+4 = dj , j = 1, . . . , 4. As a rule, G1 = F1(αi1 , αi2), G2 =
F2(αi1 , αi2 , αi3), where 1 ≤ i1, i2, i3 ≤ 8, i1 �= i2, i2 �= i3, i1 �= i3. Then we
calculate the following three resultants:

Res(G1, G2, αik), k = 1, 2, 3. (25)

The elimination of the variable αik from the basis polynomials G1 and G2 is
carried out with the aid of the call Res[G1, G2, αik].

Step 3. All three resultants (25) are considered. First, using the Mathemat-
ica function Factor[...] we find out whether a particular resultant from the
set (25) is factorizable. Some of the resultants (25) are irreducible over the field Q

of rational numbers. Below we will briefly write “irreducible polynomials”.
Step 4. All integer and rational roots of the equations Res(G1, G2, αik) = 0,

k = 1, 2, 3 are found.
Step 5. Each of the found roots αj ∈ Q is substituted into system (18) and

then the corresponding Gröbner basis is found. As a rule, this basis turns out
to be triangular. In this case, the polynomial G1 is univariate. If its degree is 2,

362 E. V. Vorozhtsov and S. P. Kiselev

3 or 4, then the roots of the equation G1 = 0 are in radicals. In order to avoid
the appearance of giant symbolic expressions when substituting these closed-
form roots into the remaining basic polynomials, the roots are translated into
machine numbers with a mantissa length of 50 decimal digits 0, 1, . . . , 9. To do
this, we use the Mathematica function SetAccuracy[root,50].

If the degree of G1 is higher than 4, then the solution of the equation
G1 = 0 is found with high accuracy using the command NSolve[G[[1]]==0,c4,
WorkingPrecision-> 50]. Due to the fact that the Gröbner basis is triangular,
all the required unknowns αj , j = 1, . . . , 8 are then easily found.

Step 6. Among the roots of each of the three resultants (25), there may be
extraneous roots [13]. Therefore, verification of all found roots of system (18) is
carried out by substituting them into this system.

Step 7. The functionals P
(l)
5,rms and X

(l)
5,rms are calculated according to (14)

and (20) as criteria for evaluating the accuracy of the obtained real symplec-
tic schemes.

The c1 Parameter. In this case, (21) is replaced with the call

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c2, c3, c4, d1, d2, d3, d4}]
(26)

The Gröbner basis {G1, G2, . . .} is obtained as 18 polynomials, with G1 =
F1(c1, d4) and G2 = F2(c1, d3, d4). Therefore, we have considered three resul-
tants: Res(G1, G2, d4), Res(G1, G2, c1), and Res(G1, G2, d3). The first of them is

Res(G1, G2, d4) =

A(c1− 1)10(3c1− 1)17(4c1 − 1)6(24c21− 9c1+ 1)18[F12(c1)]7F16(c1, d3).
(27)

Here A = 8077716527296737705984. The system of equations G1 = 0, G2 = 0
has a common root if and only if the resultant Res(G1, G2, d4) = 0. It follows
from (27) that this equality holds, in particular, in the following cases: c1 = 1,
c1 = 1/3, and c1 = 1/4. Below we will look at all these cases.

Substituting the value c1 = 1 into the polynomial system (18) makes it
easy to find the corresponding Gröbner basis {G1, . . . , G7}, which proves to be
triangular. It is then easy to find numerical values of all parameters from it.
The equation G1 = 0 has three real roots and two complex conjugate roots. The
schemes FR15, FR16, and FR17 in Table 4 correspond to three real roots.

In the case when c1 = 1/3, a triangular Gröbner basis is also obtained. The
Gröbner polynomial G1 is univariate and it yields the following quartic equation
for d4: 960d44−3552d34+1778d24−340d4+25 = 0. Its roots are expressed in radicals,
we omit them for brevity. Two of these roots are real. The corresponding schemes
in Table 4 are the schemes FR18 and FR19 (see also [16]). The case of c1 = 1/4 is
handled similarly to the case of c1 = 1/3, the corresponding schemes in Table 4
are the schemes FR20 and FR21 (see also [16]).

The equation 24c21−9c1+1 = 0 has no real roots. The equation F12(c1) = 0 has
two real roots and five pairs of complex conjugate roots. At the same time, there

A General Method of Finding New Symplectic Schemes 363

Table 4. The values of the parameters of the Forest–Ruth schemes FRl (l = 15, . . . , 23)
obtained in the case of the zero resultants (27) and (30)

FRl ci di

FR15 c1 = 1 1.000000000000000000 −0.289496692562112655

0.480967226556355638 0.095557008516098051

−1.051024192239418045 0.957728476679205942

FR16 c1 = 1 1.000000000000000000 1.166062538245970983

0.094779042188058442 −1.130360771387392979

−0.969092132852183332 0.449341881021738872

FR17 c1 = 1 1.000000000000000000 −0.418994738647895922

−0.517065975450449051 1.310130928129584835

0.421590609795226645 −1.858323611577820880

FR18 c1 = 1/3 1/3 0.854618769602128809

−0.340323030871210685 −1.755412024452683413

−0.013979395075754704 1.663063053955831823

FR19 c1 = 1/3 1/3 0.717790337479662637

0.676663198257488871 −2.867617920531312327

2.019993063181644409 0.003543429387338222

FR20 c1 = 1/4 1/4 1.053722261159673065

−0.120984256091361380 −0.341956531133635430

0.867350020601588225 2.076656572336811881

FR21 c1 = 1/4 1/4 1.627745859492881698

0.381426792344745990 −0.082614832312547523

−0.458605339881521336 −0.834595847450495149

FR22 c1 = 1/6 1/6 0.842603502826414075

0.947753813816637058 −0.103841775357201984

−1.284460514173413455 −0.182943493689021194

FR23 c1 = 1/6 1/6 0.460642622151786919

0.660127726674692834 0.491578202509501365

0.215313914255060158 −0.735889167477648790

is no rational root among the real roots. Obtaining an approximate Gröbner
basis leads to the difficulties discussed above at the beginning of this subsection.

In an effort to get several further roots of the equation Res(G1, G2, d4) = 0,
we substitute the value of c1 = 1 into the polynomial F16(c1, d3). As a result, we
obtain the equation F16(1, d3) = −36(4418 − 34584d3 + 93477d23 − 87708d33 −
11520d43 + 36864d53) = 0. This equation has three real roots and two com-
plex conjugate roots. The real roots are as follows: -1.858323611577820880,
0.4493418810217388717, and 0.9577284766792059415. It is easy to see that these
values of the parameter d3 coincide with those given in Table 4 for schemes FR17,
FR16, and FR15. The substitution of the value c1 = 1/3 in F16(c1, d3) has
enabled us to obtain an equation F16(1/3, d3) = 0 whose roots give the schemes
FR18 and FR19. Finally, the equation F16(1/4, d3) = 0 gives as the output the
familiar schemes FR20 and FR21. Thus, the equation in question did not add
new roots.

364 E. V. Vorozhtsov and S. P. Kiselev

The resultant Res(G1, G2, c1) = 0 is as follows:

Res(G1, G2, c1) = A50(d4 − 1)2(3d4 − 1)(4d4 − 1)(24d24 − 9d4 + 1)3

×F3(d4)F4(d4)F6(d4)[F8(d4)]2F10(d3, d4)[F12(d4)]2F60(d4),
(28)

where A50 is a large integer number containing 50 decimal digits. The polyno-
mials F3(d4), F4(d4), F6(d4), F8(d4), F10(d3, d4), F12(d4), and F60(d4) are not
presented here for the sake of brevity. The case when d4 = 1 was already consid-
ered above, see the schemes FR5 and FR6 in Table 1. The cases when d4 = 1/3
and d4 = 1/4 were already considered above, see Table 3.

The third resultant Res(G1, G2, d3) is the 13th degree irreducible polynomial
in two variables c1 and d4. It adds no new solutions to system (18).

We have used above in the call (26) to the Mathematica function
GroebnerBasis[..] the sequence of the indeterminates in the form c2,c3,c4,
d1,d2,d3, d4. Below we show that permutation of elements in this sequence can
lead to new solutions of the original polynomial system. To do this, consider
instead of (26) the following call to the function GroebnerBasis[...]:

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{d1, d2, d3, d4, c2, c3, c4}]
(29)

In this case, a Gröbner basis is obtained in which G1 = G1(c1, c4), G2 =
G2(c1, c3, c4). Therefore, we have considered three resultants: Res(G1, G2, c4),
Res(G1, G2, c3), and Res(G1, G2, c1). The first of them is as follows:

Res(G1, G2, c4) = A20(4c1 − 1)6(6c1 − 1)12(24c21 − 9c1 + 1)7

×(27c21 − 10c1 + 1)5(96c31 − 60c21 + 12c1 − 1)5[F25(c1)]7. (30)

Table 5. Successful permutations

Permutation No. Permutation New solutions

8 {d1, d2, d3, c2, d4, c4, c3} c3 = 0, c3 = 1/2

32 {d1, d2, d4, c2, d3, c4, c3} c3 = 0, c3 = 1/2

40 {d1, d2, d4, c3, c2, c4, d3} d3 = 0, d3 = 3/4

48 {d1, d2, d4, c4, c3, c2, d3} d3 = 0

56 {d1, d2, c2, d4, d3, c4, c3} c3 = 1/2, c1 = 1/6, c3 = 0

64 {d1, d2, c2, c3, d4, c4, d3} d3 = 0, d3 = 3/4

80 {d1, d2, c3, d4, d3, c4, c2} c2 = 0

88 {d1, d2, c3, c2, d4, c4, d3} d3 = 0, d3 = 3/4

104 {d1, d2, c4, d4, d3, c3, c2} c2 = 0

1000 {d2, d4, d3, c3, c2, c4, d1} d1 = 0

3000 {c2, d1, c4, c3, d4, d3, d2} d2 = 0

4000 {c3, d4, d2, c2, d3, c4, d1} d1 = 0

5000 {c4, c3, d4, d2, d1, c2, d3} c1 = 1/6

A General Method of Finding New Symplectic Schemes 365

Here A20 is an integer consisting of 20 decimal digits. The equation Res(G1, G2,
c4) = 0 has two rational roots c1 = 1/4 and c1 = 1/6. Root c1 = 1/6 is a new
root that is missing in (27) and (28). Its consideration leads to two new schemes
FR22 and FR23, see Table 4.

The resultant Res(G1, G2, c3) is an irreducible polynomial of the 13th
degree in two variables c1 and c4. The third resultant has the following form:
Res(G1, G2, c1) = A72c

2
4(8c24 − 7c4 + 2)2(64c34 − 40c24 + 8c4 + 1)[F6(c4)]2F8(c4)×

F12(c3, c4)F125(c4). The root c4 = 0 of the equation Res(G1, G2, c1) = 0 has
proved to be an extraneous root of the polynomial system (18).

The above two examples of using different sequences of seven indeterminates
point to the following: if we want to find as many solutions of the original
polynomial system as possible, then we must consider all permutations of the
indeterminates. In the case of seven indeterminates, the number of permutations
is equal to 7! = 5040. For each particular permutation, one needs to get three
resultants based on the first two polynomials included in the Gröbner basis.

To do this, one first needs to get expressions for G1 and G2 and see which
specific indeterminates and parameters they depend on. As a rule, G1 and G2

depend on two indeterminates and one variable selected as a parameter. Thus,
we need to consider 5040 · 3 = 15120 resultants. The whole procedure could be
implemented in the language of the Mathematica system. However, this requires
considerable programming effort. Instead of such a complete analysis of all 5040
permutations, we considered the permutations Pj with the following numbers j:
j = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 1000, 2000, 3000, 4000, 5000. In
Table 5, not all of these permutations are given, but only those that led to new
solutions for the eight unknowns cj , dj , j = 1, . . . , 4. To obtain all permutations
of seven elements, the Mathematica function Permutations[perm0] was used.
Here perm0 is the initial permutation, we took perm0 = {d1, d2, d3, d4, c2, c3, c4}.

Table 5 contains a number of new solutions for the unknowns cj and dj . We
have at first considered six cases when cj = 0, j = 2, 3, 4 or dj = 0, j = 1, 2, 3.
In all these cases, the polynomial system (18) proved to be incompatible.

At c3 = 1/2, a triangular Gröbner basis {G1, . . . , G7} is obtained, where
G1 = (1−3c4+6c24)(−1−24c4+48c24)(1−32c4+364c24−4000c34+10288c44−8064c54−
29696c64 + 73728c74). The roots of the equation 1 − 3c4 + 6c24 = 0 are complex.
The roots of the equation 48c24 − 24c4 − 1 = 0 are real: (c4)1,2 = 1

12 (3 ± 2
√

3).
This case was handled above, see the schemes FR3 and FR4. The equation
1 − 32c4 + 364c24 − 4000c34 + 10288c44 − 8064c54 − 29696c64 + 73728c74 = 0 has three
real roots and two pairs of complex conjugate roots. Real roots lead to three
new schemes FR24, FR25, and FR26.

