
Dissertation

Computation of Approximate Border Bases
and Applications

Dipl.-Inf. Univ. Jan Limbeck

Eingereicht an der Fakultät für Informatik und Mathematik

der Universität Passau als Dissertation zur Erlangung des

Grades eines Doktors der Naturwissenschaften

Submitted to the Department of Informatics and Mathematics

of the University of Passau in Partial Ful�lment of the Requirements

for the Degree of a Doctor in the Domain of Science

Betreuer / Supervisor:

Prof. Dr. Martin Kreuzer

Lehrstuhl für Mathematik mit Schwerpunkt Symbolic Computation

Universität Passau

Zweitgutachter / Second Assessor:

Prof. Dr. Tomas Sauer

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung

Universität Passau

January 2014

Computation of Approximate Border Bases

and Applications

Dissertation

Dipl.-Inf. Univ. Jan Limbeck

4th January 2014

Supervisor: Professor Dr. Martin Kreuzer

Chair of Symbolic Computation

University of Passau, Germany

Second Assessor: Professor Dr. Tomas Sauer

Chair of Mathematics

University of Passau, Germany

v

Contents

1 Introduction 1

1.1 Motivation . 2
1.2 Main Results . 3
1.3 Outline of the Thesis . 9

2 Mathematical and Algorithmic Foundation 13

2.1 Notation . 13
2.2 Basic De�nitions from Algebra . 15
2.3 Basic De�nitions from (Numerical) Linear Algebra 17
2.4 Measuring Computational Cost . 30

2.4.1 Runtime of Basic Linear Algebra Algorithms 30
2.5 Canonical Matrix Factorisations . 31

2.5.1 PLURQ Decomposition . 31
2.5.2 Schur Decomposition . 35
2.5.3 QR Decomposition . 35
2.5.4 Eigendecomposition . 37
2.5.5 Jordan Normal Form . 38
2.5.6 Singular Value Decomposition (SVD) . 40

2.6 Moore-Penrose Pseudoinverse . 41
2.7 Numerical Stability . 43

2.7.1 Arithmetic with Floating Point Numbers 44
2.7.2 Condition of a Problem and Stability of Algorithms 46

2.8 QR Decomposition via Householder Triangularisation 51
2.9 Computation of Eigenvalues and Eigenvectors . 55

2.9.1 The General Eigenvalue Problem . 55
2.9.2 The Hermitian Eigenvalue Problem . 64

2.10 The (Linear) Least Squares Problem . 73
2.11 Solutions of the Inhomogeneous Least Squares Problem 75
2.12 Conditioning of the Least Squares Problem . 77
2.13 Solutions of the Homogeneous Least Squares Problem 81

3 Border Bases 87

3.1 Exact Border Bases . 87

vi Contents

3.2 Numerical Stability of Border Bases . 91
3.3 A�ne Point Sets . 92
3.4 The Buchberger-Möller Algorithm for Border Bases 93

3.4.1 Runtime Analysis of the Buchberger-Möller Algorithm 97
3.4.2 Implementation in ApCoCoA . 103
3.4.3 Basis Transformation . 103

4 The AVI/ABM Family of Algorithms 107

4.1 Approximate Border Bases . 108
4.2 The AVI Algorithm . 109

4.2.1 Runtime analysis of the AVI algorithm . 112
4.2.2 Shortcomings of the AVI algorithm . 113
4.2.3 Implementation in ApCoCoA . 114

4.3 The ABM Algorithm . 115
4.3.1 Runtime Complexity of the ABM Algorithm 123
4.3.2 Enhancing the Numerical Stability of the ABM Algorithm 129
4.3.3 Shortcomings of the ABM Algorithm . 131
4.3.4 A Modi�ed ABM Algorithm and a Practical Error Bound 131
4.3.5 Implementation in ApCoCoA . 133

4.4 Approximation by Polynomial Functions . 134
4.4.1 The Extended ABM Algorithm . 137
4.4.2 Runtime Complexity of the Extended ABM Algorithm 141
4.4.3 Enhancing the Numerical Stability of the Extended ABM Algorithm . . . 142
4.4.4 Shortcomings of the Extended ABM Algorithm 143
4.4.5 Implementation in ApCoCoA . 143

4.5 The BB ABM Algorithm . 144
4.5.1 Runtime Complexity of the BB ABM Algorithm 150
4.5.2 Shortcomings of the BB ABM Algorithm 151
4.5.3 Implementation in ApCoCoA . 151

4.6 Practical Considerations and Extensions . 151
4.6.1 Subideal Variants . 152

4.7 Comparison with other Approaches . 155
4.7.1 Approximate H-Bases . 155
4.7.2 The SOI Algorithm . 161
4.7.3 The Numerical Buchberger-Möller Algorithm (NBM) 165
4.7.4 Numerical Comparison . 167

5 The Rational Recovery Problem 171

5.1 Multiplication Matrices for Border Bases . 172
5.2 The Eigenvector Algorithm . 181
5.3 Simultaneous Quasi-Diagonalisation . 190

5.3.1 Building Blocks . 192
5.3.2 Choice of Parameters in the Shear Transformation 200

Contents vii

5.3.3 Choice of Parameters in the Unitary Transformation 211
5.3.4 The SIMQDIAG Algorithm . 237
5.3.5 Parameter Choice for Real Input Data . 238
5.3.6 Comparison with other Approaches . 242

5.4 A Sum of Squares Heuristic for the Rational Recovery Problem 244
5.4.1 The Polak-Ribière Conjugate Gradient Algorithm 249

6 Applications 255

6.1 Revealing Polynomial Relations in Real Data . 256
6.1.1 Finding Speci�c Relations . 258

6.2 Seismic Imaging . 261
6.2.1 Basic Principles of Seismic Wave Propagation 261
6.2.2 Established Methods . 262
6.2.3 Recovery of the Velocity Field using the Extended ABM Algorithm 264
6.2.4 Examples . 265

6.3 Revealing Unconventional Geological Structures 271
6.3.1 Approximation of Geological Structures using the ABM Algorithm 271

6.4 Stable Computation of Polynomial Roots . 273

7 Conclusions and Outlook 275

8 Appendix 281

8.1 Overview of Functions Which Were Implemented in ApCoCoA 281
8.2 Pseudo Code . 295

Bibliography 299

1

1
Introduction

Contents

1.1 Motivation . 2

1.2 Main Results . 3

1.3 Outline of the Thesis . 9

This thesis deals with challenges associated with the computation of approximate border bases,
a generalisation of border bases, in the context of the Algebraic Oil Research Project ([1]). The
concept of approximate border bases was introduced by Kreuzer, Poulisse et al. in [28], as
an e�ective mean to derive physically relevant polynomial models from measured data. The
main advantage of this approach compared to alternative techniques currently in use in the (oil)
industry is its power to derive polynomial models without additional a priori knowledge about the
underlying physical system and its robustness with respect to noise in the measured data. One
main result of [28], the so-called Approximate Vanishing Ideal (AVI) algorithm which can be used
to compute approximate border bases, served as a starting point for further research which was
conducted in this thesis. An aim of our work is to broaden its applicability to additional areas in
the oil industry, like seismic imaging and the description of unconventional geological structures.
For this purpose several new algorithms, where each one focuses on a speci�c task, are developed.
The numerical aspects of the algorithms, which are a major concern for practical applications, are
analysed in detail and a solid foundation of the underlying mathematical concepts is provided.
A further contribution to the subject of approximate border bases is the achievement to improve
the runtime of the core algorithms signi�cantly, by modifying strategies known from literature
that are capable of updating matrix factorisations in such a way that they are applicable in
our setting. Finally, we compare our approach to the approximate H-basis algorithm of Sauer,
which was presented in [41], and to the SOI and NBM methods which were proposed by Abbott,
Fassino, et al. in [34] and [35], three other state of the art algorithms that are concerned with
similar problems. For all three algorithms we compare the computed results and in the case of
the SOI and NBM methods we also compare the computational performance. Further details
and some conclusions are contained in Section 1.2, where we present our main results.

Approximate border bases - no matter how useful they are in practice - have one important
disadvantage: they currently lack an extensive body of theory behind them. One approach to

2 Chapter 1. Introduction

mitigate this problem is addressed in this work, namely the approach to construct �close by�
exact border bases. To achieve this, we establish a link between this task, called the rational
recovery problem here, and the problem of simultaneously quasi-diagonalising a set of complex
matrices. As simultaneously quasi-diagonalising a set of matrices is not a standard topic in
numerical linear algebra, we introduce and study a new algorithm for this purpose that is based
on the classical Jacobi eigenvalue algorithm. Additionally, we motivate a second solution of the
rational recovery problem via the minimisation of a sum of squares expression.

1.1 Motivation

The modelling of complex physical systems and their mathematically accurate description are
a major concern for industrial companies that want to understand, in�uence, and ultimately
control, physical processes and systems. The determining quantities in such processes can include
temperatures, pressures, concentrations of chemical substances, conductivity and valve settings
to name just a few. Understanding the relations between these quantities in such a system is
in general a non-trivial task and requires profound knowledge about the laws of physics and the
problem at hand. The more complex these systems become in terms of the number of parameters
they involve, the more di�cult it gets to understand their behaviour. Therefore, it is desirable if
some of these relations, e.g. the polynomial ones, can be found in an automated way. Polynomial
approximation is a classical attempt in this direction, but it is unable to �nd back all polynomial
relations that exist between the measured quantities. Successful attempts in this direction were
made by Sauer in [41], using the concept of approximate H-Bases, and by Kreuzer, Poulisse et
al. in [28], using the concept of approximate border bases. Based on the work of the latter, we
further improve the AVI algorithm, in form of the ABM and extended ABM algorithms, which
are both numerically more robust and are also applicable to new contexts.
One such context that is for instance very relevant to the oil industry is the �eld of seismic
imaging. It is mostly concerned with visualising the geological structures in the subsurface.
This process is usually carried out by performing a seismic survey, which is created using an
arti�cial acoustic source and an array of �geophones� which measure and record the re�ections
of the acoustic waves from the underground. These shot records are then processed to generate
pictures of the subsurface. Most of the methods that are in use today and that do not rely
on a full inversion of the wave equation, which models the propagation of the acoustic wave
in the subsurface, make strong assumptions about the geometry of the underground. These
assumptions are mainly necessary in current methods to achieve convergence and a reasonable
runtime. However, they may be unrealistic in practice and lead to wrong results. Thus it is
desirable to explore new techniques that are more data driven than the procedures which are
currently available. For this purpose we investigate in detail how our new algorithms, the ABM
and the extended ABM algorithm, can be applied to seismic imaging.

Of both theoretical and practical interest is the rational recovery problem. As mentioned before,
it is concerned with the construction of an exact border basis in the vicinity of a given approx-
imate one. Once we have computed an exact border basis we are in the favourable situation
that we can apply standard techniques from computer algebra. However, the techniques which

1.2. Main Results 3

we propose for this purpose are also of value when we are dealing with essentially exact bor-
der bases that were computed in �oating point arithmetic (for instance when speed is a major
concern). This speci�c topic was also investigated by Stetter in his book Numerical Polynomial
Algebra ([49]), who also gave an overview of the currently existing techniques. It turns out
that our method of simultaneous quasi-diagonalisation is numerically superior compared to the
approaches that are advocated by Stetter in his book.

1.2 Main Results

Before we can present the main results of this thesis we need to clarify the setting in which we
operate. Let P = K [x1, ..., xn] with K = R or K = C be the polynomial in n indeterminates
over the real or complex numbers and let X = {p1, ..., ps} ⊂ Kn be a �nite set of points. It is
well-known that once we �x a term ordering σ on the monoid of terms Tn in P , we can compute
a Gröbner basis or a border basis of the vanishing ideal I (X) of X in P with the help of suitable
variants of the Buchberger-Möller (BM) algorithm. Without a term ordering it is also possible
to compute an H-basis of I (X) with a speci�c variant of the BM algorithm. In particular, we
are interested in a system of generators of I (X) because all polynomial relations between the
coordinates of the points in X can be expressed in this way. Suppose that X contains some
�characteristic� measurements of an unknown or partially unknown physical process that can
be described (or at least well approximated) by polynomials in the coordinates of the points
in X . Then it is possible to study this process via I (X) . Speci�cally, we are interested in low
degree and possibly sparse polynomials in the vanishing ideal of X , as these can be more easily
�interpreted� in the context of the physical system. However, in real world applications, we are
facing a signi�cant complication, due to the presence of measurement errors in X which makes
it virtually impossible to �nd low degree polynomials in I (X) . This has the consequence that
the classical versions of the BM algorithm are not particularly well-suited if the points in X
are �noisy�. For this purpose Kreuzer, Poulisse et al. have extended the concept of (exact)
border bases to approximate border bases in [28]. This extension to approximate input data
allows to retrieve low degree polynomial relations among the coordinates of X that hold only
approximately. An algorithm that is capable of computing such an approximate border basis is
the Approximate Vanishing Ideal (AVI) algorithm that was proposed in [28]. Before we are able
to sketch the main results of this thesis concerning approximate border basis, let us introduce
them more formally (compare also De�nition 4.1.4). Let O = {t1, ..., tµ} be an order ideal
consisting of terms in Tn , let ∂O = {b1, ..., bν} be its border, and let G = {g1, ..., gν} be an O -
border prebasis of the ideal I = 〈g1, ..., gν〉 in P . So, each gj is of the form gj = bj −

∑µ
i=1 cijti

with cij ∈ K . For every pair (i, j) such that bi and bj are neighbours in ∂O , compute the
normal remainder S

′
ij = NRO,G (Sij) of the S-polynomial of gi and gj with respect to G. The

set G is an ε-approximate O -border basis of the ideal I if ‖S′ij‖ ≤ ε for all such pairs (i, j) ,
where ‖S′ij‖ is the Euclidean norm of the coe�cient vector of S

′
ij .

In Chapter 4 of this thesis, three newly developed algorithms that are capable of comput-
ing approximate border bases, namely the Approximate Buchberger-Möller (ABM), the Bor-
der Basis (BB) ABM, and the extended ABM algorithm are presented and discussed in detail.

4 Chapter 1. Introduction

These algorithms are, just like the AVI algorithm, also variants of the BM algorithm for border
bases (18) but adapted to inexact input data. The most important di�erences and improvements
over speci�c properties of the AVI algorithm are pointed out, proven, and illustrated with ex-
amples. To be able to better present these results, we brie�y explain some basic properties of
the AVI and of the BM algorithm.
The AVI algorithm processes iteratively all polynomials of a degree at a time and uses the sin-
gular value decomposition (see De�nition 2.5.31) extensively in order to compute the almost
vanishing polynomials that make up the resulting approximate border basis. The original ver-
sion of the Buchberger-Möller algorithm that was proposed in [21] proceeds term by term and
uses the (exact) kernel of a matrix in order to compute the (exactly) vanishing polynomials.
The modi�cation to proceed degree by degree was introduced in the AVI algorithm mainly to
achieve competitive performance for industrial size datasets, as the computation of the SVD is
a rather expensive tool of numerical linear algebra. One consequence of this approach is that
the ε-approximate kernel (see De�nition 4.1.5) may have dimension greater than one. The bor-
der prebasis structure (see De�nition 3.1.7) of the polynomials in the approximate border basis
makes it necessary to compute a reduced row echelon form of the vectors in the approximate
kernel. This is the only way to make sure that each polynomial in the approximate border basis
contains a unique border term. The computation of such a reduced row echelon form is numer-
ically a delicate matter. In order to overcome this issue, Kreuzer et al. have suggested a method
(compare Algorithm 20) that is built upon QR decomposition via Gram-Schmidt orthonorm-
alisation. One consequence of this numerically stabilised RREF computation is that it is only
possible to state an upper bound in terms of the input parameters for the Euclidean norm of
the evaluation residual of the polynomials in the approximate border basis with respect to X .
Given X = {p1, ..., ps} , small numbers ε > τ > 0 and a degree compatible term ordering σ

on Tn , the AVI algorithm computes two sets G = {g1, ..., gν} and O = {t1, ..., tµ} . The authors
of [28] could show that for each gi ∈ G the inequality ‖evalX (gi)‖2 < ε

√
ν + τν (µ+ ν)

√
s

holds. This bound depends on the input parameters ε and τ , the number of input points, the
size of the order ideal and the size of G . For example, if G contains 16 elements, which is a
rather modest size, then the evaluation residual may already grow by a factor of 4. It should
be noted that these are worst case estimates. Nevertheless, the bound obtained in this way may
be impractical for some applications that require us to choose large values of ε . Furthermore,
the deviation of the computed approximate border basis from an exact border basis depends
signi�cantly on ‖evalX (gi)‖2 (compare Claim 4 of Theorem 4.2.2). If the terms are processed
term by term, it is possible to state a clean and simple upper bound. However, as pointed out
before, this results in a high computational cost because the SVD has to be computed for each
term that is considered.
The ABM algorithm addresses this problem by recasting the problem of computing the ε-
approximate kernel of a matrix via the SVD to the problem of solving a related homogeneous
least squares problem (see De�nition 2.10.2 and Section 2.13). The problem can thus be stated
as a Hermitian eigenvalue/eigenvector problem. This di�erent characterisation allows us to treat
each term individually with only a minor performance penalty. This is possible by utilising the
special structure present in the Hermitian matrices which have to be decomposed in each itera-

1.2. Main Results 5

tion in which we have to solve a homogeneous least squares problem (see Remark 4.3.10). With
this �updating� procedure we achieve a cubic runtime in the number of input points, whereas the
total runtime would have been in O

(
s4
)
if we would have computed a SVD for each new term.

So, while we maintain competitive performance, we manage to establish a tight direct bound on
the polynomials in the set G computed by the ABM algorithm. In Theorem 4.3.1 we manage to
show that ‖evalX (gi)‖2 ≤ ε for each gi ∈ G , given the same input data as in the AVI algorithm.
This also yields a sharper upper bound for the deviation of the computed approximate border
basis from an exact one.
Additionally, the numerical stability of the method and of the computed solutions is analysed in
detail. The corresponding result is contained in Theorem 4.3.7. This analysis is based on the
foundations that are laid in Chapter 2 and more speci�cally in Subsection 2.9. Note, that these
numerical aspects were not considered in [28]. Nevertheless they are important for practical
applications, as unstable solutions need to be detected and handled with care in the presence of
inexact input data.
Furthermore, the ABM algorithm is applicable to complex input data X ⊂ Cn , a case which
was also not covered in [28]. The necessary results from the literature are also introduced in
Chapter 2. This generalisation is rather straightforward, but it is also an important requirement
for practical applications, for instance when working with Fast Fourier transformed (FFT) input
data, which allows us to �nd polynomial relations in the frequency domain.
The AVI and the ABM algorithm are particularly useful if we want to investigate the approx-
imate polynomial relations that exist between the coordinates of the points in X . However,
the application of both algorithms is no longer straightforward if one wants to decide if one
speci�c measurement is a (multivariate) polynomial function in other measurements. The com-
plications that may arise, and a possible solution, the extended ABM algorithm, are discussed
in Section 4.4. The extended ABM algorithm takes as input again X and ε ≥ 0 but addition-
ally a set of 1-dimensional points V = {v1, ..., vs} ⊂ C and an additional parameter τ ≥ 0 .
The algorithm can be seen as a true �extension� of the ABM algorithm, as it still computes
an approximate border basis with respect to X in form of sets G and O but additionally it
also computes a (possibly empty) set of polynomials H = {h1, ..., hκ} such that for each hi

we have
∥∥evalX (hi)− Vtr

∥∥ ≤ τ (see Theorem 4.4.3). So, the polynomials in H together with
the polynomials in G allow us to characterise essentially all polynomials that approximate V
when evaluated on X . In this way, the extended ABM algorithm provides additional control
over the modelling process by guaranteeing a tight bound on the residual error of the computed
model polynomials for V . Therefore, it increases the chances, compared to the AVI and ABM
algorithms, to obtain a physically sensible polynomial model. Consider Section 6.1 for further
implications and details.
Another important accomplishment of the extended ABM algorithm is that it enables us to re-
use the matrix factorisations that are utilised to compute the polynomials in the set G also to
construct the polynomials in the set H (compare Remark 4.4.9). In this way the extended ABM
algorithm does not su�er a signi�cant slow down compared to the ABM algorithm and therefore,
it can still be applied to industrial size datasets. Moreover, we could show in Proposition 4.4.8
that the algorithm is in O

(
s3
)
if it is implemented in a sensible way. The details about this

6 Chapter 1. Introduction

speci�c aspect are contained in Subsection 4.3.1.
Furthermore, we were also able to establish a theoretical bound that concerns the sensitivity
of the polynomials hi with respect to perturbations in the input data. In Theorem 4.4.3 we
show that the condition number (see De�nition 2.7.9) for the solution of the inhomogeneous
least squares problem, via which we obtain the coe�cients of the polynomials hi , is bounded

by s·‖X‖Dmax
ε +

(
s·‖X‖Dmax

ε

)2
√

1− (‖V‖−τ)2

‖V‖2

/
‖V‖−τ
‖V‖ , where ‖X‖max denotes the maximal absolute

coordinate of the points in X and where D is an additional input parameter of the algorithm
that speci�es the maximally allowed degree for the resulting polynomials in H .
In Section 4.5, we present a third algorithm, the so-called Border Basis (BB) ABM algorithm.
It is built around the idea to use (ordinary) least squares to construct the almost vanishing
polynomials that was originally proposed by C. Fassino in [29]. However, Fassino described an
algorithm that computes an approximate Gröbner basis, which turned out to be a numerically
challenging undertaking. In contrast, our BB ABM algorithm tries to compute an approx-
imate border basis in form of sets G and O . The algorithm takes as input a �nite set of
points X , ε ≥ 0 , and a term ordering σ on Tn . By construction, we have for each polynomial gi
in G the bound ‖evalX (gi)‖ ≤ ε . Furthermore, we were able to show in Theorem 4.5.3 that
the polynomials in G form a δ -approximate border basis with δ = ε

ζ (2 ‖X‖max + γν) , where

ζ = εs−1
√
s
s−2

Πsi=2(
√
i‖X‖i−1

max)
and γ =

√
s
s−1

Πsi=2(
√
i‖X‖s+i−1

max)
εs−1 . Even though an upper bound in terms

of the input parameters exists, it is unfortunately most of the time impractically large.
Finally, we compare the algorithms that we have developed to some other state of the art ap-
proaches in Section 4.7 that are concerned with the solution of similar problems. For this purpose,
we brie�y explain the approximate H-basis of algorithm of Sauer in Subsection 4.7.1 and the SOI
and NBM of C. Fassiono in Subsections 4.7.2 and 4.7.3. We evaluate the quality of the computed
results of the ABM algorithm, of the approximate H-basis algorithm, and of the SOI and NBM
algorithm. In the case of the SOI and NBM algorithm, we also compare the computational
performance, as there are implementations of the algorithms publicly available in the CoCoA
library ([19]). The experimental data (see Tables 4.1 and 4.2) give strong evidence that the ABM
algorithm signi�cantly outperforms the SOI and NBM algorithm while delivering comparable or
even superior results.

In Chapter 5 two novel solutions to the rational recovery problem, which is concerned with con-
structing an exact O -border bases in the vicinity of a given approximate O -border basis, are
presented. More speci�cally this means that for a given approximate O -border basis
G = {g1, ..., gν} we want to construct an exact O -border basis G̃ = {g̃1, ..., g̃ν} such that
Σν
i=1 ‖gi − g̃i‖2 is �possibly� small, where ‖·‖ is the norm of the coe�cient vector of a polyno-

mial. Even though it is possible to formulate this problem as a constrained optimisation problem
which can be solved with global minimisation techniques, this procedure becomes already too
time consuming for rather small values of n and ν . Therefore we do not require to �nd a G̃ such
that Σν

i=1 ‖gi − g̃i‖2 is minimal, we are rather satis�ed if we obtain a value of Σν
i=1 ‖gi − g̃i‖2

which is small enough for a particular application.
Before we are able to state our contributions to this subject, let us brie�y mention a characterisa-
tion of border bases in terms of commuting matrices. Let P = C [x1, ..., xn] , let O = {t1, ..., tµ}

1.2. Main Results 7

be an order ideal, and let G be an O -border basis for a 0-dimensional ideal I . It was ori-
ginally shown by Mourrain in [25] that an O -border basis can also be characterised via its
associated (formal) multiplication matrices A1, ..., An ∈ Matµ (C) (see De�nition 5.1.1). The-
orem 5.1.3 states that an O -border prebasis G is a border basis of 〈G〉 if AiAj = AjAi for all
1 ≤ i < j ≤ n . Furthermore, if 〈G〉 is a radical ideal it is well-known that the multiplication
matrices can be simultaneously diagonalised (see Theorem 5.1.10). With the help of this simul-
taneous diagonalisation of A1, ..., An it is possible to obtain a numerical approximations of the
roots of 〈G〉 . This idea was originally brought up by Auzinger and Stetter in [48]. It can be
used to solve the rational recovery problem if G is (essentially) an exact border basis that was
computed in �oating point arithmetic, i.e. G is a δ -approximate border basis where δ is in the
order of the machine accuracy εmachine (see De�nition 2.7.4). For this purpose we present the
so-called Eigenvector algorithm (30) that is based upon the idea of simultaneous diagonalisation.
Furthermore, we show by example that it produces inadequate solutions for larger values of δ .
Similarly, we show in Theorem 5.1.15 that approximate border bases can also be characterised
via their associated multiplication matrices. Suppose that G is an O -border prebasis, then G

is a δ -approximate O -border basis if we have ‖(AjAi −AiAj) ek‖ ≤ δ for all 1 ≤ i < j ≤ n and
1 ≤ k ≤ µ , where ek is the k -th unit vector in Cµ . Consequently we have adapted the concept
of simultaneous diagonalisation to approximate border bases. Our �rst major contribution to
this subject is the idea to compute a simultaneous quasi-diagonalisation of the multiplication
matrices associated with an approximate O -border basis. As it is no longer possible to simultan-
eously diagonalise the involved matrices, we try to construct iteratively a basis transformation
matrix V ∈ GLµ (C) such that V −1AiV is close to a diagonal matrix for all 1 ≤ i ≤ n . Please
consider Subsection 5.3.1 for details. Via similar techniques as in the Eigenvector algorithm we
can extract a set of points X = {p1, ..., pµ} from the quasi-diagonal matrices V −1AiV that can
be used as input for the Buchberger-Möller algorithm for border bases. The resulting border
basis is then transformed using the border basis transformation algorithm (19). In this way, we
can construct a new exact border basis with respect to the given order ideal O .
As the computation of a simultaneous quasi-diagonalisation for a set of general matrices is a non-
standard subject in numerical linear algebra, we have investigated that problem in more detail in
Section 5.3. Algorithms in the literature are scarce and most of the time they can only be applied
to special cases such as Hermitian or normal matrices (compare [62]). Other algorithms, like the
one proposed by Fu and Gao in [53], are only applicable to real matrices and tend to lack proper
proofs of convergence. Therefore it was unfortunately not possible to just pick one algorithm
from the literature and to apply it to our problem. Hence, we propose a new algorithm, based
on the classical Jacobi eigenvalue algorithm, that is capable of computing a simultaneous quasi-
diagonalisation of a set of general complex matrices. Furthermore, we also prove convergence of
this method in Theorem 5.3.23. The central idea of the algorithm is to apply a sequence of unit-
ary and non-unitary similarity transformations simultaneously to the matrices Ai such that after
each iteration the common squared departure from normality (see De�nition 5.2.11) is reduced
via the non-unitary transformations and the common squared departure from diagonality (see
De�nition 5.3.7) of the matrices is reduced via the unitary transformations. If we accumulate
the similarity transformations we obtain the matrices V and V −1 . Like Eberlein in [59] for the

8 Chapter 1. Introduction

case of one matrix, we apply a sequence of shear (non-unitary) and unitary rotation matrices.
The exact de�nitions of those matrices can be found in 5.3.8 and 5.3.9. Both are determined
by the row p and column q that they operate on, as well as by two real valued parameters.
A major achievement of this thesis was to show via some lengthy computations how to choose
those parameters in such a way that each iteration decreases the common squared departure
from normality and from diagonality. The result concerning the shear rotation matrix is con-
tained in Theorem 5.3.17, and the result concerning the unitary rotation matrix is contained in
Theorem 5.3.22.
The simultaneous quasi-diagonalisation algorithm is not limited to cases where the matrices
cannot be exactly simultaneously diagonalised. As it turns out, it also provides additional nu-
merical stability where traditionally a diagonalise-one-then-diagonalise-the-others (DODO) ap-
proach would have been used. This method �rst diagonalises one matrix and then applies the
same similarity transformations to the other matrices. However, if we use all matrices simultan-
eously to determine the similarity transformations, it is clear that we gain additional numerical
stability compared to working on one matrix alone. Of course, our method is computationally
more expensive than the DODO approach, therefore, a tradeo� between runtime and accuracy
has to be made.
So, if we come back to the rational recovery problem, in the case that the involved multiplication
matrices are exact or are computed in �oating point arithmetic and therefore only almost exact,
we can use the simultaneous diagonalisation algorithm as a stable and e�cient means to compute
an approximation of the zero set of the underlying ideal.
Finally, we give some numerical evidence which demonstrates that the presented algorithm is
both fast and numerically stable in comparison with current state of the art simultaneous diag-
onalisation algorithms like the one of Fu and Gao ([53]).
The second solution to the rational recovery problem that we present in Section 5.4 is a heuristic
that tries to �nd the local minima of a sum of squares expression, which we obtain directly
from the polynomials in the approximate O -border basis G = {g1, ..., gν} . The idea is rather
straightforward and can be explained easily if we assume for a moment that K = R . First, we
form the sum of squares expression S =

∑ν
i=1 g

2
1 . Then, the local minima of S serve as candid-

ates for the zero set of the exact O -border basis that we again reconstruct with the help of the
Buchberger-Möller algorithm and the border basis transformation algorithm. Even though S is
a sum of squares expression, it is computationally a non-trivial task to �nd all local minima.
For this purpose, we present a local optimisation approach that is speci�cally tailored to our
situation and based on the Polak-Ribière conjugate gradient algorithm (34). A more general
version of this idea also working for K = C is explained in Section 5.4. Finally, we present a few
computations that show the potential of the heuristic method.

Some of the theoretical improvements that we achieve with the new algorithms were necessary
prerequisites to allow new industrial applications. In Section 6.2, for instance, we present a new
data driven approach to seismic imaging that is based on the extended ABM algorithm. In
contrast to existing methods, it requires hardly any a priori assumptions about the subsurface
structure. We explain the basic methodology and demonstrate it on a few synthetic examples.
Even though the method is promising, it still requires the development of a surrounding frame-

1.3. Outline of the Thesis 9

work in order to be fully competitive with established techniques.

1.3 Outline of the Thesis

In Chapter 2 we try to give a rather comprehensive overview of all the mathematical concepts
and results which are used for the development and analysis of the main results of this thesis.
After introducing some basic notations in Section 2.1, we continue with recalling some funda-
mental concepts and de�nitions from algebra in Section 2.2. Starting with Section 2.3, we refresh
the knowledge of the reader about concepts of numerical linear algebra which are crucial for the
development and analysis of the algorithms presented later on. This includes the de�nitions
of vector and matrix norms together with their properties as well as properties of Hermitian
matrices and some �rst basic results about the eigenvalues and eigenvectors of both general and
Hermitian matrices.
The e�ciency of an algorithm and its precise analysis are also crucial for industrial applications
and applications in general that deal with large input datasets. For this reason we brie�y recall
the so-called Big O notation in Section 2.4 that allows us to measure the asymptotic complexity
of algorithms.
In Section 2.5 we introduce the most common matrix factorisations that are used in numer-
ical linear algebra, and which we will either use in the proofs of some theoretical properties or
which we will use as an algorithmic component inside some algorithms like the singular value
decomposition (SVD). We also present the not so well-known PLURQ decomposition which is
closely related to the reduced row echelon form of a matrix and which we will use to update the
kernel of a matrix once a new column is added. This allows us to improve the runtime of the
Buchberger-Möller algorithm for border bases.
As a next step we recall in Section 2.6 the de�nition and the properties of the Moore-Penrose
pseudoinverse of a matrix. It will turn out to be relevant to us as it generalises the concept
of the inverse of a matrix to non-square matrices and is closely related to the solution of the
homogeneous least squares problem. The numerical stability of algorithms plays a crucial role
in industrial algorithms, therefore we want to put our analysis on a solid foundation and we
introduce the relevant concepts from numerical linear algebra that relate both to the condition
of a problem and to the accuracy of an algorithm in Section 2.7.
Next, we explain the concept of Householder re�ectors and how they can be utilised to com-
pute a QR decomposition of a general matrix in an e�cient and stable way. As eigenvalues and
eigenvectors and the question how they can be economically and stably computed are crucial
for understanding and analysing the numerical properties of the ABM family of algorithms, we
cover this topic extensively in Section 2.9. We present the basic version of the QR-algorithm
that is based on the QR decomposition and which can be applied to general matrices as well
as the Divide&Conquer eigenvalue algorithm that proves useful for Hermitian matrices. These
details are important as some of the optimisations which we propose for the ABM family of
algorithms require a deep understanding of the available techniques and in which context they
can be applied.
In Section 2.10 we present the inhomogeneous and the homogeneous least squares problem. The

10 Chapter 1. Introduction

following section explains in detail how the inhomogeneous least squares problem can be solved
and how it is related to the Moore-Penrose pseudoinverse. Finally, we present a well-known the-
orem about the conditioning of the inhomogeneous least squares problem in Section 2.12. This
result will be used later in the analysis of the properties of the extended ABM algorithm. The
introductory chapter is concluded by some elaborations about the solution of the homogeneous
least squares problem and how it can be computed e�ectively. The algorithm that follows from
the theoretical characterisation forms the core of the standard version of the ABM algorithm.

Chapter 3 explains the concepts behind exact border bases, their characterisation and properties
in detail, as they are essential for understanding the generalisation to approximate border bases.
Even though this also serves as preparation for Chapters 4, 5, and 6, which contain our main
results, we have separated this part from Chapter 2 as border bases play a central role in this
work such that they deserve their own chapter.
Section 3.1 starts with the basic de�nitions that are necessary prerequisites before we can �nally
introduce border bases. Next, we explain why border bases behave numerically more stable
than, for instance, Gröbner bases and hence, are more suitable for practical applications. As we
want to compute border bases of the vanishing ideal of �nite point sets, we become more speci�c
with respect to these concepts in Section 3.3. As the conclusion of this chapter, we present the
Buchberger-Möller algorithm for border bases, which is an e�cient polynomial time algorithm
that computes a border basis for the vanishing ideal of a given �nite point set. Additionally, we
analyse the runtime of the algorithm in detail and explain how the PLURQ decomposition can
be used to speed up the computation.

The beginning of Chapter 4 deals with the concept of approximate border bases. In Section 4.2
we present the AVI algorithm from [28] and we additionally discuss its runtime and some of
its shortcomings. The ABM algorithm is introduced in Section 4.3. We prove �niteness of the
algorithm and we also show how far away the computed result is at most from an exact border
basis. Additionally, we elaborate on the numerical properties of the algorithm and analyse
its runtime. In Subsection 4.3.1 it will be explained how to update the underlying matrix
factorisations of the ABM algorithm to achieve better runtime and how the algorithm could be
implemented using the BLAS and LAPACK libraries. This result can be seen as an analogue
to using the PLURQ decomposition in the Buchberger-Möller algorithm to improve its runtime.
We start the following section with a small example that demonstrates that the standard version
of the AVI and ABM algorithm cannot be used directly if polynomials that �model� one speci�c
quantity are desired. To overcome this issue, we introduce the extended ABM algorithm and
also discuss its algebraic and numeric properties as well as its runtime. Its main advantage
over the ABM algorithm for modelling is the direct control over the residual error in the model
polynomials that we can establish. In Section 4.5 we present the BB ABM algorithm, a border
basis variant of an algorithm which was originally proposed by C. Fassino in [29]. As a follow up,
we explain how the mentioned algorithms can be adapted to produce results that are of higher
practical relevance, for instance by cleaning the polynomials from terms which do not contribute
in a signi�cant way to the evaluation of the polynomial with respect to the given input data.
Furthermore, we show how the ideas about sub-ideal border bases from [32] can be combined
with the new algorithms developed in this thesis. In Section 4.7 we try to put our work into

1.3. Outline of the Thesis 11

context. For this purpose we brie�y mention H-Bases which have also been applied successfully
by Sauer to numerical problems in [41]. Additionally, we discuss their computation and how they
di�er conceptually from border bases. The chapter is concluded by a comparison with the Stable
Order Ideal (SOI) and the Numerical Buchberger-Möller (NBM) algorithm (published in [34]
and [35]), two alternative state of the art approaches.

The topic of Chapter 5 is the so-called rational recovery problem. The output of the ABM
family of algorithms is essentially an approximate O -border basis. However, a lot of concepts
from algebra like the computation of syzygies cannot be transferred easily to approximate border
bases. To be able to use the full �toolbox� of algebra it is therefore desirable to construct an
exact border basis which is as close as possible, in terms of the di�erences of the coe�cient
vectors, to a given approximate border basis. For this purpose, we explain to the reader in
Section 5.1 how exact and also approximate border bases can be characterised with the help
of multiplication matrices. In case the multiplication matrices are almost exact, e.g. if they
have been computed by a �oating point implementation of the Buchberger-Möller algorithm, we
present a known solution to the problem in the form of the Eigenvector algorithm in Section 5.2.
We make clear how this translates to computing a simultaneous diagonalisation of the involved
multiplication matrices. This is our starting point for Section 5.3, where we explain in detail how
a simultaneous quasi-diagonalisation for a given set of matrices can be e�ectively computed. For
this purpose, we present the Simultaneous Quasi-Diagonalisation algorithm (31), a variant of the
classical Jacobi eigenvalue algorithm, and show that it is capable of computing a simultaneous
quasi-diagonalisation for a given set of real or complex matrices. Via some examples we also
demonstrate the workings of the algorithm. To conclude this chapter, we present in Section 5.4
a heuristic method which forms a sum of squares expression from the given approximate border
bases and uses the local minima of this expression as candidates for the zeros of an exact border
basis. We give numerical evidence in the form of example computations that show the great
potential of this approach.

After laying out the theoretical foundations, possible applications of the presented algorithms
within the (oil) industry are discussed in Chapter 6. This includes, but is not limited to, the tra-
ditional application of the AVI algorithm, the discovery of polynomial relations in noisy physical
data and the construction of polynomial models for one speci�c physical quantity. In Section 6.2
we detail the challenges of seismic imaging and explain the underlying physical principles of wave
propagation. Using this knowledge, we propose an application of the extended ABM algorithm
to seismic data that is able to reconstruct an image of the subsurface. Additionally, we describe
in the next section how the ABM algorithm can be used for the modelling of unconventional oil
bodies via algebraic surfaces. The Chapter is concluded by an application of the shear rotation
algorithm that is used to compute the zero set of a border basis in a numerically stable way.
Based on example computations, we present some evidence that the shear rotation algorithm is
numerically superior to the Eigenvector algorithm implemented with a state of the art version
of LAPACK.

In Chapter 7 we give a short outlook on additional improvements that could be added to the
algorithms. More speci�cally, we sketch how the ABM algorithm could be modi�ed to provide
a more practical upper bound for the deviation from an exact border basis of the compute

12 Chapter 1. Introduction

approximate one. Furthermore, we hint at some potential new applications in sparse signal
approximation that are currently being explored in the Geometric Exploration Project, a joint
research e�ort between Shell International Exploration and Production and the University of
Passau.

Finally, an overview of the functions, which were implemented by the author in C++ in the
ApCoCoA [20] library, and of their syntax are given in the Appendix. Small examples are
provided to illustrate their usage. Additionally, we explain in Appendix 8.2 how to read the
pseudo code which is used throughout this thesis.

13

2
Mathematical and Algorithmic Foundation

Contents

2.1 Notation . 13

2.2 Basic De�nitions from Algebra . 15

2.3 Basic De�nitions from (Numerical) Linear Algebra 17

2.4 Measuring Computational Cost . 30

2.5 Canonical Matrix Factorisations . 31

2.6 Moore-Penrose Pseudoinverse . 41

2.7 Numerical Stability . 43

2.8 QR Decomposition via Householder Triangularisation 51

2.9 Computation of Eigenvalues and Eigenvectors 55

2.10 The (Linear) Least Squares Problem . 73

2.11 Solutions of the Inhomogeneous Least Squares Problem 75

2.12 Conditioning of the Least Squares Problem 77

2.13 Solutions of the Homogeneous Least Squares Problem 81

In the following chapters we will make use of the basic notation which we now introduce. Addi-
tionally, some information about the pseudo code which we utilise to write down algorithms can
be found in Appendix 8.2.

2.1 Notation

N denotes the set of natural numbers beginning with 1 .

N0 denotes the set of natural numbers beginning with 0 .

Z denotes the ring of integers.

Q denotes the �eld of rational numbers.

R denotes the �eld of real numbers.

14 Chapter 2. Mathematical and Algorithmic Foundation

R+ denotes all real numbers greater than 0 .

R+
0 denotes all real numbers greater than or equal to 0 .

C denotes the �eld of complex numbers. For a given complex number c we denote by < (c) the
real and by = (c) the imaginary part of c .

Let x ∈ R . By bxc we denote the largest element in Z which does not exceed x . Similarly, we
denote by dxe the smallest element in Z which is not less than x .

Matm,n (K) denotes all matrices with m rows and n columns over a �eld K .

Matm (K) denotes all square matrices with m rows and columns over a �eld K .

GLm (K) denotes all invertible matrices over a �eld K .

If no ambiguity can arise and the dimensions m and n are known from the context we will
slightly abuse notation and denote the zero vector in Km and the zero matrix in Matm,n (K)

by 0 . Otherwise we will use the notation 0m respectively 0m,n .

If A ∈ Matm,n (K) , then Ao:p,q:r ∈ Matp−o+1,r−q+1 (K) with 1 ≤ o ≤ p ≤ m and 1 ≤ q ≤ r ≤ n
denotes the submatrix of A which includes rows o to p and columns q to r of A . If o = p and/or
q = r we abbreviate our notation by writing Ao,q:r , Ao:p,q or Ao,q , respectively. Furthermore,
we denote by aij ∈ K with 1 ≤ i ≤ m and 1 ≤ j ≤ n the entry in the i-th row and j -th column
of A .

Im (K) denotes the identity matrix with m rows and columns over a �eld K . If K is clear from
the context we may omit K and write Im . Furthermore, we will denote a rectangular matrix
that has 1 ∈ K as entries in A1,1, A2,2, ..., Amin(m,n),min(m,n) and 0 ∈ K in all other locations
by Im,n (K) or Im,n .

For a matrix A ∈ Matm,n (C) we let Atr be the transposed of A , we let Ā be the complex
conjugate of A , and we let A∗ be the complex conjugate transposed of A . The matrix A∗ is
called the adjoint matrix of A . For a vector v ∈ Cm we denote by v̄ the complex conjugate
of v .

A+ ∈ Matn,m (C) denotes the Moore-Penrose pseudoinverse of a matrix A ∈ Matm,n (C) .

A matrix A ∈ Mat1,n (K) is called row vector and a matrix A ∈ Matm,1 (K) is called column
vector. Just like ordinary vectors they will be denoted by lower-case letters. If no ambiguity can
arise, we silently identify a tuple v ∈ Km with the corresponding column vector in Matm,1 (K) .

Let A ∈ Matm (C) be a Hermitian matrix. Then we denote by λk (A) the k -th eigenvalue of A
assuming that the m eigenvalues of A are ordered descendingly with respect to their values,
meaning that λ1 (A) ≥ ... ≥ λm (A) .

Let A ∈ Matm,n (C) be a complex matrix. Then we denote by σk (A) the k -th singular value
of A assuming that the min (m,n) singular values of A are ordered descendingly with respect
to their values, meaning that σ1 (A) ≥ ... ≥ σmin(m,n) (A) .

2.2. Basic De�nitions from Algebra 15

2.2 Basic De�nitions from Algebra

In the following we recall some standard terminology from [45].

De�nition 2.2.1. [Monoid]

Let S be a set, let · be a binary operation S × S → S and let 1S ∈ S . The triple (S, ·, 1S) is
called a monoid if the following conditions are satis�ed:

1. (a · b) · c = a · (b · c) for all a, b, c ∈ S ,

2. a · 1S = 1S · a = a for all a ∈ S .

Suppose that 1̄S ∈ S is another identity element. Then we have 1S = 1S · 1̄S = 1̄S . So as 1S

is uniquely determined for S , it is custom to omit 1S and to write (S, ·) . Additionally, instead
of 1S we just write 1 .
A monoid is called commutative if a · b = b · a for all a, b ∈ S .

De�nition 2.2.2. [Group]

Let (S, ·) be a monoid. We call (S, ·) a group if each element in S is invertible with respect
to · , which means that for all a ∈ S there exists a−1 ∈ S such that

a · a−1 = a−1 · a = 1.

A group is called commutative if (S, ·) is a commutative monoid.

De�nition 2.2.3. [Ring]

Let R be a set which is equipped with two binary operations + : R × R → R (addition) and
· : R × R → R (multiplication). The triple (R,+, ·) is called a ring if the following conditions
are satis�ed:

1. (R,+) is a commutative group with identity element 0 ∈ R .

2. (R, ·) is a monoid with identity element 1 ∈ R .

3. a · (b+ c) = a · b+ a · c and (a+ b) · c = ac+ bc for all a, b, c ∈ R .

If + and · are clear from the context we may omit them and just denote the ring (R,+, ·) by R .

In case (R, ·) is a commutative monoid we call R a commutative ring.

De�nition 2.2.4. [Field]

A �eld K is a commutative ring (K,+, ·) for which additionally (K \ {0} , ·) is a group.

Example 2.2.5. The rational, real, and complex numbers together with the usual addition and
multiplication are �elds.

From now on let K be a �eld and let P = K [x1, ..., xn] be the polynomial ring in n indeterm-
inates. The elements of P are called polynomials, in particular, the element 0 ∈ P is called
the zero polynomial.

16 Chapter 2. Mathematical and Algorithmic Foundation

De�nition 2.2.6. [Term]

A polynomial t ∈ P of the form t =
∏n
i=1 x

ei
i with ei ∈ N0 is called a term. In particular this

means that also 1 is a term. By T (x1, ..., xn) or Tn we denote the set of all terms in P .

Remark 2.2.7. The set Tn together with the usual multiplication · forms a commutative
monoid with identity element 1 = x0

1...x
0
n .

De�nition 2.2.8. [Log]

The map log : Tn → Nn0 given by xe11 ...x
en
n 7→ (e1, ..., en) is called the logarithm.

De�nition 2.2.9. [Monomial]

A monomial m is a term t multiplied by an element c ∈ K \ {0} , such that m = ct . The
element c is called the coe�cient of the monomial m . Naturally, every term is a monomial
with coe�cient 1.

De�nition 2.2.10. [Degree of a monomial]

We denote the degree of a monomial m = c
∏n
i=1 x

ei
i with c ∈ K by deg (m) . It is de�ned

as follows:

deg (m) =
n∑
i=1

ei.

De�nition 2.2.11. [Support of a polynomial]

The set of all terms occurring in a polynomial p 6= 0 is denoted by supp (p) and is called the
support of the polynomial p . If p = 0 we let supp (p) = ∅ .

The degree of a polynomial p 6= 0 is denoted by deg (p) and de�ned as the maximum
of {deg (t) |t ∈ supp (p)} .

By Tk (x1, ..., xn) or Tnk we denote the set of all terms of degree k in P .

De�nition 2.2.12. [Term ordering]

Let us consider the monoid (Tn, ·) . A complete relation σ on Tn is called a term ordering

on Tn if the following conditions are satis�ed for all γ1, γ2, γ3 ∈ Tn . For convenience we shall
write γ1 ≥σ γ2 if (γ1, γ2) ∈ σ .

1. γ1 ≥σ γ1 .

2. γ1 ≥σ γ2 and γ2 ≥σ γ1 imply γ1 = γ2 .

3. γ1 ≥σ γ2 and γ2 ≥σ γ3 imply γ1 ≥σ γ3 .

4. γ1 ≥σ γ2 implies γ1 · γ3 ≥σ γ2 · γ3 .

5. γ1 ≥σ 1 .

If additionally γ1 ≥σ γ2 implies that deg (γ1) ≥ deg (γ2) , we say that σ is a degree compatible
term ordering.

2.3. Basic De�nitions from (Numerical) Linear Algebra 17

Example 2.2.13. [DegRevLex term ordering]

Let t1, t2 ∈ Tn . We write t1 ≥DegRevLex t2 if deg (t1) > deg (t2) , or if deg (t1) = deg (t2) and the
last non-zero component of log (t1) − log (t2) is negative, or if t1 = t2 . This ordering is called
the degree-reverse-lexicographic term ordering and is denoted by DegRevLex. It can be
easily veri�ed that DegRevLex is a degree compatible term ordering.

De�nition 2.2.14. [Ideal]

Let I ⊆ P and let a, b ∈ P . We call I an ideal if the following conditions are satis�ed.

1. 0 ∈ I .

2. If a, b ∈ I , then (a+ b) ∈ I .

3. If a ∈ I , then ab ∈ I .

2.3 Basic De�nitions from (Numerical) Linear Algebra

At the beginning of this section we recall some basic de�nitions from linear algebra. The concept
of vector and matrix norms will turn out to be useful when we investigate the numerical prop-
erties of algorithms which deal with �oating point vectors and matrices. Then we discuss the
concept of unitary transformations, as these play an important role in computing certain mat-
rix factorisations which we will actively use in the Chapters 4 and 5. This introduction ends
with some de�nitions from eigenvalue theory which will allow us to study the homogeneous least
squares problem in more detail. All results presented in this chapter are well-known unless ex-
plicitly stated otherwise. The base �eld is (in most cases) C as it will be imperative later on
that we work over an algebraically closed �eld.

De�nition 2.3.1. [Inner product]

The inner product of two vectors a, b ∈ Cm is de�ned as

〈a, b〉 =
m∑
i=1

aibi,

where āi is the complex conjugate of ai . Whenever there is no danger of confusion we abbrevi-
ate 〈a, b〉 by writing ab .

Remark 2.3.2. Let a, b ∈ Cm be vectors and let A,B ∈ Matm,1 (C) be the column vectors,
which we obtain if we interpret a and b as column vectors. Then we note that 〈a, b〉 = A∗ · B
where · is the standard matrix multiplication.

De�nition 2.3.3. [Vector norm]

A map ‖·‖ : Cm → R is called a vector norm if it satis�es the following three conditions. For
all a, b ∈ Cm and α ∈ C ,

‖a‖ ≥ 0, and ‖a‖ = 0 if and only if a = 0m,

‖a+ b‖ ≤ ‖a‖+ ‖b‖ ,
‖αa‖ = |α| ‖a‖ .

18 Chapter 2. Mathematical and Algorithmic Foundation

De�nition 2.3.4. [p-norm]

Let a = (a1, ..., am) ∈ Cm and p ≥ 1 . The non-negative real number

‖a‖p = p

√√√√ m∑
i=1

|ai|p

is called the p-norm of a . The 2-norm

‖a‖2 =
√
〈a, a〉 =

√√√√ m∑
i=1

|ai|2

is also known as the Euclidean norm. If there is no danger of confusion, we abbreviate the
2-norm by ‖·‖ .

Proposition 2.3.5. For every p ≥ 1 , the p-norm ‖·‖p : Cm → R+
0 is a vector norm.

Proof. See, for example, [3, Theorem 15.50].

De�nition 2.3.6. [Maximum norm]

Let a = (a1, ..., am) ∈ Cm . We call the non-negative real number

‖a‖∞ = max {|a1| , ..., |am|}

the maximum norm of a .

Proposition 2.3.7. The maximum norm ‖·‖∞ : Cm → R+
0 is a vector norm.

Proof. A proof is also contained in [3, Theorem 15.50].

Theorem 2.3.8 (Hölder inequality). The inner product can be bounded via the p-norms. If p

and q satisfy the condition 1
p + 1

q = 1, with 1 ≤ p, q ≤ ∞, then

|〈a, b〉| ≤ ‖a‖p ‖b‖q

holds for all a, b ∈ Cm .

Proof. A proof can be found in [3, Theorem 15.48].

In the special case p = q = 2 , the Hölder inequality is also called the Cauchy-Schwarz

inequality.

De�nition 2.3.9. [Matrix norm]

A map ‖·‖ : Matm,n (C)→ R is called amatrix norm if it satis�es the following three conditions.
For all A,B ∈ Matm,n (C) and α ∈ C ,

‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0m,n,

‖A+B‖ ≤ ‖A‖+ ‖B‖ ,
‖αA‖ = |α| ‖A‖ .

A matrix norm is thus a vector norm on Matm,n (C) .

2.3. Basic De�nitions from (Numerical) Linear Algebra 19

De�nition 2.3.10. [Induced matrix norm]

Let A ∈ Matm,n (C) , 1 ≤ p ≤ ∞ and let us, by a slight abuse of notation, denote by ‖·‖p both
the p-vector norm on Cn and Cm . In this case the induced matrix norm is de�ned as

‖A‖p = max
{
‖Ax‖p

∣∣∣x ∈ Cn with ‖x‖p = 1
}
.

Proposition 2.3.11. For every 1 ≤ p ≤ ∞, the induced matrix norm ‖·‖p : Matm,n (C)→ R+
0

is a matrix norm.

Proof. See [6, Section 2.3.1].

De�nition 2.3.12. [Consistent matrix norm]

A matrix norm ‖·‖(mn) on Matm,n (C) is called consistent with a vector norm ‖·‖(m) on Cm

and a vector norm ‖·‖(n) on Cn , if for all A ∈ Matm,n (C) and for all x ∈ Cn the inequality

‖Ax‖(m) ≤ ‖A‖(mn) ‖x‖(n)

holds.

Proposition 2.3.13 (Properties of the induced matrix norm). Let 1 ≤ p ≤ ∞ and let ‖·‖p be

the induced matrix norm.

1. The induced matrix norm ‖·‖p is consistent with the inducing p-vector norms, which means
that for all A ∈ Matm,n (C) , B ∈ Matn,k (C) , and x ∈ Ck , the inequalities

‖ABx‖p ≤ ‖A‖p ‖Bx‖p ≤ ‖A‖p ‖B‖p ‖x‖p

hold.

2. Additionally, for all A ∈ Matm,n (C) , B ∈ Matn,k (C) the relation

‖AB‖p ≤ ‖A‖p ‖B‖p

is satis�ed.

Proof. To prove the �rst claim let us consider the case that Bx = 0n . In this situation

‖ABx‖p = 0 ≤ ‖A‖p 0 ≤ ‖A‖p ‖B‖p ‖x‖p

holds. So let us now consider the case where Bx 6= 0n . As ‖Bx‖p ∈ R+ we can now write

‖ABx‖p =

∥∥∥∥∥A Bx

‖Bx‖p

∥∥∥∥∥
p

‖Bx‖p .

From the de�nition of the induced matrix norm it follows that∥∥∥∥∥A Bx

‖Bx‖p

∥∥∥∥∥
p

‖Bx‖p ≤ ‖A‖p ‖Bx‖p .

20 Chapter 2. Mathematical and Algorithmic Foundation

Using the same arguments we obtain

‖Bx‖p =

∥∥∥∥∥B x

‖x‖p

∥∥∥∥∥
p

‖x‖p ≤ ‖B‖p ‖x‖p .

Combining the above inequalities, we get

‖ABx‖p ≤ ‖A‖p ‖Bx‖p ≤ ‖A‖p ‖B‖p ‖x‖p .

In order to prove the second claim, we use the �rst claim and write

‖AB‖p = max
{
‖ABx‖p

∣∣∣x ∈ Cn with ‖x‖p = 1
}

≤ max
{
‖A‖p ‖B‖p ‖x‖p

∣∣∣x ∈ Cn with ‖x‖p = 1
}

= ‖A‖p ‖B‖p .

Proposition 2.3.14. Let 1 ≤ p, q ≤ ∞ and let ‖·‖p and ‖·‖q be the corresponding induced

matrix norms. Then ‖A‖p ≤ ‖A‖q for all A ∈ Matm,n (C) if and only if ‖A‖p = ‖A‖q for

all A ∈ Matm,n (C) .

Proof. See [9, Corollary 5.6.25].

This proposition tells us that no induced matrix norm can be uniformly bounded by a di�erent
induced matrix norm.

De�nition 2.3.15. [Frobenius matrix norm]

Let A ∈ Matm,n (C) . Then

‖A‖F = ‖A‖E =

√√√√ m∑
i=1

n∑
j=1

|aij |2

is called the Frobenius (or Hilbert-Schmidt) norm of A .

Proposition 2.3.16. The Frobenius norm ‖·‖F : Matm,n (C)→ R+
0 is a matrix norm.

Proof. Compare again [6, Section 2.3.1].

Proposition 2.3.17. Let A ∈ Matm,n (C) and B ∈ Matn,l (C) . Then the inequality

‖AB‖F ≤ ‖A‖F ‖B‖F

holds.

2.3. Basic De�nitions from (Numerical) Linear Algebra 21

Proof. To prove the claim let us have a closer look at ‖AB‖2F . With the help of the Cauchy-
Schwarz inequality we compute

‖AB‖2F =
m∑
i=1

l∑
k=1

∣∣∣∣∣∣
n∑
j=1

aijbjk

∣∣∣∣∣∣
2

=
m∑
i=1

l∑
k=1

|Ai,1:nB1:n,k|2

=
m∑
i=1

l∑
k=1

∣∣〈A∗i,1:n, B1:n,k

〉∣∣2 ≤ m∑
i=1

l∑
k=1

∥∥A∗i,1:n

∥∥2

2
‖B1:n,k‖22

=

(
m∑
i=1

∥∥A∗i,1:n

∥∥2

2

)(
l∑

k=1

‖B1:n,k‖22

)
= ‖A‖2F ‖B‖

2
F .

Taking the square roots on both sides concludes the proof.

De�nition 2.3.18. [Max matrix norm]

Let A ∈ Matm,n (C) and let us denote by aij with 1 ≤ i ≤ m and 1 ≤ j ≤ n the entries of A .
Then

‖A‖max = max
i,j
|aij |

is called the max matrix norm of A .

Proposition 2.3.19. The max matrix norm ‖·‖max : Matm,n (C)→ R+
0 is a matrix norm.

Proof. See [7, page 21].

Proposition 2.3.20. Let A ∈ Matm,n (C). Then the inequality

‖A‖2 ≤
√
mn ‖A‖max

holds.

Proof. Using the de�nition of the induced matrix norm 2.3.10 we obtain

‖A‖2 = max {‖Ax‖2 |x ∈ Cn with ‖x‖2 = 1}

= max
‖x‖2=1

√√√√∣∣∣∣∣

n∑
i=1

a1ixi

∣∣∣∣∣
2

+ ...+

∣∣∣∣∣
n∑
i=1

amixi

∣∣∣∣∣
2

≤ max
‖x‖2=1

√√√√ n∑

i=1

|a1ixi|2 + ...+
n∑
i=1

|amixi|2

≤

√√√√ n∑
i=1

|a1i|2 + ...+
n∑
i=1

|ami|2 ≤
√
mnmax

ij
|aij |2

=
√
mnmax

ij
|aij | .

22 Chapter 2. Mathematical and Algorithmic Foundation

De�nition 2.3.21. Let A ∈ Matm,n (C) and let us denote by Ā ∈ Matm,n (C) the complex
conjugate of A . We call the matrix Ātr the adjoint matrix of A and denote it by A∗ .

Remark 2.3.22. [Basic properties of the adjoint matrix]

Let A ∈ Matm,n (C) and let A∗ be its adjoint matrix. Then the equations A∗∗ = A and
(AB)∗ = B∗A∗ hold.

Proof. The �rst equation is trivially true. For the second one we have

(AB)∗ = AB
tr

= (AB)tr = BtrAtr = B∗A∗.

De�nition 2.3.23. [Hermitian matrix]

A matrix A ∈ Matm (C) is called Hermitian if A = A∗ holds.

Proposition 2.3.24. For every matrix A ∈ Matm,n (C) , the matrices A∗A and AA∗ are Her-

mitian matrices.

Proof. First we observe that A∗A ∈ Matn (C) and AA∗ ∈ Matm (C) are both square matrices.
We verify the claim by computing

(A∗A)∗ = A∗A∗∗ = A∗A

and
(AA∗)∗ = A∗∗A∗ = AA∗.

De�nition 2.3.25. [Normal matrix]

A matrix A ∈ Matm (C) is called normal if A∗A = AA∗ holds.

Example 2.3.26. All Hermitian and real symmetric matrices are normal. First we observe that
real symmetric matrices are Hermitian. Let A ∈ Matm (C) be a Hermitian matrix. From the
de�nition of Hermitian matrices it follows immediately that A∗A = AA = AA∗ . So we can
conclude that A is normal.

Remark 2.3.27. The set of Hermitian matrices over C is a proper subset of the set of normal
matrices over C , as the matrix

A =

(
1 −1

1 1

)
is normal but not Hermitian.

Proposition 2.3.28. A matrix A ∈ Matm (C) is normal and (upper or lower) triangular if and

only if A is a diagonal matrix.

2.3. Basic De�nitions from (Numerical) Linear Algebra 23

Proof. Let A ∈ Matm (C) . In order to avoid notational ambiguities, let us denote the entries
of A by ai,j (instead of aij) with 1 ≤ i ≤ m and 1 ≤ j ≤ m . If A is a diagonal matrix,
then A is obviously triangular and normal. To show the non-trivial implication �⇒� let us
assume w.l.o.g. that A is normal and upper triangular. Note that for a lower triangular matrix
essentially the same arguments can be used, as only the indices have to be adapted. Now let
us consider the entries on the diagonal of M = A∗A − AA∗ , the commutator of A , which are
of the form mi,i =

∑i
j=1 |aj,i|

2 −
∑m

j=i |ai,j |
2 =

∑i−1
j=1 |aj,i|

2 −
∑m

j=i+1 |ai,j |
2 . We start with

m1,1 = −
∑m

j=2 |a1,j |2 . As A is normal mi,i needs to be zero, and consequently
∑m

j=2 |a1,j |2 = 0

must hold. This equation can only be satis�ed if all a1,j with 2 ≤ j ≤ m are zero. For
m2,2 we obtain m2,2 =

∑2
j=1 |aj,2|

2 −
∑m

j=2 |a2,j |2 = |a1,2|2 −
∑m

j=3 |a2,j |2 . From our previous
observation we know that a1,2 = 0 , which means that we can simplify the last equation to
m2,2 = −

∑m
j=3 |a2,j |2 . So we have shown that also a2,j with 3 ≤ j ≤ m has to be zero. If

we reuse this argument consecutively for every mi,i with i ∈ {3, ...,m} we can make use of
the knowledge that all entries ak,j with 1 ≤ k < i and k ≤ j ≤ m are zero. We thus obtain
mi,i = −

∑m
j=i+1 ai,j āi,j = −

∑m
j=i+1 |ai,j |

2 . So we can conclude in the i-th step that all ai,j
with i < j ≤ m have to be zero as well. This means that all elements above the diagonal of A
have to be zero. So A is diagonal.

De�nition 2.3.29. [Orthogonal sets]

Two sets of vectors S1 ⊆ Cm and S2 ⊆ Cm are called orthogonal, and we write S1 ⊥ S2 , if
the inner product 〈s1, s2〉 of every s1 ∈ S1 with every s2 ∈ S2 is zero.

De�nition 2.3.30. [Unitary matrix]

A matrix U ∈ Matm (C) is called unitary (or orthogonal if U ∈ Matm (R)) if

U∗U = UU∗ = Im,

where Im ∈ Matm (C) is the identity matrix.

Remark 2.3.31. Note that the row vectors of unitary matrices are pairwise orthogonal and the
column vectors are pairwise orthogonal as well.

For the convenience of the reader, we collect some well-known properties of unitary matrices in
the following propositions.

Proposition 2.3.32 (Product of unitary matrices). The product of unitary matrices is unitary.

Proof. Let U1, U2 ∈ Matm (C) be unitary matrices. Then we calculate

U1U2 (U1U2)∗ = U1U2U
∗
2U
∗
1 = Im

and conclude that the claim is true.

A special property of unitary matrices is that they preserve the Euclidean norm of a vector under
matrix-vector multiplication.

24 Chapter 2. Mathematical and Algorithmic Foundation

Proposition 2.3.33 (Preservation of length under unitary multiplication).

Let Q ∈ Matm (C) be a unitary matrix and x ∈ Cm . Then ‖Qx‖2 = ‖x‖2 .

Proof. The claim follows from

‖Qx‖2 =
√

(Qx)∗Qx =
√
x∗Q∗Qx =

√
x∗x = ‖x‖2 .

Proposition 2.3.34. Let A ∈ Matm,n (C) be an arbitrary matrix, and let U ∈ Matm (C) and

V ∈ Matn (C) be unitary matrices. Then the matrix norm induced by the Euclidean norm and

the Frobenius norm are invariant under unitary transformations. In other words, the equations

‖UAV ‖2 = ‖A‖2 and ‖UAV ‖F = ‖A‖F

hold.

Proof. See [6, page 70].

De�nition 2.3.35. [Kernel and image of a matrix]

Let A ∈ Matm,n (C) . By ker (A) we denote the set

ker (A) = {x ∈ Cn |Ax = 0m } ,

and by im (A) we denote the set

im (A) = {Ax |x ∈ Cn } .

Then ker (A) is called the kernel (or null space) of A , and im (A) is called the image (or
range) of A . If ker (A) = {0n} we say that the kernel of A is trivial.

De�nition 2.3.36. [Projector]

A matrix P ∈ Matm (C) is called a projector if the condition P 2 = P holds.

Proposition 2.3.37 (Complementary projector). If P ∈ Matm (C) is a projector, then the

matrix Im − P is also a projector and the following properties hold:

im (Im − P) = ker (P)

and

im (P) = ker (Im − P) .

2.3. Basic De�nitions from (Numerical) Linear Algebra 25

Proof. First of all, we prove that (Im − P) is also a projector. This follows from (Im − P)2 =

I2
m − 2ImP + P 2 = Im − 2P + P = Im − P.

In order to show the �rst equality, we start by proving im (Im − P) ⊆ ker (P) . Let v ∈ Cm .
Then the inclusion follows from

P ((Im − P) v) = P (v − Pv) = Pv − P 2v = Pv − Pv = 0m.

Now we show that im (Im − P) ⊇ ker (P) also holds. This is true, as for every v ∈ ker (P) we
have (Im − P) v = v . By writing P = Im − (Im − P) we can derive the second claim.

Proposition 2.3.38. Let P ∈ Matm (C) be a projector. Then

im (P) ∩ ker (P) = {0m} .

Proof. Using Proposition 2.3.37 we observe that im (P) ∩ ker (P) = ker (Im − P) ∩ ker (P) . So,
for every v which is contained in both kernels, we have (Im − P) v = 0m and Pv = 0m . Hence,
0m = (Im − P) v = v − Pv = v .

This means that every projector divides Cm in two linear subspaces S1 and S2 , such that
S1 ∩ S2 = {0m} and S1 ⊕ S2 = Cm . So we can express every vector v ∈ Cm in a unique way as
a sum of an element v1 ∈ S1 and v2 ∈ S2 , such that v = v1 + v2 .

De�nition 2.3.39. An orthogonal projector P ∈ Matm (C) is a projector for which the
following additional property holds:

im (P)⊥ ker (P) .

Proposition 2.3.40. If a projector P ∈ Matm (C) is Hermitian, which means that P = P ∗ ,

then P is an orthogonal projector.

Proof. Let P ∈ Matm (C) be a Hermitian projector. By Proposition 2.3.37 we know that
ker (P) = im (Im − P) . First we note that the condition that im (P)⊥ ker (P) is equivalent
to 〈Pv, (Im − P)w〉 = 0 for all v, w ∈ Cm . So let v, w ∈ Cm be arbitrary vectors. We verify
the claim by computing

〈Pv, (Im − P)w〉 = (Pv)∗ (Im − P)w = v∗P ∗ (Im − P)w = v∗
(
P − P 2

)
w = 0.

Theorem 2.3.41. Let A ∈ Matm,n (C) , and let Q ∈ Matm,k (C) , with 1 ≤ k ≤ n , such that the

columns of Q form an orthonormal basis of im (A). Then

PA = QQ∗ ∈ Matm (C)

is an orthogonal projector onto im (A) , which means that PA is an orthogonal projector and

im (PA) = im (A) .

26 Chapter 2. Mathematical and Algorithmic Foundation

Proof. First we show that PA is a projector. For this purpose we compute

P 2
A = QQ∗QQ∗ = QImQ

∗ = QQ∗ = PA.

The next property we show is that PA is Hermitian and thus an orthogonal projector:

P ∗A = (QQ∗)∗ = Q∗∗Q∗ = QQ∗ = PA.

Finally, we prove that PA projects onto im (A) . From the de�nition of PA it follows immediately
that im (PA) ⊆ im (Q) = im (A) . As im (PA) = ker (Im − PA) (compare Proposition 2.3.37), it
su�ces to show that ker (Im − PA) ⊇ im (Q) . For every v ∈ Cm we observe that

(Im − PA)Qv = Qv −QQ∗Qv = Qv −Qv = 0m,

which concludes the proof.

Proposition 2.3.42 (Uniqueness). For each A ∈ Matm,n (C) the orthogonal projector PA

onto im (A) is unique.

Proof. See, for instance, [6, Subsection 2.6.1].

Example 2.3.43. If A ∈ Matm (C) has full rank, then every matrix Q ∈ Matm (C) which
contains as its columns an orthonormal basis of im (A) = Cm is unitary. Consequently, the
projector PA is identical to the unit matrix Im .

Corollary 2.3.44. Let v ∈ Matm,1 (C) be a non-zero column vector. Then Pv = vv∗

v∗v is the

orthogonal projector onto im (v) .

Proof. This is a direct consequence of Theorem 2.3.41.

Remark 2.3.45. An immediate consequence is that Im−Pv is the orthogonal projector onto Pv⊥ ,
where we denote by v⊥ the set of all vectors in Cm which are orthogonal to v .

De�nition 2.3.46. [Eigenvalue]

Let A ∈ Matm (C) . A scalar λ ∈ C is called an eigenvalue of A if

ker (A− λIm) 6= {0m}.

Given an eigenvalue λ of A , the dimension of ker (A− λIm) is called the geometric multipli-
city of λ and will be denoted by gmult (A, λ) .

De�nition 2.3.47. Let A ∈ Matm (C) and let C [x] be the polynomial ring over C in the
indeterminate x . The polynomial

pA (x) = det (A− xIm) ∈ C [x]

is called the characteristic polynomial of A .

2.3. Basic De�nitions from (Numerical) Linear Algebra 27

Proposition 2.3.48. Let A ∈ Matm (C) . A number λ ∈ C is an eigenvalue of A if and only

if λ is a solution of the polynomial equation

pA (x) = 0

over C .

Proof. We observe that, whenever λ ∈ C is a root of pA (x) the fact that
det (A− λIm) = 0 implies that ker (A− λIm) 6= {0m} . Additionally, if we assume that λ is an
eigenvalue of A , then ker (A− λIm) 6= {0m} implies that det (A− λIm) = 0 and consequently λ
has to be a root of pA (x) .

Corollary 2.3.49. A matrix A ∈ Matm (C) has at most m (distinct) eigenvalues.

Proof. As pA (x) is a polynomial of degree m in C [x] , it has m roots over C and therefore at
most m distinct roots.

De�nition 2.3.50. Let A ∈ Matm (C) and let pA (x) be the associated characteristic polyno-
mial. The multiplicity of each (complex) root λ of pA (x) is called the algebraic multiplicity
of λ in A .

De�nition 2.3.51. [Spectrum]

The set of all eigenvalues of a matrix A ∈ Matm (C) is called its spectrum and is denoted
by Λ (A) = {λ1, ..., λq} with 1 ≤ q ≤ m .

De�nition 2.3.52. [Eigenvector/Eigenspace]

Let A ∈ Matm (C) and let Λ (A) = {λ1, ..., λq} be the spectrum of A . A non-zero column vector
v ∈ Matm,1 (C) is called a (right-hand) eigenvector of A corresponding to λi if the equation
(A− λiIm) v = 0m holds. Similarly, a non-zero row vector v ∈ Mat1,m (C) is called a left-hand
eigenvector of A corresponding to λi if v (A− λiIm) = 0m is satis�ed. We call the set of all
right-hand eigenvectors v together with 0m belonging to λi the eigenspace of A for λi and
denote it by Eig (A, λi) .

An intuitive interpretation of an eigenvector is a vector which is only scaled, i.e. multiplied by
a scalar, by the linear transformation given through the transformation matrix A .

Remark 2.3.53. For a given matrix A ∈ Matm (C) with spectrum Λ (A) = {λ1, ..., λq} , each
set Eig (A, λi) is a linear subspace of Cm .

Proof. First, we observe that 0m ∈ Eig (A, λi) by de�nition. If v, w ∈ Eig (A, λi) , then v+w is
again an eigenvector of A with respect to the eigenvalue λi and therefore v + w ∈ Eig (A, λi) .
Finally, if c ∈ C and v ∈ Eig (A, λi) , then vc is also an eigenvector of A with respect to λi and
consequently vc ∈ Eig (A, λi) .

Proposition 2.3.54. A row vector v ∈ Mat1,m (C) is a left-hand eigenvector of a matrix A ∈
Matm (C) if and only if vtr is a right-hand eigenvector of Atr .

28 Chapter 2. Mathematical and Algorithmic Foundation

Proof. Let v ∈ Mat1,m (C) be a left-hand eigenvector of A . Then we can compute

vA = λv ⇐⇒
(vA)tr = λvtr ⇐⇒
Atrvtr = λvtr

and have thus shown that vtr is a right-hand eigenvector of Atr . Furthermore, if we assume
that vtr is a right-hand eigenvector of Atr the same arguments can be used and we obtain that v
has to be a left-hand eigenvector of A .

De�nition 2.3.55. A matrix A ∈ Matm (C) is called invertible if a matrix
B ∈ Matm (C) exists such that

AB = BA = Im.

Proposition 2.3.56. If A ∈ Matm (C) is invertible and B ∈ Matm (C) is such that

AB = Im , then the matrix B is unique.

Proof. Let us assume that A ∈ Matm (C) is invertible and that B, B̃ ∈ Matm (C) are such that
AB = AB̃ = Im . We have

B = BIm = B(AB̃) = (BA) B̃ = ImB̃ = B̃,

which shows that the matrix B is unique.

De�nition 2.3.57. Let A ∈ Matm (C) be invertible and let B ∈ Matm (C) such that
AB = Im . Then B is called the inverse of A and denoted by A−1 .

Remark 2.3.58. The invertible matrices A ∈ Matm (C) form a group. This group is called the
general linear group and will be denoted by GLm (C) .

De�nition 2.3.59. Two matrices A,B ∈ Matm (C) are called similar, if there exists an invert-
ible matrix P ∈ GLm (C) such that P−1AP = B .

Proposition 2.3.60. Similar matrices have the same spectrum.

Proof. Let A,B ∈ Matm (C) be similar, let P ∈ GLm (C) be such that PBP−1 = A , and let
Λ (A) = {λ1, ..., λq} be the spectrum of A . Now, let 1 ≤ i ≤ q , and let v ∈ ker (A− λiIm)\{0m}
be an eigenvector of A corresponding to λi . Then we compute

0m = (A− λiIm) v

=
(
PBP−1 − λiPP−1

)
v

= P (B − λiIm)P−1v

which shows that λi is also an eigenvalue of B .

2.3. Basic De�nitions from (Numerical) Linear Algebra 29

De�nition 2.3.61. [Generalised Eigenvector/Eigenspace]

Let A ∈ Matm (C) and let Λ (A) = {λ1, ..., λq} be its spectrum. A non-zero column vector
v ∈ Matm,1 (C) is called a generalised eigenvector of A corresponding to λi if

(A− λiIm)k v = 0m

for some k with 1 ≤ k ≤ m . We call the set of all generalised eigenvectors associated to λi

together with 0m the generalised eigenspace of A for λi and denote it by Gen (A, λi) .

Remark 2.3.62. If k = 1 in the setting of De�nition 2.3.61, then v is an ordinary (right-hand)
eigenvector of A .

Remark 2.3.63. For a given matrix A ∈ Matm (C) with spectrum Λ (A) = {λ1, ..., λq} , the set
Gen (A, λi) is a linear subspace of Cm . Additionally, Eig (A, λi) ⊆ Gen (A, λi) holds.

Proof. First, we observe that 0m ∈ Gen (A, λi) by de�nition. Now let v, w ∈ Gen (A, λi) . This
means that (A− λiIm)k1 v = 0m and (A− λiIm)k2 w = 0m for some k1, k2 ∈ {1, ...,m} . If we
let k = max (k1, k2) , then both

(A− λiIm)k v = 0m and (A− λiIm)k w = 0m

are still true. As the equation

(A− λiIm)k (v + w) = (A− λiIm)k v + (A− λiIm)k w = 0m

holds, we can conclude that v + w is again a generalised eigenvector of A with respect to the
eigenvalue λi and therefore v + w ∈ Eig (A, λi) . Finally, if c ∈ C and v ∈ Gen (A, λi) , then vc

is also a generalised eigenvector of A with respect to λi and consequently vc ∈ Eig (A, λi) .

De�nition 2.3.64. [Spectral Radius]

Let λ (A) = {λ1, ..., λq} be the spectrum of A ∈ Matm (C) . Then we call % (A) = max
1≤i≤q

(|λi|)
the spectral radius of A .

The following well-known theorem allows us to bound the spectral radius of a matrix A .

Theorem 2.3.65. Let 1 ≤ p ≤ ∞, A ∈ Matm (C) , and let ‖·‖p be the induced matrix norm.

Then

% (A) ≤ k

√
‖Ak‖p

for all k ∈ N .

Proof. Let λ ∈ C be an eigenvalue of A ∈ Matm (C) , and let v be an associated eigenvector.
We know that |λ|k ‖v‖p =

∥∥λkv∥∥
p

=
∥∥Akv∥∥

p
. By Proposition 2.3.13, all induced matrix norms

are consistent and it follows that |λ|k ‖v‖p =
∥∥Akv∥∥

p
≤
∥∥Ak∥∥

p
‖v‖p holds. Because v as an

eigenvector is di�erent from 0m we can divide by ‖v‖p and obtain |λ|k ≤
∥∥Ak∥∥

p
. This proves,

that for every eigenvalue λ of A the inequality |λ| ≤ k

√
‖Ak‖p holds, and thus % (A) ≤ k

√
‖Ak‖p .

30 Chapter 2. Mathematical and Algorithmic Foundation

2.4 Measuring Computational Cost

Another important aspect of an algorithm is its runtime in terms of the size of the input data.
In computer science, it is common to measure the runtime of an algorithm in an asymptotic way.
For growing input sizes, the most costly part of an algorithm will start to dominate. Therefore,
it makes sense to classify algorithms by their dominating cost factor. When comparing certain
implementations of an algorithm, this kind of cost measure may be too crude and it makes sense
to analyse the exact number of elementary (�oating point) operations (FLOPs) that are required
until the algorithm terminates. We now introduce some common de�nitions, most prominently
the big O notation which is used to express the worst case runtime behaviour. A very detailed
account of how computational cost can be measured is contained in [8, Chapter 3].

De�nition 2.4.1. [Big O -Notation]

Let f (n) : S → R be a function with S ⊆ R . We denote by O (f (n)) the set of functions

O (f (n)) = {g (n) |∃c > 0,∃n0 > 0,∀n > n0 (|g (n)| ≤ c |f (n)|)} .

Remark 2.4.2. To express that g (n) ∈ O (f (n)) , it is common in computer science to write
g (n) = O (f (n)) . Note that this represents a slight abuse of notation, as the equal sign neither
is symmetric nor a true equality in the usual sense (compare [8, pages 44-45]). In this thesis we
will avoid the latter notation.

Example 2.4.3. Let us assume that an algorithm G performs g (n) = 10n3 + 3n2 + dn log2 ne
basic operations depending on the size of the input data n before it terminates. Then the runtime
of the algorithm G is in O

(
n3
)
, and we write g (n) ∈ O

(
n3
)
.

Even though two algorithms may have the same asymptotic runtime, their actual performance
may di�er drastically, as the O -notation may obfuscate large constants. Especially in numerical
linear algebra, the performance di�erence between two algorithms is quite often just a constant
factor. So, sometimes it may be desirable to compare their runtime in a more accurate way. As
stated before it would be possible to count all operations, however, this is usually too tedious.
Let us assume that Algorithm 1 requires in total g1 (n) = 10n3 + 2n �ops, and Algorithm 2
requires g2 (n) = 5n3 + n �ops to complete a certain task. Though, in fact, we could write
that g1 (n) ∈ O

(
n3
)
and g2 (n) ∈ O

(
n3
)
we write g1 (n) ∈ O

(
10n3

)
and g2 (n) ∈ O

(
5n3
)
to

emphasise that Algorithm 2 is in fact twice as fast as Algorithm 1.

2.4.1 Runtime of Basic Linear Algebra Algorithms

First of all we derive a bound for the complexity of computing the kernel of a matrix via Gauss-
Jordan elimination.

Proposition 2.4.4. Let A ∈ Matm,n (K) . Then the cost of computing ker (A) via Gauss-Jordan

elimination is in O
(

min (m,n)2 max (m,n)
)
, if addition and multiplication of two elements in K

can be performed in O (1).

2.5. Canonical Matrix Factorisations 31

Proof. Let us start with the case where m ≥ n . The �rst row contains n elements and needs
to be added to at most m − 1 other rows after being multiplied with a scalar. The second
row only contains n − 1 elements but needs to be added to m − 1 rows after being multiplied
with a scalar as well. If we continue this process we have a cost of O ((m− 1)

∑n
i=1 2i) =

O ((m− 1)n (n+ 1)) = O
(
mn2 +mn− n2 − n

)
= O

(
mn2

)
. The cost for forming the kernel

vectors is in O (mn) and can therefore be neglected in the big O notation. In the case m < n

essentially the same arguments apply and we arrive at O
(
m2n

)
. So for an arbitrary matrix the

cost is in O
(

min (m,n)2 max (m,n)
)
.

Remark 2.4.5. Using the same reasoning, the cost for computing the reduced row echelon form
of a matrix via Gauss-Jordan elimination is also in O

(
min (m,n)2 max (m,n)

)
.

Proposition 2.4.6. Let R ∈ Matm,n (K) be an upper triangular matrix, meaning that the not

necessarily square matrix has only zero entries below its main diagonal. The cost to transfer this

matrix into reduced row echelon form is in O
(

1
6n

3
)
if m ≥ n and it is in O

(
1
2m

2n− 1
3m

3
)

if n < m.

Proof. Let us initially consider the case m ≥ n . The �rst row needs to be multiplied by a
constant K such that the pivot entry becomes 1, and the cost of this operation is in O (n) . The
second row contains n − 1 entries. Those have to be multiplied with a scalar and have to be
added to the �rst row. This costs O ((n− 1) +) operations. So the cumulated cost for the i-th
row is in O (i (n− i)) . This means we have a total cost of

∑n
i=1 (i (n− i+ 1)) = n(n+1)(n+2)

6 ,
which again means the cost is in O

(
1
6n

3
)
.

Now let us look at the case m < n . Here we obtain
∑m

i=1 (i (n− i+ 1)) = m2n
2 −

m3

3 + m(3n+2)
6 ,

which means that the cost is in O
(

1
2m

2n− 1
3m

3
)
.

2.5 Canonical Matrix Factorisations

In this section we present some well-known matrix factorisations which are of either theoretical
value, like the Jordan decomposition, or play an important role in numerical linear algebra, like
the QR decomposition or the Schur decomposition.

2.5.1 PLURQ Decomposition

A PLURQ decomposition essentially stores the relevant operations which transform a matrix
into its reduced row echelon form. It can, for example, be used to compute the kernel of a
matrix. If later on a new column is added to this matrix it is not necessary to recompute the
kernel from scratch, as the PLURQ decomposition can be updated, which takes signi�cantly less
time (compare Remark 3.4.5). As the transformations which are involved are not unitary, this
decomposition is mostly relevant when implemented in exact arithmetic. The �rst step when
computing a PLURQ decomposition is to bring the matrix into row echelon form. This amounts

32 Chapter 2. Mathematical and Algorithmic Foundation

to the computation of a PLUQ decomposition of a matrix A (compare [6, Algorithm 3.4.2]). Af-
terwards the matrix U in this decomposition is further decomposed into another upper triangular
matrix and the reduced row echelon form of A .

De�nition 2.5.1. [Permutation matrix]

A matrix A ∈ Matm (C) is called permutation matrix if each row and column of A contains
exactly one 1 entry and 0s in all other locations.

Example 2.5.2. The matrix

A =

 0 1 0

1 0 0

0 0 1

 ∈ Mat3 (C)

is a permutation matrix.

De�nition 2.5.3. [PLURQ decomposition of a matrix]

Let A ∈ Matm,n (K) , where K is an arbitrary �eld. A decomposition of A such that

A = PLURQ

where P ∈ Matm (K) and Q ∈ Matn (K) are permutation matrices, L ∈ Matm (K) is a lower
triangular matrix of full rank, U ∈ Matm (K) is an upper triangular matrix of full rank, and
R ∈ Matm,n is in reduced row echelon form is called PLURQ decomposition of A .

In the following, we present an algorithm which computes a PLURQ decomposition of a matrix
A ∈ Matm,n (K) . Hence every matrix has a PLURQ decomposition.

Remark 2.5.4. In general, a PLURQ decomposition of a matrix is not unique. Consider, for
instance, the zero matrix. In this case, the matrix R is also the zero matrix but P and Q can
be arbitrary permutation matrices and L and U can be arbitrary lower- and upper triangular
matrices.

Example 2.5.5. Let

A =

 0 0 0

0 1 2

0 3 4

 .

A PLURQ decomposition of A is given by

P =

 0 0 1

1 0 0

0 1 0

 , L =

 1 0 0

2 −1 0

0 0 1

 , U =

 1 2 0

0 1 0

0 0 1

 ,

R =

 1 0 0

0 1 0

0 0 0

 , and Q =

 0 1 0

0 0 1

1 0 0

 .

2.5. Canonical Matrix Factorisations 33

Algorithm 1: PLURQ decomposition
Input: A matrix A ∈ Matm,n (K)

Output: Matrices P,L, U,R,Q , such that A = PLURQ

1 k := min(m,n) , P := Im , L := Im , U := Im , R := A , Q := In , rank := k ;
// First a PLUQ decomposition of A is computed

2 for i := 1 to k do

3 if isZeroMatrix(Ri:m,i:n) then rank := i− 1 ; break;
4 [r, c] := �ndFirstNonZeroIndex(Ri:m,i:n) ;
5 swapColumns(P, i, i+ r − 1);
6 swapRows(R, i, i+ r − 1);
7 swapColumns(R, i, i+ c− 1);
8 swapRows(Q, i, i+ c− 1);
9 Ri+1:m,i := Ri+1:m,i/Ri,i ;

10 Ri+1:m,i+1:n := Ri+1:m,i+1:n −Ri+1:m,iRi,i+1:n ;

11 end

// L and U are split into separate matrices

12 for i := 1 to m do

13 Li,1:min(n,i−1) := Ri,1:min(n,i−1) ; Ri,1:min(n,i−1) := 0 ;
14 end

15 for i := 1 to rank do

16 L1:m,i := L1:m,iRi,i ; Ri,i:n = Ri,i:n/Ri,i ;
17 end

// R is transformed into RREF

18 for i := rank downto 2 do

19 U1:i−1,i := R1:i−1,i ;
20 R1:i−1,rank+1:n := R1:i−1,rank+1:n −R1:i−1,iRi,rank+1:n ;
21 R1:i−1,i := 0 ;

22 end

23 return (P,L, U,R,Q) ;

Theorem 2.5.6. Algorithm 1 is an algorithm which computes in a �nite number of steps a

PLURQ decomposition of a matrix A ∈ Matm,n (K) .

Proof. First a PLUQ decomposition of A is computed. Correctness of this part follows from [6,
Algorithm 3.4.2] together with the observation that the arguments remain valid for rectangular
matrices. The matrix R is now in upper triangular form. In lines 18 to 22 it is transformed
into RREF via a series of elementary row operations and the inverse operations are stored in
matrix U .

Remark 2.5.7. In practice, it makes sense not to store all entries of the matrices P and Q as
they are permutation matrices and thus sparse.

Later on, we are most interested in the matrices L−1 and U−1 , because with their help it is
possible to �update� the kernel of a matrix. We will discuss this in more detail in Remark 3.4.5.

34 Chapter 2. Mathematical and Algorithmic Foundation

Therefore, we present an algorithm which computes L−1 and U−1 directly, without the need
of �rst computing L and U via Algorithm 1 and afterwards inverting them. Please note that
in this algorithm L−1 , U−1 ,... have to be interpreted as variable names and are not meant as
instructions to invert a given matrix L or U .