At d3 = 3/4, a triangular Gröbner basis {G1, . . . , G7} is also obtained. The
equation G1 = 0 has only two real roots. The corresponding new schemes are
presented in Table 6 as the schemes FR27 and FR28.

So, above we considered only 18 permutations, or 3.57 % of 5040 permuta-
tions. Therefore, it is natural that considering all 5040 permutations will allow
one to obtain several further new solutions to the system (18).

366 E. V. Vorozhtsov and S. P. Kiselev

The Remaining Variables as Parameters. The cases when one of seven
variables c2, c3, c4, d1, d2, d3, d4 is declared as a parameter were handled similarly
to the above-considered case of the variable c1 as a parameter, see Table 7, 8, 10,
11, 12, 13, 14, 15, and 16. Table 17 shows the number of new schemes obtained
at the consideration of each of the variables ci, di, i = 1, . . . , 4 as a parameter.

Table 18 presents the orders of smallness of the residuals rmin and rmax

for several new symplectic schemes of the Forest–Ruth family, which were
obtained above. Naturally, in cases where the analytical expressions for ci and
di, i = 1, . . . , 4 are relatively simple, it is possible to check their correctness
by substituting them into the original polynomial system without switching to
machine floating-point numbers. If the solution found in the analytical form is
correct, then all the equations of the polynomial system are exactly satisfied.
Therefore, in these cases, the equalities rmin = 0 and rmax = 0 take place. For-
mally, the schemes FR3, FR4, FR7, FR8, FR9, and FR10 are the best in terms of
the smallness of the residuals rmin and rmax. However, they are far from optimal
in terms of the smallness of the functionals P

(l)
5,rms and X

(l)
5,rms, see Table 19.

In other cases, numerical values of ci and di, i = 1, . . . , 4 were substituted into
the initial system in the form of machine floating-point numbers and with a man-
tissa length of 18 decimal digits. As can be seen from Table 18, schemes FR27,
FR50, FR51, FR52, and FR73 have the smallest residuals rmin = O(10−50) and
rmax = O(10−49). The schemes FR42, FR47, FR50, FR51, FR52, FR55, and
FR59 have the least approximation errors, these are the best found schemes
(see Table 19). These conclusions partially correlate with the conclusions from
Table 18 concerning the schemes with the least residuals rmin and rmax. The
magnitude of the error functional P

(l)
5,rms of scheme FR10 obtained previously

in [6] is 121 times larger than in the cases of new schemes FR47, FR50, FR51,
and FR52.

5 Kepler’s Problem

The problem of the motion of a system consisting of two interacting particles
(the problem of two bodies, the Kepler’s problem) admits a complete analytical
solution in the general form [8]. This solution was presented in [14] for the case
of equal masses of the both bodies, and in [15], it was given for the bodies with
different masses.

This problem is described by a system of eight ordinary differential equa-
tions (ODEs), in which four equations describe the time evolution of the coor-
dinates (xk, yk) of each of the two bodies, and the quantities (pkx, pky), k = 1, 2
describe the evolution of the impulses of the bodies. The mentioned system of
ODEs is solved at the given initial positions of the bodies and their impulses.
With equal masses of bodies m1 = m2 = 1, the total initial energy E0 of both
bodies |E0| = |v2

0 − 1/(2a0)|, where 2a0 is the given initial distance between the
bodies (a0 > 0), v0 is the given absolute value of the initial velocity of each body.

A General Method of Finding New Symplectic Schemes 367

Table 6. The values of the parameters of the Forest–Ruth schemes FRl (l = 24, . . . , 28)
obtained in the cases when c3 = 1/2 or d3 = 3/4

FRl ci di

FR24 c3 = 1/2 0.391025572210943674 0.967398350433141497

0.678124844465627657 2.202427111618248827

1/2 −0.111003864212194508

FR25 c3 = 1/2 0.835311238373158736 −0.350920339289419778

−0.378958977995565850 1.171732061213387849

1/2 −1.814913008091942417

FR26 c3 = 1/2 0.094132364293527189 0.723711816433472820

−0.046380082078234786 −0.399429463535403217

1/2 0.497003465452825098

FR27 d3 = 3/4 0.200343862556644811 0.645182676558732474

−1.010914108245682741 −0.024497356766309670

1.772663714786654245 3/4

FR28 d3 = 3/4 −1.742065593683020234 −0.631721835302486836

−0.296628561098109581 0.410158533684560698

1.724192327420640529 3/4

Table 7. The values of the parameters of the Forest–Ruth schemes FRl (l = 29, . . . , 36)
obtained in the case when c2 is the parameter

FRl ci di

FR29 c2 = 2/3 0.364254344284583814 0.869516211247767583

2/3 2.792690380329816512

0.587980436123375884 0.054227787182224768

FR30 c2 = 2/3 1.878392245341283130 −0.148939912684807651

2/3 0.072050469147999406

−2.119991445360319150 0.835740764826119230

FR31 c2 = 2/3 0.197431266262198278 0.997479482407853902

2/3 −0.097322556987957231

−0.933855594163194543 −0.268583735242126327

FR32 c2 = 2/3 0.168148869366041101 0.464264589751261379

2/3 0.493986641393048766

0.2088349346809210962 −0.737725321402639611

FR33 c2 = 2/3 −0.170487789371228258 0.124713923957057081

2/3 0.644865752568700276

0.5457035136145351390 −0.695444714544033987

FR34 c2 = 2/3 0.374170872627683649 0.717310607339155385

2/3 −1.033722587512287717

−6.140624051165247365 0.001454385616574405

FR35 c2 = 1/3 0.305530612248020483 4.937738540440601523

1/3 −0.027239637450445254

−0.339218512202854752 −4.168275877672941372

FR36 c2 = 1/3 0.680077031402771998 0.881570343081302874

1/3 −0.790588680725968301

−1.186453739372546212 0.176773784101247734

368 E. V. Vorozhtsov and S. P. Kiselev

Table 8. The values of the parameters of the Forest–Ruth schemes FRl (l = 37, . . . , 46)
obtained in the case when c2 is the parameter

FRl ci di

FR37 c2 = (1+
√

5])/3 3.782386995165049639 −0.076051961619127312

1.078689325833263232 0.043960674924039808

−4.443316201850377574 0.786839835443811639

FR38 c2 = (1 +
√

5)/3 0.144891076593792282 0.784982662463530111

1.078689325833263232 −0.115777773963705551

−1.415006067291033615 −0.165458346668356931

FR39 c2 = (1 +
√

5)/3 0.213103271189846452 0.573068437077953834

1.078689325833263232 1.002219472013933223

0.021085719326262061 −1.091461204437575932

FR40 c2 = (1 +
√

5)/3 −0.611238566964510911 0.052429960499692211

1.078689325833263232 0.702434707725292420

0.580716563209192545 −0.860370750278669990

FR41 c2 = (1 − √
5)/3 0.219311236012542665 0.760452067359764565

−0.412022659166596565 −0.091641127721282675

1.178509694121097509 1.100220634320858561

FR42 c2 = (1 − √
5)/3 0.1394284522075851837 0.486323892019975997

−0.412022659166596565 −0.042011883595088195

0.967231066343295769 0.441924899417734389

FR43 c2 = (1 − √
5)/3 0.318257154554292683 0.826446621342308992

−0.412022659166596565 −1.905814461246662400

−0.009200018152718083 1.832414525155164045

FR44 c2 = (1 − √
5)/3 −2.671203027064244664 0.127955739058414071

−0.412022659166596565 −0.099395301108287731

3.473342068227190026 0.715057655495029390

FR45 c2 = (1 − √
5)/3 −1.873117657996741733 −0.649164960959432341

−0.412022659166596565 0.364748420484928815

1.780573723084865883 0.775557276840459310

FR46 c2 = (1 − √
5)/3 −1.873117657996741733 −0.649164960959432341

−0.412022659166596565 0.364748420484928815

1.780573723084865883 0.775557276840459310

When numerically solving the Kepler problem using symplectic difference
schemes, the energy en at t = tn > 0 is calculated with an error. Let δEn =
(En − E0)/E0, where En = (1/2)[(pn

1x)2 + (pn
1y)2 + (pn

2x)2 + (pn
2y)2] − 1/rn,

rn = [(xn
1 −xn

2)2 +(yn
1 −yn

2)2]1/2. It was shown in [16] that for ensuring the zero
eccentricity e of the particles orbits it is sufficient to set v0 = 0.5/

√
a0. Along

A General Method of Finding New Symplectic Schemes 369

Table 9. The values of the parameters of the Forest–Ruth schemes FRl (l = 47, . . . , 53)
obtained in the cases when c4 = 3/4 or d1 = 1/2

FRl ci di

FR47 c4 = 3/4 4.290878395464025169 3.434400270740872001

0.000963763146154897 −3.435707719128205871

−4.041842158610180066 0.656514850491044033

FR48 c4 = 3/4 0.277948154623496169 2.459832693693553053

0.343888647781502973 −0.056699486586081620

−0.371836802404999142 −1.672913435532665059

FR49 c4 = 3/4 0.520981254725582490 1.113980205862570658

−0.161927364012237208 −1.472633501812066773

−0.109053890713345282 1.213681750558400100

FR50 d1 = 1/2 0.136825942475053071 1/2

−0.295364245574992759 −0.062976137694193308

0.837926908632179149 0.440948891327570560

FR51 d1 = 1/2 −0.586438190415940380 1/2

−0.075359198960140901 −0.430061540610022957

1.038753638680670670 0.676446958625960263

FR52 d1 = 1/2 0.182572224329682333 1/2

0.744884110251947176 0.538588670363744296

0.141395996554118555 −0.758360900822698969

FR53 d1 = 1/2 −3.530966905753254684 1/2

6.547681802370795675 −0.068515429495817908

−7.087388112997812705 −0.375425403877225227

with the error in the energy δEn, the values of δr1,max and δy1,mean were also
calculated, where δr1,max = maxj((x2

1,j + y2
1,j)

1/2 − a)/a for the case of the zero
eccentricity. The quantity δy1,mean was computed as the arithmetic mean of the
quantities δy1j = y1j − y1,ex. Here y1,ex is the exact value of the y coordinate at
the point of the intersection of line x = x1j with the ellipse of the first particle.

As one can see in Table 20, the symmetric Forest–Ruth scheme FR9 produces
much larger errors |δE|mean than the schemes FR3 and FR50. This is consistent
with the behavior of the norm of the leading error term of these schemes.

Table 21 shows the results obtained at the nonzero eccentricity by the time
t = 500 (105 time steps). As in the case of the zero eccentricity, the schemes
FR3 and FR50 demonstrate a higher accuracy than the scheme FR9. The error
in energy δEmean amounts in the case of the scheme FR50 to only about 1/8 of
the error δEmean obtained in the case of the scheme FR3. This means that the
scheme FR50 produces a much smaller error in energy than the scheme FR3.

370 E. V. Vorozhtsov and S. P. Kiselev

Table 10. The values of the parameters of the Forest–Ruth schemes FRl (l =
54, . . . , 63) obtained in the case when c3 is the parameter

FRl ci di

FR54 c3 = 1 0.232552203620762051 0.864933853224711811

−0.240171870993110794 −0.173521835714879970

1 1.450514067565065171

FR55 c3 = 1 0.139963046708770169 0.484042373117847543

−0.442222496742616455 −0.038391737134385132

1 0.442340759342235601

FR56 c3 = 1 −0.549628408322132739 0.516200660144340638

−0.072468674149454992 −0.443663538175265205

1 0.674727683742161504

FR57 c3 = 1 2.302601066465332119 0.112742296458862205

−1.983691962779933225 0.511421634072704643

1 −0.936108794035271761

FR58 c3 = 2/3 0.351122270415848032 0.822180431133326332

0.663430432875993088 3.675251576576031878

2/3 −0.029344841230348257

FR59 c3 = 2/3 0.130496314992084781 0.545153172452857850

−0.152112316952245843 −0.129275520560538766

2/3 0.445295236274126733

FR60 c3 = 2/3 −0.214714867139629529 0.684249379826096300

−0.050505925257735998 −0.566790506272220428

2/3 0.644799229296194684

FR61 c3 = 2/3 12.985132914037646926 0.000735492767526182

−12.559557711764700905 0.717113943685514226

2/3 −1.050357583178864997

FR62 c3 = −1/3 0.323096342154017994 13.50376205182945044

0.332614327860069729 −0.009534841164435389

−1/3 −12.74671531967306675

FR63 c3 = −1/3 1.549722230386746638 −3.514818811551034895

1.429077640949028648 −1.457098486909627231

−1/3 2.622648492232692156

The absolute value of the error δy1,mean amounts in the case of the scheme FR50
to only about 1/5 of the error δy1,mean obtained in the case of the scheme FR3.
Similar errors δy2,mean obtained for the second particle have the same absolute
values as in the case of the first particle, but their signs are opposite to the
signs of δy1,mean.