Algorithm 2: PLURQ inverse decomposition
Input: A matrix A ∈ Matm,n (K)

Output: Matrices P−1, L−1, U−1, R,Q−1 , such that R = U−1L−1P−1AQ−1

1 k := min(m,n) , P−1 := L−1 := U−1 := Im , R := A , Q−1 := In , rank := k ;
// First a PLUQ decomposition of A is computed

2 for i := 1 to k do

3 if isZeroMatrix(Ri:m,i:n) then rank := i− 1 ; break;
4 [r, c] := �ndFirstNonZeroIndex(Ri:m,i:n);
5 swapRows(P−1, i, i+ r − 1);
6 swapRows(R, i, i+ r − 1);
7 swapColumns(R, i, i+ c− 1);
8 swapColumns(Q−1, i, i+ c− 1);
9 Ri+1:m,i := −Ri+1:m,i/Ri,i ;
10 Ri+1:m,1:i−1 := Ri+1:m,1:i−1 +Ri+1:m,iRi,1:i−1 ;
11 Ri+1:m,i+1:n := Ri+1:m,i+1:n +Ri+1:m,iRi,i+1:n ;
12 Ri,1:i−1 := Ri,1:i−1/Ri,i ;
13 Ri,i+1:n := Ri,i+1:n/Ri,i ;
14 Ri,i := 1/Ri,i ;

15 end

// L−1 and U−1 are split into separate matrices

16 for i := 1 to m do

17 L−1
i,1:min(n,i−1) := Ri,1:min(n,i−1) ; Ri,1:min(n,i−1) := 0 ;

18 end

19 for i := 1 to rank do R(i, i) := 1 ;
20 for i := rank+1 to m do L(i, i)−1 := 1 ;

// R is transformed into RREF

21 for i := rank downto 2 do

22 U−1
1:i−1,i := −R1:i−1,i ;

23 R1:i−1,rank+1:n := R1:i−1,rank+1:n −R1:i−1,iRi,rank+1:n ;
24 R1:i−1,i := 0 ;
25 U−1

1:i−1,i+1:m := U−1
1:i−1,i+1:m + U−1

1:i−1,iU
−1
i,i+1:m ;

26 end

27 return (P−1, L−1, U−1, R,Q−1) ;

Theorem 2.5.8. Algorithm 2 is an algorithm which computes in a �nite number of steps an in-

verse PLURQ decomposition of a matrix A ∈ Matm,n (K) and returns matrices P−1, L−1, U−1, R ,

and Q−1 such that R = U−1L−1P−1AQ−1 .

2.5. Canonical Matrix Factorisations 35

Proof. Essentially the same arguments apply as for Algorithm 1. The operations are, however,
accumulated in such a way that we obtain the inverse of the matrices P,L, U, and Q .

2.5.2 Schur Decomposition

Another matrix decomposition which plays an important role in numerical computations is the
so-called Schur decomposition. Its main advantages are that it can be computed using only
unitary similarity transformations and that it exists for all square matrices.

De�nition 2.5.9. [Schur Decomposition]

Let A ∈ Matm (C) . Then a decomposition of A such that

A = QUQ∗

where Q ∈ Matm (C) is unitary and U ∈ Matm (C) is upper triangular, is called a Schur

decomposition of A .

Theorem 2.5.10. Every matrix A ∈ Matm (C) has a Schur decomposition. The eigenvalues

of A can be found on the diagonal of U and the matrix Q can be chosen to achieve any desired

order of the eigenvalues on the diagonal of U. If A ∈ Matm (R) and if all its eigenvalues are

real, it is possible to chose an orthogonal Q ∈ Matm (R) .

Proof. A constructive proof can be found in [6, Theorem 7.1.3]. Compare also [9, Theorem 2.3.1].

Remark 2.5.11. Let A ∈ Matm (C) and let A = QUQ∗ be a Schur decomposition of A . This
decomposition is in general not unique. Consider for instance A = Im , then any unitary matrix
Q ∈ Matm (C) together with U = Im will be a Schur decomposition of A .

2.5.3 QR Decomposition

In the following subsection we now introduce the well-known de�nition of the QR decomposition
of a matrix. It can, for example, be used to solve the linear least squares problem (2.10.1) which
we discuss later.

De�nition 2.5.12. [QR decomposition of a matrix]

Let A ∈ Matm,n (C) and m ≥ n . A decomposition of A such that

A = QR

where Q ∈ Matm (C) is a unitary matrix and R ∈ Matm,n (C) is an upper triangular matrix
with m− n appended zero rows, is called a QR decomposition of A .

36 Chapter 2. Mathematical and Algorithmic Foundation

In this case the columns of Q form an orthonormal basis of Cm . Obviously it is possible to
remove (at least) the last m − n columns from Q and the same number of zero rows from R

without changing the value of the product QR . Such a decomposition is called reduced or thin
QR decomposition in the literature. As the last m − n columns of Q can be chosen freely to
extend the �rst n columns to an orthonormal basis of Cm , a QR decomposition is in general
not unique.

De�nition 2.5.13. [Reduced QR decomposition of a matrix]

Let A ∈ Matm,n (C) and m ≥ n . We denote the rank of A by k . A decomposition of A such
that

A = QR,

with Q ∈ Matm,k (C) containing an orthonormal basis of im (A) as its columns and an upper
triangular matrix R ∈ Matk,n (C) , is called reduced (or thin) QR decomposition of A .

In this thesis the most frequently occurring case is when A has full rank n . Then the matrix A
can then be decomposed into Q ∈ Matm,n (C) and R ∈ Matn (C) .

Theorem 2.5.14. Every matrix A ∈ Matm,n (C) has a QR decomposition and a reduced QR

decomposition. If A ∈ Matm,n (R), then both Q and R can be chosen as real matrices.

Proof. A proof can be found in [9, Theorem 2.6.1].

Remark 2.5.15. In Section 2.8 we describe an algorithm which computes a QR decomposition
of a given matrix A .

Theorem 2.5.16 (Uniqueness). Let A ∈ Matm,n (C), m ≥ n , and rank (A) = n . Then A has

a unique reduced QR decomposition if we demand that the diagonal elements of R are real and

positive, which can always be achieved.

Proof. See [9, Theorem 2.6.1].

Remark 2.5.17. Let A ∈ Matm,n (C) be a rank k matrix with m ≥ n and let A = QR be a
reduced QR decomposition of A . As Q contains an orthonormal basis of im (A) as its columns,
we observe that Q∗Q = Ik (C) . However, the matrix QQ∗ is in general not the identity matrix.

There are three commonly used techniques for the calculation of the QR decomposition of a
matrix. They are the modi�ed Gram-Schmidt orthonormalisation process, the transformation
using Givens rotations, and the transformation using Householder re�ections. Each method has
its particular advantages and disadvantages. The modi�ed Gram-Schmidt process is the fastest
algorithm, but it is numerically the least favourable. Givens rotations can be used when dealing
with highly structured matrices which already contain a lot of zero entries. However, if the
matrices are generic, Givens rotations require more time to compute the QR decomposition.
Finally, Householder re�ections represent a good compromise between numerical stability and
e�ciency when applied to matrices which lack special structure. That is why we will not focus
on the �rst two methods. The interested reader is referred to [6, Section 5.2] for more details.

2.5. Canonical Matrix Factorisations 37

In Section 2.8 we will study in detail how the (reduced) QR decomposition of a matrix can be
e�ectively computed via Householder re�ections.

2.5.4 Eigendecomposition

First, we will introduce the concept of diagonalisable matrices and explain how they are related
to eigenvalues and eigenvectors of a matrix. Of particular interest in numerical computations
are matrices which can be unitarily diagonalised, as these eigenvalue revealing factorisations can
be computed in a stable way.

De�nition 2.5.18. [Diagonalisable matrix]

A matrix A ∈ Matm (C) is called diagonalisable, if there exist a matrix P ∈ GLm (C) and a
diagonal matrix D ∈ Matm (C) such that A = PDP−1 . A decomposition of this form is called
an eigendecomposition of A . If A is not diagonalisable, it is sometimes called defective in
the literature.

Proposition 2.5.19. Let A ∈ Matm (C) be a diagonalisable matrix, and let

P ∈ GLm (C) be such that P−1AP = D is a diagonal matrix. Then D = diag (d1, ..., dm) ∈
Matm (C) contains all eigenvalues {λ1, ..., λq} of A with their respective geometric multiplicity

on its diagonal (in an arbitrary order). This means that for each λi ∈ Λ (A) there are pre-

cisely gmult (A, λi) diagonal entries dk which are equal to λi. Consider the rewritten equation

AP = PD . The columns of P which are associated with λi in the product PD contain a basis

of ker (A− λiIm) . So if dim (ker (A− λiIm)) = 1, then the i-th column of P contains the

eigenvector associated with di (for some λk = di).

Proof. First, we note that the matrix P is invertible which means that the columns of P are lin-
early independent. By writing the equation P−1AP = D as AP = DP , we immediately observe
that the columns of P are (linearly independent) eigenvectors of A . If dim (ker (A− λiIm)) = 1

the eigenvector associated with the eigenvalue λi is uniquely determined. This means that the
entry di of D is the eigenvalue associated with the eigenvector which is stored in the i-th column
of P . In case dim (ker (A− λiIm)) > 1 , the columns of P which are associated with λi (see
above) are linearly independent, therefore they form a basis of ker (A− λiIm) .

Remark 2.5.20. Let A ∈ Matm (C) be a diagonalisable matrix. In this setting an eigendecom-
position of A , such that A = PBP−1 , is in general not unique as the eigenvectors of A can be
arranged in an arbitrary way as the columns of P .

De�nition 2.5.21. A matrix A ∈ Matm (C) is called unitarily diagonalisable if a unitary
matrix U ∈ Matm (C) exists such that U∗AU is a diagonal matrix.

Theorem 2.5.22 (Spectral theorem). A matrix A ∈ Matm (C) is unitarily diagonalisable if and

only if it is normal.

In this case, we write A = UDU∗ where U ∈ Matm (C) is unitary and where

D ∈ Matm (C) is diagonal. Then the columns of U contain an orthonormal basis of Cm and D

contains the eigenvalues of A on its main diagonal.

38 Chapter 2. Mathematical and Algorithmic Foundation

Proof. By the Schur decomposition theorem (2.5.10) every matrix A ∈ Matm (C) can be decom-
posed into

A = QUQ∗

where Q ∈ Matm (C) is unitary and U ∈ Matm (C) is upper triangular and similar to A . We
observe that

A∗A = (QUQ∗)∗QUQ∗ = Q∗∗U∗Q∗QUQ∗ = QU∗UQ∗

AA∗ = QUQ∗ (QUQ∗)∗ = QUQ∗Q∗∗U∗Q∗ = QUU∗Q∗.

If we now assume that A is normal we obtain that U∗U = UU∗ must hold. So U has to be both
normal and upper triangular, which can only be ful�lled if U is diagonal (see Proposition 2.3.28).
In order to show the other direction of the claimed implication we assume that U is diagonal.
Then U∗U = UU∗ follows immediately and therefore, A∗A = A∗ must hold as well. Finally,
as AU = UD , it follows from the de�nition of eigenvalues and eigenvectors that UDU∗ is an
eigendecomposition of A .

Remark 2.5.23. Note that the matrix U in Theorem 2.5.22 need not be unique. Consider
A = Im (C) . Then every unitary matrix U ∈ Matm (C) unitarily diagonalises A . However, the
entries of D are unique except for their order as the eigenvalues of A are unique.

Even though not all matrices A ∈ Matm (C) are similar or even unitarily similar to a diagonal
matrix, it is always possible to �nd similarity transformations such that A is similar to a matrix
containing only Jordan blocks (compare De�nition 2.5.24).

2.5.5 Jordan Normal Form

As a next step we will present the Jordan Decomposition of a matrix which generalises the
eigendecomposition of diagonalisable matrices A ∈ Matm (C) to general square matrices.

De�nition 2.5.24. [Jordan Block]

Let λ ∈ C . Then a matrix of the form

J =

λ 1 0 0

0 λ
. . . 0

...
. 1

0 · · · 0 λ

 ∈ Matm (C)

is called a Jordan block of size m .

Remark 2.5.25. For m ≥ 2 , no Jordan block J can be diagonalised. Obviously, the matrix J
has only one eigenvalue λ with algebraic multiplicity m . However, ker (J − λIm) = C · e1 is a
1-dimensional vector space. As dim (ker (J − λIm)) = 1 6= m there exists no basis of eigenvectors
for J .

2.5. Canonical Matrix Factorisations 39

De�nition 2.5.26. [Block Diagonal]

A matrix A ∈ Matm (C) is called block diagonal if it is of the form

A =

B1 0 · · · 0

0 B2
. . .

...
...

. 0

0 · · · 0 Bk

where each Bi ∈ Matmi (C) with 1 ≤ i ≤ k is an arbitrary square matrix.

De�nition 2.5.27. [Jordan Normal Form]

We say a matrix A ∈ Matm (C) is in Jordan normal form if it is block diagonal where each
diagonal block is a Jordan block.

Theorem 2.5.28. Every square matrix A ∈ Matm (C) is similar to a matrix in Jordan normal

form. There exists an invertible matrix P ∈ Matm (C) containing as its columns (generalised)

eigenvectors of A such that

P−1AP = J

is in Jordan normal form. Speci�cally,

A = PJP−1

is called Jordan decomposition of A . If A is real and has only real eigenvalues it is always

possible to choose P ∈ Matm (R) as well.

Proof. A proof can be found in [9, Theorem 3.1.11].

De�nition 2.5.29. Let A ∈ Matm,n (C) . We say the matrix Ã ∈ Matm,n (C) is an ε-

perturbation of A if ‖A− Ã‖2 ≤ ε .

It should be noted that every non-diagonalisable matrix is arbitrarily close to a diagonalisable
one. This is captured in the following result.

Proposition 2.5.30. Let A ∈ Matm (C) and let ε > 0 . Then there exists an ε-perturbation of

A which is diagonalisable.

Proof. A proof of this claim is contained in [9, Theorem 2.4.6].

Compare also [6, Subsections 7.1.5 and 7.6.5] for a discussion of the practical implications.

40 Chapter 2. Mathematical and Algorithmic Foundation

2.5.6 Singular Value Decomposition (SVD)

Another matrix decomposition which plays a major role in numerical linear algebra is the so-
called singular value decomposition of a matrix.

De�nition 2.5.31. [SVD of a matrix]

Let A ∈ Matm,n (C) . A singular value decomposition (SVD) of A is a matrix factorisation

A = UΣV ∗

where both U ∈ Matm (C) and V ∈ Matn (C) are unitary matrices, and Σ ∈ Matm,n (R) is
a diagonal matrix which contains only non-negative real entries. We denote the entries on the
diagonal of Σ by s1, ..., smin(m,n) .

Theorem 2.5.32. 1. Every matrix A ∈ Matm,n (C) has a SVD.

2. If we order the entries on the diagonal of Σ in a descending way, i.e. s1 ≥ ... ≥ smin(m,n) ,

they are uniquely determined by A . We call s1, ..., smin(m,n) the singular values of A .

3. The last n − r rows of V ∗ form an orthonormal basis of the kernel of A , where r is the

rank of A .

4. If the matrix A is real, then real orthogonal matrices U ∈ Matm (R) and V ∈ Matn (R)

exist such that UΣV ∗ is a SVD of A .

Proof. For a proof of the claimed properties compare, for example, [9, Theorem 7.3.5]. A direct
proof of claim 4 can also be found in [6, Theorem 2.5.2].

Whenever we talk about a singular value decomposition of a matrix in this thesis we assume
w.l.o.g. that the singular values are ordered in a descending way.

In practice it is often su�cient and more economic to compute only the so-called reduced singular
value decomposition of a matrix.

De�nition 2.5.33. [Reduced SVD]

Let A ∈ Matm,n (C) with rank r . A reduced singular value decomposition (reduced SVD)
of A is a factorisation such that

A = UΣV ∗

holds, where the involved matrices have the following properties: U ∈ Matm,r (C) contains r
orthogonal vectors in Cm which form a basis of im (A) , V ∈ Matn,r (C) contains r orthogonal
vectors in Cn , and Σ ∈ Matr (R) is diagonal with non-negative real entries.

De�nition 2.5.34. [Singular vectors]

Let A ∈ Matm,n (C) and let UΣV ∗ be a singular value decomposition of A such that s1 ≥
... ≥ smin(m,n) . Let us denote by (u1, ..., um) the column vectors of U and by (v1, ..., vn) the
column vectors of V . This means that UΣ = AV holds, and consequently uisi = Avi for
1 ≤ i ≤ min (m,n) . We call each ui a left-singular vector of A with respect to si and we call
each vi a right-singular vector of A with respect to si .

2.6. Moore-Penrose Pseudoinverse 41

A detailed explanation on how to compute a SVD of a matrix in an e�cient and stable way is
contained in [6, Section 8.6].

The following proposition tells us what will happen to the largest and smallest singular value of
a matrix A if a new column is inserted into A . This will play a signi�cant role when analysing
the properties of the ABM algorithm (22).

Proposition 2.5.35. Let A ∈ Matm,n (C) and let Ã ∈ Matm,n+1 (C) be a matrix which we

obtain by inserting a new column into A at an arbitrary position. Then the following relations

between the largest singular values of A and Ã , s1 and s̃1 , and the smallest singular values of A

and Ã , smin(m,n) and s̃min(m,n+1) , hold:

s̃1 ≥ s1

s̃min(m,n+1) ≤ smin(m,n).

Proof. See for instance [6, Corollary 8.6.3].

Once we have understood the relationship with the homogeneous least squares problem (see
De�nition 2.10.2), it is easy to give an intuitive explanation of Proposition 2.5.35 with respect
to the smallest singular value. Let A ∈ Matm,n (C) and let Ã ∈ Matm,n+1 (C) be like in
Proposition 2.5.35 and let x and x̃ be the solutions of the homogeneous least squares problems
minx ‖Ax‖ and minx̃ ‖Ãx̃‖ . By adding an additional column the remainder of the homogeneous
least squares solution cannot become bigger as the �t either stays identical or can be improved
with the help of additional data, so ‖Ax‖ ≥ ‖Ãx̃‖ .

2.6 Moore-Penrose Pseudoinverse

It is possible to generalise the concept of the inverse of a matrix to general, non square and non
invertible, matrices. The most commonly used extension is the Moore-Penrose pseudoinverse.

De�nition 2.6.1. [Moore-Penrose pseudoinverse]

Let A ∈ Matm,n (C) be an arbitrary complex matrix. We call a matrix B ∈ Matn,m (C) the
(Moore-Penrose) pseudoinverse of A if it satis�es the following conditions:

1. ABA = A

2. BAB = B

3. (AB)∗ = AB

4. (BA)∗ = BA

For convenience we will denote the Moore-Penrose pseudoinverse of A by A+ and refer to it as
the pseudoinverse of A .

42 Chapter 2. Mathematical and Algorithmic Foundation

Proposition 2.6.2 (Existence and Uniqueness). For a given matrix A ∈ Matm,n (C) the pseu-

doinverse A+ exists and is unique. Let A = UΣV ∗ be a singular value decomposition of A and

let s1, ..., sk be the positive singular values of A . Let furthermore Σ+ = diag
(

1
s1
, ..., 1

sk
, 0, ...

)
∈

Matn,m (R) be the diagonal matrix which we obtain by taking the reciprocal of every positive

singular value of A . Then the matrix V Σ+U∗ is the pseudoinverse of A .

Proof. In order to prove the existence of the pseudoinverse for every matrix A ∈ Matm,n (C) ,
we will show that the matrix B = V Σ+U∗ satis�es all properties of the pseudoinverse. First

we compute ΣΣ+ =

(
Imin(m,n) 0

0 0

)
∈ Matm (C) and Σ+Σ =

(
Imin(m,n) 0

0 0

)
∈ Matn (C) .

Then we verify

ABA = UΣV ∗V Σ+U∗UΣV ∗ = UΣΣ+ΣV ∗

= UΣV ∗ = A,

BAB = V Σ+U∗UΣV ∗V Σ+U∗ = V Σ+ΣΣ+U∗

= V Σ+U∗ = B,

(AB)∗ =
(
UΣV ∗V Σ+U∗

)∗
= U

(
Σ+
)tr
V ∗V ΣtrU∗

= U
(
Σ+
)tr

ΣtrU∗ = U
(
ΣΣ+

)tr
U∗

= UΣΣ+U∗ = UΣV ∗V Σ+U∗

= AB,

(BA)∗ =
(
V Σ+U∗UΣV ∗

)∗
= V ΣtrU∗U

(
Σ+
)tr
V ∗

= V Σtr
(
Σ+
)tr
V ∗ = V

(
Σ+Σ

)tr
V ∗

= V Σ+ΣV ∗ = V Σ+U∗UΣV ∗

= BA.

Next we will show uniqueness. For this purpose let us assume that matrices B,C ∈ Matn,m (C)

exist that satisfy all properties of De�nition 2.6.1. By calculation we conclude that

AB = (AB)∗ = B∗A∗ = B∗ (ACA)∗ = B∗A∗C∗A∗ = (AB)∗ (AC)∗ = ABAC = AC,

and
BA = (BA)∗ = ... = CA.

Finally, we observe that
B = BAB = CAB = CAC = C.

We have thus shown that the pseudoinverse is uniquely determined by A .

Remark 2.6.3. Even though we know by Proposition 2.6.2 that we can compute the pseudoin-
verse of a matrix with the help of its singular value decomposition, this is often too costly as the
computation of a SVD is computationally expensive. In practice other methods are used which
are numerically less favourable but provide signi�cantly better runtime.

Proposition 2.6.4 (Properties of the pseudoinverse). Let A ∈ Matm,n (C) . The pseudoin-

verse A+ of A has the following properties:

2.7. Numerical Stability 43

1. If A ∈ GLm (C) , then A+ = A−1 .

2. (A+)
+

= A .

3. If A ∈ Matm,n (R) then A+ ∈ Matn,m (R) .

Proof. To prove the �rst claim we note that for A ∈ GLm (C) the matrix A−1 satis�es all
properties of De�nition 2.6.1. We compute AA−1A = A , A−1AA−1 = A−1 ,

(
AA−1

)∗
= I = I∗ ,

and
(
A−1A

)∗
= I = I∗ . By Proposition 2.6.2 we now that the pseudoinverse is unique which

concludes the proof. To prove the second claim let us look at the pseudoinverse of A given by
its SVD A+ = V Σ+U∗ . We obtain(

A+
)+

=
(
V Σ+U∗

)+
= UΣV ∗ = A.

The third claim follows from the fact that the matrices U and V can be chosen as purely real
matrices if A ∈ Matm,n (R) (see Theorem 2.5.32 claim 4).

Proposition 2.6.5. Let m ≥ n . If A ∈ Matm,n (C) has full rank n , then A+ is the left inverse

of A , i.e. A+A = In .

Proof. Let A = UΣV ∗ be a singular value decomposition of A . The pseudoinverse of A is then
given by V Σ+U∗ . We verify by computation, that

A+A = V Σ+U∗UΣV ∗ = V Σ+ΣV ∗

= V InV
∗ = In.

2.7 Numerical Stability

When we want to derive algorithms which are able to deal with measured noisy data in an
appropriate way, we essentially face two challenges. Firstly, it is neither feasible nor desirable
to work with exact representations of real (or complex) numbers inside the computer. That is
why we use limited precision representations of the data in form of �oating point numbers, and
we have to address the numerical obstacles which are associated with it. Secondly, we face the
challenge that we need to be able to assess the usefulness of a solution which we have computed
in consideration of possible measurement errors contained in the input data. The solution to
certain problems may change drastically if the input data vary only slightly, thus making the
computed solution essentially meaningless in the context of measuring errors. This phenomenon
is called the condition of a problem and is now brie�y introduced. Additionally, we look at
examples of ill-conditioned problems which will come up again in Chapter 5.

44 Chapter 2. Mathematical and Algorithmic Foundation

2.7.1 Arithmetic with Floating Point Numbers

Approximations of real or complex numbers are usually stored in computers in the �oating
point format which is natively supported by today's microprocessors. Guided by the IEEE 754
standard ([47]) we introduce the following de�nitions.

De�nition 2.7.1. [Floating point numbers]

Let t ∈ N , b ∈ N \ {1} (usually b = 2) and r ∈ N . We call t the precision, b the base, and r

the range of the exponent. Then the numbers

x = ±
(m
bt

)
be

with m ∈ N in the range 2t−1 ≤ m ≤ 2t−1 and e ∈ Z in the range −2r−1−2 ≤ e ≤ 2r−1−1 form
together with 0 the set of �oating point numbers F with precision t in base b with exponent
range r . For a given �oating point number x , the number ±

(
m
bt

)
is called the mantissa and e

is called the exponent of x .

Remark 2.7.2. The �oating point number set F with which we are dealing is idealised in the
sense that it ignores under- and over�ow. These may occur e.g. when the absolute value of the
result of an arithmetic operation is smaller or larger then the smallest or largest number that
can be represented in F . In practice, normally an error is generated as no guarantees can be
made any more with respect to the accuracy of the computed result.

In practice, most computer architectures natively support so-called IEEE single, double or
quad(ruple) precision �oating point numbers. In Table 2.1 we give the corresponding values
for b , t , and r .

base b precision t exponent range r decimal digits

single precision 2 24 8 ≈ 7.225

double precision 2 53 11 ≈ 15.955

quad(ruple) precision 2 113 15 ≈ 34.016

Table 2.1: IEEE single, double and quad(ruple) precision �oating point numbers

The double precision format is used very commonly today, as it represents a good compromise
between accuracy and speed. Unless stated otherwise all algorithms which are presented in this
thesis were implemented in the ApCoCoA library using double precision arithmetic.

Example 2.7.3. [Floating point interval]

The interval [1, 2] in IEEE double precision arithmetic is given by the following discrete subset
of [1, 2] : {

1, 1 + 2−52, 1 + 2 · 2−52, 1 + 3 · 2−52, ..., 2
}
.

So F contains 252 +1 elements which lie in the interval [1, 2] . In general each interval
[
2j , 2j+1

]
in F is given by the elements of [1, 2] multiplied by 2j (see also [5, pages 97-98]).

2.7. Numerical Stability 45

One remarkable feature of �oating point numbers is that, in contrast to �xed point numbers,
the absolute gap between two consecutive numbers becomes larger as the numbers themselves
become bigger. The relative gap between two �oating point numbers plays an important role in
the stability analysis of algorithms. Ideally, the error introduced by a �stable� algorithm should
be in the order of magnitude of this relative gap.

De�nition 2.7.4. [Machine epsilon]

Let b be the base and let t be the precision of a set of �oating point numbers F as de�ned
above. Then we denote by

εmachine =
1

2
b1−t

the machine epsilon (or the machine precision) of F . If F is implemented by a certain
computer architecture we also call εmachine the machine epsilon of this computer architecture.

In practice, the de�nition of εmachine may di�er for a certain architecture because of speci�c
implementation details but exact numbers are usually provided by the manufacturer. A device
which implements the IEEE 754 standard ([47]) is guaranteed to provide εmachine = 2−24 ≈ 5.96×
10−8 for single precision and εmachine = 2−53 ≈ 1.11× 10−16 for double precision arithmetic.

Assumption 2.7.5 (Fundamental assumption of �oating point arithmetic). Let ? be an exact

arithmetic operation on C (or R) applied to the elements of F such as +, −, ×, or ÷ and

let ~ be its �oating point counterpart. Then for all x, y ∈ F , there exists an ε ∈ C (or ε ∈ R)

with |ε| ≤ εmachine such that

x~ y = x ? y (1 + ε) .

Additionally, if
√̂
· is the �oating point counterpart of

√
· , then for each x ∈ F there exists an

ε ∈ C (or ε ∈ R) with |ε| ≤ εmachine such that

√̂
x =
√
x (1 + ε)

is satis�ed.

If Assumption 2.7.5 holds, it guarantees that all basic arithmetic operations have a relative
error of at most εmachine . For all our further considerations, we assume that the fundamental
assumption of �oating point arithmetic holds. This is at least true for all recent Intel and AMD
computer architectures. Note that architectures exist for which Assumption 2.7.5 does not hold.
However, theses systems only represent a shrinking minority. They require a di�erent kind of
stability analysis which is not covered in this thesis.

Remark 2.7.6. Let x, y, z ∈ F and let ~ be a basic binary �oating point operation. Please
note that in general (x~ y) ~ z 6= x~ (y ~ z) .

De�nition 2.7.7. Let x, y ∈ F . If we want to state explicitly that we are talking about basic
�oating point operations between x and y , e.g. when analysing the accuracy of an algorithm,
we will use the notations +̂ , −̂ , ×̂ and ÷̂ . If no ambiguity can arise we will not make this
distinction and use the common notation.

46 Chapter 2. Mathematical and Algorithmic Foundation

2.7.2 Condition of a Problem and Stability of Algorithms

When trying to give error estimates for numerical algorithms, there are basically two phenomena
one has to pay attention to.
The �rst one is the condition of a problem. It measures by which order of magnitude small
perturbations of the input data in�uence the solution of a problem. It is a property of the un-
derlying mathematical problem and is independent of the algorithm used to attack it.
The second one is the accuracy of an algorithm. It describes how the rounding errors through-
out an algorithm in�uence the computed solution of a problem.

Let us start with the discussion of the condition of a problem. We will only give a brief overview.
Further details can, for example, be found in [5, Lecture 12]. For this purpose we introduce a
few de�nitions which are commonly used in numerical linear algebra.

De�nition 2.7.8. Let X and Y be normed �nite dimensional vector spaces (most commonly Cm

or Matm,n (C) together with a corresponding vector or matrix norm). A map f : X → Y is
called a problem. The vector space X is also called input space and the vector space Y is
called solution space of the problem. A problem f together with a data point x ∈ X is called
a problem instance. We call an element x̃ ∈ X an ε-perturbation of x if ‖x− x̃‖ ≤ ε ∈ R+

0 .
If the actual value of ε does not play a role we say that x̃ ∈ X is a perturbation of x .

De�nition 2.7.9. [Relative condition number]

Let f : X → Y be a map from a normed �nite dimensional vector space X to a normed �nite
dimensional vector space Y , and let x ∈ X . Then the (relative) condition number κ (x)

of f at x is de�ned as

κ (x) = lim
ε→0+

sup
δx∈X,‖δx‖≤ε

‖f (x+ δx)− f (x)‖
‖f (x)‖

/
‖δx‖
‖x‖

.

If it is clear from the context that we only consider in�nitesimal perturbations of x , which
means that ‖δx‖ ≤ ε for limε→0+ , we will abbreviate our notation by only writing:

κ (x) = sup
δx

‖f (x+ δx)− f (x)‖
‖f (x)‖

/
‖δx‖
‖x‖

.

In case the norms on X and Y are (induced by) p-norms we write κp (x) if we want to stress
the underlying norm.

Remark 2.7.10. If f is di�erentiable we can write

κ (x) =
‖Jf (x)‖ ‖x‖
‖f (x)‖

,

where Jf (x) is the Jacobian matrix of f (x) . See [5, pages 90 and 91] for a more detailed
explanation.

It is also possible to give a de�nition for an absolute condition number (see [5, De�nition 12.1]).
However, in numerical analysis the relative condition number plays a much more important role,
as the error which is introduced by �oating point arithmetic is a relative one. This is why we do
not discuss the absolute condition number here.

2.7. Numerical Stability 47

De�nition 2.7.11. We say that a problem f : X → Y is well-conditioned for an argument
x ∈ X if the associated relative condition number κ (x) is small (e.g. smaller than 104) and
ill-conditioned if the associated condition number is large (e.g. larger than 106). If κ (x) =∞
we say that the problem f is ill-posed for x .

This is admittedly a rather fuzzy de�nition which leaves some room for interpretation. In prac-
tice, what can be viewed as a small and as a large condition number greatly depends on the
context and the actual application. In accordance with [5, page 91] we have given the generally
accepted bounds above.

Example 2.7.12. Let f : C2 → C be the C-linear map given by f (x) = x1 − x2 for x =

(x1, x2) ∈ C2 . Then the Jacobian matrix of f at a point x is given by

Jf (x) =
(

∂f(x)
∂x1

∂f(x)
∂x2

)
=
(

1 −1
)
.

Using the ∞-norm on C2 and the corresponding induced matrix norm (the maximum of the
absolute row sums) we obtain

κ (x) =
‖Jf (x)‖∞ ‖x‖∞
‖f (x)‖∞

=
2 max {|x1| , |x2|}
|x1 − x2|

.

The relative condition number can become very big if |x1 − x2| ≈ 0 . This means that if x1

and x2 have approximately the same value, the problem f is ill-conditioned.

Example 2.7.13. The problem of �nding the eigenvalues of a non-normal matrix is in general
also ill-conditioned as the following example will illustrate. The eigenvalues of the matrix

A =

(
1 1000

0.001 1

)
are (0, 2)

and the eigenvalues of the matrix

Ã =

(
1 1000

0 1

)
are (1, 1) .

As we can see, a slight perturbation of 0.001 in the lower left entry of the matrix has an unpro-
portionally large in�uence on the result. Note that an actual bound on the stability of eigenvalues
is presented later on in Theorem 2.9.1. See also Example 2.9.2 for further considerations.

We will now present a few well-known results which concern the stability of matrix-vector mul-
tiplication and the stability of solving a linear equation system.

Proposition 2.7.14 (Condition number of matrix-vector multiplication).
Let A ∈ Matm,n (C), x ∈ Cn , and let ‖·‖ be an arbitrary p-vector norm (with 1 ≤ p ≤ ∞), which

induces the corresponding matrix norm. The condition number κ of the linear map f : Cn → Cm

given by f (x) = Ax is

κ (x) =
‖Jf (x)‖ ‖x‖
‖f (x)‖

= ‖A‖ ‖x‖
‖Ax‖

(2.1)

48 Chapter 2. Mathematical and Algorithmic Foundation

for x 6= 0n and κ (x) = 1 for x = 0n . Additionally, if m ≥ n and A has full rank n , the

inequality

κ (x) ≤ ‖A‖ ‖A+‖ (2.2)

holds.

Proof. Equation 2.1 follows directly from the de�nition of the relative condition number if
we observe that the Jacobian matrix of f is A . In the case x = 0n , we obtain κ (x) = 1

as limx→0n

(
‖A‖ ‖x‖‖Ax‖

)
= ‖A‖
‖A‖ = 1 .

In order to prove inequality 2.2, let us assume that m ≥ n and A has full rank. First we will
show that the inequality ‖x‖ ≤ ‖A+‖ ‖Ax‖ holds, where A+ is the pseudoinverse of A as de�ned
in 2.6.1. For this purpose, let us recall Proposition 2.6.5, which states that A+A = In as the
columns of A are linearly independent. Using the properties of the induced matrix norm (see
Proposition 2.3.13) we conclude that ‖x‖ = ‖A+Ax‖ ≤ ‖A+‖ ‖Ax‖ . Thus we have shown that

κ (x) ≤ ‖A‖ ‖A+‖.

The advantage of the upper bound given by inequality 2.2 is its independence of the actual
value of x . If ‖·‖ = ‖·‖2 equality is achieved if x is a scalar multiple of a right singular vector
associated with a minimal singular value. Let c · x ∈ Cn be a scalar multiple of a right singular
vector (see De�nition 2.5.34) x of A associated with a minimal singular value with c ∈ C \ {0} .
This means that κ2 (x) = ‖A‖ ‖cx‖‖Acx‖ = ‖A‖ |c|‖x‖|c|‖Ax‖ = σ1 (A) 1

σn(A) = ‖A‖ ‖A+‖ .

As the product ‖A‖ ‖A+‖ shows up quite often in numerical linear algebra, it is customary to
give it an own name. Thus we de�ne the condition number of a matrix A as the upper bound 2.2
of the associated linear map f : Cn → Cm given by f (x) = Ax .

De�nition 2.7.15. [Condition number of a matrix]

Let A ∈ Matm,n (C) with m ≥ n be a matrix of full rank and let ‖·‖ be a matrix norm induced
by a p-vector norm. Then we let

κ (A) = ‖A‖ ‖A+‖

and call it the condition number of A (with respect to ‖·‖). If A is rank de�cient, we write
κ (A) =∞ .

Example 2.7.16. If A is a unitary matrix, the associated condition number κ (A) with respect
to the Euclidean or Frobenius norm is 1 (compare Proposition 2.3.34). This is one of the reasons
why most numerical algorithms are designed to use unitary transformations wherever possible.

Proposition 2.7.17. Let A ∈ Matm,n (C) be a matrix of full rank. In case ‖·‖ is the matrix

norm induced by the Euclidean norm, then κ (A) = σmax(A)
σmin(A) ≥ 1 where σmax (A) and σmin (A)

are the maximal and minimal singular values of A .

2.7. Numerical Stability 49

Proof. Let UΣV ∗ be a SVD of A (see De�nition 2.5.31). With the help of Proposition 2.3.34 and
Proposition 2.6.2, we compute ‖A‖ = ‖UΣV ∗‖ = ‖Σ‖ = σmax (A) and ‖A+‖ = ‖V Σ+U∗‖ =

‖Σ+‖ = 1
σmin(A) . Thus we can conclude that κ (A) = σmax(A)

σmin(A) . As σmax (A) ≥ σmin (A) we
observe that κ (A) ≥ 1 .

Proposition 2.7.18 (Condition numbers of a system of linear equations). Let A ∈ GLm (C) ,

let b ∈ Cm , and let ‖·‖ be a p-vector norm which induces a corresponding matrix norm with

1 ≤ p ≤ ∞. Consider the system of linear equations Ax = b with x ∈ Cm .

1. For �xed A the map f : Cm → Cm given by f(b) = A−1b has condition number

κ (b) =
∥∥A−1

∥∥ ‖b‖
‖A−1b‖

=
∥∥A−1

∥∥ ‖b‖
‖x‖

if b 6= 0m and condition number κ (b) = 1 if b = 0m . An upper bound for κ (b) is given

by κ (b) ≤ ‖A‖ ‖A+‖ = κ (A) .

2. For �xed b the map g : GLm (C) → Cm given by g(A) = A−1b has a condition number

of κ (A) .

Proof. Let us start with the �rst claim. If we substitute A by A−1 in Proposition 2.7.14, the
claim that κ (b) =

∥∥A−1
∥∥ ‖b‖
‖A−1b‖ and the upper bound given by κ (A) immediately follow.

Next we look at the second claim and the map g . In order to obtain the condition number
of g we need to deal with in�nitesimal perturbations δA ∈ Matm (C) of A . Obviously if A is
perturbed by δA also the solution x will be perturbed in�nitesimally, which we will denote by
δx ∈ Cm . We obtain the equations

(A+ δA) (x+ δx) = b

Ax+ (A+ δA) δx+ (δA)x = b

(A+ δA) δx+ (δA)x = 0

(A+ δA) δx = − (δA)x.

As we are only considering in�nitesimal perturbations of δA of A we may assume w.l.o.g. that
A+ δA is invertible as well . This means that

δx = − (A+ δA)−1 (δA)x

holds. We compute

‖δx‖ = ‖ (A+ δA)−1 (δA)x‖
‖δx‖ ≤ ‖ (A+ δA)−1 ‖ ‖δA‖ ‖x‖

‖δx‖
‖x‖

/
‖δA‖
‖A‖

≤ ‖ (A+ δA)−1 ‖ ‖A‖

‖x+ δx− x‖
‖x‖

/
‖δA‖
‖A‖

≤ ‖ (A+ δA)−1 ‖ ‖A‖

lim
ε→0+

sup
‖δA‖<ε

‖g (A+ δA)− g (A)‖
‖g (A)‖

/
‖δA‖
‖A‖

≤ lim
ε→0+

sup
‖δA‖<ε

‖ (A+ δA)−1 ‖ ‖A‖

= ‖A−1‖ ‖A‖ = κ (A) .

50 Chapter 2. Mathematical and Algorithmic Foundation

Equality is also attained for certain choices of δA , please compare [5, page 109]. As

lim
ε→0+

sup
‖δA‖<ε

‖g (A+ δA)− g (A)‖
‖g (A)‖

/
‖δA‖
‖A‖

matches the de�nition of the relative condition number this concludes the proof.

Next we will deal with the error that is introduced by the use of �oating point numbers in the
algorithm itself. First of all we will explain what is generally understood by the term �stable�
algorithm. Additionally, we will give a loose de�nition of what we mean by an actual numerical
algorithm (compare also [5, page 102f.]).

De�nition 2.7.19. [Algorithm]

Let X and Y be normed �nite dimensional vector spaces (most commonly Cm or Matm,n (C)

together with a corresponding vector or matrix norm) and let f : X → Y be a problem. Let
f̃ : X → Y be the map which sends an element x ∈ X to the result f̃ (x) of applying an actual
(�oating point) implementation of the map f . We call f̃ an algorithm for the problem f . If
f̃ (x) = f (x) for all x ∈ X we say that f̃ is an exact algorithm for the problem f .

In the following let f : X → Y be a problem that maps elements of an (input) vector space X
to a (solution) vector space Y. An algorithm for f given by an actual (�oating point) computer
implementation shall be denoted by f̃ : X → Y. Additionally, we will assume that the �oating
point implementation of the computer and therefore algorithm f̃ satis�es Assumption 2.7.5.

Remark 2.7.20. Following [5] we will use statements of the form

‖computed quantity‖ ∈ O (εmachine) .

Intuitively this says that the norm of the �computed quantity�, which can e.g. be a matrix or
a vector computed by an algorithm f̃ : X → Y for a problem f : X → Y , is in the order of
magnitude of the machine accuracy εmachine . More precisely this means that if we consider the
dimensions of X and Y as �xed the norm of the computed quantity can be uniformly bounded
for all x ∈ X by a constant expression c · εmachine where c ∈ R+ . Compare [5, pages 104-105]
for further explanations.

De�nition 2.7.21. [Stability]

An algorithm f̃ : X → Y for a problem f : X → Y is called stable if for each x ∈ X there
exists an element x̃ ∈ X with ‖x̃−x‖‖x‖ ∈ O (εmachine) such that∥∥∥∥∥ f̃ (x)− f (x̃)

f (x̃)

∥∥∥∥∥ ∈ O (εmachine) .

A slightly stronger version of stability is the so-called backward stability. Most algorithms which
are used in numerical linear algebra satisfy this condition.

2.8. QR Decomposition via Householder Triangularisation 51

De�nition 2.7.22. [Backward stability]

An algorithm f̃ : X → Y for a problem f : X → Y is called backward stable if for each
x ∈ X there exists an element x̃ ∈ X with ‖x̃−x‖‖x‖ ∈ O (εmachine) such that the condition

f̃ (x) = f (x̃)

holds.

Informally, this means that the algorithm gives exactly the right answer to nearly the right
question.

Remark 2.7.23. If Assumption 2.7.5 holds for a certain computer architecture all fundamental
�oating point operations are backward stable. See [5, pages 108 and 109] for a detailed explan-
ation.

Proposition 2.7.24. Let f̃ be a backward stable algorithm for a problem f : X → Y with

associated condition number κ (x) for x ∈ X . Furthermore, let us assume that Assumption 2.7.5

holds. Then the relation
‖f̃ (x)− f (x) ‖
‖f (x)‖

∈ O (κ (x) εmachine)

is satis�ed.

Proof. A proof is contained in [5, Theorem 15.1].

2.8 QR Decomposition via Householder Triangularisation

In this section we explain how a QR decomposition (2.5.12) of a matrix A ∈ Matm,n (C) can be
computed in a numerically stable way via so-called Householder re�ections.
The basic idea behind the Householder method for the calculation of the QR decomposition is to
apply a series of unitary matrices Qi ∈ Matm (C) to the matrix A in order to obtain an upper
triangular matrix R . We want to form

Qn....Q2Q1︸ ︷︷ ︸
Q∗

A = R.

Each matrix Qk is chosen in such a way that it introduces zeros below the diagonal of the k -th
column and preserves the previously introduced zeros. So, to zero out the sub-diagonal entries
of all n columns we have to apply n unitary matrices Qi .

× × ×
× × ×
× × ×
× × ×
× × ×

A

→
Q1

× × ×
0 × ×
0 × ×
0 × ×
0 × ×

Q1A

→
Q2

.... →
Qn

× × ×
0 × ×
0 0 ×
0 0 0

0 0 0

Qn....Q2Q1A

52 Chapter 2. Mathematical and Algorithmic Foundation

In order to leave the �rst k − 1 columns unchanged, the matrix Qk needs to have the following
general structure

Qk =

(
Ik−1 0

0 F

)
where Ik−1 ∈ Matk−1 (C) is the identity matrix and F is a special unitary matrix which we will
now discuss in detail. If x ∈ Cm−k+1 contains the lower m − k + 1 entries of a column vector
of A , namely x = Ak:m,k , and if we want to zero out all entries except the �rst one and preserve
the norm of x , then F needs to perform the following operation:

x =

×
×
×
×
×

F→

z ‖x‖

0

0

0

0

 = z ‖x‖ e1,

where z ∈ C satis�es |z| = 1 and e1 is the �rst unit vector in Cm−k+1 . The map corresponding
to F is supposed to re�ect a point x along a hypersurface H such that Fx = z ‖x‖ e1 (compare
Figure 2.1). Theoretically every z ∈ C with |z| = 1 is suitable, however, in practice certain
choices are numerically more stable than others. We will not discuss details here, but in general,
one tries to determine z in such a way that ‖z · ‖x‖ · e1 − x‖ is maximised. This is achieved by
letting z = − sgn (x1) . Please note that for non-zero complex numbers the function sgn (x) is
de�ned as sgn (x) = x

|x| . For x = 0 we let sgn (0) = 0 . Further information can be found in [6,
Section 5.1.3].

Figure 2.1: Two possible Householder re�ectors in the real domain. Comp. [5, Fig. 10.2].

In accordance with [10], we introduce the following de�nitions:

2.8. QR Decomposition via Householder Triangularisation 53

De�nition 2.8.1. [Householder re�ection]

Let x ∈ Cm . A Householder re�ection (or re�ector) w.r.t. to x is a linear transformation
that represents a re�ection along a hyperplane through the origin. It can be written in matrix
form as

F =

(
Im − 2

vv∗

v∗v

)
∈ Matm (C)

with v = sgn (x1) ‖x‖ e1 + x if v 6= 0m . In case v = 0m we let F = Im . Please note, that
v ∈ Matm,1 (C) and therefore vv∗ ∈ Matm (C) and v∗v ∈ R .

Proposition 2.8.2 (Unitarity of re�ectors). Householder re�ectors are unitary and as a con-

sequence also the matrices Qk , which are of the form Qk =

(
Ik−1 0

0 F

)
where Ik−1 ∈

Matk−1 (C) is the identity matrix and F represents a Householder re�ection.

Proof. We verify the claim by computing

F ∗F =

(
Im − 2

vv∗

v∗v

)∗(
Im − 2

vv∗

v∗v

)
= Im − 2

vv∗

v∗v
− 2

vv∗

v∗v
+ 4

vv∗vv∗

v∗vv∗v

= Im − 4
vv∗

v∗v
+ 4

vv∗

v∗v
= Im.

The matrices Qk which contain the identity matrix together with F are unitary as well.

Proposition 2.8.2 also becomes evident by a purely geometrical argument, as mirroring a point
x twice on H will return the original point again, please compare Figure 2.1.

As a next step we encapsulate the procedure that computes the Householder re�ector.

Algorithm 3: Householder
Input: A column vector x ∈ Matm,1 (C)

Output: An elementary re�ector v ∈ Matm,1 (C)

1 v := sgn (x1) ‖x‖ e1 + x ;
2 return v ;

Now we can collect the results in the following algorithm.

Algorithm 4: QR decomposition
Input: A matrix A ∈ Matm,n (C)

Output: The upper triangular matrix R of A = QR and the elementary re�ectors vk
which encode Q

1 for i := 1 to n do

2 vi := householder(Ai:m,i) ;
3 if vi 6= 0m−i+1 then

4 vi := vi/ ‖vi‖ ;
5 Ai:m,i := Ai:m,i − 2vi (v∗iAi:m,i) ;

6 end

7 end

8 return (A, v1, ..., vn) ;

54 Chapter 2. Mathematical and Algorithmic Foundation

Theorem 2.8.3. This is an algorithm which computes a QR decomposition of a matrix A ∈
Matm,n (C). Upon termination of the algorithm the matrix A will be overwritten by an upper

triangular matrix R . The corresponding unitary matrix Q is represented by its de�ning re�ection

vectors v1, ..., vn (see De�nition 2.8.1 and Remark 2.8.4) and is not formed explicitly. The

algorithm has a runtime of O
(
2mn2 − 2

3n
3
)
.

Proof. A proof and detailed discussion can be found in [5, Lecture 10].

Remark 2.8.4. The matrix Q is not computed directly as this is not necessary most of the
time and also connected with additional cost. The e�ect of applying Q to a vector can also be
achieved by using only the vectors vk . We will now explain in detail how this can be achieved.

Recall that Q∗ = Qn...Q1 and Q = Q1...Qn because all involved matrices are unitary.

Algorithm 5: Computation of Q∗x
Input: A vector x ∈ Cm , elementary re�ectors v1, ..., vn

Output: Q∗x

1 for i := 1 to n do

2 xi:m := xi:m − 2vi (v∗i xi:m) ;
3 end

4 return x ;

By reversing the order in which we apply the elementary re�ectors we obtain an algorithm for
computing Qx .

Algorithm 6: Computation of Qx
Input: A vector x ∈ Cm , elementary re�ectors v1, ..., vn

Output: Qx

1 for i := n downto 1 do

2 xi:m := xi:m − 2vi (v∗i xi:m) ;
3 end

4 return x ;

The advantage of not having calculated Q directly is that only O (mn) operations are involved.
If we would want to form the matrix Q explicitly we could, for example, compute QIm via
Algorithm 6. This means that we have to compute Qe1, ..., Qem , so a total amount of O

(
m2n

)
operations would be involved.

Another important result is that the computation of the QR decomposition via Householder
re�ectors is in fact backward stable.

Theorem 2.8.5. Let A ∈ Matm,n (C) be given. If the QR decomposition of A = QR is computed

via Algorithm 4, then for the factors Q̃ and R̃ the relation

Q̃R̃ = A+ δA

2.9. Computation of Eigenvalues and Eigenvectors 55

holds for some δA ∈ Matm,n (C) with ‖δA‖
‖A‖ ∈ O (εmachine) . This means that the algorithm is

backward stable. Please note again that Q̃ is not formed explicitly in Algorithm 4, but it can be

obtained with the help of Algorithm 6.

Proof. Compare, for instance, the paper [11].

2.9 Computation of Eigenvalues and Eigenvectors

The heart of our algorithms will be the e�cient and stable computation of eigenvalues and
eigenvectors in �oating point arithmetic. This topic has been extensively studied in the last
60 years and overviews are given, for example, in [5, Chapter 5], [6, Chapters 7/8], and [7,
Chapters 4/5]. Basically, one can di�erentiate between two families of algorithms, namely those
which can compute an eigendecomposition for arbitrary matrices and those who only work on
Hermitian matrices. First we will give a general overview and explain which algorithms are
particularly useful for us. Those will be discussed in more detail.

Name Hermitian only Full spectrum only Eigenvalues Eigenvectors

Inverse Iteration x

QR-Algorithm x x x

Divide & Conquer x x x x

Jacobi Method x x x x

Bisection method x x

Table 2.2: Non-exhaustive overview of eigenvalue algorithms

2.9.1 The General Eigenvalue Problem

Almost all eigenvalue algorithms have in common that they consist in general of two phases. The
�rst one is usually a preprocessing phase which can be carried out in a �nite number of steps
and which transforms the original matrix into a more structured form while preserving some or
most of its properties. It is used primarily to speed up the following computation. The second
phase, which would take theoretically an in�nite number of steps but is stopped after the result
has converged to near machine accuracy, reveals the eigenvalues.

Before we can start with presenting the actual algorithms we will begin with some standard
results from eigenvalue perturbation theory.

Theorem 2.9.1 (Bauer-Fike). Let A ∈ Matm (C) be diagonalisable, let δA ∈ Matm (C) be

arbitrary, and let 1 ≤ p ≤ ∞. Furthermore, let V DV −1 be an eigendecomposition of A , where

V ∈ GLm (C) and D ∈ Matm (C) is a diagonal matrix (compare De�nition 2.5.18). If µ is an

eigenvalue of A+ δA, then there exists an eigenvalue ν of A such that the inequality

|ν − µ| ≤ κp (V) ‖δA‖p = ‖V ‖p ‖V
−1‖p ‖δA‖p

holds.

56 Chapter 2. Mathematical and Algorithmic Foundation

Proof. Let µ ∈ Λ (A+ δA) . We will �rst consider the case where also µ ∈ Λ (A) . Here we can
choose ν = µ so the theorem is trivially true. From now on let us assume that µ /∈ Λ (A) . This
means that det (D − µIm) 6= 0 and det (A+ δA− µIm) = 0 . Then

0 = det (A+ δA− µIm) = det(V −1) det (A+ δA− µIm) det (V)

= det
(
D − V −1δAV − µIm

)
= det (D − µIm) det

(
(D − µIm)−1 V −1δAV + Im

)
.

This means that det
(

(D − µIm)−1 V −1δAV + Im

)
= 0 must hold. So

−1 ∈ Λ
(

(D − µIm)−1 V −1δAV
)
.

By Theorem 2.3.65, we know that

1 ≤ ‖ (D − µIm)−1 V −1δAV ‖p ≤ ‖ (D − µIm)−1 ‖p‖V −1‖p ‖δA‖p ‖V ‖p
= ‖ (D − µIm)−1 ‖p ‖δA‖p κp (V) .

Now, since (D − µIm)−1 is a diagonal matrix, it follows easily from the de�nition of the induced
matrix norm‖·‖p that

‖ (D − µIm)−1 ‖p = max
{
‖ (D − µIm)−1 x‖p

∣∣∣x ∈ Cn with ‖x‖p = 1
}

= max
v∈Λ(A)

(
1

|ν − µ|

)
=

1

min
v∈Λ(A)

|ν − µ|
.

Therefore, we can conclude that min
v∈Λ(A)

|ν − µ| ≤ κp (V) ‖δA‖p , which proves the theorem.

Example 2.9.2. Let us consider again Example 2.7.13 and let us brie�y recall the setting. The
eigenvalues of the matrix

A =

(
1 1000

0.001 1

)
are (0, 2)

and the eigenvalues of the matrix

Ã =

(
1 1000

0 1

)
are (1, 1) .

We note that matrix A is diagonalisable and we can thus apply Theorem 2.9.1. Furthermore

Ã = A + δA with δA =

(
0 0

−0.001 0

)
. We compute an eigendecomposition of Ã such that

V DV −1 = Ã . Let ν be an eigenvalue of Ã then according to the theorem of Bauer-Fike there
exists an eigenvalue µ of A , such that the bound |ν − µ| ≤ 1 holds. This result is in line with
the actual eigenvalues of A and Ã .

Remark 2.9.3. We know by Theorem 2.5.22 that a normal matrix A can be unitarily diagonal-
ised. This means that in the theorem we can choose V satisfying ‖V ‖2 =

∥∥V −1
∥∥

2
= κ2 (V) = 1

and consequently we obtain
|λ− µ| ≤ ‖δA‖2 .

2.9. Computation of Eigenvalues and Eigenvectors 57

Following [6, Subsection 7.2.4], we now present a theorem which concerns the sensitivity of eigen-
spaces and eigenvectors to perturbations of the input data. This result will play an important
role in Chapter 4 when we analyse the stability of the computed solutions of the ABM and the
extended ABM algorithm.

De�nition 2.9.4. Let A ∈ Matm (C) and B ∈ Matn (C) . Then we de�ne the separation
between both matrices as

sep (A,B) = min
X

‖AX −XB‖F
‖X‖F

with X ∈ Matm,n (C) \ {0m,n} .

De�nition 2.9.5. Let S1 and S2 be linear subspaces of Cm such that dim (S1) = dim (S2) .
Let furthermore P1 be the orthogonal projector onto S1 and let P2 be the orthogonal projector
onto S2 . Then we let

dist (S1, S2) = ‖P1 − P2‖2

and call it the distance between S1 and S2 .

Theorem 2.9.6. Let A ∈ Matm (C) and let

Q∗AQ =

(
T11 T12

0 T22

)

be a Schur decomposition of A with Q =
(
Q1 Q2

)
(compare De�nition 2.5.9). The in-

volved matrices have the following dimensions: Q1 ∈ Matm,r (C) , Q2 ∈ Matm,m−r (C) , T11 ∈
Matr,r (C) , T12 ∈ Matr,m−r (C), T22 ∈ Matm−r,m−r (C) . Now let δA ∈ Matm (C) be an arbit-

rary matrix, which we partition via Q in the same way as A such that we obtain

Q∗δAQ =

(
E11 E12

E21 E22

)
.

If sep (T11, T22) > 0 and

‖δA‖2
(

1 +
5 ‖T12‖E

sep (T11, T22)

)
≤ sep (T11, T22)

5

then there exists P ∈ Matm−r,r (C) with

‖P‖2 ≤
4 ‖E21‖2

sep (T11, T22)

such that the columns of Q̂1 = (Q1 +Q2P) (Ir + P ∗P)−
1
2 form an orthonormal basis for an

invariant subspace of A+ δA. Additionally

dist
(

im(Q1), im(Q̂1)
)
≤

4 ‖E21‖2
sep (T11, T22)

holds. Note, that the matrix (Ir + P ∗P)−
1
2 is the inverse of the square root of the symmetric

positive de�nite matrix Ir + P ∗P (see [9, Subsection 4.2.10]).

58 Chapter 2. Mathematical and Algorithmic Foundation

Proof. Compare [6, Theorem 7.2.4 and Corollary 7.2.5].

In case a subspace is one-dimensional, it is possible to give the following more specialised result.

Corollary 2.9.7. If we let r = 1 and T11 = λ in the setting of Theorem 2.9.6 we obtain the

inequality

dist (im (q1) , im (q̂1)) ≤
4 ‖E21‖2

σmin (T22 − λIm−1)
.

Proof. The claim follows from Theorem 2.9.6 together with the observation that

sep (T11, T22) = min
x 6=0m−1

‖T11x− xT22‖F
‖x‖F

= min
x 6=0m−1

‖x (λIm−1 − T22)‖F
‖x‖F

= min
x 6=0m−1

‖x (T22 − λIm−1)‖F
‖x‖F

.

As x is a vector we can assume w.l.o.g. that ‖x‖F = 1 , so we obtain

sep (T11, T22) = min
x 6=0m−1

‖x (T22 − λIm−1)‖F .

If x is a left-singular vector of T22−λIm−1 associated with a minimal singular value the expression
‖x (T22 − λIm−1)‖F becomes minimal and we arrive at

sep (T11, T22) = σmin (T22 − λIm−1) .

This result shows that the stability of computing eigenspaces and -vectors with respect to per-
turbations in the input data depends mostly on the initial separation of the subspaces together
with the actual norm of the perturbation.

We will not discuss the algorithms which can be used to compute the eigenvalues and/or -vectors
of a general matrix in detail. Of course they can also be applied to Hermitian matrices, however,
more e�cient algorithms exist for this special case. The most widely used algorithm today if all
eigenvalues (and eigenvectors) of a dense unstructured matrix are desired is the QR algorithm
and the Divide and Conquer algorithm if the input matrix is Hermitian.

The QR Algorithm

The basic idea behind the QR algorithm is to use the QR decomposition of a matrix A = QR

and to multiply the factors in reverse order RQ . This has the consequence that the entries
below the diagonal decrease normwise while the matrix product RQ remains similar to A . The
procedure is repeated until the entries below the diagonal are below a speci�ed tolerance. Thus
a Schur decomposition of the matrix is computed. To accelerate the process the input matrix is
�rst transformed via similarity transformations to so-called upper Hessenberg form which is as
close to upper triangular form as can be achieved with a �nite number of computation steps.

2.9. Computation of Eigenvalues and Eigenvectors 59

De�nition 2.9.8. [Hessenberg form]

A square matrix A ∈ Matm (C) is said to be in upper Hessenberg form if it has only zero
entries below the �rst subdiagonal. Consequently, we say a square matrix A ∈ Matm (C) is in
lower Hessenberg form if it has only zero entries above the �rst superdiagonal.

Algorithm 7: Householder Hessenberg reduction
Input: A square matrix A ∈ Matm (C)

Output: A matrix in upper Hessenberg form which is unitarily similar to A and the
basic re�ectors

1 for i := 1 to m-2 do

// Householder reflectors are computed via Algorithm 3

2 vi := householder(Ai+1:m,i) ;
3 if vi 6= 0m−i then

4 Ai+1:m,i:m :=
(
Im − 2

viv
∗
i

v∗i vi

)
Ai+1:m,i:m ;

5 A1:m,i+1:m := A1:m,i+1:m

(
Im − 2

viv
∗
i

v∗i vi

)
;

6 end

7 end

8 return (A, v1, ..., vm−2) ;

Theorem 2.9.9. Given a matrix A ∈ Matm (C) , the algorithm returns a matrix in upper Hessen-

berg form which is unitarily similar to A . Additionally, the algorithm is backward stable.

Proof. This follows directly from the properties of the Householder re�ectors which are construc-
ted in such a way that they introduce zeros below the �rst subdiagonal when applied to A in
line 5. The already introduced zeros remain untouched by line 6, which makes sure that the
transformation is in fact a similarity transformation. The algorithm is backward stable because
all applied similarity transformations are unitary.

Now that we know how to transform a given matrix to upper Hessenberg form it is possible to
state a basic version of the QR algorithm.

Algorithm 8: Basic QR algorithm

Input: A square matrix A ∈ Matm (C) , error tolerance ε ∈ R+

Output: The m eigenvalues of A

1 [H,U] := HessenbergReduction(A) (e.g. via Algorithm 7);
2 while

∑m
i=1

∑m
j=i+1 |Hj,i| > ε do

3 [Q,R] := QRDecomposition(H) (e.g. via Algorithm 4);
4 H := RQ ;

5 end

6 return (H1,1, ...,Hm,m) ;

60 Chapter 2. Mathematical and Algorithmic Foundation

Theorem 2.9.10. Let A ∈ Matm (C) be such that A has no two distinct eigenvalues with

equal absolute value. The Basic QR algorithm computes a Schur decomposition of A such that

A = (UQ)H (UQ)∗ , where Q ∈ Matm (C) and U ∈ Matm (C) are unitary matrices and H ∈
Matm (C) is an upper triangular matrix. Thus H is (unitarily) similar to A and reveals the

eigenvalues of A on its diagonal.

Proof. We will only sketch why this algorithm produces a series of matrices Hi which �essentially�
converges (i.e. the elements on the diagonal converge while the super-diagonal elements may
di�er by units in each iteration) to an upper triangular matrix which is similar to A . A full
proof can be found in [13, Section 11]. First the matrix A is transformed into Hessenberg form;
the resulting matrix H is similar to A . The central steps of the algorithm are computing the
QR decomposition of H and then multiplying both factors in reverse order. Each computed
matrix H is unitarily similar to A as Hi = Ri−1Qi−1 = Q∗i−1Hi−1Qi−1 with Hi ,Qi , and Ri

denoting the values of H ,Q , and R during the i-th iteration of the while loop.

Theorem 2.9.11. The Basic QR algorithm is backward stable.

Proof. The claim follows essentially from the fact that only unitary transformations are used to
compute the Hessenberg form of the input matrix, followed by a sequence of unitary similarity
transformations to compute the solution. A more detailed analysis can, for instance, be found
in [6, Subsection 7.5.6].

In practice more advanced versions of the algorithm are used which achieve faster convergence
by applying shifts during each step of the computation and by only implicitly computing the
QR decomposition in each iteration step. One such algorithm, the Francis QR algorithm, is
discussed and analysed in [6, Subsection 7.5.6]. The algorithm requires about 10m3 �ops if only
the eigenvalues are desired and the unitary transformations are not accumulated, otherwise it
requires about 25m3 �ops. Additionally, state of the art implementations of the QR algorithm
(e.g. the one in LAPACK [17]) guarantee convergence to a Schur decomposition for essentially
all input matrices A ∈ Matm (C) .

Power Iteration

The technique of power iteration is in itself not often applied directly, but the ideas underlying it
form the basis for more advanced techniques like inverse iteration. It is capable to compute the
eigenvector associated with the eigenvalue of a matrix A which has the largest absolute value.
Let us denote the eigenvalues of a matrix A ∈ Matm (C) by λ1, ..., λm and let us further assume
without loss of generality that |λ1| ≥ |λ2| ≥ ... ≥ |λm| . The algorithm only works properly
if |λ1| is reasonably larger than |λ2| .

2.9. Computation of Eigenvalues and Eigenvectors 61

Algorithm 9: Power Iteration
Input: A matrix A ∈ Matm (C) , n ∈ N
Output: An eigenvector estimate corresponding to the eigenvalue λ1 of A

1 v(0) := random vector in Cm\{0m} ;
2 v(0) := v(0)

‖v(0)‖ ;

3 for i := 1 to n do

4 v(i) := Av(i−1) ;

5 v(i) := v(i)

‖v(i)‖ ;

6 end

7 return v(n) ;

Theorem 2.9.12. Let A ∈ Matm (C) . If |λ1| > |λ2| and if q∗1v
(0) 6= 0, meaning that the initial

guess has components in the direction of q1 , where q1 is the eigenvector associated with λ1 , then

this algorithm produces a sequence v(i) of eigenvector estimates for q1 . The following bound for

the iterates v(i) can be established:∥∥∥v(i) −
(
eiθiq1

)∥∥∥ ∈ O(∣∣∣∣λ2

λ1

∣∣∣∣i
)

for some θi ∈]−π, π] and i ∈ N .

Proof. We only present the proof for the case that A is diagonalisable as this is the situation
most relevant to us. A proof for general matrices can be found in [16, Theorem 4.1]. Let q1, ..., qm

be an orthonormal basis of eigenvectors with corresponding eigenvalues λ1, ..., λm for A . Let
us additionally assume that |λ1| > |λ2| ≥ ... ≥ |λm| . Then we can express v(0) as a linear
combination of those basis vectors such that

v(0) =

m∑
k=1

ckqk

with ck ∈ C . Now for some constant ni ∈ R which arises because of the normalisation in each
iteration we obtain

v(i) = niA
iv(0)

= ni

(
m∑
k=1

ckλ
i
kqk

)

= niλ
i
1

(
c1q1 + c2

(
λ2

λ1

)i
q2 +

m∑
k=3

ck

(
λk
λ1

)i
qk

)
.

A direct consequence of this equation is that our eigenvector estimate will converge linearly to

a multiple of q1 depending on the ratio
∣∣∣λ2
λ1

∣∣∣ , meaning
∥∥v(i) −

(
eiθiq1

)∥∥ ∈ O(∣∣∣λ2
λ1

∣∣∣i) for some

θi ∈]−π, π] .

62 Chapter 2. Mathematical and Algorithmic Foundation

Remark 2.9.13. For su�ciently large values of i we obtain

∥∥∥v(i) −
(
eiθiq1

)∥∥∥ ∈ O(∣∣∣∣λ2

λ1

∣∣∣∣i
)

where eiθi ≈
(
λ1
|λ1|

)i
. For instance, if λ1 is real and positive this means that v(i) converges to q1 .

Remark 2.9.14. If A ∈ Matm (R) the condition that |λ1| > |λ2| implies that λ1 ∈ R .

Proof. Let A ∈ Matm (R) and let us assume that λ1 ∈ C \ R is a complex eigenvalue of A .
Then we know that λ2 = λ̄1 has to be another complex eigenvalue of A . This would imply that
|λ1| = |λ2| which contradicts our assumptions.

More details about the algorithm and applications can, for example, be found in [5, Lecture 27]
or in [6, Section 8.2.1].

Inverse Iteration

Power iteration has two signi�cant shortcomings. One disadvantage is that it is only capable of
�nding the eigenvector corresponding to the largest eigenvalue and additionally its convergence
rate largely depends on the ratio of |λ1/λ2| . We will now discuss how Algorithm 9 can be modi�ed
to provide an e�ective method to determine the eigenvectors of a matrix if good estimates of
the eigenvalues are known in advance. This method is particularly useful if only a subset of the
eigenvectors is needed. This could, for instance, be the eigenvector corresponding to the smallest
eigenvalue.

Let A ∈ Matm (C) be nonsingular and let λ ∈ C be an eigenvalue estimate for λ̃ ∈ Λ (A) such
that λ /∈ Λ (A) . First we observe that det (A− λIm) 6= 0 , which implies that the matrix A−λIm
is invertible. Then the eigenvectors of A associated with λ̃ are the same as the eigenvectors of
(A− λIm)−1 which correspond to the eigenvalue (λ̃ − λ)−1 of (A− λIm)−1 . In order to prove
this claim let x ∈ Cm be an eigenvector of A which is associated with the eigenvalue λ̃ . Then
the equation Ax = λ̃x holds and additionally

(A− λIm)−1 (A− λIm)x = x ⇐⇒
(A− λIm)−1 (λ̃− λ)x = x ⇐⇒

(A− λIm)−1 x = (λ̃− λ)−1x.

As we know, the rate of convergence for the power iteration algorithm is about
∣∣∣λ2
λ1

∣∣∣ . If we
choose λ to be an eigenvalue estimate the gap between the largest and second largest eigenvalue
of (A− λIm)−1 will broaden tremendously and in this way accelerate convergence. So the
essential idea behind inverse iteration is to apply power iteration to the inverse of A − λIm .
Note that the matrix (A− λIm)−1 is not computed explicitly. We rather solve a system of linear
equations in each round which is more economic. Obviously, the matrix (A− λIm)−1 becomes
more ill-conditioned the closer λ gets to an exact eigenvalue of A . Fortunately though, the

2.9. Computation of Eigenvalues and Eigenvectors 63

occurring error has a dominant component in the direction of the true eigenvector. A more
detailed explanation of this behaviour can be found in [5, Lecture 27 and Algorithm 27.2].

Algorithm 10: Inverse Iteration
Input: A matrix A ∈ Matm (C) , an eigenvalue estimate λ ∈ C of A , n ∈ N
Output: An eigenvector estimate corresponding to the eigenvalue λ of A

1 v(0) := random vector in Cm\{0m} ;
2 v(0) := v(0)

‖v(0)‖ ;

3 for i := 1 to n do

4 Solve (A− λI) v(i) = v(i−1) for v(i) ;

5 v(i) := v(i)

‖v(i)‖ ;

6 end

7 return v(n) ;

In practice the input matrix is transformed to Hessenberg form �rst, for example, via Algorithm 7.
As this is a common preprocessing technique used also in the QR algorithm, most of the time
the Hessenberg form is readily available without additional cost.

If the input matrix is in Hessenberg form the cost of inverse iteration is in O
(
m2
)
per eigenvector,

which is essentially the cost for solving the system of linear equations in line 4 (compare [6,
Section 7.6.1]).

Reduction to (upper) bidiagonal form

Before we can start, we will �rst state what we mean by a bidiagonal matrix.

De�nition 2.9.15. [Bidiagonal matrix]

We say a matrix A ∈ Matm (C) is upper bidiagonal if all its entries below the diagonal and
above the �rst superdiagonal are zero. Consequently, a matrix A ∈ Matm (C) is called lower

bidiagonal if all its entries above the diagonal and below the �rst subdiagonal are zero.

The following algorithm reduces a matrix to upper bidiagonal form and is used, for instance, as
a �rst preprocessing step inside the Golub-Kahan algorithm for the computation of a SVD of a
matrix. Given a matrix A ∈ Matm,n (C) , the algorithm computes a series of 2n−2 Householder
transformations U1 ,V1 ,U2 ,V2 ,...,Vn−2 ,Un−1 ,Un and applies them alternately to the left and
right-hand side of A such that U∗BAVB = (U1...Un)∗A (V1...Vn−2) is upper bidiagonal, with
Ui ∈ Matm (C) and Vi ∈ Matn (C) .

64 Chapter 2. Mathematical and Algorithmic Foundation

Algorithm 11: Golub-Kahan Bidiagonalisation
Input: A matrix A ∈ Matm,n (C)

Output: The matrix A in upper bidiagonal form and the generating Householder
re�ectors

1 for i := 1 to n do

2 ui := householder(Ai:m,i) (e.g. via Algorithm 3);

3 if ui 6= 0m−i+1 then Ai:m,i:n :=
(
Im−i+1 − 2

uiu
∗
i

u∗i ui

)
Ai:m,i:n ;

4 if i < n− 1 then

5 vi := householder
(
A∗i,i+1:n

)
;

6 if vi 6= 0n−1 then Ai:m,i+1:n := Ai:m,i+1:n

(
In−i − 2

viv
∗
i

v∗i vi

)
;

7 end

8 end

9 return (A, u1, ..., un, v1, ..., vn−2) ;

2.9.2 The Hermitian Eigenvalue Problem

The Hermitian (or symmetric) eigenvalue problem deserves special treatment, as a number of
algorithms exist which exploit its structure and therefore achieve greater numerical stability
and/or speed. We �rst collect some theoretical results with respect to the properties and stability
of eigenvalues and eigenvectors for Hermitian matrices.

Proposition 2.9.16. Let A ∈ Matm (C) be a Hermitian matrix. Then all eigenvalues λ ∈ Λ (A)

are real.

Proof. We know that Hermitian matrices are normal. Thus we can apply the spectral the-
orem (2.5.22) which states that a unitary matrix U ∈ Matm (C) and a diagonal matrix D ∈
Matm (C) must exist such that A = UDU∗ . As A = A∗ we compute

UDU∗ = UD∗U∗ ⇐⇒
D = D∗.

Because D is diagonal and D = D∗ must hold, we can conclude that D must be a real matrix.
The fact that D contains the eigenvalues of A on its diagonal concludes the proof.

As Hermitian matrices only possess real eigenvalues, we adapt the convention to order them in
a descending way in this section. So let A ∈ Matm (C) be a Hermitian matrix, by λk (A) we
denote the k -th eigenvalue of A assuming that the m eigenvalues of A are ordered descending
with respect to their values, meaning that λ1 (A) ≥ ... ≥ λm (A) .

Theorem 2.9.17 (Weyl's theorem). If A ∈ Matm (C) and δA ∈ Matm (C) are Hermitian

matrices, then the inequalities

λk (A) + λm (δA) ≤ λk (A+ δA) ≤ λk (A) + λ1 (δA)

hold for 1 ≤ k ≤ m .

2.9. Computation of Eigenvalues and Eigenvectors 65

Proof. Compare [9, Theorem 4.3.1].

Corollary 2.9.18. If A ∈ Matm (C) and δA ∈ Matm (C) are Hermitian matrices, then

|λk (A+ δA)− λk (A)| ≤ ‖δA‖2 .

Proof. First we observe that max {|λ1 (δA)| , |λm (δA)|} = ‖δA‖2 . If we use this together with
Theorem 2.9.17, we obtain

|λk (A+ δA)− λk (A)| ≤ |λ1 (δA)| ≤ max {|λ1 (δA)| , |λm (δA)|} = ‖δA‖2 .

Now, we present a result which concerns the stability of the singular values of a matrix with
respect to perturbations.

Corollary 2.9.19. Let A ∈ Matm,n (C) and δA ∈ Matm,n (C). By σk (M) we denote the

k -th singular value of a matrix M ∈ Matm,n (C), assuming that we have ordered the singular

values of M in a descending way such that σ1 (M) ≥ ... ≥ σmin(m,n) (M). For every 1 ≤ k ≤
min (m,n) , the inequality

|σk (A+ δA)− σk (A)| ≤ ‖δA‖2

holds.

Proof. A proof can be found in [6, Corollary 8.6.2].

The following result sheds some light on the stability of the eigenvectors of Hermitian matrices.
We will use it later on to prove some bounds about the stability of the computed result of the
ABM and the extended ABM algorithms, which is closely connected with the homogeneous least
squares problem (2.10.2).

De�nition 2.9.20. Let A ∈ Matm (C) be a Hermitian matrix, and let λ1 ≥ ... ≥ λm be its
eigenvalues. By

gapi (A) = min
j 6=i
|λi − λj |

we denote the gap between the i-th eigenvalue and the other eigenvalues of the matrix A .

Theorem 2.9.21. Let A ∈ Matm (C) , δA ∈ Matm (C) , and Ã = A + δA be Hermitian

matrices. Now let A = QΛQ∗ and Ã = Q̃Λ̃Q̃∗ be eigendecompositions of A and Ã , respect-

ively. Furthermore, let us denote the column vectors of Q and Q̃ by q1, ..., qm and q̃1, ..., q̃m

such that Q = (q1, ..., qm) and Q̃ = (q̃1, ..., q̃m) . If θi denotes the angle between qi and q̃i , i.e.

cos (θi) ‖qi‖ ‖q̃i‖ = |〈qi, q̃i〉|, and gapi

(
Ã
)
6= 0, then

1

2
sin (θi) ≤

‖δA‖2
gapi

(
Ã
)

for all 1 ≤ i ≤ m .

66 Chapter 2. Mathematical and Algorithmic Foundation

Proof. Compare [7, Theorem 5.4].

Remark 2.9.22. If ‖δA‖2‖A‖2
∈ O (εmachine) (see Remark 2.7.20) in the setting of Theorem 2.9.21,

then

1

2
sin (θi) ∈ O

εmachine ‖A‖2
gapi

(
Ã
)

 = O

εmachine
∥∥∥Ã∥∥∥

2

gapi

(
Ã
)

 .

This means that if we �x the dimension of the matrix m a constant c ∈ R+ exists such that

1

2
sin (θi) ≤ c

εmachine

∥∥∥Ã∥∥∥
2

gapi

(
Ã
) .

For larger values of m the constant c will also increase. Therefore, if m becomes too big we will
no longer be able to extract any useful information from the inequality.

An important property of Hermitian matrices is that the eigenvalues of the submatrices �inter-
lace�.

Proposition 2.9.23. Let A ∈ Matm (C) be a Hermitian matrix, let v ∈ Matm,1 (C) be a row

vector, and let a ∈ R . Then the matrix

Ã =

(
A v

v∗ a

)
∈ Matm+1 (C)

is Hermitian and the eigenvalues of A and Ã interlace, which means that

λ1(Ã) ≥ λ1(A) ≥ λ2(Ã) ≥ ... ≥ λm(Ã) ≥ λm(A) ≥ λm+1(Ã).

Proof. See [9, Theorem 4.3.8.].

Now we are ready to start with the actual algorithms. Similarly like in the case of general
matrices, it is common to divide the process of computing the eigenvalues of a Hermitian matrix
into two phases. First an algorithm is executed which signi�cantly reduces the cost of the
following phase in which the actual eigenvalues are computed. Following [6, Section 8.3] we
�rst present a phase one algorithm which reduces a Hermitian matrix to tridiagonal form via a
sequence of similarity transformations.

Reduction to tridiagonal form

First, we will introduce the necessary de�nitions.

De�nition 2.9.24. [Tridiagonal matrix]

We say a matrix A ∈ Matm (C) is tridiagonal if all its entries below the �rst subdiagonal and
above the �rst superdiagonal are zero.

2.9. Computation of Eigenvalues and Eigenvectors 67

One possibility to transform a given Hermitian matrix A via similarity transformations into real
symmetric tridiagonal form is to apply a sequence of Householder re�ections. This is an economic
way if the matrix is dense and has no special structure besides being Hermitian.

Algorithm 12: Householder tridiagonalisation
Input: A Hermitian matrix A ∈ Matm (C)

Output: The subdiagonal, diagonal, and superdiagonal entries of A are overwritten
with its real symmetric tridiagonal form, the m− 2 Householder re�ectors
which transform A into tridiagonal form

1 for i := 1 to m-2 do

// Householder reflectors are computed via Algorithm 3

2 vi := householder(Ai+1:m,i) ;
3 if vi 6= 0m−i then

4 β := 2
v∗i vi

;

5 p := βAi+1:m,i+1:mvi ;
6 w := p− (βp∗vi/2) vi ;
7 Ai+1,i := ‖Ai+1:m,i‖ ;
8 Ai,i+1 := Ai+1,i ;
9 Ai+1:m,i+1:m := Ai+1:m,i+1:m − viw∗ − wv∗i ;

10 end

11 end

12 Am,m−1 := ‖Am,m−1‖ ;Am−1,m := Am,m−1 ;
13 return (A, v1, ..., vm−2) ;

Theorem 2.9.25. This algorithm transforms a given Hermitian matrix A ∈ Matm (C) into real

symmetric tridiagonal form (up to �oating point accuracy). Upon termination the subdiagonal,

diagonal, and superdiagonal entries of A are overwritten with its real symmetric tridiagonal form.

Additionally, the Householder re�ectors which transform A into tridiagonal form are returned.

The cost is in O
(

4
3m

3
)
.

Proof. Please compare [6, Section 8.3.1] for a proof and a more detailed description.

However, if the matrix we are dealing with is sparse there are more e�cient ways to compute a
suitable similarity transformation. One way to do this is to use the Lanczos algorithm, which
we now brie�y explain. Further details can, for example, be found in [5, Section 36].

68 Chapter 2. Mathematical and Algorithmic Foundation

Algorithm 13: Lanczos Algorithm
Input: A Hermitian matrix A ∈ Matm (C)

Output: A basis transformation matrix Q = (q1, ..., qm) ∈ Matm that transforms A
into tridiagonal form, the entries of the tridiagonal matrix

1 β0 := 0 , q0 := 0m ∈ Cm , b := random vector in Cm\ {0m} , q1 := b/ ‖b‖ ;
2 for i := 1 to m do

3 v := Aqi − βi−1qi−1 ;
4 αi := q∗i v ;
5 v := v − βi−1qi−1 − αiqi ;
6 βi := ‖v‖ ;
7 qi+1 := v/βi ;

8 end

9 return (q1, ..., qm, α1, ..., αm, β1, ..., βm−1) ;

Theorem 2.9.26. This is an algorithm which computes a basis transformation

(q1, ..., qm) = Q ∈ Matm (C)

such that

Q∗AQ =

α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2
. . .

. . . 0
...

. . .
. . . αm−1 βm−1

0 · · · 0 βm−1 αm

∈ Matm (R)

is a real symmetric tridiagonal matrix.

Proof. A proof can be found in [6, Section 9.2].

This algorithm exploits the Hermitian structure of the input matrix A to construct a basis
transformation Q = (q1, ..., qm) such that Q∗AQ is real symmetric tridiagonal. One of the
major advantages of the algorithm is that it can make good use of sparsity in A unlike an
algorithm based on Householder re�ections. The main loop is executed m times. Inside the
loop the most expensive operation is a matrix-vector multiplication, namely Aqi , followed by an
inner product computation and a few vector operations, which do not contribute signi�cantly
to the runtime of the Lanczos algorithm. So, if A is sparse and we exploit the sparseness in
the matrix-vector multiplication, the Lanczos algorithm is about one order of magnitude faster
than algorithms built around Householder re�ections. However, the Lanczos algorithm as stated
above is numerically less stable. Special care has to be taken to make sure that the qi remain
reasonably orthogonal. For further details see [12, Section 9.2�].

The Divide & Conquer Algorithm

Another algorithm for the symmetric eigenvalue problem, which has become popular in recent
years, is the so-called divide & conquer algorithm. According to [7, Section 5.3.6], it is the fastest

2.9. Computation of Eigenvalues and Eigenvectors 69

currently available algorithm if all eigenvalues and eigenvectors are desired and if the dimension
of the matrix exceeds about 25. Please note that especially for this method details which we
will not present here, because they would exceed the scope of this thesis, are essential for the
numerical stability. Thus the description given here is merely meant to present the essential ideas
behind the algorithm. A detailed discussion can, for instance, be found in [7, Section 5.3.3].

Proposition 2.9.27 (Decoupling). Suppose that T ∈ Matm (C) is of the form

T =

(
T11 T12

0 T22

)

where T11, T12 , and T22 are block matrices. Then Λ (T) = Λ (T11)∪Λ (T22) and we say that the

problem of computing the eigenvalues of T can be decoupled.

Proof. A proof is contained in [6, Lemma 7.1.1].

Given a Hermitian matrix A ∈ Matm (C) with m ≥ 2 , it is �rst transformed into real symmetric
tridiagonal form, e.g. using Algorithm 12. Let us denote this matrix by

T =

a1 b1

b1 a2
. . .

. bm−1

bm−1 am

 .

Let us additionally assume w.l.o.g. that T has no zero entries in its o�-diagonal, i.e. bi 6= 0 for
all 1 ≤ i ≤ m − 1 . Otherwise we could just decouple the problem (see Proposition 2.9.27 and
also [7, page 221]) until we arrive at submatrices with the required property. Now let us denote
by 1 ≤ n < m a natural number which we use to split T such that we obtain the following
decomposition:

T1 =

a1 b1

b1 a2
. . .

. bn−1

bn−1 an − bn

 , T2 =

an+1 − bn bn+1

bn+1 an+2
. . .

. bm−1

bm−1 am

and

T =

(
T1

T2

)
+

0 0

0
.
. . . bn bn

bn bn
. . .
. . . 0

0

=

(
T1

T2

)
+ bnvv

tr

70 Chapter 2. Mathematical and Algorithmic Foundation

with v =
(

0 · · · 0 1 1 0 · · · 0
)tr

. We have divided the problem into two sub prob-
lems T1 and T2 which can now be treated recursively with the same strategy. However, we still
need to explain how the eigenvalues of T are related to the eigenvalues of T1 and T2 . Now let
us assume that we have already computed the eigenvalue decomposition of T1 and T2 such that
Ti = QiΛiQ

tr
i . Then we have

T =

(
T1

T2

)
+ bnvv

tr =

(
Q1Λ1Q

tr
1

Q2Λ2Q
tr
2

)
+ bnvv

tr

=

(
Q1

Q2

)((
Λ1

Λ2

)
+ bnuu

tr

)(
Qtr

1

Qtr
2

)

with

u =

(
Qtr

1

Qtr
2

)
v =

(
last column of Qtr

1

�rst column of Qtr
2

)
.

Now

(
Λ1

Λ2

)
∈ Matm (R) is a diagonal matrix which we abbreviate by D . We name the

entries on the diagonal of D with d1, ..., dm in such a way that d1 ≥ ... ≥ dm . Next, let us
investigate the shape of the characteristic polynomial of D + bnuu

tr . We let λ ∈ C such that
D − λI is nonsingular. Then

det
(
D + bnuu

tr − λIm
)

= det
(

(D − λIm)
(
Im + bn (D − λIm)−1 uutr

))
.

As we have assumed that D− λIm is nonsingular, the number λ is an eigenvalue of D+ bnuu
tr

if
det
(
Im + bn (D − λIm)−1 uutr

)
= 0.

Let x, y ∈ Cm . From Sylvester's determinant theorem (see [14, Corollary 18.1.2]) it follows that
det
(
Im + xytr

)
= det

(
1 + ytrx

)
= 1 + ytrx . Therefore, we have

det
(
Im + bn (D − λIm)−1 uutr

)
= 1 + bnu

tr (D − λIm)−1 u

= 1 + bn

m∑
i=1

utr
i ui

di − λ
=: f (λ) .

Now the eigenvalues of T are exactly the roots of the so-called secular equation f (λ) = 0 . As
with all general eigenvalue algorithms it is of course not possible to give a closed form solution
to this equation as this may involve determining the roots of a polynomial with degree greater
than 4. If we interpret f (λ) : R→ R as a real function we observe that the λ = di are vertical
asymptotes and y = 1 is a horizontal asymptote. By investigating the derivative of f (λ) which
is given by f ′ (λ) = bn

∑m
i=1

utr
i ui

(di−λ)2 it becomes evident that f (λ) is monotonic and smooth on
the intervals]di, di+1[. Because of this there has to be exactly one zero in each interval, which
can relatively easily be found with the help of iterative techniques. Commonly a special version of
the Newton-Raphson algorithm (see [7, pages 221 and 222]) is used which guarantees convergence
in O (m) �ops per eigenvalue which is essentially the cost for evaluating f (λ) and f ′ (λ) . Thus
it costs O

(
m2
)
to �nd all m eigenvalues of T .

2.9. Computation of Eigenvalues and Eigenvectors 71

We now explain how to compute the eigenvectors of D + bnuu
tr . Let α be an eigenvalue of

D + bnuu
tr . As(

D + bnuu
tr
)

(D − αIm)−1 u =
(
D − αIm + αIm + bnuu

tr
)

(D − αIm)−1 u

= u+ α (D − αIm)−1 u+ u
(

1− 1 + bnu
tr (D − αIm)−1 u

)
= u+ α (D − αIm)−1 u− u+ f (α)

= α (D − αIm)−1 u

holds, we observe that (D − αIm)−1 u is in fact the eigenvector corresponding to α . Because
the matrix D − αIm is diagonal, its inverse can be e�ciently computed and the total cost per
eigenvector is in O (m) . So it costs O

(
m2
)
to compute all m eigenvectors of T . What remains

to be done is to have a closer look at the runtime of the whole algorithm. Let us assume that
the matrix is always split in half (as far as possible) in each step and both eigenvalues and
eigenvectors are computed. Then we obtain the following crude estimate for the runtime t (m)

for a matrix of dimension m . Namely t (m) = 2t (m/2) +O
(
m2
)

+O
(
m2
)

+m3 . Using the so-
called master theorem (see [8, Theorem 4.1]) one can show that this accumulates to a runtime of
t (m) ≈ 4

3m
3 . Reduction to tridiagonal form takes another 8

3m
3 �ops. Thus in total the runtime

of the algorithm is 4m3 which is a distinct improvement over the symmetric QR algorithm which
has a runtime of 9m3 �ops.

Algorithm 14: Divide&ConquerEV
Input: A Hermitian tridiagonal matrix T ∈ Matm (C)

Output: The m eigenvalues of T stored in Λ , and the corresponding eigenvectors Q

1 if T ∈ Mat1 (C) then return (Λ := T,Q = 1) ;
2 [T1, T2, bn] := Decompose(T) ;
3 [Λ1, Q1] := Divide&ConquerEV(T1) ;
4 [Λ2, Q2] := Divide&ConquerEV(T2) ;

5 M :=

(
Λ1

Λ2

)
+ bnuu

tr ;

6 Compute eigenvalues Λ and eigenvectors Q′ of M using e.g. the Newton-Raphson
algorithm;

7 Q :=

(
Q1

Q2

)
Q′ ;

8 return (Λ, Q) ;

Bisection

The method which we now brie�y discuss is very useful if only a small subset of eigenvalues and/or
vectors are required. As we will see later, this case is especially relevant to us in Chapter 4, where
we explain how the ABM and extended ABM algorithms can be implemented e�ciently. Once
again we do not describe all details. They can be found, for example, in [6, Section 8.5].

72 Chapter 2. Mathematical and Algorithmic Foundation

A given Hermitian matrix A ∈ Matm (C) with m ≥ 2 , is �rst transformed into real symmetric
tridiagonal form, for instance, using Algorithm 12. As a next step we can use decoupling to obtain
submatrices which only have non-zero entries on its subdiagonals and superdiagonals. Later on
we can just unify the spectra of these submatrices. Let us denote one of theses decoupled matrices
by

T =

a1 b1

b1 a2
. . .

. bn−1

bn−1 an

 ,

with 1 ≤ n ≤ m . By T (1) ∈ Mat1 (R) , ..., T (n) ∈ Matn (R) we denote the upper-left submatrices
of size 1, ..., n . First we observe that the eigenvalues of all submatrices are real, because they
are all real and symmetric (compare Proposition 2.9.16). Via essentially the same arguments we
used to investigate the secular equation in the Divide & Conquer eigenvalue algorithm, one can
show that the eigenvalues of two subsequent matrices T (k) and T (k+1) strictly interlace (compare
Proposition 2.9.23 together with [5, Exercise 25.1]), meaning that

λ
(k+1)
j < λ

(k)
j < λ

(k+1)
j+1

for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ k − 1 . As det (T) is the product of all eigenvalues of T ,
it is now possible to count the number of negative eigenvalues of T , i.e. the number of eigen-
values in the interval]−∞; 0] , by counting the number of sign changes of the Sturm sequence
det
(
T (0)

)
,det

(
T (1)

)
, ...,det

(
T (m)

)
, if we de�ne det

(
T (0)

)
= 1 . By subtracting aIn from the

matrix T , we can thus determine the number of eigenvalues in the interval]−∞; a] . If we are
now interested in the number of eigenvalues in the interval [a, b[, with a < b , we can subtract
the number of eigenvalues in]−∞; a] from]−∞; b] .

What remains to be shown is that det
(
T (k) − aIn

)
can be computed e�ciently. Of course

det
(
T (1) − aIn

)
= a1 − a but we note additionally that

det
(
T (k) − aIn

)
= (ak − a) det

(
T (k−1)

)
− b2k−1 det

(
T (k−2)

)
for 2 ≤ k ≤ n , which follows directly from Laplace's formula for determinants. Thus the cost of
the evaluation is in O (n) and it takes O (n log (εmachine)) to locate one eigenvalue with relative
accuracy εmachine . Consequently, if only a small subset of eigenvalues of a matrix is required
this is better than the O

(
n2
)
operations which are needed by other algorithms like the QR or

the Divide & Conquer algorithm.

Example 2.9.28. Let T =

(
1 2

2 1

)
. We are interested in the eigenvalues in the interval

[2.5, 3.5[up to a relative accuracy of 0.5. First we observe that T is already in tridiagonal

form. We shift T by 3.5I2 and obtain Ta =

(
−2.5 2

2 −2.5

)
. Now det

(
T

(1)
a

)
= −2.5 and

det
(
T

(2)
a

)
= 2.25 , so the Sturm sequence (1,−2.5, 2.25) has two sign changes and we know that

two eigenvalues are smaller than 3.5 . We repeat this process for Tb =

(
−1.5 2

2 −1.5

)
and

2.10. The (Linear) Least Squares Problem 73

obtain the sequence (1,−1.5,−1.75) which means that one eigenvalue is smaller than 2.5 . Thus
there is one eigenvalue of T in the interval [2.5, 3.5[. We repeat this procedure by investigating
the intervals [2.5, 3[and [3, 3.5[. T3 yields the sequence (1,−2, 0) which means that there is
one eigenvalue in [3, 3.5[. Because the last entry is zero we can even conclude that 3 must have
been an eigenvalue and it is the only eigenvalue in the interval [3, 3.5[.

Algorithm 15: Eigenvalues via Bisection
Input: A symmetric tridiagonal matrix T ∈ Matm (R) , an interval [a, b[, and an error

tolerance ε
Output: The eigenvalues in [a, b[of T stored in Λ

1 na :=numSmallerEigenvalues(T, a) ;
2 nb :=numSmallerEigenvalues(T, b) ;
3 Λ := [] ;
4 if na = nb then return Λ ;
5 IntervalList := [a, na, b, nb] ;
6 while IntervalList 6= ∅ do
7 [low, nlow, up, nup] = �rst(IntervalList);
8 remove �rst element form IntervalList;
9 mid := low+up

2 ;
10 if up - low < ε then

11 Add(Λ , mid);
12 else

13 nmid :=numSmallerEigenvalues(T,mid) ;
14 if nmid > nlow then Add(IntervalList, [low, nlow,mid, nmid]) ;
15 if nup > nmid then Add(IntervalList, [mid, nmid, up, nup]) ;

16 end

17 end

18 return Λ ;

2.10 The (Linear) Least Squares Problem

One of the problems that we are dealing with in this thesis and speci�cally in Chapter 4 is that
we want to �nd polynomials which need not interpolate a given set of points (measurements),
but are allowed to pass �close by� to them. In this way we can get rid of noise which is contained
in the points (measurements), which we will use as input for our algorithms. The output of the
algorithms will contain polynomials that have the above mentioned property.
The starting point is commonly an overdetermined linear system of equations which has no exact
solution. One natural approach to constructing an approximate solution for such a system of
equations was already discovered by C. F. Gauss in 1794 (see [2]).

74 Chapter 2. Mathematical and Algorithmic Foundation

De�nition 2.10.1. [The linear least squares problem]

Let A ∈ Matm,n (C) and b ∈ Cm \ {0m} with m ≥ n . The task of �nding vectors x ∈ Cn

such that ‖Ax− b‖2 is minimised is called a linear least squares problem. For a speci�c
solution x we call the vector r = Ax − b the residual (with respect to x). As we demand
that b 6= 0m the problem is sometimes also referred to as an inhomogeneous least squares
problem.

If we are dealing with b = 0m a solution to the problem is always provided by x = 0m . In
this setting it makes sense that we additionally require that ‖x‖2 = c ∈ R+ to rule out the
trivial solution. So if we �x c ∈ R+ , we can then answer the question which norm c vector x
minimises ‖Ax‖2 . This will play an important role in the ABM algorithm, which we will present
in Section 4.3.

De�nition 2.10.2. [The homogeneous least squares problem]

Let A ∈ Matm,n (C) with m ≥ n and c ∈ R+ . The task of �nding vectors x ∈ Cn with ‖x‖ = c

such that ‖Ax‖2 is minimised is called a homogeneous least squares problem.

The homogeneous least squares problem will be discussed in Section 2.13.

The following example demonstrates the least squares �tting approach.

Example 2.10.3. [Polynomial least squares �tting]

A standard example where least squares is commonly used is (univariate) polynomial curve
�tting. Given s distinct points p1, ..., ps in C and additionally s numbers b1, ..., bs in C it is
always possible to �nd an interpolating polynomial g ∈ C [x] of degree at most s− 1 such that
g (pi) = bi holds for all 1 ≤ i ≤ s . However, sometimes it may be desirable or needed to utilise
polynomials only up to a certain degree d < s−1 . Of course, in general no polynomial of degree
at most d will exist such that g (pi) = bi is satis�ed for all 1 ≤ i ≤ s . In this case a least
squares approach can be used to determine the coe�cients ci ∈ C of g (x) =

∑d
i=0 cix

i such

that
√∑s

j=1 |g (pj)− bj |2 is minimal. This is equivalent to computing c = (c0, ..., cd) ∈ Cd+1

such that

‖Vdc− b‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥

1 p1 p2

1 · · · pd1
1 p2 p2

2 · · · pd2
1 p3 p2

3 · · · pd3
...

...
...

. . .
...

1 ps p2
s · · · pds

c0

c1

...
cd

−

b1

b2

b3
...
bs

∥∥∥∥∥∥∥∥∥∥∥∥
2

is minimised. The matrix Vd is called the Vandermonde matrix for degree d with respect to
the points (p1, ..., ps) . As we can see, the least squares solution delivers the desired coe�cients
c0, ..., cd of the polynomial g . Note that the solution is unique because the points p1 to ps are
distinct and therefore the matrix Vd has full rank d + 1 , which according to Theorem 2.11.1
guarantees uniqueness.

There are di�erent methods for the solution of the linear least squares problem. Below we present
two commonly used methods, of which one can be used for the inhomogeneous and the other
one for the homogeneous problem.

2.11. Solutions of the Inhomogeneous Least Squares Problem 75

2.11 Solutions of the Inhomogeneous Least Squares Problem

In the setting of De�nition 2.10.1, it is intuitively clear that we need to compute a vector x
such that the residual vector r is orthogonal on the image of A . We will now substantiate this
intuition and provide a few equivalent characterisations that can be used to compute the actual
solution(s).

Theorem 2.11.1. Let A ∈ Matm,n (C) and b ∈ Cm \ {0m} with m ≥ n be given. A vector

x ∈ Cn solves the linear least squares problem of minimizing ‖b−Ax‖2 if and only if (b−Ax) ⊥
im (A) . By r ∈ Cm we will denote the residual, such that r = b−Ax and by PA ∈ Matm (C) we

will denote the orthogonal projector onto im (A) (see Theorem 2.3.41). The following statements

are equivalent:

A∗r = 0n (2.3)

A∗Ax = A∗b (2.4)

Ax = PAb. (2.5)

Furthermore, the solution x is unique if and only if A has full rank n .

Proof. Equation 2.3 encodes that r is orthogonal on the image of A (see De�nition 2.3.29 and
Remark 2.3.2). The equivalence of Equation 2.3 and 2.4 follows from

A∗r = 0n ⇐⇒
A∗ (b−Ax) = 0n ⇐⇒
A∗b−A∗Ax = 0n ⇐⇒

A∗Ax = A∗b.

In order to prove the equivalence of Equation 2.4 and 2.5 we use that r ⊥ im (A) and therefore
the equation PAr = 0m needs to hold. We further compute

PAr = 0m ⇐⇒
PA (b−Ax) = 0m ⇐⇒
PAb− PAAx = 0m ⇐⇒
PAb−Ax = 0m ⇐⇒

Ax = PAb.

Next, we show that there is no vector z ∈ im (A) with z 6= PAb , which minimises ‖b− z‖2 . For
this purpose, let us denote PAb by y . If we assume that such a z exists, then z−y ∈ im (A) and
consequently (z − y) ⊥ r as well as (z − y)⊥ (b− y) need to be satis�ed. Using the Pythagorean
theorem we observe that ‖b− z‖22 = ‖y − z‖22 + ‖b− y‖22 > ‖b− y‖

2
2 , which is a contradiction

to the assumption that ‖b− z‖2 is minimal for z . What remains to be shown is that x is
unique if and only if A has full rank. This follows from Equation 2.5 in combination with
Proposition 2.3.42. We know that the matrix PA is uniquely determined by A and therefore PAb
has to be unique as well. As PAb ∈ im (A) the system of linear equations Ax = PAb has a unique
solution for x if and only if A has full rank.

76 Chapter 2. Mathematical and Algorithmic Foundation

If A has full rank, then A∗A has full rank n and it follows from Equation 2.4 that A∗A can be
inverted and (the unique) solution x can be computed as

x = (A∗A)−1A∗b.

Proposition 2.11.2 (Computation pseudoinverse). Let A ∈ Matm,n (C) with m ≥ n and

rank (A) = n . Then the pseudoinverse A+ of A is given by

A+ = (A∗A)−1A∗.

Proof. Let UΣV ∗ be a singular value decomposition of A . We will show that the matrix
(A∗A)−1A∗ ∈ Matn,m (C) is equal to V Σ+U∗ (compare Proposition 2.6.2). We compute

(A∗A)−1A∗ =
(
V ΣtrU∗UΣV ∗

)−1
V ΣtrU∗

=
(
V ΣtrΣV ∗

)−1
V ΣtrU∗

= V
(
ΣtrΣ

)−1
V ∗V ΣtrU∗

= V
(
ΣtrΣ

)−1
ΣtrU∗

= V Σ+U∗.

Now we know that the full rank linear least squares problem can be solved via the computation
of the pseudoinverse as x = A+b .

Proposition 2.11.3. Let A ∈ Matm,n (C) with m ≥ n and b ∈ Cm \ {0m} be given and

let A = QR be a reduced QR factorisation of A (see De�nition 2.5.13). Then x ∈ Cn is a

solution of the inhomogeneous least squares problem if

Rx = Q∗b

holds. Furthermore, if A has full rank, then x can be computed as

x = R−1Q∗b.

Thus the pseudoinverse A+ of A is given by R−1Q∗ .

Proof. We can write Ax = PAb where PA is the orthogonal projector onto im (A) . From
Theorem 2.3.41 we know that PA = QQ∗ so we conclude that

Ax = QQ∗b ⇐⇒
QRx = QQ∗b.

As Q contains an orthonormal basis of im (A) as its columns (compare De�nition 2.5.13 and
Remark 2.5.17) we can left multiply with Q∗ and obtain

Rx = Q∗b.

If we know additionally that A has full rank, then R can be inverted, which concludes the
proof.

2.12. Conditioning of the Least Squares Problem 77

Remark 2.11.4. If Algorithm 4 is used to solve the inhomogeneous least squares problem
minx ‖Ax− b‖2 , the total cost amounts to O

(
2mn2 − 2

3n
3
)
. First the reduced QR factorisation

A = QR is computed in O
(
2mn2 − 2

3n
3
)
. In the next step we compute Q∗b with Algorithm 5

in O (mn) . And �nally, we solve the upper triangular system Rx = Q∗b for x in O
(

1
2n (n+ 1)

)
.

2.12 Conditioning of the Least Squares Problem

In this section we brie�y discuss the conditioning of the least squares problem. This will be
important later on when we try to devise algorithms that make sure that the underlying least
squares problems we are trying to solve, e.g. in the extended ABM algorithm (24), are well posed.
More details on this topic can, for example, be found in [5, Lecture 18] or in [6, Section 5.3.7].

Let us start out with the standard setting of the linear least squares problem. Let A ∈ Matm,n (C)

with m ≥ n be of full rank (otherwise there is no unique solution and we de�ne the condition
number as ∞) and let b ∈ Cm \ {0m} be given. We want to compute x ∈ Cn such that
‖Ax− b‖ = ‖y‖ is minimised. As we have seen in the previous section x = A+b and y = PAb

where A+ ∈ Matn,m (C) is the pseudoinverse (see De�nition 2.6.1) of A and where PA = QQ∗ =

AA+ is the orthogonal projector onto im (A) (compare Theorem 2.3.41). The whole situation
in R2 is depicted in Figure 2.2. We now state the e�ects of perturbations in A and b on x and y
as given and also proved in [5, Theorem 18.1].

Figure 2.2: Geometry of the least squares problem

78 Chapter 2. Mathematical and Algorithmic Foundation

Theorem 2.12.1 (Conditioning of the linear least squares problem). Given A and b as stated

above, the linear least squares problem has the following ‖·‖2 condition numbers:

Output

x y

In
p
u
t

A κ (A) + 1
ηκ (A)2 tan (θ) κ(A)

cos(θ)

b κ(A)
η cos(θ)

1
cos(θ)

where κ (A) is the 2-norm condition number of A , θ = cos−1
(
‖y‖
‖b‖

)
and η = ‖A‖‖x‖

‖Ax‖ . The table

has to be read in the following way: e.g. if we keep b �xed and vary A the condition number of

computing y is given by κ(A)
cos(θ) .

We only investigate the sensitivity of x under (in�nitesimal) perturbations of A as this is the case
most relevant to us. This will be crucial when investigating the stability of the result computed
by the extended ABM algorithm (24). All other proofs can be found in [5, Theorem 18.1].

Proof. Let UΣV ∗ be a SVD of A (compare De�nition 2.5.31). As U and V are unitary trans-
formations they do not in�uence the matrix norm induced by the 2-norm (see Propositions 2.3.33
and 2.3.34), which means that ‖A‖2 = ‖UΣV ∗‖2 = ‖Σ‖2 . So for our analysis w.l.o.g. we may
assume that

A =

σ1 0 · · · 0

0 σ2
. . .

...
...

. 0

0 · · · 0 σn

0 0 · · · 0

=

[
A1

0

]
.

Please note that this means that we can restrict ourselves to studying a real diagonal matrix A
with non-zero diagonal entries. When perturbing A by δA ∈ Matm,n (R) both the image of A
onto which we project changes and additionally the projector is in�uenced. We will have to take
care of both e�ects. First we have to answer the question which perturbation δA causes im (A)

to tilt by a maximum angle δα . Let v ∈ Cn with ‖v‖ = 1 . The maximal distance by which
we can move the image of v under A , denoted by p = Av ∈ im (A) , is attained by creating a
perturbation δp which is orthogonal on im (A) . Thus we let δA = δpv∗ , such that ‖δA‖ = ‖δp‖
is satis�ed. Now we observe that the closer ‖p‖ is to zero, the larger the angle of tilt, we can
achieve by a given ‖δp‖ , will be. This means that we have to choose v to be the left singular
vector un corresponding to the smallest singular value σn . As we have assumed that A is
diagonal un corresponds to the n-th unit vector in Rn and p = σnun . As δα ∈

[
0; π2

[
we know

that δα ≤ tan (δα) , as d
dx (tan (x)− x) = tan (x)2 ≥ 0 , tan (0) − 0 = 0 and tan (x) − x is

continuous for x ∈
[
0; π2

[
. So we obtain δα ≤ tan (δa) = ‖δp‖

σn
= ‖δA‖

σn
= ‖δA‖
‖A‖ κ (A) .

Let us recall that A is diagonal so the orthogonal projection P =

[
I 0

0 0

]
of b on im (A) is

given by

Pb = P

[
b1

b2

]
=

[
b1

0

]
= y,

2.12. Conditioning of the Least Squares Problem 79

with b1 = y1:n ∈ Rn . Consequently x = A−1
1 b1 .

Let us now split δA into two parts, namely δA1 = δA1:n,n ∈ Matn (R) , which leaves im (A)

unchanged, and δA2 = δAn+1:m,n ∈ Matm−n,n (R) , which will also tilt im (A) . Then we are in
the situation that

δA =

[
δA1

0

]
+

[
0

δA2

]
in which we can investigate the e�ects independently of each other. The action of δA1 is exactly
the one described in Proposition 2.7.18, where we discussed the sensitivity of the solution of a
linear system x with respect to perturbations in A . The condition number is therefore κ (A) .
Now we focus on the e�ect of δA2 . Essentially this means that we are perturbing b1 while
leaving A1 unchanged. So the condition number for this problem is given by

‖δx‖
‖x‖

/
‖δb1‖
‖b1‖

≤
∥∥A−1

1

∥∥
‖x‖ / ‖b1‖

=

∥∥A−1
1

∥∥ ‖A1‖ ‖A1x‖
‖A1‖ ‖x‖

=
κ (A)

η
.

What remains to be done is to derive a relation between δb1 and δA2 . Only the components of
δy which are parallel to im (A) , i.e. the part of δy which is contained in im (A) , will translate
to changes in δb1 . See Figure 2.3 for a graphical illustration in R2 . By geometric arguments we
know that

sin (θ) =
‖δb1‖
‖δy‖

.

Now we need to relate δy to δα . Using the law of sines (compare [5, page 134]) we obtain

sin (δα)

‖δy‖
=

sin
(
π
2 + θ

)
‖y‖

=
cos (θ)

‖y‖
=

1

‖b‖
.

After observing that sin (x) ≤ x for x ≥ 0 we can write

‖δy‖ = ‖b‖ sin (δα) ≤ ‖b‖ δα.

Now we if we put everything together we obtain

‖δb1‖ = sin (θ) ‖δy‖ ≤ sin (θ) ‖b‖ δα.

Using ‖b1‖ = cos (θ) ‖b‖ (compare Figure 2.3), we can write

‖δb1‖
‖b1‖

≤ tan (θ) δα ≤ tan (θ)
‖δA2‖
‖A‖

κ (A) .

Finally, we obtain

‖δx‖
‖x‖

/
tan (θ)

‖δA2‖
‖A‖

κ (A) ≤ ‖δx‖
‖x‖

/
‖δb1‖
‖b1‖

≤ κ (A)

η

‖δx‖
‖x‖

/
‖δA2‖
‖A‖

≤ tan (θ)κ (A)2

η
.

80 Chapter 2. Mathematical and Algorithmic Foundation

Figure 2.3: Relation between δb1 and δy

To conclude our proof, we use the fact that ‖δA‖ ≤ ‖δA1‖+ ‖δA2‖ and compute

‖δx‖
‖x‖

/
‖δA‖
‖A‖

=
‖δx‖ ‖A‖
‖x‖ ‖δA‖

=
‖δx‖ ‖A‖
‖x‖

· ‖δA‖
‖δA‖2

≤ ‖δx‖ ‖A‖
‖x‖

· ‖δA1‖+ ‖δA2‖
‖δA‖2

≤ ‖δx‖ ‖A‖
‖x‖

· ‖δA1‖+ ‖δA2‖
‖δA1‖ ‖δA2‖

≤ ‖δx‖ ‖A‖
‖x‖

·
(

1

‖δA2‖
+

1

‖δA1‖

)
=
‖δx‖
‖x‖

/
‖δA1‖
‖A‖

+
‖δx‖
‖x‖

/
‖δA2‖
‖A‖

5 κ (A) +
tan (θ)κ (A)2

η
.

2.13. Solutions of the Homogeneous Least Squares Problem 81

2.13 Solutions of the Homogeneous Least Squares Problem

Before we start, let us brie�y recall the de�nition of the homogeneous least squares problem
(see also De�nition 2.10.2). Given A ∈ Matm,n (C) and c ∈ R+ , solve minx ‖Ax‖2 subject to
‖x‖2 = c . So far we have treated the solution of the inhomogeneous least squares problem in
Section 2.11. Unfortunately the methods developed up till now cannot be directly applied to
the homogeneous least squares problem, as the additional constraint ‖x‖2 = c cannot be easily
incorporated into the previous approach.

We will now further analyse how such a constrained solution can be constructed. In order to
address our problem, we are in need of a few more de�nitions. As we are trying to solve a
constrained optimisation problem the method of Lagrange Multipliers, which was brought up by
Joseph Louis Lagrange, will become handy.

De�nition 2.13.1. Let f : Rn → R , g : Rn → R be real valued continuously di�erentiable
functions, and let c ∈ R+ . The task of minimizing

f (x1, ..., xn)

under the constraint
g (x1, ..., xn) = c

is called a constrained minimisation (or optimisation) problem. We call the function
Φ : Rn+1 → R

Φ (x1, ..., xn, ψ) = f (x1, ..., xn)− ψ (g (x1, ..., xn)− c)

the Lagrange function of f, g and c . The newly introduced real variable ψ is called Lagrange
multiplier.

Theorem 2.13.2. If s = (s1, ..., sn) ∈ Rn is a solution of a constrained minimisation problem, as

de�ned above, there exists λ ∈ R such that (s1, ..., sn, λ) is a stationary point (see [67, page 16])

of the Lagrange function Φ .

Proof. This theorem is a special case of [67, Theorem 12.1] with only one equality constraint and
no inequality constraints. A proof of the more general theorem is also contained in [67].

Remark 2.13.3. Stationarity of the Lagrange function for (s, λ) is a necessary but not su�cient
�rst order condition which has to be satis�ed. The necessary �rst order conditions for a more
general optimisation problem with several equality and inequality constraints are known as the
Karush-Kuhn-Tucker conditions. After we have found the stationary points we can decide with
the help of standard techniques which of them are in fact local minima. For a detailed discussion
of necessary higher order conditions consider [67, Section 12.4].

Remark 2.13.4. Consider the real valued complex functions f : Cn → R and g : Cn → R . We
can view them as two real valued functions f̃ : R2n → R and g̃ : R2n → R by splitting each
complex input variable into two real variables where the �rst one contains its real and the second
one its complex part. In case f̃ and g̃ are continuously di�erentiable we can use Theorem 2.13.2
to minimise f under the constraint g (x1, ..., xn) = c .

82 Chapter 2. Mathematical and Algorithmic Foundation

Proposition 2.13.5. Let A ∈ Matm,n (C). The matrix A∗A is diagonalisable and has only real

non-negative eigenvalues.

Proof. Let A = UΣV ∗ be a SVD of A . We obtain

A∗A = (UΣV ∗)∗ UΣV ∗ = V ΣtrU∗UΣV ∗

= V ΣtrΣV ∗.

The matrix Λ = ΣtrΣ ∈ Matn (R) is diagonal and contains the squares of the singular values
of A . Therefore, V ΛV ∗ is an eigendecomposition of A∗A , and we have shown that A∗A is
diagonalisable and has only non-negative eigenvalues.

The following theorem characterises the solutions of the homogeneous least squares problem. It
is well-known, and can for example be proven via the properties of the SVD or via Lagrange
multipliers. We choose the latter approach and also we give a proof for complex matrices, which
is commonly not contained in the literature and could therefore be cited.

Theorem 2.13.6. Let A ∈ Matm,n (C) with m ≥ n and let c ∈ R+ . A basis for the solutions

x ∈ Cn of the homogeneous least squares problem subject to the constraint ‖x‖2 = c is given by

the norm c eigenvectors corresponding to the smallest eigenvalue λ ∈ R+
0 of A∗A . The norm of

the residual ‖Ax‖2 is given by
√
λc .

Proof. We want to minimise f
′

: Cn → R given by f
′
(x1, ..., xn) = f

′
(x) = ‖Ax‖ subject to

the constraint on g
′

: Cn → R with g
′
(x1, ..., xn) = g

′
(x) = ‖x‖ given by g

′
(x) = ‖x‖ = c .

As minimizing ‖Ax‖ =
√

(Ax)∗ (Ax) is equivalent to minimizing f (x) = (Ax)∗ (Ax) and the
constraint ‖x‖ = c is equivalent to g (x) = x∗x = c we will go for those simpler expressions.
First of all we decompose x in its real and imaginary part by letting x = a+ bi = (a1, ..., an) +

(b1, ..., bn) i where a1, ..., an, b1, ..., bn are real variables. We thus obtain f̃ : R2n → R with

f̃ (a, b) = (A (a+ bi))∗ (A (a+ bi)) = (a− bi)trA∗A (a+ bi)

= atr (A∗A) a+ atr (A∗A) bi− btri (A∗A) a+ btr (A∗A) b

= atr (A∗A) a+ atr (A∗A) bi− btri (A∗A) a+ btr (A∗A) b

= atr (A∗A) a+ 2=
(
atr (A∗A) b

)
+ btr (A∗A) b

and g̃ : R2n → R with

g̃ (a, b) = (a+ bi)∗ (a+ bi) = a2 + abi− abi+ b2

= a2 + b2.

Both f̃ and g̃ are continuously di�erentiable. In order to �nd the minimum we must �rst �nd the
stationary points of Φ (x, λ) = Φ (a, b, λ) = atr (A∗A) a+atr (A∗A) bi−btri (A∗A) a+btr (A∗A) b−
λ
(
a2 + b2 − 1

)
. We di�erentiate with respect to a and obtain

∂

∂a
(Φ (a, b, λ)) =

∂

∂a

(
atr (A∗A) a+ atr (A∗A) bi− btri (A∗A) a− λa2

)
=

(
A∗A+ (A∗A)tr) a+ (A∗A) bi− (A∗A)tr bi− λ2a

=
(
A∗A+AtrĀ

)
a+ 2< ((A∗A) i) b+ 2λa

= 2< (A∗Aa+ (A∗A) ib)− 2λa = 2< (A∗A (a+ bi))− 2λa.

2.13. Solutions of the Homogeneous Least Squares Problem 83

Next we di�erentiate Φ with respect to b . This yields

∂

∂b
(Φ (a, b, λ)) =

∂

∂b

(
btr (A∗A) b+ atr (A∗A) bi− btri (A∗A) a+ btr (A∗A) b− λb2

)
=

(
A∗A+AtrĀ

)
b+ (A∗A)tr ai− (A∗A) ai− 2λb

= 2i

(
A∗A+AtrĀ

)
2i

b+ 2= ((A∗A) a)− (A∗A) ai− 2λb

= 2= ((A∗A) a+ (A∗A) ib)− 2λb = 2= (A∗A (a+ bi))− 2λb.

By the de�nition of the Lagrange multiplier, the derivative with respect to λ is again our con-
straint g̃ (a, b) = c . Now we need to �nd solutions of the equations system

2< (A∗A (a+ bi))− 2λa = 0

2= (A∗A (a+ bi))− 2λb = 0

a2 + b2 = c.

If we note that A∗A is Hermitian and has only real eigenvalues it becomes apparent from these
expressions that the (complex) norm c eigenvectors of A∗A are the stationary points of the
Lagrange function and λ is the corresponding eigenvalue. As ‖Ax‖ ≥ 0 the minimum has to
be assumed on one of the stationary points. Now if we let x be an eigenvector and λ the
corresponding eigenvalue we obtain

‖Ax‖ =
√
x∗A∗Ax =

√
x∗λx =

√
λx∗x =

√
λc.

This means that ‖Ax‖ is minimal for all eigenvectors corresponding to the smallest eigenvalue.
Note that A∗A is diagonalisable which means that it possesses a complete basis of eigenvectors.

Remark 2.13.7. As we can deduce from the proof of Theorem 2.13.6, the choice of c does not
in�uence the structure of the solution. The only property that is changed by varying c is the
norm of the eigenvectors.

For reasons of simplicity and because it is customary to work with norm one eigenvectors from
now on we will let c = 1 .

Theorem 2.13.6 suggests a direct method to obtain the solutions of the homogeneous least squares
problem: First, we form A∗A and then we calculate a basis of the eigenspace associated with
the smallest eigenvalue of this matrix.

Algorithm 16: Homogeneous least squares
Input: A matrix A ∈ Matm,n (C)

Output: A basis v1, ..., vk for the solutions of the homogeneous least squares problem,
the norm of the residual

1 M := A∗A ;
2 (v1, ..., vk) := (norm one) eigenvectors of M with respect to the smallest eigenvalue λ
of M ;

3 r :=
√
λ ;

4 return (v1, ..., vk, r) ;

84 Chapter 2. Mathematical and Algorithmic Foundation

As a next step, we will analyse the accuracy of Algorithm 16. For this purpose let us denote
by λk (·) the k -th eigenvalue of a Hermitian matrix A ∈ Matm (C) , assuming that the eigenvalues
are ordered descendingly, and by σk (·) the k -th singular value of a matrix, assuming that the
singular values are ordered descendingly (compare Section 2.1).

Theorem 2.13.8 (Accuracy of Algorithm 16). Let m ≥ n , let A ∈ Matm,n (C) be a matrix,

let E ∈ Matm,n (C) be such that
‖E‖2
‖A‖2

∈ O (εmachine), and let Ã = A + E . Let us further

assume that the homogeneous least squares problem, i.e. �nd all x ∈ Cn subject to ‖x‖2 = 1

such that ‖Ax‖2 is minimised, is addressed via Algorithm 16 and a backward stable algorithm

such as the QR algorithm (2.9.1) is used to solve the underlying eigenvalue problem in step 2 on

a computer that satis�es Assumption 2.7.5. Let us denote by x the exact solution, by r = ‖Ax‖2
the exact residual, by x̃ the computed solution and by r̃ = ‖Ãx̃‖2 the computed residual of the

homogeneous least squares problem. Then for r and r̃ the following error estimate holds:

|r − r̃| ∈ O

εmachine
∥∥∥Ã∥∥∥2

2

r

 = O

εmachine
∥∥∥Ã∥∥∥2

2

r̃

 .

Let θ be the angle between x and x̃ , i.e. cos (θ) ‖x‖‖x̃‖ = cos (θ) = |〈x, x̃〉|. If gapn

(
Ã∗Ã

)
6= 0

(see De�nition 2.9.20), then the following error estimate holds:

1

2
sin (θ) ∈ O

εmachine
∥∥∥Ã∥∥∥2

2

gapn

(
Ã∗Ã

)
 .

Proof. If x and r are computed via Algorithm 16, then x is a norm one eigenvector of A∗A ∈
Matn (C) associated with the smallest eigenvalue r2 of A∗A . Please recall from Proposi-
tion 2.13.5 that A∗A has only real non-negative eigenvalues. In the following let B = A∗A

and let

B̃ = Ã∗×̂Ã = Ã∗Ã+G = (A+ E) ∗ (A+ E) +G

= A∗A+AE + E∗A+ E∗E +G

= B + F

be the equivalent of matrix B that was computed with �oating point arithmetic (compare
De�nition 2.7.7) with associated (error) matrices E,G, F ∈ Matn (C) . As we assume that the
machine with which we are working has backward stable implementations of the basic arithmetic
operations and because ‖E‖2‖A‖2

∈ O (εmachine) we know that ‖G‖2‖A‖2
∈ O (εmachine) and also ‖F‖2‖B‖2

∈
O (εmachine) must hold.

First of all we recall that B is a Hermitian matrix, for this purpose see Proposition 2.3.24.
Additionally, we may assume that the matrix B̃ is also Hermitian as any sensible �oating point
implementation would only compute and store the upper or lower triangular part of B̃ . The
other elements are obtained as the complex conjugates of the elements that are actually stored.
Note, that if we would compute each entry of B̃ explicitly in �oating point arithmetic, the

2.13. Solutions of the Homogeneous Least Squares Problem 85

matrix B̃ would in general not be Hermitian! By Corollary 2.9.18, we know that the smallest
eigenvalue λi of B satis�es the inequality∣∣∣λi (B)− λi(B̃)

∣∣∣ ≤ ‖F‖2 .

This means that λi(B̃) = λi (B) + k ‖F‖2 for some k ∈ [−1, 1] . This implies that∣∣∣λi (B)− λi(B̃)
∣∣∣ ∈ O (εmachine ‖A∗A‖2) = O

(
εmachine ‖A‖22

)
= O

(
εmachine

∥∥∥Ã∥∥∥2

2

)
.

Now we need to distinguish a few di�erent cases. In case r = r̃ = 0 the claim is trivially true.
Let us next consider the case that r = 0 and r̃ 6= 0 . Then

|r − r̃| =

∣∣∣∣∣λi(B̃)

r̃

∣∣∣∣∣ ∈ O
εmachine

∥∥∥Ã∥∥∥2

2

r̃

 .

As a next step we consider the case that r 6= 0 and r̃ = 0 . Here we observe that

|r − r̃| =
∣∣∣∣λi (B)

r

∣∣∣∣ ∈ O
εmachine

∥∥∥Ã∥∥∥2

2

r

 .

So we can �nally consider the case where r 6= 0 and r̃ 6= 0 . We verify that

r̃ =

√
λi(B̃) =

r
√
λi(B̃)

r

=

√
λi (B)

√
λi(B̃)

r
=

√
λi(B̃)− k ‖F‖2

√
λi(B̃)

r

=
λi(B̃)

r

√
1−

k ‖F‖2
λi(B̃)

=
λi(B̃)

r

√
1−

k ‖F‖2
λi (B) + k ‖F‖2

.

So we obtain

|r − r̃| =

∣∣∣∣∣λi (B)

r
− λi(B̃)

r

√
1−

k ‖F‖2
λi (B) + k ‖F‖2

∣∣∣∣∣ ∈ O
(
λi (B)− λi(B̃)

r

)
.

Finally, we obtain

|r − r̃| ∈ O

(
λi (B)− λi(B̃)

r

)
= O

εmachine
∥∥∥Ã∥∥∥2

2

r

 .

The claim about θ follows directly from Remark 2.9.22 if we use A∗A as the input matrix.

86 Chapter 2. Mathematical and Algorithmic Foundation

Remark 2.13.9. Consider the same hypotheses as in Theorem 2.13.8. By Corollary 2.9.19, we
know that for an arbitrary singular value σk the following bound can be established:∣∣∣σk(Ã)− σk(A)

∣∣∣ ≤ ‖δA‖2 .
This means that a backward stable algorithm for the problem would in fact compute r̃ such that

|r − r̃| ∈ O (εmachine ‖A‖2) .

The algorithm which we have presented here is worse by a factor of ‖A‖2r = σ1(A)
σn(A) = κ (A) . This

may become a problem if A is very ill-conditioned. However, if necessary the numerical stability
can be improved and brought to the level that |r − r̃| ∈ O (εmachine ‖A‖2) with the help of the
techniques which will be described in Subsection 4.3.2.

87

3
Border Bases

Contents

3.1 Exact Border Bases . 87

3.2 Numerical Stability of Border Bases . 91

3.3 A�ne Point Sets . 92

3.4 The Buchberger-Möller Algorithm for Border Bases 93

Border bases, a generalisation of Gröbner bases for zero-dimensional ideals, have attracted the
interest of many researchers recently. One of the reasons is the enhanced numerical stability of
border bases compared to Gröbner bases which makes them more suitable for applications. This
was, for instance, demonstrated in �Approximate computation of zero-dimensional polynomial
ideals� ([28]). Kreuzer, Poulisse, et al. extended exact border bases to approximate border
bases and gave an e�cient algorithm, the so-called AVI algorithm (21), for their computation.
Border basis were also used by Stetter in his book �Numerical Polynomial Algebra� ([49]) as a
comparatively stable tool for polynomial system solving. Further notable applications of border
basis were given by Mourrain in [24] and [26].
As exact and approximate border bases are fundamental to the understanding of the ABM family
of algorithms we start out with a brief introduction to the topic of border bases and then move
on to approximate border bases.

3.1 Exact Border Bases

In this chapter we deal with exact border bases and motivate those special properties which make
them suitable for practical applications. Let K be a �eld, n ≥ 1 and P = K [x1, ..., xn] the
polynomial ring over K in n indeterminates. Recall that by Tn we denote the set of all terms
in P .

Just like [22] we introduce the following de�nitions:

88 Chapter 3. Border Bases

De�nition 3.1.1. [Order Ideal]

A �nite set of terms ∅ ⊂ O ⊆Tn is called an order ideal if t ∈ O implies that t′ ∈ O for every t′

dividing t .

De�nition 3.1.2. [Border]

The border of an order ideal will be denoted by ∂O and is de�ned as

∂O = Tn1 · O \O = (x1O ∪ ... ∪ xnO) \O .

Example 3.1.3. Let P = K [x, y] and let O =
{

1, x, y, xy, x2, x3
}

be an order ideal. The
border of O is given by ∂O =

{
y2, x2y, xy2, x4, x3y

}
. In Figure 3.1 we can see a visualisation

of O and of its border.

x

y

x

y xy

x2 x31 x4

y2 xy2

x2y x3y

Order ideal element

Border element

Figure 3.1: Depiction of an order ideal and of its border.

De�nition 3.1.4. [Border closure]

The �rst border closure of O is denoted by ∂O and is de�ned as

∂O = ∂O ∪O.

De�nition 3.1.5. We let ∂0O = ∂0O = O . For every k ≥ 1 we inductively de�ne the
k -th border of O by ∂kO = ∂

(
∂k−1O

)
and the k -th border closure of O by ∂kO =

∂k−1O ∪ ∂kO .

De�nition 3.1.6. [Index]

We de�ne the index of t ∈ Tn with respect to O as

indO (t) = min
{
k ≥ 0

∣∣∣t ∈ ∂kO} .
Given a polynomial f = c1t1 + ...+ csts ∈ P \ {0} , with c1, ..., cs ∈ K \ {0} and t1, ..., ts ∈ Tn ,
we assume that the ti are ordered such that indO (t1) ≥ indO (t2) ≥ ... ≥ indO (ts) . Then we
de�ne the index of f as indO (f) = indO (t1) .

De�nition 3.1.7. [O -border prebasis]

Consider an order ideal O with corresponding border ∂O = {b1, ..., bν} . A set of polynomials
G = {g1, ..., gν} ⊂ P is called an O -border prebasis if every polynomial gi ∈ G is of the form
gi = bi + hi such that hi ∈ P satis�es supp (hi) ⊆ O .

3.1. Exact Border Bases 89

Algorithm 17: Border Division
Input: An order ideal O = {t1, ..., tµ} , an O -border prebasis G = {g1, ..., gν} , and a

polynomial f ∈ P
Output: A tuple (f1, ..., fν , c1, ..., cµ) ∈ P ν ×Kµ

1 f1 := ... := fν = 0 , c1 := ... := cµ := 0 , h := f ;
2 [b1, ..., bν] = ∂O ;
3 while h 6= 0 do

4 if indO (h) = 0 then

5 for i := 1 to µ do

6 ci := coe�cient of ti in h ;
7 end

8 return (f1, ..., fν , c1, ..., cµ) ;

9 else

/* We assume that h = a1h1 + ...+ ashs with a1, ..., as ∈ K \ {0} and

h1, ..., hs ∈ Tn such that indO (h1) = indO (h) */

10 for i := 1 to ν do

11 if isDivisible (h1, bi) and indO (h1/bi) = indO (h)− 1 then

12 t
′

:= h1/bi ;
13 h := h− a1t

′
gi ;

14 fi := fi + a1t
′
;

15 break;

16 end

17 end

18 end

19 end

20 return (f1, ..., fν , c1, ..., cµ) ;

Theorem 3.1.8. Given an order ideal O , an O -border prebasis G = {g1, ..., gν}, and a poly-

nomial f ∈ P , this is an algorithm that returns a tuple (f1, ..., fν , c1, ..., cµ) ∈ P ν × Kµ such

that

f = f1g1 + ...+ fνgν + c1t1 + ...+ cµtµ

with deg (fi) ≤ indO (f)− 1 for all 1 ≤ i ≤ ν where figi 6= 0 . For a �xed order of the elements

in G the result is unique.

Proof. A proof can be found in [22, Proposition 6].

De�nition 3.1.9. [Normal Remainder]

Let O be an order ideal, let G be an O -border prebasis (in which the elements are ordered in
a �xed way) and let f ∈ P . Now let

f = f1g1 + ...+ fνgν + c1t1 + ...+ cµtµ

90 Chapter 3. Border Bases

be the decomposition computed by the Border Division Algorithm (17). Then we call

NRO,G (f) = c1t1 + ...+ cµtµ

the normal O -remainder of f .

In the following let O = {t1, ..., tµ} be an order ideal, and let ∂O = {b1, ..., bν} be its border.
Additionally, let G = {g1, ..., gν} be an O -border prebasis, and let I be a zero-dimensional ideal
of P which contains G .

De�nition 3.1.10. [O -border basis]

An O -border prebasis is called an O -border basis of I if the residue classes of the elements
of O form a vector space basis of P/I .

We now investigate characterisations of border bases which we will use later to prove, for example,
the correctness of the Buchberger-Möller algorithm for border bases.

De�nition 3.1.11. [Rewrite relations]

Let G be an O -border basis as de�ned above, and let f ∈ P be a polynomial. Furthermore,
let t ∈ supp (f) be such that t is a multiple of a border term, meaning t = t′bi with t′ ∈ Tn

and bi ∈ ∂O . If c ∈ K is the coe�cient of t in f , then h = f − ct′gi does not contain t any
more. We say that f reduces to h in one step using gi and write f

gi−→ h . The re�exive,
transitive closure of the relations

gi−→ , with 1 ≤ i ≤ ν , is called the rewrite relation associated
to G and denoted by G−→ .

De�nition 3.1.12. [Neighbours]

Let bi, bj ∈ ∂O and bi 6= bj . The border terms bi and bj are called next-door neighbours if
bi = xkbj or if bj = xkbi for some k ∈ {1, ..., n} . The border terms bi and bj are called across-
the-street neighbours if xkbi = x`bj for some k, ` ∈ {1, ..., n} . If bi and bj are either next-door
neighbours or across-the-street neighbours, we can simply refer to them as neighbours.

Remark 3.1.13. [Least common multiple]

The least common multiple of two terms t1 =
∏n
i=1 x

ai
i and t2 =

∏n
i=1 x

bi
i is given by

lcm (t1, t2) =
∏n
i=1 x

max(ai,bi)
i .

De�nition 3.1.14. [S-polynomial]

Let gi = bi + hi and gj = bj + hj be two polynomials of an O -border prebasis. The polynomial

S (gi, gj) =
lcm (bi, bj)

bi
gi −

lcm (bi, bj)

bj
gj

is called the S-polynomial of gi and gj .

Theorem 3.1.15 (Buchberger's criterion for border bases). An O -border prebasis G is a border

basis of I = 〈G〉 if and only if for all neighbours bi and bj in the border of O the S-polynomial

S (gi, gj) can be reduced to zero via
G−→ .

Proof. See [22, Proposition 18].

3.2. Numerical Stability of Border Bases 91

3.2 Numerical Stability of Border Bases

In this subsection we highlight which properties make border bases suitable for practical applic-
ations. For this purpose we have a look at an example �rst, which can also be found in [46]. A
similar example that illustrates the stability of H-bases is presented by Möller and Sauer in [40].
To fully understand the example given here, some knowledge about Gröbner bases theory is ne-
cessary. However, as this is not the subject of this thesis, the interested reader is referred to [45]
and [46] for full details about Gröbner bases.

Example 3.2.1. Let P = C [x, y] , f1 = 1
4x

2 + y2 − 1 , and f2 = x2 + 1
4y

2 − 1 . As depicted in

Figure 3.2, the zero sets of the polynomials intersect in the four points X =
{(
± 2√

5
,± 2√

5

)}
. Now

let σ be the DegRevLex term ordering. Then the set
{
x2 − 4

5 , y
2 − 4

5

}
is the reduced σ -Gröbner

basis of the ideal I = (f1, f2) . Consequently, LTσ (I) =
(
x2, y2

)
and T2\LTσ (I) = {1, x, y, xy} .

- 2 - 1 0 1 2

- 2

- 1

0

1

2

x

y

x
2

4

+ y
2
- 1 = 0

x
2
+
y

2

4

- 1 = 0

Figure 3.2: Intersection of the zero set of the polynomials f1 and f2 .

Let us perturb f1 and f2 such that f̃1 = 1
4x

2+y2+εxy−1 and f̃2 = x2+ 1
4y

2+εxy−1 where ε ∈ R
is a small number. If we exclude ε = ±5

4 , then the intersection of the zero sets of the polynomials

again consists of four points which are close to those in X , namely X̃ =
{(
± 2√

5−4ε
,± 2√

5−4ε

)}
.

The reduced σ -Gröbner basis of Ĩ = (f̃1, f̃2) is the set{
x2 − y2, xy +

5

4ε
y2 − 1

ε
, y3 − 16ε

16ε2 − 25
x+

20

16ε2 − 25
y

}
with LTσ(Ĩ) =

(
x2, xy, y3

)
and T2 \ LTσ(Ĩ) =

{
1, x, y, y2

}
. What we can observe is that a

possibly small perturbation of the coe�cients of f1 and f2 can lead to a signi�cant change in

92 Chapter 3. Border Bases

the Gröbner basis of I . Note that we cannot let ε = 0 in Ĩ . This behaviour is known as a
representation singularity.

Now let us examine what happens when I is perturbed when looking at border bases.
Both I and Ĩ have a border basis with respect to O = {1, x, y, xy} . As the border of O is{
x2, x2y, xy2, y2

}
the O -border basis of I is{

x2 − 4

5
, x2y − 4

5
y, xy2 − 4

5
x, y2 − 4

5

}
.

Furthermore, the O -border basis of Ĩ is given by{
x2 +

4

5
εxy − 4

5
, x2y − 16ε

16ε2 − 25
x+

20

16ε2 − 25
y,

xy2 +
20

16ε2 − 25
x− 16ε

16ε2 − 25
y, y2 +

4

5
εxy − 4

5

}
.

In this case we can observe that the representation in terms of the border basis of I and Ĩ is
stable, meaning that if we let ε = 0 in the border basis of Ĩ we obtain the border basis of I .

This example illustrates that if structural information shall be derived from the generating system
of an ideal, Gröbner bases have some serious shortcomings which are not so prominent in border
bases. This e�ect is mainly due the additional degrees of freedom provided by a border basis, as
a generic border prebasis is parametrised by n×b parameters, with n = |O| and b = |G| = |∂O| .
It is also possible to show that border bases are in general stable with respect to perturbations
in their zero set X = Z (I) . In fact, this is the case we are mostly concerned with as we want
to compute (approximate) border basis for measurements X̃ which contain a certain amount of
noise. First we note that if the set X contains s elements, a suitable order ideal O will contain s
elements as well. Furthermore, the evaluation matrix (see De�nition 3.3.4) M ∈ Mats (C) of O
with respect to X will be non-degenerate. If we perturb the points X in a generic way and
compute the corresponding evaluation matrix M̃ with respect to O it will almost surely still
have full rank. Thus it is possible to construct a new border basis for the perturbed points by
only changing the coe�cients of the polynomials, which we had computed for X . The monomial
structure dictated by O remains unchanged. In other words, for every point p ∈ X exists a
non-empty environment Uε = {x ∈ Cn |‖x− p‖ < ε} for ε > 0 , in which the point p may be
perturbed, while the associated border basis can still maintain its shape with respect to O . More
details about this result can be found in [34].

3.3 A�ne Point Sets

First of all, we make ourselves familiar with a�ne point sets and ideals of points. These are
essential ingredients when performing exact multivariate polynomial interpolation. As already
mentioned in the introduction, in our setting we are not interested in exact polynomial inter-
polation as we are dealing with noisy input data. However, the exact methods will be a good
starting point for what we call �approximate polynomial interpolation�.

Just like [46] we introduce the following de�nitions.

3.4. The Buchberger-Möller Algorithm for Border Bases 93

De�nition 3.3.1. Let K be a �eld and P = K [x1, ..., xn] the polynomial ring over K in n

indeterminates.

1. An element p = (c1, ..., cn) ∈ Kn is called a K -rational point. We call c1, ..., cn the
coordinates of p .

2. A �nite set of distinct K -rational points X = {p1, ..., ps} is called an a�ne point set.

3. Let X be an a�ne point set. Then the set of all polynomials f ∈ P such that f (p) = 0

for all points p ∈ X forms an ideal of the polynomial ring P . It is called the vanishing
ideal of X in P and we denote it by I (X) . Sometimes, we may also refer to I (X) as an
ideal of points.

4. The K -algebra P/I (X) is called the (a�ne) coordinate ring of X .

Example 3.3.2. [The vanishing ideal of a single point]

If X contains only one point p = (c1, ..., cn) ∈ Kn , then the vanishing ideal of X is trivially
given by

I (X) = (x1 − c1, ..., xn − cn) .

Proposition 3.3.3 (Characterisation of Ideals of Points). Let X = {p1, ..., ps} ⊆ Kn be an

a�ne point set. Then I (X) can be computed as the intersection of the vanishing ideals of all the

individual points:

I (X) = I (p1) ∩ ... ∩ I (ps) .

Proof. Obviously a polynomial is in I (X) if and only if it vanishes at every point pi in X .

De�nition 3.3.4. [Evaluation map]

Let X = {p1, ..., ps} ⊆ Kn be an a�ne point set. By evalX : P → Ks de�ned by evalX (f) =

(f (p1) , ..., f (ps)) we denote the K -linear evaluation map associated with X .

Calculating ideals of points via intersections of ideals is not very e�cient if done via the compu-
tation of Gröbner bases (compare [45, Proposition 3.2.7]). In the following section we study a
direct algorithm which uses linear algebra and has a guaranteed polynomial runtime.

3.4 The Buchberger-Möller Algorithm for Border Bases

The following algorithm was �rst introduced in [21] but speci�cally given for Gröbner bases. We
present the border basis version given in [32] as Algorithm 4.1. Additionally, we give a detailed
proof which shows that the algorithm computes a border basis of I (X) , as the details of the
proof were left to the reader in [32].

94 Chapter 3. Border Bases

Algorithm 18: The Buchberger-Möller (BM) algorithm for border bases
Input: A degree compatible term ordering σ on Tn , an a�ne point set

X = {p1, ..., ps} ⊆ Kn

Output: (G,O) where O is an order ideal and G an O -border basis of I (X)

1 d := 1 , O := [1] , G := [] , M = (1, ..., 1)tr ∈ Mats,1 (K) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 A := (evalX (t1) , ..., evalX (t`) ,M) ;
5 B := ker (A) such that the rows of B form a basis of the kernel of A ;
6 B

′
:= RREF(B) ;

// We assume that O =
[
o1, ..., olen(O)

]
7 G̃ := [g̃1, ..., g̃k]

tr = B
′ (
t1, ..., t`, o1, ..., olen(O)

)tr ;
8 G := concat(G, G̃tr) ;
9 for i := ` downto 1 do

10 if ti 6= LTσ (g̃1) and ... and ti 6= LTσ (g̃k) then

11 O := concat([ti] ,O) ;
12 M := (eval (ti) ,M) ;

13 end

14 end

15 d := d+ 1 ;
16 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

17 until L = [] ;
18 return (G,O) ;

Theorem 3.4.1. This is an algorithm which computes in a �nite number of steps an O -border
basis G of I (X) .

Proof. We will start by proving the �niteness of the algorithm. In line 4 the matrix M has |O|
columns and the new columns which are added in line 12 are linearly independent of the previous
ones. Obviously it is not possible to add linearly independent columns in�nitely many times as
when the number of columns exceeds the number of rows their column space can no longer
be linearly independent. So M can have at most s columns. Then in matrix A all columns
associated with t1 to t` are linearly dependent of the columns of M , thus no new terms will go
into O . As a consequence L will be empty in line 17 and the algorithm will terminate.

Now we prove that G is an O -border basis. First we show that the set O is an order ideal of
terms. For this purpose we only need to consider elements of O which are at least quadratic, as 1
is always included in O (see line 1) all divisors of the terms of degree 1 are trivially included in O .
So let xit ∈ O\{1, x1, ..., xn} . We have to prove that all divisors of xit are in O . Let us assume
this is not the case so there exists an indeterminate xj such that t = xjt

′ and xit
′ = LTσ (g)

for some polynomial g in G . So xit
′ would be the divisor of xit missing in the order ideal.

We know that evalX (g) = 0s and consequently if we multiply by xj , then evalX (xjg) = 0s as
well. Additionally, we know that xit = LTσ (xjg) . However, the terms supp (xjg) \ {xit} are

3.4. The Buchberger-Möller Algorithm for Border Bases 95

either in O or can be rewritten via relations in G in terms of O , because we are using a degree
compatible term ordering. This means we can �nd suitable coe�cients ci ∈ K in lines 5 and 6
such that we can form the polynomial xjg = xit −

∑|O|
i=1 cioi from the elements already in O

together with xit . So xit would not be an element of the order ideal, which is a contradiction
to our initial assumption. This proves that O is always an order ideal.

It is easy to see that by construction G is always an O -border prebasis.

Via Buchberger's criterion for border bases (see Theorem 3.1.15) we can prove that G is an
O -border basis. Therefore, it remains to be shown that for all neighbour pairs (i, j) the S-
polynomials reduce to zero via G . Let gi = bi + hi with supp (hi) ⊆ O .

We will �rst look at the across-the-street neighbours. So Sij = xkgi − x`gj and NRO,G (Sij) =

xkgi − x`gj −
∑

ν cνgν with cν ∈ K and 1 ≤ ν ≤ |G| . We obtain the expression

NRO,G (Sij) = xk (bi + hi)− x` (bj + hj)−
∑
ν

cνgν

= xkhi − x`hj −
∑
ν

cνgν .

We choose the cv in such a way that all border terms in xkhi and xlhj cancel out. Thus
supp (NRO,G (Sij)) ⊆ O . We know that evalX (Sij) = 0s because evalX (gi) = 0s for all 1 ≤
i ≤ |G| . If we assume that NRO,G (Sij) 6= 0 for at least one pair (i, j) this means that we have
found a new relation among the elements in O which vanishes on the set X . However, this is
not possible as the algorithm assures that only elements are added to O which preserve linear
independence among the columns of the evaluation matrix of O with respect to X .

Finally, we will analyse the next-door neighbours. So we may assume that Sij = gi − xkgj and
NRO,G (Sij) = gi−xkgj−

∑
ν cνgν with cν ∈ K and 1 ≤ ν ≤ |G| . Here we obtain the expression

NRO,G (Sij) = (bi + hi)− xl (bj + hj)−
∑
ν

cνgν

= hi − xlhj −
∑
ν

cνgν .

The conclusion follows from exactly the same arguments as in the case of the across-the-street
neighbours.

Remark 3.4.2. Even if we would not require X to be a set of points and would allow duplicates
the output of the algorithm would remain unchanged. The reason is that adding a linearly
dependent row to matrix A in line 4 will not e�ect the computation of the kernel of A in
line 5. For reasons of e�ciency it makes sense, though, to require that X is a set. Compare also
Example 4.3.9, where we investigate the e�ects of multiple identical points on the output of the
ABM algorithm.

Let us demonstrate the workings of the algorithm by means of the following example.

Example 3.4.3. Let P = R [x1, x2] and X = {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)} be given
and let σ be the DegRevLex term ordering.

96 Chapter 3. Border Bases

• d = 0 , O = [1] , G = [] , and M = (1, ..., 1)tr

• d = 1 , ∂O = {x1, x2} , and L = [x1, x2]

• A =

0 0 1

0 1 1

1 0 1

1 1 1

0.5 0.5 1

 , ker (A) = {03} , O = [x1, x2, 1]

• d = 2 , ∂O =
{
x2

1, x1x2, x
2
2

}
, and L =

[
x2

1, x1x2, x
2
2

]

• A =

0 0 0 0 0 1

0 0 1 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

0.25 0.25 0.25 0.5 0.5 1

 , ker (A) = {(1, 0,−1,−1, 1, 0)}

• (1, 0,−1,−1, 1, 0)
(
x2

1, x1x2, x
2
2, x1, x2, 1

)tr
= x2

1 − x2
2 − x1 + x2 = g1 , G = [g1] ,

O =
[
x1x2, x

2
2, x1, x2, 1

]
• d = 3 , ∂O =

{
x2

1x2, x1x
2
2, x

3
2

}
, and L =

[
x2

1x2, x1x
2
2, x

3
2

]

• A =

0 0 0 0 0 0 0 1

0 0 1 0 1 0 1 1

0 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

0.125 0.125 0.125 0.25 0.25 0.5 0.5 1

 ,

ker (A) = {(1,−1, 0, 0, 0, 0, 0, 0) , (0,−1, 1, 1,−1, 0, 0, 0) , (0, 0, 2, 0,−3, 0, 1, 0)}

• B =

 1 −1 0 0 0 0 0 0

0 −1 1 1 −1 0 0 0

0 0 2 0 −3 0 1 0

 ,

RREF (B) =

 1 0 0 −1 −0.5 0 0.5 0

0 1 0 −1 −0.5 0 0.5 0

0 0 1 0 −1.5 0 0.5 0

•

 1 0 0 −1 −0.5 0 0.5 0

0 1 0 −1 −0.5 0 0.5 0

0 0 1 0 −1.5 0 0.5 0

(x2
1x2, x1x

2
2, x

3
2, x1x2, x

2
2, x1, x2, 1

)tr
g2 = x2

1x2 − x1x2 − 0.5x2
2 + 0.5x2

g3 = x1x
2
2 − x1x2 − 0.5x2

2 + 0.5x2

g4 = x3
2 − 1.5x2

2 + 0.5x2

• G = [g1, g2, g3, g4] , O =
[
x1x2, x

2
2, x1, x2, 1

]
In Figure 3.3 we can see a visualisation of the zero set of g1 to g4 .

3.4. The Buchberger-Möller Algorithm for Border Bases 97

Figure 3.3: A visualisation of the polynomials g1, ..., g4 of Example 3.4.3

3.4.1 Runtime Analysis of the Buchberger-Möller Algorithm

In this section we analyse the runtime of the Buchberger-Möller algorithm for border bases in
case we are dealing with a set of generically chosen points. This means that no special low degree
relations among the points exist and the kernel computed in line 5 of Algorithm 18 will be trivial
unless we arrive at the situation where the number of rows exceeds the number of columns.We
will look at each step in detail this time, because the following algorithms which we present share
a lot of common structure with the BM algorithm. Later we will only discuss the di�ering parts.
We also explain in this subsection how it is possible to speed up the implementation by updating
the kernel rather then completely recomputing it in every degree. This principle will also carry
over to the later chapters where we will discuss how the approximate kernel of a matrix can be
updated.

98 Chapter 3. Border Bases

Remark 3.4.4. The following cost measures only represent the number of basic operations in
terms of addition, subtraction, multiplication, and division in the �eld K . Depending on the
base �eld the actual cost for the basic operations can be tremendous if implemented in a naive
way. Therefore, it should be made sure that an implementation is used that guarantees at least
polynomial runtime. For example, an e�cient implementation for K = Q in the context of
Gröbner Bases is presented in [27].

Fortunately, in our case we are mostly interested in �oating point implementations, for which all
basic operations are guaranteed to be in O (1) .

Remark 3.4.5. [Updating the kernel of a matrix]

Before we begin with the actual analysis of Algorithm 18, we will explain how the kernel in line 5
of the algorithm can be computed in a more economic way. Please recall from Proposition 2.4.4
that the kernel of a dense matrix A ∈ Matm,n (K) can be computed e�ciently using the Gauss
Jordan algorithm in O(1

2 min (m,n)2 max (m,n)) . However, if additionally the kernel of a slightly
modi�ed matrix, just like in our case where we are pre-pending new columns to A in line 4, shall
be computed, it becomes ine�cient to recompute the whole kernel. In this case it makes sense
to store the information about the individual reduction steps to reduced row echelon form, as
these reoccur in the computation of the modi�ed matrix. Bookkeeping during a Gauss-Jordan
reduction essentially amounts to computing the PLURQ decomposition (see De�nition 2.5.3)
of A , where P ∈ Matm (K) and Q ∈ Matn (K) are permutation matrices, L ∈ Matm,k (K) is a
lower triangular matrix which encodes the reduction part to row echelon form and U ∈ Matk (K)

is an upper triangular matrix which encodes the reduction to reduced row echelon form, and
R ∈ Matk,n (K) is A transformed to RREF. Once this decomposition is available it can be
updated essentially in quadratic time in each subsequent computation. Please note that the
matrices U and L never need to be formed explicitly. We will not spell out the algorithm in all
details but we sketch the basic methodology. What we will not discuss is the proper handling
of row and column permutations which can become necessary to guarantee lower and upper
triangular shape of the matrices L and U .

Let M ∈ Matm,n (K) be an arbitrary matrix and let M̃ ∈ Matm,n+` (K) be matrix M to
which ` new columns c1, ..., c` were added. The �rst thing that we will do is to determine
a permutation matrix P1 such that all new columns are moved to the back, meaning that
they are now at positions n + 1 to n + ` of M̃P1 . Let us now additionally assume that we
have previously obtained a PLURQ decomposition of M , such that U−1L−1P trMQtr = R .
If we compute U−1L−1P tr (c1...c`)Q

tr we reproduce the reductions which we have previously
applied while computing the RREF of M . The cost is in O

(
`m2

)
. What remains to be done

is to restore the RREF of the whole matrix. Only the new columns have to be treated, this
costs O(1

2 min (m, `)2 max (m, `)) operations. With the new transformations we must update
our PLURQ decomposition, such that we obtain a full decomposition of M̃ . Note that no
full matrix-matrix multiplications are necessary. These would in fact cost O

(
m3
)
and would

make the whole updating process pointless. In fact we need to do no further processing as it is
su�cient to only store the individual transformations per row which we have computed while
forming the RREF. This amounts to an additional cost of O (`m) . Once we have computed

3.4. The Buchberger-Möller Algorithm for Border Bases 99

the RREF of M̃ it is again easy to read o� the kernel. When interpreting the entries of the
kernel vectors as coe�cients of our terms we only have to take care of the permutations which
we have applied.

In the following example we will show how the kernel of a matrix can be updated. The matrices
are taken from Example 3.4.3.

Example 3.4.6. Let

A =

0 0 1

0 1 1

1 0 1

1 1 1

0.5 0.5 1

 .

Let us now assume that we have in a previous step computed a PLURQ decomposition of this
matrix. We have thus obtained the RREF of A by forming

U−1L−1P trAQtr =

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

 ,

where

U−1 =

1 0 −1 0 0

0 1 −1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , L−1 =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−1 −1 1 1 0

−0.5 −0.5 0 0 1

 ,

P tr =

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 and Qtr = I3.

The kernel just contains the zero vector as the matrix has full rank. In the next step we add
three new leading columns to A . We have

Ã =

0 0 0 0 0 1

0 0 1 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

0.25 0.25 0.25 0.5 0.5 1

 .

100 Chapter 3. Border Bases

We only need to compute U−1L−1P tr (c1, ..., cl)Q
tr . Additionally, we �nd a new suitable per-

mutation matrix Qtr and obtain

U−1L−1P trÃ

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

=

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0.25 −0.25 −0.25

 .

We restore row echelon form by applying the transformations
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 −0.25 1

 and

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −4

and update L−1 accordingly (no full matrix-matrix multiplications are required). In order to
obtain reduced row echelon form we apply

1 0 0 0 −1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

and update U−1 . Finally, we obtain

U−1L−1P trÃQtr =

1 0 −1 0 −1

0 1 −1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−1 −1 1 1 0

1 1 1 1 −4

P trÃQtr

=

1 0 0 0 0 −1

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

 .

So Qtr (−1, 1, 0, 0, 1,−1)tr = (1, 0,−1,−1, 1, 0)tr , and ker(Ã) = {(1, 0,−1,−1, 1, 0)} just as we
had computed previously in Example 3.4.3.

Proposition 3.4.7. The average runtime complexity of Algorithm 18 is cubic in the number of

input points s , if the kernel is updated as described in Remark 3.4.5.

3.4. The Buchberger-Möller Algorithm for Border Bases 101

Proof. For the sake of simplicity, but without sacri�cing a lot of generality, let us assume that
the number of input points is

s =

p∑
i=0

(
n+ i− 1

i

)
=

(
n+ p

p

)
which is the number of terms up to and including degree p in the polynomial ring P =

K [x1, ..., xn] . The �average case� in terms of runtime complexity, in which we are interested,
will occur if the set of input points has random coordinates and is therefore generic. As such the
order ideal O will contain s elements and the border of O will contain

(
n+p
p+1

)
elements after the

algorithm has terminated. We will now have a closer look at all individual steps:

Lines 1 and 2 are only executed once and have a cost of O (s+ n) .
Lines 4-16 are inside a loop which will be executed exactly p + 1 times. This holds because
the points are generic and no special relation between them can be found until the number of
columns exceeds the number of rows in the evaluation matrix.
The cost of line 4 is in O

(
s
(
n+d−1

d

))
, as all terms in the current degree d need to be evaluated

on all points. Compare [46, Remark 6.3.12].
In line 5 the kernel of a Mat

s,(n+d
d) (K) matrix is computed. If done via Gauss-Jordan elimin-

ation (2.4.4) the cost would be in O
(
s
(
n+d
d

)2)
as long as d ≤ p and in case d = p + 1 the

cost will be in O
(
s2
(
n+d
d

))
. However, if we use Remark 3.4.5 to update the kernel consec-

utively the cost will be in O
(
s
(
n+d−1

d

)(
n+d−1
d−1

))
. The result of this computation, matrix B ,

is generally empty, unless d = p + 1 . In this case matrix B will have
(
n+p
p+1

)
rows and line 6

will cost O
((

n+p
p+1

)2(n+p+1
p+1

))
, if the reduced row echelon form is computed via Gauss-Jordan

elimination (2.4.5), and line 7 will be in O
((

n+p
p+1

)(
n+p+1
p+1

))
which is the cost of a matrix-vector

multiplication.
The cost of line 8 is in O (1) .
The loop which spans from line 9 to 14 has costs which are in O

((
n+d−1

d

))
, essentially because

every term has to be dealt with. The check inside the loop can be handled in constant time
because either G is empty or all terms in L are leading terms of the elements in G .
Line 15 can again be handled in constant time.
The cost of line 16 is in O

((
n+d
d+1

))
as long as d ≤ p , because all terms of degree d + 1 in n

indeterminates are computed in this step. So if we put all parts together we have total costs of

O

 s︸︷︷︸
1

+ n︸︷︷︸
2

+

p+1∑
d=1

s
(
n+ d− 1

d

)
︸ ︷︷ ︸

4

+ 1︸︷︷︸
8

+

(
n+ d− 1

d

)
︸ ︷︷ ︸

9−14

+ O

 p∑
d=1

s(n+ d

d

)2

︸ ︷︷ ︸
5

+

(
n+ d

d+ 1

)
︸ ︷︷ ︸

16

102 Chapter 3. Border Bases

+ O

s2

(
n+ p+ 1

p+ 1

)
︸ ︷︷ ︸

5

+

(
n+ p

p+ 1

)2(n+ p+ 1

p+ 1

)
︸ ︷︷ ︸

6

+

(
n+ p

p+ 1

)(
n+ p+ 1

p+ 1

)
︸ ︷︷ ︸

7

+ 1︸︷︷︸
15

 ,

if we compute the whole kernel in each step. This measure changes to

O

p+1∑
d=1

s
(
n+ d− 1

d

)
︸ ︷︷ ︸

4

+ s

(
n+ d− 1

d

)(
n+ d− 1

d− 1

)
︸ ︷︷ ︸

5

+ 1︸︷︷︸
8

+

(
n+ d− 1

d

)
︸ ︷︷ ︸

9−14

+ O

 s︸︷︷︸
1

+ n︸︷︷︸
2

+

p∑
d=1

(
n+ d

d+ 1

)
︸ ︷︷ ︸

16

+ O

(n+ p

p+ 1

)2(n+ p+ 1

p+ 1

)
︸ ︷︷ ︸

6

+

(
n+ p

p+ 1

)(
n+ p+ 1

p+ 1

)
︸ ︷︷ ︸

7

+ 1︸︷︷︸
15

if we update the kernel. We can now observe that the dominating cost factor is always the
computation of the kernel of A inside the loop. All other factors can be ignored in the big O

notation. This means that the runtime of the algorithm is in

O

(
p∑
d=1

s

(
n+ d

d

)2

+ s2

(
n+ p+ 1

p+ 1

))

= O

(
p∑
d=1

s

(
n+ d

d

)2

+ s2

((
n+ p

p

)(
1 +

n

p

)))
(3.1)

or in

O

(
p+1∑
d=1

s

(
n+ d− 1

d

)2
)

(3.2)

respectively.

We can further simplify expression 3.1 using the inequalities s
(
n+d
d

)2 ≤ s2
(
n+d
d

)
for d ≤ p and

obtain

O

(
p∑
d=1

s2

(
n+ d

d

)
+ s3

(
1 +

n

p

))

= O

(
s2

(
n+ p+ 1

p

)
− s2 + s3

(
1 +

n

p

))
= O

(
s3

(
1 +

p

n+ 1

)
− s2 + s3

(
1 +

n

p

))
= O

(
s3

(
2 +

p

n+ 1
+
n

p

))
.

3.4. The Buchberger-Möller Algorithm for Border Bases 103

The only thing that remains to be done, is to derive a lower and upper bound for p . We know
that 1 ≤ p . Additionally, we know that

(n+p
n

)n ≤ s so n
√
sn−n ≥ p (which is only a very crude

bound). Thus we �nally obtain the runtime estimate

O

(
s3

(
2 +

p

n+ 1
+
n

p

))
= O

(
s3

(
2 +

n (n
√
s− 1)

n+ 1
+ n

))
.

Thus the dominating cost factor is s3

(
2 +

n(n
√
s−1)

n+1 + n

)
.

We will conclude our analysis by further investigating expression 3.2. We can use the inequality
s
(
n+d−1

d

)(
n+d−1
d−1

)
≤ s2

(
n+d−1

d

)
for d ≤ p+ 1 and obtain

O

(
p+1∑
d=1

s

(
n+ d− 1

d

)(
n+ d− 1

d− 1

))

= O

(
p∑
d=1

s2

(
n+ d− 1

d

)
+ s

(
n+ p

p

)(
n+ p

p+ 1

))

= O

(
s3 + s3n

p

)
= O

(
s3 (1 + n)

)
.

So the dominating cost factor here is O
(
s3
)
which shows that the algorithm is cubic in the

number of input points.

3.4.2 Implementation in ApCoCoA

The Buchberger-Möller algorithm for border bases was implemented by the author in the Ap-
CoCoA library ([20]). The updating techniques described in Remark 3.4.5 are, at the time of
writing, not implemented. The algorithm is built around the data types of the CoCoA lib-
rary ([19]) but uses a custom (but not optimised) implementation for the computation of the
kernel. Detailed usage instructions can be found in Appendix 8.1.

3.4.3 Basis Transformation

Given a �nite set of points X ⊂ Cn and a degree compatible term ordering σ , the Buchberger-
Möller algorithm returns the order ideal O = Oσ (I) and the O -border basis of I (X) . This
means that we can in�uence the computed O via the chosen term ordering σ . However, we
cannot directly control which elements will be contained in O . Because of special requirements
it is sometimes necessary to transform a given O -border basis G for an ideal of points I (X) into
a representation with respect to a di�erent order ideal Õ =

{
t̃1, ..., t̃µ

}
. We can use the fact that

we know the set X to our advantage, such that this task can be performed using only techniques
from linear algebra. First we need to make sure that |O| = |Õ| . The second requirement is that
the evaluation matrix A of X with respect to Õ is of full rank. Now let {b̃1, ..., b̃ν} = ∂Õ . Once
these conditions are satis�ed A is always invertible and it is possible to solve the linear system
Ax = evalX(b̃i) for all 1 ≤ i ≤ ν and to obtain in this way the coe�cients of the polynomials g̃i .

104 Chapter 3. Border Bases

Algorithm 19: Border Basis Transformation
Input: A set of points X = {p1, ..., pµ} , an O -border basis G for I (X) , and an order

ideal Õ with |Õ| = |O|
Output: An Õ -border basis of I (X) , if it exists

1 A := evalX(Õ) ;
2 if ker (A) 6= {0µ} then
3 return No Õ -border basis exists for I (X) ;
4 end

5 B := A−1 ;
6 {b̃1, ..., b̃ν} := ∂Õ ;
7 for i := 1 to ν do

8 g̃i := b̃i −B evalX(b̃i)
(
t̃1, ..., t̃µ

)tr ;
9 end

10 G̃ := {g̃1, ..., g̃ν} ;
11 return G̃ ;

Proposition 3.4.8. This is an algorithm which transforms an O -border basis G for an ideal of

points I (X) into an Õ -border basis G̃ , if it exists.

Proof. First of all O and Õ need to contain the same number of elements. This is already made
sure by the requirements we have imposed on the input of the algorithm. An Õ -border basis
for I (X) only exists, if the evaluation matrix A ∈ Matµ (K) of the order ideal Õ with respect
to X is of full rank which is checked in line 2 of the algorithm. Then it is possible to invert A and
to compute the coe�cients of the polynomials g̃i by letting g̃i = b̃1−A−1 evalX

(
b̃1

) (
t̃1, ..., t̃µ

)tr .
By construction the polynomials g̃i form a border prebasis. The polynomials also form a border
basis as otherwise new vanishing polynomials could be constructed with the help of the S-
polynomials of the neighbouring elements in ∂O , which only contain elements in Õ . However,
this is not possible as the kernel of A was trivial.

Remark 3.4.9. If K = Q [i] , the algorithm can be implemented with exact arithmetic for
instance in CoCoA. We have used such an implementation for the computations in the rational
recovery chapter (5).

Remark 3.4.10. In Algorithm 19 we have used the fact that we know X . Please note that
it is also possible to transform a given O -border basis G into a Õ -border basis if Õ supports
a border basis of 〈G〉 even if X is not known. An algorithm for this task is contained in [23,
Proposition 5]. However, if X is known, the algorithm given here should be used as it is more
e�cient.

Example 3.4.11. Let us start with the border basis which was computed in Example 3.4.3. For
the set of points X = {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)} together with the DegRevLex term

3.4. The Buchberger-Möller Algorithm for Border Bases 105

ordering we had obtained O =
{

1, x2, x1, x
2
2, x1x2

}
and G = {g1, ..., g4} with

g1 = x2
1 − x2

2 − x1 + x2,

g2 = x2
1x2 − x1x2 − 0.5x2

2 + 0.5x2,

g3 = x1x
2
2 − x1x2 − 0.5x2

2 + 0.5x2,

g4 = x3
2 − 1.5x2

2 + 0.5x2.

If we let Õ =
{

1, x2, x1, x1x2, x
2
1

}
and apply Algorithm 19 we obtain G̃ = {g̃1, ..., g̃4} with

g̃1 = x2
2 − x2

1 + x1 − x2,

g̃2 = x2
1x2 − x1x2 − 0.5x2

1 + 0.5x1,

g̃3 = x1x
2
2 − x1x2 − 0.5x2

1 + 0.5x1,

g̃4 = x3
1 − 1.5x2

1 + 0.5x1.

The result is not too surprising as the points in X have symmetric coordinates. This also explains
that no result can be obtained if we let Õ =

{
1, x2, x1, x

2
2, x

2
1

}
, as evalX(Õ) does not have full

rank.

107

4
The AVI/ABM Family of Algorithms

Contents

4.1 Approximate Border Bases . 108

4.2 The AVI Algorithm . 109

4.3 The ABM Algorithm . 115

4.4 Approximation by Polynomial Functions 134

4.5 The BB ABM Algorithm . 144

4.6 Practical Considerations and Extensions 151

4.7 Comparison with other Approaches . 155

In the following sections let X = [p1, ..., ps] with pi ∈ Kn be a (�nite) tuple of a�ne points and
let P = K [x1, ..., xn] be a polynomial ring in n indeterminates with K = R or K = C . By ‖·‖
we denote the Euclidean norm, unless stated otherwise.

The aim of the Approximate Vanishing Ideal (AVI) algorithm and the Approximate Buchberger-
Möller (ABM) algorithm, which we will present in this chapter, is to generalise the BM al-
gorithm (18) for border bases to allow for approximate relations among the coordinates of the
points in X . This is a practical requirement as we are dealing with noisy measurements and
in such an environment exact interpolation would not yield any physically meaningful results.
So the algorithms that we give in this chapter are concerned with the e�cient and numerically
stable computation of �approximate� border bases with respect to X .

We start with the de�nition of approximate border bases as a generalisation of exact border
bases. Then we introduce the concept of the approximate kernel of a matrix via its SVD and
explore some of its properties which are relevant for the AVI algorithm. After these preparations
we detail the AVI algorithm and afterwards some of its shortcomings. These are addressed
via di�erent �avours of the ABM algorithm in Sections 4.3, 4.4, and 4.5, which represent our
main contribution to the subject of approximate border bases. In order to be able to describe
the algorithms, we explain how the approximate kernel of a matrix and the solution of the
homogeneous least squares problem are related and how we can exploit this to speed up the
computations. Finally, we discuss the properties and di�erences of the algorithms and provide a
comprehensive runtime analysis.

108 Chapter 4. The AVI/ABM Family of Algorithms

In Section 4.7 we compare our approach to other state of the art algorithms. Via a couple of
example computations we mange to show that we can signi�cantly outperform the SOI and NBM
algorithms of Fassino et al. that were proposed in [34] and [35], while we obtain similar or even
better results for the same input data.

4.1 Approximate Border Bases

Similarly to [28] we introduce the following de�nitions:

De�nition 4.1.1. [ε-approximate vanishing]

Given ε ≥ 0 , a polynomial f ∈ P is said to be ε-approximately vanishing with respect to X
if the Euclidean norm of the image of its evaluation map (see De�nition 3.3.4) associated with X
is less than or equal to ε . We write

‖evalX (f)‖ ≤ ε.

Please note that, in contrast to [28], we also allow ε = 0 , which will make it possible to handle
the exact and the approximate case in one algorithm. All other de�nitions have been adapted
accordingly.

De�nition 4.1.2. [Unitary polynomial]

A polynomial f ∈ P is called unitary if the norm of its coe�cient vector equals one.

De�nition 4.1.3. [ε-approximate vanishing ideal]

Given ε ≥ 0 , an ideal J ⊆ P is called an ε-approximate vanishing ideal with respect to X
if there exists a system of unitary generators G of J such that each element of G vanishes
ε-approximately with respect to X .

In an algebraic sense, for ε > 0 , an ε-approximate vanishing ideal is in general the unit ideal.
This is one of the reasons why we try to construct proper ideals which are �close� to the approx-
imate ones in Chapter 5.

De�nition 4.1.4. [ε-approximate border basis]

Let O = {t1, ..., tµ} ⊆ Tn be an order ideal of terms, let ∂O = {b1, ..., bν} be its border, and let
G = {g1, ..., gν} be an O -border prebasis of the ideal I = 〈g1, ..., gν〉 in P . This means that gj
is of the form gj = bj −

∑µ
i=1 cijti with cij ∈ C . For every pair (i, j) such that bi and bj are

neighbours in ∂O we compute the normal remainder S
′
ij = NRO,G (Sij) of the S-polynomial

of gi and gj with respect to G. We say G is an ε-approximate O -border basis of the ideal I
if ‖S′ij‖ ≤ ε for all such pairs (i, j) , where ‖S′ij‖ is the Euclidean norm of the coe�cient vector
of S

′
ij . If the actual value of ε is of no particular interest we may omit it and refer to G as an

approximate O -border basis.

4.2. The AVI Algorithm 109

De�nition 4.1.5. Let A ∈ Matm,n (C) and ε ≥ 0 . Let A = UΣV ∗ be a SVD (compare
De�nition 2.5.31) of A and let s1, ..., smin(m,n) be the associated singular values. If ε < s1 we let
1 ≤ i ≤ min (m,n) be the index such that smax(1,i−1) > ε ≥ si otherwise we let i = 1 . We form
the matrix Ã = U Σ̃V ∗ by setting si = si+1 = ... = smin(m,n) = 0 in Σ . The vector subspace
ker(Ã) is called the ε-approximate kernel of A and denoted by apker (A, ε) .

Proposition 4.1.6. Let A ∈ Matm,n (C) , let A = UΣV ∗ be a SVD of A , let ε ≥ 0 and let i as

in De�nition 4.1.5. The last n− i+ 1 columns vi, ..., vn of the matrix V form an orthonormal

basis of apker (A, ε) . For all vk , with i ≤ k ≤ n , the inequality ‖Avk‖ ≤ ε holds.

Proof. See [6, Section 2.5.5].

4.2 The AVI Algorithm

In [28] Heldt et al. have proposed an algorithm for the computation of anApproximateVanishing
Ideal (AVI) for a �nite set of real points X . The algorithm di�ers from the Buchberger-Möller
algorithm for border bases (3.4) primarily in the aspect that polynomial relations among the
coordinates of the points are not found via the exact computation of the kernel of the evaluation
matrices but via the computation of the ε-approximate kernel. For this purpose the singular
value decomposition (compare De�nitions 2.5.31 and 4.1.5) of the evaluation matrices is used.
Another important ingredient is a numerically reasonably stable algorithm for the computation
of the reduced row echelon form of a matrix. This is the approximate analogue to line 6 in
Algorithm 18. It is necessary in both algorithms to ensure that each polynomial that is added to
the (approximate) border basis has a unique border term. We will �rst of all recall the algorithm
which computes the stabilised reduced row echelon form and then present the AVI algorithm.
Afterwards we will highlight its properties. The AVI algorithm can be easily generalised to K = C
but we will only give the version presented in [28] for K = R . Hence, let us assume in this section
without further notice that K = R .

The following algorithm is essentially a modi�ed version of QR decomposition via Gram-Schmidt
orthogonalisation. As pointed out in [28], its numerical stability could be further improved
if the modi�ed Gram-Schmidt algorithm, or Givens or Householder transformations would be
used instead of the numerically less favourable Gram-Schmidt orthogonalisation. The algorithm
computes a matrix R ∈ Matmin(m,n),n (R) which is �almost� in reduced row echelon form. I.e. it
di�ers from a standard reduced row echelon form in that the pivot elements of R are not one
and zero rows may appear in between. Please note, that Lemma 3.2 in [28] is inaccurate in that
respect as it states that R is in reduced row echelon form.

Additionally let us �x some notations. By cols (·) and rows (·) we denote the number of columns
and rows of a matrix (compare also Section 8.2), by ‖·‖ we denote the Euclidean norm, and
by 〈·, ·〉 we denote the standard scalar product.

110 Chapter 4. The AVI/ABM Family of Algorithms

Algorithm 20: Stabilised reduced row echelon form
Input: A matrix A ∈ Matm,n (R) , and τ > 0

Output: A matrix R ∈ Matmin(m,n),n (R) almost in reduced row echelon form

1 λ1 := ‖A1:m,1‖ ;
2 if λ1 < τ then

3 Q := (q1) := (0, ..., 0)tr ∈ Matm,1 (R) ; R := (0, ..., 0)tr ∈ Matmin(m,n),1 (R) ;
4 else

5 Q := (q1) := 1
λ1
A1:m,1 ∈ Matm,1 (R) ; R := (λ1, 0, ..., 0)tr ∈ Matmin(m,n),1 (R) ;

6 end

7 for i := 1 to n do

8 if cols (Q) ≤ m then

9 qi := A1:m,i −
∑cols(Q)

j=1 〈A1:m,i, qj〉 qj ; λi := ‖qi‖ ;
10 if λi < τ then

11 R :=
(
R,
(
〈A1:m,i, q1〉 , ...,

〈
A1:m,i, qcols(Q)

〉
, 0, ..., 0

)tr) ;
12 if n− i < m− cols (Q) then Q :=

(
Q, (0, ..., 0)tr) ;

13 else

14 Q :=
(
Q, 1

λi
qi

)
; R :=

(
R, λi (〈A1:m,i, q1〉 , ..., 〈A1:m,i, qi−1〉 , 1, 0, ..., 0)tr) ;

15 end

16 else R :=
(
R, (〈A1:m,i, q1〉 , ..., 〈A1:m,i, qm〉)tr) ;

17 end

18 Starting with the last row and working upwards, use the �rst non-zero entry of each row
of R to clean out the non-zero entries above it;

19 for i:=1 to min (m,n) do

20 %i := ‖Ri,1:n‖ ;
21 if %i < τ then Ri,1:n := (0, ..., 0) ;
22 else Ri,1:n := 1

%i
Ri,1:n ;

23 end

24 return R ;

For further details about the algorithm and some error bounds compare [28, Lemma 3.2].

Remark 4.2.1. The version given here di�ers in details from the one presented in [28]. It �xes a
few border cases, mostly concerned with the dimensions of the matrices, which were not treated
in the original version of the algorithm.

For the following algorithm let X = [p1, ..., ps] with pi ∈ [−1, 1]n ⊂ Rn be a (�nite) tuple of
real a�ne points, let P = R [x1, ..., xn] be the polynomial ring in n indeterminates over the real
numbers, and let evalX : P → Rs be the evaluation map associated with X .

4.2. The AVI Algorithm 111

Algorithm 21: AVI Algorithm

Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ [−1, 1]n ⊂ Rn , small numbers
ε > τ > 0 , and a degree compatible term ordering σ on Tn

Output: An approximate O -border basis G (see Theorem 4.2.2 for details)

1 d := 1 , O := [1] , G := [] , M := (1, ..., 1)tr ∈ Mats,1 (R) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 linDepInKer := false ;
5 A := (evalX (t1) , ..., evalX (t`) ,M) ;
6 B := appKer(A, ε) such that the rows of B form an orthonormal basis of the

approximate kernel of A ;
7 B

′
:= stableRREF(B, τ) via Algorithm 20 , with all zero rows removed;

// We assume that O =
[
o1, ..., olen(O)

]
8 while rows(B

′
) > 0 do

9 if linDepInKer then

10 G̃ := [g̃1, ..., g̃k]
tr = B

′ (
o1, ..., olen(O)

)tr ;
11 foreach gi ∈ G do

12 foreach g̃j ∈ G̃ do

13 Replace LTσ (g̃j) in gi by LTσ (g̃j)− g̃j ;
14 remove(O, tj) ; remove(M, eval (tj)) ;

15 end

16 end

17 else

18 G̃ := [g̃1, ..., g̃k]
tr = B

′ (
t1, ..., t`, o1, ..., olen(O)

)tr ;
19 end

20 G := concat(G, G̃tr) ;
21 for i := ` downto 1 do

22 if ti 6= LTσ (g̃1) and ... and ti 6= LTσ (g̃k) then

23 O := concat([ti] ,O) ; M := (eval (ti) ,M) ;
24 end

25 end

26 B := appKer(M, ε) such that the rows of B form an orthonormal basis of the
approximate kernel of M ;

27 B
′

:= stableRREF(B, τ) via Algorithm 20 , with all zero rows removed;
28 if rows(B

′
) > 0 then linDepInKer := true ;

29 end

30 d := d+ 1 ;
31 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

32 until L = [] ;
33 return (G,O) ;

112 Chapter 4. The AVI/ABM Family of Algorithms

Theorem 4.2.2. This is an algorithm which computes a pair (G,O) of sets, G = {g1, ..., gν}
and O = {t1, ..., tµ} . These have the following properties:

1. The set G consists of unitary polynomials which generate a δ -approximate vanishing ideal

of X , where δ = ε
√
ν + τν (µ+ ν)

√
s .