A General Method of Finding New Symplectic Schemes 371

Table 11. The values of the parameters of the Forest–Ruth schemes FRl (l =
64, . . . , 71) obtained in the case when c4 is the parameter

FRl ci di

FR64 c4 = −1 0.923752664541586022 16.023236171683106527

1.028858031528064696 10.667066118735512987

0.047389303930349282 −9.439832216877909698

FR65 c4 = −1 0.230401316001649608 0.614993313027275731

1.767802001353397688 2.349801988037760294

0.001796682644952704 −2.372282095213200527

FR66 c4 = −1 2.693266252232378788 0.272765858595981272

−2.687864699530211844 0.258660862508406001

1.994598447297833056 −0.704601530894185303

FR67 c4 = 2/3 0.693911807455204925 1.389601984542431907

−0.180750033711638009 −1.751837222444102726

−0.179828440410233583 1.391280849389145194

FR68 c4 = (−1 +
√
5)/3 0.114099408934045299 0.649850775109876324

−0.066472584291344747 −0.282718024274440564

0.540350516190702883 0.469755418612118481

FR69 c4 = (−1 − √
5)/3 0.231348624383101124 0.617413961551446993

1.845849356904791962 2.505944087496861072

0.001491344545370146 −2.526048748369218988

FR70 c4 = (−1 − √
5)/3 2.763558393992365262 0.282057553866780170

−2.795071176619652551 0.244409846615326875

2.110202108460550521 −0.690943228859052633

FR71 c4 = (−1 − √
5)/3 0.332267944750488842 0.743399694345549828

0.667975398001819257 −21.981819840398356626

1.078445983080955133 0.001613923746367732

Table 12. The values of the parameters of the Forest–Ruth schemes FRl (l =
72, . . . , 75) obtained in the case when c4 = 1/6 or c4 = 16/27

FRl ci di

FR72 c4 = 1/6 1.075394753302521569 −0.638191122739963413

−0.562921915373837090 1.672633703407438461

0.320860495404648855 −2.181423749195410509

FR73 c4 = 16/27 0.818672678175588272 1.833608220246540205

−0.239249580730862964 −2.402016364561991597

−0.172015690037317901 1.987452002208430171

FR74 c4 = 16/27 −0.176216464958336337 0.705396326757519899

−0.048272736660086400 −0.577957534527034398

0.631896609025830144 0.637881726660246176

FR75 c4 = 16/27 0.494971671137937628 −0.948190157578799342

0.369511495225417267 0.079013950429035923

−0.457075758955947487 1.633761849965980780

372 E. V. Vorozhtsov and S. P. Kiselev

Table 13. The values of the parameters of the Forest–Ruth schemes FRl (l =
76, . . . , 85) obtained in the case when d1 is the parameter

FRl ci di

FR76 d1 = 2/3 0.204275083815869887 2/3

−0.821240613630061829 −0.034251150245736271

1.586167530241972297 0.808482764907095971

FR77 d1 = 2/3 0.110529614169578658 2/3

−0.060536883821488756 −0.308218556075319167

0.529316569535254555 0.475003634825955049

FR78 d1 = 2/3 −0.246981683746760770 2/3

−0.052395107294725361 −0.556352049684461481

0.696641970456244612 0.649688395520743066

FR79 d1 = 2/3 −0.029918619502392475 2/3

1.391696101106459054 −0.179948437412172961

−1.753316304811621968 −0.180888740802033290

FR80 d1 = 3/4 0.217797377255593747 3/4

−0.439474733154072297 −0.084286494754561427

1.206367201598754224 1.065889648917041605

FR81 d1 = 3/4 0.082220658475439553 3/4

−0.042043274315474989 −0.446288824714853250

0.490110712558433011 0.511001742424794030

FR82 d1 = 3/4 −0.093660943038827783 3/4

−0.043524035940067826 −0.593590536527777054

0.562491408233619701 0.617331657398234449

FR83 d1 = 3/4 0.282751320628652862 3/4

−0.875414602261540111 −2.866262183797889275

−0.001749298330001449 2.839324076485054340

FR84 d1 = 3/4 0.122962367199072599 3/4

1.154710480553913358 −2.866262183797889275

−1.483263553884396613 2.839324076485054340

FR85 d1 = 3/4 0.453772840879245976 3/4

0.592568295889989923 −0.763378994607420991

−2.069852675023231005 0.027157631288323441

A General Method of Finding New Symplectic Schemes 373

Table 14. The values of the parameters of the Forest–Ruth schemes FRl (l =
86, . . . , 90) obtained in the cases when d1 = 1/3 or d2 = 1/6

FRl ci di

FR86 d1 = 1/3 −1.061210383861491179 1/3

−0.124764893770052270 −0.283051205857396058

1.561210383861491179 0.690936406092486640

FR87 d1 = 1/3 0.105100678126442684 1/3

0.529988715863071753 0.502653125702352770

0.394899321873557316 −0.609454883379762706

FR88 d1 = 1/3 3.383237864740253990 1/3

−3.727448818616042444 1/6

3.082935363183809675 −0.615610764345786215

FR89 d2 = 1/6 −4.276220596064195618 −0.859926774390249674

−1.952856967612454919 1/6

3.168223353300535282 0.943721911449059608

FR90 d2 = 1/6 3.383237864740253990 1/3

−3.727448818616042444 1/6

3.082935363183809675 −0.615610764345786215

Table 15. The values of the parameters of the Forest–Ruth schemes FRl (l =
91, . . . , 94) obtained in the case when d2 is the parameter

FRl ci di

FR91 d2 = 1/2 −1.656461349913587036 −0.636061115269224549

−0.161698671975507331 1/2

1.728130415131394716 0.716119776115948032

FR92 d2 = 1/2 −0.927682804781144334 0.821495974995660855

0.567079873156935371 1/2

0.999351869998952014 −0.741437314148937372

FR93 d2 = 1/2 0.108591275285244788 0.339219840428187569

0.532722086799126630 1/2

0.388349357158891234 −0.616031036746662437

FR94 d2 = 1/2 2.293935572964878270 0.119753909827438190

−1.982466778384829536 1/2

1.023930342194913976 −0.926323914261688727

Table 16. The values of the parameters of the Forest–Ruth schemes FRl (l =
95, . . . , 98) obtained in the case when d3 is the parameter

FRl ci di

FR95 d3 = 2/3 0.193635546310194233 0.610720278963038252

−1.514131240893582026 −0.012201087465723859

2.266721524338190638 2/3

FR96 d3 = 2/3 −0.414351004195240352 0.579788510045530680

−0.062798023340654284 −0.494940129503867069

0.860535223163841919 2/3

FR97 d3 = 1/2 0.091689601485633373 0.729954875905782486

−0.045246631531655207 −0.410133860075899430

0.497436187438423795 1/2

FR98 d3 = 1/2 1.095187697120513955 1.250031937811706533

0.066378351994972941 −1.227061470621614945

−1.003038424429919768 1/2

374 E. V. Vorozhtsov and S. P. Kiselev

Table 17. The number of new schemes found in the Forest–Ruth family at the con-
sideration of each of the variables ci, di, i = 1, . . . , 4 as a parameter

Parameter c1 c2 c3 c4 d1 d2 d3 d4

Number of new schemes 28 25 10 12 15 4 4 0

Table 18. The residuals rmin and rmax for several schemes from the Forest–Ruth family

l rmin rmax l rmin rmax l rmin rmax

9 0 0 50 O(10−50) O(10−49) 73 O(10−50) O(10−49)

10 0 0 51 O(10−50) O(10−49)

27 O(10−50) O(10−49) 52 O(10−50) O(10−49)

Table 19. The values of the error functionals P
(l)
5,rms and X

(l)
5,rms for several schemes

from the Forest–Ruth family

l P
(l)
5,rms X

(l)
5,rms l P

(l)
5,rms X

(l)
5,rms l P

(l)
5,rms X

(l)
5,rms

9 6.3431 2.5624 47 0.0386 0.0708 52 0.0386 0.0708

10 4.6743 8.3036 50 0.0386 0.0708 55 0.0498 0.0915

42 0.0471 0.0876 51 0.0386 0.0708 59 0.0559 0.0550

Table 20. Errors δEmean, |δE|mean, and δr1,max at e = 0 and t = 7140h, h = 0.005
for the fourth-order Forest–Ruth methods from Tables 1, 2, and 9

Forest–Ruth scheme δEmean |δE|mean δr1,max

FR9 −1.878e − 14 1.878e − 14 4.636e − 13

FR3 −5.369e − 15 6.693e − 15 5.462e − 14

FR50 3.533e − 15 7.654e − 15 1.954e − 14

Table 21. Errors δEmean, |δE|mean, and δy1,mean at v0 = 0.15 for the fourth-order
Forest–Ruth methods from Tables 1, 2, and 9

Forest–Ruth scheme δEmean |δE|mean δy1,mean

FR9 3.292e − 9 3.292e − 9 − 3.542e − 6

FR3 9.684e − 10 9.684e − 10 − 8.455e − 7

FR50 1.226e − 10 1.284e − 10 1.714e − 7

A General Method of Finding New Symplectic Schemes 375

6 Conclusions

The problem of constructing higher-order symplectic integration techniques for
molecular dynamics problems with separable Hamiltonians is considered. A gen-
eral method for finding symplectic schemes of high order of accuracy using para-
metric Gröbner bases, resultants, and permutations of variables is proposed. The
implementation of the method is described by the example of four-stage parti-
tioned Runge–Kutta (PRK) schemes of the Forest–Ruth family. This method
has enabled us to find 96 new symplectic four-stage schemes in the Forest–Ruth
family. Among these schemes, several schemes have been found that are the best
in terms of the smallness of the leading term of the approximation error. It
turned out that the value of the error functional of the best of the two schemes
obtained earlier in [6] is 121 times greater than in the case of the new best PRK
schemes found in this paper.

All required symbolic calculations are performed using the computer algebra
system Mathematica. When searching for new schemes, it turned out to be effec-
tive to combine the technique of Gröbner bases with Sylvester’s resultants and
with permutations in the order of variables in the call of Mathematica function
that calculates the Gröbner basis.

We emphasize that the real solutions of polynomial systems found using the
technique described above do not exhaust the entire variety of solutions of these
systems, since in this paper we focused mainly on finding solutions to the original
polynomial system obtained using integer and rational roots of resultants, as well
as roots of quadratic multipliers of resultants. Further solutions can be found
with sufficient accuracy for applications by numerically solving the problems
of minimizing the functional, which takes into account the value of one of the
desired parameters, found using the resultants. This work is quite feasible and
can lead to even more accurate PRK schemes compared to those schemes that
were discovered in the framework of the study described above.

The presented study shows that before increasing the number of stages, it is
advisable to conduct a detailed search for optimal parameters of the scheme at
a fixed number of stages.

References

1. Adams, A.L., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies
in Mathematics, vol. 3. American Mathematical Society, Providence (1996)

2. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley-
Interscience, New York (1989)

3. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration.
CRC Press, Boca Raton (2016)

4. Cox, D., Little, J., O’shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
New York (1997). https://doi.org/10.1007/978-3-662-41154-4

5. Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry – Methods
and Applications. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
1100-6

https://doi.org/10.1007/978-3-662-41154-4
https://doi.org/10.1007/978-1-4612-1100-6
https://doi.org/10.1007/978-1-4612-1100-6

376 E. V. Vorozhtsov and S. P. Kiselev

6. Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Physica D 43, 105–117
(1990)

7. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-30666-8

8. Landau, L.D., Lifshitz, E.M.: Mechanics. Course of Theoretical Physics, vol. 1, 3rd
edn. Elsevier, Amsterdam (1976)

9. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Univer-
sity Press, Cambridge (2004)

10. Liang, J., Gerhard, J., Jeffrey, D.J., Moroz, G.: A new Maple package for solving
parametric polynomial systems. Commun. Comput. Algebra 43(3), 61–72 (2009)

11. Lichtblau, D.: Solving polynomial systems using numeric Gröbner bases. In: Dav-
enport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol.
10931, pp. 335–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96418-8 40

12. Sasaki, T., Kako, F.: Floating-point Gröbner basis computation with ill-
conditionedness estimation. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol.
5081, pp. 278–292. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87827-8 23

13. Soylu, R., Akbulut, M.B.: Extraneous roots and kinematic analysis of spatial mech-
anisms and robots. Mech. Mach. Theory 32(7), 775–788 (1997)

14. Vorozhtsov, E.V., Kiselev, S.P.: Comparative study of the accuracy of higher-order
difference schemes for molecular dynamics problems using the computer algebra
means. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2020. LNCS, vol. 12291, pp. 600–620. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60026-6 35

15. Vorozhtsov, E.V., Kiselev, S.P.: Optimal four-stage symplectic integrators for
molecular dynamics problems. In: Boulier, F., England, M., Sadykov, T.M.,
Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 420–441. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85165-1 24

16. Vorozhtsov, E.V., Kiselev, S.P.: Higher-order symplectic integration techniques for
molecular dynamics problems. J. Comput. Phys. 452, 110905 (2022). https://doi.
org/10.1016/j.jcp.2021.110905

17. Wilkinson, J.H.: The evaluation of the zeros of ill-conditioned polynomials. Part
1. Numerische Math. 1, 150–166 (1959)

18. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A
43(5–7), 262–268 (1990)

https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/978-3-319-96418-8_40
https://doi.org/10.1007/978-3-319-96418-8_40
https://doi.org/10.1007/978-3-540-87827-8_23
https://doi.org/10.1007/978-3-540-87827-8_23
https://doi.org/10.1007/978-3-030-60026-6_35
https://doi.org/10.1007/978-3-030-60026-6_35
https://doi.org/10.1007/978-3-030-85165-1_24
https://doi.org/10.1016/j.jcp.2021.110905
https://doi.org/10.1016/j.jcp.2021.110905

A Mechanical Method for Isolating
Locally Optimal Points of Certain

Radical Functions

Zhenbing Zeng1(B) , Yaochen Xu1,2 , Yu Chen1 , and Zhengfeng Yang3

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
zbzeng@shu.edu.cn

2 Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry
and Cell Biology, Chinese Academy of Science, Shanghai 200031, China

xuyaochen@sibcb.ac.cn
3 School of Software Engineering, East China Normal University,

Shanghai 200062, China
zfyang@sei.ecnu.edu.cn

Abstract. In this paper, we present a symbolic computation method
for constructing a small neighborhood U around a known local optimal
maximal or minimal point x0 of a given smooth function f : R

n →
R that contains radical or rational expressions of several variables, so
that x0 is also the global optimal point of f(x) restricted to the small
neighborhood U . The constructed small neighborhood can be used to
prove that f(x0) is the global optimum of f in a rather large region M
with U ⊂ M via exact numeric computation like interval evaluation and
branch-and-bound technology.

Keywords: Locally optimal points · Isolating algorithm · Radical
function · Symbolic computation

1 Introduction

In some geometric optimization problems, we want to calculate the maximal
value of a multivariate function f : Rn → R over some domain M ⊂ R

n which
contains radical (or rational, trigonometrical) expressions. Usually, the objective
function f is smooth, i.e., it has continuous derivatives up to any desired order
over M . Therefore, applying numerical experiments the de facto optimal point
of f can be observed with very big confidence, and it is also relatively easy to
verify that the optimal point x0 obtained from numerical searching is actually
a local optimal point, namely, the partial derivatives of f with respect to each
variable is zero at x0, and the Hessian matrix of f at x0 is positive-(semi-)
definite or negative-(semi-)definite. In many cases, the numerical computation
also shows that x0 is the unique local optimal point of the objective function,

Supported by National Natural Science Foundation of China (12171159, 12071282).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 377–396, 2022.
https://doi.org/10.1007/978-3-031-14788-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_21&domain=pdf
http://orcid.org/0000-0002-9728-1114
http://orcid.org/0000-0002-5039-2781
http://orcid.org/0000-0001-5902-8751
https://doi.org/10.1007/978-3-031-14788-3_21

378 Z. Zeng et al.

but a strict mathematical proof is hard due to intermediate expression swell in
symbolic computation.

For example, let Pi = (xi, yi, zi) (i = 1, 2, . . . , 6) be six points on the unit
sphere S2 and suppose we want to find the maximum of the sum of their pairwise
Euclidean distances, d =

∑
1≤i<j≤6 ||Pi − Pj ||2, where

||Pi − Pj ||2 =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

To avoid the manifold solution of this optimal problem generated by the rigid
movements on S2, we may assume that one point has been fixed at the North
Pole, and another point has been fixed on the prime meridian. Then, both of
Monte Carlo search and the grid search (see, e.g., [1,9,10]) show that the maxi-
mum of d is 22.9705 . . . ≈ 6+12

√
2, and the local optimal points are the following

unique ones:

(0, 0, 1), (0, 0,−1), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0).

To the best of our knowledge, no mathematical proof has been given to this
conjecture yet.

Generally, if x0 ∈ M is the unique local maximal point of a continuous
function f(x) formed by finitely many steps of the four basic arithmetic opera-
tions, the radical, the exponential, and the trigonometrical functions of n vari-
ables x1, x2, . . . , xn on a compact domain M ⊂ R

n, then, by interval evaluation
of f(x), we can construct a neighborhood

U(x) = [x1 − ε, x1 + ε] × [x2 − ε, x2 + ε] × · · · × [xn − ε, xn + ε] ⊂ M,

for any point x = (x1, x2, . . . , xn) ∈ M \ {x0}, where ε = ε(x) > 0 is dependent
on x, so that the upper bound of f(x) on U(x) is less than f(x0). If we can
also find a neighborhood U0 = U(x0) of x0 so that restricted on U(x0), f(x) ≤
f(x0), then we will get a family of neighborhood {U(x)|x ∈ M} that covers
the set M . According to the compactness of M , we would find a finite subset
{U1, U2, . . . , UN} of the family that satisfies

M ⊂ U(x0) ∪ U1 ∪ U2 ∪ · · · ∪ UN ,

and on each Ui, f(x) ≤ f(x0). Clearly, if we could generate all neighborhoods
U(x) for every point x ∈ M \{x0} in advance, then we would be able to produce
a proof to the original optimization problem. To utilize this idea on computer for
a machine proof, we may implement this through the following two procedures:

Procedure 1: isolate the local optimal point. Construct a function
g(x) which has x0 as the unique maximal point with g(x0) = f(x0), and a
neighborhood U0 of x0 that satisfies f(x) ≤ g(x) for x ∈ U0, and, therefore,
f(x) ≤ f(x0) on U0.

Procedure 2: ‘‘divide-and-conquer’’ outside the isolated regions.
Partition M \U0 into a sequence of cubes D1,D2, . . . , Dm in R

n where Di,Dj

have no common interior for 1 ≤ i < j ≤ m, and apply the interval evaluation

A Mechanical Method for Isolating Locally Optimal Points 379

(or grid interpolation) to estimate the upper bound u(Di) of f on each cube
Di(1 ≤ i ≤ m). If u(Di) ≥ f(x0) for some i(1 ≤ i ≤ m), then divide Di into 2n

smaller cubes Di,j (j = 1, 2, . . . , 2n) in R
n whose edge length is one half of that

of Di, and estimate the upper bounds u(Di,j) of f(x) on the newly obtained
cubes Di,j . Recursively do this until the upper bound of every cube DI pro-
duced in this process satisfies u(DI) < f(x0). This process will be terminated
after finitely many steps of subdivision provided supx∈M\U0

f(x) < f(x0), since
according to Taylor’s theorem, we have

f(x) = f(xc
DI

) + (x − xc
DI

)∇f(txc
DI

+ (1 − t)x)

≤ f(xc
DI

) +
√

n

2
edge(DI) · B0, (1)

for all x ∈ DI . Here xc
DI

is the barycenter of DI , t = t(x) ∈ [0, 1], edge(DI) is
the edge length of DI , and B0 is the following constant:

B0 = sup
x∈M\U0

√(
∂f

∂x1

)2

+
(

∂f

∂x2

)2

+ · · · +
(

∂f

∂xn

)2

< +∞,

and we may assume that the estimated upper bound u(DI) of f(x) on every
cube DI satisfies the following inequality

u(DI) ≤ f(xc
DI

) +
√

n

2
edge(DI) · B0. (2)

Therefore, if the subdivision cannot be completed in finite steps, we would get
a sequence Di,Di,j1 ,Di,j1,j2 , . . . , Di,j1,j2,...,jk (1 ≤ i ≤ m, 1 ≤ jk ≤ 2n, k =
1, 2, . . .) that satisfies u(DIk) ≥ f(x0) for DIk = Di,j1,j2,··· ,jk (k = 1, 2, · · ·),
which leads to

lim
k→∞

f(xc
Dk

) ≥ f(x0),

and contradicts the assumption sup
x∈M\U0

f(x) < f(x0).

To our knowledge, this approach to automated proof of inequalities was
suggested by Jingzhong Zhang in the late 1980s for proving an inequality of
Zirakzadeh (see [14] and [2]). A detailed description of Zhang’s method can be
found in [13] in Chinese. Later the method was used in [5] and [12] for prov-
ing two other geometric inequalities related to optimal distribution of points on
sphere and hemisphere. However, the technique of Procedure 1 is not described
in a general term in these case studies, so it is still difficult to apply the new
method to process other unsolved or complicated problems directly.

This paper is aiming to give a general symbolic algorithm of Procedure 1
for a class of smooth functions formed by a sum of several radical expressions.
Namely, assume that f : Rn → R has the following form:

f = c1
√

g1(x1, x2, . . . , xn) + · · · + ck

√
gk(x1, x2, . . . , xn),

380 Z. Zeng et al.

where c1, . . . , ck are real numbers and gj(x1, x2, . . . , xn) (j = 1, . . . , k) are poly-
nomials or rational functions of polynomials, and the point x0 ∈ R

n satisfies
the conditions

∂f

∂xi
(x0) = 0, i = 1, 2, . . . , n;

and

H0 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(x0)

is negative-semi-definite. We explain how to construct a quadratic form q(x) =
q(x1, x2, . . . , xn) and a neighborhood U0 ⊂ R

n of x0 so that

(1) q(x0) = f(x0), x0 is the unique maximal point of q(x), and
(2) f(x) ≤ q(x) for x ∈ U0.

Note that the methods of local analysis in [5,12,13] are implemented for triangu-
lar functions and some special radical functions. We shall present our algorithm
in a more general form. Actually, our algorithm gives a constructive approach
to a special case (for k = 0 or n) of the Morse Lemma (see, e.g., [3,7]), which
asserts that if f : R

n → R is a function of class C∞ for which x0 = 0 is a
non-degenerate critical point, namely ∇f(0) = 0 and the Hessian at x0 has triv-
ial kernel, then in some neighbourhood U of x0 there is a local C∞ coordinate
system, namely a C∞ diffeomorphism ϕ : U → V ⊂ R

n with ϕ(0) = 0 and such
that f̃ = f ◦ ϕ−1 takes the form

f̃(x) = f(0) − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n.

Several quantitative forms of the Morse Lemma can be found in [4,6,8,11], yet
a symbolic computation method cannot be directly derived from the literature.

The paper is organized as follows. In Sect. 2, we show how to find quadratic
bounds of an algebraic surface in the neighborhoods of a critical point; in Sect. 3,
we extend the method to rational and certain radical functions. In Sect. 4, we shall
apply the method to do local critical analysis for the spherical six-point problem.
The Maple computation in this paper is implemented on Maple version 18.00.

2 Quadratic Local Upper Bound of Polynomials

The following analytic definition of local optimal (extremum, maximal or mini-
mal) of a real-valued function can be found in any calculus text book.

Definition 1. A real-valued function f defined on a real-line is said to have a
local (or relative) maximum point at the point x0, if there exists some ε > 0
such that f(x) ≤ f(x0) when |x−x0| < ε. The value of the function at this point
is called maximum of the function. Similarly, a function has a local minimum
point at x0, if f(x) ≥ f(x0) when |x − x0| < ε. The value of the function at this
point is called minimum of the function.

A Mechanical Method for Isolating Locally Optimal Points 381

For functions of several variables, a neighborhood U(x0, ε) of the point x0 is used
to substitute the interval |x − x0| < ε. It is well known that the local extrema
can be found by Fermat’s theorem, which states that they must occur at critical
points (also called stationary points).

Theorem 1 (Fermat’s theorem). Let f : (a, b) → R be a function and
suppose that x0 ∈ (a, b) is a local maximum of f . If f is differentiable, then
f ′(x0) = 0. And exactly the same statement is true in higher dimensions.

One can distinguish whether a critical point is a local maximum or local
minimum by using the second derivative test. In calculus, the second derivative
test is a criterion for determining whether a given critical point of a function is
a local maximum or a local minimum using the value of the second derivative at
the point. The test states: if the function f is twice differentiable at a stationary
point x0, then

– If f ′′(x0) < 0 then f has a local maximum at x0.
– If f ′′(x0) > 0 then f has a local minimum at x0.
– If f ′′(x0) = 0, the second derivative test says nothing about the point x0.

For a function of more than one variable, the second derivative test generalizes to
a test based on the eigenvalues of the function’s Hessian matrix at the stationary
point. In particular, assuming that all second order partial derivatives of f are
continuous in a neighbourhood of a stationary point x0, and the eigenvalues of
the Hessian at x0 are all positive, then x0 is a local minimum. If the eigenvalues
are all negative, then x0 is a local maximum, and if some are positive and others
are negative, then the point x0 is a saddle point. If the Hessian matrix is singular,
then the second derivative test is inconclusive. Note that the second derivative
test concludes only the existence of a neighbourhood U0 of x0, where the function
f satisfies f(x) ≥ f(x0), or f(x) ≤ f(x0), for all points x ∈ U0.