2. There is no unitary polynomial in 〈O〉R which vanishes ε-approximately on X .

3. If O is an order ideal of terms, then the set G̃ = {(1/LCσ (g)) g | g ∈ G} is an O -border
prebasis.

4. If O is an order ideal of terms, then the set G̃ is a η -approximate border basis for η =

2δ+ 2νδ2/γε+ 2νδ
√
s/ε. Here γ denotes the smallest absolute value of one of the border term

coe�cients of gi , which means that γ = min1≤i≤ν |LCσ (gi)| .

Proof. Proofs for all claims can be found in [28, Theorem 3.3].

Remark 4.2.3. Note that the version of the AVI algorithm given here di�ers slightly from the
one presented in [28]. The additional steps from line 9 to 16 are necessary to make sure that for
all polynomials gi in G it is guaranteed that |supp (gi) ∩ ∂O| = 1 , which means that each gi

must only contain one border term of O . The condition could be violated in the original version,
because whenever in line 28 the condition is detected that the ε-approximate kernel of M is not
empty, we will get some new polynomials which have border terms which were already in the
set O . That is the reason why G , O , and M have to be updated.

Remark 4.2.4. A subtle di�erence between the Buchberger-Möller algorithm for border bases
and the AVI algorithm and all following versions is that in the exact case we require the input
to be a set of input points where as in the approximate case we do not require the input to be
duplicate free. The reasoning is simple: In case we compute the exact kernel of a matrix adding
an exactly identical row will not alter the kernel. Thus it makes sense to assume that we are
dealing with a set of points to avoid unnecessary computational steps which have no in�uence on
the result. The situation is, however, di�erent when we are computing the approximate kernel
of a matrix. The repeated occurrence of a point does in�uence the result as we will see in
Example 4.3.9, where we will also elaborate on the practical consequences.

The order of the points inside X does not play a role, so any permutation will produce the same
result.

4.2.1 Runtime analysis of the AVI algorithm

As the BM algorithm for border bases (18) and the AVI algorithm share the same basic struc-
ture, similar costs for most steps arise, compare Subsection 3.4.1. The main di�erences are the
computation of a SVD in lines 6 and 26 versus the computation of the kernel and the compu-
tation of a stabilised RREF (see Algorithm 20) in lines 7 and 27 versus the computation of the
usual RREF.

To keep our analysis simple and comparable to Algorithm 18 we choose ε and τ such that they
are close to εmachine , which means that except for rounding errors and some subtle di�erences

4.2. The AVI Algorithm 113

the AVI algorithm will degenerate to the BM algorithm for border bases. For larger values of ε
and τ an improved runtime can be expected, because O and G will contain less elements and
thus less iterations are needed. The cost measures for the computation of a SVD have been
taken from Golub and van Loan (see [6, Section 5.4.5]). According to them the cost of a state
of the art implementation is roughly in O

(
4mn2 + 8n3

)
if only V and Σ are computed. Please

note that we do not need the matrix U for our purposes, which saves us a signi�cant amount of
time. If U, V , and

∑
are computed the cost is in O

(
4m2n+ 8mn2 + 9n3

)
. If we recall from

Proposition 2.4.4 that the cost for computing the kernel of a matrix via Gauss-Jordan elimination
is essentially in O

(
min (m,n)2 max (m,n)

)
, then we can conclude that the computation of a

SVD is roughly 4 times as expensive. However, they share the same asymptotic complexity.

Now we will investigate the stabilised RREF more closely. Without going into too much detail
we note that the core of the stabilised RREF is the computation of a somewhat modi�ed Gram-
Schmidt QR decomposition of the input matrix. The result is an upper triangular matrix which
needs to be transformed into RREF. According to [5, Theorem 8.1] the cost is in O

(
2mn2

)
for

computing the QR decomposition via Gram-Schmidt orthogonalisation. The cost to transform an
upper triangular matrix into RREF is in O

(
1
6n

3
)
if m ≥ n and in O

(
1
2m

2n− 1
3m

3
)

= O
(

1
2m

2n
)

otherwise (compare 2.4.1). So we conclude that the dominating cost factor in the stabilised RREF
calculation is 2mn2 for arbitrary values of m and n . The cost for computing a traditional RREF
is in O

(
min (m,n)2 max (m,n)

)
according to Proposition 2.4.5. In case m ≥ n we see that the

computation of the stabilised RREF is roughly 2 times as expensive as the computation of the
common RREF. When m < n , the computation of the stabilised RREF is O

(
4 n
m

)
times more

expensive. As we have assumed that ε and τ are close to εmachine the stabilised RREF only has
to be computed in the very last round because the (approximate) kernel is empty in all previous
steps.

This means that the dominating cost factor in the AVI algorithm is the computation of the
approximate kernel. As the runtime for the computation of the former and the exact kernel only
di�ers by a constant factor, the conclusions which we drew in Subsection 3.4.1 for the case that
the kernel was recomputed and not updated stay intact. This means that the runtime of the

algorithm in total can be bounded by O

(
s3

(
2 +

n(n
√
s−1)

n+1 + n

))
, where s is the number of

input points and n the number of indeterminates of the polynomial ring.

Remark 4.2.5. The runtime of the AVI algorithm can be improved if initially in lines 6 and 26
only the singular values Σ are computed. According to [6, Subsection 5.4.5] the cost is then
approximately in O

(
4mn2 − 4

3n
3
)
. Only for the singular values which are smaller than ε we

compute the corresponding singular vectors in V via inverse iteration (compare Algorithm 10).
This will cost us O

(
n2
)
operations per vector.

4.2.2 Shortcomings of the AVI algorithm

Because the AVI algorithm processes all terms of degree d at a time and because we need to
make sure that all polynomials in G have border prebasis shape (e.g. each gi has to be of the
form gi = bi+hi where bi ∈ ∂O and supp (hi) ⊆ O), it is necessary in lines 7 and 27 to compute

114 Chapter 4. The AVI/ABM Family of Algorithms

a (stabilised) RREF of the singular vectors stored in matrix B , which were computed in lines 6
and 26 of the algorithm. This has several consequences:

• As linear combinations of the original singular vectors are taken into account, the coe�-
cients of the resulting border polynomials are no longer optimal in the total least squares
sense. If necessary it is possible to compute the optimal coe�cients for each polynomial
gj ∈ G by computing the evaluation matrix A for the terms in the support of gj with
respect to X . Then, for instance, the technique described in Section 2.13 can be used to
obtain the optimal coe�cients. However, this additional step is costly and should only be
used if it is crucial that all polynomials in G have the best possible �t with respect to
their support. In the implementation in the ApCoCoA library ([20]) this is an optional
post-processing step.

• Another consequence of computing degree by degree is that in line 23 terms may slip into
the order ideal, which would violate claim 2. This can happen because the stabilised RREF
works from right to left and will check for (almost) linear dependence among the newly
introduced columns �rst. However, it is not checked if there is an almost linear relation
between the newly introduced columns and the already existing ones which belong to terms
in the order ideal. That is why lines 26 to 28 are necessary in the algorithm to check if
additional relations are present. In case such relations were detected the already existing
polynomials are rewritten in lines 10 to 16, which again introduces an additional error.

• Given a constant κ > 0 , there is no easy way to compute a set of polynomials which vanishes
κ-approximately on X with the AVI algorithm because there is only a soft connection
between the input parameter ε and the actual δ -approximate vanishing of the polynomials
(compare Theorem 21 claim 1).

• There is only a weak control over the coe�cients of the border terms. It is guaranteed that
no coe�cient has an absolute value of less than τ . However, in practice τ cannot be chosen
a lot greater than 0.001 without loosing too much precision in the computation. If the
polynomials shall be used as input for other algorithms which make use of the approximate
border basis properties the distance to an exact border basis η (compare Theorem 4.2.2
claim 4) may become unacceptably large. Please note that this is not the average case
behaviour and usually τ is considerably smaller than the worst case estimate.

• In some rare situations the set O may not be an order ideal of terms, meaning that for one
term not all divisors are included in the set. If in a subsequent computation it is imperative
that the output of the AVI algorithm is a proper approximate border basis, this can be
cured by checking during the computation if the order ideal property is satis�ed. If not
the responsible polynomial will be added into the set G . Of course, this will weaken the
bounds concerning δ and η . For further details please see Subsection 4.3.4.

4.2.3 Implementation in ApCoCoA

The computation of the stable RREF and the AVI algorithm were implemented by Daniel Heldt
and the author in the ApCoCoA library ([20]). The implementation is built around the LAPACK

4.3. The ABM Algorithm 115

software library [17], which provides a state of the art implementation for computing a SVD of a
matrix. Additionally, the BLAS software interface was used for operations like matrix-vector and
matrix-matrix multiplications to allow for machine dependent optimisations by simply linking to
an optimised implementation which makes use of the target computer architecture or additional
equipment like graphics cards (e.g. CUDA or OpenCL). A detailed description of the parameters
of the ApCoCoA implementation of the AVI algorithm can be found in Appendix 8.1.

4.3 The ABM Algorithm

The Approximate Buchberger-Möller (ABM) algorithm is again a variant of the Buchberger-
Möller (BM) algorithm (4.5) for border bases. Therefore, it shares the same basic structure with
the AVI algorithm (21). However, there are a few major points which di�erentiate AVI and ABM
and which contribute to the di�erent properties of the ABM algorithm. First of all, the terms
are no longer processed degree by degree but one by one. If the approximate kernel would in
this case be computed by a standard SVD computation, this would result in a major slowdown.
That is why the conventional SVD computation is replaced by a sequence of computations which
allows us to update the SVD iteratively. In fact this optimisation leads to a major speed up of
the algorithm. One additional bene�t of computing term by term is that it is no longer necessary
to compute a stabilised RREF (compare Algorithm 20) of the vectors in the approximate kernel.
This saves both time and additionally eliminates some of the obstacles which are associated with
the computation of such a stabilised RREF (see Subsection 4.2.2).

We start by presenting the main algorithm followed by proving its most important properties.
After we have had a look at an example computation, we further analyse the runtime of the
ABM algorithm and describe some updating techniques that can be used to speed up the consec-
utive computations of the SVD. Additionally, we also point out some shortcomings of the ABM
algorithm and propose further modi�cations of the algorithm in Subsections 4.3.3 and 4.3.4 to
work around those issues. Finally, we give some details about the C++ implementation of the
algorithm in the ApCoCoA library ([20]).

116 Chapter 4. The AVI/ABM Family of Algorithms

Algorithm 22: ABM Algorithm
Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ Cn , a small number ε ≥ 0 , and

a degree compatible term ordering σ on Tn

Output: An approximate O -border basis G (see Theorem 4.3.1 for details)

1 d := 1 , O := [1] , G := [] , M := (1, ..., 1)tr ∈ Mats,1 (C) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 for i := 1 to ` do

5 A := (evalX (ti) ,M) ;
6 B := A∗A ;
7 γ := smallest eigenvalue of B ;
8 if

√
γ ≤ ε then

9 m := |O| ;
10 s := (sm+1, sm, ..., s1) := the norm one eigenvector of B w.r.t. to γ ;

// We assume that O = [om, ..., o1]

11 g := sm+1ti + smom + ...+ s1o1 ;
12 G := concat(G, [g]) ;

13 else

14 O := concat([ti] ,O) ;
15 M := A ;

16 end

17 end

18 d := d+ 1 ;
19 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

20 until L = [] ;
21 return (G,O) ;

Theorem 4.3.1. This is an algorithm which computes two sets G = {g1, ..., gν} and O =

{t1, ..., tµ} which have the following properties:

1. All the polynomials in G are unitary and generate an ε-approximate vanishing ideal of X .

2. There is no unitary polynomial in 〈O〉C which vanishes ε-approximately on X .

3. If O is an order ideal of terms, then the set G̃ = {(1/LCσ (g)) g| g ∈ G} is an O -border
prebasis.

4. If O is an order ideal of terms, then the set G̃ is an δ -approximate border basis with δ =

2 ‖X‖max/ mini |γi|+ ν/ (mini |γi|)2 . Here ‖X‖max denotes the maximal absolute coordinate

in X and mini |γi| the minimal border coe�cient of all polynomials in G .

5. If ε = 0, then the algorithm produces the same results as the Buchberger-Möller algorithm

for border bases (18).

Proof. First of all, we show that all steps of the algorithm are well de�ned. By Theorem 2.13.6
we know that in lines 6,7 and 10 we are actually computing a solution of the homogeneous

4.3. The ABM Algorithm 117

least squares problem minx ‖Ax‖ subject to ‖x‖ = 1 . Line 8 makes sure that ‖Ax‖ ≤ ε can
be satis�ed. However, we still need to show that the eigenvector which is computed in line 10
is uniquely determined. This is true because M∗M and A∗A are Hermitian matrices (see
Proposition 2.3.24). We know by Proposition 2.9.23 that the eigenvalues of those two matrices
interlace and by Proposition 2.13.5 that they only have non-negative eigenvalues. Let λ̃m be the
smallest eigenvalue of the matrix M∗M ∈ Matm (C) and let λm ≥ λm+1 be the two smallest
eigenvalues of A∗A ∈ Matm+1 (C) . We know by construction that

√
λ̃m > ε . If we reach line 10

of the algorithm this means additionally that
√
λm+1 ≤ ε . So by

√
λm ≥

√
λ̃m ≥

√
λm+1

we may conclude that
√
λm > ε . This means that in our setting it cannot happen that the

homogeneous least squares problem has more than one solution.

Next, we prove �niteness. Essentially the same arguments apply as in the case of the BM
algorithm for border bases. The only di�erence is that we proceed term by term. The border
of O in degree d can only contain elements if new elements are added to O in line 14. However,
this can only happen �nitely many times as when the number of columns of A is greater than
the number of rows, then the (approximate) kernel cannot be trivial and no new elements will
be added to O .

Next we show 1. All polynomials are unitary because they are constructed to be norm one
eigenvectors in line 10. They vanish ε-approximately on X because we are using the algorithmic
steps given in Algorithm 16 and described in Theorem 2.13.6.

To prove 2 it su�ces to point out that, if such a relation existed, it would be found because of
Theorem 2.13.6. Then in line 8 the condition

√
γ ≤ ε would be satis�ed and the corresponding

term would not go into the order ideal in line 14.

Now we move on to prove 3. Again, by construction all polynomials gi in G̃ are of the form
ti −

∑|O|
i=1 cioi , where ci ∈ C and oi ∈ O . By how L is constructed we know that the ti are all

distinct and that they are exactly the elements in ∂O . So if the set O formed an order ideal of
terms, G̃ will be an O -border prebasis.

It remains to be shown that G̃ forms a δ -approximate border basis where

δ = 2 ‖X‖max/ min
i
|γi|+ ν/

(
min
i
|γi|
)2

,

if the set O is an order ideal. We know that every gi ∈ G is of the form gi = γibi + hi with
γi ∈ C\ {0} and |γi| ∈]0, 1] , bi ∈ ∂O , and supp (hi) ⊆ O . Then we let g̃i = bi+hi/γi = bi+ h̃i .
Thus the polynomials g̃i will vanish ε/|γi|-approximately on X . Additionally, for every coe�cient
cij ∈ C\ {0} of the monomials in h̃i the inequality |cij | ≤ 1/ |γi| holds, as the coe�cients
of gi were those of a unitary polynomial. Let us denote by c ∈ Cς the coe�cient vector of an
arbitrary polynomial g with supp (g) ⊆ O , and ς = |O| ≤ s . We know that evalX (g) = Mctr

where M ∈ Mats,µ (C) is the evaluation matrix of the elements in the order ideal O with
respect to X . This allows us to derive a relation between the coe�cient vector c and the
evaluation of the polynomial g . As M is guaranteed to have full rank µ , we further conclude that
M+ evalX (g) = M+Mctr = ctr , where M+ is the pseudoinverse of M (compare De�nition 2.6.1
and Proposition 2.6.5). Note, that if evalX (g) = 0s , then c has to be equal to the zero vector as

118 Chapter 4. The AVI/ABM Family of Algorithms

well because M has full rank. Now we can bound the euclidean norm of the coe�cient vector
by using

‖c‖ =
∥∥M+ evalX (g)

∥∥ ≤ ∥∥M+
∥∥ ‖evalX (g)‖ .

Let UΣV ∗ be the singular value decomposition of M . Then the pseudoinverse of M can be
computed as M+ = V Σ+U∗ (see Proposition 2.6.2), where Σ+ is Σ with all diagonal elements
inverted. Now we can conclude that∥∥M+

∥∥ =
∥∥V Σ+U∗

∥∥ =
∥∥Σ+

∥∥ =
1

σς
=

1

σmin
.

Additionally, we can bound the smallest singular value σς of M by ε which follows from claim 2.
So ‖M+‖ < 1

ε . Thus we arrive at ‖c‖ <
1
ε ‖eval (gi)‖ . This means that once we can bound the

evaluation of gi , we are done.

We will �rst look at the across-the-street neighbours. Let Sij = xkg̃i − xlg̃j and S
′
ij =

NRO,G̃ (Sij) = xkg̃i − xlg̃j −
∑

ν cν g̃ν where the cν are some coe�cients of the polynomials h̃i .
Note that supp(S

′
ij) ⊆ O . In case ε = 0 we know that evalX(S

′
ij) = 0s . As the matrix M has

only a trivial kernel we observe that S
′
ij = 0 . So let us assume that ε > 0 . Now we know that

|cv| ≤ 1/mini |γi| , where mini |γi| is the minimal absolute value of all coe�cients of all border
terms in G . We conclude that∥∥∥S′ij∥∥∥ ≤

∥∥M+
∥∥∥∥∥evalX

(
S
′
ij

)∥∥∥ < 1

ε

∥∥∥evalX

(
S
′
ij

)∥∥∥
≤ 1

ε

(
‖evalX (xkg̃i)‖+ ‖evalX (xlg̃j)‖+

∥∥∥∥∥evalX

(∑
ν

cν g̃ν

)∥∥∥∥∥
)

≤ 1

ε

(
‖‖X‖max evalX (g̃i)‖+ ‖‖X‖max evalX (g̃j)‖+

∥∥∥∥∥evalX

(∑
ν

cν g̃ν

)∥∥∥∥∥
)

≤ 1

ε

(
2 ‖X‖max ε/ min

i
|γi|+

1

mini |γi|
∑
ν

evalX (g̃ν)

)
≤ 2 ‖X‖max/ min

i
|γi|+

ν

mini |γi|2
.

Here ‖X‖max = maxi,j |pi,j | denotes the maximal absolute value of all coordinates of all points
in X .

Finally, we analyse the next-door neighbours. The error bound is derived analogously to the case
of the across-the-street neighbours as Sij = g̃i−xkg̃j and S

′
ij = NRO,G̃ (Sij) = g̃i−xkg̃j−

∑
ν cν g̃ν

where the cν are again some coe�cients of the polynomials h̃i . In the case ε = 0 we know that
evalX

(
S
′
ij

)
= 0s . As the matrix M has only a trivial kernel we observe that S

′
ij = 0 . This

means that if we let ε = 0 in the algorithm we obtain an exact border basis as both the normal
remainder of the S -polynomials of the across-the-street and the next-door neighbours is 0, see

4.3. The ABM Algorithm 119

Theorem 3.1.15. Let us now assume that ε > 0 . We compute∥∥∥S′ij∥∥∥ ≤
∥∥M+

∥∥∥∥∥evalX

(
S
′
ij

)∥∥∥ < 1

ε

∥∥∥evalX

(
S
′
ij

)∥∥∥
≤ 1

ε

(
‖evalX (g̃i)‖+ ‖‖X‖max evalX (g̃j)‖+

∥∥∥∥∥evalX

(∑
ν

cν g̃ν

)∥∥∥∥∥
)

≤ ...

≤ 1/ min
i
|γi|+ ‖X‖max/ min

i
|γi|+

ν

(mini |γi|)2 .

Remark 4.3.2. The result of the algorithm is strongly in�uenced by the value of the para-
meter ε . A reasonable choice depends on to the amount of noise which is present in the physical
measurements X . For practical purposes it is possible to mostly automate the process of �nding
a suitable ε value, by taking into account certain domain speci�c feasibility and optimisation
criteria. We will describe this procedure in more detail in Section 6.1.

Remark 4.3.3. It is important to note that the parameter δ in claim 4 of Theorem 4.3.1 is
in fact independent of the actual choice of ε . To illustrate this, consider the scenario that the
matrix B in line 6 of Algorithm 22 has a smallest eigenvalue γ such that

√
γ = ε + ∆ with

∆ ∈ R+ . This means that no new element will be added to the list G and ti will be added
to O . Furthermore, let us assume that in the next iteration of the for-loop, we will obtain a
matrix B̃ with smallest eigenvalue γ̃ such that

√
γ̃ = ε . Consequently, a new polynomial g with

border coe�cient sm+1 will be formed and added to G in line 12. If we now let lim ∆→ 0 the
coe�cient sm+1 will also tend to zero. This however means that the border coe�cient with the
minimal absolute value mini |γi| in the parameter δ can be arbitrarily close to 0 and does not
depend on ε . In Chapter 7 we sketch a variant of the ABM algorithm that does not su�er from
this problem.

Remark 4.3.4. If we are facing the situation as described in Remark 4.3.3, then a small per-
turbation of the input parameter ε will most of the time remedy the problem as then either
the original matrix B will have the property that

√
γ ≤ ε or both

√
γ and

√
γ̃ will be greater

than ε .

As a next step we analyse the accuracy of Algorithm 22.

De�nition 4.3.5. Let X and X̃ be two (ordered) tuples of s a�ne points in Cn . If we write,
by a slight abuse of notation, X and X̃ in matrix form such that X, X̃ ∈ Mats,n (C) , then we say
that X̃ is a τ -perturbation of X if ‖X− X̃‖2 = τ .

Remark 4.3.6. Let X and X̃ be two tuples of s a�ne points in Cn such that X̃ is a τ -
perturbation of X , with τ ∈ R+ . We now apply Algorithm 22 for a �xed ε ∈ R+ to both X
and X̃ . Please note that even if τ is very small (e.g. in the magnitude of rounding errors) the
check in line 8 of the algorithm may return di�erent results for X and X̃ . If that is the case, the
sets O and Õ will di�er and the results are no longer directly comparable. We therefore need
the additional assumption that O and Õ are identical for both X and X̃ in order to be able to
say something about the accuracy of the computed result (compare Subsection 2.7.2).

120 Chapter 4. The AVI/ABM Family of Algorithms

Theorem 4.3.7 (Accuracy of Algorithm 22). Let X be a tuple of s a�ne points in Cn and

let ε ∈ R+ . Furthermore, let us denote by G and O the theoretically exact results computed

by the ABM algorithm and let us denote by G̃ and Õ the results computed by a �oating point

implementation of the algorithm. Furthermore, let us assume that O = {t1, ..., tµ} = Õ (see

Remark 4.3.6), such that G = {g1, ..., gν} and G̃ = {g̃1, ..., g̃ν} have the same structure. Addi-

tionally, we denote the coe�cient vector of gi by ci and the coe�cient vector of g̃i by c̃i for each

1 ≤ i ≤ ν and we let Ãi = evalX (supp (g̃i)) ∈ Mats,k , with k ∈ {1, ..., µ+ 1} , be the �oating

point evaluation matrix of the terms in the support of g̃i with respect to X .

Let θi be the angle between the coe�cient vectors ci and c̃i , i.e. cos (θi) ‖ci‖ ‖c̃i‖ = cos (θi) =

|〈ci, c̃i〉|. If gapk

(
Ã∗Ã

)
6= 0 (see De�nition 2.9.20) and if the used computer satis�es Assump-

tion 2.7.5, the following error estimate holds:

1

2
sin (θi) ∈ O

εmachine
∥∥∥Ãi∥∥∥2

2

gapk

(
Ãi
∗
Ãi

)
 .

Proof. First of all we let Ai = evalX (supp (g̃i)) be the exact result of evaluating the elements
in the support of g̃i on X and we let Ãi (as de�ned above) be the �oating point counterpart.
Then we can de�ne Ei = Ai− Ãi ∈ Mats,µ (C) as the error matrix. Please note that because we
assume that the used computer has backward stable implementations of the basic �oating point
operations we can conclude that ‖Ei‖2‖Ai‖2

∈ O (εmachine) . This means that we can directly apply
Theorem 2.13.8, because the homogeneous least squares problem in Algorithm 22 is solved via
Algorithm 16.

We will now illustrate the workings of the algorithm on a small example in which the parameter ε
is chosen in such a way that the order ideal contains four elements after the algorithm terminates.

Example 4.3.8. Let P = R [x1, x2] , X = [(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)] , and ε = 0.2 be
given and let σ be the DegRevLex term ordering.

• d = 1 ,O = [1] , G = [] , M = (1, ..., 1)tr and L = [x1, x2]

• A =

0 1

0 1

1 1

1 1

0.5 1

 , solve minx ‖Ax‖ with ‖x‖ = 1 , A∗A =

(
2.25 2.5

2.5 5

)
,

√
e ≈ 0.878 , O = [x2, 1]

• A =

0 0 1

1 0 1

0 1 1

1 1 1

0.5 0.5 1

 , A∗A =

 2.25 1.25 2.5

1.25 2.25 2.5

2.5 2.5 5

 ,
√
e ≈ 0.796 ,O = [x2, x1, 1]

• d = 2 , ∂O =
{
x2

1, x1x2, x
2
2

}
, and L =

[
x2

1, x1x2, x
2
2

]

4.3. The ABM Algorithm 121

• A =

0 0 0 1

0 1 0 1

1 0 1 1

1 1 1 1

0.25 0.5 0.5 1

 , A∗A =

2.0625 1.125 2.125 2.25

1.125 2.25 1.25 2.5

2.125 1.25 2.25 2.5

2.25 2.5 2.5 5

 ,

√
e ≈ 0.154 , s ≈ (−0.697, 0, 0.715,−0.044)

• (−0.697, 0, 0.715,−0.044)
(
x2

1, x2, x1, 1
)tr

= −0.697x2
1 + 0.715x1 − 0.044 = g1 ,

G = [g1] , O = [x2, x1, 1]

• A =

0 0 0 1

0 1 0 1

0 0 1 1

1 1 1 1

0.25 0.5 0.5 1

 , A∗A =

1.0625 1.125 1.125 1.25

1.125 2.25 1.25 2.5

1.125 1.25 2.25 2.5

1.25 2.5 2.5 5

 ,

√
e ≈ 0.380 , O = [x1x2, x2, x1, 1]

• A =

0 0 0 0 1

1 0 1 0 1

0 0 0 1 1

1 1 1 1 1

0.25 0.25 0.5 0.5 1

 , A∗A =

2.0625 1.0625 2.125 1.125 2.25

1.0625 1.0625 1.125 1.125 1.25

2.125 1.125 2.25 1.25 2.5

1.125 1.125 1.25 2.25 2.5

2.25 1.25 2.5 2.5 5

 ,

√
e ≈ 0.154 , s ≈ (0.685, 0.041,−0.724,−0.021, 0.054)

• (0.685, 0.041,−0.724,−0.021, 0.054)
(
x2

2, x1x2, x2, x1, 1
)tr

= 0.685x2
2+0.041x1x2−0.724x2−

0.021x1 + 0.054 = g2 , G = [g1, g2] , O = [x1x2, x2, x1, 1]

• d = 3 , ∂O =
{
x2

1x2, x1x
2
2, x

2
1, x

2
2

}
, and L =

[
x2

1x2, x1x
2
2

]

• A =

0 0 0 0 1

0 0 1 0 1

0 0 0 1 1

1 1 1 1 1

0.125 0.25 0.5 0.5 1

 ,

A∗A =

1.015625 1.03125 1.0625 1.0625 1.125

1.03125 1.0625 1.125 1.125 1.25

1.0625 1.125 2.25 1.25 2.5

1.0625 1.125 1.25 2.25 2.5

1.125 1.25 2.5 2.5 5

 ,
√
e = 0.077 ,

s ≈ (−0.698, 0.715,−0.008,−0.008,−0.013)

• (−0.698, 0.715,−0.008,−0.008,−0.013)
(
x2

1x2, x1x2, x2, x1, 1
)tr

=

−0.698x2
1x2 + 0.715x1x2 − 0.008x2 − 0.008x1 − 0.013 = g3 ,

G = [g1, g2, g3] , O = [x1x2, x2, x1, 1]

122 Chapter 4. The AVI/ABM Family of Algorithms

• A =

0 0 0 0 1

0 0 1 0 1

0 0 0 1 1

1 1 1 1 1

0.125 0.25 0.5 0.5 1

 ,

A∗A =

1.015625 1.03125 1.0625 1.0625 1.125

1.03125 1.0625 1.125 1.125 1.25

1.0625 1.125 2.25 1.25 2.5

1.0625 1.125 1.25 2.25 2.5

1.125 1.25 2.5 2.5 5

 ,
√
e = 0.077 ,

s ≈ (−0.698, 0.715,−0.008,−0.008,−0.013)

• (−0.698, 0.715,−0.008,−0.008,−0.013)
(
x1x

2
2, x1x2, x2, x1, 1

)tr
=

−0.698x1x
2
2 + 0.715x1x2 − 0.008x2 − 0.008x1 − 0.013 = g4 , G = [g1, g2, g3, g4] ,

O = [x1x2, x2, x1, 1]

• d = 4 , ∂O =
{
x2

1x2, x1x
2
2, x

2
1, x

2
2

}
, and L = ∅

• G = {g1, g2, g3, g4} , O = [x1x2, x2, x1, 1]

We observe that ‖evalX (g1)‖ = 0.156 , ‖evalX (g2)‖ = 0.155 , ‖evalX (g3)‖ = 0.078, and
‖evalX (g4)‖ = 0.078 , which is in line with claim 1 of Theorem 4.3.1. As a rule of thumb
the polynomials gi which are constructed at a later stage of the computation process vanish
better than those obtained earlier in the process. Finally, we compute the normal remainder of
the S-polynomials of (g1, g3) , (g2, g4) , and (g3, g4) whose border terms are neighbours in O :∥∥∥NRO,G̃ (S13)

∥∥∥ ≈
∥∥x2

1x2 − 1.0258x1x2 + 0.0631x2

−
(
x2

1x2 − 1.0244x1x2 + 0.0115x2 + 0.0115x1 + 0.0186
)∥∥

≈ ‖−0.0014x1x2 + 0.0516x2 − 0.0115x1 − 0.0186‖ ≈ 0.056,∥∥∥NRO,G̃ (S24)
∥∥∥ ≈ ... ≈ 0.050,∥∥∥NRO,G̃ (S34)
∥∥∥ ≈ ... ≈ 0.044.

So, G̃ is a 0.056-approximate O -border basis.

Additionally, we have a look at an example that demonstrates the e�ect of multiple (almost)
identical points, which will give us an idea why the algorithm is relatively robust against outliers
in the measured input data.

Example 4.3.9. Let P = R [x1, x2] , X1 = [(0, 1) , (0.9, 2.1) , (2, 3)] , and let σ be the DegRevLex
term ordering. If we apply the Buchberger-Möller algorithm for border bases (18) we obtain
O = {1, x1, x2} and G = {g1, g2, g3} with

g1 = x2
1 − 6.95x1 + 4.95x2 − 4.95,

g2 = x1x2 − 7.05x1 + 4.05x2 − 4.05,

g3 = x2
2 − 4.95x1 + 0.95x2 − 1.95.

4.3. The ABM Algorithm 123

Now duplicating the �rst point such that X2 = [(0, 1) , (0, 1) , (0.9, 2.1) , (2, 3)] does not alter the
result, as one would expect. However, if we run the ABM algorithm with ε = 0.2 on X1 we
obtain the sets O = {1, x2} and G = {g1, g2, g3} with

g1 = x1 − 1.006x2 + 1.083,

g2 = x2
2 − 4.094x2 + 3.548,

g3 = x1x2 − 3.264x2 + 4.082.

If we run the algorithm again with ε = 0.2 and input data X2 we obtain the sets O = {1, x2}
and G = {g1, g2, g3} with

g1 = x1 − 0.986x2 + 1.028,

g2 = x2
2 − 3.977x2 + 3.228,

g3 = x1x2 − 3.066x2 + 3.531.

We can observe that the coe�cients of the equations have slightly changed. The reason is that
during one run of Algorithm 22 several homogeneous least squares problem are solved. As the
point (0, 1) shows up twice the coe�cients of the polynomials change to minimise the total
residual error. In a real world situation we would expect that points which are representative
of a physical system show up more often than outliers. As the total residual is minimised,
the algorithm is quite robust with respect to measurement noise and outliers. Figure 4.1 also
illustrates that the duplication of point A moves the zero set of all polynomials in the direction
of A .

4.3.1 Runtime Complexity of the ABM Algorithm

In this subsection we analyse the runtime complexity of the ABM algorithm more closely. Just
like in the case of the Buchberger-Möller algorithm for border bases 3.4, a signi�cant amount
of time can be saved if the matrix decomposition which reveals the approximate kernel of the
matrix in question is updated in each step (compare Remark 3.4.5). We �rst discuss how this
updating process can be performed and afterwards detail the runtime of the ABM algorithm.

Remark 4.3.10. [E�ciently Updating the SVD]

Let A ∈ Matm,n (C) and let Ã ∈ Matm,n+1 (C) be the matrix which we obtain by prepending
an additional column c to A as a new �rst column. A signi�cant speed up can be achieved by
updating Ã∗Ã and its eigendecomposition instead of completely recomputing it.

Let us �rst consider the computation of the matrix-matrix product Ã∗Ã . Assuming that we
have computed the matrix product A∗A in a previous step, we only have to add one row and
one column, which are in fact complex conjugates of each other, as Ã∗Ã is Hermitian (com-
pare Proposition 2.3.24), to this result. So the cost per update is in O (m (n+ 1)) which is a
distinct improvement over O(1

2mn
2) (if no advanced techniques like the Schönhage-Strassen or

Coppersmith-Winograd algorithm are used for the matrix multiplication, see [8, Section 28.2]).

124 Chapter 4. The AVI/ABM Family of Algorithms

Figure 4.1: The e�ect of several identical input points on the output of the ABM algorithm.

This process can be visualised in the following way:

× × × × ×
× × × × ×
× × × × ×
× × × × ×

A∗

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

A

=

× × × ×
× × × ×
× × × ×
× × × ×

A∗A

c̄1 c̄2 · · · c̄m−1 c̄m

× × × × ×
× × × × ×
× × × × ×
× × × × ×

Ã∗

c1 × × × ×
c2 × × × ×
... × × × ×

cm−1 × × × ×
cm × × × ×

Ã

=

r1 r2 · · · rn+1

r̄2

... A∗A

r̄n+1

 .
Ã∗Ã

In real world examples, especially in the context of the oil industry in which the ABM algorithm
has been successfully applied, we may assume that m � n , which means that the number of
input points by far exceeds the number of elements in the order ideal O . This means that the

4.3. The ABM Algorithm 125

most signi�cant cost factor is the matrix-matrix multiplication. As the size of the order ideal
usually does not exceed 50 elements, the cost for computing the eigendecomposition of Ã∗Ã
is small enough such that no further optimisations are required to achieve a runtime which is
satisfactory from a practical point of view.

However, it is also possible to update the eigendecomposition in an economic way. Let us brie�y
describe the individual steps of this process.
First we assume that we have computed the matrices Σ and V of a SVD (compare De�ni-
tion 2.5.31) of A .

1. Form the matrix Ṽ ∈ Matn+1 (C) such that the �rst row and the �rst column contain the
unit vectors (1, 0, ..., 0) and (1, 0, ..., 0)tr . All other entries are copied over from matrix V .
Please note that V is unitary and so is Ṽ . This means that Ṽ can be inverted without
any computation, as we can see by

Ṽ ∗Ṽ =

1 0 · · · 0

0
... V ∗

0

1 0 · · · 0

0
... V

0

 = In+1.

2. Compute Ṽ ∗Ã∗ÃṼ . To achieve this, we do not have to perform two full matrix multiplic-
ations as

Ṽ ∗Ã∗ÃṼ =

α1 α2 · · · αn+1

ᾱ2

... Σ2

ᾱn+1

 =

α1 α2 · · · αn+1

ᾱ2 σ2
1 0 0

... 0
. . . 0

ᾱn+1 0 0 σ2
n

 = Σ̄.

In fact, we only have to perform two matrix-vector multiplications in O(2 (n+ 1)2) to get
the entries αi of the new matrix. So the matrix Σ̄ is sparse, Hermitian and contains only
3n+ 1 entries. By using its symmetry we can store Σ̄ utilising only 2n+ 1 entries.

3. Now we have to transform Σ̄ into tridiagonal form. One possibility is to use the Lanczos
algorithm 13. As the matrix Σ̄ is sparse, the cost for this step is in O((n+ 1)2) . Please
note that if techniques like Householder re�ections (compare Algorithm 12) were used,
the runtime would be in O(4

3 (n+ 1)3) . Alternatively, it is also possible to use Givens
rotations to transform Σ̄ into tridiagonal form in an economic way. Let us denote the
resulting tridiagonal matrix by T with T = Q∗Σ̄Q .

4. Compute the eigenvalues of T , preferably with the QR algorithm. The cost is then in
O((n+ 1)2) , as T is tridiagonal. Using inverse iteration (see Algorithm 10) we can compute
the eigenvectors l1, ..., ln+1 ∈ Matn+1,1 (C) of this tridiagonal matrix in O((n+ 1)2) as well.
Let (l1, ..., ln+1) = L ∈ Matn+1 (C) . Please note that these eigenvectors are not identical to
those of Ã∗Ã . To obtain those one could compute Ṽ QL which is in O(2 (n+ 1)3) because
all matrices involved are dense. Fortunately though, it is not necessary to perform these
calculations explicitly - at least not in every step (we will elaborate on this in more detail

126 Chapter 4. The AVI/ABM Family of Algorithms

later in Remark 4.3.11). In our setting we are only interested in the eigenvector associated
to the smallest eigenvalue σn+1 if it is smaller than ε . So only in this case we compute
the eigenvector ṽn+1 associated to σn+1 of Ã∗Ã . A reasonably fast solution is to form
ṽn+1 = Ṽ Qln+1 , which will only cost us O(2 (n+ 1)2) operations.

5. Basically, we are now done with one step of updating the matrix factorisation. In order to
update the matrix factorisation in the future again we need to be careful though as we had
assumed in the beginning of the updating process that we had both Σ and V explicitly
given. The situation is now changed in the way that we only have the singular values Σ

directly available. We can only access the singular vectors V in an implicit way. Forming
them explicitly would require a series of matrix multiplications. This is fortunately not
necessary as we will see. Let us denote by Ā ∈ Matm,n+2 (C) the matrix which we obtain
by prepending an additional column c as a new �rst column to Ã . Let

V̄ =

1 0 · · · 0

0
... Ṽ QL

0

 and V̄ ∗ =

1 0 · · · 0

0
... L∗Q∗Ṽ ∗

0

 .
Then we know that

V̄ ∗Ã∗ÃV̄ = V̄ ∗

r1 r2 · · · rn+1

r̄2

... Ã∗Ã

r̄n+1

 V̄ =

α1 α2 · · · αn+2

ᾱ2 σ̃2
1 0 0

... 0
. . . 0

ᾱn+2 0 0 σ̃2
n+1

 .
But as the singular values σ̃1, ..., σ̃n+1 are known we only have to compute α1 ,..., αn+2

which can be obtained by forming V̄ ∗ (r1, ..., r̄n+1)tr V̄ explicitly. The cost for this op-
eration will only be in O(6 (n+ 1)2) . One should keep in mind though that with every
subsequent update six additional matrix-vector multiplications will be necessary.

What remains to be done is to sum up the runtime of all individual steps. We thus arrive at a
total runtime of

O
(

2 (n+ 1)2 + (n+ 1)2 + (n+ 1)2 + 2 (n+ 1)2 + 6 (n+ 1)2
)

= O
(

12 (n+ 1)2
)

= O
(
12n2

)
.

Remark 4.3.11. It should be noted that updating a SVD several times will introduce (addi-
tional) numerical instability. In a practical implementation, after a certain number of steps,
the eigendecomposition of Ã∗Ã should be recomputed from scratch, using, for example, the QR
algorithm (compare Subsection 2.9.1 and Algorithm 8). This does of course impact the perform-
ance in a negative way, but it represents a good compromise between stability and speed.

Remark 4.3.12. Even if the matrix A∗A and its eigendecomposition are not updated, as de-
scribed in Remark 4.3.10, but completely recomputed in every step, for instance, for reasons
of numerical stability or to be able to use o� the shelf eigenvalue/eigenvector revealing imple-
mentations in highly optimised libraries like LAPACK ([17]), it is not advisable to compute all

4.3. The ABM Algorithm 127

the eigenvalues and eigenvectors of A∗A at once. First A∗A should be tridiagonalised with
Algorithm 12 resulting in costs of O(4

3n
3) . Then we use the bisection algorithm 15 to check if

an eigenvalue σ with
√
σ ≤ ε exists and only then we compute its actual value. For this step

we can expect costs of O (n) . Now we can compute the eigenvector v corresponding to σ of the
tridiagonal matrix using inverse iteration 10 in O (n) . To obtain the actual eigenvector of A∗A
we still need to apply the elementary re�ectors used in the tridiagonalisation process to v . This
will cost us additionally O(4

3n
3) operations.

Now that we know how to update a SVD of a matrix in our setting essentially in O
(
12n2

)
, it is

time to move on to analysing the runtime of the ABM algorithm.

The ABM algorithm and the Buchberger-Möller algorithm for border bases (18) share the same
basic structure, with the major di�erence though that terms are treated one by one and the ap-
proximate kernel of the matrix is computed via Algorithm 16. As treating every term separately
represents a notable change we will give a more detailed analysis here than in the case of the
AVI algorithm.

Proposition 4.3.13. The runtime of the ABM algorithm is cubic in the number of input points

if the procedure that is described in Remark 4.3.10 is used to update the matrix factorisation of

the evaluation matrix in lines 6, 7, and 10 of the algorithm.

Proof. Just like in the proof of Proposition 3.4.7, where we analysed the complexity of the
Buchberger-Möller algorithm for border bases, we assume that the number of input points is

s =

p∑
i=0

(
n+ i− 1

i

)
=

(
n+ p

p

)
and additionally that ε = 0 , for which the ABM algorithm will degenerate to the BM algorithm
for border bases. The assumption about the number of points makes it easier for us to analyse
the individual steps of the algorithm as

(
n+p
p

)
equals the number of terms up to and including

degree p in the polynomial ring P = K [x1, ..., xn] . If the number of points is in between
(
n+p
p

)
and

(
n+p+1
p+1

)
essentially the same arguments apply. This will become apparent once we discuss

the complexity of the individual steps. Now we explain why it su�ces to treat the case ε = 0 .
For larger values of ε an improved runtime can be expected, because O and G will contain less
elements and thus less iterations will be needed. So if we consider ε = 0 , we obtain an upper
bound. Furthermore, to achieve a maximum of computational complexity, we examine the case
in which no low degree relations between the input points exists. I.e. the points are chosen in
such a way that the number of columns of the evaluation matrix will have to exceed the number
of rows until the matrix will have a non-trivial kernel. In this way we are again in a worst case
situation, as the number of operations will decrease if already in a lower degree relations are
found.
After we have clari�ed the setting, we can now start with the actual analysis. As ε = 0 the
order ideal O will contain s elements and the border of O will consist of

(
n+p
p+1

)
elements once

the algorithm has terminated. We now have a look at the individual steps:

128 Chapter 4. The AVI/ABM Family of Algorithms

Lines 1 and 2 are only executed once and have a cost of O (s+ n) .
Lines 4 to 19 are inside a loop which will be executed p + 1 times. This is true because by
assumption no polynomial relations between the points can be found until the number of columns
exceeds the number of rows in the evaluation matrix.
Lines 5 to 16 are again inside a loop and are executed

(
n+d−1

d

)
times where d is the current

degree, as essentially every term is treated.
The cost for line 5 is in O (s) as one new term needs to be evaluated on all points. Note that ti
is of the form ti = xkt for some t ∈ O . So we obtain the evaluation of the new term as the
component-wise product of an already existing column in the evaluation matrix with evalX (xk) .
If we would evaluate the whole term every time the costs would exceed O (s) . Compare also [46,
Remark 6.3.12].
The cost for line 6 is in O

(
s
((

n+d−1
d−1

)
+ i
))

for 1 ≤ d ≤ p and in O (s (s+ 1)) for d = p + 1 ,

if Remark 4.3.10 is used. Otherwise the cost would be in O

(
1
2s
((

n+d−1
d−1

)
+ i
)2
)
.

The cost for line 7 is in O

(((
n+d−1
d−1

)
+ i
)2
)

for 1 ≤ d ≤ p and in O((s+ 1)2) for d = p + 1 ,

if again the technique described in Remark 4.3.10 is used. If we would apply, for example, the
bisection algorithm (15) to matrix B directly to compute the eigenvector corresponding to the

smallest eigenvalue γ , this would lead to costs of O
(

4
3

((
n+d−1
d−1

)
+ i
)3
)

for 1 ≤ d ≤ p . Please

note that the dominating cost factor would be the reduction to tridiagonal form, whereas the
actual computation of the eigenvalues would only be quadratic in the size of the input matrix.
As we have chosen ε = 0 this means that the instructions in lines 9 to 12 will only be executed
if the smallest eigenvalue γ equals 0, so only if the matrix B has a non-trivial kernel. This
happens

(
n+p
p+1

)
times which is exactly the number of elements we will �nally have in G . In line

10 the eigenvector of B corresponding to σ is computed. If we use again the instructions from
Remark 4.3.10 to perform this operation, it is possible to achieve a runtime of O

(
2 (s+ 1)2

)
.

The cost of line 11 is in O (s+ 1) as we only form a vector-vector product.
Lines 12, 14, 15, and 18 only involve a constant amount of work and are therefore in O (1) .
Finally, line 19 is in O

((
n+d−1

d

))
as all terms of degree d are computed.

If we put all parts together we have total average case costs of

O

 p∑
d=1

(n+d−1
d)∑
i=1

 s︸︷︷︸
5

+ s

((
n+ d− 1

d− 1

)
+ i

)
︸ ︷︷ ︸

6

+

((
n+ d− 1

d− 1

)
+ i

)2

︸ ︷︷ ︸
7

+ 1︸︷︷︸
14

+ 1︸︷︷︸
15

+ O

(n+p
p+1)∑
i=1

 s︸︷︷︸
5

+ s (s+ 1)︸ ︷︷ ︸
6

+ (s+ 1)2︸ ︷︷ ︸
7

+ 2 (s+ 1)2︸ ︷︷ ︸
9

+ (s+ 1)︸ ︷︷ ︸
10

+ 1︸︷︷︸
12

+ O

 s︸︷︷︸
1

+ n︸︷︷︸
2

+

p+1∑
d=1

 1︸︷︷︸
18

+

(
n+ d− 1

d

)
︸ ︷︷ ︸

19

 .

We observe that the most expensive steps in the computation are in lines 6,7, and 10 (which

4.3. The ABM Algorithm 129

essentially correspond to the computation of the exact kernel in the BBM algorithm). It su�ces
to focus on them because for large enough s the cost of the other steps can be neglected. So we
focus on the expression

O

 p∑
d=1

(n+d−1
d)∑
i=1

(
s

((
n+ d− 1

d− 1

)
+ i

)
+

((
n+ d− 1

d− 1

)
+ i

)2
)

+ O

((
n+ p

p+ 1

)(
s (s+ 1) + 3 (s+ 1)2

))
= O

(
s

s∑
i=1

i+
s∑
i=1

i2 +

(
n+ p

p

)
n

p

(
s (s+ 1) + 3 (s+ 1)2

))

= O

(
1

2
s2 (s+ 1) +

1

6
s (s+ 1) (2s+ 1) + s

n

p

(
s (s+ 1) + 3 (s+ 1)2

))
= O

(
1

2

(
s3 + s2

)
+

1

6

(
2s3 + 3s2 + s

)
+
n

p

(
s3 + s2 + 3s3 + 6s2 + 3s

))
= O

(
s3

(
5

6
+ 4

n

p

))
.

As p ≥ 1 we can conclude that the runtime is in

O

(
s3

(
5

6
+ 4n

))
= O

(
s3 (1 + 4n)

)
.

Thus the dominating cost factor is s3 (1 + 4n) and the algorithm is cubic in the number of input
points, just like the BBM algorithm for border bases (18) and the AVI algorithm (21). It should
be noted that if we do not use Remark 4.3.10 to update the matrix factorisation we would have
to expect costs in O(s4) .

4.3.2 Enhancing the Numerical Stability of the ABM Algorithm

So far we have used Theorem 2.13.6 and Algorithm 16 for computing the solution of the homo-
geneous least squares problem in the ABM algorithm. For practical purposes the algorithm that
follows from the theorem and which we have outlined in great detail in the previous section is
a good compromise between numerical stability (see Theorem 4.3.7) and speed, especially since
it allows to update the factorisation of A∗A without too much e�ort. However, the downside
is that A∗A needs to be calculated explicitly. As we will see in the following subsection, there
is a well-known direct relation between the homogeneous least squares solution of an equation
system given by a matrix A and its SVD. Fortunately, there exist advanced techniques for the
computation of the former which do not require the explicit formation of A∗A , which further
improve on the numerical stability of the computed solution. In case A has several very small
singular values and we have chosen a very small ε the additional accuracy may be needed.

The Relationship of the Eigendecomposition of A∗A and AA∗ with the SVD

Proposition 4.3.14. Let A ∈ Matm,n (C) and let U,Σ , and V be matrices such that A = UΣV ∗

is a singular value decomposition of A . The matrices U,Σ , and V can be computed via the

130 Chapter 4. The AVI/ABM Family of Algorithms

eigendecomposition of A∗A and AA∗ . The relations A∗A = V ΣtrΣV ∗ and AA∗ = UΣΣtrU∗

hold.

Proof. Let UΣV ∗ = A be a singular value decomposition of A . By substituting A with UΣV ∗

we obtain

A∗A = (UΣV ∗)∗ UΣV ∗

= V Σ∗U∗UΣV ∗ = V ΣtrΣV ∗

and

AA∗ = UΣV ∗ (UΣV ∗)∗

= UΣV ∗V Σ∗U = UΣΣtrU∗.

Now it can be seen that via the eigendecompositions of AA∗ and A∗A the matrices U,Σ and V
can be computed.

Stable Computation of the SVD

We will now sketch the central ideas behind a backward stable algorithm which allows to compute
a SVD of a matrix A ∈ Matm,n (C) . For more details please see [6, Section 8.6]. To compute
the matrices U , Σ , and V it is not necessary to form AA∗ and A∗A explicitly. The method
was originally proposed by Golub and Kahan in [12]. The aim is to apply the symmetric or
respectively the Hermitian QR algorithm �implicitly� to A∗A . For this purpose the matrix A is
�rst reduced to upper bidiagonal form using e.g. Algorithm 11. So

U∗BAVB =

[
B

0

]
with B =

d1 f1 · · · 0

0 d2
. . .

...
...

. fn−1

0 · · · 0 dn

 ∈ Matn (C) .

The problem is now reduced to computing a SVD of matrix B . Let us assume that we form
T = B∗B explicitly. Then we compute its eigendecomposition via the Hermitian QR algorithm
such that B∗B = V̄

(
ΣtrΣ

)
V̄ ∗ , where V̄ contains the eigenvectors of B as its columns. How-

ever, we would still be in the same numerically unfavourable situation as in the beginning. Golub
and Kahan could show that it is possible to apply iteratively a series of left- and right-handed
Householder transformations to the matrix B with the e�ect that the accumulated right-handed
transformations are up to rounding errors identical to the matrix V̄ . Let us denote the accumu-
lated left-handed transformations by Ū and the right-handed transformations by V̄ , then we can
write B̄ = ŪBV̄ . The iterative procedure terminates once the entries f̄i of the matrix B̄ have
become almost zero. At this stage the matrix B̄ contains the singular values of A . Note that the
matrices Ū and V̄ are unitary, which explains why the computational procedure is numerically
stable. In our case the matrix V is usually of interest as well. For this purpose we can obtain V
by forming VBV̄ . Similarly, the matrix U can be obtained by computing UBŪ . An essential
part of the algorithm is the construction of the involved Householder transformations. We will
not give details here. However, these can be found in [12].

4.3. The ABM Algorithm 131

4.3.3 Shortcomings of the ABM Algorithm

• As for the AVI algorithm, in some rare situations the set O returned by the ABM algorithm
may not be an order ideal of terms. This means that for at least one term not all divisors
are included in the set O . If in a subsequent computation it is imperative that the output
of the ABM algorithm is a proper approximate border basis, this can be cured by checking
during the computation in line 8 if adding a new term ti to O would violate the order
ideal property. If so, we need to form a polynomial using ti and the other terms which are
currently in O , via the instructions in lines 9 to 11, and append the resulting polynomial g
to the set G . The coe�cients of this polynomial are again computed via the solution of the
homogeneous least squares problem (compare Theorem 2.13.6) in line 10. Of course this
will weaken the bounds concerning ε and δ . In the following Subsection 4.3.4 we sketch
how practical error bounds can be derived for ε and δ in this modi�ed version of the ABM
algorithm.

• Even if the set O is an order ideal, we have no direct control over the coe�cients of the
border terms (see Remark 4.3.3). If very small border coe�cients show up in G , the
bound δ may become too large to be of much practical value, as the approximate border
basis will then be far away from an exact border basis. In Subsection 4.5 we present an
algorithm which mitigates this problem, by providing more practical bounds for δ .

4.3.4 A Modi�ed ABM Algorithm and a Practical Error Bound

First of all we present an example which demonstrates that the output O of the standard version
of the ABM algorithm is not necessarily an order ideal.

Example 4.3.15. Let P = R [x1, x2] , ε = 0.12 ,
and X = [(−0.3715, 0.9734) , (−0.9548, 1) , (−1, 0.905) , (0.9502, 0.603) , (0.0965, 0.8715)] be given
and let σ be the DegRevLex term ordering.

• d = 1 ,O = [1] , G = [] , M = (1, ..., 1)tr and L = [x1, x2]

• A =

0.9734 1

1 1

0.905 1

0.603 1

0.8715 1

 , solve minx ‖Ax‖ subject to ‖x‖ = 1 , A∗A ≈

(
3.889 4.352

4.352 5

)
,

√
e ≈ 0.238 , O = [x2, 1]

• A =

−0.3715 0.9734 1

−0.9548 1 1

−1 0.905 1

0.9502 0.603 1

0.0965 0.8715 1

 , A∗A ≈

 2.961 −1.564 −1.279

−1.564 3.889 4.352

−1.279 4.352 5

 ,

√
e ≈ 0.116 , s ≈ (−0.13,−0.763, 0.632)

• (−0.13,−0.763, 0.632) (x1, x2, 1)tr = −0.13x1−0.763x2 +0.632 = g1 , G = [g1] , O = [x2, 1]

132 Chapter 4. The AVI/ABM Family of Algorithms

• d = 2 , ∂O =
{
x2

2, x1x2

}
, and L =

[
x2

2, x1x2

]

• A ≈

−0.3616 0.9734 1

−0.9548 1 1

−0.905 0.905 1

0.5729 0.603 1

0.0840 0.8715 1

 , A∗A =

 2.196 −1.707 −1.564

−1.707 3.889 4.352

−1.564 4.352 5

 ,
√
e ≈ 0.133 ,

O = [x1x2, x2, 1]

Now we can observe that x1 is not in O which violates the order ideal property. We stop here
and do not show the further steps of the algorithm.

Fortunately though, the ABM algorithm (22) can be easily modi�ed such that it always returns
an approximate O -border basis.

Line 8 in the algorithm needs to be changed to contain an additional check which makes sure
that all divisors of ti are already in O . We obtain the following version of the algorithm:

Algorithm 23: ABM-OI
Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ Cn , a small number ε ≥ 0 , and

a degree compatible term ordering σ on Tn

Output: An approximate O -border basis G (see Theorem 4.3.1 and the following text
for details)

1 d := 1 , O := [1] , G := [] , M := (1, ..., 1)tr ∈ Mats,1 (C) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 for i := 1 to ` do

5 A := (evalX (ti) ,M) ;
6 B := A∗A ;
7 γ := smallest eigenvalue of B ;
8 if

√
γ ≤ ε or one divisor of ti is not in O then

9 m := |O| ;
10 s := (sm+1, sm, ..., s1) = norm one eigenvector of B w.r.t. to γ ;

// We assume that O = [om, ..., o1]

11 g := sm+1ti + smom + ...+ s1o1 ;
12 G := concat(G, [g]) ;

13 else

14 O := concat([ti] ,O) ;
15 M := A ;

16 end

17 end

18 d := d+ 1 ;
19 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

20 until L := [] ;
21 return (G,O) ;

4.3. The ABM Algorithm 133

An immediate consequence of this change is that G may contain polynomials which do no
longer vanish ε-approximately on X . Note that the bound δ of the δ -approximate border basis
(compare claim 4 of Theorem 4.3.1) has to be adapted as well. It is possible to derive theoretical
bounds for ε and δ which are independent of the actual input data. However, these will be
too crude to be of any practical value. That is why we choose a more pragmatic approach
which requires knowledge about the input data tuple X . First of all, we observe that gaps in
the order ideal can only occur in degree two and beyond. We now construct the evaluation
matrix (evalX (xk) , ..., evalX (x1) , evalX (1)) = A ∈ Mats,k (C) in such a way that the smallest
singular value of A , which we denote by sr , is still greater than ε , and either k = n or the
smallest singular value of the matrix (evalX (xk+1) , evalX (xk) , ..., evalX (x1) , evalX (1)) is smaller
than or equal to ε . This means that we choose the largest set of sequential degree one terms
(with respect to the chosen term ordering) which has no ε-approximate kernel in its associated
evaluation matrix. Because of this construction, the set {xk, ..., x1, 1} will always be a subset of
the set O for the given value of ε . By Proposition 2.5.35, we know that by adding an additional
column to A the smallest singular value s̃r̃ of this new matrix will be ≤ sr . So we have
now established that the polynomials in G vanish s̃r̃ -approximately with respect to X . Let us
denote s̃r̃ by ε̃ . Because the steps are the same as in the proof of claim 4 of Theorem 4.3.1, it is
now straightforward to derive an upper bound for δ̃ , the bound for the approximate border basis
which we obtain for Algorithm 23. We derive δ̃ = 2 ‖X‖max ε̃/ mini |γi| ε + νε̃/ (mini |γi|)2 ε .
Here ‖X‖max denotes the maximal absolute coordinate in X and mini |γi| the minimal border
coe�cient of all polynomials in G = {g1, ..., gν} .

4.3.5 Implementation in ApCoCoA

The ABM algorithm was implemented by the author in the ApCoCoA C++ library ([20]). For
reasons of e�ciency both a real (double) and complex (complex double) version of the ABM
algorithm are available.

At the time of writing only a basic version has been implemented which does not use Re-
mark 4.3.10 to update the matrix factorisation. For the computation of matrix-matrix and
matrix-vector products the BLAS software interface was used, which allows for machine depend-
ent optimisations by simply linking to an optimised implementation that makes use of the target
computer architecture or additional processing equipment such as graphics cards (e.g. CUDA
or OpenCL). For example, AtrA is computed via the command dsyrk or respectively A∗A is
computed via the command zherk.

For the computation of the eigenvalues and eigenvectors of AtrA and A∗A the LAPACK software
library ([17]) is used. All eigenvalues and eigenvectors are computed at the same time, although
this could also be optimised as pointed out in Remark 4.3.12. The commands used for the
computation are dsyev and zheev.

A detailed description of the parameters of the ApCoCoA implementation of the ABM algorithm
can be found in Appendix 8.1.

134 Chapter 4. The AVI/ABM Family of Algorithms

4.4 Approximation by Polynomial Functions

In this section we will discuss some problems arising in the context of industrial applications and
how the ABM algorithm can be adapted to provide an adequate solution.

Sometimes we may be in a situation where we want to �nd out if a measurement can be expressed
as a polynomial function in other measurements up to a certain degree and up to a certain error
tolerance. The AVI and ABM algorithm do not always give a satisfactory answer to this task as
we can see in the following example.

Example 4.4.1. Let P = R [x1, x2] and let

X = [(−2,−1) , (−1, 0) , (−0.01, 0.99) , (0, 1) , (0.01, 0.99) , (1, 0) , (2,−1)] .

Furthermore, let us assume that x2 ≈
∑d

i=0 cix
i
1 . For d = 6 we could obtain an exact equality

by performing univariate interpolation. However, this is not our goal and we are interested in
solutions where d < 6 . In this simple case we could just solve a least squares problem to obtain
the coe�cients ci in x2 ≈

∑5
i=0 cix

i
1 (compare Example 2.10.3). However, in general a set of

terms which is well-suited for approximate interpolation is not known up front. For instance if
we have measured data in n � 1 indeterminates we have to work in a polynomial ring with n

indeterminates. From a numerical point of view it is not desirable or sometimes even feasible to
solve a least squares problem that involves all terms up to degree d , as the underlying problem
could be ill-conditioned or even ill-posed. Additionally, we are facing an e�ciency problem as
there are

(
n+d
d

)
terms up to degree d in the polynomial ring in n indeterminates. These issues

represent some of the major challenges that we are facing and trying to address.
We now apply the ABM algorithm (22) for ε = 0.1 and obtain the sets G = {g1, ..., g4} and
O =

{
1, x2, x1, x

2
2, x1x2

}
with

g1 ≈ x2
1 − 0.99x2

2 + 1.99x2 − 1

g2 ≈ x3
2 − 0.99x2

g3 ≈ x1x
2
2 + 0.99x1x2

g4 ≈ x2
1x2 + 2.00x2

2 − 1.99x2.

As we can see there is no polynomial of the desired form in G and it is also not possible to
rewrite one polynomial using the other almost vanishing relations to accomplish the task.

First of all, we try to reformulate the problem by splitting the input data set into two parts. So, we
start out with a tuple of measurements X = [p1, ..., ps] with pi ∈ Cn , V = [v1, ..., vs] with vi ∈ C ,
and P = C [x1, ..., xn, xn+1] . Furthermore, we assume that vi can be expressed approximately
by a polynomial function in the indeterminates x1, ..., xn evaluated on the coordinates of pi , e.g.

f : Cn → C

(x1, ..., xn) 7→ f (x1, ..., xn)

f (pi) ≈ vi

4.4. Approximation by Polynomial Functions 135

for all 1 ≤ i ≤ s . We assume that the datasets X and V contain measurement errors. That
is why multivariate polynomial interpolation, for instance, via the Buchberger-Möller algorithm
is not an option as the resulting polynomial(s) would also encode the noise that is present in
the input data and therefore obfuscate the underlying relations. We know that in general AVI
and ABM compute an approximate border basis w.r.t. a tuple of input points X , so each of
the polynomials in the set G returned by the algorithm has the property that f (pi) ≈ 0 for
all 1 ≤ i ≤ s . The naive approach of just merging X and V in the tuple X̃ by adding vi as a
new coordinate to pi and then to apply the AVI or ABM algorithm to X̃ does in general not
produce useful results as only polynomial relations f in the indeterminates x1, ..., xn, xn+1 will
be found, such that f (pi, vi) ≈ 0 holds, which cannot be easily solved for xn+1 . This is precisely
the behaviour that we have also observed in Example 4.4.1. Even if relations of the desired form,
which can be solved explicitly for xn+1 , show up in G , then the coe�cients by which we may
have to divide to get the explicit representation of xn+1 could be very small. If we evaluate this
polynomial on pi the actual value may di�er signi�cantly from vi . This can happen because the
original polynomial was not guaranteed initially to vanish at the point (pi, vi) . This exempli�es
that there is no easy way to use the polynomials contained in the approximate border basis to
obtain relations of the the form f (pi) ≈ vi .

One possible solution is to use the set O = {t1, ..., tµ} as an interpolation basis. So after the
ABM or AVI algorithm has terminated we solve the inhomogeneous least squares problem

min
s

∥∥(evalX (t1) , ..., evalX (tµ)) s− Vtr
∥∥

2
= min

s

∥∥Ms− Vtr
∥∥

2

with s ∈ Cµ . Thus it is always assured that we obtain a polynomial function f for which
f (pi) ≈ vi . However, the disadvantage of this approach is that we have no direct control over
the residual error

∥∥Ms− Vtr
∥∥

2
as the terms contained in O and the tuple V may have been

unrelated. As a rule of thumb we can assume that for smaller values of ε we obtain a set O
which contains more elements and so the residual will be smaller whereas for larger values of ε we
will obtain a set O containing less elements which leads to a larger residual error. Unfortunately
though, in general it may happen that this rule of thumb does not hold as the following example
shows.

Example 4.4.2. Let X be a tuple of input points and let 0 < ε1 < ε2 . Additionally, let O1

be the order ideal associated with the computation using ε1 and let O2 be the order ideal
associated with ε2 . Now we assume that |O1| > |O2| and that O2 \ (O1 ∩ O2) = {tj , ..., tk} 6= ∅ .
If V = evalX (tk) , then O2 will in fact be the order ideal producing the better approximation of
though it contains less elements than O1 .

For practical purposes it is desirable to be able to specify a maximal allowed tolerance for the
residual error upfront, so this will be one of the design goals for the extended ABM algorithm.

Another problem of the described approach is that it will provide exactly one solution for a given
set O . Even though

∥∥Ms− Vtr
∥∥ may be smaller than a given threshold number τ there may be

several non-identical subsets of O which would still meet our requirement. One could in theory
test several or even all possible subsets but this is very ine�cient in practice. In the extended

136 Chapter 4. The AVI/ABM Family of Algorithms

ABM algorithm we will also try to mitigate this problem by making use of the already computed
matrix decompositions which we utilise to handle the homogeneous least squares problem. This
will allow us to solve the inhomogeneous least squares problem more e�ciently, than by keeping
the computations of O and G separated from the computation of the approximating polynomial
functions for V .

In the following section we will now present a modi�cation of the ABM algorithm which can
be used in a direct way to solve the task at hand. The idea is the following: We still compute
the approximate vanishing ideal of X with respect to a parameter ε , thus making sure that the
evaluations of the elements in the set O remain approximately linearly independent. What we
do additionally is that whenever the list O is enlarged we check if we can construct already with
these elements a solution to the inhomogeneous least squares problem such that

∥∥Ms− Vtr
∥∥ < τ .

On the one hand this will provide us with a set of solutions (if they exist) that have guaranteed
�tting properties. Moreover we have a basis of almost vanishing polynomials which can be used
to modify the computed solutions via linear combinations.

4.4. Approximation by Polynomial Functions 137

4.4.1 The Extended ABM Algorithm

Now present the so-called extended ABM algorithm and discuss its properties.

Algorithm 24: Extended ABM Algorithm
Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ Cn , V = [v1, ..., vs] with vi ∈ C

and ‖V‖ > εmachine , small numbers ε ≥ 0, 0 ≤ τ < ‖V‖ , D ∈ N such that
D < s , and a degree compatible term ordering σ on Tn

Output: An approximate O -border basis G , a list H of polynomials (see
Theorem 4.4.3 for details)

1 d := 1 , O := [1] , G := [] , H := [] , M := (1, ..., 1)tr ∈ Mats,1 (C) ;
2 L := [t1, ..., t`] = all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 for i := 1 to ` do

5 m := |O| ;
// We assume that O = [om, ..., o1]

6 A := (evalX (ti) ,M) ;
7 B := A∗A ;
8 γ := smallest eigenvalue of B ;
9 if

√
γ ≤ ε then

10 s := (sm+1, sm, ..., s1) := norm one eigenvector of B w.r.t. to γ ;
11 g := sm+1ti + smom + ...+ s1o1 ;
12 G := concat(G, [g]) ;

13 else

14 s := (sm+1, sm, ..., s1) = solution of the least squares problem
mins

∥∥As− Vtr
∥∥ (compare algorithms in Section 2.11);

15 if
∥∥As− Vtr

∥∥ ≤ τ then

16 h := sm+1ti + smom + ...+ s1o1 ;
17 H := concat(H, [h]) ;

18 end

19 O := concat([ti] ,O) ;
20 M := A ;

21 end

22 end

23 d := d+ 1 ;
24 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

25 until L = [] or d > D ;
26 return (G,O, H) ;

Theorem 4.4.3. This algorithm computes three sets G = {g1, ..., gν} , O = {t1, ..., tµ} , and
H = {h1, ..., hκ} which have the following properties:

1. All the polynomials in G are unitary and generate an ε-approximate vanishing ideal of X .

2. There is no unitary polynomial in 〈O〉C which vanishes ε-approximately on X .

138 Chapter 4. The AVI/ABM Family of Algorithms

3. For all polynomials hi in H we have ‖evalX (hi)− V‖ ≤ τ .

4. The condition number κ of the inhomogeneous least squares problem which is solved in

line 14 is bounded by

s · ‖X‖Dmax

ε
+

(
s · ‖X‖Dmax

ε

)2√
1− (‖V‖ − τ)2

‖V‖2

/
‖V‖ − τ
‖V‖

.

If additionally the parameter D is chosen large enough, e.g. D = s− 1 , such that the algorithm

does not terminate prematurely, then also the following properties hold:

5. If O is an order ideal of terms, then the set G̃ = {(1/LCσ (g)) g| g ∈ G} is an O -border
prebasis.

6. If O is an order ideal of terms, then the set G̃ is an δ -approximate border basis with

δ = 2 ‖X‖max/ min
i
|γi|+ ν/

(
min
i
|γi|
)2

.

Here ‖X‖max denotes the maximal absolute coordinate in X and mini |γi| the minimal

border coe�cient of all polynomials in G .

Proof. First of all we note that the ABM and the extended ABM algorithm share the same basic
structure. The latter algorithm only contains some additional processing steps in lines 14 to 18
and an additional degree check in line 25.

The individual steps are well-de�ned because of the same reasons as in the ABM algorithm. An
explanation is contained in the �rst part of the proof of Theorem 4.3.1.

Next we discuss �niteness. In line 25 termination is assured by checking if the current degree d
exceeds a user speci�ed upper bound D . If so the execution will stop and a possibly partial
result, i.e. no complete approximate border basis, will be returned. However, even if we would
drop the additional check in line 25 the algorithm would still terminate. This is shown in the
second part of the proof of Theorem 4.3.1.

Claims 1, 2, 5, and 6 in fact refer to properties of the result of the ABM algorithm, which we
have already discussed and proven in Theorem 4.3.1. Note, that we have to assume that D is
chosen large enough, i.e. D = s− 1 , such that a full approximate border basis will be returned
in the end.

Claim 3 holds because the polynomials which are added to H are tested to have this property
in line 15.

For each polynomial hi ∈ H we let Ai = evalX (supp (hi)) . Let us denote the coe�cient vector of
hi with respect to supp (hi) by ci . This means that evalX (hi) = Aici holds. To prove claim 4 let
us �rst cast a result from Theorem 2.12.1 into our setting which states that the general condition
number of the inhomogeneous least squares problem is

κ (Ai) +
tan (θi)κ (Ai)

2

ηi
,

4.4. Approximation by Polynomial Functions 139

where cos (θi) = ‖evalX(hi)‖
‖V‖ = ‖Aici‖

‖V‖ for all hi ∈ H and ηi = ‖Ai‖‖ci‖
‖Aici‖ . First we observe that

1 ≤ ηi ≤ κ (A) . The �rst inequality follows from ‖A‖ ‖ci‖ ≥ ‖Aci‖ . For the second inequality,
note that ci is not the zero vector as ‖V‖ 6= 0 and A has only a trivial kernel which means
that ‖Aci‖ 6= 0 . With the help of Proposition 2.6.5 we can now compute κ (Ai) = ‖Ai‖

∥∥A+
i

∥∥ =

‖Ai‖
‖A+

i ‖‖Aici‖
‖Aici‖ ≥ ‖Ai‖

‖A+
i Aici‖
‖Aici‖ = ‖Ai‖‖ci‖

‖Aici‖ . Therefore, we obtain

κ (Ai) +
tan (θi)κ (Ai)

2

ηi
≤ κ (Ai) + tan (θi)κ (Ai)

2 .

Next we use the equationtan
(
cos−1 (x)

)
=
√

1−x2

x in order to obtain

tan (θi) =

√
1− ‖Aici‖

2

‖V‖2

/
‖Aici‖
‖V‖

.

Because of the triangle inequality and because of claim 5 we can establish that ‖Aici‖ ≥ ‖V‖ −
‖Aici − V‖ ≥ ‖V‖ − τ > 0 . So

tan (θi) ≤

√
1− (‖V‖ − τ)2

‖V‖2

/
‖V‖ − τ
‖V‖

.

Now it remains to bound κ (Ai) = ‖Ai‖
∥∥A+

i

∥∥ . Because we make sure during the computation
that the evaluation matrices Ai have no singular values smaller than ε we thus know that∥∥A+

i

∥∥ < 1
ε . Additionally, for any Ai ∈ Matm,n (C) the inequality ‖Ai‖ ≤

√
mn ‖Ai‖max holds

(see Proposition 2.3.20). In our case the matrix dimensions can at most be m = n = s . The
entries of the evaluation matrix are products of powers of the entries of X . As O can at most
contain s elements the maximal degree is naturally bounded by s , but as we are using an arti�cial
degree bound in form of the input parameter D (see line 25 of the algorithm) we can be more
precise and state that the limit is in fact D . So ‖Ai‖ ≤ s · ‖X‖Dmax where ‖X‖max is the maximal
absolute entry in the input data set X . Now we have established that κ (Ai) ≤ s · ‖X‖Dmax

1
ε . If

we collect all the facts we obtain the inequality

κ = κ (Ai) ≤
s · ‖X‖Dmax

ε
+

(
s · ‖X‖Dmax

ε

)2√
1− (‖V‖ − τ)2

‖V‖2

/
‖V‖ − τ
‖V‖

,

which concludes the proof.

Remark 4.4.4. In case ‖V‖ is very small, e.g. ‖V‖ ≈ εmachine , we are essentially considering
a homogeneous least squares problem. Thus, the ABM algorithm (22) should be used instead of
the extended ABM algorithm (24), as the polynomials in H (if any) have very small coe�cients.

Now we tend to have a look at an example which demonstrates the operation of the extended
ABM algorithm.

Example 4.4.5. Let P = R [x1] , X = [(−2) , (−1) , (−0.01) , (0) , (0.01) , (1) , (2)] ,
V = [(−1) , (0) , (0.99) , (1) , (0.99) , (0) , (−1)] , and let σ be the DegRevLex term ordering. We
now apply the extended ABM algorithm (24) with ε = 0.1 , τ = 10−3 , and D = 5 :

140 Chapter 4. The AVI/ABM Family of Algorithms

• d = 1 , O = {1} , G = ∅ , M = (1, ..., 1)tr , and L = [x1]

• A =

(
−2 −1 −0.01 0 0.01 1 2

1 1 1 1 1 1 1

)tr

,
√
γ ≈ 1.62 > ε = 0.1

• minx
∥∥Ax− Vtr

∥∥ , x ≈ (0, 0.140) ,
∥∥Ax− Vtr

∥∥ = 2.196 , O = {x1, 1} , and M = A

• d = 2 , ∂O =
{
x2

1

}
, and L =

[
x2

1

]
• A =

 4 1 0.012 0 0.012 1 4

−2 −1 −0.01 0 0.01 1 2

1 1 1 1 1 1 1

tr

,
√
γ ≈ 1.39 > 0.1

• minx
∥∥Ax− Vtr

∥∥ , x ≈ (−0.476, 0, 0.821) ,
∥∥Ax− Vtr

∥∥ = 0.583 , O =
{
x2

1, x1, 1
}
, and

M = A

• d = 3 , ∂O =
{
x3

1

}
, and L =

[
x3

1

]

• A =

−8 −1 −0.013 0 0.013 1 8

4 1 0.012 0 0.012 1 4

−2 −1 −0.01 0 0.01 1 2

1 1 1 1 1 1 1

tr

,
√
γ ≈ 1.00 > 0.1

• minx
∥∥Ax− Vtr

∥∥ , x ≈ (0,−0.476, 0, 0.821) ,
∥∥Ax− Vtr

∥∥ = 0.583 , O =
{
x3

1, x
2
1, x1, 1

}
, and

M = A

• d = 4 , ∂O =
{
x4

1

}
, and L =

[
x4

1

]

• A =

16 1 0.014 0 0.014 1 16

−8 −1 −0.013 0 0.013 1 8

4 1 0.012 0 0.012 1 4

−2 −1 −0.01 0 0.01 1 2

1 1 1 1 1 1 1

tr

,
√
γ ≈ 0.885 > 0.1

• minx
∥∥Ax− Vtr

∥∥ , x ≈ (0.165, 0,−1.158, 0, 0.993) ,
∥∥Ax− Vtr

∥∥ = 0.008 , h1 ≈ −0.165x4
1 +

1.158x2
1 − 0.993 , H = {h1} , O =

{
x4

1, x
3
1, x

2
1, x1, 1

}
, and M = A

• d = 5 , ∂O =
{
x5

1

}
, and L =

[
x5

1

]

• A =

−32 −1 −0.015 0 0.05 1 32

16 1 0.014 0 0.014 1 16

−8 −1 −0.013 0 0.013 1 8

4 1 0.012 0 0.012 1 4

−2 −1 −0.01 0 0.01 1 2

1 1 1 1 1 1 1

tr

,
√
γ ≈ 0.0087 < 0.1 ,

subject to ‖x‖ = 1 , x ≈ (0.154, 0,−0.771, 0, 0.617, 0) , g1 ≈ 0.154x5
1 − 0.771x3

1 + 0.617x1

• The algorithm terminates because L is empty. Finally, we obtain the sets G = {g1} ,
H = {h1} and O =

{
x4

1, x
3
1, x

2
1, x1, 1

}
, where G is an approximate O -border basis.

Remark 4.4.6. The extended ABM algorithm can be used to check if a polynomial function
(in general or up to a speci�ed degree D) exists such that V can be expressed τ -approximately

4.4. Approximation by Polynomial Functions 141

by the input data X . For this purpose we need to set the parameter ε to 0. If H is empty upon
termination of the algorithm, then we have the guarantee that no such relations exists.

Next, we look at an example that emphasises that in general no solution needs to exist, which
means that H will contain no polynomials.

Example 4.4.7. [Existence of Solutions]

Let P = C [x1, x2] , X = (0, 0) , V = (1, 0) , ε = 0 and τ = 0.1 . When we use the extended ABM
algorithm, all least squares problems we have to solve in line 14 are of the form

min
s

∥∥∥∥∥
(

0 · · · 0 1

0 · · · 0 1

)
s−

(
1

0

)∥∥∥∥∥
with s = (sm+1, ..., s1)tr ∈ Cm+1 . A polynomial is added to H if it satis�es√

|s1 − 1|2 + |s1|2 < 0.1.

This is equivalent to the following conditions:

(s1 − 1) (s̄1 − 1) + s1s̄1 < 0.01

2s1s̄1 − s1 − s̄1 + 1 < 0.01

2
(
s1s̄1 − 0.5s1 − 0.5s̄1 + 0.52 + 0.25

)
< 0.01

2 (s1 − 0.5) (s̄1 − 0.5) + 0.5 < 0.01

2 |s1 − 0.5|2 < −0.49.

As we can see, there exists no number s that would satisfy this inequality.

4.4.2 Runtime Complexity of the Extended ABM Algorithm

Proposition 4.4.8. The runtime of the extended ABM algorithm is cubic in the number of input

points if both the SVD and the QR decomposition are updated during the computation. Details

about how to update the SVD are contained in Remark 4.3.10. An updating procedure for the QR

decomposition can be found in [6, Section 12.5.2].

Proof. The algorithm shares the basic structure with the ABM algorithm; additional work is
performed in lines 14 to 20. The most expensive new step is the computation of the solution of the
inhomogeneous least squares problem in line 14. It can be solved e�ciently in O

(
2mn2 − 2

3n
3
)

using the QR decomposition of A ∈ Matm,n (C) , compare Proposition 2.11.3 and Remark 2.11.4
for details. The process can again be accelerated if the QR decomposition is not recomputed in
each step but updated accordingly. It is possible to achieve this task in O (mn) via a sequence
of Givens rotations (see [6, Section 12.5.2]). After we have computed the QR decomposition
we still need to solve the least squares problem in O

(
mn+ 1

2n (n+ 1)
)
. Assuming that we

are in the same setting as when investigating the runtime of the ABM algorithm (the same
number of input points s with the same properties and ε = 0), we can take for granted that the

142 Chapter 4. The AVI/ABM Family of Algorithms

QR decomposition is at most updated s times, as in this case the matrix A will have full rank s
and no new elements will go into O . This means that we can expect additional costs in

O

(
s∑
i=1

(
2si+

1

2
i (i+ 1)

))
to update the QR decomposition and to compute the least squares solution. We can simplify
the expression to

O

(
s∑
i=1

(
2si+

1

2
i (i+ 1)

))

= O

(
s2 (s+ 1) +

1

6
s (s+ 1) (s+ 2)

)
= O

(
s3 + s2 +

1

6

(
s3 + 3s2 + 2s

))
= O

(
s3
)
.

Thus we conclude that the runtime of the algorithm remains cubic in s .

4.4.3 Enhancing the Numerical Stability of the Extended ABM Algorithm

Sometimes it may be necessary to improve the accuracy of Algorithm 24 e.g. when we are
dealing with an ill conditioned least squares problem in line 14. Even though the solution of the
inhomogeneous least squares problem via QR decomposition is provably backward stable, it is
possible to compute an empirically more accurate solution with the help of QR decomposition
with column pivoting or with the help of the SVD. This behaviour and the associated accuracy
performance tradeo� is investigated in [7, Sections 3.5 and 3.6].

Now we explain the necessary steps and the theoretical background for solving the inhomogeneous
least squares problem with the help of the SVD in more detail. For further elaborations consider
[5, pages 83-84]). Please note that this enhancement can be combined with the ideas from
Subsection 4.3.2, which concern the stable computation of the solution of the homogeneous least
squares problem and therefore the polynomials in the set G returned by the ABM and the
extended ABM algorithm.

First, we brie�y recall the setup of the inhomogeneous least squares problem (compare De�n-
ition 2.10.1). Let A ∈ Matm,n (C) with m ≥ n and b ∈ Cm \ {0m} . In our setting we
know additionally that A has full rank n . We are interested in �nding vectors x ∈ Cn such
that ‖Ax− b‖2 is minimised. Let UΣV ∗ be the reduced SVD (see De�nition 2.5.33) of A .
Please note, that Σ ∈ Matn (C) is invertible because A has full rank. The orthogonal projector
onto im (A) is then given by PA = UU∗ . In the context of Theorem 2.11.1, which was concerned
with characterising the solutions of the inhomogeneous least squares problem, we can write

Ax = PAb ⇐⇒
Ax = UU∗b ⇐⇒

UΣV ∗x = UU∗b

4.4. Approximation by Polynomial Functions 143

and consequently
x = V Σ−1U∗b.

This means that in order to solve the least squares problem, we �rst have to compute the reduced
SVD of A and then apply the individual matrices U∗ , Σ−1 and V to b . The cost is dominated
by the computation of the SVD, which is in general more expensive than solving the problem
with the help of the QR decomposition. However, if additional numerical stability is required
the SVD provides it at a reasonable overhead. The total cost for solving an inhomogeneous least
squares problem with the SVD is according to [5, page 84] in O

(
2mn2 + 11n3

)
.

Remark 4.4.9. If we have used the ideas from Subsection 4.3.2 to enhance the numerical
stability of the polynomials in G , then this means that we have already computed a part of a
SVD of A in form of the matrices Σ and V . Of course these can be reused in the solution
process of the inhomogeneous least squares problem to further speed up the computation. The
missing matrix U can for example be computed as U = AV Σ−1 .

4.4.4 Shortcomings of the Extended ABM Algorithm

• As for the AVI and ABM algorithm, in some cases the set O may not be an order ideal
of terms, meaning that for at least one term not all divisors are included in the set O .
If in a subsequent computation it is imperative that the output of the Extended ABM
algorithm is a proper approximate border basis, this can be prevented by checking during
the computation if adding a new term ti to O in line 19 of the algorithm would violate
the order ideal property. If so, we need to form a polynomial using ti and the other terms
which are currently in O , via the instructions in lines 10 and 11, and append the resulting
polynomial g to the set G . The coe�cients of this polynomial are again computed via the
solution of the homogeneous least squares problem (compare Theorem 2.13.6) in line 10.
Of course this will weaken the bounds concerning ε and δ . If so, we need to form a
polynomial from t and the other terms which are currently in O and add the resulting
polynomial to the set G . The coe�cients of this polynomial are again computed via the
solution of the homogeneous least squares problem (compare Theorem 2.13.6). Of course
this will weaken the bounds concerning ε and δ . The consequences which also apply in
this case have already been analysed in Subsection 4.3.4.

• Just like in the case of the ABM algorithm, even if the set O is an order ideal, we have
no direct control over the coe�cients of the border terms. If very small border coe�cients
show up in G , the bound δ may become too large to be of much practical value, as the ap-
proximate border basis will then be far away from an exact border basis. In Subsection 4.5
we present an algorithm which partly mitigates this problem.

4.4.5 Implementation in ApCoCoA

The extended ABM algorithm has been implemented by the author in the ApCoCoA C++
library ([20]). A real (double) and complex (double) version of the algorithm is available.

144 Chapter 4. The AVI/ABM Family of Algorithms

At the time of writing only a basic version was implemented which does not use Remark 4.3.10
or the ideas from [6, Section 12.5.2] to update the matrix factorisations. For the computation of
matrix-matrix and matrix-vector products we us again the BLAS software interface, which allows
for machine dependent optimisations by simply linking to an optimised implementation which
makes use of the target computer architecture or additional equipment like graphics cards (e.g.
CUDA or OpenCL). For instance, AtrA is computed via the command dsyrk or respectively A∗A
is computed via the command zherk.

For the computation of the eigenvalues and eigenvectors of the symmetric matrix AtrA , and
of the Hermitian matrix A∗A as well as for the solution of the inhomogeneous least squares
problem, the LAPACK software library [17] is used.

All eigenvalues and eigenvectors are computed at the same time though this could also be op-
timised as pointed out in Remark 4.3.12. The LAPACK commands used are dsyev and zheev.

The commands used for the solution of the least squares problem are dgels and zgels which are
based upon the QR decomposition. As pointed out in Subsection 4.4.3 we could switch to solving
the least squares problem via the SVD by using the commands dgelss and zgelss instead.

A detailed description of the parameters of the ApCoCoA implementation of the extended ABM
algorithm can be found in Appendix 8.1.

4.5 The BB ABM Algorithm

The algorithm which we now present is in large parts similar to the one proposed in [29] by C.
Fassino. However, we investigate a variant for border bases and not for Gröbner bases. Accord-
ingly, we focus on the properties of approximate border bases which are not discussed in [29] for
obvious reasons. The Border Bases Approximate Buchberger-Möller (BB ABM) algorithm has
the property that the error δ can be better bounded compared to the AVI and ABM algorithm
(see Remark 4.3.3). This makes the algorithm a suitable choice if a guaranteed and possibly
small error bound on δ is required, for example, if the set G is supposed to be used as input for
one of the rational recovery algorithms (cf. Chapter 5).

Before we can detail and discuss the algorithm we �rst have to recall some relations between the
inhomogeneous least squares problem and the homogeneous least squares problem.

Theorem 4.5.1. Let m ≥ n ≥ 1 , let A ∈ Matm,n (C) be of full rank, and let additionally

b ∈ Cm \ {0m} . By [b, A] ∈ Matm,n+1 (C) we denote the matrix which we obtain if we prepend b

as a new column to A . Then let r = AA+b − b, where A+ is the pseudoinverse of A , be the

residual of the ordinary least squares problem, and let σk (M) be the k -th singular value of the

matrix M . In this setting the inequality

‖r‖2
‖[b, A]‖2

≤ σn+1 ([b, A])

σn (A)

holds.

4.5. The BB ABM Algorithm 145

Proof. See [31, Corollary 6.1] where we use the parameter of the scaled TLS problem γ = 1 .

Corollary 4.5.2. Let ε ∈ R+
0 and let A = (an, ..., a1) ∈ Matm,n (C) be of full rank with

m ≥ n ≥ 1 such that for all 1 ≤ i < n the relation
∥∥∥A1:m,1:iA

+
1:m,1:iai+1 − ai+1

∥∥∥
2
> ε holds.

This means that the least squares residual of the �rst i columns of A with respect to the i+ 1-th

column of A is larger than ε. Then the smallest singular value of A has a lower bound of

σmin (A) >
εn−1 ‖a1‖√

m
n−1

Πn
i=2

(√
i ‖A1:m,1:i‖max

) ,
where ‖·‖max denotes the max matrix norm of A (see De�nition 2.3.18).