It is easy to see that for a quadratic polynomial p(x) with n-variables, if
x0 = (0, 0, . . . , 0) ∈ R

n is a local maximum point, then

p(x) = p0 +
1
2
(x1, x2, . . . , xn)H0(x1, x2, . . . , xn)T ,

where p0 = p(0, 0, . . . , 0) and H0 is a negative-semi-definite symmetric matrix,
so under certain orthogonal transform of Cartesian coordinates

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) · P.

We may express the polynomial p using the new coordinates as

p(y1, y2, . . . , yn) = p0 +
1
2
(λ1y

2
1 + λ2y

2
2 + · · · + λny2

n), (3)

where P is an orthogonal matrix and λi ≤ 0 (i = 1, 2, . . . , n) are the eigenvalues
of H0, which also shows that x = 0 is the global optimal of p(x). In geometry,
this shows that in R

n+1, the algebraic surface

F := {(x1, x2, . . . , xn, z)|z − p(x1, x2, . . . , xn)} = 0

382 Z. Zeng et al.

lies at one side of the tangent space T0F : z = 0 of F at 0.
For polynomial p(x) of degree d ≥ 3, if x = 0 is a local maximum of p, then

there is a neighborhood U0 of 0 ∈ R
n so that in the local region U0 ×R ⊂ R

n+1,
the surface F : z − p(x) = 0 and the tangent space T0F can be separated by
a quadratic surface F1 : z − q(x) = 0, where q(x) is a quadratic polynomial
which has x = 0 as its maximal point, and therefore, the algebraic surface
z − p(x) = 0 lies under its tangent space at 0. We will show that the quadratic
polynomial can be constructed using symbolic computation. Namely, we have
the following result.

Theorem 2. Assume that p(x) = p(x1, x2, . . . , xn) is a polynomial of degree
d ≥ 3 and x = (0, 0, . . . , 0) is a local maximum of p(x) satisfying the condition
that the eigenvalues λ1, λ2, . . . , λn of the Hessian matrix of p(x) at x = 0 are
all negative. Then we can construct a neighborhood U0 of x = 0 and a quadratic
polynomial q(x1, x2, . . . , xn) satisfies

(i) q(0) = p(0),
(ii) ∂q

∂xi
= 0 for i = 1, 2, . . . , n,

(iii) the Hessian matrix H0(q) is negative-definite, and
(iv) p(x) ≤ q(x) for all x ∈ U0.

We may call q(x) in Theorem 2 a quadratic local upper-bound of polyno-
mial p(x). In order to prove this theorem, we need to consider the degree-j
homogeneous part of polynomial p(x) for each degree j ≥ 3. We have the fol-
lowing lemma.

Lemma 1. For any integer j ≥ 3 and homogeneous polynomial

hj(x1, x2, . . . , xn) =
∑

d1,d2,...,dn≥0
d1+d2+···+dn=j

cd1,d2,...,dn
xd1
1 xd2

2 · · · xdn
n ,

with real coefficients, then there exists constant numbers k1, k2, . . . , kn ≥ 0,
such that for any positive number N and for real numbers x1, x2, . . . , xn ∈
(−1/N, 1/N), the inequality

|hj(x1, x2, . . . , xn)| ≤ 1
jN j−2

(k1x2
1 + k2x

2
2 + · · · + knx2

n)

holds.

Proof. For any j, real numbers z1, z2, . . . , zj ∈ (−1/N, 1/N) and any combina-
tion (k, l) of 1, 2, . . . , j, we have

z1z2 · · · zj ≤ 1
2N j−2

(z2k + z2l). (4)

Construct this inequality for all
(

j
2

)
= j(j − 1)/2 two-member combinations of

1, 2, . . . , j, and sum up them to obtain
(

j

2

)

z1z2 · · · zj ≤ 1
2N j−2

(j − 1)(z21 + z22 + · · · + z2j).

A Mechanical Method for Isolating Locally Optimal Points 383

Therefore
z1z2 · · · zj ≤ 1

jN j−2
(z21 + z22 + · · · + z2j),

and

xd1
1 xd2

2 · · · xdn
n =

d1
︷ ︸︸ ︷
x1 · · · x1 ×

d2
︷ ︸︸ ︷
x2 · · · x2 × · · · ×

dn
︷ ︸︸ ︷
xn · · · xn

≤ 1
jN j−2

(d1x2
1 + d2x

2
2 + · · · + dnx2

n), (5)

for any monomial xd1
1 xd2

2 · · · xdn
n of degree j. Applying inequality (5) to each

monomial of the homogeneous polynomial hj(x1, x2, . . . , xn), we have

|hj | ≤
∑

d1+d2+···+dn=j

|cd1,d2,...,dn
xd1
1 xd2

2 · · · xdn
n |

≤
∑ 1

jN j−2
|cd1,d2,...,dn

|(d1x2
1 + d2x

2
2 + · · · + dnx2

n)

=
1

jN j−2

(
k1x

2
1 + k2x

2
2 + · · · + knx2

n

)
. (6)

Here k1, k2, . . . , kn are positive real numbers defined by

ki =
∑

d1+···+dn=j

di|cd1,d2,...,dj
|, i = 1, 2, · · · , n.

This completes the proof of Lemma 1. �

Remark 1. Taking Cj = max{k1, k2, . . . , kn}, then inequality (6) can be writ-
ten in the following simple form:

|hj(x1, x2, . . . , xn)| ≤ Cj

jN j−2
(x2

1 + x2
2 + · · · + x2

n). (7)

Now we give a proof of Theorem 2.

Proof. Let p0 = p(0), H0 be the Hessian matrix of p(x) at x = 0, and λ1, λ2,
. . . , λn the eigenvalues of H0. Then λi < 0 (i = 1, 2, . . . , n) according to the
assumption. We can express p as follows:

p(x) = p0 +
1
2
(x1, x2, . . . , xn)H0(x1, x2, . . . , xn)T

+ H3(x1, x2, . . . , xn) + · · · + Hd(x1, x2, . . . , xn), (8)

where Hj (j = 3, . . . , d) are homogeneous polynomials of degree j, respectively.
Applying Lemma 1, for each j (j = 3, . . . , d) we compute a sequence of

constants k
(j)
1 , k

(j)
2 , . . . , k

(j)
n that satisfy the following inequality

|Hj(x1, x2, . . . , xn)| ≤ 1
jN j−2

(k(j)
1 x2

1 + k
(j)
2 x2

2 + · · · + k(j)
n x2

n).

384 Z. Zeng et al.

For each N > 0, define a quadratic polynomial qN (x) as follows:

qN (x1,x2,. . . ,xn) = p0 +
1
2
(x1,x2,. . . ,xn)H0(x1,x2,. . . ,xn)T

+
d∑

j=3

1
jN j−2

(
k
(j)
1 x2

1 + k
(j)
2 x2

2 + · · · + k(j)
n x2

n

)
. (9)

It is clear that the requirements (i) and (ii) of Theorem 2 are satisfied, and the
requirement (iv), i.e., the inequality

p(x) ≤ p0 +
1
2
x · H0 · xT +

d∑

j=3

|Hj(x)| ≤ qN (x)

is also true for any x1, x2, . . . , xn ∈ (−1/N, 1/N) according to Lemma 1. To
see that the requirement (iii) is satisfied for sufficient large N , observe that the
Hessian matrix HqN (0) of qN (x) at x = 0 can be written as H0 + 2GN , where
GN is the diagonal matrix

⎛

⎜
⎜
⎜
⎝

g1(1/N)
g2(1/N)

. . .
gn(1/N)

⎞

⎟
⎟
⎟
⎠

,

where

gi(y) =
d∑

j=3

k
(j)
i

j
· yj−2, i = 1, 2, · · · , n.

Notice that λi < 0, k
(j)
i > 0 for all i, j (i = 1, 2, . . . , n; j = 3, · · · , d), so for each

i, the equation

1
2
λi + gi(y) =

1
2
λi +

k
(3)
i

3
· y + · · · +

k
(d)
i

d
· yd−2 = 0

has a unique positive real root y∗
i . Thus, if the number N satisfies

1
N

< min{y∗
1 , y

∗
2 , . . . , y

∗
n},

then the eigenvalues of H0 + 2GN , i.e., λi + 2gi(1/N) (i = 1, 2, . . . , n) are all
negative, and, therefore, the Hessian matrix of quadratic polynomials qN (x) is
negative-definite, as claimed in (iii).

Theorem 2 is proved. �
Remark 2. Let λ0 = max{λ1, λ2, . . . , λn} < 0 be the largest eigenvalue of H0,
Cj = max{k

(j)
1 , k

(j)
2 , . . . , k

(j)
n } for j = 3, · · · , d, and 1/N the smallest positive

real root of the following equation:

1
2
λ0 +

C3

3
·
(

1
N

)

+ · · · +
Cd

d
·
(

1
N

)d−2

= 0.

A Mechanical Method for Isolating Locally Optimal Points 385

Then, for any x2, x2, . . . , xn ∈ (−1/N, 1/N), we have

p(x) ≤ qN (x) ≤ p(0).

3 Local Critical Analysis of Rational and Radical
Functions

In this section, we explain how to extend the local critical analysis method to
rational functions and certain radical functions of several variables.

3.1 Rational Functions

The method we have described in Theorem 2 can be easily generalized to func-
tions f(x) = p(x)/q(x) where p(x) and q(x) are polynomials of x ∈ R

n. Let x0

be a local maximal (or minimal) point such that the Hessian matrix of f at the
point x0 is negative-definite (or positive-definite, respectively). Without loss of
generality, we may assume that x0 is a local minimal point of f(x) and q(x0) > 0.
Clearly, if q(x) is positive-definite, then the task of finding a neighborhood
U0 ⊂ R

n of x0 where
p(x)
q(x)

≥ f(x0),

for all x ∈ U0 can be simply transformed to finding the neighborhood U0 where

p(x) − f(x0) · q(x) ≥ 0,

for x ∈ U0, which is same as we have done in the previous section. If q(x) is
neither positive-definite nor negative-definite in certain known region, we need
first to construct such a neighborhood V0 of x0 so that q(x0) · q(x) > 0 for all
points x ∈ V0. To implement this work, we have the following theorem.

Theorem 3. Let q(x) be a polynomial in n variables of degree s, x0 a point in
R

n with x0 = (x∗
1, x

∗
2, . . . , x

∗
n), and q(x0) > 0,

K1 = max{| ∂q

∂xi
(x0)|, i = 1, 2, . . . , n} > 0,

K2 = max{| ∂2q

∂xi∂xj
(x0)|, 1 ≤ i, j ≤ n} > 0,

and

Kj = max{| ∂jq

∂xi1 . . . ∂xij

(x0)|, 1 ≤ i1, . . . , ij ≤ n} > 0,

for j = 3, . . . , s. Let δ0 be the unique solution of the equation

q(x0) = K1u +
1
2!

K2u
2 +

1
3!

K3u
3 + · · · +

1
s!

Ksu
s. (10)

Then, the inequality q(x) >0 is valid for any x = (x1,x2,. . ., xn) with

||x − x0||1 = |x1 − x∗
1| + |x2 − x∗

2| + · · · + |xn − x∗
n| < δ0.

386 Z. Zeng et al.

Proof. Let
u1 = x1 − x∗

1, u2 = x2 − x∗
2, . . . , un = xn − x∗

n,

and hj (j = 3, . . . , s) the homogeneous polynomials defined by

hj(u1,. . ., un) =
1
j!

[
n∑

i=1

ui
∂

∂x′
i

]j

q(x′
1,. . ., x

′
n)|x′

1=x∗
1 ,...,x′

n=x∗
n

=
1
j!

∑

d1+···+dn=j

(
j

d1, d2, . . . , dn

) n∏

i=1

(

ui
∂

∂x′
i

)di

q(x′)|x′=x0 .

Then, we may expand q(x) in a Taylor series at the point x0 as follows:

q(x1, x2, . . . , xn) = q(x∗
1, x

∗
2, . . . , x

∗
n)

+
[

u1
∂q

∂x1
+ u2

∂q

∂x2
+ · · · + un

∂q

∂xn

]

x1=x∗
1 ,...,xn=x∗

n

+
1
2!

[

u2
1

∂2q

∂x2
1

+ 2u1u2
∂2q

∂x1∂x2
+ · · · + u2

n

∂2q

∂x2
n

]

x1=x∗
1 ,...,xn=x∗

n

+ h3(u1, u2, . . . , un) + · · · + hs(u1, u2, . . . , un).