Proof. Let ri = A1:m,1:iA
+
1:m,1:iai+1 − ai+1 where A+ denotes the pseudoinverse of a matrix A .

First we observe that ε < ‖ri‖ . If we use Theorem 4.5.1 together with Proposition 2.3.20 we
derive the inequality

σn (A1:m,1:n) ≥ ‖rn−1‖σn−1 (A1:m,1:n−1)

‖A1:m,1:n‖
>

εσn−1 (A1:m,1:n−1)√
mn ‖A1:m,1:n‖max

.

Clearly, we can apply Theorem 4.5.1 together with Proposition 2.3.20 again to bound
σn−1 (A1:m,1:n−1) . If we do this iteratively in total n− 1 times we obtain the following sequence
of inequalities

σn (A1:m,1:n) ≥ ‖rn−1‖σn−1 (A1:m,1:n−1)

‖A1:m,1:n‖
>

εσn−1 (A1:m,1:n−1)√
mn ‖A1:m,1:n‖max

>
ε√

mn ‖A1:m,1:n‖max

εσn−2 (A1:m,1:n−2)√
m (n− 1) ‖A1:m,1:n−1‖max

> ... >
εn−1σ1 (a1)

√
m
n−1∏n

i=2

(√
i ‖A1:m,1:i‖max

)
=

εn−1 ‖a1‖√
m
n−1∏n

i=2

(√
i ‖A1:m,1:i‖max

) .

After these preparations we are now able to state the BB ABM algorithm and to prove some of
its properties.

146 Chapter 4. The AVI/ABM Family of Algorithms

Algorithm 25: BB ABM Algorithm
Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ Cn , a small number ε ≥ 0 , and

a degree compatible term ordering σ on Tn

Output: An approximate O -border basis G (see Theorem 4.5.3 for details)

1 d := 1 , O := [1] , G := [] , A := (1, ..., 1)tr ∈ Mats,1 (C) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 repeat

4 for i := 1 to ` do

5 m := |O| ;
6 b := evalX (ti) ;
7 s := (sm, sm−1, ..., s1) := solution of the least squares problem mins ‖As− b‖

(compare algorithms in Section 2.11);
8 if ‖As− b‖ ≤ ε then

// We assume that O = [om, ..., o1]

9 g := ti − smom − ...− s1o1 ;
10 G := concat(G, [g]) ;

11 else

12 O := concat([ti] ,O) ;
13 A = (b, A) ;

14 end

15 end

16 d := d+ 1 ;
17 L := [t1, ..., t`] := all terms of degree d in ∂O ordered decreasingly w.r.t. σ ;

18 until L = [] ;
19 return (G,O) ;

Theorem 4.5.3. This algorithm computes two sets G = {g1, ..., gν} and O = {t1, ..., tµ} which

have the following properties:

1. For every polynomial gi in G we have ‖evalX (gi)‖ ≤ ε .

2. There is no subset of the elements in O such that a linear combination of these elements

with leading coe�cient one (with respect to σ) vanishes ε-approximately when evaluated at

the points in X .

3. If the set O is an order ideal, then the set G is an O -border prebasis.

4. If the set O is an order ideal, then the set G is an δ -approximate border basis with δ =
ε
ζ (2 ‖X‖max + γν) , where ζ = εs−1

√
s
s−2

Πsi=2(
√
i‖X‖i−1

max)
,

and γ =
√
s
s−1

Πsi=2(
√
i‖X‖s+i−1

max)
εs−1 .

Proof. First of all we prove termination of the algorithm. In line 7 a inhomogeneous least squares
problem of the formmins ‖As− b‖ is solved. This guarantees together with the check in line 8
that only linearly independent columns are prepended to A in line 13. This means that the rank

4.5. The BB ABM Algorithm 147

of A will grow by one whenever a new column is prepended. So the rank of A can grow at most
up to s . When we arrive at this situation the equation system Ax = b has at least one solution.
This means that no new elements will go into O and thus the program will eventually stop in
line 18 because L will be empty.

Claim 1 follows directly from how the polynomials are constructed. They are only appended
to G if the inequality ‖As− b‖ ≤ ε in line 8 holds.

Next we show claim 2. Note that only one element is prepended to O at a time in line 12. In
line 8 we check if an ε-approximately vanishing relation with leading coe�cient one (with respect
to σ) exists. Only if this is not the case, the term ti will be added to O . Looking at subsets Õ
of O means that the corresponding evaluation matrix Ã = evalX (O) has even fewer columns
and we can be sure that also the minimum of ‖Ãs − b‖ will be greater than ε . However, this
claim does not need to hold when we allow the leading term to have a coe�cient which is not
equal to one!

Now let us look at claim 3. If we assume that the set O is an order ideal, it follows from line 9
that all polynomials in G are of the form ti −

∑m
k=1 ckok , with ck ∈ C , ok ∈ O . Additionally,

we know from line 2 and line 17 that the ti are exactly the elements in the border of O . So, for
each ti ∈ ∂O , we have a corresponding polynomial gi in G .

To prove claim 4 we use a similar strategy as when proving the bound for the ABM algorithm,
compare Theorem 4.3.1. The major di�erence will be that we have to bound the coe�cients of
the polynomials in G .

First, let us recall that every gi ∈ G is of the form gi = bi + hi with bi ∈ ∂O and supp (hi) ⊆
O . The polynomials gi vanish ε-approximately with respect to X . Let us denote by c the
coe�cient vector of a polynomial hi and by A the evaluation matrix of supp (hi) with respect
to X . Then c is the solution of the inhomogeneous least squares problem minc ‖Ac− evalX (bi)‖ .
So c = A+ evalX (bi) where A+ is the pseudoinverse of A . Thus ‖c‖ = ‖A+ evalX (bi)‖ ≤
‖A+‖ ‖evalX (bi)‖ = ‖evalX(bi)‖

σmin(A) . With the help of Theorem 4.5.1 we can bound the smallest
singular value σmin of A . In order to be able to apply the theorem, we �rst need to analyse
matrix A more closely. By Proposition 2.5.35 we know that with each additional column which
we prepend to A , the smallest singular value of the new matrix will be smaller than or equal
to the smallest singular value of A alone. So we may assume that σmin (evalX (O)) ≤ σmin (A)

in order to obtain a lower bound for the smallest singular value of A . The set O contains at
most s elements, because only up to s − 1 new elements can be added to O in line 12. This
means that A can have at most s columns. Using Corollary 4.5.2, ‖a1‖ = ‖(1, ..., 1)‖ =

√
s ,

and the fact that matrix A contains products up to degree i− 1 of the coordinates of the input
points X , we obtain the bound

ζ :=
εs−1√s

√
s
s−1

Πs
i=2

(√
i ‖X‖i−1

max

) =
εs−1

√
s
s−2

Πs
i=2

(√
i ‖X‖i−1

max

) < σmin (A) .

148 Chapter 4. The AVI/ABM Family of Algorithms

Thus we conclude that, for ε 6= 0 , the inequalities

‖c‖ ≤ ‖evalX (bi)‖
σmin (A)

< ‖evalX (bi)‖

√
s
s−2

Πs
i=2

(√
i ‖X‖i−1

max

)
εs−1

≤
√
s ‖X‖smax

√
s
s−2

Πs
i=2

(√
i ‖X‖i−1

max

)
εs−1

= ‖X‖smax

√
s
s−1

Πs
i=2

(√
i ‖X‖i−1

max

)
εs−1

=

√
s
s−1

Πs
i=2

(√
i ‖X‖s+i−1

max

)
εs−1

:= γ

hold.

Now that we have �nished these preparations, we are able to bound the coe�cient vectors of the
normal remainders of the S -polynomials Sij where ti, tj are neighbours. For this purpose we let
M = evalX (O) . We �rst look at the across-the-street neighbours. Furthermore Sij = xkgi−xlgj
and S

′
ij = NRO,G (Sij) = xkgi − xlgj −

∑
ν cνgν where the cν are some coe�cients of the

polynomials hi . Note that supp(S
′
ij) ⊆ O . First, let us consider the case ε = 0 . In this situation

we know that
∥∥∥evalX(S

′
ij)
∥∥∥ = 0 because ‖evalX (gi)‖ = 0 for all gi ∈ G . Because the matrix M

only has a trivial kernel,
∥∥∥evalX(S

′
ij)
∥∥∥ = 0 implies that ‖S′ij‖ = 0 and therefore S

′
ij = 0 must

be satis�ed. Next, we consider the case ε 6= 0 . In this situation the inequality |cv| ≤ ‖c‖ < γ

holds. We now conclude that∥∥∥S′ij∥∥∥ ≤
∥∥M+

∥∥∥∥∥evalX(S
′
ij)
∥∥∥ < 1

ζ

∥∥∥evalX(S
′
ij)
∥∥∥

≤ 1

ζ

(
‖evalX (xkgi)‖+ ‖evalX (xlgj)‖+

∥∥∥∥∥evalX

(∑
ν

cνgν

)∥∥∥∥∥
)

≤ 1

ζ

(
‖evalX (gi) ‖X‖max‖+ ‖evalX (gj) ‖X‖max‖+

∥∥∥∥∥evalX

(∑
ν

cνgν

)∥∥∥∥∥
)

<
1

ζ

(
2 ‖X‖max ε+ γ

∑
ν

evalX (gν)

)
≤ ε

ζ
(2 ‖X‖max + γν) .

Finally, we analyse the next-door neighbours. The error bound is derived analogously to the
case of across-the-street neighbours. We have Sij = gi − xkgj and S

′
ij = NRO,G (Sij) = gi −

xkgj−
∑

ν cνgν where the cν are again some coe�cients of the polynomials hi . In case ε = 0 the
same arguments apply as for the across-the-street neighbours. So we know that ‖S′ij‖ = 0 and
consequently S

′
ij = 0 and we are thus dealing with an exact border basis as the S -polynomials

of all neighbours reduce to 0. In the case ε 6= 0 , we obtain the inequalities∥∥∥S′ij∥∥∥ ≤
∥∥M+

∥∥∥∥∥evalX(S
′
ij)
∥∥∥ < 1

ζ

∥∥∥evalX(S
′
ij)
∥∥∥

≤ 1

ζ

(
‖evalX (g̃i)‖+ ‖evalX (g̃j) ‖X‖max‖+

∥∥∥∥∥evalX

(∑
ν

cν g̃ν

)∥∥∥∥∥
)

< ... ≤ ε

ζ
(1 + ‖X‖max + γν) .

4.5. The BB ABM Algorithm 149

The following example illustrates the individual steps of the BB ABM algorithm.

Example 4.5.4. Let P = R [x1, x2] , X = [(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)] , and ε = 0.25

be given and let σ be the DegRevLex term ordering.

• d = 1 ,O = [1] , G = [] , M = (1, ..., 1)tr , and L = [x1, x2]

• A =

1

1

1

1

1

 , b =

0

0

1

1

0.5

 , solve minx ‖Ax− b‖ , x ≈ (0.499) , ‖Ax− b‖ ≈ 1 , O = [x2, 1]

• A =

0 1

0 1

1 1

1 1

0.5 1

 , b =

0

1

0

1

0.5

 , solve minx ‖Ax− b‖ , x ≈ (0, 0.499) , ‖Ax− b‖ ≈ 1 ,

O = [x2, x1, 1]

• d = 2 , ∂O =
{
x2

1, x1x2, x
2
2

}
, and L =

[
x2

1, x1x2, x
2
2

]

• A =

0 0 1

1 0 1

0 1 1

1 1 1

0.5 0.5 1

 , b =

0

0

1

1

0.25

 , solve minx ‖Ax− b‖ , x ≈ (0, 1,−0.049) ,

‖Ax− b‖ ≈ 0.223

• g1 = x2
2 − x1 + 0.049 , G = [g1] , O = [x2, x1, 1]

• A =

0 0 1

1 0 1

0 1 1

1 1 1

0.5 0.5 1

 , b =

0

0

0

1

0.25

 , solve minx ‖Ax− b‖ , x ≈ (0.5, 0.5,−0.249) ,

‖Ax− b‖ ≈ 0.5 , O = [x1x2, x2, x1, 1]

• A =

0 0 0 1

0 1 0 1

0 0 1 1

1 1 1 1

0.25 0.5 0.5 1

 , b =

0

1

0

1

0.25

 , solve minx ‖Ax− b‖ , x ≈ (0, 1, 0,−0.05) ,

‖Ax− b‖ ≈ 0.223

• g2 = x2
1 − x2 + 0.05 , G = [g1, g2] , O = [x1x2, x2, x1, 1]

• d = 3 , ∂O =
{
x2

1x2, x1x
2
2, x

2
1, x

2
2

}
, and L =

[
x2

1x2, x1x
2
2

]

150 Chapter 4. The AVI/ABM Family of Algorithms

• A =

0 0 0 1

0 1 0 1

0 0 1 1

1 1 1 1

0.25 0.5 0.5 1

 , b =

0

0

0

1

0.125

 ,

solve minx ‖Ax− b‖ , x ≈ (0.999, 0, 0,−0.025) , ‖Ax− b‖ ≈ 0.111

• g3 = x2
1x2 − x1x2 + 0.025 , G = [g1, g2, g3] , O = [x1x2, x2, x1, 1]

• A =

0 0 0 1

0 1 0 1

0 0 1 1

1 1 1 1

0.25 0.5 0.5 1

 ,b =

0

0

0

1

0.125

 ,

solve minx ‖Ax− b‖ , x ≈ (0.999, 0, 0,−0.025) , ‖Ax− b‖ ≈ 0.111

• g4 = x1x
2
2 − x1x2 + 0.025 , G = [g1, g2, g3, g4] , O = [x1x2, x2, x1, 1]

• d = 4 , ∂O =
{
x2

1x2, x1x
2
2, x

2
1, x

2
2

}
, and L = ∅

• G = [g1, g2, g3, g4] , O = [x1x2, x2, x1, 1]

Remark 4.5.5. Just like the extended ABM algorithm the BB ABM algorithm can achieve
greater numerical stability if the least squares solution in line 7 is computed with the help of
the SVD. Details can be found in Subsection 4.4.3.

4.5.1 Runtime Complexity of the BB ABM Algorithm

Proposition 4.5.6. The runtime of the BB ABM algorithm is cubic in the number of input

points if the QR decomposition/SVD which is used to solve the least squares problem is updated

during the computation.

Proof. The algorithm shares the same basic structure with the ABM algorithm, the major
change involves the computation of the solution of the inhomogeneous least squares problem
in line 7. This task can be solved e�ciently in O

(
2mn2 − 2

3n
3
)
using the QR decomposition of

A ∈ Matm,n (C) , compare Proposition 2.11.3 and Remark 2.11.4 for details. This process can
again be accelerated if the QR decomposition is not recomputed in each step but updated accord-
ingly. Details on this subject can, for instance, be found in [6, Section 12.5.2]. Via a sequence of
Givens rotations it is possible to achieve the task in O (mn) . After we have computed the QR
decomposition we still need to solve the least squares problem in O

(
mn+ 1

2n (n+ 1)
)
. Assum-

ing that we are in the same setting as when investigating the runtime of the ABM algorithm,
i.e. ε = 0 , we can take for granted that the QR decomposition is at most updated s times, as
in this case the matrix A will have full rank s and no new elements will go into O . For more
details compare Subsection 4.4.2.

4.6. Practical Considerations and Extensions 151

4.5.2 Shortcomings of the BB ABM Algorithm

• Similarly like the AVI and ABM algorithm, in some cases the BB ABM algorithm may
return a set O which is not an order ideal of terms. This means that for at least one term
not all divisors are included in the set O . If in a subsequent computation it is imperative
that the output of the BB ABM algorithm is a proper approximate border basis, this can
be cured by checking during the computation if adding a new term t to O would violate
the order ideal property. If so, we need to form a polynomial from t and the other terms
which are currently in O and add the resulting polynomial to the set G . The coe�cients
of this polynomial are again computed via the solution of the homogeneous least squares
problem (compare Theorem 2.13.6). Of course this will weaken the bounds concerning ε

and δ . The consequences which also apply in this case have already been analysed in
Subsection 4.3.4.

• Even though the BB ABM allows to better bound δ compared to the AVI or ABM al-
gorithm (see Theorem 4.2.2, Theorem 4.3.1 and Remark 4.3.3), the worst case estimates
are still impractical for some applications which require δ to be small.

4.5.3 Implementation in ApCoCoA

The BB ABM algorithm has been implemented by the author in the ApCoCoA C++ lib-
rary ([20]). Currently only a real (double) version of the algorithm is implemented.

For the computation of matrix-matrix and matrix-vector products the BLAS software interface
was used. This allows machine dependent optimisations by simply linking to an optimised
implementation which makes use of the target computer architecture or additional equipment
like graphics cards (e.g. CUDA or OpenCL).

For the solution of the inhomogeneous least squares problem, the LAPACK software library [17]
is used. The command used for the solution of the least squares problem is dgels, which is based
on the QR decomposition.

A detailed description of the parameters of the ApCoCoA implementation of the BB ABM
algorithm can be found in Appendix 8.1.

4.6 Practical Considerations and Extensions

In a practical implementation of these algorithms, it is also important to take care of terms in a
polynomial which, after evaluation on the input data sets, do not contribute signi�cantly to the
total evaluation of the polynomial. These terms have in general no reasonable physical meaning
and should therefore be removed to facilitate interpretation. The fastest but also the most prob-
lematic option to achieve this goal is to remove terms whose coe�cients have a smaller absolute
value than a given number τ ∈ R+ . The obvious shortcoming is that the coe�cient of the term
is only partly related to the actual average value that it contributes to the total evaluation of

152 Chapter 4. The AVI/ABM Family of Algorithms

the polynomial. Consequently, it is a better strategy to look at the average evaluation of the
monomial in question with respect to the points in X .

So to achieve our goal, the following steps could be executed after the ABM, the extended ABM,
or the BB ABM algorithm have terminated:

1. Let τ ∈ R+ be a small positive number. For every monomial m of every polynomial pj in
G calculate v = 1

s ‖evalX (m)‖ . If v ≤ τ delete m from pj .

2. Reproject every polynomial in G that was modi�ed with respect to X . �Reprojecting� has
to be interpreted in the context of the actual algorithm that is used.

4.6.1 Subideal Variants

All algorithms discussed earlier, namely the ABM, extended ABM, and BB ABM algorithm, can
be combined with the subideal border basis concept developed in [32] by Kreuzer and Poulisse.
The main practical advantage of the �subideal approach� is that it is possible to incorporate
additional a priori knowledge. In the setting of exact border bases, this translates mathematically
to an intersection of the ideal of points of X and a given ideal J ⊆ C [x1, ..., xn] . How this maps
to approximate border bases is described in detail in [32]. We start by repeating the most
important de�nitions.

De�nition 4.6.1. Let I ⊂ P = K [x1, ..., xn] be a zero-dimensional ideal, let J = 〈f1, ..., fm〉
be a polynomial ideal of P , where F = {f1, ..., fm} ⊂ P\ {0} , and let O be an order ideal of
terms in Tn whose residue classes form a vector space basis of P/I .

1. For 1 ≤ i ≤ m , let Oi ⊆ O be an order ideal. Then the set OF = O1 · f1 ∪ ...∪Om · fm is
called an F -order ideal. Its elements tfi with t ∈ Oi are called F -terms.

2. If OF is an F -order ideal whose residue classes form a vector space basis of J/ (I ∩ J) ,
we say that the ideal I has an OF -subideal border basis.

De�nition 4.6.2. Let F = {f1, ..., fm} ⊂ P\ {0} , let J be the ideal generated by F , and let
OF be an F -order ideal. We write OF =

{
t1fα1 , ..., tµfαµ

}
with αi ∈ {1, ...,m} and ti ∈ Oαi .

1. The set of all polynomials xitjfαj such that i ∈ {1, ..., n} , j ∈ {1, ..., µ} , and xitjfαj /∈
Oαjfαj is called the border of OF and denoted by ∂OF .

2. Let ∂OF = {b1fβ1 , ..., bνfβν} . A tuple of polynomials G = (g1, ..., gν) is called an OF -
subideal border prebasis if gj = bjfβj−

∑µ
i=1 cijtifαi with cij , ..., cµj ∈ K for 1 ≤ j ≤ ν .

3. An OF -subideal border prebasis is called an OF -subideal border basis of an ideal I if
the elements of G are contained in I and the residue classes of the elements of OF form
a K -vector space basis of J/ (I ∩ J) .

De�nition 4.6.3. Let OF =
{
t1fα1 , ..., tµfαµ

}
be an F -order ideal, let ∂OF =

{b1fβ1 , ..., bνfβν} be its border, and let G = (g1, ..., gν) be an OF -subideal border prebasis.
This means that every gj is of the form gj = bjfβj −

∑µ
i=1 cijtifαi with cij ∈ C .

4.6. Practical Considerations and Extensions 153

For every pair (i, j) such that bifβi , bjfβj are neighbours in ∂OF , i.e. βi = βj and bi , bj are
neighbours in the usual sense, we compute the normal remainder S

′
ij = NROF ,G (Sij) of the S-

polynomial of gi and gj with respect to G . We say that G is an ε-approximate OF -subideal
border basis if ‖S′ij‖ ≤ ε holds for all pairs (i, j) .

De�nition 4.6.4. A polynomial f is called 1-unitary if the 1-norm of its coe�cient vector
equals one: ‖f‖1 = 1 .

Now we adapt the ABM algorithm to obtain a subideal variant of it. All other algorithms can
be modi�ed in a similar fashion.

Algorithm 26: Subideal ABM Algorithm
Input: A tuple of a�ne points X = [p1, ..., ps] with pi ∈ Cn , a polynomial ring

P = C [x1, ..., xn] , a set of ‖·‖1 -unitary polynomials F = {f1, ..., fm} ⊂ P \ {0}
generating an ideal J = 〈F 〉 , a small number ε ≥ 0 , and a degree compatible
term ordering σ on Tn

Output: An approximate OF -subideal border basis G (see [32, Algorithm 5.4] and
Theorem 4.3.1 for details)

1 d := min (deg (f1) , ...,deg (fm)) , OF := [] , G := [] , M ∈ Mats,0 (C) ;
2 L := [t1fα1 , ..., t`fα`] := all terms of degree d in F ∪ ∂OF ordered decreasingly w.r.t. σ ;
3 repeat

4 for i := 1 to ` do

5 A := (evalX (tifαi) ,M) ;
6 B := A∗A ;
7 γ := smallest eigenvalue of B ;
8 if

√
γ ≤ ε then

9 m
′

:= |OF | ;
// We assume that OF = [oF,m′ , ..., oF,1]

10 s :=
(
sm′+1, sm′ , ..., s1

)
:= norm one eigenvector of B w.r.t. to γ ;

11 g := sm′+1tifαi + sm′oF,m′ + . . .+ s1oF,1 ;

12 G := concat(G, [g]) ;

13 else

14 OF := concat([tifαi] ,OF) ;
15 M := A ;

16 end

17 end

18 d := d+ 1 ;
19 L := [t1fα1 , ..., t`fα`] := all terms of degree d in F ∪ ∂OF ordered decreasingly

w.r.t. σ ;

20 until L := [] and d ≥ max (deg (f1) , ...,deg (fm)) ;
21 return (G,OF) ;

We do not discuss or prove the properties of this algorithm. They can be derived by combining
the ideas of the proof of the ABM algorithm (22) and the proofs presented in [32].

154 Chapter 4. The AVI/ABM Family of Algorithms

For the AVI, ABM, extended ABM and BB ABM algorithm subideal variants have been imple-
mented by the author in the ApCoCoA library ([20]). They can be called by putting the pre�x
Sub in front of the non-subideal versions, e.g. SubABM. Additionally, the given ideal F has to
be provided as a parameter.

Remark 4.6.5. If we let F = {1} , the subideal version is identical to the ordinary version of
the algorithms.

Finally, we present a small example which demonstrates the individual steps of the Subideal
ABM algorithm.

Example 4.6.6. Let P = R [x1, x2] , X = {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)} , and ε = 0.2 be
given and let σ be the DegRevLex term ordering. Furthermore, we consider the ideal J = 〈f1〉
with f1 = x1 .

• d = min (deg (f1)) = 1 , OF = [] , G = [] , and M ∈ Mat s,0 (C)

• L = [f1] = [x1] , and i = 1

• A =

0

0

1

1

0.5

 , solve minx ‖Ax‖ subject to ‖x‖ = 1 , A∗A =
(

2.25
)
,
√
γ = 1.5 > ε ,

OF = [x1]

• d = 2 , F ∪ ∂OF =
{
x1, x1x2, x

2
1

}
, L =

[
x1x2, x

2
1

]
, and i = 1

• A =

0 0

0 0

0 1

1 1

0.25 0.5

 , A∗A =

(
1.0625 1.125

1.125 2.25

)
,
√
γ ≈ 0.617 > ε ,

OF = [x1, x1x2] , and i = 2

• A =

0 0 1

0 0 1

1 0 1

1 1 1

0.25 0.25 1

 , A∗A =

 2.0625 1.0625 2.125

1.0625 1.0625 1.125

2.125 1.125 2.25

 ,
√
γ ≈ 0.170 < ε ,

g1 ≈ 0.717x2
1 + 0.021x1x2 − 0.696x1 , G = {g1}

• d = 3 , F ∪ ∂OF =
{
x1, x

2
1x2, x1x

2
2

}
, L =

[
x2

1x2, x1x
2
2

]
, and i = 1

• A =

0 0 1

0 0 1

0 0 1

1 1 1

0.125 0.25 1

 , A∗A =

 1.01562 1.03125 1.0625

1.03125 1.0625 1.125

1.0625 1.125 2.25

 ,
√
γ ≈ 0.083 ,

g2 ≈ −0.702x2
1x2 + 0.712x1x2 − 0.025x1 , G = {g1, g2} , i = 2

4.7. Comparison with other Approaches 155

• A =

0 0 1

0 0 1

0 0 1

1 1 1

0.125 0.25 1

 , A∗A =

 1.01562 1.03125 1.0625

1.03125 1.0625 1.125

1.0625 1.125 2.25

 ,
√
γ ≈ 0.083 ,

g3 ≈ −0.702x1x
2
2 + 0.712x1x2 − 0.025x1 , G = {g1, g2, g3} , i = 3

• d = 4 , L = []

• The algorithm returns the sets G = {g1, g2, g3} and OF = {x1, x1x2} .

4.7 Comparison with other Approaches

4.7.1 Approximate H-Bases

The concept of H-Bases was originally introduced by F. S. Macaulay in [37, page 39]. This
is the reason why some authors, for instance Kreuzer and Robbiano in [46], call H-Bases also
Macaulay bases.
Let K be a �eld of characteristic zero. Given a �nite set of points X ⊂ Kn , it is possible,
similarly like for Gröbner and border bases, to construct H-bases e�ciently with a variant of the
Buchberger-Möller algorithm. Recently it has been shown by Sauer in [41] that H-bases can also
be applied to numerical problems. For that purpose he generalised the concept of H-bases to
approximate H-bases.

Following Möller and Sauer in [38] and Kreuzer and Robbiano in [45] we introduce the following
de�nitions.

Let n ∈ N and let P = K [x1, ..., xn] be the polynomial ring over K in n indeterminates.

De�nition 4.7.1. [H-Basis]

A �nite set G = {g1, ..., gm} ⊂ P \ {0} of polynomials is called an H-basis of the ideal I =

〈g1, ..., gm〉 if for all 0 6= p ∈ I there exist h1, ..., hm ∈ P such that

p =
m∑
i=1

higi and deg (hi) + deg (gi) ≤ p for all 1 ≤ i ≤ m.

De�nition 4.7.2. [Homogeneous Polynomials]

Let
P 0
d = {f ∈ P |deg (t) = d for all t ∈ supp (f)} .

For d ≥ 0, we call the elements of P 0
d the homogeneous polynomials of degree d . Addition-

ally, we let Pd =
⊕d

j=0 P
0
j and P 0 =

⋃
j∈N0

P 0
j .

We de�ne the map Λ : P → P 0 which associates with each f ∈ P its homogeneous leading
term as

Λ (f) (x) =
∑

|α|=deg(f)

fαx
α where f (x) =

∑
|a|≤deg(f)

fαx
α.

156 Chapter 4. The AVI/ABM Family of Algorithms

De�nition 4.7.3. Let F ⊂ P be a �nite set of polynomials in P . Then we de�ne deg (F) =

maxf∈G (deg (f)) . Let λ ∈ [0, 1] , let X ⊂ Kn be a �nite set of points, let I (X) be the associated
vanishing ideal, and let PX = P/I (X) . Then we can consider all elements of I (X) of degree at
most λ · deg (PX) and the ideal generated by these polynomials. For this purpose let

Iλ (X) = 〈f ∈ I (X) | deg (f) ≤ λ (deg (PX) + 1)〉 .

The points X are said to lie on a variety of relative degree λ if Iλ (X) 6= ∅ .

For the sake of simplicity, from now on let K = R .

De�nition 4.7.4. Let 〈·, ·〉 : P ×P → R be an inner product de�ned on the polynomials in P .
Furthermore let f ∈ P 0

j and g ∈ P 0
k . We say that 〈·, ·〉 separates degrees if j 6= k implies

that 〈f, g〉 = 0 . For instance, the Macaulay inner product of the coe�cients given by

〈f, g〉 =
∑
α∈Nd0

fαgα where f (x) =
∑
α∈Nd0

fαx
α and g (x) =

∑
α∈Nd0

gαx
α

separates degrees.

For F ⊂ P and k ∈ N0 we de�ne the vector spaces

V 0
k (F) =

∑
f∈F

gfΛ (f)
∣∣gf ∈ P 0

k−deg f , f ∈ F

 ⊆ P 0
k

and their orthogonal complements with respect to 〈·, ·〉 by

W 0
k (F) = P 0

k 	 V 0
k (F) ,

such that P 0
k = V 0

k (F)⊕W 0
k (F) and

〈
V 0
k (F) ,W 0

k (F)
〉

= 0 . Consequently we de�ne Vk (F) =

⊕kj=0V
0
k (F) and Wk (F) = ⊕kj=0W

0
k (F) .

As pointed out in [38] it is possible to compute H-bases for a given �nite set F ⊂ P in �nitely
many steps. Moreover, it is possible to construct algorithmically an H-basis for Iλ (X) . Further
details about H-bases and how they can be constructed can, for instance, be found in [38], [39]
and [40].

De�nition 4.7.5. Let ε > 0 , let X ⊂ Rn , and let 1 ≤ p ≤ ∞ . Then the p-approximate ideal
of accuracy ε with respect to X is de�ned as

Ip,ε (X) =

{
f ∈ P

∣∣∣∣‖f (X)‖p
‖f‖

≤ ε
}
,

where ‖f‖ is the Euclidean norm of the coe�cient vector of f .

Sauer has pointed out in [41] that these approximate ideals have no particularly nice structure.
For instance, they are no convex sets.

Remark 4.7.6. Please note that if we let p = 2 , then all unitary polynomials (see De�ni-
tion 4.1.2) in Ip,ε (X) vanish ε-approximately with respect to X .

4.7. Comparison with other Approaches 157

De�nition 4.7.7. [Approximate H-Basis]

Let ε > 0 , let X ⊂ Rn , and let 1 ≤ p ≤ ∞ . A �nite set H ⊂ P is called a p-approximate

H-basis of accuracy ε for I (X) if H ⊂ Ip,ε (X) and if it is an H-basis.

De�nition 4.7.8. Let F = {f1, ..., fm} ⊂ P and let X = {p1, ..., ps} ⊂ Rn . We abbreviate the
evaluation (or Vandermonde) matrix of F with respect to X by

F (X) = evalX (f1, ..., fm) ∈ Mats,m (R) .

In [41] Sauer has proposed a special version of the QR decomposition with column pivoting that
plays a crucial role in his approximate H-basis algorithm. We will not give details here, those can
be found in [41, Section 5]. However, we state the properties of the computed QR decomposition
as those are important to understand the approximate H-basis algorithm.

Proposition 4.7.9. Let Fd ⊂ Pd\Pd−1 be a set of polynomials that are orthonormal with respect

to the Macaulay inner product. Furthermore, let Xd ⊆ X ⊂ Rn , and let ε ≥ 0 . Let Fd (Xd) be

the evaluation matrix of Fd with respect to Xd . With the help of the QR decomposition algorithm

that is presented in [41, Section 5], it is possible to compute matrices Qd and Pd such that we

obtain

Qtr
d F

tr
d (Xd)P tr

d =

[
Rd Ad

0 Bd

]
where |r11| ≥ ... ≥ |rkk| > ε and ‖B‖max ≤ ε . Then there exist two sets F+

d and F 0
d of

normalised, linearly independent polynomials in the vector space spanned by Fd , and a subset

X+
d ⊆ Xd with

∣∣X+
d

∣∣ =
∣∣F+
d

∣∣ such that

F+
d

(
X+
d

)
= Rd and F 0

d

(
X+
d

)
= 0

while F 0
d ⊂ I∞,ε (X). We obtain F+

d by multiplying the �rst k rows of Qtr
d with Fd and F 0

d by

multiplying the remaining rows of Qtr
d with Fd . Furthermore, we obtain X+

d by taking the �rst k

points from P tr
d Xd .

Proof. See [41, pages 308-310].

158 Chapter 4. The AVI/ABM Family of Algorithms

The following algorithm was proposed by Sauer in [41].

Algorithm 27: Approximate H-basis Algorithm
Input: A set of a�ne points X = {p1, ..., ps} with pi ∈ Rn , a small number ε ≥ 0

Output: An approximate H-basis for I(X)

1 d := 0 ;
2 F 0

0 := ∅ ;
3 while true do

4 G := a basis of the homogeneous vector space Wd(F
0
0 ∪ ... ∪ F 0

d−1) ;
5 foreach g ∈ G do

6 for k := 0 to d− 1 do

7 g := g − g(X+
k)trR−1

k F+
k ;

8 end

9 end

10 Fd := an orthonormal basis w.r.t. 〈·, ·〉 for the span of G ;
11 Xd := X \ (X+

0 ∪ ... ∪ X+
d−1) ;

12 if Xd = ∅ then return (F+
0 , ..., F

+
d−1, F

0
0 , ..., F

0
d−1) ;

13 Compute F+
d , F

0
d , Rd , and X+

d according to Proposition 4.7.9 using Fd(Xd) and ε as
input;

14 if F+
d = ∅ then return (F+

0 , ..., F
+
d−1, F

0
0 , ..., F

0
d−1) ;

15 d := d+ 1 ;

16 end

Theorem 4.7.10. Let X ⊂ Rn be a �nite set of real points and let ε ≥ 0.

1. The above procedure terminates after a �nite number of steps.

2. If ε = 0, then the polynomials F+
k , k ≤ n , span a degree reducing interpolation space for X

(see [42]). Furthermore, the polynomials F 0
k , k ≤ n , form an H-basis for I (X) .

3. Suppose that the algorithm terminates in degree d and let f ∈ F0 . Then there exists

f̃ ∈ I (X+), where X+ = X+
0 ∪ ... ∪ X+

d , such that

∥∥∥f − f̃∥∥∥ ≤ d∑
k=deg(f)

2|F
+
k |max

j

∥∥∥(Rk)
−1
jj

∥∥∥ .
Proof. See [41, Theorem 4 and Theorem 5].

Remark 4.7.11. As pointed out for instance in [40, Section 4] H-bases for ideals of points I (X)

are also rather stable with respect to perturbations in the input data set X (compare Subsec-
tion 3.2). This is due to the fact that similarly like border bases, they are parametrised by more
parameters than Gröbner bases.

In order to better illustrate the properties of approximate H-bases, of the approximate H-basis
algorithm and to be able to relate them to approximate border bases and the ABM algorithm,
we provide a few simple examples. All computations with the approximate H-basis algorithm

4.7. Comparison with other Approaches 159

where performed by Johannes Czekansky form Giessen University ([43]). In each example we
start with noisy points that either lie approximately on a line in R3 , on a surface in R3 , or on a
parabola in R2 . The parameter ε is chosen for all algorithms in such a way that the underlying
simple geometric relations are uncovered. Here, we only compare the low degree equations and
not the higher degree ones.

Example 4.7.12. Let P = R [x1, x2, x3] and let

X = {(1.005, 0.959, 1.046), (1.979, 1.967, 2.035), (2.962, 3.002, 3.005),

(4.024, 4.008, 3.950), (5.014, 4.986, 5.003), (5.978, 6.004, 5.981),

(6.996, 7.023, 7.026), (8.031, 7.999, 7.966), (9.005, 8.974, 9.048),

(10.022, 9.979, 9.951), (11.005, 11.039, 10.986), (12.023, 12.005, 11.954),

(12.971, 13.044, 12.981), (13.967, 13.963, 14.038), (14.965, 15.009, 15.048),

(15.978, 16.013, 15.984), (16.974, 16.982, 16.987), (18.030, 17.964, 18.027),

(19.010, 19.043, 18.995), (19.984, 19.950, 19.995)}

be a set of points that lie approximately on a line in R3 . First, we apply the ABM algorithm (22)
with ε = 0.16 and the DegRevLex term ordering. The �rst two polynomials in the approximate
border basis are of degree 1 and given by

g1 ≈ x2 − x3 + 0.012,

g2 ≈ x1 − x3 + 0.004.

These equations encode that the points lie approximately on a line. For ε = 0.15 the approximate
H-basis algorithm (27) returns the following polynomials in degree 1 :

g̃1 ≈ −0.059− 0.267x1 − 0.533x2 + 0.801x3,

g̃2 ≈ 0.022− 0.772x1 + 0.617x2 + 0.155x3.

Also these equations encode that the points lie approximately on a line. For instance, if we form
a linear combinations of g̃1 and g̃2 such that we eliminate x1 and x2 we obtain the polynomials
x2 − 1.0021z + 0.0890 and x1 − 1.0015x3 + 0.0426 . Clearly, those are very similar to the ones
that we have obtained with the help of the ABM algorithm. The polynomials found by the ABM
algorithm are sparser compared to g̃1 and g̃2 because we are not looking for almost vanishing
relations in a complete degree but we rather look for almost vanishing relations term by term as
dictated by a term ordering on Tn .

Example 4.7.13. Let P = R [x1, x2, x3] and let

X = {(0.005,−0.040, 1.646), (−0.020, 0.967, 2.835), (−0.037, 2.002, 4.005),

(0.024, 3.008, 5.150), (1.014,−0.013, 1.203), (0.978, 1.004, 2.381),

(0.996, 2.023, 3.626), (1.031, 2.999, 4.766), (2.005,−0.025, 0.848),

(2.022, 0.979, 1.951), (2.005, 2.039, 3.186), (2.023, 3.005, 4.354),

(2.971, 0.044, 0.381), (2.967, 0.963, 1.638), (2.965, 2.009, 2.848),

(2.978, 3.013, 3.984)}

160 Chapter 4. The AVI/ABM Family of Algorithms

be a set of points that lie approximately on a surface in R3 . For ε = 0.08 and the DegRevLex

term ordering the ABM algorithm returns the degree 1 equation

g1 ≈ x1 − 2.860x2 + 2.433x3 − 4.025.

If we normalise g1 by dividing through the norm of its coe�cient vector we obtain

g1

‖g1‖
≈ 0.178x1 − 0.511x2 + 0.434x3 − 0.719.

With the help of the approximate H-basis algorithm we obtain

g̃1 ≈ 0.171x1 − 0.498x2 + 0.432x3 − 0.732

for ε = 0.1. Note that the computed results are again comparable. The di�erence in the coe�-
cient vectors can be explained with the fact that each algorithm minimises a di�erent norm.

Example 4.7.14. Let P = R [x1, x2] and let

X = {(−0.942, 19.487), (−0.766, 17.723), (−0.685, 16.090),

(−0.614, 14.385), (−0.492, 12.971), (−0.397, 11.263),

(−0.272, 10.896), (−0.190, 9.560), (−0.073, 8.506),

(−0.011, 8.080), (0.089, 7.457), (0.204, 7.051),

(0.298, 6.946), (0.397, 6.851), (0.467, 7.075),

(0.574, 6.930), (0.702, 7.274), (0.816, 7.990),

(0.939, 8.872), (0.997, 9.633)}

be a set of points that lie approximately on a parabola in R2 . With the help of the ABM
algorithm we compute the degree 2 polynomial

g1 ≈ x2
1 + 0.093x1x2 + 0.007x2

2 − 1.677x1 − 0.273x2 + 1.747

for ε = 0.09 and the DegRevLex term ordering. If normalise g1 we get

g1

‖g1‖
≈ 0.379x2

1 + 0.035x1x2 + 0.002x2
2 − 0.636x1 − 0.103x2 + 0.662.

For ε = 0.1 we obtain with the help of the approximate H-basis algorithm

g̃1 ≈ 0.589x2
1 + 0.010x1x2 − 0.560x1 − 0.071x2 + 0.579.

Structurally, the polynomials are similar and both results serve their purpose. Once again the
di�erence in the coe�cient vectors is related to the di�erent norms that are minimised by the
algorithms.

Remark 4.7.15. Please note that Algorithm 27 does not require a term ordering on Tn as an
input parameter. This is a di�erence to the Buchberger-Möller algorithm for border bases and the
derived algorithms like the AVI and ABM algorithm. Clearly, an algorithm is easier to use if the
user does not have to choose a term ordering. However, the term ordering allows us to in�uence

4.7. Comparison with other Approaches 161

the computed result as it determines in which order the elements in each degree are processed.
In this way we can tailor term orderings for speci�c applications and obtain sparser solutions. It
is well-known that also border bases exist which are not induced by a term ordering. However,
the border basis transformation algorithm (19), gives us the necessary �exibility to transform a
given border basis into a border basis with respect to an order ideal that is not induced by a
term ordering.

A major conceptual di�erence between the approximate H-basis algorithm and for instance
the ABM algorithm is that the approximate H-basis algorithm produces a sequence of H-
bases F 0

0 , ..., F
k
d−1 where each set of polynomials posses an increasing number of exact zeros

(up to numerical accuracy) with respect to subsets X0, ...,Xd−1 of the input data, such that
X0 ⊆ X1 ⊆ ... ⊆ Xd−1 = X . This is in general not true for the ABM algorithm as the polynomi-
als g in the approximate border basis have no common zeros. It is rather guaranteed that the
Euclidean norm of the evaluation vector is smaller than or equal to ε with respect to the input
data, which means that ‖evalX (g)‖2 ≤ ε for each g ∈ G .

Another major di�erence between the ABM family of algorithms and the approximate H-basis
algorithm is that di�erent norms are minimised during the computation. As pointed out before,
the ABM family of algorithms constructs an approximate O -border basis G such that for each
g ∈ G we have g ∈ I2,ε (X) . However, the approximate H-basis algorithm computes sets of
polynomials F 0

d such that each for each g ∈ F 0
d we have g ∈ I∞,ε (X) . Recall, that an aim

of all the algorithms in question is that they are able to handle noisy input data. However,
the ∞-norm is rather sensitive with respect to outliers which makes it advisable to pre-process
the input data �rst in order to remove them. It should be noted that the approximate H-basis
algorithm can be easily modi�ed by replacing the computation of the modi�ed QR decomposition
with a SVD decomposition of the involved evaluation matrices to return polynomials in I2,ε (X) .
Similarly, we can modify the ABM algorithm by replacing the computation of the solution of the
homogeneous least squares with the computation of the modi�ed QR decomposition of Sauer in
case we want to construct polynomials that minimise the ∞-norm.

Even though we have pointed out some major conceptual di�erences between the algorithms, we
can see from the example computations that both algorithms are capable of recovering simple
geometric relations between the points, which makes both the ABM algorithm and the approx-
imate H-basis algorithm viable for practical applications (compare Section 6.1). A comparison
of the runtime of both algorithms could not be carried out as, at the time of writing, there was
no publicly available version of the approximate H-basis algorithm.

4.7.2 The SOI Algorithm

In [34] Abbott et al. have proposed the so-called Stable Order Ideal (SOI) algorithm which
is also concerned with the computation of border basis of ideals of points in the presence of
(measurement) errors in the input data. However, the SOI algorithm is only concerned with the
computation of a �stable� order ideal O and does not compute (almost) vanishing polynomials.
In this section we will present the underlying ideas of the SOI algorithm and point out the

162 Chapter 4. The AVI/ABM Family of Algorithms

di�erences to the algorithms which were introduced in this thesis. Additionally, we apply the
algorithms to the same input data sets and compare the results.

As in [34] and [49], we introduce the following de�nitions:

De�nition 4.7.16. [Empirical point]

Let p ∈ Rn be a real point and let ε = (ε1, ..., εn) , with each εi ∈ R+
0 , be a vector. We call the

entries of ε the component-wise tolerances. An empirical point is the pair (p, ε) and will
be denoted by p(ε) . The point p is called the speci�ed value and ε is called the tolerance.

De�nition 4.7.17. Let p(ε) be an empirical point. Its ellipsoid of perturbations is de�ned
as

N(p(ε)) = {p̃ ∈ Rn | ‖p̃− p‖W ≤ 1}

where ‖·‖W = ‖W ·‖ is the weighted 2-norm (see [36] for details) de�ned by the diagonal
weight matrix

W = diag (1/ε1, ..., 1/εn) ∈ Matn (R) .

De�nition 4.7.18. Let X(ε) =
{
p

(ε)
1 , ..., p

(ε)
s

}
be a �nite set of empirical points. Each set of

points X̃ = {p̃1, ..., p̃s} that satis�es p̃i ∈ N
(
p

(ε)
i

)
for all 1 ≤ i ≤ s is called an admissible

perturbation of X(ε) .

De�nition 4.7.19. A �nite set of empirical points X(ε) =
{
p

(ε)
1 , ..., p

(ε)
s

}
is called distinct if

N
(
p

(ε)
i

)
∩N

(
p

(ε)
j

)
= ∅

for all 1 ≤ i < j ≤ s .

De�nition 4.7.20. [Stable order ideal]

An order ideal O is called stable w.r.t. X(ε) if the evaluation matrix evalX̃ (O) has full rank
for each admissible perturbation X̃ of X(ε) .

De�nition 4.7.21. [Stable border basis]

Let X(ε) be a �nite set of distinct empirical points, let X be the set of speci�ed values of X(ε) ,
and let O be a quotient basis for the vanishing ideal I (X) . If O is stable w.r.t. X(ε) , then the
O -border basis for I (X) is called stable w.r.t. X(ε) .

The following de�nitions are related to �rst order approximation and �rst order error analysis.
Fur further details please consider [34].

Let e = (e1, ..., em) be indeterminates and let F = R (e) be the �eld of rational functions.

De�nition 4.7.22. [Multivariate Taylor Expansion]

Using multi-index notation the formal Taylor expansion of f ∈ F at 0 is given by

f =
∑
|α|≥0

Dαf (0) eα

α!
,

4.7. Comparison with other Approaches 163

where α = (α1, ..., αm) ∈ Nm0 , |α| = α1 + ... + αm , and α! = α1!...αm! . Furthermore, Dα =

Dα1
1 ...Dαm

m with Dj
i = ∂j/∂eji and eα = eα1

1 ...eαmm .

Each f ∈ F can be decomposed into components of homogeneous degree such that

f =
∑
k≥0

fk where fk =
∑
|α|=k

Dαf (0) eα

α!
,

where D(0...0)f = f . Each polynomial fk is called the homogeneous component of degree k
of f .

This concept can also be extended to matrices that contain entries from F .

De�nition 4.7.23. Let M ∈ Matr,c (F) and let us denote the entries of M by mij . We
de�ne Mk , the homogeneous component of degree k of M , as the matrix whose (i, j) entry
is the homogeneous component of degree k of mij .

Let X(ε) =
{
p

(ε)
1 , ..., p

(ε)
s

}
be a �nite set of distinct empirical points with speci�ed values X ⊂ Rn .

It is possible to express admissible perturbations of X(ε) with the help of sn (error) variables
e = (e11, ..., es1, ..., e1n, ..., esn) .

For this purpose, we let
X̃ (e) = {p̃1 (e) , ..., p̃s (e)} ,

where p̃i (e) = (pi1 + ei1, ..., pin + ein) . The coordinates of each perturbed point p̃i (e) are
elements of the polynomial ring R [e] . Naturally, X̃ is an admissible perturbation of X(ε) if
the condition ‖(ei1, ..., ein)‖W ≤ 1 on the values of the ekj holds for all 1 ≤ i ≤ s , where
W = diag (1/ε1, ..., 1/εn) .

164 Chapter 4. The AVI/ABM Family of Algorithms

After these de�nitions we are now able to present the SOI algorithm.

Algorithm 28: Stable Order Ideal (SOI) Algorithm

Input: A set of distinct empirical points X(ε) =
{
p

(ε)
1 , ..., p

(ε)
s

}
with speci�ed values

X ⊂ Rn and tolerance ε = (ε1, ..., εn) , γ ≥ 0 , (error) variables e = (e11, ..., esn) ,
and a degree compatible term ordering σ on Tn

Output: An order ideal O

1 O := [1] , M0 := (1, ..., 1)tr ∈ Mats,1 (R) , M1 := (0, ..., 0)tr ∈ Mats,1 (R [e]) ;
2 L := [t1, ..., t`] = all terms of degree 1 ordered decreasingly w.r.t. σ , C := [] ;
3 while L 6= [] do

4 for i := 1 to ` do

5 v0 := homogeneous components of degree 0 of ti(X̃(e)) ;
6 v1 := homogeneous components of degree 1 of ti(X̃(e)) ;

7 α0 :=
(
M tr

0 M0

)−1
M tr

0 v0 ;

8 α1 :=
(
M tr

0 M0

)−1 (
M tr

0 v1 +M tr
1 v0 −M tr

0 M1α0 −M tr
1 M0α0

)
;

9 %0 := v0 −M0α0 ;
10 %1 := v1 −M0α1 −M1α0 ;
11 Ct ∈ Mats,sn := coe�cient matrix of %1 ;
12 k := the maximal integer such that σk , the minimal singular value of C1:k,1:sn , is

greater than ‖ε‖ ;
13 %̃ := %1:k ;
14 C̃t := C1:k,1:sn ;

// C̃+
t is the pseudoinverse of C̃t

15 δ̃ := C̃+
t %̃ ;

16 if ‖δ̃‖ > (1 + γ) ‖ε‖ then
17 M0 := (v0,M0) ;
18 M1 := (v1,M1) ;
19 O :=concat([ti] ,O) ;
20 Add to L all elements of {x1ti, ..., xnti} which are not divisible by an element

in L or C ;

21 else

22 C := concat([ti] , C) ;
23 Remove all multiples of ti from L ;

24 end

25 end

26 end

27 return O ;

Theorem 4.7.24. This is an algorithm which stops after �nitely many steps and returns an

order ideal O ⊂ Tn . If γ satis�es supδ∈Dε ‖%2+ (δ)‖ ≤ γ
√
s ‖ε‖2 , then O is an order ideal

stable w.r.t. to the set of empirical points X(ε) . If |O| = s , then I (X) has a corresponding

stable border basis w.r.t. X(ε) .

4.7. Comparison with other Approaches 165

Proof. Compare [34, Theorem 15].

Remark 4.7.25. As pointed out in [34, page 891], it is necessary to chose a starting value for γ
even though supδ∈Dε ‖%2+ (δ)‖ may be unknown. As a heuristic Abbott et al. suggest to use
a value of γ � 1 in case % is approximated well by its homogeneous components of degree 0
and 1.

The approach of the SOI algorithm is quite di�erent compared to the AVI/ABM type algorithms.
The whole concept of stable border bases assumes that all the points which are in the input data
set X are meaningful and that it is possible to associate a priori a maximal amount of noise
with each coordinate of the points. In reality one can expect the measurement error to have
a Gaussian distribution in each coordinate. However, this means that it is not easily possible
to assign a maximal tolerance. The SOI algorithm therefore heavily relies on a preprocessing
phase of the data points which tries to eliminate outliers and tries to cluster points which are
close to each other. Some strategies for data clustering and preprocessing which are supposed
to work well together with the SOI algorithm are discussed by Abbott et al. in [33]. It should
be noted that preprocessing can be quite costly and depending on the algorithm which was used
for clustering it can destroy some relations between the original input points. Additionally, the
cost of the SOI algorithm itself is signi�cantly higher than e.g. the cost of the ABM algorithm
which is another reason why preprocessing the data is necessary before the SOI algorithm can
be applied.
From a theoretical point of view is is nice that the stability of the border basis can be controlled
in a much more direct way compared to the algorithms presented in this thesis. Nevertheless it
may be a lot more di�cult than for the AVI or ABM algorithm to determine a suitable ε for
which a stable border basis actually exists.

Remark 4.7.26. The behaviour we just explained also �nds its resemblance in the fact that
SOI will in general return an order ideal O which contains about s elements. This is not true
for the ABM algorithm where it is expected for practical values of ε that |O| � s .

Remark 4.7.27. In case the SOI algorithm returns a set O such that |O| = s the associated
stable border basis for I (X) is an exact border basis in the usual sense.

4.7.3 The Numerical Buchberger-Möller Algorithm (NBM)

Another approach, the so-called numerical Buchberger-Möller algorithm was presented by Fassino
in [35]. It does not deal with approximate border bases but with approximate Gröbner bases.
Before we can present the algorithm we need to introduce a few more abbreviations and de�nitions
in addition to those from Subsection 4.7.2. Let t =

∏n
i=1 x

ei
i be a term and let ε = (ε1, ..., εn)

be a tolerance. Then we let ∂kt = ∂t
∂xk

, ∂kO = {∂kt |t ∈ O} , and εM = max {ε1, ..., εn} .

De�nition 4.7.28. Let X(ε) be a �nite set of empirical points with X = {p1, ..., ps} , pi =

(ci,1, ..., ci,n) , and ε = (ε1, ..., εn) . Then we denote by X(δ)
S the set of scaled empirical points

with XS = {p̄1, ..., p̄s} , p̄i = (d1ci,1, ..., dnci,n) , (d1, ..., dn) ∈ Rn and δ = (|d1| ε1, ..., |dn| εn) .

166 Chapter 4. The AVI/ABM Family of Algorithms

By X(δ)
T we denote the set of translated empirical points with XT = {p̂1, ..., p̂s} , p̂i =

(ci,1 + v1, ..., ci,n + vn) , (v1, ..., vn) ∈ Rn and δ = ε .

Algorithm 29: Numerical Buchberger-Möller (NBM) Algorithm

Input: A set of distinct empirical points X(ε) =
{
p

(ε)
1 , ..., p

(ε)
s

}
with speci�ed values

X ⊂ Rn and tolerance ε = (ε1, ..., εn) , and a degree compatible term ordering σ
on Tn

Output: An order ideal O and a polynomial set G

1 O := [1] , G := [] , A := (1, ..., 1)tr ∈ Mats,1 (R) ;
2 L := [t1, ..., t`] := all terms of degree 1 ordered decreasingly w.r.t. σ ;
3 while L 6= [] do

4 for i := 1 to ` do

5 m := |O| ;
6 b := evalX (ti) ;
7 s := (sm, sm−1, ..., s1) := solution of the least squares problem mins ‖As− b‖ ;
8 % := ‖As− b‖ ;
9 τ := ‖Is −AA+‖

∑n
k=1 εk ‖evalX (∂kt)− evalX (∂kO) s‖ ;

10 if % < τ then

// We assume that O = [om, ..., o1]

11 g := ti − smom − ...− s1o1 ;
12 G := concat(G, [g]) ;

13 else

14 O := concat([ti] ,O) ;
15 A := (b, A) ;

16 end

17 end

18 end

19 return (G,O) ;

Theorem 4.7.29. This is an algorithm which stops after a �nite number of steps. The sets G

and O returned by the algorithm have the following properties:

1. The NBM algorithm computes the same order ideal O for all the input sets X(ε) , X(δ)
S ,

and X(τ)
T , which means that the result is invariant to scaling and translation of the input

data.

2. If g is a polynomial in G with coe�cient vector c and X̃ is an admissible perturbation

of X , then

‖evalX (g)‖
‖c‖

< sdeg (g)

n∑
k=1

εk

and ∥∥evalX̃ (g)
∥∥

‖c‖
< 2s deg (g)

n∑
k=1

εk +O
(
ε2
M

)
.

4.7. Comparison with other Approaches 167

3. If the zero set of G is an admissible perturbation X̂ such that evalX̂ (O) has full rank,

then G is the σ -Gröbner basis of I(X̂) .

4. If |O| = s , each polynomial g in G corresponds to one polynomial h in the O -border basis
of I (X) . The support of g is a subset of the support of h . If c is the coe�cient vector

of g and d the coe�cient vector of h, then

‖d− [c, 0, ..., 0]‖
‖c‖

≤ deg (g) ‖ evalX (O) ‖‖ evalX (O)−1 ‖
n∑
k=1

εk

holds.

Proof. Proofs for these properties can be found in [35, Sections 4 and 5].

Remark 4.7.30. Unlike the order ideal computed by the SOI algorithm, the order ideal com-
puted by the NBM algorithm is in general not stable with respect to X(ε) .

Remark 4.7.31. The algorithm and its properties are built on �rst order error analysis of the
least squares problem. It must be noted that the underlying assumptions only hold if the relative
error in the data is small and thus higher order error components in O

(
ε2
m

)
can be neglected.

The most obvious di�erence between the SOI and the NBM algorithm is that the latter is also
concerned with computing almost vanishing polynomials rather than just computing an order
ideal. As stated in [35, Section 3] it is assumed again that the input dataset X has been
preprocessed by e.g. one of the algorithms presented by Abbot et al. in [33]. Unlike the SOI
algorithm, the NBM algorithm also returns a set G of almost vanishing polynomials. The norm
of the evaluations of the polynomials gi in G does depend on the degree of the polynomial,
thus making the polynomials increasingly unreliable if high degree relations are present in the
set X . For example, in the ABM algorithm it is guaranteed that all polynomials returned by the
algorithm vanish ε-approximately. The output of the NBM algorithm is invariant with respect
to scaling and translation of the input data. This is not true for the ABM family of algorithms,
where the scaling of the input data allows to assign individual weights to the coordinates of the
points.

4.7.4 Numerical Comparison

We will �rst start with a few simple examples which were given either in this thesis or by Abbott
and Fassino in [34] or [35]. Note that a comparison is not always straightforward because of
the di�erent meaning of the parameters (e.g. ε) in each of the approaches. For the example
computations the versions of the algorithms which are available in ApCoCoA 1.8 were used. Later
on we will evaluate the performance of the algorithms using both unstructured and structured
input data.

Example 4.7.32. Let us apply the SOI, the NBM and the ABM algorithm to the input data
of Example 4.3.8. This means that P = R [x1, x2] and

X = [(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)] .

168 Chapter 4. The AVI/ABM Family of Algorithms

If we let σ be the DegRevLex term ordering and ε = 0.2 , then the ABM algorithm computes the
sets O = [1, x2, x1, x1x2] and G = [g1, g2, g3, g4] with

g1 ≈ −0.697x2
1 + 0.715x1 − 0.044,

g2 ≈ 0.685x2
2 + 0.041x1x2 − 0.724x2 − 0.021x1 + 0.054,

g3 ≈ −0.698x2
1x2 + 0.715x1x2 − 0.008x2 − 0.008x1 − 0.013,

g4 ≈ −0.698x1x
2
2 + 0.715x1x2 − 0.008x2 − 0.008x1 − 0.013.

If we apply the SOI algorithm with a comparable value of ε = (0.15, 0.15) we obtain the set
O = [1, x2, x1, x1x2] which is identical to the result of the ABM algorithm. The SOI algorithm
does not return an approximate border basis in this case. The actual implementation in CoCoA
returns a set of almost vanishing relations which are

r1 ≈ 0.707x2
2 − 0.707x2 + 0.035,

r2 ≈ 0.707x2
1 − 0.707x1 + 0.035.

We chose the parameter ε = (0.249, 0.251) of the NBM algorithm such that the set O returned
by the algorithm contained also four elements. We obtained O =

[
1, x2, x1, x

2
1

]
and the almost

vanishing polynomials

r1 ≈ 0.707x2
2 − 0.707x2 + 0.035,

r2 ≈ 0.8x1x2 − 0.4x1 − 0.4x2 + 0.2,

r3 ≈ 0.535x3
1 − 0.802x2

1 + 0.267x1.

In case we pick smaller values for ε , i.e. such that ‖ε‖ becomes smaller compared to the
previously used values, we obtain identical results for all algorithms. For ε = 0.1 the ABM
algorithm, and for ε = (0.1, 0.1) the SOI and the NBM algorithm return O =

[
1, x2, x1, x

2
2, x1x2

]
.

The set G contains an exact border basis and is identical for all algorithms.

Example 4.7.33. The following input data is taken from Example 6.4. in [35]. Let P =

R [x1, x2] , X = [(1, 6) , (2, 3) , (2.449, 2.449) , (3, 2) , (6, 1)] and let σ be the DegRevLex term
ordering. If we apply the SOI or NBM algorithm we get virtually identical results for ε =

(0.018, 0.018) . We obtain O =
[
1, x2, x1, x

2
2, x

3
2

]
and the almost vanishing polynomials

r1 ≈ x1x2 − 0.001x2 − 5.995,

r2 ≈ x2
1 + 0.991x2

2 − 11.940x1 − 11.885x2 + 46.544,

r3 ≈ x4
2 − 14.477x3

2 + 76.724x2
2 − 14.862x1 − 188.419x2 + 214.344.

The zero set of r1 is a hyperbola and the zero set of r2 is an ellipse which captures possible
geometric relations between the input points. If we apply the ABM algorithm for ε = 0.05 we
obtain O =

[
1, x2, x1, x

2
2

]
together with the approximate border basis given by

g1 ≈ x1x2 − 0.001x2 − 5.995,

g2 ≈ x2
1 + 0.999x2

2 − 11.961x1 − 11.961x2 + 46.735,

g3 ≈ x3
2 − 12.043x2

2 + 6.202x1 + 47.503x2 − 73.656,

g4 ≈ x1x
2
2 − 0.001x1 − 6.003x2 + 0.012.

4.7. Comparison with other Approaches 169

We can observe that r1 and g1 and r2 and g2 are almost identical. The di�erence in the coe�-
cients can be explained by the fact that SOI and NBM solve the ordinary least squares problem
and ABM solves the homogeneous least squares problem. However, this example demonstrates
that similar results can be obtained with all algorithms if the parameters are chosen suitably.

All timings which we will now present were obtained on an Intel Pentium Dual-Core Processor
with 2.17 GHz and 3 GB of Ram running ApCoCoA 1.8 on Windows 7. If a computation did
not �nish within two hours it was cancelled and no timings were obtained.

Example 4.7.34. The following comparison is based on test data consisting of random generic
three dimensional points. With their help we want to evaluate the raw performance of the
algorithms. As the input points are generic (generated via the function GenericPoints() in
CoCoA), it is not reasonable to apply any preprocessing algorithms, as information would be
lost. The parameter ε is always chosen in such a way that the output of the algorithms resembles
an exact border basis up to rounding errors caused by �oating point arithmetic. In Table 4.1 the
runtime of the algorithms in seconds depending on the number of generic points can be found.
In Figure 4.2 the performance of the NBM and ABM algorithm are visualised in a diagram.
Clearly, in this scenario the ABM algorithm is faster than the SOI and the NBM algorithm by
at least one order of magnitude. For datasets containing more than 100 points the performance
of the NBM and especially the SOI algorithm is impractical for most applications.

15 20 25 30 35 40 45 50

SOI 21.14 83.25 236.49 552.35 1212.62 2843.68 6010.79 -

NBM 1.14 3.23 6.34 11.31 21.48 30.64 50.74 73.74

ABM 0.09 0.12 0.15 0.18 0.21 0.25 0.30 0.38

Table 4.1: Performance of the SOI, NBM and ABM algorithm

Figure 4.2: Graphical depiction of the performance of the NBM and ABM algorithm

Example 4.7.35. Finally we compare the performance of all three algorithms by applying them
to s points which lie approximately on a parabola. The two dimensional points are obtained by
evaluating the polynomial f = 7.5x2

1 − 6x1 + 8 on the coordinates
[
−1 + 2

s , ...,−1 + (s−1)2
s , 1

]
.

170 Chapter 4. The AVI/ABM Family of Algorithms

Afterwards Gaussian noise is added. So we let

X ≈
[(
−1 +

2

s
, eval−1+ 2

s
(f)

)
,, (1, eval1 (f))

]
.

For all algorithms the parameter ε is chosen in such a way that the parabola is approximately
recovered and either shows up in the approximate border basis (ABM) or in the almost vanishing
polynomials (SOI, NBM). Furthermore, we let σ be the DegRevLex term ordering. In Table 4.2 we
can see the runtime of the individual algorithms. Because we are only looking at two dimensional
data and because the geometrical relationship that we are looking for is in fact quite simple all
algorithms take less time, compared to the previous example, to return a result. The runtime of
the NBM algorithm improves signi�cantly in this situation. However, it still takes considerably
more time than the ABM algorithm (compare Figure 4.3). The SOI algorithm can also in this
case not be applied to datasets containing more than 110 points. The runtime of the NBM
algorithm remains acceptable up to 500 points. For larger input sets preprocessing of the input
data as suggested in [33] is a hard requirement. Clearly, the ABM algorithm scales better with a
growing number of input points as for s = 500 the ABM algorithm takes 1.12 seconds to obtain
an approximate border basis which also contains the parabolic relation while the NBM algorithm
takes 834.20 seconds.

15 20 25 30 35 40 45 50

SOI 11.03 81.03 218.04 501.58 1279.04 2178.06 5430.79 -

NBM 0.43 1.06 1.25 3.04 7.06 9.06 14.07 17.83

ABM 0.05 0.06 0.09 0.12 0.16 0.21 0.26 0.32

Table 4.2: Performance of the SOI, NBM and ABM algorithm

Figure 4.3: Graphical depiction of the performance of the NBM and ABM algorithm

171

5
The Rational Recovery Problem

Contents

5.1 Multiplication Matrices for Border Bases 172

5.2 The Eigenvector Algorithm . 181

5.3 Simultaneous Quasi-Diagonalisation . 190

5.4 A Sum of Squares Heuristic for the Rational Recovery Problem 244

So far we have seen how approximate border bases can be constructed with the help of the
algorithms which we have presented in Chapter 4. Additionally, we have discussed why we
are speci�cally interested in performing approximate interpolation and why this leads us to ap-
proximate border bases. However, a serious shortcoming of approximate border bases remained
unmentioned: the lack of an extensive body of theory. For instance, it is not easily possible
to transfer the concepts of ideal membership, syzygies or graded Betti numbers (compare [45]
and [46] for their proper algebraic de�nitions) to our approximate setting. The actual complic-
ation lies in the fact the the ideal generated by an ε-approximate border bases is in general the
unit ideal (see Section 4.1).

In this chapter we study a possible solution to this problem, namely to construct exact border
bases which are �close� to the approximate ones with respect to the norms of the di�erences of
the coe�cient vectors of the corresponding polynomials. What we precisely mean by close will
become more clear soon. When constructing these close by border bases we limit ourselves to
border bases that have rational coe�cients. One of the reasons is that we use numerical methods
that are only capable of computing approximations of real or complex numbers. Hence, we refer
to the problem of computing an exact close by border basis for a given approximate one as a
rational recovery problem.

First of all we introduce multiplication matrices which characterise both exact and approximate
border bases. Then we describe how �almost exact� multiplication matrices of an approxim-
ate O -border basis G , as they show up when e.g. the Buchberger-Möller algorithm for border
bases (18) is implemented in �oating point arithmetic, can be transformed into exact multiplica-
tion matrices. Please note that already in this rather tame case the zero set Z (〈G〉) is generally

172 Chapter 5. The Rational Recovery Problem

empty and the ideal generated by G is the unit ideal (compare Section 4.1). The technique pro-
posed originally by Auzinger and Stetter in [48] and slightly modi�ed by Kreuzer et al. in [44]
involves forming a random linear combination A` of the transposed multiplication matrices and
retrieving, via the eigenvectors of A` , a set of points X̃ which are treated as the zero set of a new
exact O -border basis G̃ . Given X̃ and O we can easily compute G̃ . For instance we can �rst
use the Buchberger-Möller algorithm for border bases and afterwards we can apply the Border
Basis transformation algorithm (19) to its result. A detailed description of the whole compu-
tational procedure and the corresponding theory is contained in Section 5.2. Unfortunately, it
will become apparent at the end of Section 5.2 that these techniques cannot be used any more
whenever we are dealing with a δ -approximate border basis for which δ is signi�cantly larger
than εmachine . This is is illustrated via several example computations. However, as a central
result of this chapter we show in Section 5.3 how these problems can be solved by using a newly
developed algorithm for simultaneous quasi-diagonalisation of the multiplication matrices.

Finally, we detail a rather di�erent approach to the problem. The heuristic method which we
propose forms a sum of squares expression from the polynomials in G of our given approximate
O -border basis and computes the local minima of this expression. Some of them are used to
form a new set of points X̃ for which we compute an exact O -border basis, with the same steps
that we had sketched already above. We give numerical evidence that the proposed heuristic is
well-suited for practical computations.

All the algorithms which we present in this chapter have in common that they try to solve the
rational recovery problem via retrieving a suitable set of points for which we compute an exact
border basis with respect to O . However, it should be noted that the problem can also be
addressed by directly transforming the approximate border basis. This is one possible direction
of future research that we will investigated in [44].

5.1 Multiplication Matrices for Border Bases

In this section we discuss alternative characterisations of border bases. Instead of looking dir-
ectly at an ideal I it is also possible to investigate its properties by looking at the quotient
algebra P /I . One way to do this is via so-called formal multiplication matrices.

De�nition 5.1.1. [Formal multiplication matrix]

Let P = K [x1, ..., xn] , let O = {t1, ..., tµ} be an order ideal, let ∂O = {b1, ..., bν} be its
border, and let G = {g1, .., gν} be an O -border prebasis, such that gj is of the form gj =

bj −
∑µ

i=1 αijtj . For every 1 ≤ r ≤ n we de�ne the r -th (formal) multiplication matrix

Ar =
(
ξ

(r)
kl

)
∈ Matµ (K) of G by

ξ
(r)
kl =

{
δki, if xrtl = ti

αkj , if xrtl = bj .

Here δki denotes the Kronecker delta.

5.1. Multiplication Matrices for Border Bases 173

The idea behind multiplication matrices can be summarised in the following way. If we represent
an element e of 〈O〉K in terms of its coe�cient vector v , Arv encodes the multiplication of e
by the indeterminate xr followed by a reduction by the elements in G. Consequently, the result
will stay in 〈O〉K .

The following example will illustrate the concept of multiplication matrices.

Example 5.1.2. Let P = R [x1, x2] , let O =
{

1, x1, x2, x1x2, x
2
2

}
be an order ideal, and let

G = {g1, ..., g4} be an O -border prebasis with

g1 = x2
1 − x2

2 − x1 + x2,

g2 = x2
1x2 − x1x2 − 0.5x2

2 + 0.5x2,

g3 = x1x
2
2 − x1x2 − 0.5x2

2 + 0.5x2,

g4 = x3
2 − 1.5x2

2 + 0.5x2.

Following the de�nition of formal multiplication matrices we obtain:

A1 =

0 0 0 0 0

1 1 0 0 0

0 −1 0 −0.5 −0.5

0 0 1 1 1

0 1 0 0.5 0.5

 A2 =

0 0 0 0 0

0 0 0 0 0

1 0 0 −0.5 −0.5

0 1 0 1 0

0 0 1 0.5 1.5

 .

If we now multiply the element x1 + x1x2 by x1 and reduce the result via the elements in G we
obtain x2

1 + x2
1x2

G→ x1 − 1.5x2 + x1x2 + 1.5x2
2 . Now x1 + x1x2 corresponds to the coe�cient

vector (0, 1, 0, 1, 0)tr which we have to multiply by A1 . We obtain
0 0 0 0 0

1 1 0 0 0

0 −1 0 −0.5 −0.5

0 0 1 1 1

0 1 0 0.5 0.5

0

1

0

1

0

 =

0

1

−1.5

1

1.5

which is the coe�cient vector corresponding to x1 − 1.5x2 + x1x2 + 1.5x2

2 .

With the help of multiplication matrices it is possible to give the following alternative charac-
terisation of border bases.

Theorem 5.1.3 (Characterisation of border bases). An O -border prebasis G is an O -border
basis of 〈G〉 if and only if the formal multiplication matrices are pairwise commuting, i.e.

AiAj = AjAi

for all 1 ≤ i < j ≤ n .

Proof. See, for instance, [22, Proposition 16].

174 Chapter 5. The Rational Recovery Problem

Example 5.1.4. Let us continue with Example 5.1.2. Then

A1A2 =

0 0 0 0 0

0 0 0 0 0

0 −0.5 −0.5 −0.75 −0.75

1 1 1 1 1

0 0.5 0.5 0.75 0.75

 = A2A1.

This shows that G is in fact a border basis because all multiplication matrices are pairwise
commuting.

Next, we collect a few well-known results about commuting matrices.

Theorem 5.1.5. Let A1, ..., An ∈ Matm (C) be pairwise commuting matrices. Then the matrices

preserve each others generalised eigenspaces.

Proof. Let V = (v1, ..., vo) ∈ Matm,o (C) be a matrix containing as its columns a basis of the
generalised eigenspace (compare De�nition 2.3.61) associated to an eigenvalue λ of Ai , so each vi
is a (generalised) eigenvector belonging to λ . This means that, for some k ≥ 1 , we have

(Ai − λIm)k V = 0m,o ⇐⇒
(Ai − λIm) (Ai − λIm)k−1 V = 0m,o ⇐⇒

Ai (Ai − λIm)k−1 V = λ (Ai − λIm)k−1 V.

Now we know that for an arbitrary Aj

AiAj (Ai − λIm)k−1 V = AjAi (Ai − λIm)k−1 V =⇒
AiAj (Ai − λIm)k−1 V = λAj (Ai − λIm)k−1 V =⇒

(Ai − λIm)Aj (Ai − λIm)k−1 V = 0m,o.

This shows that im
(
Aj (Ai − λIm)k−1 V

)
⊆ ker (Ai − λIm) = im

(
(Ai − λIm)k−1 V

)
which

concludes the proof.

Theorem 5.1.6. The following statements are equivalent:

1. The matrices A1, ..., An ∈ Matm (C) are diagonalisable and pairwise commuting.

2. There exists a basis of common eigenvectors (v1, ..., vm) = P ∈ Matm (C) such that

P−1AiP is in diagonal form for all 1 ≤ i ≤ n .

Proof. First, we show that (1) implies (2). For 1 ≤ i < j ≤ n , we know that AiAj = AjAi . Let λ
be an eigenvalue of Aj . Then we denote by V = (v1, .., vp) ∈ Matm,p (C) a matrix containing a
basis of the eigenvectors associated with λ as its columns, which means that (Aj − λIm) vq = 0m

for all 1 ≤ q ≤ p . So we know that dim (ker (Aj − λIm)) = p . Additionally, we observe that for
all 1 ≤ i < j ≤ n we have

AjAiV = AiAjV = λAiV. (5.1)

5.1. Multiplication Matrices for Border Bases 175

Now suppose that Aivq = 0m for some q ∈ {1, ..., p} , which would imply that vq is an eigenvector
of Ai with respect to the eigenvalue 0. This would mean that vq is a common eigenvector of Ai
and Aj . So let us assume w.l.o.g. that Aivq 6= 0m for all 1 ≤ q ≤ p . From Equation 5.1 follows
that the row-vectors of AiV are eigenvectors of Aj with respect to the eigenvalue λ . Because
of this we can conclude that im (AiV) ⊆ ker (Aj − λIm) = im (V) . As Ai is diagonalisable
we also know that im (AiV) = im (V) and that we can choose a basis of eigenvectors for this
subspace of im (Ai) . Obviously, these are also eigenvectors of Aj . They may in fact be di�erent
from v1, ..., vp but it su�ces that they are in the span of V . If we repeat this process for every
eigenvalue λ of Aj we can construct a basis transformation matrix P = (ṽ1, ..., ṽm) ∈ Matm (C)

which simultaneously diagonalises the matrices A1, ..., An .

Now we show that statement (2) implies (1). Let Ak = PDkP
−1 be the eigendecomposition

of Ak . We thus obtain

AiAj −AjAi = PDiP
−1PDjP

−1 − PDjP
−1PDiP

−1

= PDiDjP
−1 − PDjDiP

−1

= PDiDjP
−1 − PDiDjP

−1

= 0m,m

for all 1 ≤ i < j ≤ n , which shows that the matrices A1, ..., An are pairwise commuting.

Remark 5.1.7. As we can see from the proof of Theorem 5.1.6 the matrix P may not be unique
even if we identify matrices which only di�er in the order of the eigenvectors. For instance,
let n = 2 , let A1 = Im , and let A2 = 2Im . Clearly the matrices A1 and A2 are commuting and
diagonalisable. In fact for every invertible matrix P ∈ GLm (C) , the matrix products P−1A1P

and P−1A2P are diagonal.

It should be noted that in general, which means for non-diagonalisable matrices, it is not possible
to �nd a basis transformation P such that the matrices A1, ..., An can be brought simultaneously
into Jordan Normal Form. An example can be found in [50].

Now we explain how to compute the common eigenvectors of a set of matrices in the exact case.
Later on we will present an improved method which has more favourable numerical properties
and also works if the matrices are not exactly commuting.

Remark 5.1.8. Let A1, ..., An and P be chosen as in Theorem 5.1.6. This means that P−1AiP =

Λi ∈ Matm (C) is diagonal for 1 ≤ i ≤ n . Additionally let c = (c1, ..., cn) ∈ Rn with each ci 6= 0 .
Then we observe that

n∑
i=1

ciAi =

n∑
i=1

ci
(
PΛiP

−1
)

= P

(
n∑
i=1

ciΛi

)
P−1.

This means that we can form a random linear combination of the matrices Ai and compute its
(not necessarily unique) eigendecomposition to obtain the common eigenvectors of the matrices
A1, ..., An .

176 Chapter 5. The Rational Recovery Problem

Another important fact is that, for a given O -border basis G , it is possible to obtain the roots
of G via the left-hand common eigenvectors of the multiplication matrices. Compare also [49,
Subsections 2.4.2 and 2.4.3].

Theorem 5.1.9. Let P = C [x1, ..., xn], let O = {t1, ..., tµ} be an order ideal, and let G =

{g1, ..., gν} be on O -border basis for a 0-dimensional ideal I ⊆ P such that Z (I) = {p1, ..., ps} .
Additionally, let A1, ..., An be the associated multiplication matrices and let us denote by pik ∈ C
the k -th coordinate of the point pi . Then there exist s common left-hand eigenvectors v1, ..., vs

of the multiplication matrices A1, ..., An such that viAk = pikvi for all pik with 1 ≤ i ≤ s and

1 ≤ k ≤ n .

Proof. Let us recall that each gj ∈ G is of the form gj = bj −
∑µ

i=1 cjiti with cji ∈ C , ti ∈ O ,
and bj ∈ ∂O . By ai,k we denote the k -th column of the matrix Ai . Recall from De�nition 5.1.1
that each column of a matrix Ak contains either all the coe�cients cji of a polynomial gj or it
encodes a trivial relation between the elements in the order ideal O in form of a unit vector. Note
that the coe�cients cji of each polynomial gj ∈ G show up in at least one of the multiplication
matrices. Now let p ∈ Cn be some point in Cn and let v = evalp (O) = evalp (t1, ..., tµ) .
Then for all gj ∈ G the complex number evalp (

∑µ
i=1 cjiti) is (at least) one entry of the vector-

matrix products vA1, ..., vAn as the cji belonging to the polynomial gj are stored as columns
in the multiplication matrices. Some of the entries of vA1, ..., vAn are not associated with a
polynomial gj ∈ G . As pointed out earlier, the multiplication matrices also encode via a column
unit vector all trivial relations between the elements in O of the form tkxi − tj = 0 where
tk, tj ∈ O . A point p satis�es these trivial equations in terms of the multiplication matrices if
the equality v · ai,k = evalp (xi) evalp (tk) holds. Note that in this case ai,k is just some unit
vector in Cn . Furthermore, a point p is contained in the zero set of I if v (cj1, ..., cjµ)tr =

evalp (bj) = evalp (xitk) holds for all 1 ≤ j ≤ ν . If we pay attention to the structure of the
multiplication matrices, we obtain once more

v · ai,k = evalp (t1, ..., tµ) ai,k = evalp (xi) evalp (tk) .

Extending our view to all columns of all Ai simultaneously, we can observe that vAi = evalp (xi) v

for all 1 ≤ i ≤ n must hold. This means that p is a common zero of all polynomials in G if
v = evalp (t1, ..., tµ) is a common left-hand eigenvector of the matrices Ai with respect to the
eigenvalues λi = evalp (xi) . As the eigenvectors are just evaluations of the terms in O with
respect to a point p , it is excluded that two distinct eigenvectors can lead to the same point p ,
which is given by the associated eigenvalues of the multiplication matrices. In other words this
means that there is no joint left eigenspace of dimension > 1 . Because of the same reasoning,
every point p in Z (I) gives rise to a simultaneous left-hand eigenvector v = evalp (t1, ..., tµ)

of A1, ..., An . So the number of the di�erent points in Z (I) , namely s , and the number of the
distinct common left-hand eigenvectors is identical.

This means that if we are able to compute the common eigenvectors for a set of matrices,
Theorem 5.1.9 suggests an e�cient way how to obtain the roots of a border basis. First we
compute the left-hand common eigenvectors v1, ..., vs , with 1 ≤ s ≤ µ , of the corresponding

5.1. Multiplication Matrices for Border Bases 177

multiplication matrices A1, ..., An . Then we construct the associated eigenvalues viAk = λikvi

in case this has not already happened during the computation of the left-hand eigenvectors. In
this way we obtain pi = (λi1, ..., λin) for 1 ≤ i ≤ s such that Z (I) = {p1, ..., ps} . Soon, we will
present an algorithm which makes use of this idea.

Note that if I = 〈G〉 has at least one multiple zero, which means that s < µ , the multiplication
matrices will have at least one joint generalised eigenspace of dimension greater than 1. This
follows readily from Theorem 5.1.9, as the number of distinct left-hand eigenvectors must match
the number of distinct points in Z (I) . Because |Z (I)| = s < µ we know that the multiplication
matrices must have at least one joint generalised eigenspace of dimension greater than 1. In prac-
tice it is di�cult to compute the generalised eigenspaces with a numerical algorithm, essentially
because the set of diagonalisable matrices is dense in Matm (C) . A more detailed discussion of
this problem can be found in [6, Subsection 7.6.5].

However, if I has only simple roots we can compute the eigenvectors in a stable way. Fortunately
the assumption that I has no multiple zeros is not a true limitation for our purposes because
we are working with the output of the AVI/ABM family of algorithms for which it is guaranteed
that I has only simple roots.

Theorem 5.1.10. Let P = C [x1, ..., xn] , let O = {t1, ..., tµ} be an order ideal, and let G be

an O -border basis for a 0-dimensional ideal I ⊆ P such that I has only simple roots. Then the

multiplication matrices A1, ..., An of G are simultaneously diagonalisable.

Proof. Because I has only simple roots, we know that the matrices A1, ..., An need to posses µ
distinct left-hand eigenvectors v1, ..., vµ ∈ Cn . Let V = (v1, ..., vµ)tr be the matrix whose rows
are v1, ..., vµ . Note that V is of full rank and thus can be inverted. So, for each Ai , we know
by Theorem 5.1.9 that V Ai = ΛiV must hold where Λi ∈ Matµ (C) is a diagonal matrix and
contains as its k-th diagonal entry the eigenvalue λk of Ai that is associated with the left-hand
eigenvector vk . Finally, we obtain V AiV

−1 = Λi , which shows that the multiplication matrices
can be simultaneously diagonalised.

Example 5.1.11. Let us consider the same setup as in Example 5.1.2. We have the multiplic-
ation matrices

A1 =

0 0 0 0 0

1 1 0 0 0

0 −1 0 −0.5 −0.5

0 0 1 1 1

0 1 0 0.5 0.5

, A2 =

0 0 0 0 0

0 0 0 0 0

1 0 0 −0.5 −0.5

0 1 0 1 0

0 0 1 0.5 1.5

 .

The common left-hand eigenvectors are given approximately by

V ≈

1 0 0 0 0

0.7071 0.7071 0 0 0

0.7846 0.3921 0.3921 0.1961 0.1961

0.5774 0 0.5774 0 0.5774

0.4472 0.4472 0.4472 0.4472 0.4472

 .

178 Chapter 5. The Rational Recovery Problem

We obtain

V A1V
−1 ≈

0

1

0.5

0

1

 , V A2V
−1 ≈

0

0

0.5

1

1

 .

By Theorem 5.1.9 we know that p1 = (λ11, λ21) ≈ (0, 0) , ..., p5 = (λ15, λ25) ≈ (1, 1) . Thus
we recover the points X ≈ {(0, 0) , (1, 0) , (0.5, 0.5) , (0, 1) , (1, 1)} . This set X is identical to the
input dataset we used to initially compute the border basis.

Lemma 5.1.12. Let λ1, ..., λm ∈ C . Then the determinant of the (Vandermonde) matrix

M =

1 λ1 λ2

1 · · · λm−1
1

1 λ2 λ2
2 · · · λm−1

2

1
...

... · · ·
...

1 λm−1 λ2
m−1 · · · λm−1

m−1

1 λm λ2
m · · · λm−1

m

 ∈ Matm (C)

is given by det (M) =
∏

1≤i<j≤m (λi − λj).

Proof. A proof is contained in [51, Subsection 1.4.5].

Proposition 5.1.13. Let A ∈ Matm (C) be a diagonalisable matrix. If Am is the smallest power

of A which can be expressed as a linear combination of the smaller powers, i.e. Am =
∑m−1

i=0 ciA
i

with ci ∈ C , then A has m distinct eigenvalues.

Proof. Let P ∈ Matm (C) be a matrix which contains as its columns a basis of right-hand
eigenvectors for A . Then the eigendecomposition of A is given by A = PΛP−1 , where Λ ∈
Matm (C) is diagonal and λ1, ..., λm are the entries of Λ and consequently the eigenvalues of A .
Using this special structure, we know that Am = PΛP−1 · · ·PΛP−1 = PΛmP−1 . So we have
reduced the problem to analysing the equation Λm =

∑i−1
j=0 cjΛ

j . The assumption that Am is
the smallest power of A which is a linear combination of the smaller powers means that Am−1

and consequently Λm−1 cannot be expressed as a linear combination of the smaller powers.
Written in matrix form this means that

M =

1 λ1 λ2

1 · · · λm−1
1

1 λ2 λ2
2 · · · λm−1

2

1
...

... · · ·
...

1 λm−1 λ2
m−1 · · · λm−1

m−1

1 λm λ2
m · · · λm−1

m

 ∈ Matm (C)

only has a trivial kernel. According to Lemma 5.1.12, its determinant is given by det (M) =∏
1≤i<j≤m (λi − λj) . As det (M) 6= 0 , we know that all eigenvalues of A must be distinct which

concludes the proof.

5.1. Multiplication Matrices for Border Bases 179

Now we shift our focus to approximate border bases and introduce all necessary de�nitions.

Before we will be able to characterise approximate border bases with the help of multiplication
matrices, let us brie�y recall the de�nition of an ε-approximate border basis from 4.1.4.

Let O = {t1, ..., tµ} be an order ideal, let ∂O = {b1, ..., bν} be its border, and let G = {g1, ..., gν}
be an O -border prebasis. This means that gj is of the form gj = bj − hj = bj −

∑µ
i=1 cijti with

cij ∈ C . For every pair (i, j) such that bi and bj are neighbours in ∂O we compute the normal
remainder S

′
ij = NRO,G (Sij) of the S-polynomial of gi and gj with respect to G. The set G is

an ε-approximate border basis of the ideal I = 〈G〉 if we have ‖S′ij‖ ≤ ε for all such pairs (i, j) .

De�nition 5.1.14. Let O be an order ideal, let G be an O -border prebasis, and let A1, ..., An be
the multiplication matrices of G . If we want to stress that the multiplication matrices belong to
an (exact) border basis G we call the matrices A1, ..., An also exact multiplication matrices

of G . Consequently, in case the multiplication matrices are not pairwise commuting, we call
them approximate multiplication matrices of G .

Theorem 5.1.15 (Characterisation of approximate border bases). Let P = C [x1, ..., xn] , let

O = {t1, ..., tµ} be an order ideal, let G = {g1, .., gν} be an O -border prebasis, and let ∂O =

{b1, ..., bν} be the border of O . By A1, ..., An we denote the associated multiplication matrices.

Then the following two statements are equivalent:

• G is a δ -approximate O -border basis.

• For all 1 ≤ i < j ≤ n and 1 ≤ k ≤ µ , the inequality ‖(AjAi −AiAj) ek‖ ≤ δ holds, where

ek is the k -th unit vector in Cµ .

Proof. Before we begin with the details of the proof, we explain the necessary steps on an abstract
level. First, we need to show that the coe�cients of the normal remainder of all neighbouring
pairs in ∂O and �certain� columns of the commutator of the multiplication matrices are identical.
Additionally, we will observe that the commutator also contains additional columns which do
not correspond to a normal remainder of a neighbouring pair. However, it will turn out that
those have always norm zero.