It is obvious that

abs

(

u1
∂q

∂x1
+ u2

∂q

∂x2
+ · · · + un

∂q

∂xn

)

x1=x∗
1 ,...,xn=x∗

n

≤ K1(|u1| + |u2| + · · · + |un|),
(11)

abs

[

u2
1

∂2q

∂x2
1

+ 2u1u2
∂2q

∂x1∂x2
+ · · · + u2

n

∂2q

∂x2
n

]

x1=x∗
1 ,...,xn=x∗

n

≤ K2(|u1|2 + 2|u1||u2| + · · · + |un|2)
= K2(|u1| + |u2| + · · · + |un|)2. (12)

For hj(u1, u2, . . . , un) (j = 3, . . . , s), we have

abs (h1(u1, u2, . . . , un))

≤ 1
j!

∑

d1+···+dn=j

(
j

d1, d2, . . . , dn

)(

Kj ·
n∏

i=1

(|ui|)di

)

=
1
j!

· Kj · [|u1| + |u2| + · · · + |un|]j . (13)

Therefore,

q(x) ≥ q(x0) − K1||x − x0||1 − 1
2
K2||x − x0||1

− 1
3!

K3||x − x0||21 · · · − 1
s!

Ks||x − x0||s. (14)

A Mechanical Method for Isolating Locally Optimal Points 387

which immediately implies that q(x) > 0 if ||x−x0||1 < δ0 and δ0 is the (unique)
real root of the equation (10).

Theorem 3 is proved. �

3.2 Sum of Radicals

Now we consider the radical functions of the following form:

f(x) = c1

√

1 +
p1(x)
q1(x)

+ c2

√

1 +
p2(x)
q2(x)

+ · · · + ck

√

1 +
pk(x)
qk(x)

, (15)

where pj(x) and qj(x) are the polynomials in n variables. We can prove the
following result.

Theorem 4. Assume that f(x) is function defined in (15), x0 = 0, and

pj(x0) = 0, qj(x0) > 0

for j = 1, 2, . . . , k. Then using symbolic computation we can construct a neigh-
borhood U0 of x0 and rational functions

h(x) =
k∑

j=1

cj +
P1(x)
Q1(x)

, g(x) =
k∑

j=1

cj +
P (x)
Q(x)

, (16)

where P1(x), Q1(x), P (x), Q(x) are polynomials such that

P1(0) = 0, P (0) = 0,

and
Q1(x) > 0, Q(x) > 0, h(x) ≤ f(x) ≤ g(x), (17)

for all x ∈ U0.

To prove this theorem, we need the following Lemma 2 and Lemma 3.

Lemma 2. For any real number x with −0.3777 < x < 0.7145, the following
inequality is true:

1 +
1
2
x − 5

32
x2 ≤ √

1 + x ≤ 1 +
1
2
x − 3

32
x2. (18)

�
Lemma 3. Assume that p(x) and q(x) are the polynomials in n variables x1, x2,
. . . , xn, x0 = (0, 0, . . . , 0) ∈ R

n, and

p(x0) = 0, q(x0) > 0.

Then for any ε > 0, we can find a constant δ = δ(ε) > 0 such that
√

x2
1 + x2

2 + · · · + x2
n < δ =⇒ −ε <

p(x1, x2, . . . , xn)
q(x1, x2, . . . , xn)

< ε

by symbolic computation.

388 Z. Zeng et al.

Proof. Indeed, the existence of the δ(ε) for each ε > 0 is guaranteed by the
continuity of p(x)/q(x) at the point x0 = 0. Here we show that δ(ε) can be
obtained by symbolic computation. For this purpose, we may assume that in
Theorem 3 we have a neighborhood

U0 := {(x1, x2, . . . , xn), |x1| + |x2| + · · · + |xn| < δ0}

that satisfies q(x) > q(0)/2 > 0 for all x ∈ U0. Assume deg(p) = r and

p(x) = x · ∇x=0p(x) +
1
2
x · H0x

T + h3(x) + · · · + hr(x),

here hj are homogeneous polynomials in x1, x2, . . . , xn for j = 3, . . . , r. Then
applying the method described in Lemma 1 and Remark 1 given in the previous
section, we can obtain constants Cj > 0 (j = 3, . . . , s) so that

|h3(x) + · · · + hr(x)| ≤
r∑

j=3

Cj

jN j−2
(x1

2 + x2
2 + · · · + xn

2) (19)

for all x ∈ R
n with x1, x2, . . . , xn ∈ (−1/N, 1/N) for any N > 0. Thus, for

(x1, x2, . . . , xn) ∈ U0, we have x1, x2, . . . , xn ∈ (−δ0, δ0), and inequality (19)
implies that

|h3(x) + · · · + hr(x)| ≤ C · (x1
2 + x2

2 + · · · + xn
2). (20)

Here

C =
r∑

j=3

Cj

j
δj−2
0 .

Let λ1, λ2, . . . , λn be the eigenvalues of H0, P the orthogonal matrix, (i.e.,
PT P = I) satisfying

H0 = PT · Λ · P = PT

⎛

⎜
⎜
⎜
⎝

λ1

λ2

. . .
λn

⎞

⎟
⎟
⎟
⎠

P,

and
(x′

1, x
′
2, . . . , x

′
n) = (x1, x2, . . . , xn)PT .

Then we have

|x · H0 · xT | = |xPT · Λ · PxT | = |x′Λ(x′)T |
= |λ1|x′2

1 + |λ2|x′2
2 + · · · + |λn|x′2

n

≤
√

λ2
1 + λ2

2 + · · · + λ2
n

(
x′
1
2 + x′

2
2 + · · · + x′

n
2
)

,

A Mechanical Method for Isolating Locally Optimal Points 389

Note that

λ2
1 + λ2

1 + · · · + λ2
n = tr(H0H

T
0) =

n∑

i=1

⎛

⎝
n∑

j=1

∂2p

∂xi∂xj

∂2p

∂xj∂xi

⎞

⎠

=
n∑

i,j=1

(
∂2p

∂xi∂xj

)2

= ||H0||2F ,

and

x′
1
2 + x′

2
2 + · · · + x′

n
2 = x′ x′T = xPT PxT = x2

1 + x2
2 + · · · + x2

n,

hence, we get

1
2
|x · H0 · xT | ≤ 1

2
||H0||F · (x2

1 + x2
2 + · · · + x2

n

)
. (21)

In view of the Cauchy–Schwarz inequality, we have

|x · ∇x=0p(x)| = |x1
∂p

∂x1
(0) + x2

∂p

∂x2
(0) + · · · + xn

∂p

∂xn
(0)|

≤ ||∇0p||2
√

x2
1 + x2

2 + · · · + x2
n. (22)

Here

||∇0p||2 =

√
√
√
√

n∑

i=1

(
∂p

∂xi
(0)
)2

.

Combining (20), (21), and (22), we obtain the following inequality

|p(x)| ≤||∇0p||2
√

x2
1 + x2

2 + · · · + x2
n

+
(

1
2
||H0||F + C

)
(
x2
1 + x2

2 + · · · + x2
n

)
. (23)

Therefore, if we take δ(ε) < min{δ0/
√

n, δ1}, where δ1 is the unique real root of

1
2
q(0)ε = ||∇0p||2 u +

(
1
2
||H0||F + C

)

u2,

then, from √
x2
1 + x2

2 + · · · + x2
n < δ(ε),

we have
|p(x)| <

1
2
q(0)ε

and |x1|+ |x2|+ · · ·+ |xn| <
√

nδ(ε) ≤ δ0, which implies that q(x) > q(0)/2 > 0,
and, therefore,

|p(x)
q(x)

| <
|p(x)|
1
2q(0)

< ε,

as claimed by Lemma 3. �

390 Z. Zeng et al.

Proof (Proof of Theorem 4). Without loss of generality, we may assume that
cj > 0 for j = 1, . . . , l and cj < 0 for j = l + 1, . . . , k. Then, applying Lemma 3
we can construct a neighborhood Uj so that

|pj(x)
qj(x)

| < 0.3777, qj(x) > 0

for each j (1 ≤ j ≤ k). Therefore, for point x ∈ U0 := U1 ∩U2 ∩ · · ·∩Uk, we have

f(x) ≤
∑

1≤j≤l

cj

(

1 +
pj(x)
2qj(x)

− 3pj(x)2

8qj(x)2

)

+
∑

l+1≤j≤k

cj

(

1 +
pj(x)
2qj(x)

− 5pj(x)2

8qj(x)2

)

=: g(x).

Let

P (x) := (g(x) − c1 − c2 − · · · − ck) · Q(x),

Q(x) := (lcm(q1(x)q2(x) · · · qk(x)))2 .

Then Q(x) > 0 for x ∈ U0 obviously, f(x) ≤ g(x) for x ∈ U0 as defined, and

g(0) =
∑

1≤j≤l

cj

(

1 +
pj(0)
2qj(0)

− 3pj(0)2

8qj(0)2

)

+
∑

l+1≤j≤k

cj

(

1 +
pj(0)
2qj(0)

− 5pj(0)2

8qj(0)2

)

= c1 + c2 + · · · + ck,

therefore, P (0) = 0.
The rational function h(x) and the polynomials P1(x) and Q1(x) can be

constructed by a similar computation. Theorem 4 is proved. �

Our goal is to process the situation when x0 = 0 is a local maximal or minimal
point of f . Namely, we wish that the upper-bound rational function g(x) (and
the lower-bound rational function h(x), resp.) constructed by Theorem 4 has
also taken the point x0 as the local maximal (minimal, resp.) point if it is a
local maximal (minimal, resp.) point of the original radical function f(x), which
means, g(x) satisfies the following properties:

– g′(0) = 0, and, at best,
– the Hessian matrix Hg(0) is negative-definite,

if x0 is, for example, a maximal point of f(x). To see this, we have

g′(0) =
k∑

j=1

(
1
2
cj − c′

j

8
· 2pj(0)

qj(0)

)(
qj(0)p′

j(0) − q′
j(0)pj(0)

qj(0)2

)

=
k∑

j=1

cj · p′
j(0)

2qj(0)
,

A Mechanical Method for Isolating Locally Optimal Points 391

here c′
j = 3cj for 1 ≤ j ≤ l and c′

j = 5cj for l + 1 ≤ j ≤ k. Meanwhile, we have

f ′(0) =
k∑

j=1

cj

[
qj(0)p′

j(0) − q′
j(0)pj(0)

]
/
[
qj(0)2

]

2 [1 + (p(0)/q(0))2]
=

k∑

j=1

cj · p′
j(0)

2qj(0)
,

which means that if x0 = 0 is a local optimal point of the radical function
defined by (15), then it is also a critical point of the upper-bound (or lower
bound) rational function g(x) (or h(x), resp.) obtained by Theorem 4.

Remark 3. Notice that x0 = 0 might not be a local maximal point of the
upper-bound rational function g(x) even if it is a local maximal point of f(x).
To ensure that

H0(f) is negative-definite =⇒ H0(g) is negative-definite,

we may need to refine inequalities (18) of Lemma 2. For example, we may use
the following inequality

√
1 + x ≤ 1 +

1
2
x − 1

8
x2 +

1
16

x3 (−1 < x < +∞), (24)

for cj (1 ≤ j ≤ l), and the inequality

√
1 + x ≥ 1 +

1
2
x − 1

8
x2 +

1
16

x3 − 1
16

x4 (−0.5161 < x < 3), (25)

for cj (l+1 ≤ j ≤ k). The upper-bound rational function g(x) generated by (24)
and (25) satisfies H0(g) = H0(f) since

∂2f

∂xi∂xj
=

∂2g

∂xi∂xj
(1 ≤ i, j ≤ n).

We omit its proof here.

4 Local Critical Analysis of the Spherical Six-Point
Problem

In this section, we discuss the optimization spherical point problem we have men-
tioned in Sect. 1. Recall that the numerical result says that best arrangement is

Γ6 := {(0, 0, 1), (0,−1, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0, 0,−1)} , (26)

up to certain rotation of the sphere. We will prove the following theorem.

Theorem 5. Assume that the six points P1, P2, . . . , P6 are placed on the unit
sphere S2 as follows:

P1 = (0, 0, 1), P2 = (0,−
√

1 − z22 , z2),

P3 = (
√

1 − y2
3 − z23 , y3, z3), P4 = (x4,

√
1 − x2

4 − z24 , z4),

P5 = (−
√

1 − y2
5 − z25 , y5, z5), P6 = (x6, y6,−

√
1 − x2

6 − y2
6),

392 Z. Zeng et al.

so that
− 1

22.9
≤ z2, y3, z3, x4, z4, y5, z5, x6, y6 ≤ 1

22.9
, z2 ≥ 0, (27)

then ∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2,

and the equality holds if and only if P1, P2, . . . , P6 are congruent to Γ6.

Proof. Without loss of generality, we may assume that

z2 =
2p

1 + p2
, y3 =

2q

1 + q2 + r2
, z3 =

2r

1 + q2 + r2
,

x4 =
2u

1 + u2 + v2
, z4 =

2v

1 + u2 + v2
,

y5 =
2s

1 + s2 + t2
, z5 =

2t

1 + s2 + t2
,

x6 =
2x

1 + x2 + y2
, y6 =

2y

1 + x2 + y2
,

where
−1/45.7 ≤ p, q, r, s, t, u, v, x, y ≤ 1/45.7, p ≥ 0.

Then, we have

d(Pi, Pj) =
{

2 ·√1 + wij , (i, j) ∈ {(1, 6), (2, 4), (3, 5)},√
2·√1 + wij , otherwise,

here wij are rational functions of p, q, r, s, t, u, v, x, y, for example,

w23 =
−2(p2q + 2 pr − q)

(p2 + 1) (q2 + r2 + 1)
, w24 =

−(p2 + 2 pv + u2 + v2)
(p2 + 1) (u2 + v2 + 1)

.

Applying inequality (24) we have
∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2 + G(p, q, r, s, t, u, v, x, y),

here
G =

∑

1≤i<j≤6

cij(
1
2
wij − 1

8
w2

ij +
1
16

w3
ij)

is a rational function and

cij =
{

2, for (i, j) ∈ {(1, 6), (2, 4), (3, 5)},√
2, otherwise.

Using Maple we obtain G = P/Q, where

Q = 8
(
p2 + 1

)3 (
q2 + r2 + 1

)3 (
u2 + v2 + 1

)3 · (s2 + t2 + 1
)3 (

x2 + y2 + 1
)3

,

A Mechanical Method for Isolating Locally Optimal Points 393

and the P = numer(G) is polynomial of degree 30 with 543, 609 monomials, of
which the least degree is 2. Therefore, we can write P as a sum of 29 homogeneous
polynomials as follows:

P = H2 + H3 + · · · + H30,

where H30 can be factorized into

H30 = −11 p6
(
x2 + y2

)3 (
u2 + v2

)3 (
s2 + t2

)3 (
q2 + r2

)3 ≤ 0.

The number of monomial in Hj(2 ≤ j ≤ 29) are:

34, 37, 217, 279, 947, 1221, 3165, 3885, 8142, 9559, 17033,

18977, 29766, 30993, 43117, 41763, 51880, 46416, 52178,

42108, 42910, 30102, 27244, 16388, 13536, 6080, 4544, 832.

Using Maple we can check that the quadratic form H2 is negative-definite. For
simplicity, we show this later.

Assume that p, q, r, . . . , x, y ∈ (−1/N, 1/N). Then, applying Lemma 1, we
can obtain the following inequalities:

|H3| ≤ J3 = 4
√

2(26 p2 + 35 q2 + 31 r2 + 35 s2 + 31 t2

+ 38u2 + 43 v2 + 38x2 + 44 y2)/3N,

|H4| ≤ J4 =
466

√
2 + 170
N2

· S9,

|H5| ≤ J5 =
2177
N3

· S9, . . . , |H29| ≤ J29 =
44743
N29

· S9,

here
S9 := p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2,

so J3, J4, . . . , J29 can be considered as quadratic forms with a parameter N . We
will show more information of Jk at the end of this section. Let J30 = 0. Then
H30 ≤ J30, and we can check that if N > 45.6866, H2 + (J3 + J4 + · · · + J30) is
also a negative-definite quadratic form. Therefore,

P =
30∑

k=2

Hk ≤ H2 +
30∑

k=3

Jk ≤ 0,

and ∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2,

for p, q, . . . , x, y ∈ (−1/45.7, 1/45.7), also for P1, P2, . . . , P6 that satisfy (27).
This proves Theorem 5. �

394 Z. Zeng et al.

Now we show that H2 is negative-definite. We can write H2 as follows.

H2 = 4(1 +
√

2)(p, q, r, s, t, u, v, x, y)A(p, q, r, s, t, u, v, x, y)T ,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 a 0 a 0 b 0 c
0 −1 0 b 0 c 0 0 a
a 0 −1 0 b 0 a −c 0
0 b 0 −1 0 −c 0 0 a
a 0 b 0 −1 0 a c 0
0 c 0 −c 0 −1 0 a 0
b 0 a 0 a 0 −1 0 −c
0 0 −c 0 c a 0 −1 0
c a 0 a 0 0 −c 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and
a =

√
2 − 2, b = 1 −

√
2, c =

√
2/2 − 1.

The characteristic polynomial of A is

f(λ) =
(
λ3 + 12λ

√
2 + 3λ2 + 27

√
2 − 15λ − 38

)

×
(
−λ2 + 2

√
2 λ − 5λ + 3

√
2 − 5

)
×
(
λ2 + λ + 5

√
2 − 7

)

×
(
λ − 4 + 3

√
2
)

×
(
−λ − 4 +

√
2
)

= 0.

Using Maple it is easy to see that f(λ) = 0 has 9 zeros and all of them are are
negative numbers. The largest one is

−1/2 + 1/2
√

29 − 20
√

2 ≈ −0.07699 · · · < 0.

Therefore, H2 is a negative-definite quadratic form.
To conclude the paper we show more details about Hk and Jk for k ≥ 3. As

for 4 ≤ k ≤ 29, the degree-k homogeneous polynomial Hk has more than 200
monomials, here we only show the cubic homogeneous polynomial H3 and the
construction of J3 and J4.

The cubic homogeneous polynomial H3 has 37 monomials, and all coefficients
have a common factor 4

√
2.

H3 = −4
√

2(4 px2 + py2 + 4 p2q + 4 p2s + p2y − 4u2y)

−q2u − 4 q2x − qu2 − 4 qv2 + 4 vx2 + vy2 + 4 ty2 − v2y − 4 r2u − r2x

+rx2 + 4 ry2 + s2u + tx2 + 4 s2x − su2 − 4 sv2 + 4 t2u + t2x

−4uvx + 4uxy + 4 qrv − 4 qry + 4 qxy − 4 sxy
��

−4 tuv − 4 pqr − 4 pst + 4 ruv + 4 stv − 4 sty
��������������������������������������

.

A Mechanical Method for Isolating Locally Optimal Points 395

We observe that there are two types of monomials in H4: those monomials
of the form c·w2

1w2 in the first three lines, and those monomials of the form
c·w1w2w3 in the last two lines (printed with underwave), where w1, w2, w3 ∈
{p, q, r, s, t, u, v, x, y} and wi �= wj for i �= j. Notice also that

−4
√

2(4px2 +
√

2py2) ≤ 0,

for p > 0. Applying the above inequality to the first two monomials (underlined)
of H3 and the following inequalities

cw2
1w2 ≤ |c|

3N
(2w2

1 + w2
2), cw1w2w3 ≤ |c|

3N
(w2

1 + w2
2 + w2

3)

to the remaining 35 monomials of H2 of corresponding types, we obtain the
upper bound quadratic form of H3.

J3 =
4
√

2
3N

(31p2 + 35q2 + 31r2 + · · · + 46x2 + 46y2).

For H4, the monomials can be classified into five types and for each type we
have its corresponding upper bound form as follows:

(1) monomials in the form c · w4
i , which upper bounds are c′w2

i /N2, with c′ =
max{0, c};

(2) monomials in the form c ·w2
i w2

j , which upper bounds are c′(w2
i +wj)/(2N2),

with c′ = max{0, c};
(3) monomials in the form c·w3

i wj , the corresponding upper bounds are |c|(3w2
i +

w2
j)/(4N2);

(4) monomials in the form c · w2
i wjwk, their upper bounds are |c|(2w2

i + w2
j +

w2
k)/(4N2);

(5) monomials in the form c · wiwjwkwl,their upper bounds are |c|(w2
i + w2

j +
w2

k + w2
l)/(4N2).

where c ∈ R and wi, wj , wk, wl ∈ {p, q, r, . . . , x, y}. For obtaining tighter upper
bound, we have taken

c′ =
{

0, if c < 0,
c, otherwise,

in the first two cases. Therefore, we obtain the following result:

J4 =
452

√
2 + 170
N2

p2 +
374

√
2 + 168
N2

q2 + · · · +
490

√
2 + 72

N2
y2.

The largest coefficient of J4 is (466
√

2 + 170)/N2, thus we have

J4 ≤ 466
√

2 + 170
N2

(p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2).

Similarly, we have

Jk ≤ ck

Nk−2
(p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2)

396 Z. Zeng et al.

for k = 5, 6, . . . , 29, where we can take integer ck as follows:

2177, 9031, 21156, 61636, 121551, 284559, 476083, 938831, 1425542, 2280819,

3167178, 4135346, 5315958, 5594346, 6708463, 5568363, 6210033, 3953535,

4035347, 1890122, 1715600, 543585, 421574, 70800, 44743.

Clearly,

P = H2 + H3 + H4 + · · · + H29 + H30

≤ H2 + (J3 + J4 + · · · + J29) =: P ′(N, p, q, r, . . . , x, y).

It is easy now to use Maple to verify that P ′(N, ·) is negative-definite.

Acknowledgments. We are grateful to the anonymous reviewers of the ISSAC 2022
and the CASC 2022 for their insightful comments and helpful suggestions, both on
mathematics and language aspects, to our manuscripts.

References

1. Berman, J., Hanes, K.: Optimizing the arrangement of points on the unit sphere.
Math. Comput. 31(140), 1006–1008 (1977)

2. Bollobas, B.: An extremal problem for polygons inscribed in a convex curve. Can.
J. Math. 19, 523–528 (1967)

3. Bott, R.: Lectures on morse theory, old and new. Bull. Amer. Math. Soc. (N. S.)
7, 331–358 (1982)

4. Chattopadhyay, A., Vegter, G., Yap, C.K.: Certified computation of planar Morse-
Smale complexes. J. Symb. Comput. 78, 3–40 (2017)

5. Hou, X.: Spherical Distribution of 5 points with maximal distance sum. Discrete
Comput. Geom. 46, 156–174 (2011)

6. Loi, T.L., Phien, P.: The quantitative Morse theorem. Int. J. Math. Anal. 6(10),
481–491 (2012)

7. Morse, M.: The Calculus of Variations in the Large, vol. 18. American Mathemat-
ical Society Colloquium Publications, New York (1934)

8. Schur, V.: A quantitative version of the Morse lemma and ideal boundary fixing
quasiisometries. J. Funct. Anal. 264(3), 815–836 (2013)

9. Stolarsky, K.B.: Sums of distances between points on a sphere. Proc. AMS 35(2),
547–549 (1972)

10. Stolarsky, K.B.: Sums of distances between points on a sphere II. Proc. AMS 41(2),
575–582 (1973)

11. Yomdin, Y.: The geometry of critical and near-critical values of differentiable map-
pings. Math. Annal. 264, 495–515 (1983)

12. Zeng, Z., Lu, J., Xu, Y., Wang, Y.: Maximizing the sum of the distances between
four points on the unit hemisphere. In: Janičić, P., Kovács, Z. (eds.) Electronic
Proceedings in Theoretical Computer Science, vol. 352, pp. 27–40 (2021)

13. Zeng, Z., Zhang, J.: A mechanical proof to a geometric inequality of Zirakzadeh
through rectangular partition of polyhedra. J. Syst. Sci. Math. Sci. 30(11), 1430–
1458 (2010)

14. Zirakzadeh, A.: A property of a triangle inscribed in a convex curve. Can. J. Math.
16, 778–786 (1964)

Author Index

Abramov, S. A. 18
Asadi, Mohammadali 29

Banshchikov, Andrei V. 51
Blinkov, Yuri A. 103
Brandt, Alexander 29
Brauße, Franz 62

Charalambous, Hara 83
Chen, Yu 377
Collins, Pieter 62

del Río, Tereso 300
Deveikis, Algirdas 103
Dong, Mingyu 124

England, Matthew 300

Góźdź, Andrzej 103
Gusev, Alexander A. 103

Hess, Peter O. 103

Imbach, Rémi 143
Irtegov, Valentin 165

Jeffrey, David J. 29
Jinadu, Ayoola 185

Kalinina, Elizaveta 206
Karagiannis, Kostas 83
Karanikolopoulos, Sotiris 83
Khmelnov, D. E. 18
Kiselev, Sergey P. 353
Kontogeorgis, Aristides 83

Lange-Hegermann, Markus 225

Maza, Marc Moreno 29, 246
Monagan, Michael 185
Mou, Chenqi 124

Nuspl, Philipp 268

Pan, Victor Y. 143
Pȩdrak, Aleksandra 103
Pillwein, Veronika 268
Prokopenya, Alexander 288

Robertz, Daniel 225
Ryabenko, A. A. 18

Takahashi, Daisuke 318
Titorenko, Tatiana 165

Uteshev, Alexei 206

Verschelde, Jan 333
Vinitsky, Sergue I. 103
Viswanathan, Kylash 333
Vorozhtsov, Evgenii V. 353
Vrahatis, Michael N. 1