Now we can start with the actual proof. Let tk ∈ O be an arbitrary element of the order ideal.
We now analyse what happens when tk is multiplied by xi and xj with i 6= j and how this
translates to our multiplication matrices. In analogy to [22, Section 4] we treat all possible cases.

• Case 1: xixjtk ∈ O . In terms of the multiplication matrices this means that AiAjek =

AjAiek . Thus ‖AiAjek −AjAiek‖ = 0 holds for all ek and hence for all tk for which
xixjtk ∈ O .

• Case 2: xixjtk ∈ ∂O , xitk = tm ∈ O , and xjtk = tn ∈ O . This means that
AjAiek = Ajem and AiAjek = Aien . We know by the construction of the (approxim-
ate) multiplication matrices that the m-th column of Aj and the n-th column of Ai are
identical. So ‖AiAjek −AjAiek‖ = 0 for all ek and hence for all tk with the conditions
mentioned in the beginning of Case 2.

180 Chapter 5. The Rational Recovery Problem

• Case 3 (next-door neighbours): xitk = tm ∈ O , and xjtk = bq ∈ ∂O . We can conclude
that

AjAiek = Ajem =

c1p

c2p

...
cµp

 and AiAjek = Ai

c1q

c2q

...
cµq

 .

Now we let gp, gq be next-door-neighbours such that gp = xibq + hp and gq = bq + hq

with supp (hp) , supp (hq) ⊆ O . If we recall that S (gp, gq) =
lcm(bp,bq)

bp
gp − lcm(bp,bq)

bq
gq =

xibq + hp − xibq − xihq = hp − xihq =: Spq the correspondence becomes evident as the cip
and ciq are exactly the coe�cients of the polynomials hp and hq . So we arrive at S

′
pq :=

NRO,G (Spq) = (AjAiek −AiAjek) (t1, ..., tµ) and ‖S′pq‖ = ‖AjAiek −AiAjek‖ .

• Case 4 (across-the-street neighbours): xitk = br ∈ ∂O , and xjtk = bq ∈ ∂O . We
conclude that

AjAiek = Aj

c1r

c2r

...
cµr

 and AiAjek = Ai

c1q

c2q

...
cµq

 .

Now we let gr, gq be across-the-street neighbours such that gr = br+hr = xitk+hr and gq =

bq+hq = xjtk+hq with supp (hr) , supp (hq) ⊆ O . If we recall that S (gr, gq) =
lcm(br,bq)

br
gr−

lcm(br,bq)
bq

gq = xixjtk + xjhr − xixjtk − xihq = xjhr − xihq =: Srq the correspondence now
also becomes clear as the cir and ciq are exactly the coe�cients of the polynomials hr
and hq . So we arrive at S

′
rq := NRO,G (Srq) = (AjAiek −AiAjek) (t1, ..., tµ) and ‖S′rq‖ =

‖AjAiek −AiAjek‖ .

Thus we have shown that G is a δ -approximate O -border basis if and only if for all 1 ≤ i < j ≤ n
and 1 ≤ k ≤ µ the inequality ‖(AjAi −AiAj) ek‖ ≤ δ holds.

The following de�nition will help us to simplify our notation with respect to approximate border
bases.

De�nition 5.1.16. Let ek , with 1 ≤ k ≤ µ , be the k -th unit vector in Cµ , and let A ∈ Matµ (C)

be a complex matrix. We denote by

‖A‖δ = max
1≤k≤µ

‖Aek‖2

the maximal Euclidean norm of the columns of A .

Remark 5.1.17. Let P = C [x1, ..., xn] , let O be an order ideal, let G be an O -border prebasis,
and let A1, ..., An be the associated multiplication matrices. Then G is a τ -approximate border
basis if ‖AjAi −AiAj‖δ ≤ τ for all 1 ≤ i < j ≤ n .

5.2. The Eigenvector Algorithm 181

5.2 The Eigenvector Algorithm

As a next step we investigate an algorithm which can be used to solve the rational recovery
problem in case we are dealing with a δ -approximate border basis for which the parameter δ is
roughly as large as εmachine . As mentioned earlier, it is also important that the δ -approximate
border basis is in fact close to an exact border basis of a radical ideal in order to be able to
compute the solution in a stable way. For a more detailed analysis compare [44].

The original idea was brought up by Auzinger and Stetter in [48]. Here we give a version similar
to the one presented in [44].

Algorithm 30: Rational Recovery via Eigenvectors
Input: An order ideal O = {1, t2, ..., tµ} , a δ -approximate O -border basis G for an

ideal I such that |Z (I)| = µ and δ ≥ 0 is small
Output: An exact O -border basis

1 (A1, ..., An) := the multiplication matrices of G ;
2 κ :=∞ ;
3 while κ =∞ do

4 (a1, ..., an) := a random tuple in Rn with ‖(a1, ..., an)‖ = 1 ;
5 L :=

∑n
i=1 aiAi ;

6 M :=(reshape(L0, µ2, 1), ...,reshape(Lµ−1, µ2, 1)) ∈ Matµ2,µ(C) ;
7 κ := conditionNumber(M) ;

8 end

9 (v1, ..., vµ) := the right-hand eigenvectors of Ltr (e.g. via the QR algorithm (2.9.1));
// The entries of vi are namend in the way vi = (vi1, ..., viµ)

10 for i := 1 to µ do

11 ṽi :=
(
vi2/vi1, ..., vimin(µ,n)/vi1

)
;

12 pi := empty n-tuple;

13 end

14 for i := 1 to n do

/* It is guaranteed that xi is either in O or that a gk in G

containing xi as a border term exists. */

15 if xi is the k-th element in O then

16 for j := 1 to µ do pji := ṽjk ;
17 else

18 g := gk ∈ G with border term xi ;
19 g := xi − g ;
20 for j := 1 to µ do pji := evalṽj (g) ;

21 end

22 end

23 G̃ := O -border basis of the vanishing ideal of X := {p1, ..., pµ} computed e.g. via
Algorithm 19;

24 return G̃ ;

182 Chapter 5. The Rational Recovery Problem

Theorem 5.2.1. This an algorithm which takes as input a δ -approximate O -border basis G

and returns an exact O -border basis G̃ . If and only if δ ≈ εmachine the algorithm is stable

and the choice of the random tuple in line 4 will have no signi�cant in�uence on the result G̃ .

Furthermore if δ ≈ εmachine the di�erence of the coe�cient tuples of G and the computed G̃

is small.

Proof. We will not give a rigorous proof but only sketch why the individual steps are sound.
Compare [44] for full details.
First, let us assume that G is a δ -approximate O -border basis where δ ≈ εmachine . As we
have assumed that G is close to an exact border basis G̃ for a 0-dimensional ideal I which
has only simple roots, we know by Theorem 5.1.10 that the associated multiplication matrices
are simultaneously diagonalisable. The algorithm forms a random linear combination L of the
matrices A1 to An in line 5. In this way we reduce the problem of simultaneously diagonalising
the matrices A1, ..., An to diagonalising the matrix L (see Remark 5.1.8). Note that this is only
stable because we have assumed that δ ≈ εmachine , as this guarantees that the individual mul-
tiplication matrices have almost identical eigenspaces. Then in line 9 the left-hand eigenvectors
of L are obtained by computing the ordinary eigenvectors of Ltr (see Proposition 2.3.54). Now
we could compute numerical approximations of the roots of G with the help of Theorem 5.1.9.
So far the eigenvalues of the individual multiplication matrices have not been computed, so it
would still be necessary to obtain them in order to apply Theorem 5.1.9 directly. However, if
we have a closer look at the proof of Theorem 5.1.9, we observe that the common eigenvectors
v1, ..., vµ contain scalar multiples of the evaluations of the elements in O on the (approximate)
roots p1, ..., pµ of G . This means that vi = αi · evalpi (1, t2, ..., tµ) with αi ∈ C \ {0} . Normally,
the αi are given in such a way that the norm of the coe�cient vectors of the vi is one. How-
ever, in order to be able to extract the solution it is necessary to make sure that the evaluation
of the term 1 , the �rst element in the order ideal, is in fact 1. For this purpose we have to
divide all entries of vi by the �rst entry vi1 of the eigenvector (compare line 11). Note that
vi1 = αi · evalpi (1) = αi 6= 0 , so we can always divide by it. Now the coordinates for each xi

which is contained in O can be read o� directly. This is done in line 16. All xi which are not
in O are computed via the relations in G in lines 18 to 20, as there must be an (almost) linear
relationship between the elements in O and xi it is guaranteed that for each xi which is not
in O there exists a gk ∈ G such that xi is the border term of gk . After the roots X = {p1, ..., pµ}
have been extracted, Algorithm 19 is used to construct an (exact) O -border basis for I (X) .

Remark 5.2.2. Please note that this method relies on numerical (not exact) techniques because
in line 9 the eigenvectors of Ltr are computed. As we know there is generally no closed form
representation for the eigenvalues and -vectors (compare [5, Theorem 25.1]). So, even if the
input polynomials in G have only coe�cients in Q or in Q [i] and form an exact O -border
basis, the result G̃ may di�er slightly from G in terms of the coe�cients. However, for all
practical purposes the accuracy which can be achieved in this way is su�cient.

Remark 5.2.3. The while loop in lines 3-8 ensures that we chose a random linear combination L
of the matrices A1, ..., An such that the powers of L in form of the matrices L0, ..., Lµ−1 are
linearly independent. Clearly the condition number κ of the matrix M which is computed in

5.2. The Eigenvector Algorithm 183

line 7 would be ∞ in case the matrices L0, ..., Lµ−1 were linearly dependent. This is motivated
by Proposition 5.1.13 and guarantees that the matrix L has µ di�erent eigenvalues and therefore
only 1-dimensional eigenspaces. The criterion in line 3 could be modi�ed to accept online linear
combinations L for which κ is smaller than a given threshold number ε . This would guarantee
additional stability for the computed result. Compare also Example 5.2.7 and Figure 5.3, which
illustrate that the chosen linear combination can have a signi�cant in�uence on the computed
solution.

Remark 5.2.4. Instead of extracting the points from the eigenvectors in lines 1-22, it would
of course also be possible to use Theorem 5.1.6 directly by computing the eigenvalues for each
individual multiplication matrix. This approach would, however, be more costly than the method
described here, as it involves the computation of n matrix-matrix products.

Remark 5.2.5. The problem in line 23 of the algorithm to compute a border basis of I (X) for
a speci�c order ideal O can be solved via Algorithm 19. Please note, that Algorithm 19 does
not require an exact input border basis to work properly.

Remark 5.2.6. With respect to the stability of computing the eigenvectors in line 9 we refer
to Corollary 2.9.7. In a simpli�ed form it states that the stability of an individual eigenvector
depends to some extent on the separation of its associated eigenvalue from the other eigenvalues.
As other factors also play an important role, it is also advisable to read Theorem 2.9.6 for a
better theoretical understanding. For Algorithm 30 this has the practical consequence that if
some exact solutions are very close to each other, already small perturbations in the matrices Ai
and rounding errors may change the computed solution drastically. Note that this only e�ects
the solutions which are very close to each other, all others remain stable.

Now we investigate the workings of the algorithm when applied to an essentially exact example
and to an approximate one. The latter example will guide the way how we can adapt the
algorithm to the approximate case.

Example 5.2.7. Let us come back to Example 3.4.3. We consider the O -border basis G for
which we already know the zero set Z (〈G〉) and slightly perturb it. Let again P = R [x1, x2] ,
let O =

{
1, x1, x2, x1x2, x

2
2

}
, and let G = {g1, ..., g4} be an O -border basis with

g1 = x2
1 − x2

2 − x1 + x2,

g2 = x2
1x2 − x1x2 − 0.5x2

2 + 0.5x2,

g3 = x1x
2
2 − x1x2 − 0.5x2

2 + 0.5x2,

g4 = x3
2 − 1.5x2

2 + 0.5x2.

By slightly perturbing G we obtain Ḡ = {ḡ1, ..., ḡ4} with

ḡ1 = x2
1 −

(
0.9999x2

2 − 0.0001x1x2 − 1.0001x2 + 0.9999x1 + 0.00001
)
,

ḡ2 = x2
1x2 −

(
0.50001x2

2 + 0.99998x1x2 − 0.49999x2 + 0.0001x1 + 0.00001
)
,

ḡ3 = x1x
2
2 −

(
0.49999x2

2 + 0.99999x1x2 − 0.50001x2 − 0.0001x1 + 0.00001
)
,

ḡ4 = x3
2 −

(
1.49999x2

2 + 0.00001x1x2 − 0.49999x2 − 0.0001x1 − 0.00001
)
.

184 Chapter 5. The Rational Recovery Problem

In line 1 of the algorithm we obtain the following multiplication matrices:

Ā1 =

0 0.00001 0 0.00001 0.00001

1 0.9999 0 0.0001 −0.0001

0 −1.0001 0 −0.49999 −0.50001

0 −0.0001 1 0.99998 0.99999

0 0.9999 0 0.50001 0.49999

 ,

Ā2 =

0 0 0 0.00001 −0.00001

0 0 0 −0.0001 −0.0001

1 0 0 −0.50001 −0.49999

0 1 0 0.99999 0.00001

0 0 1 0.49999 1.49999

 .

We compute the commutator between A1 and A2 to verify that δ is �small�:

Ā1Ā2 − Ā2Ā1 =

0 0.00002 0 0.0000099991 0.000009999

0 0.00019998 0 0.000110009 −0.00010999

0 −0.00011 0 0.0001050097 0.0000700102

0 0.00017 0 −0.00012999 0.0001100099

0 0.000319998 0 −0.0001049901 −0.00006999

 .

We observe that
∥∥Ā1Ā2 − Ā2Ā1

∥∥
δ
≈ 0.0004287 which shows that we are dealing with a δ -

approximate border basis with δ = 0.0005 .

Now, in line 5, we have to form a random linear combination of the multiplication matrices. So
let a1 = 0.6 and a2 = 0.8 . Then we have ‖(a1, a2)‖ =

√
0.62 + 0.82 = 1 . We obtain

L = 0.6Ā1 + 0.8Ā2 =

0 0.000006 0 0.000014 −0.000002

0.6 0.59994 0 −0.00002 −0.00014

0.8 −0.60006 0 −0.700002 −0.699998

0 0.79994 0.6 1.39998 0.600002

0 0.59994 0.8 0.699998 1.499986

 .

In line 9 we compute the eigenvectors of Ltr and obtain

v1 ≈ (0.9999, 0, 0, 0, 0) ,

v2 ≈ (−0.4472,−0.4471,−0.4472,−0.4472,−0.4471) ,

v3 ≈ (−0.5772, 0.0002,−0.5774, 0,−0.5773) ,

v4 ≈ (−0.7842,−0.3912,−0.3930,−0.1962,−0.1968) ,

v5 ≈ (−0.7062,−0.7079, 0.0013, 0.0008, 0.0003) .

In lines 10-13 we compute ṽ1 ≈ (0, 0) , ṽ2 ≈ (0.9997, 0.9999) , ṽ3 ≈ (−0.0004, 1.0002) , ṽ4 ≈
(0.4989, 0.5011) , and ṽ5 ≈ (1.0023,−0.0019) .

As x1 and x2 show up in O we can just let p1 = ṽ1, ..., p5 = ṽ5 . In line 23 we compute
the O -border basis G̃ of the vanishing ideal of {p1, ..., p5} . We obtain the following polynomials

5.2. The Eigenvector Algorithm 185

(rounded to 10 decimals):

g̃1 ≈ x2
1 + 0.0007987644x1x2 − 1.0003977744x2

2 − 1.0003988639x1 + 1.0001979339x2,

g̃2 ≈ x2
1x2 − 1.0004031816x1x2 − 0.5002024061x2

2 + 0.0009530407x1 + 0.4999025064x2,

g̃3 ≈ x1x
2
2 − 0.9990972612x1x2 − 0.4996979543x2

2 − 0.0009526580x1 + 0.4997979540x2,

g̃4 ≈ x3
2 − 0.0008020420x1x2 − 1.5002027387x2

2 + 0.0009519011x1 + 0.5001027992x2.

Now we look at the actual di�erences of the multiplication matrices of the approximate and the
exact border basis. For this purpose we compute

Ā1 − Ã1 =

0 0.00001 0 0.00001 0.00001

0 −0.00049 0 0.00105 −0.00105

0 0.00009 0 −0.00008 −0.00021

0 0.00069 0 −0.00042 0.00089

0 −0.00049 0 −0.00019 0.00029

 ,

Ā2 − Ã2 =

0 0 0 0.00001 −0.00001

0 0 0 −0.00105 0.00085

0 0 0 −0.00021 0.00011

0 0 0 0.00089 −0.00079

0 0 0 0.00029 −0.00021

 .

We observe that ‖Ā1 − Ã1‖δ ≈ 0.00142 and ‖Ā2 − Ã2‖δ = 0.00142 . As we can see, the error
is ampli�ed but the result is still within a reasonable range of the multiplication matrices. In
Figure 5.1 we see a visualisation of max

(
‖Ā1 − Ã1‖δ, ‖Ā2 − Ã2‖δ

)
with varying a1 and a2 .

The horizontal axis depicts the value of a1 which is incremented in steps of 0.002. Then a2 is
chosen to be a2 =

√
1− a2

1 . In the plot we can identify one peak around a1 ≈ 0.7 . As it turns
out the powers of L are almost linearly dependent for such choices of a1 (and consequently a2).
In the next example we will investigate this behaviour more systematically.

Let us now investigate a case in which δ is signi�cantly larger than εmachine .

Example 5.2.8. Please note that for all results only 3 decimals after the comma are given.
However, for the computations the full double accuracy was used. We start with the set of
points X = {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)} , P = R [x1, x2] , and apply ABM with ε = 0.2 .
We obtain the approximate O -border basis G = {g1, ..., g4} containing the polynomials

g1 ≈ x2
2 − 1.026x2 + 0.063,

g2 ≈ x2
1 + 0.060x1x2 − 1.056x1 − 0.032x2 + 0.079

g3 ≈ x1x
2
2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018

g4 ≈ x2
1x2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018

with the corresponding order ideal O = {1, x2, x1, x1x2} . We get the following (approximate)

186 Chapter 5. The Rational Recovery Problem

Figure 5.1: In�uence of the linear combination L on max
(
‖Ã1 −A1‖δ, ‖Ã2 −A2‖δ

)
.

multiplication matrices:

A1 =

0 0 −0.079 −0.018

0 0 0.032 −0.012

1 0 1.056 −0.012

0 1 −0.060 1.025

 , A2 =

0 −0.063 0 −0.018

1 1.026 0 −0.012

0 0 0 −0.012

0 0 1 1.025

 .

First, we observe that the matrices are still almost commuting as ‖A1A2 −A2A1‖δ ≈ 0.054 .
Thus we are dealing with a 0.06-approximate O -border basis.

Now we form a random linear combination of the multiplication matrices such that

L =

√
2

2
A1 +

√
2

2
A2.

The eigenvectors of Ltr are given by

v1 ≈ (0.996, 0.046, 0.061, 0.02) ,

v2 ≈ (−0.506,−0.5,−0.492,−0.5) ,

v3 ≈ (−0.691, 0.003,−0.720,−0.043) ,

v4 ≈ (0.028− 0.692, 0.721, 0.001) .

Following the steps in the algorithm we let p1 = (0.062, 0.469) , p2 = (0.973, 0.989) , p3 =

(1.041,−0.004) , and p4 = (25.510,−24.484) , for which we obtain the exact O -border basis

5.2. The Eigenvector Algorithm 187

G̃ = {g̃1, ..., g̃4} with

g̃1 = x2
2 + 1.034x1x2 − 0.095x1 − 1.998x2 + 0.094,

g̃2 = x2
1 + 1.032x1x2 − 1.145x1 − 0.945x2 + 0.108,

g̃3 = x1x
2
2 + 25.451x1x2 − 1.158x1 − 25.819x2 + 1.210,

g̃4 = x2
1x2 − 26.441x1x2 + 1.106x1 + 24.873x2 − 1.160.

This leads to the multiplication matrices

Ã1 =

0 0 −0.108 1.160

0 0 0.945 −24.873

1 0 1.145 −1.106

0 1 −1.032 26.441

 , Ã2 =

0 −0.094 0 −1.210

1 1.998 0 25.819

0 0.095 0 1.158

0 −1.034 1 −25.451

 .

If we investigate the di�erences between the multiplication matrices of G̃ and G we obtain

Ã1 −A1 =

0 0 0.028 −1.178

0 0 −0.913 24.860

0 0 −0.088 1.093

0 0 0.971 −25.416

 , Ã2 −A2 =

0 0.030 0 1.191

0 −0.972 0 −25.831

0 −0.094 0 −1.171

0 1.034 0 26.477

with ‖Ã1 −A1‖δ ≈ 35.589 and ‖Ã2 −A2‖δ ≈ 37.028 .

As we can see, there is now a large di�erence in the multiplication matrices. Let us look at
another random linear combination with a1 = 0.1 and a2 = 0.995 . This time we will skip the
intermediate steps and only look at the exact multiplication matrices and the di�erences to the
original ones:

Ã1 =

0 0 0.151 0.032

0 0 −0.537 −0.399

1 0 0.482 −0.066

0 1 1.070 1.582

 , Ã2 =

0 −0.061 0 0

1 1.020 0 −0.001

0 −0.005 0 −0.064

0 0.011 1 1.033

 ,

Ã1 −A1 =

0 0 −0.231 −0.051

0 0 0.569 0.386

0 0 0.574 0.053

0 0 −1.130 −0.556

 , Ã2 −A2 =

0 −0.002 0 −0.018

0 0.005 0 −0.010

0 0.005 0 0.051

0 −0.011 0 −0.007

 .

Finally, we obtain ‖Ã1 −A1‖δ ≈ 1.408 and ‖Ã2 −A2‖δ ≈ 0.055 .

This time the di�erences between the approximate and exact multiplication matrices are smaller
again. What we have observed, though, is that the choice in line 4 of Algorithm 30 has a
strong in�uence on the result of the algorithm. In Figure 5.2 we can see again a visualisation of
max

(
‖Ā1 − Ã1‖δ, ‖Ā2 − Ã2‖δ

)
with respect to the choice of a1 and a2 . On the horizontal axis

the value of a1 is depicted and a2 is chosen to be a2 =
√

1− a2
1 . A step width of 0.002 was

chosen, in which a1 was incremented. The strong in�uence of the random linear combination
is also clearly visible. The result is particularly bad if the powers of L are almost linearly

188 Chapter 5. The Rational Recovery Problem

Figure 5.2: In�uence of the linear combination L on max
(
‖Ã1 −A1‖δ, ‖Ã2 −A2‖δ

)
.

dependent. This behaviour becomes clear if we have a look at Figure 5.3. There we have plotted
the condition number of the matrix M that is formed in line 6 of the algorithm. A large condition
number of this matrix implies that that powers of L are almost linearly dependent. To mitigate
these problems it makes sense in a practical implementation of Algorithm 30 to check that the
condition number of M does not become too large. For that purpose we can modify line 3
of the algorithm to check that κ is in fact smaller than a given threshold-number ε (compare
Remark 5.2.3).

We will now investigate what causes the instability in the previous example in more detail. The
general problem that we have encountered is that depending on which linear combination of the
multiplication matrices we choose the eigenvectors may change drastically. However, in hindsight
it becomes obvious that there is a major di�erence between Example 5.2.7 and Example 5.2.8.
The individual multiplication matrices in the almost exact example have virtually identical ei-
genspaces, whereas the eigenspaces of the multiplication matrices in the second example are quite
di�erent. Of course, if we form a linear combination of matrices with quite di�erent eigenvectors
we cannot expect the result to be independent of the chosen combination nor can we expect the
result to be stable. As we want the multiplication matrices of the exact border basis to be reason-
ably small perturbations of the multiplication matrices of the approximate border basis we must
�rst answer the question how stable the eigenvectors will behave when considering small changes
in the entries of the multiplication matrices. As we have already seen in Example 2.7.13, the
general problem of computing eigenvectors/eigenvalues is ill-conditioned. There is one class of
matrices, though, which behaves stable under small perturbations, namely the normal matrices
(compare De�nition 2.3.25).

5.2. The Eigenvector Algorithm 189

Figure 5.3: The condition number of M with varying L.

Proposition 5.2.9. Given a normal matrix A ∈ Matm (C) , the problem of computing the asso-

ciated eigenvalues is well conditioned.

Proof. First we recall Theorem 2.5.22, which states that if A is normal, it can be unitarily
diagonalised. So let A = UDU∗ , where U ∈ Matm (C) is a unitary matrix and D ∈ Matm (C)

is a diagonal matrix. Then the proposition is an immediate consequence of the Bauer-Fike
theorem (2.9.1) which states that if µ is an eigenvalue of A+δA , then there exists an eigenvalue
ν ∈ λ (A) such that |λ− µ| ≤ ‖δA‖ .

For a general square matrix, we are therefore interested in determining how far it deviates from
a normal one. The following de�nition of departure from normality is motivated by the fact that
normal matrices can be unitarily diagonalised.

Proposition 5.2.10. Let A ∈ Matm (C) be a normal matrix and let Λ ∈ Matm (C) be a diagonal

matrix that contains as its diagonal entries all the eigenvalues of A . Then the equation

‖A‖F = ‖Λ‖F

holds.

Proof. By Theorem 2.5.22, we know that A = UΛU∗ where U is unitary and Λ is diagonal con-
taining only the eigenvalues of A . Because the Frobenius norm is invariant under multiplication
with a unitary matrix (compare Proposition 2.3.34) we get

‖A‖F = ‖UΛU∗‖F = ‖Λ‖F

which proves the claim.

190 Chapter 5. The Rational Recovery Problem

With respect to the stability of eigenvectors, the situation is a bit more involved. Corollary 2.9.7
contains the necessary theoretical background and full details. In essence it states that the
stability depends on the separation (see De�nition 2.9.4) of the eigenspaces associated with the
eigenvectors. This means that the closer the distance between two eigenvalues the more unstable
it becomes to compute the corresponding eigenvectors.

De�nition 5.2.11. [Departure from Normality]

Let A ∈ Matm (C) and let Λ ∈ Matm (C) be a diagonal matrix containing on its diagonal all
the eigenvalues of A . Then

4N (A) =

√
‖A‖2F − ‖Λ‖

2
F

is called the (Euclidean) departure from normality of A .
Similarly, for n matrices A1, ..., An ∈ Matm (C) we call the sum

n∑
i=1

42
N (Ai)

the common squared departure from normality of A1, ..., An .

Example 5.2.12. Let us consider the multiplication matrix A1 of Example 5.2.8. We compute
the departure from normality of A1 and obtain

4N (A) ≈

√√√√√√√√√
∥∥∥∥∥∥∥∥∥

0 0 −0.079 −0.018

0 0 0.032 −0.012

1 0 1.056 −0.012

0 1 −0.060 1.025

∥∥∥∥∥∥∥∥∥

2

F

−

∥∥∥∥∥∥∥∥∥

0.021 0 0 0

0 0.07 0 0

0 0 0.958 0

0 0 0 1.03

∥∥∥∥∥∥∥∥∥

2

F

≈
√

4.177− 1.984 ≈ 1.481.

So, in general, we cannot hope that the multiplication matrices are close to normal matrices and
thus have their nice properties. For instance this means that also non-unitary transformations
are necessary to compute a diagonalisation of them. This will become important in the next
section where we develop an algorithm to simultaneously quasi-diagonalise the multiplication
matrices as it shows that we need to introduce non-unitary transformations.

In order to keep the general structure of Algorithm 30 intact, we need to �nd a way to avoid the
computation of exact eigenvectors on either of the multiplication matrices or on a combination of
them. In fact, we are not interested in exact eigenvectors of the multiplication matrices. We want
to �nd vectors which are �approximately� eigenvectors for all matrices. This idea of approximate
eigenvectors and how they can be computed will be the central subject of the following section.

5.3 Simultaneous Quasi-Diagonalisation

We begin this section by introducing the concept of approximate eigenvectors and approximate
eigenvalues. With the help of a small example, we learn that the approximate eigenvectors

5.3. Simultaneous Quasi-Diagonalisation 191

need not lie in the vicinity of the exact eigenvectors, which is why we cannot hope to get a
reasonably good approximation using the exact eigenvectors as candidates for the approximate
ones. Finally, we study in detail how approximate eigenvalues and eigenvectors can be computed
via simultaneous quasi-diagonalisation of the multiplication matrices.

Similarly to Bernstein in [52], we introduce the following de�nitions:

De�nition 5.3.1. [ε-Approximate Eigenvectors and Eigenvalues]

Let A ∈ Matm (C) and ε ∈ R+ . Additionally, let us denote by ‖·‖ the Euclidean norm. If λ ∈ C
and z ∈ Cm \ {0m} exist such that

‖Az − λz‖ ≤ ε ‖z‖

holds, we call z an ε-approximate eigenvector and λ an ε-approximate eigenvalue of A .

Remark 5.3.2. Consequently, we say that z is an ε-approximate common eigenvector

for n matrices A1, ..., An ∈ Matm (C) if there exist λ1, ..., λn ∈ C such that

‖Aiz − λiz‖ ≤ ε ‖z‖

for all 1 ≤ i ≤ n .

Intuitively, one could expect that ε-approximate eigenvectors should always be close to the exact
eigenvectors of a matrix. However, the following example shows that this intuition is wrong.

Example 5.3.3. Let ε ∈ R+ , let A =

(
0 1

1 0

)
, and let B =

(
1 0

0 1− ε

)
. For a de�nition

of ‖·‖σ see 5.1.16. First we observe that the matrices A and B are almost commuting, as

‖AB −BA‖σ =

∥∥∥∥∥
(

0 1− ε
1 0

)
−

(
0 1

1− ε 0

)∥∥∥∥∥
σ

=

∥∥∥∥∥
(

0 −ε
ε 0

)∥∥∥∥∥
σ

= ε.

The norm one eigenvectors of A are 1
2

(√
2,±
√

2
)
and the norm one eigenvectors of B are (1, 0)

and (0, 1) .

Now we investigate the approximate eigenvectors of A and B . As B is only perturbed by ε

from the unit matrix we know that, for every z = (z1, z2) ∈ C2 , we have

‖Bz − z‖ =

∥∥∥∥∥
(

z1

z2 − z2ε

)
−

(
z1

z2

)∥∥∥∥∥ =

∥∥∥∥∥
(

0

z2ε

)∥∥∥∥∥ = |z2| ε ≤ ε ‖z‖ .

This means that every norm one eigenvector of A is also an ε-approximate norm one eigenvector
of B . So the matrices A and B have the ε-approximate norm one eigenvectors 1

2

(√
2,±
√

2
)
.

We have seen in this example, that we cannot hope to �nd ε-approximate eigenvectors by
computing the exact eigenvectors of the given matrices and then to search in their vicinity.
However, let us have a closer look again at the eigendecomposition of multiplication matrices
and its properties.

192 Chapter 5. The Rational Recovery Problem

Let A ∈ Matm (C) be a diagonalisable matrix. Then A can be written as A = PΛP−1 where
P ∈ Matm (C) contains as its columns the eigenvectors of A and where Λ ∈ Matm (C) is a
diagonal matrix that contains on its diagonal exactly the eigenvalues of A . Now let us assume
we are given all n multiplication matrices A1, ..., An which are associated with a given O -border
basis G for a 0-dimensional ideal that has only simple roots. By Theorem 5.1.10, there exists a
matrix P ∈ Matm (C) containing the common eigenvectors of the multiplication matrices such
that Ai = PΛiP

−1 for 1 ≤ i ≤ n , where Λi is a diagonal matrix. If we are dealing with
multiplication matrices of an approximate border basis, such a decomposition does generally
no longer exist as the matrices cannot be simultaneously diagonalised. However, a similar idea
can be applied, namely to construct a matrix P such that the matrices P−1AiP will be �as
diagonal as possible� with respect to a cost measure which we introduce below. We can then
identify the rows of P with our approximate eigenvectors and the elements on the diagonal
of P−1AiP with our approximate eigenvalues. We will soon clarify in greater detail what we
mean precisely by this formulation. However, this is the central idea behind how we hope to
solve the rational recovery problem. The process of computing this matrix P is unfortunately not
completely straightforward and cannot be achieved with the standard algorithms from numerical
linear algebra. Our next step will be to outline which building blocks are necessary to create
such a method.

5.3.1 Building Blocks

It is well-known that no algorithm exists which could exactly compute the eigenvectors or eigen-
values of a general matrix A ∈ Matm (C) in a �nite number of steps (compare [5, Theorem 25.1]).
Consequently, all common algorithms construct a sequence of similarity transformations which
will converge to an eigenvalue (and in some cases also an eigenvector) revealing decomposition.
Compare, for instance, the basic QR-algorithm (8). In this spirit we also try to �nd possibly
simple similarity transformations Pi which further quasi-diagonalise our matrices A1, ..., An . To
be more precise, our aim is to decompose all matrices Ai ∈ Matm (C) simultaneously such that
we obtain

Ai = Pq · · ·P1 (Λi + Ei)P
−1
1 · · ·P−1

q

for 1 ≤ i ≤ n . Here q ∈ N , Λi ∈ Matm (C) is diagonal, and Ei ∈ Matm (C) has only
entries o� its diagonal. The matrices Pi shall be chosen in such a way that

∑n
i=1 ‖Ei‖F is

minimised. Our approach will be based on the idea of the Jacobi algorithm, but we extend it
to n matrices, similarly to what was proposed by Fu and Gao in [53]. Our work di�ers from
that of the mentioned authors in the points that we arrive at a di�erent parameter choice for the
transformation matrices and that we give a version which also works for complex matrices and
not only for real ones.

First we analyse which kind of similarity transformations are necessary to achieve our goal.

An immediate consequence of the spectral theorem (2.5.22) is that it does not su�ce to limit
ourselves to a sequence of unitary similarity transformations if we want to diagonalise general
matrices. Therefore, Eberlein proposed in [59] to additionally apply shear similarity transform-
ations to reduce the matrices departure from normality and then to apply unitary similarity

5.3. Simultaneous Quasi-Diagonalisation 193

transformations to reduce their departure from diagonality. Please note that Eberlein only ex-
amined how to diagonalise a single matrix. Certainly, there is no intrinsic requirement which
forces us to use exactly these transformation matrices. However, we stick to them as they are
well understood and can be handled without using non-linear optimisation techniques to obtain
a suitable choice of parameters. This is a common shortcoming of other approaches which rely on
more involved transformations. In Subsection 5.3.6 we present a detailed numerical comparison
that exempli�es the advantages of our method.

Proposition 5.3.4. Let A ∈ Matm (C). Then

inf
P∈GLm(C)

∥∥P−1AP
∥∥2

F
= ‖Λ‖2F

where Λ ∈ Matm (C) is a diagonal matrix that contains on its diagonal exactly the eigenvalues

of A . The lower bound is attained if and only if A is diagonalisable.

Proof. A proof can be found in [60] after the �rst theorem.

Remark 5.3.5. By Proposition 5.3.4 it becomes evident that every matrix can be �almost�
diagonalised. This is the root cause why it is practically impossible to compute the Jordan
Normal Form of a non-diagonalisable matrix with the help of a numerical algorithm in a stable
way.

Corollary 5.3.6. Let A1, ..., An ∈ Matm (C) . If we determine P ∈ GLm (C) in such a way

that
∑n

i=1

∥∥P−1AiP
∥∥2

F
is smaller than

∑n
i=1 ‖Ai‖

2 , then
∑n

i=142
N

(
P−1AiP

)
is also smaller

than
∑n

i=142
N (Ai) .

Proof. For 1 ≤ i ≤ n let Λi ∈ Matm (C) be the diagonal matrix that contains on its diag-
onal exactly the eigenvalues of Ai . Furthermore, suppose that we have found P such that∑n

i=1

∥∥P−1AiP
∥∥2

F
<
∑n

i=1 ‖Ai‖
2
F . Then the relations

n∑
i=1

∥∥P−1AiP
∥∥2

F
<

n∑
i=1

‖Ai‖2F ⇐⇒

n∑
i=1

(∥∥P−1AiP
∥∥2

F
− ‖Λi‖2F

)
<

n∑
i=1

(
‖Ai‖2F − ‖Λi‖

2
F

)
⇐⇒

n∑
i=1

(√
‖P−1AiP‖2F − ‖Λi‖

2
F

)2

<
n∑
i=1

(√
‖Ai‖2F − ‖Λi‖

2
F

)2

hold. If we note that the eigenvalues of P−1AiP are the same as those of Ai , then using
Proposition 5.3.4 we immediately obtain

n∑
i=1

42
N

(
P−1AiP

)
=

n∑
i=1

(√
‖P−1AiP‖2F − ‖Λi‖

2
F

)2

<

n∑
i=1

(√
‖Ai‖2F − ‖Λi‖

2
F

)2

=

n∑
i=1

42
N (Ai) .

194 Chapter 5. The Rational Recovery Problem

This means that in order to �nd a similarity transformation that reduces the common squared
departure from normality of the transformed matrices A1, ..., An , it su�ces to �nd a similar-
ity transformation which reduces the sum of the squared Frobenius norms of the transformed
matrices.

De�nition 5.3.7. Let A ∈ Matm (C) . Then we can write A as the sum of the elements on its
diagonal D ∈ Matm (C) and the o� diagonal entries E ∈ Matm (C) such that A = D +E . The
number

∆D (A) = ‖E‖F
is called the departure from diagonality of A . Similarly we call for n matrices A1, ..., An ∈
Matm (C) the sum

n∑
i=1

∆2
D (Ai)

the common squared departure from diagonality of A1, ..., An.

For convenience, let us denote the entries of a matrix A ∈ Matm,n (C) by aij . Using the notation
of [58], we introduce two di�erent kinds of matrices.

Let k ∈ N and let 1 ≤ p < q ≤ m . The unitary matrices U (k,p,q) ∈ Matm (C) and the matrices
S(k,p,q) ∈ Matm (C) are identical to the unit matrix Im ∈ Matm (C) except for four entries.

Please recall that, for y ∈ R the hyperbolic sine and cosine functions are given by sinh (y) =
1
2 (ey − e−y) and cosh (y) = 1

2 (ey + e−y) .

De�nition 5.3.8. [Shear Rotation Matrix]

Let αk,p,q ∈]−π, π] and let yk,p,q ∈ R . We call a matrix S(k,p,q) ∈ Matm (C) with entries
identical to the unit matrix Im except for the four entries

s(k,p,q)
pp = cosh (yk,p,q) ,

s(k,p,q)
pq = −ieiαk,p,q sinh (yk,p,q) ,

s(k,p,q)
qp = ie−iαk,p,q sinh (yk,p,q) ,

s(k,p,q)
qq = cosh (yk,p,q)

a shear rotation matrix with parameters αk,p,q and yk,p,q .

De�nition 5.3.9. [Unitary Rotation Matrix]

Let ϕk,p,q, θk,p,q ∈]−π, π] . We call a matrix U (k,p,q) ∈ Matm (C) with entries identical to the
unit matrix Im except for the four entries

u(k,p,q)
pp = cos (θk,p,q) ,

u(k,p,q)
pq = −eiϕk,p,q sin (θk,p,q) ,

u(k,p,q)
qp = e−iϕk,p,q sin (θk,p,q) ,

u(k,p,q)
qq = cos (θk,p,q)

a unitary rotation matrix with parameters ϕk,p,q and θk,p,q .

5.3. Simultaneous Quasi-Diagonalisation 195

Example 5.3.10. Let m = 4 , k = 1 , p = 2 , q = 3 , and let α1,2,3 ∈]−π, π] and y1,2,3 ∈ R .
Then

S(1,2,3) =

1 0 0 0

0 cosh (y1,2,3) −ieiα1,2,3 sinh (y1,2,3) 0

0 ie−iα1,2,3 sinh (y1,2,3) cosh (y1,2,3) 0

0 0 0 1

 ∈ Mat4 (C)

is a shear rotation matrix. Furthermore let ϕ1,2,3, θ1,2,3 ∈]−π, π] . Then

U (1,2,3) =

1 0 0 0

0 cos (θ1,2,3) −eiϕ1,2,3 sin (θ1,2,3) 0

0 e−iϕ1,2,3 sin (θ1,2,3) cos (θ1,2,3) 0

0 0 0 1

 ∈ Mat4 (C)

is a unitary rotation matrix.

As we want to apply a sequence of similarity transformations to the initially given matrices
A1, ..., An , it is crucial that the inverse of the matrices S(k,p,q) and U (k,p,q) can be computed
e�ciently as well.

Proposition 5.3.11. Let S(k,p,q) ∈ Matm (C) be a shear rotation matrix and let U (k,p,q) ∈
Matm (C) be a unitary rotation matrix. The matrix

(
S(k,p,q)

)−1
is identical to the unit matrix Im

except for the four entries

s(k,p,q)
pp = cosh (yk,p,q) ,

s(k,p,q)
pq = ieiαk,p,q sinh (yk,p,q) ,

s(k,p,q)
qp = −ie−iαk,p,q sinh (yk,p,q) ,

s(k,p,q)
qq = cosh (yk,p,q) .

Similarly, the matrix
(
U (k,p,q)

)−1
is identical to the unit matrix Im except for the four entries

u(k,p,q)
pp = cos (θk,p,q) ,

u(k,p,q)
pq = eiϕk,p,q sin (θk,p,q) ,

u(k,p,q)
qp = −e−iϕk,p,q sin (θk,p,q) ,

u(k,p,q)
qq = cos (θk,p,q) .

Furthermore, the matrix U is unitary.

Proof. As we only look at one speci�c matrix S(k,p,q) and U (k,p,q) we omit the superscript (k, p, q)

and subscript k, p, q . We also omit the trivial entries, which are identical to the corresponding

196 Chapter 5. The Rational Recovery Problem

entries of the unit matrix Im , and only give the relevant entries of the matrix products:(
SS−1

)
pp

= cosh2 (y)− sinh2 (y) = 1,(
SS−1

)
pq

= cosh (y) ieiα sinh (y)− ieiα sinh (y) cosh (y) = 0,(
SS−1

)
qp

= ie−iα sinh (y) cosh (y)− cosh (y) ie−iα sinh (y) = 0,(
SS−1

)
qq

= cosh2 (y)− sinh2 (y) = 1,

(
UU−1

)
pp

= cos2 (θ) + sin2 (θ) = 1,(
UU−1

)
pq

= cos (θ) eiϕ sin (θ)− eiϕ sin (θ) cos (θ) = 0,(
UU−1

)
qp

= e−iϕ sin (θ) cos (θ)− cos (θ) e−iϕ sin (θ) = 0,(
UU−1

)
qq

= sin (θ) sin (θ) + cos (θ) cos (θ) = 1.

We observe that U = U∗ , which proves that U is in fact a unitary matrix.

Next we analyse the actions of S(k,p,q) and U (k,p,q) on a single matrix A(k)
h , i.e. we give explicit

representations for the entries of the resulting matrices (compare [58, Section 3]). Those repres-
entations are crucial for our further analysis. Additionally, they can be used to create e�cient
implementations of the similarity transformations that do not rely on full matrix-matrix multi-
plications. As we �rst only look at one combination (p, q) in iteration k for a given matrix Ah ,
we omit the superscript (k, p, q) and (k) as well as the subscript h to keep our notation simple.
Let

A
′

= S−1AS

A′′ = U∗A′U

and let additionally

d = app − aqq,
ξ = eiαaqp + e−iαapq,

R = sinh2 (y) d+
i

2
sinh (2y) ξ,

T = − i
2

sinh (2y) d+ sinh2 (y) ξ.

Proposition 5.3.12. Let A ∈ Matm (C) , let k ∈ N , and let 1 ≤ p < q ≤ m. Furthermore,

let S = S(k,p,q) be a shear rotation matrix with parameters α = αk,p,q and y = yk,p,q . Then the

entries of the matrix A′ = S−1AS are given by

5.3. Simultaneous Quasi-Diagonalisation 197

a
′
ij = aij (i, j 6= p, q)

a
′
pj = cosh (y) apj + ieiα sinh (y) aqj (j 6= p, q)

a
′
qj = −ie−iα sinh (y) apj + cosh (y) aqj (j 6= p, q)

a′jp = cosh (y) ajp + ie−iα sinh (y) ajq (j 6= p, q)

a′jq = −ieiα sinh (y) ajp + cosh (y) ajq (j 6= p, q)

a′pp = app +R

a′pq = apq + eiαT

a′qp = aqp + e−iαT

a′qq = aqq −R.

Proof. Through tedious but straightforward computation we obtain:

a
′
ij = aij (i, j 6= p, q)

a
′
pj = s−1

pp apj + s−1
pq aqj = cosh (y) apj + ieiα sinh (y) aqj (j 6= p, q)

a
′
qj = s−1

qp apj + s−1
qq aqj = −ie−iα sinh (y) apj + cosh (y) aqj (j 6= p, q)

a′jp = ajpspp + ajqsqp = cosh (y) ajp + ie−iα sinh (y) ajq (j 6= p, q)

a′jq = ajpspq + ajqsqq = −ieiα sinh (y) ajp + cosh (y) ajq (j 6= p, q)

a′pp = spp
(
s−1
pp app + s−1

pq aqp
)

+ sqp
(
s−1
pp apq + s−1

pq aqq
)

=
(
cosh (y) app + ieiα sinh (y) aqp

)
cosh (y) +(

cosh (y) apq + ieiα sinh (y) aqq
)
ie−iα sinh (y)

= cosh2 (y) app + ieiα sinh (y) cosh (y) aqp +

ie−iα sinh (y) cosh (y) apq − sinh2 (y) aqq

= app + sinh 2 (y) (app − aqq) +
i

2
sinh (2y)

(
eiαaqp + e−iαapq

)
= app +R

a′pq = spq
(
s−1
pp app + s−1

pq aqp
)

+ sqq
(
s−1
pp apq + s−1

pq aqq
)

= −
(
cosh (y) app + ieiα sinh (y) aqp

)
ieiα sinh (y) +(

cosh (y) apq + ieiα sinh (y) aqq
)

cosh (y)

= cosh (y) apq cosh (y) +

eiα
(
−i cosh (y) sinh (y) app + eiα sinh (y) sinh (y) aqp + i sinh (y) cosh (y) aqq

)
= cosh2 (y) apq + eiα

(
−i cosh (y) sinh (y) (app − aqq) + eiα sinh2 (y) aqp

)
= eiα

(
−i cosh (y) sinh (y) d+ sinh2 (y) aqpe

iα +
(
1 + sinh2 (y)

)
apqe

−iα)
= apq + eiα

(
−i cosh (y) sinh (y) d+ sinh2 (y)

(
aqpe

iα + apqe
−iα))

= apq + eiα
(
− i

2
sinh (2y) d+ sinh2 (y) ξ

)
= apq + eiαT

198 Chapter 5. The Rational Recovery Problem

a′qp = spp
(
s−1
qp app + s−1

qq aqp
)

+ sqp
(
s−1
qp apq + s−1

qq aqq
)

=
(
−ie−iα sinh (y) app + cosh (y) aqp

)
cosh (y) +(

−ie−iα sinh (y) apq + cosh (y) aqq
)
ie−iα sinh (y)

= e−iα
(
eiα cosh2 (y) aqp − i sinh (y) cosh (y) app

)
+

e−iα
(
e−iα sinh2 (y) apq + i sinh (y) cosh (y) aqq

)
= e−iα

(
− i

2
sinh (2y) (app − aqq) + eiα

(
1 + sinh2 (y)

)
aqp + e−iα sinh2 (y) apq

)
= aqp + e−iα

(
− i

2
sinh (2y) d+ sinh2 (y) ξ

)
= aqp + e−iαT

a′qq = spq
(
s−1
qp app + s−1

qq aqp
)

+ sqq
(
s−1
qp apq + s−1

qq aqq
)

=
(
−ie−iα sinh (y) app + cosh (y) aqp

) (
−ieiα

)
sinh (y) +(

−ie−iα sinh (y) apq + cosh (y) aqq
)

cosh (y)

= aqq − sinh2 (y) (app − aqq)−
i

2
sinh (2y)

(
eiαaqp + e−iαapq

)
= aqq −R.

Now we also analyse the e�ect of applying a similarity transformation in form of matrices(
U (k,p,q)

)∗
and U (k,p,q) on a matrix A

′
. For this purpose, let us de�ne

d
′

= a′pp − a′qq,
ξ′ = eiϕa′qp + e−iϕa′pq,

P = − sin2 (θ) d′ +
1

2
sin (2θ) ξ′,

Q =
1

2
sin (2θ) d′ + sin2 (θ) ξ′.

Proposition 5.3.13. Let A
′ ∈ Matm (C) , let k ∈ N , and let 1 ≤ p < q ≤ m. Furthermore, let

U = U (k,p,q) be a unitary rotation matrix with parameters ϕ = ϕk,p,q and θ = θk,p,q . Then the

entries of the matrix A′′ = U∗A′U are given by

a
′′
ij = a

′
ij (i, j 6= p, q)

a
′′
pj = cos (θ) a

′
pj + eiϕ sin (θ) a

′
qj (j 6= p, q)

a
′′
qj = −e−iϕ sin (θ) a′pj + cos (θ) a

′
qj (j 6= p, q)

a
′′
jp = cos (θ) a

′
jp + e−iϕ sin (θ) a

′
jq (j 6= p, q)

a
′′
jq = −eiϕ sin (θ) a

′
jp + cos (θ) a

′
jq (j 6= p, q)

a
′′
pp = a

′
pp + P

a
′′
pq = a

′
pq − eiϕQ

a
′′
qp = a

′
qp − e−iϕQ

a
′′
qq = a

′
qq − P.

5.3. Simultaneous Quasi-Diagonalisation 199

Proof. Again through straightforward computation we obtain:

a
′′
ij = a

′
ij (i, j 6= p, q)

a
′′
pj = cos (θ) a

′
pj + eiϕ sin (θ) a

′
qj (j 6= p, q)

a
′′
qj = −e−iϕ sin (θ) a′pj + cos (θ) a

′
qj (j 6= p, q)

a
′′
jp = cos (θ) a

′
jp + e−iϕ sin (θ) a

′
jq (j 6= p, q)

a
′′
jq = −eiϕ sin (θ) a

′
jp + cos (θ) a

′
jq (j 6= p, q)

a
′′
pp = upp

(
u−1
pp a

′
pp + u−1

pq a
′
qp

)
+ uqp

(
u−1
pp a

′
pq + u−1

pq a
′
qq

)
= cos2 (θ) a

′
pp + eiϕ sin (θ) cos (θ) a

′
qp +

cos (θ) e−iϕ sin (θ) a
′
pq + eiϕ sin2 (θ) e−iϕa

′
qq

= a
′
pp − sin2 (θ) a

′
pp + sin2 (θ) a

′
qq +

1

2
sin (2θ)

(
eiϕa

′
qp + e−iϕa

′
pq

)
= a

′
pp + P

a
′′
pq = upq

(
u−1
pp a

′
pp + u−1

pq a
′
qp

)
+ uqq

(
u−1
pp a

′
pq + u−1

pq a
′
qq

)
= −eiϕ cos (θ) sin (θ) a

′
pp − eiϕ sin (θ) eiϕ sin (θ) a

′
qp +

cos2 (θ) a
′
pq + eiϕ sin (θ) cos (θ) a

′
qq

= a
′
pq − eiϕ(
e−iϕ sin2 (θ) a

′
pq + cos (θ) sin (θ) a

′
pp + eiϕ sin2 (θ) a

′
pq − sin (θ) cos (θ) a

′
qq

)
= a

′
pq − eiϕ

(
sin2 (θ)

(
e−iϕa

′
pq + eiϕa

′
pq

)
+ sin (θ) cos (θ)

(
a
′
pp − a

′
qq

))
= a

′
pq − eiϕ

(
sin2 (θ)

(
e−iϕa

′
pq + eiϕa

′
pq

)
+

1

2
sin (2θ)

(
a
′
pp − a

′
qq

))
= a

′
pq − eiϕQ

a
′′
qp = upp

(
u−1
qp a

′
pp + u−1

qq a
′
qp

)
+ uqp

(
u−1
qp a

′
pq + u−1

qq a
′
qq

)
= −e−iϕ sin (θ) cos (θ) a

′
pp + cos2 (θ) a

′
qp −

e−iϕ sin2 (θ) e−iϕa
′
pq + cos (θ) e−iϕ sin (θ) a

′
qq

= a
′
qp − e−iϕ(
sin2 (θ)

(
eiϕa

′
qp + e−iϕa

′
pq

)
+ sin (θ) cos (θ) a

′
pp − cos (θ) e−iϕ sin (θ) a

′
qq

)
= a

′
qp − e−iϕ(
sin2 (θ)

(
eiϕa

′
qp + e−iϕa

′
pq

)
+

1

2
sin (2θ)

(
a
′
pp − a

′
qq

))
= a

′
qp − e−iϕQ

a
′′
qq = upq

(
u−1
qp a

′
pp + u−1

qq a
′
qp

)
+ uqq

(
u−1
qp a

′
pq + u−1

qq a
′
qq

)
= −e−iϕ sin2 (θ)− eiϕa′pp − cos (θ) eiϕ sin (θ) a

′
qp −

200 Chapter 5. The Rational Recovery Problem

e−iϕ sin (θ) cos (θ) a
′
pq + cos2 (θ) a

′
qq

= a
′
qq − sin2 (θ) a

′
qq + sin2 (θ) a

′
pp −

1

2
sin (2θ)

(
eiϕa

′
qp + e−iϕa

′
pq

)
= a

′
qq − P.

Let us brie�y recall the setting in which we operate. We are given n (diagonalisable) matrices
A1, ..., An ∈ Matm (C) which we want to simultaneously quasi-diagonalise via a sequence of
similarity transformations. As pointed out before, the algorithm that we want to design will it-
eratively apply a shear rotation, that minimises the common squared departure from normality,
followed by a unitary rotation, that minimises the common squared departure from diagonality,
until convergence has occurred.
In the �rst step of each iteration, meaning when we form the matrices A

′
j = S−1AjS for

1 ≤ j ≤ n , we want to choose α and y of S in such a way that the common squared departure
from normality of the matrices A

′
i , i.e.

∑n
j=142

N

(
A
′
j

)
=
∑n

j=142
N

(
S−1AjS

)
is (approxim-

ately) minimised. According to Corollary 5.3.6 this task is achieved by determining S via the
parameters α and y in such a way that the sum of the squared Frobenius norms of the matrices
S−1A′jS decreases compared to the sum of the squared Frobenius norms of the matrices Aj . As
we will soon uncover, unfortunately there is no closed form solution to solve our optimisation
problem. This is why we will choose a linear approximation to the solution, for which we show
that it will always lead to

n∑
j=1

∥∥S−1AjS
∥∥2

F
−

n∑
j=1

‖Ai‖2F ≤ 0.

Then in the second step of each iteration, when we form the matrices A
′′
j = U∗A

′
jU for 1 ≤

j ≤ n , both θ and ϕ need to be chosen in such a way that the common squared departure
from diagonality of the matrices A

′′
j is minimised compared to the common squared departure

of the matrices A
′
j , meaning

∑n
j=142

N

(
U∗A

′
jU
)
is minimal with respect to θ and ϕ which

determine U . In the following, our strategy will be to adapt the proofs that are given in [59]
and [61] for the choice of parameters for the case of a single matrix to the case of n matrices.

Let us start with analysing the parameter choice for the shear transformation S .

5.3.2 Choice of Parameters in the Shear Transformation

By ‖·‖ we denote the Euclidean vector norm or the Frobenius matrix norm. Additionally, we
denote by ak,ij the (i, j)-entry of the matrix Ak .

Given matrices A1, ..., An ∈ Matm (C) and 1 ≤ p < q ≤ m , our objective is to determine the
parameters α and y of S such that

n∑
j=1

‖A′j‖2 =

n∑
j=1

‖S−1AjS‖2

is minimised.

5.3. Simultaneous Quasi-Diagonalisation 201

De�nition 5.3.14. To abbreviate our notation, let us introduce the following quantities:

Kh = Kh,pq =
∑
j 6=p,q

(ah,pj āh,qj − āh,jpah,jq) ,

Gh = Gh,pq =
∑
j 6=p,q

(
|ah,pj |2 + |ah,jp|2 + |ah,jq|2 + |ah,qj |2

)
,

Ch = AhA
∗
h −A∗hAh,

ch = Ch,pq.

Once again whenever we talk about a single matrix h for convenience we will omit the subscript h
and write K,G,C and c instead of Kh, Gh, Ch, ch .

First we show the following lemma:

Lemma 5.3.15.

=
(
dξ
)
−=

(
e−iαK

)
= −=

(
e−iαc

)
. (5.2)

Proof.

=
(
dξ
)
−=

(
e−iαK

)
= =

(app − aqq)
(
aqpe

iα + apqe
−iα)− e−iα ∑

j 6=p,q
(apjaqj − ajpajq)

= =

appaqpeiα + appapqe
−iα − aqqaqpeiα − aqqapqe−iα − e−iα

∑
j 6=p,q

(apjaqj − ajpajq)

=

1

2i

appaqpeiα + appapqe
−iα − aqqaqpeiα − aqqapqe−iα − e−iα

∑
j 6=p,q

(apjaqj − ajpajq) −appaqpe−iα + appapqe
iα − aqqaqpe−iα − aqqapqeiα − eiα

∑
j 6=p,q

(apjaqj − ajpajq)

=

1

2i
eiα

appaqp − aqqaqp − appapq + aqqapq +
∑
j 6=p,q

(apjaqj − ajpajq)

−
1

2i
e−iα

appaqp − aqqaqp − appapq + aqqapq +
∑
j 6=p,q

(apjaqj − ajpajq)

= −=

e−iα
appaqp − aqqaqp − appapq + aqqapq +

∑
j 6=p,q

(apjaqj − ajpajq)

= −=

(
e−iαcpq

)
= −=

(
e−iαc

)
.

Next we focus on minimizing a single matrix A
′
h = S−1AhS . Afterwards we extend this result

to the more general case of several matrices A
′
1, ..., A

′
n . For that purpose we adapt the approach

202 Chapter 5. The Rational Recovery Problem

of [59] to our setting. In the following part we also write A′ instead of A
′
h in order to keep the

notation as simple as possible. Now we show how ‖A′‖2 can be expressed in terms of ‖A‖2 and
the transformations which are applied.

Lemma 5.3.16. Let A ∈ Matm (C) , let 1 ≤ p < q ≤ m , let S be a shear rotation matrix with

parameters α and y , and let A′ = S−1AS . Then we have

‖A′‖2 = ‖A‖2 + (cosh (2y)− 1)G+ 2 sinh (2y)=
(
e−iαK

)
+ (5.3)

sinh2 (2y)
(
|d|2 + |ξ|2

)
− sinh (4y)=

(
dξ
)
.

Proof.∥∥A′∥∥2
=

∑
j 6=p,q

∣∣cosh (y) apj + ieiα sinh (y) aqj
∣∣2 +

∑
j 6=p,q

∣∣−ie−iα sinh (y) apj + cosh (y) aqj
∣∣2 +

∑
j 6=p,q

∣∣cosh (y) ajp + ie−iα sinh (y) ajq
∣∣2 +

∑
j 6=p,q

∣∣−ieiα sinh (y) ajp + cosh (y) ajq
∣∣2 +

∣∣apq + eiαT
∣∣2 +

∣∣aqp + e−iαT
∣∣2 + |app +R|2 − |aqq −R|2 +

∑
j,i6=p,q

|aij |2

= ...+
(
apq + eiαT

) (
āpq + e−iαT̄

)
+
(
aqp + e−iαT

) (
āqp + eiαT̄

)
+

(app +R)
(
app +R

)
+ (aqq −R)

(
aqq −R

)
+
∑
j,i6=p,q

|aij |2

= ...+ |apq|2 + apqe
−iαT̄ + āpqe

iαT + T T̄ + |aqp|2 + aqpe
iαT̄ + e−iαT āqp + T T̄ +

|app|2 + appR+ appR+RR+ |aqq|2 − aqqR− aqqR+RR+
∑
j,i6=p,q

|aij |2

=
∑
j 6=p,q

(
cosh (y) apj + ieiα sinh (y) aqj

) (
cosh (y) apj − ie−iα sinh (y) aqj

)
+

∑
j 6=p,q

(
−ie−iα sinh (y) apj + cosh (y) aqj

) (
ieiα sinh (y) apj + cosh (y) aqj

)
+

∑
j 6=p,q

(
cosh (y) ajp + ie−iα sinh (y) ajq

) (
cosh (y) ajp − ieiα sinh (y) ajq

)
+

∑
j 6=p,q

(
−ieiα sinh (y) ajp + cosh (y) ajq

) (
ie−iα sinh (y) ajp + cosh (y) ajq

)
+ ...

=
∑
j 6=p,q

(
cosh2 (y) |apj |2 − ie−iα cosh (y) sinh (y) apjaqj

)
+

∑
j 6=p,q

(
ieiα sinh (y) cosh (y) aqjapj + sinh2 (y) |aqj |2

)
+

∑
j 6=p,q

(
sinh2 (y) |apj |2 − ie−iα sinh (y) cosh (y) apjaqj

)
+

∑
j 6=p,q

(
ieiα cosh (y) sinh (y) aqjapj + cosh2 (y) |aqj |2

)
+

∑
j 6=p,q

(
cosh2 (y) |ajp|2 − ieiα cosh (y) sinh (y) ajpajq

)
+

∑
j 6=p,q

(
ie−iα sinh (y) cosh (y) ajqajp + sinh2 (y) |ajq|2

)
+

5.3. Simultaneous Quasi-Diagonalisation 203

∑
j 6=p,q

(
sinh2 (y) |ajp|2 − ieiα sinh (y) cosh (y) ajpajq

)
+

∑
j 6=p,q

(
ie−iα cosh (y) sinh (y) ajqajp + cosh2 (y) |ajq|2

)
+ ...

=
(
cosh2 (y) + sinh2 (y)− 1

) ∑
j 6=p,q

(
|apj |2 + |aqj |2 + |ajp|2 + |ajq|2

)
+

∑
j 6=p,q

(
|apj |2 + |aqj |2 + |ajp|2 + |ajq|2

)
+

2 cosh (y) sinh (y)
2

2i

∑
j 6=p,q

(
e−iαapjaqj − e−iαajpajq − eiαapjaqj + eiαajpajq

)
+ ...

= (cosh (2y)− 1)G+
∑
j 6=p,q

(
|apj |2 + |aqj |2 + |ajp|2 + |ajq|2

)
+

2 sinh (2y)
1

2i

∑
j 6=p,q

(
e−iαapjaqj − e−iαajpajq − eiαapjaqj + eiαajpajq

)
+ ...

= (cosh (2y)− 1)G+
∑
j 6=p,q

(
|apj |2 + |aqj |2 + |ajp|2 + |ajq|2

)
+ 2 sinh (2y)=

(
e−iαK

)
+

|apq|2 + apqe
−iαT̄ + āpqe

iαT + T T̄ + |aqp|2 + aqpe
iαT̄ + e−iαT āqp + T T̄ +

|app|2 + appR+ appR+RR+ |aqq|2 − aqqR− aqqR+RR+
∑
j,i6=p,q

|aij |2

= (cosh (2y)− 1)G+ 2 sinh (2y)=
(
e−iαK

)
+ ‖A‖2F + apqe

−iαT̄ +

āpqe
iαT + T T̄ + aqpe

iαT̄ + e−iαT āqp + T T̄ +

appR+ appR+RR− aqqR− aqqR+RR

= ...+ apqe
−iα
(
i

2
sinh (2y) d+ sinh2 (y) ξ

)
+ āpqe

iα

(
− i

2
sinh (2y) d+ sinh2 (y) ξ

)
+(

− i
2

sinh (2y) d+ sinh2 (y) ξ

)(
i

2
sinh (2y) dpq + sinh2 (y) ξ

)
+

aqpe
−iα
(
i

2
sinh (2y) d+ sinh2 (y) ξ

)
+ āqpe

iα

(
− i

2
sinh (2y) d+ sinh2 (y) ξ

)
+(

− i
2

sinh (2y) d+ sinh2 (y) ξ

)(
i

2
sinh (2y) d+ sinh2 (y) ξ

)
+

app

(
sinh2 (y) d− i

2
sinh (2y) ξ

)
+ app

(
sinh2 (y) d+

i

2
sinh (2y) ξ

)
+(

sinh2 (y) d+
i

2
sinh (2y) ξ

)(
sinh2 (y) d− i

2
sinh (2y) ξ

)
+

aqq

(
sinh2 (y) d− i

2
sinh (2y) ξ

)
+ aqq

(
sinh2 (y) d+

i

2
sinh (2y) ξ

)
+(

sinh2 (y) d+
i

2
sinh (2y) ξ

)(
sinh2 (y) d− i

2
sinh (2y) ξ

)
= ...+

i

2
e−iα sinh (2y) apq (app − aqq) + e−iα sinh2 (y) apq

(
aqpe

−iα + apqe
iα
)
−

i

2
eiα sinh (2y) apq (app − aqq) + eiα sinh2 (y) apq

(
aqpe

iα + apqe
−iα)+

204 Chapter 5. The Rational Recovery Problem

2

(
1

4
sinh2 (2y) |d|2 − i

2
sinh (2y) sinh2 (y) dξ

)
+

2

(
i

2
sinh (2y) sinh2 (y) dξ + sinh4 (y) |ξ|2

)
+

i

2
e−iα sinh (2y) aqp (app − aqq) + e−iα sinh2 (y) aqp

(
aqpe

−iα + apqe
iα
)
−

i

2
eiα sinh (2y) aqp (app − aqq) + eiα sinh2 (y) aqp

(
aqpe

iα + apqe
−iα)+

sinh2 (y) app (app − aqq)−
i

2
sinh (2y) app

(
aqpe

−iα + apqe
iα
)

+

sinh2 (y) app (app − aqq) +
i

2
sinh (2y) app

(
aqpe

iα + apqe
−iα)+

sinh2 (y) aqq (app − aqq)−
i

2
sinh (2y) aqq

(
aqpe

−iα + apqe
iα
)

+

sinh2 (y) aqq (app − aqq) +
i

2
sinh (2y) aqq

(
aqpe

iα + apqe
−iα)+

2

(
sinh4 (y) |d|2 − i

2
sinh2 (y) sinh (2y) dξ

)
+

2

(
i

2
sinh2 (y) sinh (2y) dξ +

1

4
sinh2 (2y) |ξ|2

)
= ...+ 2

(
sinh4 (y) +

1

4
sinh2 (2y) + sinh2 y

)(
|d|2 + |ξ|2

)
+

1

2i
(4

(
− sinh2 (y) sinh (2y)− 1

2
sinh (2y)

)
dξ −(

sinh2 (y) sinh (2y) +
1

2
sinh (2y)

)
dξ

= ‖A‖2 + (cosh (2y)− 1)G+ 2 sinh (2y)=
(
e−iαK

)
+

sinh2 (2y)
(
|d|2 + |ξ|2

)
− sinh (4y)=

(
dξ
)
.

Now remember that we want to obtain the (global) minima of Expression 5.3 or at least approxim-
ations of them. For this purpose, we �rst di�erentiate with respect to α and y . Unfortunately it
will turn out that there are no closed form solutions for the stationary points of 5.3. But with the
help of linear approximations we manage to compute approximations of the stationary points
of 5.3. Afterwards we show that these approximations are in fact approximations of (global)
minima and that their choice guarantees convergence of the algorithm.

We begin with α :

∂

∂α

∥∥A′∥∥2
=

∂

∂α

(
‖A‖2F + (cosh (2y)− 1)G+ 2 sinh (2y)=

(
e−iαK

))
+

∂

∂α

(
sinh2 (2y)

(
|d|2 + |ξ|2

)
− sinh (4y)=

(
dξ
))

=
∂

∂α

(
2 sinh (2y)=

(
e−iαK

)
+ sinh2 (2y) |ξ|2 − sinh (4y)=

(
dξ
))
.

If we use the linear approximation

2 sinh (2y) ≈ sinh (4y)

5.3. Simultaneous Quasi-Diagonalisation 205

and Equality 5.2 we can further simplify and arrive at

∂

∂α

∥∥A′∥∥2
=

∂

∂α

(
2 sinh (2y)=

(
e−iαK

)
+ sinh2 (2y) |ξ|2 − sinh (4y)=

(
dξ
))

≈ sinh (2y)
∂

∂α

(
2=
(
e−iαK

)
− 2=

(
dξ
)

+ sinh (2y) |ξ|2
)

= sinh (2y)
∂

∂α

(
2=
(
e−iαc

)
+ sinh (2y) |ξ|2

)
= sinh (2y)

∂

∂α

(
2

(
e−iαc− eiαc̄

2i

)
+ sinh (2y) |ξ|2

)
= sinh (2y)

(
−2i

(
e−iαc+ eiαc̄

2i

)
+ sinh (2y)

∂

∂α
|ξ|2
)

= sinh (2y)

(
−2<

(
e−iαc

)
+ sinh (2y)

∂

∂α
ξξ̄

)
= sinh (2y)

(
−2<

(
e−iαc

)
+ sinh (2y)

∂

∂α

(
aqpe

iα + apqe
−iα) (āqpe−iα + āpqe

iα
))

= sinh (2y)

(
−2<

(
e−iαc

)
+ sinh (2y)

∂

∂α

(
aqpāpqe

2iα + apqāqpe
−2iα

))
= sinh (2y)

(
−2<

(
e−iαc

)
+ sinh (2y) 2i

(
aqpāpqe

2iα − apqāqpe−2iα
))

= −2 sinh (2y)
(
<
(
e−iαc

)
+ 2 sinh (2y)=

(
aqpāpqe

2iα
))
. (5.4)

In practice is is important that an approximation of α can be computed in an e�cient way.
For this reason we only set the �rst summand of 5.4 to zero and then show later on that this
simpli�ed choice will still guarantee a decrease in the departure from normality, which is at the
moment not directly obvious. We compute

<
(
e−iαc

)
= 0

α = arg (c)− π

2
.

So let us now broaden our view to the case of n matrices in which we are actually interested.
We get

∂

∂α

n∑
h=1

∥∥∥A′h∥∥∥2
=

n∑
h=1

∂

∂α

∥∥∥A′h∥∥∥2

≈ 2
n∑
h=1

(
− sinh (2y)

(
<
(
e−iαch

)
+ 2 sinh (2y)=

(
ah,qpāh,pqe

2iα
)))

.

Here we obtain the following estimate for α :

n∑
h=1

<
(
e−iαch

)
= 0

<

(
e−iα

n∑
h=1

ch

)
= 0

α = arg

(
n∑
h=1

ch

)
− π

2
.

206 Chapter 5. The Rational Recovery Problem

Now we repeat the same process for y for a single matrix:

∂

∂y

∥∥A′∥∥2
=

∂

∂y

(
‖A‖2 + (cosh (2y)− 1)G+ 2 sinh (2y)=

(
e−iαK

))
+

∂

∂y

(
sinh2 (2y)

(
|d|2 + |ξ|2

)
− sinh (4y)=

(
dξ
))

= 2 sinh (2y)G+ 4 cosh (2y)=
(
e−iαK

)
+

2 sinh (4y)
(
|d|2 + |ξ|2

)
− 4 cosh (4y)=

(
dξ
)
. (5.5)

If we use the linear approximations

4 sinh (y) ≈ 2 sinh (2y) ≈ sinh (4y)

cosh (y) ≈ cosh (2y) ≈ cosh (4y)

to further simplify 5.5, we obtain:

∂

∂y

∥∥A′∥∥2 ≈ 4 sinh (y)
(
G+ 2

(
|d|2 + |ξ|2

))
+ 4 cosh (y)

(
=
(
e−iαK

)
−=

(
dξ
))
.

So the derivative is approximately zero if

sinh (y)
(
G+ 2

(
|d|2 + |ξ|2

))
= − cosh (y)

(
=
(
e−iαK

)
−=

(
dξ
))

and consequently if

sinh (y)

cosh (y)
= tanh (y) =

=
(
dξ
)
−=

(
e−iαK

)
G+ 2

(
|d|2 + |ξ|2

)
holds. If we use equation 5.2 again and substitute α = arg (c)− π

2 we obtain

=
(
dξ
)
−=

(
e−iαK

)
= −=

(
e−iαc

)
= =

(
e−i(arg(c)−π

2)c
)

= − |c|

and thus

tanh (y) =
− |c|

G+ 2
(
|d|2 + |ξ|2

) .
For the case of n matrices we obtain

∂

∂y

n∑
h=1

∥∥A′h∥∥2
=

n∑
h=1

∂

∂y

∥∥A′h∥∥2

≈ 4 sinh (y)

n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
+

4 cosh (y)

n∑
h=1

(
=
(
e−iαch

))
.

5.3. Simultaneous Quasi-Diagonalisation 207

This derivative is approximately zero if

4 sinh (y)
n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
= −4 cosh (y)

n∑
h=1

(
=
(
e−iαch

))
tanh (y) =

−
∑n

h=1

(
=
(
e−iαch

))∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
tanh (y) =

−=
(
e−iα

)∑n
h=1 (ch)∑n

h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
tanh (y) =

− |
∑n

h=1 ch|∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)) .
Now that we have explained how we have obtained our values of α and y , we show that these
choices of α and y will always lead to

∑n
h=1 ‖A

′
h‖2F ≤

∑n
h=1 ‖Ah‖

2
F . Recall from Corollary 5.3.6

that this implies a reduction in the common squared departure from normality of the matrices
A1, ..., An . Additionally, we prove a (crude) lower bound for

∑n
h=1 ‖Ah‖

2
F −

∑n
h=1 ‖A

′
h‖2F . We

use similar arguments like Eberlein in [59], however, generalised to the setting of n matrices.

Theorem 5.3.17. Let A1, ..., An ∈ Matm (C), let 1 ≤ p < q ≤ m, let dh = ah,pp − ah,qq , and
let Gh and ch as in De�nition 5.3.14. Furthermore, let

α = arg

(
n∑
h=1

ch

)
− π

2
.

If
∑n

h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
= 0 then let y = 0. If

∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
6= 0

then let

tanh (y) =
− |
∑n

h=1 ch|∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

))
with ξh = eiαah,qp + e−iαah,pq .

For theses choices of α and y , the inequality

n∑
h=1

‖A′h‖2F ≤
n∑
h=1

‖Ah‖2F

holds, where A
′
h = S−1AhS with the de�nition of S given in 5.3.8.

Proof. Let us �rst introduce the de�nition rh = =
(
dhξh

)
in order to keep our notation simple.

As α ∈ R we can write

n∑
h=1

(
rh −=

(
e−iαKh

)) 5.2
=

n∑
h=1

=
(
e−iαch

)
=

n∑
h=1

(sin (α)< (ch)− cos (α)= (ch)) .

208 Chapter 5. The Rational Recovery Problem

We compute

4E :=
n∑
h=1

‖Ah‖2 −
n∑
h=1

‖A′h‖2

=
n∑
h=1

(
− (cosh (2y)− 1)Gh − 2 sinh (2y)=

(
e−iαKh

))
+

n∑
h=1

(
− sinh2 (2y)

(
|dh|2 + |ξh|2

)
+ sinh (4y) rh

)
≥ sinh (2y)

n∑
h=1

(
2 cosh (2y) rh − 2=

(
e−iαKh

)
− sinh (2y)

(
|dh|2 + |ξh|2 +

1

2
Gh

))

because cosh (2y) − 1 ≤ 1
4 (cosh (4y)− 1) = 1

2 sinh2 (2y) . As sinh (2y) = 2 tanh (y) cosh2 (y)

holds, cosh2 (y) ≥ 1 , and

tanh (y) =

∑n
h=1

(
rh −=

(
e−iαKh

))∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)) ,
we obtain

∆E ≥ 2 tanh (y) cosh2 (y)
n∑
h=1

(
2 cosh (2y) rh − 2=

(
e−iαKh

)
− tanh (y) cosh2 (y)

(
2
(
|dh|2 + |ξh|2

)
+Gh

))
= 2 tanh (y) cosh2 (y)

n∑
h=1

(
2 cosh (2y) rh − 2=

(
e−iαKh

)
−
(
rh −=

(
e−iαKh

))
cosh2 (y)

)
≥ 2 tanh (y)

n∑
h=1

(
2 cosh (2y) rh − 2=

(
e−iαKh

)
−
(
rh −=

(
e−iαKh

))
cosh2 (y)

)
= 2 tanh (y)

n∑
h=1

(
2rh cosh (2y)− 2=

(
e−iαKh

)
− 1

2
(cosh (2y) + 1)

(
rh −=

(
e−iαKh

)))
= 2 tanh (y)

n∑
h=1

(
2rh

(
1

2
+

3

4
(cosh (2y)− 1)

)
− 2=

(
e−iαKh

)(1

2
− 1

4
(cosh (2y)− 1)

))
= 2 tanh (y)

n∑
h=1

(
rh +

3

2
rh (cosh (2y)− 1)−=

(
e−iαKh

)
+

1

2
=
(
e−iαKh

)
(cosh (2y)− 1)

)
= 2 tanh (y)

n∑
h=1

(
rh −=

(
e−iαKh

)
+

1

2
(cosh (2y)− 1)

(
3rh + =

(
e−iαKh

)))

5.3. Simultaneous Quasi-Diagonalisation 209

= 2 tanh (y)

n∑
h=1

((
rh −=

(
e−iαKh

))
+ sinh2 (y)

(
3rh + =

(
e−iαKh

)))
≥ 2 tanh (y)

n∑
h=1

((
rh −=

(
e−iαKh

))
− sinh2 (y)

∣∣3rh + =
(
e−iαKh

)∣∣)
= 2 tanh (y)

(∣∣∣∣∣
n∑
h=1

ch

∣∣∣∣∣− sinh2 (y)
n∑
h=1

∣∣3rh + =
(
e−iαKh

)∣∣) .
We know that

sinh2 (y) =
tanh2 (y)

1− tanh2 (y)

=

(∑n
h=1

(
rh −=

(
e−iαKh

)))2(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

/
1−

(∑n
h=1

(
rh −=

(
e−iαKh

)))2(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

=

(∑n
h=1

(
rh −=

(
e−iαKh

)))2(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

/

(∑n

h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2
−
(∑n

h=1

(
rh −=

(
e−iαKh

)))2(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

=

(∑n
h=1

(
rh −=

(
e−iαKh

)))2(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2
− (
∑n

h=1 (rh −= (e−iαKh)))2
.

Therefore, we arrive at

sinh2 (y)
n∑
j=1

∣∣3rj + =
(
e−iαKj

)∣∣ =

=

(∑n
h=1

(
rh −=

(
e−iαKh

)))2∑n
j=1

∣∣3rj + =
(
e−iαKj

)∣∣(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2
− (
∑n

h=1 (rh −= (e−iαKh)))2

=

∣∣∣∣∣
n∑
h=1

ch

∣∣∣∣∣
∑n

h=1

(
rh −=

(
e−iαKh

))∑n
j=1

∣∣3rj + =
(
e−iαKj

)∣∣(∑n
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2
− (
∑n

h=1 (rh −= (e−iαKh)))2
(5.6)

Note that
|2rh| =

∣∣2= (dhξh)∣∣ =
∣∣i (dhξh − dhξh)∣∣ ≤ |dh|2 + |ξh|2

and ∣∣2= (e−iαKh

)∣∣ ≤ Gh.
This can easily be veri�ed if we let dh = a + bi and ξh = c + di with a, b, c, d ∈ R . Then we

210 Chapter 5. The Rational Recovery Problem

compute

i
(
dhξh − dhξh

)
= ((a+ bi) (c− di)− (a− bi) (c+ di)) i

= (ac− adi+ bci+ bd− ac− adi+ bci− bd) i

= 2 (ad− bc)

0 ≤ (a− d)2 + (b+ c)2 = a2 − 2ad+ d2 + b2 + 2bc+ c2 = |dh|2 + |ξh|2 − 2 (ad− bc)
0 ≤ (a+ d)2 + (b− c)2 = a2 + 2ad+ d2 + b2 − 2bc+ c2 = |dh|2 + |ξh|2 − 2 (bc− ad)

2 (ad− bc) ≤ |dh|2 + |ξh|2

2 (bc− ad) ≤ |dh|2 + |ξh|2 .

Additionally, for the case of several matrices we observe that∣∣∣∣∣2
n∑
h=1

rh

∣∣∣∣∣ ≤
n∑
h=1

|2rh| ≤
n∑
h=1

(
|dh|2 + |ξh|2

)
and ∣∣∣∣∣2

n∑
h=1

=
(
e−iαKh

)∣∣∣∣∣ ≤
n∑
h=1

∣∣2= (e−iαKh

)∣∣ ≤ n∑
h=1

Gh.

As a consequence we have∣∣∣∣∣2
n∑
h=1

(
rh −=

(
e−iαKh

))∣∣∣∣∣ ≤
n∑
h=1

∣∣2rh − 2=
(
e−iαKh

)∣∣ ≤ n∑
h=1

(
|dh|2 + |ξh|2 +Gh

)
and ∣∣∣∣∣

n∑
h=1

(
6rh + 2=

(
e−iαKh

))∣∣∣∣∣ ≤
n∑
h=1

∣∣6rh + 2=
(
e−iαKh

)∣∣ ≤ n∑
h=1

(
3
(
|dh|2 + |ξh|2

)
+Gh

)
.

For the numerator of formula 5.6 we have

n∑
h=1

(
rh −=

(
e−iαKh

)) n∑
j=1

∣∣3rj + =
(
e−iαKj

)∣∣ ≤
≤ 1

4

n∑
h=1

(
|dh|2 + |ξh|2 +Gh

) n∑
j=1

(
3
(
|dj |2 + |ξj |2

)
+Gj

)

=
1

4

3

(
n∑
h=1

(
|dh|2 + |ξh|2

))2

+ 4
n∑
h=1

(
|dh|2 + |ξh|2

) n∑
j=1

Gj +

(
n∑
h=1

Gh

)2

≤ 1

4

4

(
n∑
h=1

(
|dh|2 + |ξh|2

))2

+ 4
n∑
h=1

(
|dh|2 + |ξh|2

) n∑
j=1

Gj +

(
n∑
h=1

Gh

)2

=
1

4

(
n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

.

5.3. Simultaneous Quasi-Diagonalisation 211

Further analysis of the denominator of formula 5.6 yields(
n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

− 1

4

(
n∑
h=1

(
2rh − 2=

(
e−iαKh

)))2

≥

≥

(n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

− 1

4

(
n∑
h=1

(
|dh|2 + |ξh|2 +Gh

))2

=
3

4

(
n∑
h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)))2

.

If we put all results together we obtain

sinh2 (y)

n∑
j=1

∣∣3rj + =
(
e−iαKj

)∣∣ ≥ 1

3

and �nally

∆E ≥ tanh (y)

(∣∣∣∣∣
n∑
h=1

ch

∣∣∣∣∣−
∣∣∣∣∣
n∑
h=1

ch

∣∣∣∣∣ 1

3

)
=

2

3
tanh (y)

∣∣∣∣∣
n∑
h=1

ch

∣∣∣∣∣
=

1

3

|
∑n

h=1 ch|
2∑n

h=1

(
Gh + 2

(
|dh|2 + |ξh|2

)) ≥ 1

3

|
∑n

h=1 ch|
2∑n

h=1 ‖Ah‖
≥ 0.

5.3.3 Choice of Parameters in the Unitary Transformation

Now that we have demonstrated how to choose the parameters α and y in the shear transform-
ation we focus on the unitary transformation and its parameters θ and ϕ . Fortunately, we are
in a more favourable situation in the sense that these can be computed in an optimal way using
a closed form expression.

Before we begin with the main proof we show a lemma that relates the departure from normality
of A′′ = U∗A′U , where U is a unitary transformation matrix as de�ned in 5.3.9, to the departure
of normality of A′ its entries and the parameters θ and ϕ of U . Note, that we use similar
arguments like Goldstine and Horwitz in [61], but generalised to the setting of n matrices.

Lemma 5.3.18. Let A′ ∈ Matm (C), let 1 ≤ p < q ≤ m, let U ∈ Matm (C) be a unitary

rotation matrix with parameters θ and ϕ , and let A′′ = U∗A′U . Then

∆2
D

(
A′′
)

= 42
D

(
A′
)

+
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)
, (5.7)

where d′ = a′pp − a′qq and ξ′ = eiϕa′qp + e−iϕa′pq .

212 Chapter 5. The Rational Recovery Problem

Proof. Let us quickly recall that Q = 1
2 sin (2θ) d′ + sin2 (θ) ξ′ .

∆2
D

(
A′′
)

=
∑
j 6=p,q

∣∣∣cos (θ) a
′
pj + eiϕ sin (θ) a

′
qj

∣∣∣2 +
∑
j 6=p,q

∣∣∣−e−iϕ sin (θ) a′pj + cos (θ) a
′
qj

∣∣∣2 +

∑
j 6=p,q

∣∣∣cos (θ) a
′
jp + e−iϕ sin (θ) a

′
jq

∣∣∣2 +
∑
j 6=p,q

∣∣∣−eiϕ sin (θ) a
′
jp + cos (θ) a

′
jq

∣∣∣2 +

∣∣∣a′pq − eiϕQ∣∣∣2 +
∣∣∣a′qp − e−iϕQ∣∣∣2 +

∑
j,i6=p,q,j 6=i

∣∣∣a′ij∣∣∣2
= ...+

(
a
′
pq − eiϕQ

)(
ā
′
pq − e−iϕQ

)
+(

a
′
qp − e−iϕQ

)(
ā
′
qp − eiϕQ̄

)
+

∑
j,i6=p,q,j 6=i

∣∣∣a′ij∣∣∣2
= ...+

∣∣∣a′pq∣∣∣2 − e−iϕa′pqQ− eiϕā′pqQ+ |Q|2 +
∣∣∣a′qp∣∣∣2 −

eiϕa
′
qpQ̄− e−iϕā

′
qpQ+ |Q|2 +

∑
j,i6=p,q,j 6=i

∣∣∣a′ij∣∣∣2
=

∑
j 6=p,q

(
cos2 (θ)

∣∣∣a′pj∣∣∣2 + e−iϕ cos (θ) sin (θ) a
′
pja
′
qj

)
+

∑
j 6=p,q

(
eiϕ cos (θ) sin (θ) ā

′
pja
′
qj + sin2 (θ)

∣∣∣a′qj∣∣∣2)+

∑
j 6=p,q

(
sin2 (θ)

∣∣a′pj∣∣2 − e−iϕ cos (θ) sin (θ) a′pj ā
′
qj

)
+

∑
j 6=p,q

(
−eiϕ cos (θ) sin (θ) ā′pja

′
qj + cos2 (θ)

∣∣∣a′qj∣∣∣2)+

∑
j 6=p,q

(
cos2 (θ)

∣∣∣a′jp∣∣∣2 + eiϕ cos (θ) sin (θ) a
′
jpā
′
jq

)
+

∑
j 6=p,q

(
e−iϕ cos (θ) sin (θ) a

′
jqā
′
jp + sin2 (θ)

∣∣∣a′jq∣∣∣2)+

∑
j 6=p,q

(
sin2 (θ)

∣∣∣a′jp∣∣∣2 − eiϕ cos (θ) sin (θ) a
′
jpā
′
jq

)
+

∑
j 6=p,q

(
−e−iϕ cos (θ) sin (θ) ā

′
jpa
′
jq + cos2 (θ)

∣∣∣a′jq∣∣∣2)+ ...

= −e−iϕa′pqQ− eiϕā
′
pqQ− eiϕa

′
qpQ̄− e−iϕā

′
qpQ+ 2 |Q|2 +

∑
j 6=i

∣∣∣a′ij∣∣∣2
= −

(
eiϕa′qp + e−iϕa′pq

)
Q−

(
e−iϕā′qp + eiϕā′pq

)
Q+ 2 |Q|2 +

∑
j 6=i

∣∣∣a′ij∣∣∣2
=

∑
j 6=i

∣∣∣a′ij∣∣∣2 + 2 |Q|2 − 2<
(
ξ′Q
)

=
∑
j 6=i

∣∣∣a′ij∣∣∣2 +
(

sin (2θ) sin2 (θ) d̄′ξ′ + 2 sin4 (θ)
∣∣ξ′∣∣2 +

5.3. Simultaneous Quasi-Diagonalisation 213

sin (2θ) sin2 (θ) d̄′ξ′ + 2 sin4 (θ)
∣∣ξ′∣∣2)−((

1

2
sin (2θ) d̄′ξ′ + sin2 (θ)

∣∣ξ′∣∣2)+

(
1

2
sin (2θ) d′ξ̄′ + sin2 (θ)

∣∣ξ′∣∣2))
=

∑
j 6=i

∣∣∣a′ij∣∣∣2 +
1

2
sin2 (2θ)

∣∣d′∣∣2 − 2
(
sin2 (θ)− sin4 (θ)

) ∣∣ξ′∣∣2 +

sin (2θ)

(
sin2 (θ) d′ξ̄′ + sin2 (θ) d̄′ξ′ − 1

2
d̄′ξ′ − 1

2
d′ξ̄′
)

=
∑
j 6=i

∣∣∣a′ij∣∣∣2 +
1

2
sin2 (2θ)

∣∣d′∣∣2 − 1

2
sin2 (2θ)

∣∣ξ′∣∣2 +

2 sin (2θ)

((
sin2 (θ)− 1

2

)(
d̄′ξ′ + d′ξ̄′

) 1

2

)
=

∑
j 6=i

∣∣∣a′ij∣∣∣2 +
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)

= 42
D

(
A′
)

+
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)
. (5.8)

Next we assume that ϕ is �xed and compute the stationary points of
∑n

h=1 ∆2
D (A′′h) with respect

to θ and decide with the help of the usual criteria which stationary points are in fact (global)
minima.