Wang, Linxiao 246

Xu, Yaochen 377

Yang, Zhengfeng 377

Zeng, Zhenbing 377
Ziegler, Martin 62

	 Preface
	 Organization
	 Implementation Techniques for Power, Laurent, and Puiseux Series in Several Variables (Abstract of Invited Talk)
	 Contents
	Survey on Generalizations of the Intermediate Value Theorem and Applications
	1 Introduction
	2 Generalizations of the Intermediate Value Theorem
	2.1 Definitions and Notations
	2.2 Bolzano's Intermediate Value Theorem
	2.3 Bolzano-Poincaré-Miranda Intermediate Value Theorem
	2.4 Intermediate Value Theorem for Simplices

	3 Applications of the Intermediate Value Theorems
	3.1 Bisection Method
	3.2 Generalized Bisection Methods
	3.3 Generalized Method of Bisection for Simplices
	3.4 Locating and Computing Periodic Orbits

	4 Synopsis
	References

	On Truncated Series Involved in Exponential-Logarithmic Solutions of Truncated LODEs
	1 Introduction
	2 Truncated Equations
	3 Truncated Solutions
	4 The Case of Exponential-Logarithmic Solutions
	5 Automatic Confirmation of the Solutions Truncation Degree Maximality
	6 Conclusion
	References

	Subresultant Chains Using Bézout Matrices
	1 Introduction
	2 Fraction-Free LU Decomposition
	2.1 Smart-Pivoting in FFLU Algorithm
	2.2 Parallel FFLU Algorithm
	2.3 Experimentation

	3 Bézout Subresultant Algorithms
	3.1 Bézout Matrix and Subresultants
	3.2 Speculative Bézout Subresultant Algorithms
	3.3 Experimentation

	References

	Application of Symbolic-Numerical Modeling Tools for Analysis of Gyroscopic Stabilization of Gyrostat Equilibria
	1 Introduction
	2 Construction of a Symbolic Model and Stability Conditions
	3 Parametric Analysis
	3.1 Investigated Relative Equilibrium Positions
	3.2 The Gyroscopic Stabilization of Equilibrium (5)
	3.3 The Gyroscopic Stabilization of Equilibrium (6)

	4 Conclusion
	References

	Computer Science for Continuous Data
	1 Introduction and Motivation
	2 Computable Continuous Data Types
	2.1 Formal Numerical Software Engineering
	2.2 Kleene Logic Data Type, Generalized Sierpiński Topology
	2.3 Enrichment/Promises
	2.4 Multivaluedness/Non-extensionality
	2.5 Examples
	2.6 More Continuous Data Types

	3 New Numerical Programming
	3.1 Analytic Programming
	3.2 Implementations
	3.3 Example ERC Programs
	3.4 Advanced and Upcoming ERC Programs
	3.5 Verification/Testing

	4 Coding Theory
	4.1 Quantitative Coding Theory of Compact Metric Spaces
	4.2 Encoding Advanced Spaces in Analysis

	5 Complexity Theory of Continuous Data
	5.1 Computational Complexity of Continuous Data
	5.2 Algorithmic Random Sampling of Continuous Data

	6 From Theory to Applications via Practice
	6.1 Software Library
	6.2 Hardware Acceleration
	6.3 User Interface
	6.4 Computer Analysis System
	6.5 Experimental Transcendental Mathematics

	References

	Computational Aspects of Equivariant Hilbert Series of Canonical Rings for Algebraic Curves
	1 Introduction
	1.1 Equivariant Hilbert Series
	1.2 Petri's Theorem

	2 Equivariant Hilbert Series of Canonical Rings
	3 The Case of Fermat Curves
	3.1 The Polynomials fQ,V(T)
	3.2 The Polynomials fQ0,V(T)
	3.3 The Polynomials fQ1,V(T)

	4 Implementation and Examples
	5 Appendix - The Ramification Data of Fermat Curves
	References

	Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei
	1 Introduction
	2 The Statement of the Problem and Subroutines
	2.1 The Representation of the Wave Functions in Coordinate Space
	2.2 -Dependent Part of the Basis States
	2.3 Wave Function for Degree of Freedom KL()
	2.4 Gram–Schmidt Orthogonalization of the Functions KL()
	2.5 The Normalized Components Fn()
	2.6 Hamiltonian Matrix Elements and Algebraic Eigenvalue Problem
	2.7 Matrix Elements "426830A '' L | cosm(3) | L "526930B
	2.8 Matrix Elements "426830A '' | | "526930B

	3 Benchmark Calculations of GCM for 186Os Nucleus
	3.1 The Example of Calculations of Eigenenergies ELn (in MeV)
	3.2 The Quadrupole Moment Q and Transitions B(E2)
	3.3 Matrix Elements [2]n2,n1(L2,L1) and [[2][2]][2]n2,n1(L2,L1)
	3.4 Matrix Elements "426830A 11L1 | [2] | 22L2 "526930B
	3.5 Matrix Elements "426830A 11L1 | [[2][2]][2] | 22L2 "526930B
	3.6 An Example of Calculations of The Qn(L)(in eb) of 186Os
	3.7 An Example of Calculations of the B(E2) (in e2b2) of 186Os
	3.8 Finding the Optimal Basis Parameters ch7Troltenier1991

	4 Conclusions
	A Appendix. Sets of Input Parameters for Atomic Nuclei
	B Appendix. Boundary Value Problem for GCM Model
	References

	Analyses and Implementations of Chordality-Preserving Top-Down Algorithms for Triangular Decomposition
	1 Introduction
	2 Preliminaries
	2.1 Triangular Set and Triangular Decomposition
	2.2 Sparse Triangular Decomposition Based on Chordal Graphs

	3 Chordality in Top-Down Triangular Decomposition
	4 When is the Chordality Destroyed?
	4.1 Simplifying a Polynomial Set with Its Binomials
	4.2 Simplifying a Polynomial System with Binomials
	4.3 Reducing Inequation Polynomials with a Polynomial in the Triangular Set
	4.4 Reducing a Triangular System with a Polynomial in the Triangular Set
	4.5 Analysis on the Four Operations

	5 Chordality-Preserving Implementations and Experiments
	5.1 Removing Chordality-Destroying Operations
	5.2 Further Optimization with Dynamic Checking
	5.3 Chordality-Preserving Implementations for SimSer and TriSer Functions

	6 Concluding Remarks and Future Work
	References

	Accelerated Subdivision for Clustering Roots of Polynomials Given by Evaluation Oracles
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Structure of the Paper
	1.4 Definitions and Two Evaluations Bounds

	2 Power Sums and Cauchy Sums
	2.1 Approximation of the Power Sums
	2.2 Computation of Cauchy Sums
	2.3 Approximating the Power Sums s0,s1, …, sh

	3 Exclusion Test and Root Counters
	3.1 Root Counting with Known Isolation
	3.2 Cauchy Exclusion Test
	3.3 Cauchy Root Counter

	4 Root Radii Algorithms
	4.1 Approximation of the Largest Root Radius
	4.2 Approximation of the (d+1-m)-th Root Radius

	5 A Compression Algorithm
	6 Two Cauchy Root Finders
	6.1 Subdivision Loop
	6.2 Output Verification

	7 Experiments
	8 Conclusion
	References

	On Equilibrium Positions in the Problem of the Motion of a System of Two Bodies in a Uniform Gravity Field
	1 Introduction
	2 The Lagrange Function and the Equations of Motion
	3 Finding Stationary Solutions and IMs
	3.1 The Usage of Stationary Conditions
	3.2 The Usage of the Equations of Motion

	4 On the Stability of Solutions
	5 Conclusion
	References

	An Interpolation Algorithm for Computing Dixon Resultants
	1 Introduction
	2 Dixon Resultants
	3 Modified Interpolation Using Kronecker Substitution
	3.1 Partial Degrees of A=f/g in Each Variable
	3.2 Algorithm by Cuyt and Lee
	3.3 Kronecker Substitution
	3.4 Bad Evaluation Points

	4 The Dixon Resultant Algorithm
	5 Implementation Notes and Benchmarks
	5.1 Speeding Up Evaluation of the Dixon Matrix
	5.2 Timings

	6 Conclusion
	References

	Distance Evaluation to the Set of Matrices with Multiple Eigenvalues
	1 Introduction
	2 Algebraic Preliminaries
	3 Distance Equation and Perturbation Matrix
	4 Singular Values
	5 Distance via Matrix Eigenvalues
	5.1 Symmetric Matrix
	5.2 Skew-Symmetric Matrix
	5.3 Orthogonal Matrix

	6 Conclusions
	References

	On Boundary Conditions Parametrized by Analytic Functions
	1 Introduction
	2 Gaussian Processes
	3 Solution Sets of Operator Equations
	4 Parametrizations
	5 Rings of Differential Operators over Differential Algebras
	6 Module-Theoretic Constructions
	7 Parametrizing Boundary Conditions
	7.1 Boundary Conditions for Function Values of Single Functions
	7.2 Boundary Conditions for Derivatives and Vectors

	8 Examples
	References

	Computing the Integer Hull of Convex Polyhedral Sets
	1 Introduction
	2 Preliminaries
	3 Two Core Constructions of our Algorithm
	3.1 Normalization
	3.2 Partitioning

	4 Integer Hull of a 2D Polyhedral Set
	4.1 Algorithm
	4.2 An Example

	5 Integer Hull of a 3D Polyhedral Set
	5.1 Algorithm

	6 Implementation and Experimentation
	6.1 The Maple Implementation
	6.2 The C/C++ Implementation

	7 Conclusion and Future Work
	References

	A Comparison of Algorithms for Proving Positivity of Linearly Recurrent Sequences
	1 Introduction
	2 Preliminaries
	2.1 Linear Recurrence Sequences
	2.2 Characteristic Polynomial
	2.3 Positivity

	3 Algorithms
	3.1 Algorithm 1
	3.2 Algorithm 2
	3.3 D-finite Reduction
	3.4 Classical Algorithm for Sequences with Unique Dominant Eigenvalue
	3.5 Combination of Algorithm 1 and Algorithm 2
	3.6 Decomposition into Non-degenerate Sequences

	4 Comparison
	4.1 Test Set
	4.2 SageMath Implementation
	4.3 Mathematica Implementation

	5 Conclusions
	References

	Stability Analysis of Periodic Motion of the Swinging Atwood Machine
	1 Introduction
	2 Model Description
	3 Periodic Solution
	4 Stability Analysis
	4.1 Computing the Monodromy Matrix
	4.2 Characteristic Multipliers

	5 Conclusion
	References

	New Heuristic to Choose a Cylindrical Algebraic Decomposition Variable Ordering Motivated by Complexity Analysis
	1 Introduction
	1.1 Cylindrical Algebraic Decomposition
	1.2 CAD Variable Ordering
	1.3 Plan of the Paper

	2 Previous Heuristics
	2.1 The Brown Heuristic
	2.2 The sotd Heuristics

	3 Our New Proposed Heuristics
	3.1 Heuristic Motivated by a Complexity Analysis: mods
	3.2 Creating a Greedy Version of mods
	3.3 Heuristic Motivated by Expected Number of Cells

	4 Experiments and Benchmarking
	4.1 Benchmarking
	4.2 Evaluation Metrics
	4.3 Metrics and Expensive Heuristics

	5 Results and Analysis
	5.1 Expensive Heuristics: sotd vs mods
	5.2 Cheaper Heuristics: gmods vs brown
	5.3 Expensive vs Cheap Approach: mods vs gmods

	6 Final Thoughts
	6.1 Conclusions
	6.2 Future Work

	References

	An Implementation of Parallel Number-Theoretic Transform Using Intel AVX-512 Instructions
	1 Introduction
	2 Number-Theoretic Transform (NTT)
	3 Vectorization of NTT Kernels
	4 Parallel Implementation of Number-Theoretic Transform
	5 Performance Results
	6 Conclusion
	References

	Locating the Closest Singularity in a Polynomial Homotopy
	1 Introduction
	2 Monomial Homotopies
	2.1 A Square Root Homotopy
	2.2 Two Paths Ending in a Cusp
	2.3 A Random 4-Dimensional Monomial Homotopy

	3 Asymptotic Expansions
	4 Fourier Series
	5 Polynomial Homotopies
	5.1 The Last Pole
	5.2 Homotopy Reconditioning

	6 Computational Experiments
	6.1 Ojika's First Example
	6.2 One Fourfold Root of Cyclic 9-Roots

	7 Conclusions
	References

	A General Method of Finding New Symplectic Schemes for Hamiltonian Mechanics
	1 Introduction
	2 Governing Equations
	3 Symplectic Partitioned Runge–Kutta Schemes
	4 Forest–Ruth Scheme
	4.1 The General Case

	5 Kepler's Problem
	6 Conclusions
	References

	A Mechanical Method for Isolating Locally Optimal Points of Certain Radical Functions
	1 Introduction
	2 Quadratic Local Upper Bound of Polynomials
	3 Local Critical Analysis of Rational and Radical Functions
	3.1 Rational Functions
	3.2 Sum of Radicals

	4 Local Critical Analysis of the Spherical Six-Point Problem
	References

	Author Index