Lemma 5.3.19. Let A′1, ..., A
′
n ∈ Matm (C) , let 1 ≤ p < q ≤ m , let U ∈ Matm (C) be

a unitary rotation matrix with parameters θ and ϕ , and let A′′h = U∗A′hU . Depending on

sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

we can establish three cases when
∑n

h=1 ∆2
D (A′′) will assume a global

minimum with respect to θ :

1. If sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

= 0, then let

θ = sgn

(
n∑
h=1

<
(
d̄′hξ
′
h

)) π

8
.

.

2. If sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

= 1, then let

θ =
1

4
arctan

 2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
 .

3. If sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

= −1 , then let

θ =
1

4
arctan

 2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
+

π

4
.

214 Chapter 5. The Rational Recovery Problem

Proof. Initially, we investigate the case of one matrix and then afterwards we generalise this result
to n matrices. So let us start with a single matrix. For this purpose, we take the derivative
of ∆2

D (A′′) (see Lemma 5.3.18) with respect to θ and obtain:

∂

∂θ
∆2
D

(
A′′
)

=
∂

∂θ

∑
j 6=i

∣∣∣a′ij∣∣∣2 +
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)

= sin (4θ)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 2 cos (4θ)<

(
d̄′ξ′
)
.

For a minimum to occur, one requirement is that the �rst derivative equals zero.

0 = sin (4θ)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 2 cos (4θ)<

(
d̄′ξ′
)

We will have to take care of essentially two cases: Let us �rst assume that |d′|2−|ξ′|2 = 0 . Then
it is easy to see that the values

θ1,2 = ±π
8

are potential minima. The second derivative of ∆2
D (A′′) with respect to θ is given by(

∂

∂θ

)2

∆2
D

(
A′′
)

=
∂

∂θ

(
−2 cos (4θ)<

(
d̄′ξ′
))

= 8 sin (4θ)<
(
d̄′ξ′
)
.

A minimum is thus obtained for θ = sgn
(
<
(
d̄′ξ′
))

π
8 .

Now we treat the general case |d′|2 − |ξ′|2 6= 0 . We observe that the equation

sin (4θ)

cos (4θ)
= tan (4θ) =

2<
(
d̄′ξ′
)

|d′|2 − |ξ′|2
(5.9)

needs to be satis�ed.
Using the equality sin (arctan (x)) = x√

1+x2
we can derive a relation for sin (4θ) . We obtain

sin (4θ) =
2<
(
d̄′ξ′
)

|d′|2 − |ξ′|2

/√√√√1 +

(
2<
(
d̄′ξ′
)

|d′|2 − |ξ′|2

)2

=
2<
(
d̄′ξ′
)

|d′|2 − |ξ′|2

/√√√√√√
(
|d′|2 − |ξ′|2

)2
+
(
d̄′ξ′ + d′ξ̄′

)2(
|d′|2 − |ξ′|2

)2

=
2<
(
d̄′ξ′
)

sgn
(
|d′|2 − |ξ′|2

)
√(
|d′|2 − |ξ′|2

)2
+
(
d̄′ξ′ + d′ξ̄′

)2
=

2<
(
d̄′ξ′
)

sgn
(
|d′|2 − |ξ′|2

)
√
|d′|4 + |ξ′|4 +

∣∣d̄′∣∣2 |ξ′|2 + |d′|2
∣∣ξ̄′∣∣2

=
2<
(
d̄′ξ′
)

sgn
(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

5.3. Simultaneous Quasi-Diagonalisation 215

and additionally with the help of the equation cos (arctan (x)) = 1√
1+x2

we can derive a relation
for cos (4θ) . We arrive at

cos (4θ) =

(
|d′|2 − |ξ′|2

)
sgn

(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

. (5.10)

As ∆2
D (A′′) is π

2 periodic in θ we only have to investigate one such interval. We obtain from 5.9

θ1 =
1

4
arctan

(
2<
(
d̄′ξ′
)

|d′|2 − |ξ′|2

)
∈
]
−π

8
,
π

8

[
(5.11)

as the �rst solution and θ2 = θ1+ π
4 as the second solution. With the help of the second derivative

of ∆2
D (A′′) with respect to θ we can decide whether θ1 or θ2 is the minimum. So we compute(

∂

∂θ

)2

∆2
D

(
A′′
)

=
∂

∂θ

(
sin (4θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 2 cos (4θ)<
(
d̄′ξ′
))

= 4
(

cos (4θ)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)+ 2 sin (4θ)<

(
d̄′ξ′
))
.

We substitute θ1 and obtain

4
(

cos (4θ1)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)+ 2 sin (4θ1)<

(
d̄′ξ′
))

=

= 4 sgn
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)

(
|d′|2 − |ξ′|2

)2

|d′2 + ξ′2|
+

4<
(
d̄′ξ′
)2

|d′2 + ξ′2|

 .

It is easy to see that the evaluations of the second derivative at θ1 and θ2 have always opposite
signs as

4
(

cos (4θ2)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)+ 2 sin (4θ2)<

(
d̄′ξ′
))

=

= 4
(

cos
(

4
(
θ1 +

π

4

))(∣∣d′∣∣2 − ∣∣ξ′∣∣2)+ 2 sin
(

4
(
θ1 +

π

4

))
<
(
d̄′ξ′
))

= −4
(

cos (4θ1)
(∣∣d′∣∣2 − ∣∣ξ′∣∣2)+ 2 sin (4θ1)<

(
d̄′ξ′
))

holds. Thus we can conclude that θ1 has to be the global minimum if sgn
(
|d′|2 − |ξ′|2

)
> 0

and θ2 if sgn
(
|d′|2 − |ξ′|2

)
< 0 .

This result can easily be generalised to the case of n matrices and we obtain

∂

∂θ

n∑
h=1

∆2
D

(
A′′h
)

= sin (4θ)

n∑
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)− 2 cos (4θ)

n∑
h=1

<
(
d̄′hξ
′
h

)
.

Now if
∑n

h=1

(
|d′h|

2 − |ξ′h|
2
)

= 0 we obtain

0 = cos (4θ)

n∑
h=1

<
(
d̄′hξ
′
h

)

216 Chapter 5. The Rational Recovery Problem

with

θ = sgn

(
n∑
h=1

<
(
d̄′hξ
′
h

)) π

8
.

In case
∑n

h=1

(
|d′h|

2 − |ξ′h|
2
)
6= 0 we compute

tan (4θ) =
2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2) .
Using again the equalities sin (arctan (x)) = x√

1+x2
and cos (arctan (x)) = 1√

1+x2
we can derive

relations for sin (4θ) and cos (4θ) . We get

sin (4θ) =
2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
/√√√√√

1 +

 2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
2

=
2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
/√√√√√√

(∑n

h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄′hξ
′
h

))2(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2

=

2
∑n

h=1<
(
d̄′hξ
′
h

)
sgn

(∑n
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄′hξ
′
h

))2
and

cos (4θ) =

∑n
h=1

(
|d′h|

2 − |ξ′h|
2
)

sgn

(∑n
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄′hξ
′
h

))2 .
We obtain two solutions for ∂

∂θ

∑n
h=1 ∆2

D (A′′h) = 0 , namely

θ1 =
1

4
arctan

 2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
 ∈]−π

8
,
π

8

[
and θ2 = θ1 + π

4 . With the help of the second derivative we determine when θ1 or θ2 is a global
minimum. Therefore, we compute(

∂

∂θ

)2 n∑
h=1

∆2
D

(
A
′′
h

)
=

∂

∂θ

(
sin (4θ)

n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)− 2 cos (4θ)
n∑
h=1

<
(
d̄′hξ
′
h

))

= 4

(
cos (4θ)

n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)+ 2 sin (4θ)
n∑
h=1

<
(
d̄′hξ
′
h

))
.

5.3. Simultaneous Quasi-Diagonalisation 217

Next, we substitute θ1 and obtain

4

(
cos (4θ1)

n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)+ 2 sin (4θ1)
n∑
h=1

<
(
d̄′hξ
′
h

))
=

= 4

(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))2

sgn

(∑n
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄′hξ
′
h

))2
+

+4

 4
(∑n

h=1<
(
d̄′hξ
′
h

))2
sgn

(∑n
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄′hξ
′
h

))2
 .

If we substitute θ2 we observe that

4

(
cos (4θ2)

n∑
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)+ 2 sin (4θ2)

n∑
h=1

<
(
d̄′hξ
′
h

))
=

= 4

(
cos
(

4
(
θ1 +

π

4

)) n∑
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)+ 2 sin
(

4
(
θ1 +

π

4

)) n∑
h=1

<
(
d̄′hξ
′
h

))

= −4

(
cos (4θ1)

n∑
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)+ 2 sin (4θ1)

n∑
h=1

<
(
d̄′hξ
′
h

))
.

So we have shown that θ1 is a global minimum if sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

= 1 and θ2

if sgn
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))

= −1 .

Remark 5.3.20. For angles near 0 and π the numerical calculation of the arccos and for angles
near −π

2 and π
2 the calculation of arcsin becomes ill-conditioned. Consequently, arctan , or in

fact atan2 (see [63, page 42]) which is available in many programming languages, should be used
in an actual computer implementation.

We now repeat the same procedure for ϕ to obtain its optimal value. I.e. we compute the
stationary points of

∑n
h=1 ∆2

D (A′′h) with respect to ϕ and determine which stationary points
are in fact global minima.

Lemma 5.3.21. Let A′1, ..., A
′
n ∈ Matm (C) , let 1 ≤ p < q ≤ m, let U ∈ Matm (C) be a

unitary rotation matrix with parameters θ and ϕ, and let A′′h = U∗A′hU . Furthermore, let the

parameter θ of U be chosen as proposed in Lemma 5.3.19. We can establish two cases when∑n
h=1 ∆2

D (A′′) will assume a global minimum with respect to ϕ :

1. If <
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))
= 0, then

ϕ = sgn

=
 n∑
h=1

(
a
′
h,pq − a

′
h,qp

)√√√√ n∑
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

) π

2
.

218 Chapter 5. The Rational Recovery Problem

2. If <
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))
6= 0, then

ϕ = arctan

=
(∑n

h=1

(
a
′
h,pq − a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))
<
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))
 .

Proof. Once again, we �rst analyse the single matrix case. Later on we extend this result to n
matrices. We start by computing the derivative of ∆2

D (A′′) (see 5.3.18) with respect to ϕ .
Recall that d

′
= a′pp − a′qq and ξ′ = eiϕa′qp + e−iϕa′pq .

∂

∂ϕ
∆2
D

(
A′′
)

=
∂

∂ϕ

∑
j 6=i

∣∣∣a′ij∣∣∣2 +
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)

=
∂

∂ϕ

(
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
))

.

We once again distinguish a few di�erent cases.
First of all we consider the case d′ = 0 . We observe that sgn

(
|d′|2 − |ξ′|2

)
≤ 0 . According to

Lemma 5.3.19 we have to substitute θ = 0 if |ξ′| = 0 and θ = 1
4 arctan (0) + π

4 = π
4 if |ξ′| 6= 0

(see also 5.11). As an intermediate step we will show that ∆2
D (A′′) is di�erentiable with respect

to ϕ . Let us now assume that |ξ′| = 0 , which implies that

0 = ξ′ = eiϕa′qp + e−iϕa′pq

= (cos (ϕ) + i sin (ϕ)) a′qp + (cos (ϕ)− i sin (ϕ)) a′pq

= sin (ϕ)
(
a′qp − a′pq

)
i+ cos (ϕ)

(
a′qp + a′pq

)
We further obtain

sin (ϕ)

cos (ϕ)
=

(
a′qp + a′pq

)
i
(
a′qp − a′pq

) ⇐⇒ ϕ = tan−1

((
a′qp + a′pq

)
i
(
a′qp − a′pq

)) . (5.12)

Since ϕ is real, (a′qp+a′pq)
i(a′qp−a′pq)

must also be a real number. This implies

0 = −=

((
a′qp + a′pq

)
i
(
a′qp − a′pq

)) = − 1

2i

((
a′qp + a′pq

)
i
(
a′qp − a′pq

) − (
ā′qp + ā′pq

)
−i
(
ā′qp − ā′pq

))

=

(
ā′qp − ā′pq

) (
a′qp + a′pq

)
+
(
a′qp − a′pq

) (
ā′qp + ā′pq

)
2
(
a′qp − a′pq

) (
ā′qp − ā′pq

)
=
<
((
ā′qp − ā′pq

) (
a′qp + a′pq

))∣∣a′qp − a′pq∣∣2
=
<
(∣∣a′qp∣∣2 − ∣∣a′pq∣∣2 + ā′qpa

′
pq − a′qpā′pq

)
∣∣a′qp − a′pq∣∣2

=

∣∣a′qp∣∣2 − ∣∣a′pq∣∣2 + <
(
=
(
ā′qpa

′
pq

)
2i
)∣∣a′qp − a′pq∣∣2 =

∣∣a′qp∣∣2 − ∣∣a′pq∣∣2∣∣a′qp − a′pq∣∣2 .

5.3. Simultaneous Quasi-Diagonalisation 219

So only if
∣∣a′qp∣∣ =

∣∣a′pq∣∣ , the expression (a′qp+a′pq)
i(a′qp−a′pq)

is real and it is possible to choose ϕ as

in 5.12 such that |ξ′| = 0 . Let us further assume that
∣∣a′qp∣∣ =

∣∣a′pq∣∣ . If we now let ϕ =

arctan
(a′qp+a′pq)
i(a′qp−a′pq)

:= ϕ0 then |ξ′|2 = 0 , sgn
(
|d′|2 − |ξ′|2

)
= 0 and according to Lemma 5.3.19

θ = 0 := θ1 . Whenever ϕ 6= arctan
(a′qp+a′pq)
i(a′qp−a′pq)

then sgn
(
|d′|2 − |ξ′|2

)
< 0 and we have to

choose θ = 1
4 arctan (0) + π

4 = π
4 := θ2 . We thus have to verify that ∆2

D (A′′) is di�erentiable at

ϕ = arctan
(a′qp+a′pq)
i(a′qp−a′pq)

. Note that ∆2
D (A′′) (θ1) (ϕ0) = ∆2

D (A′′) (θ2) (ϕ0) = 0 . So since

∂

∂ϕ

(
∆2
D

(
A′′
)

(θ2)
)

(ϕ0)

= lim
ϕ→ϕ0

∆2
D

(
A
′′
h

)
(θ2) (ϕ)−∆2

D

(
A
′′
h

)
(θ2) (ϕ0)

ϕ− ϕ0

= lim
ϕ→ϕ0

∆2
D

(
A
′′
h

)
(θ2) (ϕ)−∆2

D

(
A
′′
h

)
(θ1) (ϕ0)

ϕ− ϕ0

we note that for d′ = 0 , ∆2
D (A′′) is di�erentiable for all ϕ0 ∈]−π, π] . Since the limits agree,

we need not distinguish between |ξ′| = 0 and |ξ′| 6= 0 .
Now let θ = θ2 = π

4 and let us further assume that no special relations exists between
∣∣a′qp∣∣ and∣∣a′pq∣∣ . We obtain sin2 (2θ) = sin2

(
2π4
)

= 1 and consequently we get

∂

∂ϕ
∆2
D

(
A′′
)

=
∂

∂ϕ

(
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
))

= −1

2

∂

∂ϕ

∣∣ξ′∣∣2
= −1

2

∂

∂ϕ

((
eiϕa′qp + e−iϕa′pq

) (
e−iϕā′qp + eiϕā′pq

))
= −1

2

∂

∂ϕ

(∣∣a′qp∣∣2 + e2iϕa′qpā
′
pq + e−2iϕā′qpa

′
pq +

∣∣a′pq∣∣2)
= −i

(
e2iϕa′qpā

′
pq − e−2iϕā′qpa

′
pq

)
= −i

(
(cos (2ϕ) + i sin (2ϕ)) a′qpā

′
pq − (cos (2ϕ)− i sin (2ϕ)) ā′qpa

′
pq

)
.

Additionally, we compute the second derivative and obtain(
∂

∂ϕ

)2

∆2
D

(
A′′
)

= 2
(
e2iϕa′qpā

′
pq + e−2iϕā′qpa

′
pq

)
= 2

(
(cos (2ϕ) + i sin (2ϕ)) a′qpā

′
pq + (cos (2ϕ)− i sin (2ϕ)) ā′qpa

′
pq

)
.

Next we want to determine the zero set of ∂
∂ϕ∆2

D (A′′) and then decide with the help of(
∂
∂ϕ

)2
∆2
D (A′′) which are in fact local minima. Therefore, we compute

0 = −i
(
e2iϕa′qpā

′
pq − e−2iϕā′qpa

′
pq

)
= e2iϕa′qpā

′
pq − e−2iϕā′qpa

′
pq

=
(
(cos (2ϕ) + i sin (2ϕ)) a′qpā

′
pq − (cos (2ϕ)− i sin (2ϕ)) ā′qpa

′
pq

)
i sin (2ϕ)

(
ā′qpa

′
pq + a′qpā

′
pq

)
= cos (2ϕ)

(
ā′qpa

′
pq − a′qpā′pq

)
. (5.13)

220 Chapter 5. The Rational Recovery Problem

If <
(
ā′qpa

′
pq

)
= 0 , then we have 0 = cos (2ϕ)

(
ā′qpa

′
pq − a′qpā′pq

)
so ϕ1,2 = ±π

4 are potential

minima. We evaluate
(
∂
∂ϕ

)2
∆2
D (A′′) on ϕ1 and obtain(

∂

∂ϕ

)2

∆2
D

(
A′′
)

= 2
(
(cos (2ϕ1) + i sin (2ϕ1)) a′qpā

′
pq + (cos (2ϕ1)− i sin (2ϕ1)) ā′qpa

′
pq

)
= −2i

(
a′qpā

′
pq − ā′qpa′pq

)
=

4

2i

(
a′qpā

′
pq − ā′qpa′pq

)
= 4=

(
a′qpā

′
pq

)
.

Similarly, we obtain for ϕ2 the equations(
∂

∂ϕ

)2

∆2
D

(
A′′
)

= 2
(
(cos (2ϕ2) + i sin (2ϕ2)) a′qpā

′
pq + (cos (2ϕ2)− i sin (2ϕ2)) ā′qpa

′
pq

)
= 2i

(
a′qpā

′
pq − ā′qpa′pq

)
= − 4

2i

(
a′qpā

′
pq − ā′qpa′pq

)
= −4=

(
a′qpā

′
pq

)
.

This means that ∆2
D (A′′) has a minimum for ϕ = − sgn

(
=
(
a′qpā

′
pq

))
π
4 .

In the case <
(
ā′qpa

′
pq

)
6= 0 we further obtain through equation 5.13 that

tan (2ϕ) =
=
(
ā′qpa

′
pq

)
<
(
ā′qpa

′
pq

) .
We observe that ∆2

D (A′′) is 2π periodic in ϕ so we need to investigate the full interval]−π, π] .
We therefore obtain

ϕ1 =
1

2
arctan

(
=
(
ā′qpa

′
pq

)
<
(
ā′qpa

′
pq

)) ∈]−π
4
,
π

4

[
and the further solutions ϕ2 = ϕ1− π

2 and ϕ3 = ϕ1 + π
2 . Once again we evaluate

(
∂
∂ϕ

)2
∆2
D (A′′)

on the individual ϕi in order to decide which one is in fact a minimum.(
∂

∂ϕ

)2

∆2
D

(
A′′
)

= 2
(
(cos (2ϕ1) + i sin (2ϕ1)) a′qpā

′
pq + (cos (2ϕ1)− i sin (2ϕ1)) ā′qpa

′
pq

)
=

4
∣∣ā′qp∣∣2 ∣∣a′pq∣∣2√

=
(
ā′qpa

′
pq

)2
+ <

(
ā′qpa

′
pq

)2 > 0.

For ϕ2,3 we get(
∂

∂ϕ

)2

∆2
D

(
A′′
)

= 2 (cos (2ϕ2,3) + i sin (2ϕ2,3)) a′qpā
′
pq + 2 (cos (2ϕ2,3)− i sin (2ϕ2,3)) ā′qpa

′
pq

= 2
(
− (cos (2ϕ1)− i sin (2ϕ1)) a′qpā

′
pq

)
+ 2 (− cos (2ϕ1) + i sin (2ϕ1)) ā′qpa

′
pq

=
−4
∣∣ā′qp∣∣2 ∣∣a′pq∣∣2√

=
(
ā′qpa

′
pq

)2
+ <

(
ā′qpa

′
pq

)2 < 0.

So here ϕ1 is the only minimum.

Next we treat the case d′ 6= 0 .
First we note that sin2

(
1
2 arccos (x)

)
= 1−x

2 and sin2
(

1
2 arccos (x) + π

2

)
= 1+x

2 . Again we

5.3. Simultaneous Quasi-Diagonalisation 221

substitute for θ depending on sgn
(
|d′|2 − |ξ′|2

)
. Please note that sgn

(
|d′|2 − |ξ′|2

)
6= 0 also

implies that |d′2 + ξ
′2| 6= 0 . We obtain, using relation 5.10 for θ , the equations

sin2 (2θ1) = sin2

1

2
arccos

(
|d′|2 − |ξ′|2

)
sgn

(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

=

1

2

(
1− |d

′|2 − |ξ′|2

|d′2 + ξ′2|

)

if sgn
(
|d′|2 − |ξ′|2

)
= 1 and

sin2 (2θ2) = sin2

1

2
arccos

(
|d′|2 − |ξ′|2

)
sgn

(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

+
π

2

=

1

2

(
1− |d

′|2 − |ξ′|2

|d′2 + ξ′2|

)

if sgn
(
|d′|2 − |ξ′|2

)
= −1 . Additionally,

sin (4θ1) =
2<
(
d̄′ξ′
)

sgn
(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

=
2<
(
d̄′ξ′
)

|d′2 + ξ′2|

if sgn
(
|d′|2 − |ξ′|2

)
= 1 ,

sin (4θ2) = sin
(

4
(
θ1 +

π

4

))
= − sin (4θ1)

= −
2<
(
d̄′ξ′
)

sgn
(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

=
2<
(
d̄′ξ′
)

|d′2 + ξ′2|

if sgn
(
|d′|2 − |ξ′|2

)
= −1 , and

sin (4θ1) = 1

sin (4θ2) = −1

if sgn
(
|d′|2 − |ξ′|2

)
= 0 . By these observations we can conclude that sin2 (2θ) , sin (4θ) and

therefore ∆2
D (A′′) do not depend on sgn

(
|d′|2 − |ξ′|2

)
= ±1 . Suppose that sgn

(
|d′|2 − |ξ′|2

)
=

0 , then by using equation 5.8 we obtain

∆2
D

(
A′′
)
−∆2

D

(
A′
)

= −1

2

∣∣< (d̄′ξ′)∣∣ = −1

4

∣∣d̄′ξ′ + d′ξ̄′
∣∣ . (5.14)

222 Chapter 5. The Rational Recovery Problem

Starting from equation 5.8 and assuming that |d′|2 − |ξ′|2 6= 0 we compute

∆2
D

(
A′′
)
−∆2

D

(
A′
)

=

=
1

2
sin2 (2θ)

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− 1

2
sin (4θ)<

(
d̄′ξ′
)

=
1

4

1−

(
|d′|2 − |ξ′|2

)
|d′2 + ξ′2|

(∣∣d′∣∣2 − ∣∣ξ′∣∣2)− (< (d̄′ξ′))2
|d′2 + ξ′2|

=
1

4

∣∣d′∣∣2 − ∣∣ξ′∣∣2 −
(
|d′|2 − |ξ′|2

)2

|d′2 + ξ′2|

− (d̄′ξ′ + d′ξ̄′
)2

4 |d′2 + ξ′2|

=
1

4

∣∣d′∣∣2 − ∣∣ξ′∣∣2 −
(
|d′|2 − |ξ′|2

)2
+
(
d̄′ξ′ + d′ξ̄′

)2
|d′2 + ξ′2|

=

1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 − |d′|4 + |ξ′|4 − 2 |d′|2 |ξ′|2 + d̄′2ξ′2 + d′2ξ̄′2 + 2 |d′|2 |ξ′|2

|d′2 + ξ′2|

)

=
1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 − (d′2 + ξ′2
) (
d̄′2 + ξ̄′2

)
|d′2 + ξ′2|

)

=
1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 − ∣∣d′2 + ξ′2
∣∣2

|d′2 + ξ′2|

)
=

1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 − ∣∣d′2 + ξ′2
∣∣)

=
1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 −√|d′|4 + |ξ′|4 − 2 |d′|2 |ξ′|2 + 2 |d′|2 |ξ′|2 + d̄′2ξ′2 + d′2ξ̄′2
)

=
1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 −√(|d′|2 − |ξ′|2)2
+
(
d̄′ξ′ + d′ξ̄′

)2)
. (5.15)

Please note that if we let |d′|2 − |ξ′|2 = 0 in equation 5.15 we obtain equation 5.14. So the case
of |d′|2 − |ξ′|2 = 0 is already covered via 5.15. Since ∆2

D(A′′) − ∆2
D(A′) does not depend on

sgn
(
|d′|2 − |ξ′|2

)
we may di�erentiate with respect to ϕ without having to distinguish di�erent

cases. Similarly like Goldstine and Horwitz in [61] we do not investigate formula 5.15 directly,
but the product

4

|d′|2
(
∆2
D

(
A′′
)
−∆2

D

(
A′
))

instead. Multiplying by 4
|d′|2 will not alter the location of the minima and maxima but it will

make the formula more easy to handle. We obtain:

4

|d′|2
(
∆2
D

(
A′′
)
−∆2

D

(
A′
))

=
4

|d′|2
1

4

(∣∣d′∣∣2 − ∣∣ξ′∣∣2 − ∣∣d′2 + ξ′2
∣∣)

= 1− |ξ
′|2

|d′|2
−
√

1

|d′|4
(d′2 + ξ′2)

(
d̄′2 + ξ̄′2

)
= 1− |ξ

′|2

|d′|2
−
√

1

d′2
(d′2 + ξ′2)

1

d̄′2
(
d̄′2 + ξ̄′2

)
= 1− |ξ

′|2

|d′|2
−

√(
1 +

ξ′2

d′2

)(
1 +

ξ̄′2

d̄′2

)
. (5.16)

5.3. Simultaneous Quasi-Diagonalisation 223

To simplify our notation let us introduce the abbreviations x = − ξ′

d′ and

y = i
∂

∂ϕ
(x) = − i

d′
∂

∂ϕ

(
ξ′
)

= − i

d′
∂

∂ϕ

(
eiϕa′qp + e−iϕa′pq

)
= − i

d′
(
ieiϕa′qp − ie−iϕa′pq

)
=

1

d′
(
eiϕa′qp − e−iϕa′pq

)
.

Note that ∂
∂ϕ (x) = −iy and ∂

∂ϕ (x̄) = iȳ .

After these preparations we compute the derivative of 4
|d′|2

(
∆2
D (A′′)−∆2

D (A′)
)
with respect

to ϕ :

∂

∂ϕ

(
4

|d′|2
(
∆2
D

(
A′′
)
−∆2

D

(
A′
)))

=
∂

∂ϕ

(
1− xx̄−

((
1 + x2

) (
1 + x̄2

))0.5)
= i (yx̄− ȳx)− 1

2

((
1 + x2

) (
1 + x̄2

))−0.5 (−i2xy (1 + x̄2
)

+ i2x̄ȳ
(
1 + x2

))
= i

(
yx̄− ȳx+

((
1 + x2

) (
1 + x̄2

))−0.5 (
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)))
. (5.17)

A necessary requirement for 4
|d′|2

(
∆2
D (A′′)−∆2

D (A′)
)
to have a minimum with respect to ϕ is

again that its derivative needs to vanish on ϕ . So we determine the zero set of 5.17.

0 = i
(
yx̄− ȳx+

((
1 + x2

) (
1 + x̄2

))−0.5 (
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)))
0 = yx̄− ȳx+

((
1 + x2

) (
1 + x̄2

))−0.5 (
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))
ȳx− yx̄ =

((
1 + x2

) (
1 + x̄2

))−0.5 (
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))
(5.18)

In order to simplify the task at hand we square both sides of the equation. However, later on
we must take care of possible additional solutions and check whether they satisfy the original
equation. We obtain (

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))2
(1 + x2) (1 + x̄2)

= (ȳx− yx̄)2 .

We start to simplify this equation(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))2
=

(
1 + x2

) (
1 + x̄2

)
(ȳx− yx̄)2

x2y2
(
1 + x̄2

)2
+ x̄2ȳ2

(
1 + x2

)2 −
2xyx̄ȳ

(
1 + x̄2

) (
1 + x2

)
= ... ·

(
ȳ2x2 − 2ȳxyx̄+ y2x̄2

)
x2y2

(
1 + x̄2

)2
+ x̄2ȳ2

(
1 + x2

)2
= ... ·

(
ȳ2x2 + y2x̄2

)
x2y2

(
1 + 2x̄2 + x̄4

)
+ x̄2ȳ2

(
1 + 2x2 + x4

)
=

(
1 + x̄2 + x2 + x2x̄2

) (
ȳ2x2 + y2x̄2

)
x2y2 + 2x2y2x̄2 + x2y2x̄4 +

x̄2ȳ2 + 2x2x̄2ȳ2 + x̄2ȳ2x4 = ȳ2x2 + ȳ2x2x̄2 + ȳ2x2x2 + ȳ2x2x2x̄2 +

y2x̄2 + y2x̄2x̄2 + y2x̄2x2 + y2x̄2x2x̄2

x2y2 + x2y2x̄2 + x̄2ȳ2 + x2x̄2ȳ2 = ȳ2x2 + ȳ2x2x2 + y2x̄2 + y2x̄2x̄2

x2y2 + x2y2x̄2 + x2x̄2ȳ2 − ȳ2x2 − ȳ2x2x2 = y2x̄2 − x̄2ȳ2 + y2x̄2x̄2

x2
(
y2 + y2x̄2 + x̄2ȳ2 − ȳ2 − ȳ2x2

)
= x̄2

(
y2 − ȳ2 + y2x̄2

)
x2
(
y2 − ȳ2 + y2x̄2

)
+ x2ȳ2

(
x̄2 − x2

)
= x̄2

(
y2 − ȳ2 + y2x̄2

)

224 Chapter 5. The Rational Recovery Problem

(
x2 − x̄2

) (
y2 + y2x̄2 − ȳ2

)
+ x2ȳ2

(
x̄2 − x2

)
= 0(

x̄2 − x2
) (
y2 + y2x̄2 − ȳ2 − x2ȳ2

)
= 0

(x̄− x) (x̄+ x)
(
y2 + y2x̄2 − ȳ2 − x2ȳ2

)
= 0

Further factorisation of the third factor yields(
y2 + y2x̄2 − ȳ2 − x2ȳ2

)
= 0

y2
(
1 + x̄2

)
= ȳ2

(
1 + x2

)
.

Thus we can establish three distinct cases, which we have to investigate:

1. x̄ = x ,

2. x̄ = −x , and

3. y2 = k
(
1 + x2

)
with k ∈ R .

First we derive the additional requirements under which the original (not squared) equation 5.18
holds as well.

Let us start with the �rst case x̄ = x , which means that x must be a real number.

0 =
xy
(
1 + x2

)
− xȳ

(
1 + x2

)√
(1 + x2) (1 + x2)

+ yx− ȳx

= xy − xȳ + yx− ȳx
= 2x (y − ȳ)

So either x = 0 or y = ȳ must hold additionally.

Now let us consider the case x = −x̄ , in which x is purely imaginary.

0 =
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)√
(1 + x2) (1 + x̄2)

+ yx̄− ȳx

=
xy
(
1 + x2

)
+ xȳ

(
1 + x2

)
|(1 + x2)|

− yx− ȳx

As x is purely imaginary it can be written as x = i |x| sgn (= (x)) .

1 + x2 > 0⇔ (i |x| sgn (= (x)))2 > −1

− |x| > −1

|x| < 1

and equivalently 1 + x2 < 0 if |x| > 1 . In the case of |x| < 1 the above equation holds without
any further requirements. On the other hand if |x| > 1 holds we obtain

−2x (y + ȳ) = 0.

Thus the additional requirement is that y = −ȳ needs to hold as well.

5.3. Simultaneous Quasi-Diagonalisation 225

It remains to investigate the third case in which we have y2 = k
(
1 + x2

)
and ȳ2 = k

(
1 + x̄2

)
with k ∈ R . If k = 0 then y = 0 and the original equation holds. Let us now assume that
k 6= 0 . By substituting 1 + x2 = y2

k and 1 + x̄2 = ȳ2

k in 5.18, we derive

0 =
(
xy ȳ

2

k
−x̄ȳ y

2

k

)
/
√
y2

k
ȳ2

k
+ yx̄− ȳx

= (x|y2| ȳk−x̄|y2| yk)/|y
2|
|k| + yx̄− ȳx

= yx̄− ȳx− (yx̄− ȳx)
|k|
k

= (yx̄− ȳx)

(
1− |k|

k

)
.

Now if k > 0 the equation will always hold. If k < 0 we must additionally require that yx̄ = ȳx .
So we have �nally derived the zero set of equation 5.18 which is summarised in the following
table:

1 x = 0

2 x̄ = x and y = ȳ

3 x = −x̄ with |x| < 1

4 x = −x̄ and y = −ȳ with |x| > 1

5 y2 = k
(
1 + x2

)
with k > 0

6 y2 = k
(
1 + x2

)
with k = 0

7 y2 = k
(
1 + x2

)
and yx̄ = ȳx with k < 0

It remains to be seen which of these solutions are maxima/minima of the original equation. For
this purpose we will look at the second derivative of 4

|d′|2
(
∆2
D (A′′)−∆2

D (A′)
)
given in 5.16.

∂2

∂2ϕ

(
4

|d′|2
(
∆2
D

(
A′′
)
−∆2

D

(
A′
)))

=
∂

∂ϕ

(
∂

∂ϕ

(
4

|d′|2
(
∆2
D

(
A′′
)
−∆2

D

(
A′
))))

5.17
=

∂

∂ϕ
i
(

(yx̄− ȳx) +
((

1 + x2
) (

1 + x̄2
))−0.5 (

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)))
= 2

(
|x|2 − |y|2

)
+

∂

∂ϕ
i
((

1 + x2
) (

1 + x̄2
))−0.5 (

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))
= 2

(
|x|2 − |y|2

)
+ i
((

1 + x2
) (

1 + x̄2
))−0.5(

−iyy
(
1 + x̄2

)
+ x

(
−ix

(
1 + x̄2

)
+ 2x̄iyȳ

)
−
(
iȳȳ
(
1 + x2

)
+ x̄

(
ix̄
(
1 + x2

)
− i2xȳy

)))
+

i
(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)) ∂

∂ϕ

((
1 + x2

) (
1 + x̄2

))−0.5

= 2
(
|x|2 − |y|2

)
+
((

1 + x2
) (

1 + x̄2
))−0.5(

y2
(
1 + x̄2

)
+ x

(
x
(
1 + x̄2

)
− 2x̄yȳ

)
−
(
−ȳ2

(
1 + x2

)
+ x̄

(
−x̄
(
1 + x2

)
+ 2xȳy

)))
+

i
(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)) ∂

∂ϕ

((
1 + x2

) (
1 + x̄2

))−0.5

226 Chapter 5. The Rational Recovery Problem

= ...+
((

1 + x2
) (

1 + x̄2
))−0.5(

y2
(
1 + x̄2

)
+ x2

(
1 + x̄2

)
− 2xx̄yȳ + ȳ2

(
1 + x2

)
+ x̄2

(
1 + x2

)
− 2xx̄ȳy

)
+

i
(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)) ∂

∂ϕ

((
1 + x2

) (
1 + x̄2

))−0.5

= ...+
((

1 + x2
) (

1 + x̄2
))−0.5

((
y2 + x2

) (
1 + x̄2

)
− 4 |x|2 |y|2 +

(
x̄2 + ȳ2

) (
1 + x2

))
+

i
(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

)) ∂

∂ϕ

((
1 + x2

) (
1 + x̄2

))−0.5

= ...+ i
(
xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))(
−1

2

((
1 + x2

) (
1 + x̄2

))−1.5 (−2ixy
(
1 + x̄2

)
+
(
1 + x2

)
2ix̄ȳ

))
= ...−

((
1 + x2

) (
1 + x̄2

))−1.5 (
xy
(
1 + x̄2

)
−
(
1 + x2

)
x̄ȳ
)2

= 2
(
|x|2 − |y|2

)
−
((

1 + x2
) (

1 + x̄2
))−0.5((

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))2
(1 + x2) (1 + x̄2)

+ 4 |x|2 |y|2 −
(
y2 + x2

) (
1 + x̄2

)
−
(
x̄2 + ȳ2

) (
1 + x2

))

In the �rst case with x = 0 the second derivative evaluates to

2
(
|x|2 − |y|2

)
−
((

1 + x2
) (

1 + x̄2
))−0.5((

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))2
(1 + x2) (1 + x̄2)

+ 4 |x|2 |y|2 −
(
y2 + x2

) (
1 + x̄2

)
−
(
x̄2 + ȳ2

) (
1 + x2

))
= −2 |y|2 + y2 + ȳ2

= (y − ȳ)2 = (2i= (y))2 = −4= (y)2 .

In the second case where both x and y are real numbers we obtain

2
(
x2 − y2

)
− 1

|(1 + x2)|((
xy
(
1 + x2

)
− xy

(
1 + x2

))2
(1 + x2) (1 + x2)

+ 4x2y2 −
(
y2 + x2

) (
1 + x2

)
−
(
x2 + y2

) (
1 + x2

))
= 2

(
x2 − y2

)
− 1

1 + x2

(
4x2y2 − 2

(
x2 + y2

) (
1 + x2

))
= 2

(
x2 − y2

)
− 4x2y2

1 + x2
+ 2

(
x2 + y2

)
= 4x2 − 4x2y2

1 + x2
= 4x2

(
1− y2

1 + x2

)
.

In the third case we let x = −x̄ and |x| < 1 . Note that x2 = − |x|2 as x is purely imaginary.
Here we derive:

2
(
|x|2 − |y|2

)
−
((

1 + x2
) (

1 + x̄2
))−0.5((

xy
(
1 + x̄2

)
− x̄ȳ

(
1 + x2

))2
(1 + x2) (1 + x̄2)

+ 4 |x|2 |y|2 −
(
y2 + x2

) (
1 + x̄2

)
−
(
x̄2 + ȳ2

) (
1 + x2

))

5.3. Simultaneous Quasi-Diagonalisation 227

= 2
(
|x|2 − |y|2

)
− 1

|1 + x2|((
xy
(
1 + x2

)
+ xȳ

(
1 + x2

))2
(1 + x2)2 + 4 |x|2 |y|2 −

(
y2 + x2

) (
1 + x2

)
−
(
x2 + ȳ2

) (
1 + x2

))
= 2

(
|x|2 − |y|2

)
− 1

1 + x2(
x2 (y + ȳ)2 + 4 |x|2 |y|2 −

(
y2 + x2

) (
1 + x2

)
−
(
x2 + ȳ2

) (
1 + x2

))
= 2

(
|x|2 − |y|2

)
− 1

1 + x2

(
x2 (y + ȳ)2 + 4 |x|2 |y|2 −

(
1 + x2

) (
y2 + 2x2 + ȳ2

))
= 2

(
|x|2 − |y|2

)
− 1

1 + x2(
x2y2 + 2x2yȳ + x2ȳ2 + 4 |x|2 |y|2 − y2 − 2x2 − ȳ2 − x2y2 − 2x4 − x2ȳ2

)
= 2

(
|x|2 − |y|2

)
− 1

1 + x2

(
2x2yȳ + 4 |x|2 |y|2 − y2 − 2x2 − ȳ2 − 2x4

)
=

1

1 + x2

(
2
(
|x|2 − |y|2

) (
1 + x2

)
−
(

2x2yȳ + 4 |x|2 |y|2 − y2 − 2x2 − ȳ2 − 2x4
))

=
1

1 + x2

(
−2x2 − 2 |y|2 − 2x4 − 2 |y|2 x2 − 2 |y|2 x2 + 4 |y|2 x2 + y2 + 2x2 + ȳ2 + 2x4

)
=

1

1 + x2

(
−2 |y|2 + y2 + ȳ2

)
=

(y − ȳ)2

1 + x2
=

(y − ȳ)2

1− |x|2
.

We move along to the forth case x = −x̄ and y = −ȳ with |x| > 1 and obtain the following
value for the second derivative:

2
(
y2 − x2

)
+

1

1 + x2((
xy
(
1 + x2

)
− xy

(
1 + x2

))2
(1 + x2) (1 + x2)

+ 4x2y2 −
(
y2 + x2

) (
1 + x2

)
−
(
x2 + y2

) (
1 + x2

))
= 2

(
y2 − x2

)
+

1

1 + x2

(
4x2y2 − 2

(
y2 + x2

) (
1 + x2

))
=

1

1 + x2

(
2y2

(
1 + x2

)
− 2x2

(
1 + x2

)
+ 4x2y2 − 2

(
y2 + y2x2 + x2 + x4

))
=

1

1 + x2

(
2y2 + 2x2y2 − 2x2 − 2x4 + 4x2y2 − 2y2 − 2y2x2 − 2x2 − 2x4

)
=

1

1 + x2

(
−4x2 − 4x4 + 4x2y2

)
=

4 |x|2

1 + x2

(
1 + x2 − y2

)
= 4 |x|2

(
1− y2

1 + x2

)
.

In the �fth case y2 = k
(
1 + x2

)
with k > 0 using

(
1 + x̄2

)
= ȳ2

k we obtain:

2
(
|x|2 − |y|2

)
−

(
|y|4

k2

)−0.5

((
xy ȳ

2

k
−x̄ȳ y

2

k

)2

/|y|
4

k2 + 4 |x|2 |y|2 −
(
y2 + x2

) ȳ2

k
−
(
x̄2 + ȳ2

) y2

k

)
= 2

(
|x|2 − |y|2

)
− k

|y|2

((
xyȳ2 − x̄ȳy2

)2
|y|4

+ 4 |x|2 |y|2 −
(
y2 + x2

) ȳ2

k
−
(
x̄2 + ȳ2

) y2

k

)

228 Chapter 5. The Rational Recovery Problem

= 2
(
|x|2 − |y|2

)
− k

|y|2

(
(xȳ − x̄y)2 + 4 |x|2 |y|2 −

(
y2 + x2

) ȳ2

k
−
(
x̄2 + ȳ2

) y2

k

)
=

1

|y|2
(

2 |x|2 |y|2 − 2 |y|4 − k (xȳ − x̄y)2 − 4k |x|2 |y|2 +
(
y2 + x2

)
ȳ2 +

(
x̄2 + ȳ2

)
y2
)

=
1

|y|2
(

2 |x|2 |y|2 − 2 |y|4 − k (xȳ − x̄y)2 − 4k |x|2 |y|2 + |y|4 + x2ȳ2 + x̄2y2 + |y|4
)

=
1

|y|2
(

2 |x|2 |y|2 − k (xȳ − x̄y)2 − 4k |x|2 |y|2 + x2ȳ2 + x̄2y2
)

=
1

|y|2
(

(xȳ + x̄y)2 − k (xȳ − x̄y)2 − 4k |x|2 |y|2
)

=
1

|y|2
(

(xȳ + x̄y)2 − kx2ȳ2 − kx̄2y2 + 2k |x|2 |y|2 − 4k |x|2 |y|2
)

=
1

|y|2
(

(xȳ + x̄y)2 − k
(
x2ȳ2 + x̄2y2 + 2 |x|2 |y|2

))
=

1

|y|2
(

(xȳ + x̄y)2 − k (xȳ + x̄y)2
)

=
(xȳ + x̄y)2

|y|2
(1− k) .

Next we investigate k = 0 which implies y = 0 . In this case we obtain:

2 |x|2 −
((

1 + x2
) (

1 + x̄2
))−0.5 (−x2

(
1 + x̄2

)
− x̄2

(
1 + x2

))
= 2 |x|2 +

x2
(
1 + x̄2

)
+ x̄2

(
1 + x2

)
|1 + x2|

=
2 |x|2

∣∣1 + x2
∣∣+ x2

(
1 + x̄2

)
+ x̄2

(
1 + x2

)
|1 + x2|

=
2<
(
|x|2

(∣∣1 + x2
∣∣)+ x2

(
1 + x̄2

))
|1 + x2|

=
2<
(
xx̄
(
1 + x2

)0.5 (
1 + x̄2

)0.5
+ xx

(
1 + x̄2

)0.5 (
1 + x̄2

)0.5)
|1 + x2|

=
2<
(
x
(
1 + x̄2

)0.5 (
x̄
(
1 + x2

)0.5
+ x

(
1 + x̄2

)0.5))
|1 + x2|

=
2<
(
x
(
1 + x̄2

)0.5
2<
(
x
(
1 + x̄2

)0.5))
|1 + x2|

=

4

(
<
(
x
(
1 + x̄2

)0.5)2
)

|1 + x2|
.

The last case we have to investigate is y2 = k
(
1 + x2

)
and yx̄ − ȳx = 0 with k < 0 . Using

these two equations, we observe that
x

x̄
=

y

ȳ

x2

x̄2
=

y2

ȳ2

x2

x̄2
=

k
(
1 + x2

)
k (1 + x̄2)

x2

x̄2
=

1 + x2

1 + x̄2

x̄2 + |x|4 = x2 + |x|4

x̄2 = x2.

5.3. Simultaneous Quasi-Diagonalisation 229

And consequently

y2 = k
(
1 + x2

)
= k

(
1 + x̄2

)
= ȳ2.

From this follows that either x = x̄ and y = ȳ or x = −x̄ and y = −ȳ . Because k < 0 we can
exclude the �rst case. So x and y have to be purely imaginary numbers. As y2/k > 0 holds, also
1 + x2 > 0 has to be satis�ed. We know that x2 > −1 if and only if |x| < 1 . Thus we observe
that the seventh case is identical to the third case, which we have already analysed before.

Now let us collect again the results that we have obtained thus far:

1 x = 0 −4= (y)2

2 x̄ = x and y = ȳ 4x2
(

1− y2

1+x2

)
3 x = −x̄ with |x| < 1 (y−ȳ)2

1−|x|2

4 x = −x̄ and y = −ȳ with |x| > 1 4 |x|2
(

1− y2

1+x2

)
5 y2 = k

(
1 + x2

)
with k > 0 (xȳ+x̄y)2

|y|2 (1− k)

6 y2 = k
(
1 + x2

)
with k = 0

4(<(x
√

1+x̄2))
2

|1+x2|

7 y2 = k
(
1 + x2

)
and yx̄ = ȳx with k < 0 (y−ȳ)2

1−|x|2

In case 1 the second derivative is negative. We have thus found a maximum and need not
investigate this case any further.

The second derivative in cases 3 and 7 is of the form (y−ȳ)2

1−|x|2 . Note that |x| < 1 , so 1
1−|x|2 > 0 .

Additionally y = −ȳ , so y is purely imaginary unless y = 0 . If y = 0 we are in the �rst case
again and the same arguments apply. So if y 6= 0 we obtain (y−ȳ)2

1−|x|2 < 0 and no minimum will
be assumed here.

In cases 2, 4, 5, and 6 the second derivative is of the form l2 (1− k) with l ∈ R and k ≥ 0 .
Now if we assure that k < 1 , then l2 (1− k) will be positive and we have found a minimum.
Naturally case 6 can be embedded in case 5 if we allow k ≥ 0 and take the derivative from 6 if
k = y = 0 .

Additionally, we observe that ȳ2 = k
(
1 + x̄2

)
holds in case 5. Together with the equation

y2 = k
(
1 + x2

)
we can thus eliminate k and write y2

ȳ2 =
(1+x2)
(1+x̄2)

. Case 2 and 4 satisfy this
equation, so we only need to treat the most general case 5.

In order to determine the actual value of ϕ we need to recall the de�nitions of x and y and then
solve for ϕ .

x = −ξ
′

d′
= −

eiϕa
′
qp + e−iϕa

′
pq

d′

y = i
∂

∂ϕ
x =

eiϕa
′
qp − e−iϕa

′
pq

d′

230 Chapter 5. The Rational Recovery Problem

By substituting the above expression for y in y2 = k
(
1 + x2

)
we obtain

y2 =

(
eiϕa

′
qp − e−iϕa′pq

)2

d′2
= k

(
1 +

ξ
′2

d′2

)
= k

(
1 + x2

)
(
eiϕa

′
qp − e−iϕa′pq

)2
= k

(
d
′2 + ξ

′2
)

(5.19)

e2iϕa
′2
qp − 2a

′
qpa
′
pq + e−2iϕa

′2
pq = kd

′2 + k
(
e2iϕa

′2
qp + 2a′qpa

′
pq + e−2iϕa

′2
pq

)
.

Now we start to simplify this equation further

(1− k) e2iϕa
′2
qp − 2 (1 + k) a

′
qpa
′
pq + (1− k) e−2iϕa

′2
pq = kd

′2

(1− k) e2iϕa
′2
qp − 2 (1− k) a

′
qpa
′
pq − 4ka

′
qpa
′
pq + (1− k) e−2iϕa

′2
pq = kd

′2

(1− k)
(
e2iϕa

′2
qp − 2a

′
qpa
′
pq + e−2iϕa

′2
pq

)
= kd

′2 + 4ka
′
qpa
′
pq(

eiϕa
′
qp − e−iϕa

′
pq

)2
=

k

1− k
· (5.20)(

d
′2 + 4a

′
qpa
′
pq

)
.

In order to be able to eliminate k , we look at the imaginary and real part of equation 5.19
independently

k =

=
((

eiϕa
′
qp − e−iϕa′pq

)2
)

= (d′2 + ξ′2)
.

We thus compute

k

1− k
=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

= (d′2 + ξ′2)

/1−
=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

= (d′2 + ξ′2)

=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

= (d′2 + ξ′2)

/=
(
d
′2 + ξ

′2
)
−=

((
e−iϕa

′
pq − eiϕa

′
qp

)2
)

= (d′2 + ξ′2)

=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

=
(
d′2 + ξ′2 −

(
e−iϕa′pq − eiϕa

′
qp

)2) .
So if we substitute this expression in equation 5.20 we obtain

(
eiϕa

′
qp − e−iϕa

′
pq

)2
=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

=
(
d′2 + ξ′2 −

(
e−iϕa′pq − eiϕa

′
qp

)2) (d′2 + 4a
′
qpa
′
pq

)
.

5.3. Simultaneous Quasi-Diagonalisation 231

First we simplify ξ
′2 −

(
e−iϕa′pq − eiϕa′qp

)2 :
ξ
′2 −

(
e−iϕa′pq − eiϕa′qp

)2
=

(
e−iϕa′pq + eiϕa′qp

)2 − (e−iϕa′pq − eiϕa′qp)2
=

(
e−iϕa′pq + eiϕa′qp − e−iϕa′pq + eiϕa′qp

)
·(

e−iϕa′pq + eiϕa′qp + e−iϕa′pq − eiϕa′qp
)

= 2
(
eiϕa′qp

)
2
(
e−iϕa′pq

)
= 4a′pqa

′
qp.

Next we simplify the original equation:

(
eiϕa

′
qp − e−iϕa

′
pq

)2
=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

=
(
d′2 + 4a′qpa

′
pq

) (
d
′2 + 4a′qpa

′
pq

)

<
((

eiϕa
′
qp − e−iϕa

′
pq

)2
)

=

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)

=
(
d′2 + 4a′pqa

′
qp

) <
(
d
′2 + 4a′qpa

′
pq

)

0 = <
((

eiϕa
′
qp − e−iϕa

′
pq

)2
)
=
(
d
′2 + 4a′qpa

′
pq

)
−

=
((

e−iϕa
′
pq − eiϕa

′
qp

)2
)
<
(
d
′2 + 4a′qpa

′
pq

)
=

1

4i

((
eiϕa

′
qp − e−iϕa

′
pq

)2
+
(
e−iϕā

′
qp − eiϕā

′
pq

)2
)(

d
′2 + 4a′qpa

′
pq − d̄

′2 − 4ā
′
pqā
′
qp

)
− 1

4i

((
eiϕa

′
qp − e−iϕa

′
pq

)2
−
(
e−iϕā

′
qp − eiϕā

′
pq

)2
)(

d
′2 + 4a′qpa

′
pq + d̄

′2 + 4ā
′
pqā
′
qp

)
0 =

((
eiϕa

′
qp − e−iϕa

′
pq

)2
+
(
e−iϕā

′
qp − eiϕā

′
pq

)2
)(

d
′2 + 4a′qpa

′
pq − d̄

′2 − 4ā
′
pqā
′
qp

)
−
((

eiϕa
′
qp − e−iϕa

′
pq

)2
−
(
e−iϕā

′
qp − eiϕā

′
pq

)2
)(

d
′2 + 4a′qpa

′
pq + d̄

′2 + 4ā
′
pqā
′
qp

)
= 2

(
e−iϕā

′
qp − eiϕā

′
pq

)2 (
d
′2 + 4a′qpa

′
pq

)
− 2

(
eiϕa

′
qp − e−iϕa

′
pq

)2 (
d̄
′2 + 4ā

′
pqā
′
qp

)
.

So we arrive at(
eiϕa

′
qp − e−iϕa

′
pq

)2 (
d′2 + 4a′qpa

′
pq

)
=

(
eiϕā

′
pq − e−iϕā

′
qp

)2 (
d
′2 + 4a′qpa

′
pq

)
(
eiϕa

′
qp − e−iϕa

′
pq

)√
d′2 + 4a′qpa

′
pq = ±

(
eiϕā

′
pq − e−iϕā

′
qp

)√
d′2 + 4a′qpa

′
pq

(
cos (ϕ) a

′
qp + i sin (ϕ) a

′
qp −

(
cos (ϕ) a

′
pq − i sin (ϕ) a

′
pq

))√
d′2 + 4a′qpa

′
pq

= ±
(

cos (ϕ) ā
′
pq + i sin (ϕ) ā

′
pq −

(
cos (ϕ) ā

′
qp − i sin (ϕ) ā

′
qp

))√
d′2 + 4a′qpa

′
pq

(
cos (ϕ)

(
a
′
pq − a

′
qp

)
− sin (ϕ) i

(
a
′
pq + a

′
qp

))√
d′2 + 4a′qpa

′
pq

= ±
(

cos (ϕ)
(
ā
′
pq − ā

′
qp

)
+ sin (ϕ) i

(
ā
′
pq + ā

′
qp

))√
d′2 + 4a′qpa

′
pq

232 Chapter 5. The Rational Recovery Problem

sin (ϕ) i

((
a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq ±

(
ā
′
pq + ā

′
qp

)√
d′2 + 4a′qpa

′
pq

)
= cos (ϕ)

((
a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq ∓

(
ā
′
pq − ā

′
qp

)√
d′2 + 4a′qpa

′
pq

)

Finally, we can solve for ϕ

sin (ϕ)

cos (ϕ)
=

2

((
a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq ∓

(
ā
′
pq − ā

′
qp

)√
d′2 + 4a′qpa

′
pq

)
2i

((
a′pq + a′qp

)√
d′2 + 4a′qpa

′
pq ±

(
ā′pq + ā′qp

)√
d′2 + 4a′qpa

′
pq

) .
Thus

tan (ϕ1) =

=
((

a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
<
((
a′pq + a′qp

)√
d′2 + 4a′qpa

′
pq

)
if <

((
a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
6= 0 and cos (ϕ1) = 0 if <

((
a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
=

0 . And as a second solution we obtain

tan (ϕ2) = −
<
((

a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
=
((
a′pq + a′qp

)√
d′2 + 4a′qpa

′
pq

)

if =
((

a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
6= 0 and cos (ϕ2) = 0 if =

((
a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
=

0 . What remains to be done is to �gure out which of the solutions is in fact a minimum.
Therefore, we recall that 0 ≤ k < 1 needs to hold. If we substitute ϕ1 in the equation

k

1− k
=

(
e−iϕa

′
pq − eiϕa

′
qp

)2

d′2 + 4a′qpa
′
pq

(compare 5.20), we obtain by a straightforward computation

k

1− k
=

(∣∣∣a′qp∣∣∣2 − ∣∣a′pq∣∣2)2

(
<
((
a′pq + a′qp

)√
d′2 + 4a′qpa

′
pq

))2

+

(
=
((
a′pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq

))2 := c.

Since c ≥ 0 and k = c
1+c we know that 0 ≤ k < 1 . We have thus found a minimum in the case

of a single matrix if we let

ϕ = arctan

=
((

a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
<
((
a′pq + a′qp

)√
d′2 + 4a′qpa

′
pq

)

5.3. Simultaneous Quasi-Diagonalisation 233

in case <
((

a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
6= 0 and ϕ = sgn

(
=
((

a
′
pq − a

′
qp

)√
d′2 + 4a′qpa

′
pq

))
π
2

in case <
((

a
′
pq + a

′
qp

)√
d′2 + 4a′qpa

′
pq

)
= 0 .

It is, fortunately, straightforward to carry over our proof to the case of n matrices as we will see
from the following arguments. It is clear that

∂

∂ϕ

n∑
h=1

∆2
D

(
A′′h
)

=
n∑
h=1

∂

∂ϕ
∆2
D

(
A′′h
)
.

So we can directly translate our results and obtain for
∑n

h=1 |d′h|
2 = 0 that the equation

i sin (2ϕ)
n∑
h=1

(
ā′h,qpa

′
h,pq + a′h,qpā

′
h,pq

)
= cos (2ϕ)

n∑
h=1

(
ā′h,qpa

′
h,pq − a′h,qpā′h,pq

)
needs to hold for ϕ to be a stationary point of

∑n
h=1 ∆2

D (A′′h) .

Similarly like in the case of a single matrix we obtain for
∑n

h=1<
(
ā′h,qpa

′
h,pq

)
= 0 the solutions

ϕ = − sgn
(∑n

h=1=
(
a′h,qpā

′
h,pq

))
π
4 . If

∑n
h=1 |d′h|

2 = 0 and
∑n

h=1<
(
ā′h,qpa

′
h,pq

)
6= 0 we get

ϕ = 1
2 arctan

(∑n
h=1 =(ā′h,qpa

′
h,pq)∑n

h=1 <(ā′h,qpa
′
h,pq)

)
. In the setting of n matrices we recall that

sin2 (2θ) = sin2

(
1

2
arccos (x)

)
=

1− x
2

with x =

∑n
h=1

(
|d′h|

2−|ξ′h|
2
)

sgn

(∑
h

(∣∣∣d′h∣∣∣2−∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(
|d′h|

2−|ξ′h|
2
))2

+4(
∑n
h=1 <(d̄′hξ

′
h))

2
holds. The same is true for

sin (4θ) =

2
∑n

h=1<
(
d̄′hξ
′
h

)
sgn

(∑
h

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2 .

Note that sin2 (2θ) and sin (4θ) do not depend on sgn

(∑
h

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)) = ±1 , because of

the same periodicity considerations as when dealing with only a single matrix. We compute

n∑
h=1

(
∆2
D

(
A
′′
h

)
−∆2

D

(
A
′
h

))
=

=
1

2
sin2 (2θ)

n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)− 1

2
sin (4θ)

n∑
h=1

<
(
d̄
′
hξ
′
h

)

=
1

4

1−

∑n
h=1

(
|d′h|

2 − |ξ′h|
2
)

√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2
 n∑

h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)−
(∑n

h=1<
(
d̄′hξ
′
h

))2√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2

234 Chapter 5. The Rational Recovery Problem

=
1

4

 n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)−
(∑n

h=1

(
|d′h|

2 − |ξ′h|
2
))2

√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2
−

(∑n
h=1<

(
d̄′hξ
′
h

))2√(∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2

=
1

4

n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)−
(∑n

h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2))2

+ 4
(∑n

h=1<
(
d̄′hξ
′
h

))2
√(∑n

h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2))2
+ 4

(∑n
h=1<

(
d̄
′
hξ
′
h

))2

=
1

4

 n∑
h=1

(∣∣∣d′h∣∣∣2 − ∣∣∣ξ′h∣∣∣2)−
√√√√(n∑

h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2)
)2

+ 4

(
n∑
h=1

<
(
d̄
′
hξ
′
h

))2

So it follows that
∑n

h=1

(
∆2
D

(
A
′′
h

)
−∆2

D

(
A
′
h

))
maintains the same structure as in the case of

only one matrix (compare equation 5.15). Consequently, all following steps of the proof can be
carried out in the same fashion. So �nally, we obtain

ϕ = arctan

=
(∑n

h=1

(
a
′
h,pq − a

′
h,qp

)√∑n
h=1 d

′2
h + 4a′h,pqa

′
h,qp

)
<
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1 d

′2
h + 4a′h,pqa

′
h,qp

)

if <
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1 d

′2
h + 4a′h,pqa

′
h,qp

)
6= 0 and

ϕ = sgn

(
=
(∑n

h=1

(
a
′
h,pq − a

′
h,qp

)√∑n
h=1 d

′2
h + 4a′h,pqa

′
h,qp

))
π
2

if <
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1 d

′2
h + 4a′h,pqa

′
h,qp

)
= 0 .

As a last step we will show that the case
∑n

h=1 |d′h|
2 = 0 can also be handled with the last

expression and does not need special treatment. Suppose that
∑n

h=1 |d′h|
2 = 0 , then we get

ϕ = 1
2 arctan

(∑n
h=1 =(ā′h,qpa

′
h,pq)∑n

h=1 <(ā′h,qpa
′
h,pq)

)
. If we use the equality tan

(
1
2 arctan (x)

)
=
√
x2+1−1
x we

further obtain

tan (ϕ) = tan

1

2
arctan

∑n
h=1=

(
ā′h,qpa

′
h,pq

)
∑n

h=1<
(
ā′h,qpa

′
h,pq

)

=

√√√√√√
∑n

h=1=
(
ā′h,qpa

′
h,pq

)
∑n

h=1<
(
ā′h,qpa

′
h,pq

)
2

+ 1− 1

/∑n

h=1=
(
ā′h,qpa

′
h,pq

)
∑n

h=1<
(
ā′h,qpa

′
h,pq

)

=

√(∑n
h=1=

(
ā′h,qpa

′
h,pq

))2
+
(∑n

h=1<
(
ā′h,qpa

′
h,pq

))2
−
∑n

h=1<
(
ā′h,qpa

′
h,pq

)
∑n

h=1=
(
ā′h,qpa

′
h,pq

)

5.3. Simultaneous Quasi-Diagonalisation 235

=

∣∣∣∑n
h=1

(
ā′h,qpa

′
h,pq

)∣∣∣−∑n
h=1<

(
ā′h,qpa

′
h,pq

)
∑n

h=1=
(
ā′h,qpa

′
h,pq

) .

Similarly, we obtain

tan (ϕ) =

=
(∑n

h=1

(
a
′
h,pq − a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))
<
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1

(
d
′2
h + 4a′h,pqa

′
h,qp

))

=

(
=
(∑n

h=1

(
a
′
h,pq − a

′
h,qp

)√∑n
h=1 a

′
h,pqa

′
h,qp

))2

<
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1 a

′
h,pqa

′
h,qp

)
=
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)√∑n
h=1 a

′
h,pqa

′
h,qp

)

=

(∣∣∣∑n
h=1

(
ā′h,qpa

′
h,pq

)∣∣∣−∑n
h=1<

(
ā′h,qpa

′
h,pq

))(∣∣∣∑n
h=1 a

′
h,qp

∣∣∣2 − ∣∣∣∑n
h=1 a

′
h,pq

∣∣∣2)
∑n

h=1=
(
ā′h,qpa

′
h,pq

)(∣∣∣∑n
h=1 a

′
h,qp

∣∣∣2 − ∣∣∣∑n
h=1 a

′
h,pq

∣∣∣2)

=

(∣∣∣∑n
h=1

(
ā′h,qpa

′
h,pq

)∣∣∣−∑n
h=1<

(
ā′h,qpa

′
h,pq

))
∑n

h=1=
(
ā′h,qpa

′
h,pq

) .

We have thus shown that our most general case also covers
∑n

h=1 |d′h|
2 = 0 .

Now we can combine the results that we have obtained thus far in order to show how to choose
the parameters of the unitary transformation in an optimal way.

236 Chapter 5. The Rational Recovery Problem

Theorem 5.3.22. Let A
′
1, ..., A

′
n ∈ Matm (C), let 1 ≤ p < q ≤ m , let d

′
h = a

′
h,pp − a

′
h,qq and

ξ
′
h = eiϕa

′
h,qp + e−iϕa

′
h,pq . Now let

tan (ϕ) =
=
(∑n

h=1

(
a′h,pq − a

′
h,qp

)
%
)

<
(∑n

h=1

(
a′h,pq + a

′
h,qp

)
%
)

with % =

√∑n
h=1

(
d
′2
h + 4a

′
h,pqa

′
h,qp

)
if <

(∑n
h=1

(
a
′
h,pq + a

′
h,qp

)∑n
h=1 %

)
6= 0, and let

ϕ = sgn

(
=

(
n∑
h=1

(
a
′
h,pq − a

′
h,qp

)
%

))
π

2

if <
(∑n

h=1

(
a
′
h,pq + a

′
h,qp

)∑n
h=1 %

)
= 0. Furthermore let

tan (4θ) =
2
∑n

h=1<
(
d̄′hξ
′
h

)∑n
h=1

(∣∣d′h∣∣2 − ∣∣ξ′h∣∣2) ,
if
∑n

h=1

(
|d′h|

2 − |ξ′h|
2
)
6= 0 and let

θ = sgn

(
n∑
h=1

<
(
d̄′hξ
′
h

)) π

8

if
∑n

h=1

(
|d′h|

2 − |ξ′h|
2
)

= 0.

This choice for ϕ and θ leads to

n∑
h=1

∆2
D

(
A′′h
)
≤

n∑
h=1

∆2
D

(
A′′h
)

with A′′h = U∗A′hU , where the de�nition of U is given in 5.3.9.

Proof. The proof follows directly from Lemma 5.3.19 and Lemma 5.3.21.

5.3. Simultaneous Quasi-Diagonalisation 237

5.3.4 The SIMQDIAG Algorithm

With the help of the de�nitions and results from the preceding subsection we can formulate the
simultaneous quasi-diagonalisation algorithm.

Algorithm 31: Simultaneous Quasi-Diagonalisation Algorithm

Input: A set of diagonalisable matrices A1, ..., An ∈ Matm (C) , ε ∈ R+

Output: An approximate diagonalisation of A1, ..., An , m approximate common
eigenvectors of A1, ..., An

1 P := Im , k := 1 , d :=∞ ;

2 A
(1)
1 , ..., A

(1)
n := A1, ..., An ;

3 while d > ε do

4 for q := 1 to n do

5 for p := 1 to q do

6 Determine the parameters αk,p,q , and yk,p,q of S(k,p,q) such that∑n
i=1

∥∥∥S(k,p,q)−1A
(k)
i S(k,p,q)

∥∥∥2

E
is approximately minimised via

Theorem 5.3.17;
7 for i := 1 to n do

8 A
(k)′

i := S(k,p,q)−1A
(k)
i S(k,p,q) ;

9 end

10 Determine the parameters ϕk,p,q , and θk,p,q of U (k,p,q) such that∑n
i=1 ∆2

D

(
U (k,p,q)∗A

(k)′

i U (k,p,q)
)
is minimised via Theorem 5.3.22;

11 for i := 1 to n do

12 A
(k+1)
i := U (k,p,q)∗A

(k)′

i U (k,p,q) ;
13 end

14 P := PS(k,p,q)U (k,p,q) ;

15 d :=
∑n

i=1 ∆2
D

(
A

(k+1)
i −A(k)

i

)
;

16 k := k + 1 ;

17 end

18 end

19 end

20 return
(
P,A

(k+1)
1 , ..., A

(k+1)
n

)
;

Theorem 5.3.23. This is an algorithm which computes in a �nite number of steps m approx-

imate common eigenvectors P = (v1, ..., vm) for A1, ..., An ∈ Matm (C) such that

n∑
i=1

∆2
D

(
P−1AiP

)
can no longer be improved by the applied transformations.

Proof. We have shown in Theorem 5.3.22 and Theorem 5.3.17 how to choose the four paramet-
ers αk,p,q , yk,p,q , ϕk,p,q , and θk,p,q for each combination k, p, q such that convergence of the

238 Chapter 5. The Rational Recovery Problem

algorithm can be assured. The process becomes stationary either when the matrices are com-
pletely diagonalised or no further improvement can be achieved via the applied transformations.
This is made sure in line 3 of the algorithm.

Remark 5.3.24. Even though it seems likely, it is currently unknown and subject of future
research if the algorithm will return a local minimum with respect to the cost functions de�ned
by the departure from normality ∆N and diagonality ∆D in case the matrices cannot be exactly
simultaneously diagonalised. A pivot strategy like in the original Jacobi algorithm might allow
for a simple proof.

Remark 5.3.25. It is possible to implement the algorithm in an e�cient way by not performing
full matrix-matrix multiplications but by only updating the entries of the matrices which change
after applying S and U in each iteration (see Propositions 5.3.12 and 5.3.13). Thus we can
make use of the fact that the similarity transformations will only alter two rows and columns at
a time.

Remark 5.3.26. The e�ciency of the algorithm can be further improved if we implement a
decoupling strategy. For this purpose see Proposition 2.9.27.

Remark 5.3.27. Another way to improve the performance of the algorithm is to skip an op-
timization step (i, j) if the (i, j)-th and (j, i)-th entries of all matrices are below are speci�ed
threshold value. This approach is inspired by the threshold Jacobi method, which is discussed
by Wilkinson in [64, page 277 f.].

5.3.5 Parameter Choice for Real Input Data

In case the input matrices are only real valued, the choice of parameters in the Simultaneous
Quasi-Diagonalisation algorithm (31) can be simpli�ed. This permits a more e�cient and robust
implementation of the algorithm. Let A1..., An ∈ Matm (R) be real matrices which we want to
simultaneously quasi-diagonalise. Just like in [53], the real shear and unitary transformations
take the following forms. Note that the matrices are again identical to the unit matrix Im except
for four entries.

De�nition 5.3.28. [Shear Rotation Matrix]

Let yk,p,q ∈ R . We call a matrix S(k,p,q) ∈ Matm (R) with entries identical to the unit matrix Im
except for the four entries

s(k,p,q)
pp = cosh (yk,p,q) ,

s(k,p,q)
pq = − sinh (yk,p,q) ,

s(k,p,q)
qp = − sinh (yk,p,q) ,

s(k,p,q)
qq = cosh (yk,p,q)

a real shear rotation matrix with parameter yk,p,q .

5.3. Simultaneous Quasi-Diagonalisation 239

De�nition 5.3.29. [Unitary Rotation Matrix]

Let θk,p,q ∈]−π, π] . We call a matrix U (k,p,q) ∈ Matm (R) with entries identical to the unit
matrix Im except for the four entries

u(k,p,q)
pp = cos (θk,p,q) ,

u(k,p,q)
pq = − sin (θk,p,q) ,

u(k,p,q)
qp = sin (θk,p,q) ,

u(k,p,q)
qq = cos (θk,p,q)

a real unitary rotation matrix with parameter θk,p,q .

We �rst state the real version of the Simultaneous Quasi-Diagonalisation Algorithm. Afterwards
we explain how the parameters y and θ need to be chosen.

Algorithm 32: Real Simultaneous Quasi-Diagonalisation Algorithm

Input: A set of diagonalisable matrices A1, ..., An ∈ Matm (R) , ε ∈ R+

Output: An approximate diagonalisation of A1, ..., An , m approximate common
eigenvectors of A1, ..., An

1 P := Im , k := 1 , d :=∞ ;

2 A
(1)
1 , ..., A

(1)
n := A1, ..., An ;

3 while d > ε do

4 for q := 1 to n do

5 for p := 1 to q do

6 Determine the parameter yk,p,q of S(k,p,q) such that∑n
i=1

∥∥∥S(k,p,q)−1A
(k)
i S(k,p,q)

∥∥∥2

E
is approximately minimised via

Corollary 5.3.30;
7 for i := 1 to n do

8 A
(k)′

i := S(k,p,q)−1A
(k)
i S(k,p,q) ;

9 end

10 Determine the parameter θk,p,q of U (k,p,q) such that∑n
i=1 ∆2

D

(
U (k,p,q) trA

(k)′

i U (k,p,q)
)
is minimised via Corollary 5.3.31;

11 for i := 1 to n do

12 A
(k+1)
i = U (k,p,q) trA

(k)′

i U (k,p,q) ;
13 end

14 P := PS(k,p,q)U (k,p,q) ;

15 d :=
∑n

i=1 ∆2
D

(
A

(k+1)
i −A(k)

i

)
;

16 k := k + 1 ;

17 end

18 end

19 end

20 return
(
P,A

(k+1)
1 , ..., A

(k+1)
n

)
;

240 Chapter 5. The Rational Recovery Problem

Just as in the complex case, we introduce the following abbreviations:

dh = ah,pp − ah,qq,
ξh = −iah,qp + iah,pq,

d′h = a′h,pp − a′h,qq,
ξ′h = a′h,qp + a′h,pq,

Gh = Gh,pq =
∑
j 6=p,q

(
a2
h,pj + a2

h,jp + a2
h,jq + a2

h,qj

)
,

Ch = AhA
tr
h −Atr

hAh,

ch = Ch,pq.

Corollary 5.3.30. Let A1, ..., An ∈ Matm (R) and let 1 ≤ p < q ≤ m. Furthermore, let

tanh (y) =
− |
∑n

h=1 ch|∑n
h=1

(
Gh + 2

(
d2
h + |ξh|2

)) .
For this choice of y , the inequality

n∑
h=1

∥∥A′h∥∥2

E
≤

n∑
h=1

‖Ah‖2E

holds, where A
′
h = S−1AhS with the de�nition of S given in 5.3.28.

Proof. The claim follows directly from the de�nitions and from Theorem 5.3.17 if we
let αk,p,q = −π

2 .

Corollary 5.3.31. Let A1, ..., An ∈ Matm (R) and let 1 ≤ p < q ≤ m . Furthermore, let

tan (4θ) =
2
∑n

h=1 d
′
hξ
′
h∑n

h=1

(
d
′2
h − ξ

′2
h

) .
This choice leads to

n∑
h=1

∆2
D

(
A
′′
h

)
≤

n∑
h=1

∆2
D

(
A
′
h

)
,

with A′′h = U∗A′hU , where the de�nition of U is given in 5.3.29.

Proof. The claim follows directly from the de�nitions and from Theorem 5.3.22 if we
let ϕk,p,q = 0 .

Now we come back to Example 5.2.8. This time we use the Simultaneous Quasi-Diagonalisation
Algorithm (31), as implemented in the ApCoCoA library, to solve the rational recovery problem.

5.3. Simultaneous Quasi-Diagonalisation 241

Example 5.3.32. Let P = R [x1, x2] , O = {1, x2, x1, x1x2} , and let G = {g1, ..., g4} be an
approximate O -border basis with

g1 ≈ x2
2 − 1.026x2 + 0.063,

g2 ≈ x2
1 + 0.060x1x2 − 1.056x1 − 0.032x2 + 0.079,

g3 ≈ x1x
2
2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018,

g4 ≈ x2
1x2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018.

The corresponding multiplication matrices have the following structure:

A1 =

0 0 −0.079 −0.018

0 0 0.032 −0.012

1 0 1.056 −0.012

0 1 −0.060 1.025

 A2 =

0 −0.063 0 −0.018

1 1.026 0 −0.012

0 0 0 −0.012

0 0 1 1.025

 .

As ‖A1A2 −A2A1‖δ ≈ 0.054 , we are dealing with a 0.06-approximate border basis.

Now we apply the Simultaneous Quasi-Diagonalisation algorithm (31) and get the approximate
eigenvectors

V =

v1

v2

v3

v4

 ≈

1.170 0.073 0.89 0.021

1.010 0.981 0.053 0.032

1.015 0.060 0.993 0.031

1.140 1.090 1.091 1.067

 ∈ Mat4 (R) .

for the transposed multiplication matrices. Next, we compute

V A1V
−1 ≈

0.061 0.021 0 −0.003

0.016 0.031 0.003 0

0 0.003 1.008 −0.029

0.01 0 −0.038 0.980

and

V A2V
−1 ≈

0.048 0 0.020 −0.003

0 0.992 0.010 −0.029

0.030 −0.004 0.030 −0.001

−0.003 −0.021 0 0.980

 .

Via the approximate eigenvalues (compare Theorem 5.1.9), we obtain the points
p1 = (0.061, 0.048) , p2 = (0.031, 0.992) , p3 = (1.008, 0.03) , and p4 = (0.98, 0.98) . Using
the Buchberger-Möller algorithm for border bases (18) together with the basis transformation
algorithm (19) we obtain an exact O -border basis G̃ which has the following multiplication
matrices (we only give 3 digits after the comma):

Ã1 ≈

0 0 −0.064 −0.001

0 0 0.033 −0.029

1 0 1.072 0.002

0 1 −0.060 1.009

 Ã2 ≈

0 −0.048 0 −0.001

1 1.042 0 0.001

0 0.018 0 −0.029

0 −0.031 1 1.009

 .

We observe that ‖A1−Ã1‖δ ≈ 0.032 and ‖A2−Ã2‖δ ≈ 0.042 , which is reasonably close to 0.054.

242 Chapter 5. The Rational Recovery Problem

Finally, we pick up Example 9.7 from Stetter in [49], where he tries to iteratively re�ne a given
almost exact border basis (i.e. a border basis that was computed in �oating point arithmetic)
in such a way that it is even closer to an exact border basis. We show that the Simultaneous
Quasi-Diagonalisation algorithm (31) is superior to the method of Stetter in the sense that the
computed solution is both exact and closer to the original approximate border basis.

Example 5.3.33. Just like Stetter in [49, Example 9.7] we let P = R [x1, x2] , we let
O =

{
1, x2, x1, x

2
2, x1x2, x

2
1

}
, and we let G = {g1, ..., g4} be an approximate O -border basis

with

g1 = x32 − 0.18428x21 + 0.27064x1x2 + 0.17425x22 + 0.39572x1 − 1.31238x2 + 0.17877,

g2 = x1x
2
2 + 0.38056x21 − 0.43946x1x2 − 0.54850x22 − 1.33649x1 + 0.20184x2 + 0.57210,

g3 = x1x
2
2 − 0.34518x21 − 0.74861x1x2 − 5.31753x22 − 1.08966x1 − 2.44432x2 + 6.20218,

g4 = x31 − 1.22257x21 − 0.34229x1x2 + 2.95924x22 − 3.59317x1 + 1.32856x2 − 1.26231.

We observe that G is a 9.3 · 10−5 -approximate border basis. Stetter computes the following
iteratively re�ned approximate border basis (6 digits after the comma)

ḡ1 ≈ x32 − 0.184281x21 + 0.270637x1x2 + 0.174249x22 + 0.395719x1 − 1.312377x2 + 0.178772,

ḡ2 ≈ x1x
2
2 + 0.380565x21 − 0.439471x1x2 − 0.54876x22 − 1.336477x1 + 0.201853x2 + 0.572074,

ḡ3 ≈ x21x2 − 0.345205x21 − 0.748649x1x2 − 5.317555x22 − 1.089621x1 − 2.444281x2 + 6.202176,

ḡ4 ≈ x31 − 1.222582x21 − 0.342329x1x2 + 2.959279x22 − 3.593209x1 + 1.328599x2 − 1.262349.

With the help of algorithms 31, 18, and 19 we compute (6 digits after the comma)

g̃1 ≈ x32 − 0.184281x21 + 0.270640x1x2 + 0.174257x22 + 0.395722x1 − 1.312375x2 + 0.178763,

g̃2 ≈ x1x
2
2 + 0.380562x21 − 0.439458x1x2 − 0.548485x22 − 1.336482x1 + 0.201848x2 + 0.572081,

g̃3 ≈ x21x2 − 0.345183x21 − 0.748620x1x2 − 5.317537x22 − 1.089656x1 − 2.444319x2 + 6.202178,

g̃4 ≈ x31 − 1.222572x21 − 0.342286x1x2 + 2.959206x22 − 3.593193x1 + 1.328540x2 − 1.262263.

In terms of the associated multiplication matrices, which are de�ned in the usual way, we obtain
‖A1 − Ā1‖δ ≈ 8.8 · 10−5 , ‖A2 − Ā2‖δ ≈ 7.6 · 10−5 , ‖A1 − Ã1‖δ ≈ 6.6 · 10−5 , and ‖A2 − Ã2‖δ ≈
2.7 · 10−5 . This shows that the result computed by the Simultaneous Quasi-Diagonalisation
algorithm is signi�cantly closer to the given approximate border basis, than the result of Stetter.

5.3.6 Comparison with other Approaches

In this subsection we compare the numerical performance of the Simultaneous Quasi-
Diagonalisation (SimQDiag) algorithm (31) and the shear rotation algorithm of Fu and Gao
that was proposed in [53]. For this purpose the author has implemented the algorithm from [53]
as there is no publicly available version at the time of writing.

Example 5.3.34. Let

A1 =

11.33343 −4.9998 −6.33323 4.99999

26.66676 −11.0002 −11.66661 9.00001

48.33323 −22.9998 −16.33328 14.00001

61.66676 −26.9998 −19.66676 15.99999

 ,

5.3. Simultaneous Quasi-Diagonalisation 243

A2 =

6.55565 0.0001 −3.55545 1.99999

8.33343 3.9998 −5.33328 2.00001

15.55545 0.0002 −3.55550 2.00001

18.33343 3.0002 −6.33343 2.99999

 ,

and let

A3 =

21.0001 −19.9998 −3.9999 8.0001

56.66676 −53.0002 −14.66661 24.00001

99.9999 −92.0002 −28.99998 44.00001

136.66676 −125.9998 −40.66676 60.99999

 .

We apply both Algorithm 31 and the shear rotation algorithm of Fu and Gao with a varying
number of iterations. Both algorithms compute approximate eigenvectors (v1, ..., v4) = V such
that the matrix product V −1AiV is almost diagonal for 1 ≤ i ≤ 3 . After each iteration k we
measure the common squared departure from diagonality (see De�nition 5.3.7), i.e. we compute∑3

i=1 ∆2
D

(
V −1AiV

)
.

The numbers starting with k = 5 are presented in Table 5.1. We observe that the process
becomes essentially stationary after 11 iterations for both algorithms. Notably the SimQDiag
algorithm has better convergence properties than the shear rotation algorithm. For instance,
after 5 iterations the total squared departure from diagonality is only 154.1 compared to the
195.2 when using the shear rotation algorithm. Finally we note, that the result to which the
Simultaneous Quasi-Diagonalisation algorithm has converged is smaller than the result computed
by the shear rotation algorithm.

Iterations
5 6 7 8 9 10 11 12

ShearRotation 195.2 76.0 22.4 4.3 0.4 0.013 0.003 0.003

SimQDiag 154.1 54.6 14.5 2.4 0.2 0.003 0.001 0.001

Table 5.1: Total squared departure from diagonality after k iterations. See Example 5.3.34.

Figure 5.4: Graph of the total squared departure from diagonality after k iterations.
See Example 5.3.34.

244 Chapter 5. The Rational Recovery Problem

Finally, we consider the performance of the algorithms on a set of random simultaneously diag-
onalisable matrices to which we add some Gaussian noise.

Example 5.3.35. First we describe how we generate the input data for the example computa-
tion. Let

V =

1 2 3 4

5 6 7 9

10 11 12 13

15 15 16 18

 ∈ Mat4 (R) .

Then we create 5 diagonal matrices Λ1, ...,Λ5 that have uniformly random diagonal entries in
the discrete set {−100,−99.9,−99.8..., 99.9, 100} . Now we form the matrices Ai = V Λ1V

−1 for
1 ≤ i ≤ 5 and add Gaussian noise. We denote the resulting matrices by Ãi . Afterwards, we
apply both the shear rotation and the simultaneous diagonalisation algorithm to the matrices
Ã1, ..., Ã5 with a varying number of iterations. In each case we obtain an invertible matrix Ṽ

and its inverse Ṽ −1 . Then we compute the total squared departure from diagonality for the
matrices Λ̃i = Ṽ −1Ã1Ṽ , i.e. we compute

∑5
i=1 ∆2

D(Λ̃i) . This procedure of taking random diag-
onal matrices Λ1, ...,Λ5 together with the following steps is repeated 30 times and the average
values for the total departure from diagonality are computed for each iteration k .
The results can be found in Table 5.2. Again we observe that the Simultaneous Quasi-
Diagonalisation Algorithm converges faster than the shear rotation algorithm. For instance
after 9 iterations the average value of the total squared departure from diagonality is about
282 for the Simultaneous Quasi-Diagonalisation Algorithm versus 11167 for the shear rotation
algorithm. Additionally, after convergence the average total squared departure from diagonality
was smaller for the Simultaneous Quasi-Diagonalisation Algorithm.

6 7 8 9 10 11 12 13

ShearRotation 581541 217319 64161 11167 739 6.3 0.29 0.29

SimQDiag 244072 45754 5261 282 5.6 0.3 0.21 0.21

Table 5.2: Total squared departure from diagonality after k iterations. See Example 5.3.35.

Remark 5.3.36. Fu and Gao have pointed out in [53, Section 4] that their shear rotation
algorithm converges faster than the simultaneous Schur decomposition algorithm (SSD) which
was proposed in [55] and the simultaneous QR decomposition algorithm which was introduced
in [56]. As we have shown that our algorithm outperforms the shear rotation algorithm at least
in the given examples, we can expect to outperform the other mentioned algorithms as well.

5.4 A Sum of Squares Heuristic for the Rational Recovery

Problem

In this section we present an alternative route to the solution of the rational recovery problem.
The idea is to transform the problem of �nding a suitable set of points to �nding the minima of

5.4. A Sum of Squares Heuristic for the Rational Recovery Problem 245

Figure 5.5: Graph of the total squared departure from diagonality after k iterations.
See Example 5.3.35.

a sums of squares expression, which we obtain from G . No rigorous proof will be given, but we
motivate the usefulness of the heuristic and present some numerical evidence for its adequacy
and e�ciency.

Before we start let us brie�y recall the rational recovery problem. Let P = K [x1, ..., xn] with
K = C or K = R , let O be an order ideal, and let G = {g1, ..., gν} ⊂ P be an ε-approximate
O -border basis. We are interested in �nding an exact O -border basis G̃ = {g̃1, ..., g̃ν} which is
close to G with respect to the Euclidean distance of all coe�cient vectors of the polynomials gj
and g̃j . The method discussed in the previous sections used the approximate common eigenvalues
and eigenvectors of the multiplication matrices Ai as candidates for the common zeros of an exact
border basis. After these have been computed, the Buchberger-Möller algorithm (18) together
with the Border Basis transformation algorithm (19) can be used to recover an exact O -border
basis which is close to the original one.

The following approach also leads to a suitable set of points which serves as input for the
Buchberger-Möller algorithm. However, instead of relying on the multiplication matrices, we
focus on the polynomials in G itself. Our aim is to look for points which are as close as possible
to the common zeros of G . In other words, we try to �nd points which minimise the total
residual of all polynomials when evaluated on one of these points. For this purpose, we consider
the sum of the squares of all polynomials, which we will denote by S , in G and try to �nd the
local minima of this single equation.

First we describe a method, which uses the common zeros of the derivatives of S with respect
to x1, ..., xn . The obvious disadvantage of this approach is, that generally we have to deal with
the NP-hard problem of solving a multivariate quadratic system which has apparently no special
structure that could be exploited. Only small systems of equations can be treated in this manner.

The second method that we propose can be applied if G is obtained via a variant of the
Buchberger-Möller algorithm (for example, the ABM algorithm (22) or AVI algorithm (21)).
Then we already know a set of points X , such that ‖evalX (gi)‖ is small for all gi ∈ G . Using
each point in X as a starting value we search in its vicinity for a local minimum, with the help

246 Chapter 5. The Rational Recovery Problem

of numerical local optimisation techniques. In this setting we can even handle industrial size
datasets with several thousand points. A disadvantage, though, is that we no longer have a
guarantee to �nd all local minima of S .

In both cases we do not give exact error bounds for the algorithms, but we provide a set of
examples that illustrate the e�ectiveness and adequacy of the methods.

Before we start to outline the algorithm we explain how to �nd the minima of a complex polyno-
mial function which contains both xi and its complex conjugate x̄i . A detailed overview of the
technique can be found in [68, Theorem 2], where also some theoretical justi�cation is provided.

Remark 5.4.1. We want to �nd the local minima of a real valued polynomial function
S : Kn → R by computing its derivatives with respect to x1, ..., xn . If K = R we observe
that xi = x̄i . Thus we can just compute the derivatives of S with respect to x1, ..., xn and
determine for each point in Z

(〈
∂S
∂x1

, ..., ∂S∂xn

〉)
if it is a local minimum via the usual criteria.

However, if K = C we have to be more careful since xi → xi is not an analytic function in xi

and therefore one cannot calculate derivatives in a straightforward way. Fortunately, it is still
possible to compute the minima in a similar way. Following [68, Section 1] there are basically two
solution strategies to this problem. First it would be possible to treat every complex variable as
two real variables, but this would be quite tedious. The second and more elegant approach is to
treat xi and x̄i , for every i , as if they were independent variables and calculate the derivatives
for xi and x̄i independently. As S is real valued, it even su�ces to compute the derivatives
either for xi or x̄i (see [68, Theorem 2]). For convenience we choose for xi and pay no attention
to x̄i . Then we determine again for each point in Z

(〈
∂S
∂x1

, ..., ∂S∂xn

〉)
which points are in fact

local minima of S .

Algorithm 33: Sum of Squares Minimisation Algorithm
Input: An ε-approximate O -border basis G = {g1, ..., gν} ⊂ K [x1, ..., xn] with K = R

or K = C for an ideal I such that |Z (I)| = µ , number of signi�cant digits after
the comma d ∈ N0 , and the number of elements in the order ideal µ = |O|

Output: A list of µ points X , such that all polynomials in G vanish approximately on
X or an error message if less than µ local minima of S exist

1 S :=
∑ν

i=1 ḡigi ;

2 D :=
{
∂S
∂x1

, ..., ∂S∂xn

}
via Remark 5.4.1;

3 Z := {z1, ..., zk} approximations of the zeros of D with d signi�cant digits after the
comma, compted e.g. via Bertini [65];

4 M := {p1, ..., pγ} ⊆ Z the points in Z that are local minima of S ;
5 if |M | < µ then

6 Return "No solution could be computed.";
7 else

8 M̃ := [p̃1, ..., p̃γ] the points in M ordered ascendingly with respect to ‖evalp̃i (S)‖ ;
9 X := [p̃1, ..., p̃µ] the �rst µ points from M̃ ;

10 end

11 return X ;

5.4. A Sum of Squares Heuristic for the Rational Recovery Problem 247

Remark 5.4.2. Unfortunately, it is currently unknown whether enough local minima always
have to exist such that we can pick µ points. Because of this reason the algorithm may terminate
prematurely in line 6. It is one possible direction for future research to construct an example
where the algorithm terminates without returning µ points or to prove that it will always �nd µ
minima.

To motivate why the individual steps of the algorithm and the algorithm as a whole make sense,
we will that it will always return a correct result (up to rounding errors) if G is an exact border
basis for a 0-dimensional ideal I that has only simple roots. For practical purposes it is not
recommended to use Algorithm 33 if G is in fact an exact border basis, as there are more
e�cient techniques available, like notably the eigenvalue algorithm (30).

Proposition 5.4.3. If G is an exact O -border basis for a 0-dimensional ideal I that has only

simple roots, Algorithm 33 computes and returns a numerical approximation of Z (〈G〉) .

Proof. Let G be an exact O -border basis. Then the evaluation of

S =

ν∑
i=1

gigi =

ν∑
i=1

|gi|2

is equal to zero if and only if the evaluation of each individual polynomial gi is equal to zero for
any point p ∈ Cn . This is true because the evaluation of |gi|2 on any point in Cn is obviously
greater than or equal to zero. As |O| = µ , the set G has exactly µ distinct zeros which are
also zeros of S . As S cannot have any more zeros, the zero set of S and the zero set of G
must agree. The polynomial S has exactly µ local minima p1, ..., pµ such that evalpi (S) = 0 .
Therefore the points returned by the algorithm will be the zeros of G .

Remark 5.4.4. It is possible to extend Algorithm 33 to 0-dimensional ideals that have zeros of
multiplicity greater than 1. For this purpose the multiplicity of each common zero pi of 〈D〉 has
to be computed as well in line 3 of the algorithm. Then the multiplicity of pi in 〈D〉 needs to be
related to the (approximate) multiplicity of pi in 〈G〉 . This is di�cult as pi is in general only a
local minimum of S and not an exact zero of 〈G〉 . Furthermore, computing the multiplicity of
a root for a polynomial system is a non-trivial and computationally expensive task. A notable
attempt in this direction has been made by Sommese, Verschelde and Wampler in [66]. For our
computations and experiments (see Example 5.4.5) we have used their software tool Bertini ([65]).
Note, that in case we want to compute an O -border basis for a 0-dimensional ideal for a given
set of points, such that some points have multiplicity greater than 1, a generalised version of the
Buchberger-Möller algorithm, as described by Abbott et al. in [69], can be used to compute the
exact Gröbner basis of the ideal �rst which can later on be transformed into an O -border basis.

Example 5.4.5. Let P = R [x1, x2] , let O =
{

1, x1, x2, x
2
1

}
, and let G = {g1, .., g4} be the set

of polynomials consisting of

g1 = x2
2,

g1 = x1x2,

g1 = x2
1x2,

g1 = x3
1 − 2x2

1 + x1.

248 Chapter 5. The Rational Recovery Problem

Then G is an exact O -border basis. We now apply Algorithm 33 together with the ideas from
Remark 5.4.4 to compute the zero set of G . First we form

S = x4
2 + x2

1x
2
2 + x4

1x2 + x6
1 − 4x5

1 + 6x4
1 − 4x3

1 + x2
1

and compute D = {d1, d2} where

d1 = ∂S
∂x1

= 6x5
1 + 4x3

1x
2
2 − 20x4

1 + 24x3
1 + 2x1x

2
2 − 12x2

1 + 2x1,

d2 = ∂S
∂x2

= 2x4
1x2 + 2x2

1x2 + 4x3
2.

With the help of Bertini ([65]) or some comparable program, we compute the real zero set of D
and obtain p1 ≈ (1, 0) with multiplicity m (p3) = 3 , p2 ≈ (0.333, 0) with m (p2) = 1 , and p3 =

(0, 0) with m (p3) = 3 . The points p1 and p3 are both local minima, whereas p2 is a local max-
imum. Because G is in fact an exact border basis we determine that the multiplicity of p1 and p2

as roots of G is two. Thus the algorithm returns the tuple X = [(0, 0) , (0, 0) , (1, 0) , (1, 0)] .
Clearly, we could have obtained this result if we had computed the zero set of G directly.

In the next example we slightly perturb the exact system from Example 5.4.5. Now it is no
longer possible to use standard exact algorithms to recover the zero set of G .

Example 5.4.6. Let P = R [x1, x2] , let O =
{

1, x1, x2, x
2
1

}
, and let G = {g1, .., g4} with

g1 = x2
2 − 0.002x1 + 0.0002x2 + 0.001,

g2 = x1x2 + 0.002x1 + 0.0003x2 − 0.002,

g3 = x2
1x2 − 0.003x1 − 0.0002x2 + 0.002,

g4 = x3
1 − 1.998x2

1 + 0.999x1 − 0.0001x2 + 0.003

be an approximate O -border basis. The zero set of G is empty. Now we apply Algorithm 33
again. We form

S ≈ x6
1 + x4

1x
2
2 − 3.996x5

1 + 5.99x4
1 − 0.0062x3

1x2 + 0.9996x2
1x

2
2 + x4

2 − 3.986x3
1 +

0.00839x2
1x2 − 0.0034x1x

2
2 + 0.0004x3

2 + 0.98603x2
1 − 0.00419x1x2 +

0.002x2
2 + 0.00597x1 + 0.00001

and compute D = {d1, d2} with

d1 =
∂S

∂x1
≈ 6x5

1 + 4x3
1x

2
2 − 19.98x4

1 + 23.96x3
1 − 0.0186x2

1x2 + 1.9992x1x
2
2 −

11.958x2
1 + 0.0167x1x2 − 0.0034x2

2 + 1.972x1 − 0.0041x2 + 0.0059,

d2 =
∂S

∂x2
≈ 2x4

1x2 − 0.0062x3
1 + 1.9992x2

1x2 + 4x3
2 +

0.0083x2
1 − 0.0068x1x2 + 0.0012x2

2 − 0.0041x1 + 0.004x2.

We obtain the points p1 ≈ (0.998, 0.001) with m (p1) = 3 , p2 ≈ (−0.003,−0.003) , with
m (p2) = 3 , and p3 ≈ (0.333, 0) with m (p3) = 1 . Both p1 and p2 are local minima of S

5.4. A Sum of Squares Heuristic for the Rational Recovery Problem 249

and p3 is a local maximum. Because of similar observations as in Example 5.4.5, we re-
turn X = [(0.998, 0) , (0.998, 0) , (−0.003,−0.003) , (−0.003,−0.003)] . We compute the exact
O -border basis G̃ = {g̃1, ..., g̃4} with

g̃1 ≈ x2
2 + 0.000x2

1 − 0.000x1 + 0.006x2 + 0.000,

g̃2 ≈ x1x2 + 0.003x2,

g̃3 ≈ x2
1x2,

g̃4 ≈ x3
1 − 1.993x2

1 + 0.990x1 + 0.002.

This is a reasonably good approximation of the original system G . Note that only 3 digits
precision were used during the computation. A higher precision would further improve the
results.

In the following example we have to deal with complex solutions.

Example 5.4.7. Let P = R [x1, x2] . Consider the order ideal O = {1, x1, x2} and the set of
polynomials G = {g1, g2, g3} , where g1 = x2

2− 0.99x2 , g2 = x1x2 + 0.01 and g3 = x2
1− 2.01x2 +

1.99 . We apply Algorithm 33:

1. We have S = x4
1 +x2

1x
2
2 +x4

2−4.02x2
1x2−1.98x3

2 +3.98x2
1 +0.02x1x2 +5.0202x2

2−7.9998x2 +

3.9602 .

2. We calculate d1 = ∂S
∂x1

= 4x3
1 + 2x1x

2
2 − 8.04x1x2 + 7.96x1 + 0.02x2 and d2 = ∂S

∂x2
=

2x2
1x2 + 4x3

2 − 4.02x2
1 − 5.94x2

2 + 0.02x1 + 10.0404x2 − 7.9998 and form D = {d1, d2} .

3. We determine all minima of D up to a precision of 10−4 and obtain one real minimum
at p1 = (−0.0100, 0.9900) and two complex conjugate minima at p2,3 = (0.0099, 0.0001)±
(1.4105, 0.0139) i

4. We return X = {p1, p2, p3} .

If we calculate an exact border basis G̃ = {g̃1, g̃2, g̃3} for X with respect to O we obtain:

g̃1 ≈ x2
2 + 0.0097x1 − 0.99x2 + 0.0001,

g̃2 ≈ x1x2 − 0.0001x1 − 0.0098x2 + 0.0196,

g̃3 ≈ x2
1 − 2.0098x2 + 1.9896.

The recovered exact border basis is close to the approximate one as

max
(
‖A1 − Ã1‖δ, ‖A2 − Ã2‖δ

)
≈ 0.0137,

where the Ai are the multiplication matrices of G and the Ãi are the multiplication matrices
of G̃ .

5.4.1 The Polak-Ribière Conjugate Gradient Algorithm

As a preparation for the approximate version of Algorithm 33, we introduce the Polak-Ribière
(PR) conjugate gradient algorithm, a variant of the Fletcher-Reeves algorithm, which is a stand-
ard tool in non-linear multivariate optimisation. Though we could use any non-linear optimisa-
tion method, we chose PR sine we have to deal with polynomial systems, for which the gradient

250 Chapter 5. The Rational Recovery Problem

can easily be calculated. The PR algorithm makes good use of this additional information to
enhance both speed and accuracy. For instance, it features faster convergence compared with the
steepest descent algorithm. We only stress the facts which are important in our setting. More
details about the method can be found in [67, Section 5.2].

Given a continuous function f : Cn → R+
0 we are interested in �nding the local minima of f .

We can rewrite f as a real function f̃ : R2n → R+
0 by splitting every complex indeterminate

into its real and imaginary part. We are then in the fortunate situation that f̃ is continuously
di�erentiable, and we can apply the widely available (real) implementations of the PR algorithm.
Note that the PR algorithm also requires a starting value from where it will start the optimisation
process, but the conversion of a point x ∈ Cn for f to x̃ ∈ R2n for f̃ is of course straightforward.
Let f : Rn → R be a continuously di�erentiable function. Then we let ∂f =

(
∂f
∂x1

, ..., ∂f∂xn

)
.

Given a starting point x0 ∈ Rn and a continuously di�erentiable function f : Rn → R the
following algorithm computes a local minimum of f close to x0 if it exists.

Algorithm 34: Polak-Ribière Conjugate Gradient Algorithm
Input: A continously di�erentiable function f : Rn → R , a starting value x0 ∈ Rn ,

ε ≥ 0 , 0 < σ < % ≤ 1
2

Output: A local minimum xk of f
1 k := 0 , d0 := −∂f (x0) = −

(
∂f
x0

(), ..., ∂fx0
()
)
∈ Rn ;

2 while ‖∂f (xk)‖ > ε do

3 Choose tk > 0 that satis�es both f (xk + tkdk) ≤ f (xk) + σtk∂f (xk)
tr dk and∣∣∂f (xk + tkdk)

tr dk
∣∣ ≤ % ∣∣∂f (xk)

tr dk
∣∣ ;

4 xk+1 := xk + tkdk ;

5 βk := max
(
∂f(xk+1)(∂f(xk+1)−∂f(xk))

‖∂f(xk)‖2 , 0
)
;

6 dk+1 := −∂f (x0) + βkdk ;
7 k := k + 1 ;

8 end

9 Return xk ;

Theorem 5.4.8 (Finiteness and convergence). Let x0 ∈ Rn , let f : Rn → R be a continuously

di�erentiable function and let 0 < σ < % ≤ 1
2 . If the level set S = {x |f (x) ≤ f (x0)} is bounded

and the function f is Lipschitz continuously di�erentiable in a neighbourhood N of S , i.e. there

exists a constant c > 0 such that ‖∂f (x)− ∂f (x̃)‖ ≤ c ‖x− x̃‖ for all x, x̃ ∈ N , the algorithm

will terminate after a �nite number of steps as the following convergence property holds:

lim inf
k→∞

‖∂f (xk)‖ = 0.

Proof. See [67, Theorem 5.8].

Remark 5.4.9. The conditions which are checked in line 3 of the algorithm are known as the
strong Wolfe conditions and assure that the chosen increment tk decreases both f and its slope
by a �su�cient� amount.

5.4. A Sum of Squares Heuristic for the Rational Recovery Problem 251

Remark 5.4.10. The parameter ε should be chosen in such a way that it is in the order of
magnitude of εmachine . A very small value of may degrade performance of the algorithm, while
a too large value may stop the algorithm even though the local minimum has not been reached
yet. As long as σ and % are chosen such that 0 < σ < % ≤ 1

2 holds, then the actual values
of σ and % only a�ect the speed of convergence but not the convergence of the algorithm itself.
According to [67, page 124], practical values are σ = 10−4 and % = 0.1 .

Now we are in the position to introduce an approximate version of Algorithm 33 which can
be applied if a priori a set of points X̃ is known for which

∥∥evalX̃ (gi)
∥∥ is small for all gi ∈

G . We are precisely in this situation if the approximate border basis is computed with one
of the approximate variants of the Buchberger-Möller algorithm, like for instance the ABM
algorithm (22) or AVI algorithm (21). In this case we will also assume that G is close to an
exact border basis for a reduced set of points which means that all points will have multiplicity
one.

Algorithm 35: Approximate Sum of Squares Minimisation Algorithm
Input: An ε-approximate O -border basis G = {g1, ..., gν} ⊂ K [x1, ..., xn] with K = R

or K = C , the number of elements in the order ideal |O| = µ , a set of points
X̃ = {p̃1, ..., p̃τ} with τ ≥ µ , ε ≥ 0 , and 0 < σ < % ≤ 1

2

Output: A list of µ points X , such that all polynomials in G vanish approximately on
X

1 S :=
∑ν

i=1 ḡigi ;
2 Convert S to a real polynomial S

′
;

3 M := [] ; V := [] ;
4 for i := 1 to τ do

5 Convert p̃i to a real point p̃
′
i ;

6 p
′
i := Polak-Ribière-CG(S

′
, p̃
′
i, ε, σ, %) ;

7 Convert p
′
i to a point pi in Kn ;

8 vi := evalpi(S) ;
9 Append(M,pi) ; Append(V, vi) ;

10 end

11 X := [] ;
12 for i := 1 to µ do

13 g := a point pk in M such that vk is minimal in V ;
14 Remove(M,pk) ; Remove(V, vk) ;
15 for j := 1 to |V | do
16 vj := vj/ ‖pj − g‖ ;
17 end

18 Append(X, g) ;

19 end

20 return X ;

Let us elaborate on the additional and modi�ed steps compared to Algorithm 33 and explain
their purpose.

252 Chapter 5. The Rational Recovery Problem

In line 6 we use the Polak-Ribière algorithm, as it is a well understood and e�cient tool in numer-
ical optimisation. The PR algorithm is a general method that can be applied in most situations.
However, in some special cases, other methods may be more favourable, e.g. quasi-Newton
methods such as the Broyden-Fletcher-Goldfarb-Shanno algorithm (compare [67, Section 8.1] for
details). The numerical nature of line 6 leads to two major problems. It is no longer guaranteed
that we �nd all minima, so we may miss out on the globally minimal ones. As with any numerical
local optimisation algorithm, its e�ectiveness greatly depends on the closeness of the starting
points to the the actual local minima.
Another issue with which we have to deal is that we have to identify identical minima that were
obtained because we had two starting points which were in the neighbourhood of the same min-
imum. That is why we introduce lines 15 to 17 in our algorithm. They impose a �penalty� on
neighbouring points of an already determined minimum. The proposed step is just one possibility
and it would be useful to develop more re�ned methods.

Remark 5.4.11. In case no initial set of starting points X̃ should be known a priori, it is
of course possible to use the Simultaneous Quasi-Diagonalisation Algorithm (31) to obtain a
suitable set X̃ .

Remark 5.4.12. In practice it is advisable to use Algorithm 31 to obtain an initial solution
and Algorithm 35 to further re�ne this result if the accuracy of the solution returned by the
Simultaneous Quasi-Diagonalisation Algorithm is not satisfactory.

The following examples exemplify the individual steps of the approximate sums of squares min-
imisation algorithm.

Example 5.4.13. We will apply Algorithm 35 to Example 5.3.32. Let us brie�y recall the
setting: P = R [x1, x2] , O = {1, x2, x1, x1x2} , and G = {g1, ..., g4} is a 0.06-approximate O -
border basis with

g1 ≈ x2
2 − 1.026x2 + 0.063,

g2 ≈ x2
1 + 0.060x1x2 − 1.056x1 − 0.032x2 + 0.079,

g3 ≈ x1x
2
2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018,

g4 ≈ x2
1x2 − 1.025x1x2 + 0.012x1 + 0.012x2 + 0.018.

The set of starting points is given by X̃ = {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (0.5, 0.5)} . We form

S ≈
4∑
i=1

g2
i = x4y2 + x2y4 − 2.051x3y2 − ...− 0.1349y + 0.0111.

Next we determine all local minima of S , using the points in X̃ as starting points, up to a preci-
sion of 10−4 . We obtain the four distinct minima p1 ≈ (0.0851, 0.0686) , p2 ≈ (0.9625, 0.9691) ,
p3 ≈ (0.0431, 0.9578) , and p4 ≈ (0.9797, 0.0502) . These can also be seen in Figure 5.6, which is
a three dimensional visualisation of the zero set of S − x3 = 0 . We form X = {p1, ..., p4} and

5.4. A Sum of Squares Heuristic for the Rational Recovery Problem 253

Figure 5.6: Visualisation of S − x3 = 0 for Example 5.4.13.

calculate an exact border basis G̃ = {g̃1, g̃2, g̃3, g̃4} for X with respect to O . Finally we obtain

g̃1 ≈ x2
2 + 0.0084x1x2 − 0.0192x1 − 1.0277x2 + 0.0674,

g̃2 ≈ x2
1 + 0.0522x1x2 − 1.0557x1 − 0.0423x2 + 0.0820,

g̃3 ≈ x1x
2
2 − 1.0182x1x2 + 0.0471x1 − 0.0011x2 + 0.0015,

g̃4 ≈ x2
1x2 − 1.0022x1x2 − 0.0032x1 + 0.0386x2 + 0.0027.

We have thus found a close by exact border basis as

max
(
‖A1 − Ã1‖δ, ‖A2 − Ã2‖δ

)
≈ 0.041,

where the Ai are the multiplication matrices of G and the Ãi are the multiplication matrices
of G̃ . Note that this result is even a bit better than the one we have obtained with Algorithm 31
in Example 5.3.32.

Remark 5.4.14. [Weighting polynomials]

In some cases, especially in industrial applications, it may be necessary to unevenly distribute the
error between the polynomials. For instance, we could want that the lower degree polynomials
stay rather stable while we allow a larger degree of freedom in the higher degree ones.

If we have a look again at S , we realise that the polynomials gi that have larger evaluations in
the environment of a point play a more important role and dominate over the polynomials with

254 Chapter 5. The Rational Recovery Problem

the smaller evaluations. As we are looking for minima of S , these will shift closer to the zero set
of the polynomial with the larger evaluation in the neighbourhood of its own zero set.

The mentioned behaviour can be used to in�uence how well the coe�cients of a certain polyno-
mial gi will be recovered. For this purpose, the addend |gi|2 in S just has to be multiplied by
a scalar wi ∈ R+ . So if we choose wi > 1 the weight of gi in the sum will increase and thus the
coe�cients of gi will be better recovered. Consequently, if we choose wi < 1 then the weight
of gi in the sum will be reduced. The polynomial S will become S =

∑ν
i=1wi |gi|

2 . Afterwards
we apply the steps of Algorithm 35 from line 2 onwards. The whole computational process can
be repeated several times with di�erent weights w1, ..., wν until the desired e�ect is achieved. Of
course, the recovery of the polynomials with the smaller weights will su�er, so it greatly depends
on the context if and how this technique can be used.

Our �nal example demonstrates the e�ect of assigning weights to the polynomials.

Example 5.4.15. In Example 5.4.13 we let w1 = 10 , and w2 = w3 = w4 = 1 . We perform the
steps of Algorithm 35 and �nally obtain G̃ = {g̃1, g̃2, g̃3, g̃4} with

g̃1 ≈ x2
2 + 0.0001x1x2 − 0.0011x1 − 1.0260x2 + 0.0637,

g̃2 ≈ x2
1 + 0.0503x1x2 − 1.0537x1 − 0.0418x2 + 0.0818,

g̃3 ≈ x1x
2
2 − 1.0258x1x2 + 0.0626x1,

g̃4 ≈ x2
1x2 − 1.0020x1x2 − 0.0032x1 + 0.0388x2 + 0.0026.

We have constructed a close by exact border basis as

max
(∥∥∥A1 − Ã1

∥∥∥
δ
,
∥∥∥A2 − Ã2

∥∥∥
δ

)
≈ 0.054,

where the Ai are the multiplication matrices of G and the Ãi are the multiplication matrices
of G̃ . Note that the coe�cients of the �rst polynomial have been recovered better than in
Example 5.4.13, as ‖g1 − g̃1‖ ≈ 0.001 here and ‖g1 − g̃1‖ ≈ 0.021 in Example 5.4.13.

255

6
Applications

Contents

6.1 Revealing Polynomial Relations in Real Data 256

6.2 Seismic Imaging . 261

6.3 Revealing Unconventional Geological Structures 271

6.4 Stable Computation of Polynomial Roots 273

In this chapter we present some applications of the algorithms which we discussed in this thesis.
The primary focus will be on topics related, but not limited to, the oil industry.

Suppose that we are given a set X = {p1, ..., ps} of s points in Rn , e.g. s measurements of n
physical quantities like pressures, temperatures, valve settings, electrical currents, oil produc-
tion, gas production, A known application of the AVI algorithm, as discussed in [28], is
to �nd physically meaningful polynomial relations among the coordinates of X . For instance,
the question if and how the oil (or gas) production of a well can be approximately expressed
in terms of the other measurements is of particular interest. The polynomial models that are
derived for the oil production of the well may allow a deeper understanding of the underlying
physical processes. Another objective is to identify redundant measurements that can already
be expressed approximately in terms of other measurements. This information can for example
be used to reduce costs because some measurement equipment can be turned o�. As these tasks
can also be performed via the ABM algorithm, we �rst discuss how that algorithm can be used
in this fashion. Our main emphasis here is that no a priori assumptions are made about the
shape of these polynomial models and that they are constructed using only the given data X .

The physical �interpretation� of these models is a non-trivial task and requires domain speci�c
knowledge. In addition to the algorithms that were discussed in Chapter 4, the corresponding
technology was also developed in the Algebraic Oil Research Project ([1]). However, this subject
is not covered here as these research results are property of Shell and therefore not available
to the public. Nevertheless, the ABM algorithm as well as the extended ABM algorithm have
proven their practical usefulness for the kind of tasks mentioned above, as they are used as the
core algorithms in a proprietary software tool which is now available inside Shell. The so-called

256 Chapter 6. Applications

Algebraic Oil-Tool (AO-Tool) was co-developed by the University of Passau, Shell International
Exploration and Production B.V., and RISC Software GmbH.

An additional aim of the research underlying this thesis was to broaden the applicability of the
data driven approach of the AVI and ABM algorithm to the area of seismic imaging. This topic
is covered in Section 6.2. First we introduce the required background information. Then we
brie�y explain the main challenges related to seismic imaging and how those are traditionally
met. Most of these traditional approaches have in common that relatively strong assumptions
have to be made upfront, which may, however, not be satis�ed in practice. Afterwards we explain
how the extended ABM algorithm can be used in this context. Moreover, two examples using
synthetic seismic datasets are discussed in more detail.

In Section 6.3 we talk about applications of the ABM algorithm to model unconventional geolo-
gical structures via algebraic surfaces.

Finally, we illustrate in Section 6.4 how the Simultaneous Quasi-Diagonalisation Algorithm (31),
which we have developed in Section 5.3, can be used to compute approximations of the zeros
of a 0-dimensional radical ideal in a numerically stable way. Through a few example computa-
tions, we show that the Simultaneous Quasi-Diagonalisation Algorithm is numerically superior
to LAPACK even if the input border basis is exact.

6.1 Revealing Polynomial Relations in Real Data

A useful application which was already discussed in [28] and [32] is the revelation of approximate
polynomial relations in measured data. Given a set X = {p1, ..., ps} ⊂ Rn of a�ne points - the
measurements - the crude strategy of using either the AVI (21) or ABM (22) algorithm to obtain
approximate polynomial relations among the coordinates of the points is the following:

1. Remove obviously incorrect data from the dataset X , e.g. outliers, illegal values (e.g. NaN
values), intervals of instrumentation failure, etc.

2. In case the input data are very noisy, apply appropriate �lters (e.g. low-pass �lters).

3. Scale the the dataset X such that the coordinates are in a �sensible� range and optionally
apply application speci�c transformations. See Remarks 6.1.2 and 6.1.3 for a more detailed
discussion.

4. Divide the dataset X into the parts I and V . The �rst one, I , is used for creating the
models, the second one, V , will be used to verify the �tting quality of the models and their
predictive power.

5. Apply the AVI or ABM algorithm for a certain set of ε-values to the dataset I . Please
note that the values of ε that should be considered depend on the actual application. The
noise level in the measurements and the amount of scaling which was applied are important
factors to consider. However, information about the noise is not always available a priori,
thus making several computations for di�erent values of ε necessary.

6.1. Revealing Polynomial Relations in Real Data 257

6. Evaluate the quality of the results based on a mixture of criteria which are again driven by
practical requirements of the application. These criteria may include but are not limited
to the �t of the polynomials on the sets of points I and V , the maximal degree of the
polynomials, and the size of the support of the polynomials.

Remark 6.1.1. One advantage of using the ABM algorithm instead of the AVI algorithm in
this context is the tighter error bound guaranteed by the algorithm (compare Algorithm 22 and
Theorem 4.3.1).

Remark 6.1.2. For the correctness of the AVI algorithm it is important to scale the coordinates
in such a way that they are in the interval [−1, 1] (see Algorithm 21). For the correctness of the
ABM algorithm there is no such requirement. However, there are practical limitations because
we are working with a double �oating point implementation of the algorithm. To avoid over�ow,
e.g. when computing the evaluations of the terms and when forming A∗A (see Algorithm 22),
it is therefore also important to make sure that the coordinates are in a sensible range. The
following rule of thumb can be used to determine such a range. Let d be the maximal degree of
a polynomial relation that we expect to �nd. Let us by a slight abuse of notation interpret X as a
matrix in Mats,n (C) and let ‖X‖max (compare De�nition 2.3.18) be the entry of X with largest
absolute value. Because of how the ABM algorithm works internally a value of ≈ ‖X‖2dmax must be
stored in a double �oating point variable. The maximal value that a double �oating point variable
can hold is about 1.8 · 10308 . So X needs to be scaled in such a way that ‖X‖2dmax � 1.8 · 10308 .

As pointed in Chapter 4 the result of the ABM family of algorithms is in general not invariant
under scaling or translation of X (compare De�nition 4.7.28). So another important role of
scaling is to assign weights to the individual measurements in order to in�uence the computation.
A sensible choice depends once again on the speci�c application and is in fact a non-trivial issue.
As a rule of thumb it makes sense to norm measurements that have the same physical units
in a similar way, additionally the maximal absolute values (excluding outliers) of the normed
measurements should at most di�er by a factor 104 .

For some applications it may even make sense to apply more advanced transformation to the
individual measurements. For instance it may be appropriate to apply the natural logarithm,
the n-th root, etc. to some of the measurements because only after these transformations a low
degree polynomial relation between the coordinates of the transformed X exists.

Remark 6.1.3. If a higher accuracy implementation of the ABM algorithm, for example, using
the GNU MPFR library ([70]), would be used it would no longer be necessary to scale the input
data in order to avoid over�ow.

Remark 6.1.4. Note that not all polynomials returned by the algorithms can be interpreted as
physical relations among the coordinates of the points. This can be attributed to the noise in
the input data and to the fact that we compute an (approximate) border basis. In particular
this means that also the �geometry� in which the measurements where obtained is captured in
the polynomials, e.g. the sampling interval.

258 Chapter 6. Applications

6.1.1 Finding Speci�c Relations

In the beginning of Section 6.1, we just sketched how the ABM and AVI algorithm can be
used to �nd polynomial relations among di�erent measurements if little to no information about
the structure of the relations is available up front. However, sometimes additional information
may be available or we may have speci�c requirements like expressing one measurement as a
polynomial function in the other measurements (compare also Example 6.1.6).

Let us consider the case in which we want to test whether a certain measurement is redundant,
notably because it can be expressed in terms of other measurements. Note that we are only
able to �nd relations which are approximately polynomial or can be approximated reasonably
well by polynomial expressions. Theoretically it would be possible to apply the standard ABM
algorithm again but generally it will not be possible to solve directly for the indeterminate that
is associated with the speci�c measurement that we are interested in. A more detailed discussion
is contained in Section 4.4. However, using the extended ABM algorithm it is possible to search
for such relations explicitly (up to a certain degree and residual error). Before we start with a
high level description of the method, we explain the setup.

Given a set X = {p1, ..., ps} ⊂ Rn of measurements taken at s points in time and another set of s
a�ne points M = {m1, ...,ms} ⊂ R , we want to express M in terms of the measurements X . For
all 1 ≤ i ≤ s the points pi and mi were measured at the same time and thus belong together.
We now describe the necessary steps:

1. Remove obviously incorrect data from the sets X and M , e.g. outliers, illegal values (e.g.
NaN values), etc. The datasets still need to be matched which means that, if a point is
dropped from either dataset the corresponding point also needs to be removed from the
other one.

2. In case the data sets X and M are very noisy, apply appropriate �lters (e.g. low-pass
�lters).

3. Scale the the dataset X such that the coordinates are in a �sensible� range and optionally
apply application speci�c transformations. See Remarks 6.1.2 and 6.1.3.

4. Divide the datasets X and M into a two parts X1 ,X2 and M1 ,M2 . The �rst ones, X1

and M1 , are used for creating the models. The second ones are used to verify their quality.

5. Apply the extended ABM algorithm to X1 and M1 . The maximal allowed degree d and
the initial values for ε and τ need to be determined in the context of the application (see
Algorithm 24 for a detailed description of the meaning of the parameters). In practice it
may be necessary to perform several computations for di�erent values of d, ε and τ .

6. The set H returned by the extended ABM algorithm is either empty or contains candidate
relations which can, for instance, be compared via their �t on the validation data or the
size of their support and their degree.

Remark 6.1.5. The parameter τ in the extended ABM computation is a threshold number
for the residual error of the least squares problems which are solved in line 14 of Algorithm 24.
Polynomials are only accepted if the actual residual error is smaller than τ . If the relative

6.1. Revealing Polynomial Relations in Real Data 259

noise level κ in the data is roughly known it is thus possible to derive an initial estimate for τ
by letting τ ≈ ‖M1‖κ . However, information about the noise in the data may not always be
available.

Another approach to derive an initial guess for τ can be pursued if it is known upfront that no
meaningful (approximate) linear relations among the coordinates of the points exist. Then we
know that the order ideal contains at least x1, ..., xn . We can thus let A = evalX1 (x1, ..., xn)

and choose τ such that τ ≤
∥∥A+Mtr

1 −Mtr
1

∥∥ , where A+ is the pseudoinverse of A . If more
information is available about the structure of the order ideal, it also possible to derive better
estimates for τ .

Example 6.1.6. [Production modelling of a well]

An important topic is to derive model equations for the oil and gas production of a well, because
structural information about the internal workings of the well can be derived from it. Certainly
it is possible to use the steps outlined above to derive such models. A di�erent approach to
modelling the oil or gas production M , given some characteristic measurements X of one well,
i.e. measurements that capture a signi�cant amount of di�erent physical states of the well, was
also suggested in [28]. We compare both methods and detail the advantages of using the extended
ABM algorithm.

The central idea behind the strategy suggested in [28] is that the order ideal O is treated as an
�approximate basis� of P /I , so all other relevant relations can essentially be modelled using O .
The steps can be spelled out in the following way:

1. Prepare the input datasets X and M just like in steps 1-4 when applying the extended
ABM algorithm in the beginning of this subsection.

2. Compute the sets O and G by applying the AVI or ABM algorithm to X1 for a suitable
value of ε . In general, O is an order ideal and G an approximate O -border basis. See
Algorithm 22 and Theorem 4.3.1 for further details.

3. Compute the evaluation matrix A of O with respect to X1 , i.e. A = evalX1 (O) .

4. Solve the least squares problem minx
∥∥Ax−Mtr

1

∥∥ .
5. Assess the quality of the result via the �t of the validation data

∥∥evalX2 (O)−Mtr
2

∥∥ and
the condition number of the underlying least squares problem.

The major disadvantage of this method is that there is no direct control on the �tting. So, a
smaller value of ε in the AVI/ABM computation may not necessarily lead to an improvement in
the �tting of the production data. This behaviour is described in more detail in Subsection 4.4.1.
Another problem is that the algorithm will always return a solution even if X and M are
completely unrelated. This means that an additional validation step is always necessary to
decide if the model is suitable.

When applying the extended ABM algorithm it is guaranteed that for a particular model hi ∈ H ,
computed by the algorithm, the residual

∥∥evalX1 (supp (hi))−Mtr
1

∥∥ will not exceed the given
parameter τ . Furthermore, if H is empty we have the guarantee that no (approximate) poly-
nomial model, such that we can express M1 approximately in terms of X1 , exists.

260 Chapter 6. Applications

Figure 6.1: Production model obtained using the ABM algorithm followed by least squares �tting

Figure 6.2: Production model obtained using the extended ABM algorithm

Nevertheless, satisfactory results can be obtained with this approach as can be seen in Figure 6.1.
In this case 80% of the measurements were used to create the model. The remaining 20% of the
data are also depicted. It can be seen that the model is still reasonably accurate in the validation
part, though slightly o�. The average error per point is about 0.352 in the modelling part of the
data and about 0.677 in the veri�cation part. Figure 6.2 depicts the model obtained using the
extended ABM algorithm. Already by visual inspection it is possible to tell that the obtained
model has a better �t in the validation part of the data. We compute that the average error per
point is about 0.357 in the modelling part of the data and about 0.322 in the veri�cation part.

6.2. Seismic Imaging 261

6.2 Seismic Imaging

Seismic imaging is an important part of seismology. It is in general concerned with recovering
structural information about the subsurface rock properties. The starting point is in most cases
a set of so-called seismograms. These are created via an (arti�cial) acoustic source which emits
sound waves into the underground. The rock behaves like an elastic medium. Thus the waves
propagate in the subsurface according to the elastic wave equation. Whenever the properties
of the subsurface change abruptly, the acoustic wave gets (partially) re�ected at this interface.
Therefore, a part of the wave will eventually reach the surface again where it is recorded via so-
called geophones. The information about the source receiver distance and the travel time of an
acoustic wave is exploited in the seismic imaging process to create an �image� of the subsurface,
which depicts changes in density and/or velocity.

Accurate detection of rock types and characteristic geological formations is particularly important
in the oil and mining industries, as probable locations of reservoirs can be determined in this
way. The cost of performing a seismic survey is comparatively small in relation to the cost for
test drilling or digging.

6.2.1 Basic Principles of Seismic Wave Propagation

One fundamental law underlying the propagation of sound waves is the wave equation. Here we
present it for the one dimensional case. It is a second order linear partial-di�erential equation
which relates time, space, and the amplitude of a wave. It is introduced here mainly since it
plays an important role in conventional seismic imaging. Nevertheless, it is also important for
our purposes because once we have found the boundary values, it can be used to simulate the
propagation of a wave and thus its e�ect in the seismogram. With this knowledge the particular
wave can be removed (approximately) from the seismogram, thus revealing more of its structure.

De�nition 6.2.1. [Wave equation]

Let t be a time variable, let x be a spatial variable in Rn , and let u (x, t) : Rn+1 → R be a
scalar function which encodes the amplitude of a wave. The second order di�erential equation

∂2u (x, t)

∂2t
= c2∇2u (x, t)

where c ∈ R and where ∇ is the Laplace operator is called the 1D wave equation.

Remark 6.2.2. Initial values or boundary values (see [72, page 8�]) need to be speci�ed in order
to determine one wave.

Remark 6.2.3. In order to solve the wave equation numerically it is common practice to use
�nite di�erence methods to achieve both practical runtimes and good control over the expected
error in the computed solution. See [72, Section 5.3] for a detailed discussion.

Another central physical law which we use is called Snell's law.

262 Chapter 6. Applications

Figure 6.3: Relation between the angle of incidence and the angle of re�ection

De�nition 6.2.4. [Snell's law]

The following equation which establishes a relation between the angles of incidence α1 and
re�ection α2 and the velocities v1 and v2 at the interface of two isotropic media (compare
Figure 6.3) is known as Snell's law:

sin (α1)

sin (α2)
=
v1

v2
.

Remark 6.2.5. Snell's law for n layers can be stated in the following way

sin (α1)

v1
= ... =

sin (αn)

vn
.

Further details and more theoretical background can, for example, be found in [71].

6.2.2 Established Methods

Now we brie�y introduce two established classes of techniques for seismic imagining, together
with their advantages and shortcomings. In fact there are a lot of algorithms available and still
being developed as this area is a subject of active research. However, most of these methods can
be classi�ed into two categories.

Migration Techniques

Before we start describing the so-called migration techniques, we introduce the notion of zero
o�set data which plays an important role in some of them. We talk about zero o�set data if the

6.2. Seismic Imaging 263

source of the acoustic wave and the recording receiver are placed at the same location. Such data
sets are of particular interest because they allow to easily relate depth and subsurface velocity
via the equation t = 2h1

v1
(compare Figure 6.7). If the subsurface geometry is very simple, it is

even possible to read back the relevant information about the underground directly from the zero
o�set data without any further processing. Unfortunately though, it is not possible in practice
to directly record such data because the signal generated by the seismic source would strongly
interfere with the re�ected waves recorded by the receiver. There exist methods like dip moveout
correction (compare [71, Section 16.5] for details) which can transform a normal dataset into a
reasonable approximation of a zero o�set one.

Migration techniques are a family of algorithms which are usually applied directly to the seis-
mogram after it has been transformed to zero o�set in order to relocate seismic events to their
true spatial locations. This is important because the apparent location of some seismic events
in the original seismogram may be misleading. These techniques are particularly useful when we
deal with complex geological structures such as faults, salt bodies, or fractures. In these cases it
is no longer possible to extract accurate spatial locations from zero o�set data. It is possible to
distinguish between two di�erent subcategories, namely time migration and depth migration.
Time migration does not require an initial velocity model and is computationally faster than
depth migration. A disadvantage, though, is that it is implicitly assumed that the lateral changes
in velocity are not signi�cant. Unfortunately, this assumption only holds for rather simple geo-
logical con�gurations. Some well-known time migrations algorithms include Stolt migration and
�nite-di�erence migration (compare [74, Section 18.3]).
Depth migration requires the knowledge of an initial velocity model and is computationally more
involved than pure time migration. If a good estimate of the subsurface velocity model is avail-
able this technique is reasonably accurate. The major disadvantage here is that it is not trivial
to obtain a reasonably accurate subsurface velocity model without extensive a priori knowledge.
Initial velocity models are usually re�ned iteratively. Nevertheless, if the initial estimate is too
far o� from the true velocity model, the �nal result of the imagining process can be quite inaccur-
ate. Standard depth migration methods include Kirchho� migration, Gaussian beam migration,
and reverse time migration. A detailed description can be found in [74, Chapter 18].
So, a common feature of all migration techniques is that they are either based on rather strong
assumptions about the subsurface or that they require a signi�cant amount of prior knowledge
to work properly.

Full Waveform Inversion Techniques

As the propagation of waves in the subsurface can be modelled with the help of the appropriate
wave equation and the corresponding velocity (and density) model of the subsurface it is a natural
idea to try to use the wave equation to forward model the wave in the subsurface. In this way a
synthetic seismogram can be generated that is matched with the data that was actually recorded
via the geophones. Iteratively the model of the subsurface velocity and density is updated in such
a way that the mis�t between the simulated synthetic seismogram and the actual seismogram
is minimised. Various methods exist for the updating process of the velocity (and density)

264 Chapter 6. Applications

models. A comprehensive overview is contained in the book [73]. This family of techniques has
only recently drawn more attention as it is computationally very demanding. Even today it
cannot be applied in its pure form to large 3D datasets, e.g. datasets containing several hundred
gigabytes of data. A major challenge is that the solutions obtained in this way may be non-
unique and additionally they may be ill-conditioned. In practice it is impossible to compute all
solutions. Therefore, it is necessary to fall back to local numerical optimisation techniques which
su�er from the common problems, speci�c to all non-global optimisation procedures, of getting
stuck in local minima and their strong dependence on the starting values.

6.2.3 Recovery of the Velocity Field using the Extended ABM Algorithm

In the following we explain a novel approach to seismic imaging. It is based on the extended
ABM algorithm (24), and uses no strong assumptions like the a priori knowledge of the velocity
�eld or the subsurface geometry.
The idea is the following. Given a seismogram, the extended ABM algorithm is applied from top
to bottom to individual wavefronts, i.e. we process the wavefronts chronologically with respect to
their arrival times. From the approximate interpolation polynomials returned by the algorithm,
geometric information can be extracted. It encodes the subsurface wave speed. The general
structure of the algorithm can be formulated in the following way.

Algorithm 36: Ext-ABM Seismic Imaging
Input: A seismogram
Output: A subsurface velocity model

Repeat steps 1-7 in a top down fashion until either an inconsistency is found, or the
bottom of the seismogram is reached.

1 Use contour tracking techniques to track individual wavefronts. Build a probabilistic
model of possible continuations containing the di�erent paths together with their
likelihood. These can be used for backtracking if an inconsistency is found;

2 Pick the most likely path and apply the extended ABM algorithm to it;
3 Assess the numerical quality of the result by checking the �tting, the condition number
of the underlying least squares problem, and the maximal degree;

4 Compare the resulting polynomials against known geometric structures (which is in the
most simple case the branch of a hyperbola);

5 Extract information about subsurface wave speed by exploiting the geometric
information encoded in the polynomials;

6 Update the subsurface model and the probabilistic models. In case an inconsistency is
found use backtracking and pick the next candidate path;

7 Use forward modelling to simulate the wave propagation in the already known
subsurface. Remove the seismic energy from these events from the seismogram;
return subsurface velocity model;

Remark 6.2.6. It is possible to search the seismogram (or smaller parts of it) for all known
curves, which have been precomputed and can thus be interpreted, via Hough transforms. Un-

6.2. Seismic Imaging 265

fortunately, this process is, at least in its basic form, quite costly, with respect to memory and
computational resources and cannot be applied to larger seismograms. However, if it is possible
to split the input dataset into reasonably small parts, Hough transformations are a viable option.
For details about this technique and some improved variants like the Fast Hough Transform see
[75, Section 10.3].

Path Tracking within the Seismic Data

An important step in the process proposed above is the tracking of individual seismic wavefronts.
Classical image processing techniques like contour extraction and contour tracking can be used.
However, in most practical situations, these techniques need to be augmented by additional
information which we posses in the form of structural information (e.g. that the actual waves
are smooth) and the probabilistic models which we build. This is necessary because of multiple
re�ections, noise, signal cancellation, and weak signals, to name just a few complications. In
general, it is therefore di�cult to �nd a continuous path in the data using methods which rely
only on image processing techniques.

Advantages and Disadvantages

We brie�y mention the advantages and disadvantages of the method that we have described.

Disadvantages:

• It is di�cult to track one wave in complicated scenarios (e.g. multiple re�ections, �ghosts�,
...), thus tracking one wave may require advanced techniques like probabilistic models
combined with backtracking.

• Requires pre-computation of di�erent geological scenarios to allow matching of computed
polynomials (curves/surfaces).

Advantages:

• Fast even on large datasets, because one wave trace is treated at a time.

• Constructs a subsurface model using only the input data. Does not make strong assump-
tions about the geometry of the subsurface.

• Can be combined with traditional methods. For example, the output can be used as the
initial setup for other algorithms which perform local optimisation of the subsurface models.

6.2.4 Examples

Let us now assume that a 3D seismogram is available. This means that the measured amplitude
of the acoustic signal is a function in the spatial coordinates x and y , such that f : R2 → R
with f (x, y) = axy . Additionally, we assume that the source and receiver positions S and R

are known.

266 Chapter 6. Applications

Figure 6.4: The layout and the velocity pro�le of four parallel layers

For the sake of simplicity consider the case of several parallel layers in the subsurface as depicted
in Figure 6.4.

We will limit this example to a 2D seismic shot. This means that we let y or x be constant.
Figure 6.5 shows a synthetic 2D seismogram, which we would obtain as the result of a seismic
survey performed on media with the velocity pro�le given in Figure 6.4.

As the surface wave contains no information about the subsurface, we remove it using standard
preprocessing techniques. Another option would be to simulate the surface wave and then to
�subtract� the data from the shot record.

One Layer

Now we start by recovering the depth and velocity of the �rst subsurface layer.

In Figure 6.6 we have marked the �rst subsurface wave using standard contour tracking tech-
niques. Note that only a small subset of the points would be needed as input for the algorithm,
allowing for a practical margin of noise and uncertainty in the data.

We will now hint (compare Figure 6.7) how an actual equation can be derived in this simple
case and how the result of the extended ABM algorithm can then be used to derive the desired
information about the subsurface velocity. Denote the (surface) distance between source and
receiver by d and the travel time between source and receiver by t . The �rst layer has a velocity
of v1 and a depth of h1 . Using elementary geometry we note that

t =
2

√(
d
2

)2
+ h2

1

v1
.

6.2. Seismic Imaging 267

Figure 6.5: 2D Seismogram for four parallel layers

By squaring both sides of this equation we obtain the following hyperbolic relation:

t2 =
1

v2
1

d2 +
4h2

1

v2
1

. (6.1)

From this equation we can see that t2 is a polynomial function in d . So it becomes apparent how
we can apply the extended ABM algorithm. Let M =

(
t21, ..., t

2
s

)
, X = (d1, ..., ds) , and ε = 0.05 .

In this constellation the set H returned by the extended ABM algorithm (see Algorithm 24 and
Theorem 4.4.3) contains exactly one polynomial, namely

t2 ≈ 0.0000004788d2 + 0.0484.

Of course, in practice the geological constellation is not known upfront. So if the situation
di�ers signi�cantly from a parallel layer geometry, the polynomial returned by the algorithm
will not have the shape of the right-hand side of equation 6.1. In this case it would have
to be matched against a set of other known situations (e.g. dipping re�ectors) and the one
matching best would be picked. In our example we thus �nd a match with the hyperbolic
equation (6.1). The parameters of interest can now be read o� directly from the coe�cients
v1 ≈

√
1

0.0000004788 ≈ 1445m/s and h1 ≈ 1
2

√
0.0484 ∗ 14452 ≈ 160m .

268 Chapter 6. Applications

Figure 6.6: First subsurface wave marked in red

Using the information that we have obtained it is now possible to update the seismogram by
forward propagating the wave along the interface which we have found and to remove its seis-
mic energy from the seismogram. This counteracts wave cancellation and leads to a cleaner
seismogram which can now be targeted again in the same fashion with the methods described
above.

Two and more layers

Additionally, we will now explain how equations for the second layer, and with the same recipe
for the n-th layer, can be derived and how these can be (approximately) solved with the help of
the extended ABM algorithm.

The following image illustrates the situation for two layers. For convenience we use the naming
scheme for our variables given in Figure 6.8.

Let us note that
∑n

i=1 di = d and let us additionally assume that d1 ,v1 up to dn−1 , vn−1

have already been computed. By d we denote the horizontal distance between source S and
receiver R .

6.2. Seismic Imaging 269

Figure 6.7: Subsurface geometry of one parallel �at layer

Figure 6.8: Subsurface geometry of two layers

Using basic geometry we derive that

t = 2

n∑
i=1

√
d2
i
4 + h2

i

vi
. (6.2)

If we let d = 0 , all di will be zero as well. In practice it is di�cult to measure the acoustic signal
at the point S. However, the assumption that we have data for d = 0 available is not crucial
and only helps to simplify the following computations. So if we let d = 0 , equation 6.2 becomes
t = 2

∑n
i=1

hi
vi
. Then it is possible to establish a direct relation between hn and vn , namely

t− 2
∑n−1

i=1
hi
vi

= 2hnvn . Let us denote the ratio 2hnvn by cn .

We can now use the law of sines to establish that sin(α1)
1
2
d1

= 1√
d2

1+h2
1

and sin(αn)
1
2
dn

= 1√
d2
n+h2

n

.

270 Chapter 6. Applications

By combining this with Snell's law, we obtain the equation d1√
d2

1+h2
1

√
d2
n+h2

n

dn
= v1

vn
. Next we solve

for dn and arrive at dn = hnvnd1√
v2
1(d2

1+h2
1)−v2

nd
2
1

. So, the equation for the total distance is

d =

n−1∑
i=1

di +
hnvnd1√

v2
1

(
d2

1 + h2
1

)
− v2

nd
2
1

. (6.3)

If we put everything together we obtain

t = 2

n−1∑
i=1

√
h2
i + d2

i

vi
+ 2

v1dn
√
d2

1 + h2
1

v2
nd1

= 2
n−1∑
i=1

√
h2
i + d2

i

vi
+ 2

v1

√
d2

1 + h2
1

v2
nd1

hnvnd1√
v2

1

(
d2

1 + h2
1

)
− v2

nd
2
1

= 2

n−1∑
i=1

√
h2
i + d2

i

vi
+ 2

v1

√
d2

1 + h2
1√

v2
1

(
d2

1 + h2
1

)
− v2

nd
2
1

hn
vn

= 2
n−1∑
i=1

√
h2
i + d2

i

vi
+ cn

v1

√
d2

1 + h2
1√

v2
1

(
d2

1 + h2
1

)
− v2

nd
2
1

.

So in total

t = 2
n−1∑
i=1

√
h2
i + d2

i

vi
+ cn

v1

√
d2

1 + h2
1√

v2
1

(
d2

1 + h2
1

)
− v2

nd
2
1

. (6.4)

We have now derived two equations which relate the total travel time of the acoustic wave t
with the source-receiver distance d . Let us assume that we used the extended ABM algorithm
to model t in d . This allows us to get rid of noise and other unwanted e�ects which may initially
obfuscate the structure of the wave.

Now we can choose d1 arbitrarily within the range of measured values. This means that the only
remaining unknown in the equations is vn . Because of physical constraints, we can assume vn to
be bounded by a minimal velocity vmin and a maximal velocity vmax . Starting with vn = vmin ,
we evaluate both formulas and determine whether the pair (d, t) belongs (approximately) to the
acoustic wave in question. If this is not the case and as long as vn ≤ vmax , we increase vn by 4v
(e.g. 5m/s). Note that no expensive mathematical operations are involved when we evaluate
equations 6.3 and 6.4. It is thus possible to obtain an accurate value for vn within a short period
of time.

Now let us apply this technique to obtain the depth and velocity of the second layer. Using the
extended ABM algorithm we obtain the polynomial approximation

t ≈ 0.0000003650d2 + 0.3796520026

for the relation between d and t . First we compute c2 ≈ 0.379− 2 160
1445 ≈ 0.158 . Next we choose

d1 = 50 , which is within the range of the data which we have measured. If we now iterate

6.3. Revealing Unconventional Geological Structures 271

over all �reasonable� values of v2 we observe that for v2 ≈ 2000m/s the equations evaluate to
d ≈ 201.41m and t ≈ 0.387 . This is very close to 0.0000003650 ·201.412 +0.3796520026 ≈ 0.394 .
For this value of v2 we obtain h2 ≈ 1

20.1581/s · 2000m/s = 158m .

6.3 Revealing Unconventional Geological Structures

Another �eld of application for the ABM algorithm is the modelling and approximation of com-
plex geological structures in the subsurface. The aim is to approximate those structures via
algebraic surfaces, which permit a very compact representation compared to e.g. representations
via triangulated surfaces. An additional advantage is the availability of techniques, which make
it possible to track the deformation of the algebraic surface over time. In the future, this could
allow to relate the production strategy to actual physical changes in the reservoir and to pre-
dict its development over time. Some theoretical background on algebraic surfaces can be found
in [76].

De�nition 6.3.1. [Real Algebraic Surface]

Let K = R , P = R [x, y, z] , and f ∈ P be a non-constant polynomial. Then the zero set of f{
(x, y, z) ∈ R3

∣∣ f (x, y, z) = 0
}

is called a real algebraic surface.

Example 6.3.2. [3D Unit Sphere]

The 3D unit sphere has the equation x2 + y2 + z2 = 1 . It is a real algebraic surface.

Figure 6.9: Visualisation of the zero set of x2 + y2 + z2 = 1

6.3.1 Approximation of Geological Structures using the ABM Algorithm

Let us assume we are given points X = {x1, ..., xs} ⊂ R3 which lie on the surface between two
distinct geological structures in the underground. These points can, for instance, be obtained
using level set methods on the subsurface density or velocity pro�les. Then we can apply the
ABM algorithm and analyse the set of polynomials which we obtain to check whether they can
represent geological structures. Potentially the most simple polynomials are the ones which
should be investigated �rst.

272 Chapter 6. Applications

Example 6.3.3. The example was created in the following way. We started with a torus in R3

given by the equation x4 + 2x2y2 + y4 + 2x2z2 + 2y2z2 + z4 − 250x2 − 250y2 + 150z2 + 5625

and sampled randomly 400 points X on the surface of the torus. Additionally, the points were
perturbed by Gaussian white noise. The aim now was to recover the geometric information in
form of an algebraic equation.

Figure 6.10: Perturbed point cloud in R3

We apply the ABM algorithm with ε = 0.1 and obtain the polynomial

g1 ≈ x4 + 2x2y2 + y4 + 2.3x2z2 + 2.2y2z2 − 276.8x2 − 278.2y2 + 10822.8

as the �rst element of G . Clearly, the similarity between the equation of the torus, which we used
as input, and the recovered solution is visible. The visualisation of g1 as an algebraic surface
can be seen in Figure 6.11. It depicts a slightly deformed torus, which could be considered an
unconventional geological structure.

Advantages and Disadvantages

Next, we brie�y discuss the advantages and disadvantages of the method that we have described.

Disadvantages:

• Requires as input a detailed velocity/density model.

• May produce algebraic surfaces which have good �t, but which cannot depict real geological
objects (e.g. singularities).

Advantages:

• Does not make any initial assumptions on the geometry of the subsurface.

• Compact description compared to triangulated surfaces.

6.4. Stable Computation of Polynomial Roots 273

Figure 6.11: Picture of the recovered torus

• Robust against noise.

• Rich theory provided by algebraic geometry.

• Fast computation with the help of the ABM algorithm.

6.4 Stable Computation of Polynomial Roots

In this section, we will explain in more detail how the Simultaneous Quasi-Diagonalisation Al-
gorithm (31) can be used to compute the roots of a zero-dimensional polynomial system in a
stable way.

Let P = C [x1, ..., xn] , let O = {t1, ..., tµ} be an order ideal, and let G = {g1, ..., gν} be
an O -border basis for a zero-dimensional radical ideal. If we skip line 23 in the eigenvector al-
gorithm (30) and return the set X = {p1, ..., pµ} , then X is a numerical approximation of Z (〈G〉)
(compare Remark 5.1.8 and Theorem 5.1.9). The algorithm involves forming a random linear
combination of the transposed multiplication matrices associated with G and afterwards com-
puting the eigenvectors of this matrix. A similar approach is also advocated by Stetter in [49] on
page 52. We will present numerical evidence that simultaneously diagonalising the multiplication
matrices is more stable than the approach of Algorithm 30 even if G is an exact border basis.

Example 6.4.1. First, we brie�y outline the setup which we use to evaluate the numerical
accuracy of the Simultaneous Quasi-Diagonalisation Algorithm. Let P = R [x1, x2, x3] . We
start with a �nite set of s generic points X = {p1, ..., ps} ⊂ [0, 1]3 and obtain, with the help
of Algorithm 18, an O -border basis G for I (X) . Using both Algorithm 30 and Algorithm 31
we compute Z (〈G〉) and compare the Euclidean distance to the input data set X . Please note
that LAPACK version 3.4.2 was used for the computation of the eigenvectors in the eigenvector

274 Chapter 6. Applications

algorithm. Twenty random linear combinations were picked and the error was averaged. Ad-
ditionally, we used the implementation of Algorithm 18 in ApCoCoA-1.8 ([20]) to perform our
benchmark computations. In Table 6.1 we can see that the SIMQDIAG algorithm returns about
one additional correct digit after the comma. So even if we deal with exact border bases it is
still bene�cial to use Algorithm 31 if high numerical accuracy is desired.

s 35 40 45 50 55

Residual Algorithm 30 1 · 10−9 1.4 · 10−8 3.5 · 10−8 3.9 · 10−8 4.4 · 10−8

Residual SIMQDIAG < 1 · 10−10 1 · 10−9 1 · 10−9 1.8 · 10−9 2.0 · 10−9

Table 6.1: Comparison of numerical accuracy for a generic set of points (exact border basis).

Remark 6.4.2. In case the roots have to be determined with even greater accuracy, it is possible
to implement Algorithm 31 with higher precision �oating point data-types like quad instead of
double.

Example 6.4.3. Consider the same setup as in Example 6.4.1. However, the O -border basis G
was this time computed in double �oating point and not in exact arithmetic. In Table 6.2
the accuracy of the eigenvector method is compared with the simultaneous diagonalisation al-
gorithm. We observe that if G was only computed in �nite precision arithmetic the advantage
of Algorithm 31 becomes more evident. This is not too surprising as the Simultaneous Quasi-
Diagonalisation Algorithm is speci�cally designed for this purpose.

s 35 40 45 50 55

Residual Algorithm 30 3.7 · 10−6 5.2 · 10−6 9.7 · 10−6 1.1 · 10−5 1.8 · 10−5

Residual SIMQDIAG 1.2 · 10−8 4.8 · 10−8 1.8 · 10−7 4.3 · 10−7 5.1 · 10−7

Table 6.2: Comparison of numerical accuracy for a generic set of points (approx. border basis).

Finally, we present an example where the roots of an O -border basis G are very close to each
other.

Example 6.4.4. Let P = R [x1, x2, x3] and

X = {(0, 0, 0) , (0, 0, 0.00000001) , (1, 1, 1) , (1, 1, 1.00000001) , (1, 1.00000001, 1)} .

We apply Algorithm 18 and afterwards we try to �nd back the roots of the computed border basis.
In total we perform 200 runs and average the results. We observe that the eigenvector algorithm
recovers the set X with a Euclidean error of about 2.8 · 10−4 while Algorithm 31 achieves a
relative accuracy of about 1.3 · 10−9 . In fact the result delivered by the eigenvalue algorithm is
not satisfactory as the achieved accuracy is not su�cient to distinguish the clustered input points.
Clearly the underlying eigenvalue problem becomes more ill-conditioned the closer the distance
between the points in X gets (compare Corollary 2.9.7). Furthermore, this result showcases that
working with the multiplication matrices simultaneously delivers superior accuracy compared to
working with one random linear combination alone. Please note that the input border basis is
exact and the inaccuracy is only introduced in the computation of the roots.

275

7
Conclusions and Outlook

In this thesis we have studied in detail the computation of approximate border bases. For this
purpose, we have introduced several new algorithms in Chapter 4, most prominently the ABM
algorithm, the Extended ABM algorithm and their variants. Compared to the state of the art
AVI algorithm, these improve both on the runtime as well as particular properties like the �tting
quality of the polynomials in the approximate border basis. The numerical properties of the
algorithms were analysed in detail as well as their worst case runtime. Additionally, we managed
to establish upper bounds for the departure from an exact border basis of the computed approx-
imate border basis. These results were put into perspective in Section 4.7, where we compared
the performance and properties of our algorithms with other state of the art approaches. For
instance, we managed to outperform the SOI and NBM signi�cantly while we obtained compar-
able results (see Subsections 4.7.2 and 4.7.3).
In addition to the computation of approximate border basis, we have investigated the so-called
rational recovery problem in Chapter 5 where we try to �nd a close by exact border basis to a
given approximate one. As a new contribution, we have shown how the problem can be tackled
with the help of simultaneous quasi-diagonalisation of the involved multiplication matrices. In
order to compute this quasi-diagonalisation, we have suggested a new variant of the Jacobi al-
gorithm which handles complex valued input data and several matrices in parallel. For this
algorithm we have proved convergence with respect to the involved transformations. Further-
more, we have compared the performance of our simultaneous quasi-diagonalisation algorithm
with other algorithms in this area. In this way we have collected numerical evidence that our
algorithm converges in less iterations than the other investigated methods. Additionally in the
examples that we investigated, the common departure from diagonality was smaller if we used
our algorithm.

Finally, in Chapter 6, we have described several current and potential future applications of the
ABM and the extended ABM algorithm in the context of the (oil) industry. For example, the
extended ABM algorithm has been applied in Subsection 6.1.1 to model the oil or gas production
of a well directly, which requires additional steps when using either the AVI or ABM algorithm.
Our new method gives more control about the error in the modelling process. Additionally, we
have suggested a novel approach to seismic imaging using the extended ABM algorithm that
requires less a priori assumptions than traditional approaches. However, the framework around
the algorithm still needs to be further developed in order to achieve competitive performance
with existing techniques on real world data.

276 Chapter 7. Conclusions and Outlook

The ABM algorithm has also found additional applications, which are proprietary to Shell,
namely in the context of the production allocation problem. The task at hand is to determine
for a multi zone well the contributions to the total production of the individual zones and
the interactions of the zones when producing together. The corresponding algorithms and the
necessary framework has been implemented by the author and is part of the Algebraic Oil Tool,
which is currently undergoing practical testing within Shell.

Even though the algorithms discussed in this thesis overcome many drawbacks of the AVI al-
gorithm, it is still possible to continue research in this direction as greater control than currently
available over the departure from an exact border basis would be desirable. A promising direc-
tion might be to pay attention to the change in the singular values of the evaluation matrices
from one computation step to another one in the ABM algorithm. We will brie�y sketch the
underlying idea. For this purpose, let us �rst recall the common setting of Chapter 4. Let
X = {p1, ..., ps} ⊂ Cn be a �nite set of a�ne points, let P = C [x1, ..., xn] , and let ε ≥ 0 . In
Remark 4.3.3, we have explained why an upper bound for the departure from an exact border
basis for the result of the ABM algorithm does not depend on the parameter ε . Recall that
in the ABM algorithm we add a new term ti to the set O if its evaluation with respect to X
is �su�ciently� linearly independent of the evaluations of the elements which are already in O .
Now let A = evalX (O) and let Ã = (evalX (ti) , A) . In case the matrix A has a smallest singular
value σ which is slightly greater than ε and the matrix Ã has a smallest singular value σ̃ which
is equal to ε , then the matrix Ã has an ε-approximate kernel and we add a new polynomial gk
to G which contains ti as a border term. Note that the smaller |σ − σ̃| is, the smaller is also
the leading coe�cient of gk . This means that a minor reduction of the smallest singular value
signi�es that evalX (ti) is almost completely linearly independent of evalX (O) . Therefore, ti
should in fact be added to O . We could address this problem by introducing an additional
parameter κ > 0 that is checked and enforces that |σ − σ̃| > κ . In this way we could establish
tighter bounds on the border coe�cients of the polynomials in G which would also improve the
upper bound for the departure of the computed approximate border basis from an exact border
basis. The details of such an algorithm still have to be worked out and a careful analysis of its
properties is necessary.
Another path that could be pursued would be to integrate the modi�ed QR decomposition
proposed by Sauer in [41] (compare also Section 4.7) into the ABM algorithm. In this way,
the ∞-norm instead of the Euclidean norm of the residual error would be minimised. Again the
properties of the resulting algorithm would need a thorough analysis.
A new direction which is currently being explored, but which is out of the scope of this thesis, is
the development of a new variant of the extended ABM algorithm which can be used to address
sparse approximation problems and problems in compressive sensing. The underlying assump-
tion is that the signal that we want to approximate is a superposition of only a few basis signals.
Once a proper basis has been chosen, it is possible to obtain a sparse representation with respect
to these functions in a greedy way. This development is particularly interesting because it could
help to reduce the cost to perform a seismic survey as less geophones would be required to re-
construct the acoustic signals.
With respect to the rational recovery problem we note that the methods that we have described

277

in Chapter 5 try to construct a suitable set of points which are used as input for the Buchberger-
Möller algorithm in order to construct an exact border basis. However, another interesting
direction would be to further investigate direct methods, like the one proposed in [44], which
works directly on the (approximate) multiplication matrices and therefore provides enhanced
numerical stability.
A future direction of research in the direction of simultaneous quasi diagonalisation could be to
extend state of the art algorithms like the QR algorithm or the Divide and Conquer algorithm to
the case of several matrices and to compare their performance and convergence properties with
the algorithm discussed in this thesis.

279

Acknowledgements

First of all I would like to thank Professor Dr. Martin Kreuzer, my supervisor, who kindly
o�ered me a position as a research assistant in the Algebraic Oil project and who gave me the
opportunity to do a doctorate in applied mathematics. His continuous support during the writing
of this thesis was very much appreciated. Without his input and the fruitful discussions this work
would not have been possible in its current form.

Next, I would like to thank my second assessor Professor Dr. Tomas Sauer. He was very helpful
with respect to the numerical aspects of this work. Additionally, he made me familiar with
concepts from H-basis theory. I am also grateful to his student Johannes Czekansky, who provided
me with example computations of the approximate H-basis algorithm.

Furthermore, I am very grateful to Dr. Henk Poulisse, who invented the Algebraic Oil project.
His deep insights as well as his intuition were always of great value and a driving force behind
all the developments in the project. In our many discussions he always managed to keep me
motivated. His very detailed remarks and his suggestions on this thesis were invaluable.

Special thanks also go to Dr. Corina Baciu, the project leader in Risjwijk (NL), and to Stefan Kas-
par, a former colleague, who were always helpful with proof reading and very useful comments.

Additionally, I would like to thank all of my colleagues but particularly Stefan Schuster, Dr. Georg
Maier, Markus Kriegel, Kai Beermann, Christian Kell, Johannes Nagler, and Bilge Sipal for
their support, and extensive proof reading. I am also indebted to Andreas Schindler who shared
his LATEX template �les with me.

While working at the University of Passau my position was funded by Shell International Ex-
ploration and Production B.V., Rijswijk, the Netherlands.

281

8
Appendix

Contents

8.1 Overview of Functions Which Were Implemented in ApCoCoA 281

8.2 Pseudo Code . 295

8.1 Overview of Functions Which Were Implemented in

ApCoCoA

The ABM algorithm

The ABM algorithm (22) computes an approximate vanishing ideal for a given set of points
X ⊂ Qn with respect to a threshold number ε . The algorithm is similar to AVI but it has
the following di�erences. It works term by term versus degree by degree while constructing the
polynomials in the approximate border basis. Additionally, ABM also does not rely on the direct
computation of the SVD but uses eigenvectors for the �tting of the polynomials. The scaling of
the input data is no longer a necessary prerequisite as in the AVI algorithm but in�uences the
properties of the resulting approximate border basis G and the corresponding order ideal O .

Properties

If run in strict border basis mode (which is the default) the set G will be an approximate
border basis and most polynomials will be ε-approximately vanishing. The reason why some
polynomials may have worse evaluations is related to the fact that they have to be accepted
because otherwise O would not be a proper order ideal.

If run in non border basis mode all polynomials will be ε-approximately vanishing but O may
contain gaps and is thus no order ideal.

282 Chapter 8. Appendix

Depending on whether one is only interested in the border basis G or also additionally in the
order ideal O one can activate or deactivate if O is returned. The parameter is not publicly
exposed but can be set via the numabm.cpkg package.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.ABM(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

The last three parameters are optional.

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.ABM(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

Points has to be a CoCoA matrix containing X and Epsilon ε is a rational number. These
parameters always have to be supplied.

Delta is used for truncating small coe�cients of polynomials, if not supplied the default value
of 0.00000000001 will be used.

ForbiddenTerms is a list which contains the terms which are not allowed to show up in the
order ideal.

NormalizeType is an integer in the range [1..4] . It determines if and how the points in X will
be normalised. The default value is 2 . If NormalizeType equals 1, each coordinate is divided
by the maximal absolute value of the corresponding column of the matrix. This ensures that all
coordinates of the points are in [-1,1]. With NormalizeType=2 no normalisation is done at all.
NormalizeType=3 shifts each coordinate to [-1,1]. So its minimum is mapped to -1 and the
maximum to one, describing a unique a�ne mapping. The last option is NormalizeType=4.
In this case, each coordinate is normalised using the column's Euclidean norm.

By default the algorithm returns a list which contains G and O .

Non public options in the numabm.cpkg package

The whole range of options for the algorithm is not exposed publicly but may be set via the
numabm.cpkg package.

The line that needs to be changed is

OptionList := [0,0,0,0,0,1,0,1,1000];

8.1. Overview of Functions Which Were Implemented in ApCoCoA 283

The �rst option is either 1 (TRUE) or 0 (FALSE) and controls the isAVI check. In the server
window additional log output is generated. The result of the algorithm is not changed.

The second option is either 1 (TRUE) or 0 (FALSE) and controls the isAppBB check. In the
server window additional log output is generated which contains the result. The result of the
algorithm is not changed.

The third option is either 1 (TRUE) or 0 (FALSE) and controls the remainingLinearReal-
tionsInOI check. In the server window additional log output is generated which contains the
result. The result of the algorithm is not changed.

The forth option is either 1 (TRUE) or 0 (FALSE) and controls if re-projection of polynomials is
activated. If activated all polynomials in which terms were left out, because of either too small
coe�cients or a too small contribution to a polynomial, will be reprojected.

The �fth option is either 1 (TRUE) or 0 (FALSE) and controls the switch for the rational
recovery. This option is reserved for future use and does not a�ect the result at the moment.

The sixth option is either 1 (TRUE) or 0 (FALSE) and controls the strict border basis mode. If
activated (default) always an approximate border basis will be returned, but some polynomials
may not vanish ε-approximately. If deactivated all polynomials will be guaranteed to vanish
ε-approximately but may not form an approximate border basis.

The seventh option is either 1 (TRUE) or 0 (FALSE) and controls if the border basis variant of
ABM is supposed to be used. Its value needs to be set to false.

The eigth option is either 1 (TRUE) or 0 (FALSE) and controls which kind of truncation mode
for small terms/coe�cients is used. If disabled (default) terms which have a coe�cient less than
Delta will be discarded. If enabled terms which have an average contribution less than Delta
will be discarded. If option 6 is activated the changed polynomials will be reprojected to give
the best possible �t with respect to the new terms.

The ninth option is a positive integer and sets the maximum degree after which the computation
will be terminated. This can be used to stop a computation that would otherwise take too long.
Note that only a truncated result will be returned which may not represent a full approximate
border basis.

Example

The following CoCoA example explains the basic steps how ABM can be used in production
modelling:

X := Mat([[...]]); -- measurements

P := Mat([[...]]); -- measured production data

Epsilon := 0.1; -- threshold number

AppBB := Num.ABM(X, Epsilon); -- apply the ABM algorithm

ProdPoly := $apcocoa/numerical.ProjectAVI(X, P, AppBB[2]);

-- find a production polynomial with respect to the OI

-- contained in AppBB[2]

284 Chapter 8. Appendix

The extended ABM algorithm

The extended ABM algorithm is, as the name suggests, an extension of the ABM algorithm.
While the latter solves the homogeneous least squares problem to construct relations among the
coordinates of the points in X , the �rst one delivers additionally polynomials which have when
evaluated at the set of points X approximately the values of an additional set of 1D points V .
The evaluation error can be explicitly speci�ed by the parameter τ . It is thus well-suited for
approximately interpolating the dataset V .

Note that the current implementation of the extended ABM algorithm in ApCoCoA only returns
the sets O and H but not G .

For the actual computation of the polynomials in H the QR decomposition is used. Higher
numerical stability could be achieved by switching to QR with column pivoting or the SVD, but
the speed of the computation would decrease accordingly.

Properties

For a given set of points X , an additional set of 1D points V , and threshold numbers ε

and τ the algorithm returns two sets H and O , where H contains polynomials hi such that∥∥evalX (hi)− Vtr
∥∥ < τ . The underlying O -border basis G is currently not returned but can be

obtained relatively easy with the help of the set O . If run in strict border basis mode some
polynomials in G may have a larger evaluation than ε , otherwise all polynomials in G have
smaller evaluations than ε but O may not be a proper order ideal.

Be aware that if τ is not chosen properly (i.e. very small) the set H returned by the algorithm
may be empty. As the error τ is a priori not always known it is possible to terminate the calcu-
lation after a certain degree is reached, in order to avoid long processing times. The maximum
degree can be set in the numextabm.cpkg package.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.EXTABM(Points:MAT, Val:MAT, Epsilon:RAT, Tau:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

The last two parameters are optional.

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.EXTABM(Points:MAT, Val:MAT, Epsilon:RAT, Tau:RAT,
ForbiddenTerms:LIST, NormalizeType:INT):Object

8.1. Overview of Functions Which Were Implemented in ApCoCoA 285

Points has to be a CoCoA matrix containing X , Val has to be a CoCoA matrix containing V ,
Epsilon is a rational number that has the same meaning as in the ABM algorithm, and Tau is
a rational number that speci�es when a polynomial will be accepted into the set H . These four
parameters always have to be supplied. Points and Val need to have the same number of rows.

ForbiddenTerms is a list which contains the terms which are not allowed to show up in the
order ideal.

NormalizeType is an integer in the range [1..4] . It determines if and how the points in X will
be normalised. The default value is 2 . If NormalizeType equals 1, each coordinate is divided
by the maximal absolute value of the corresponding column of the matrix. This ensures that all
coordinates of the points are in [-1,1]. With NormalizeType=2 no normalisation is done at all.
NormalizeType=3 shifts each coordinate to [-1,1]. So its minimum is mapped to -1 and the
maximum to one, describing a unique a�ne mapping. The last option is NormalizeType=4.
In this case, each coordinate is normalised using the column's Euclidean norm.

The algorithm returns a list which contains H and O .

Non public options in the numextabm.cpkg package

The whole range of options for the algorithm is not exposed publicly but may be set via the
numextabm.cpkg package.

The line that needs to be changed is

OptionList := [0,0,0,0,0,1,0,1,6];

The �rst option is either 1 (TRUE) or 0 (FALSE) and controls the isAVI check. In the server
window additional log output is generated. The result of the algorithm is not changed. At the
moment this option has not been implemented for the ext ABM and has no e�ect.

The second option is either 1 (TRUE) or 0 (FALSE) and controls the isAppBB check. In the
server window additional log output is generated which contains the result. The result of the
algorithm is not changed.

The third option is either 1 (TRUE) or 0 (FALSE) and controls the remainingLinearReal-
tionsInOI check. In the server window additional log output is generated which contains the
result. The result of the algorithm is not changed. At the moment this option has not been
implemented for the ext ABM and has no e�ect.

The fourth option is either 1 (TRUE) or 0 (FALSE) and controls if re-projection of polynomials
is activated. If activated all polynomials in which terms were left out, because of either too small
coe�cients or a too small contribution to a polynomial, will be reprojected.

The �fth option is either 1 (TRUE) or 0 (FALSE) and controls the switch for the rational
recovery. This option is reserved for future use and does not a�ect the result at the moment.

The sixth option is either 1 (TRUE) or 0 (FALSE) and controls the strict border basis mode. If
activated (default) always an approximate border basis will be returned, but some polynomials

286 Chapter 8. Appendix

may not vanish ε-approximately. If deactivated all polynomials will be guaranteed to vanish
ε-approximately but may not form an approximate border basis.

The seventh option is either 1 (TRUE) or 0 (FALSE) and controls if the border basis variant of
ABM is supposed to be used. Its value needs to be set to false.

The eighth option is either 1 (TRUE) or 0 (FALSE) and controls which kind of truncation mode
for small terms/coe�cients is used. If disabled (default) terms which have a coe�cient less than
Delta will be discarded. If enabled terms which have an average contribution less than Delta
will be discarded. If option 6 is activated the changed polynomials will be reprojected to give
the best possible �t with respect to the new terms.

The ninth option is a positive integer and sets the maximum degree after which the computation
will be terminated. This can be used to stop a computation that would otherwise take too long.
Note that only a truncated result will be returned which may not represent a full approximate
border basis.

Example

The following CoCoA example explains the basic steps how the extended ABM can be used in
direct production modelling:

X := Mat([[...]]); -- measurements

P := Mat([[...]]); -- measured production data

Tau := DetermineResidualErrorForLinearOI();

-- use linear OI as a starting point for the error estimates

AppBB := Num.EXTABM(X, P, 0.01, Tau); -- apply the ABM algorithm

-- AppBB[1] contains a set of possible production polynomials

-- pick the �best� polynomial with respect to the production

-- which was not used for modelling

The next CoCoA example illustrates how the extended ABM can be used for modelling wavefronts
in seismic imaging:

X := Mat([[...]]); -- 3D spatial uniform coordinates

T := Mat([[...]]); -- arrival time of wavefront

Tau := 0.2; -- depending on the noise in the measurements

RelEqu := Num.EXTABM(X, T, 0.01, Tau);

-- RelEqu[1] contains relations which express the arrival time

-- in terms of spatial coordinates

The BB ABM algorithm

The border basis ABM algorithm (25) is a variant of the ABM algorithm which enforces that
the leading coe�cients of the border terms are exactly one already during the computation. In
the ABM algorithm this border shape is achieved through division by the leading coe�cient.

8.1. Overview of Functions Which Were Implemented in ApCoCoA 287

The polynomials in G returned by the algorithm have without normalisation an evaluation at X
which is less than ε . Note that in the ABM and extended ABM algorithm the polynomials have
to be normalised to have coe�cient vector norm one, so that this property holds.

Properties

The algorithm uses as input a set of points X and a threshold number ε . If run in strict border
basis mode the algorithm will return a set of polynomials G which form an approximate border
basis with respect to the order ideal O . Most polynomials will have an evaluation which is less
than ε at X . If the algorithm is run in the non strict border basis mode all polynomials will
have an evaluation which is less than ε at the points X but O may not be a proper order ideal.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.BBABM(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

The last two parameters are optional.

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.BBABM(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

Points has to be a CoCoA matrix containing X and Epsilon ε is a rational number. These
parameters always have to be supplied.

Delta is used for truncating small coe�cients of polynomials, if not supplied the default value
of 0.00000000001 will be used.

ForbiddenTerms is a list which contains the terms which are not allowed to show up in the
order ideal.

NormalizeType is an integer in the range [1..4] . It determines if and how the points in X will
be normalised. The default value is 2 . If NormalizeType equals 1, each coordinate is divided
by the maximal absolute value of the corresponding column of the matrix. This ensures that all
coordinates of the points are in [-1,1]. With NormalizeType=2 no normalisation is done at all.
NormalizeType=3 shifts each coordinate to [-1,1]. So its minimum is mapped to -1 and the
maximum to one, describing a unique a�ne mapping. The last option is NormalizeType=4.
In this case, each coordinate is normalised using the column's Euclidean norm.

The algorithm returns a list which contains G and O .

288 Chapter 8. Appendix

Non public options in the numabm.cpkg package

The CoCoAL interface to the BB ABM algorithm is also implemented in the same package as
the ABM algorithm.

The whole range of options for the algorithm is not exposed publicly but may be set via the
numabm.cpkg package.

The line that needs to be changed is

OptionList := [0,0,0,0,0,1,1,0,1000];

The �rst option is either 1 (TRUE) or 0 (FALSE) and controls the isAVI check. In the server
window additional log output is generated. The result of the algorithm is not changed.

The second option is either 1 (TRUE) or 0 (FALSE) and controls the isAppBB check. In the
server window additional log output is generated which contains the result. The result of the
algorithm is not changed.

The third option is either 1 (TRUE) or 0 (FALSE) and controls the remainingLinearReal-
tionsInOI check. In the server window additional log output is generated which contains the
result. The result of the algorithm is not changed.

The fourth option is either 1 (TRUE) or 0 (FALSE) and controls if re-projection of polynomials
is activated. If activated all polynomials in which terms were left out, because of either too small
coe�cients or a too small contribution to a polynomial, will be reprojected.

The �fth option is either 1 (TRUE) or 0 (FALSE) and controls the switch for the rational
recovery. This option is reserved for future use and does not a�ect the result at the moment.

The sixth option is either 1 (TRUE) or 0 (FALSE) and controls the strict border basis mode. If
activated (default) always an approximate border basis will be returned, but some polynomials
may not vanish ε-approximately. If deactivated all polynomials will be guaranteed to vanish
ε-approximately but may not form an approximate border basis.

The seventh option is either 1 (TRUE) or 0 (FALSE) and controls if the border basis variant of
ABM is supposed to be used. Its value is true in the BB ABM algorithm.

The eighth option is either 1 (TRUE) or 0 (FALSE) and controls which kind of truncation mode
for small terms/coe�cients is used. If disabled (default) terms which have a coe�cient less than
Delta will be discarded. If enabled terms which have an average contribution less than Delta
will be discarded. If option 6 is activated the changed polynomials will be reprojected to give
the best possible �t with respect to the new terms.

The ninth option is a positive integer and sets the maximum degree after which the computation
will be terminated. This can be used to stop a computation that would otherwise take too long.
Note that only a truncated result will be returned which may not represent a full approximate
border basis.

8.1. Overview of Functions Which Were Implemented in ApCoCoA 289

Example

The following CoCoA example explains the basic steps how the BB ABM can be used:

X := Mat([[...]]); -- measurements

Epsilon := 0.1; -- an error estimate

AppBB := Num.BBABM(X, Epsilon); -- apply the ABM algorithm

-- AppBB[1] contains an approximate border basis and

-- AppBB[2] the corresponding order ideal

The complex ABM algorithm

The complex ABM algorithm is essentially a complex version of the ABM algorithm (22). Now
the input dataset X may contain complex points and the real ABM algorithm becomes a special
case of the complex ABM algorithm, as both algorithms produce the same output if only real
points are contained in X .

Properties

Please refer to the properties of the ABM algorithm (8.1) for details.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.CABM(Real:MAT, Complex:MAT, Epsilon:RAT, Delta:RAT,
NormalizeType:INT):Object

The last two parameters are optional.

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.CABM(Real:MAT, Complex:MAT, Epsilon:RAT, Delta:RAT,
NormalizeType:INT):Object

Real has to be a CoCoA matrix containing the real part of X , Complex has to be a CoCoA
matrix containing the complex part of X and Epsilon ε is a rational number. These parameters
always have to be supplied. Real and Complex need to have the same dimensions.

Delta is used for truncating small coe�cients of polynomials, if not supplied the default value
of 0.00000000001 will be used.

NormalizeType is an integer in the range [1..4] . It determines if and how the points in X will
be normalised. The default value is 2 . If NormalizeType equals 1, each coordinate is divided

290 Chapter 8. Appendix

by the maximal absolute value of the corresponding column of the matrix. This ensures that all
coordinates of the points are in [-1,1]. With NormalizeType=2 no normalisation is done at all.
NormalizeType=3 shifts each coordinate to [-1,1]. So its minimum is mapped to -1 and the
maximum to one, describing a unique a�ne mapping. The last option is NormalizeType=4.
In this case, each coordinate is normalised using the column's Euclidean norm.

The algorithm returns a list which contains G and O . In G two polynomials belong together.
They have the same support and the �rst one contains the real part, while the second one contains
the complex part.

Non public options in the numcabm.cpkg package

Note that some of the functions are not yet implemented in the complex version but will be
added in one of the upcoming releases.

The whole range of options for the algorithm is not exposed publicly but may be set via the
numcabm.cpkg package.

The line that needs to be changed is

OptionList := [0,0,0,0,0,1,1,0,1000];

The �rst option is either 1 (TRUE) or 0 (FALSE) and controls the isAVI check. In the server
window additional log output is generated. The result of the algorithm is not changed.

The second option is either 1 (TRUE) or 0 (FALSE) and controls the isAppBB check. In the
server window additional log output is generated which contains the result. The result of the
algorithm is not changed.

The third option is either 1 (TRUE) or 0 (FALSE) and controls the remainingLinearReal-
tionsInOI check. In the server window additional log output is generated which contains the
result. The result of the algorithm is not changed.

The fourth option is either 1 (TRUE) or 0 (FALSE) and controls if re-projection of polynomials
is activated. If activated all polynomials in which terms were left out, because of either too small
coe�cients or a too small contribution to a polynomial, will be reprojected.

The �fth option is either 1 (TRUE) or 0 (FALSE) and controls the switch for the rational
recovery. This option is reserved for future use and does not a�ect the result at the moment.

The sixth option is either 1 (TRUE) or 0 (FALSE) and controls the strict border basis mode. If
activated (default) always an approximate border basis will be returned, but some polynomials
may not vanish ε-approximately. If deactivated all polynomials will be guaranteed to vanish
ε-approximately but may not form an approximate border basis.

The seventh option is either 1 (TRUE) or 0 (FALSE) and controls if the border basis variant of
ABM is supposed to be used. Its value needs to be set to false.

The eighth option is either 1 (TRUE) or 0 (FALSE) and controls which kind of truncation mode
for small terms/coe�cients is used. If disabled (default) terms which have a coe�cient less than

8.1. Overview of Functions Which Were Implemented in ApCoCoA 291

Delta will be discarded. If enabled terms which have an average contribution less than Delta
will be discarded. If option 6 is activated the changed polynomials will be reprojected to give
the best possible �t with respect to the new terms.

The ninth option is a positive integer and sets the maximum degree after which the computation
will be terminated. This can be used to stop a computation that would otherwise take too long.
Note that only a truncated result will be returned which may not represent a full approximate
border basis.

Example

The following CoCoA example demonstrates how to call the CABM algorithm:

XReal := Mat([[...]]); -- contains the real components of the data

XComp := Mat([[...]]); -- contains the complex components of the data

Epsilon := 0.1; -- an error estimate

AppBB := Num.CABM(XReal, XComp, Epsilon); -- apply the CABM algorithm

The BM algorithm for border bases

The BM algorithm for border bases (18) computes a vanishing ideal for a given set of points
X ⊂ Qn . The algorithm is implemented in full precision arithmetic, which can cost a considerable
amount of time if n and/or X is large.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.ABM(Points:MAT, 0):Object

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.ABM(Points:MAT, 0):Object

Points has to be a CoCoA matrix containing X and Epsilon has to be set to zero. These
parameters always have to be supplied.

The algorithm returns a list which contains G and O .

292 Chapter 8. Appendix

Example

The following CoCoA example explains how to call the BM algorithm:

X := Mat([[...]]); -- measurements

Epsilon := 0; -- threshold number

BB := Num.ABM(X, Epsilon); -- apply the BM algorithm

The AVI algorithm

The AVI algorithm (21) computes an approximate vanishing ideal for a given set of points
X ⊂ [−1, 1]n ⊂ Qn with respect to a threshold number ε and a truncation number τ . The
algorithm was proposed by Kreuzer, Poulisse et al. in [28] and computes degree by degree
while constructing the polynomials in the approximate border basis. The algorithm relies on
the computation of a SVD for the �tting of the polynomials. The scaling of the input data
is a necessary prerequisite and in�uences the properties of the resulting approximate O -border
basis G .

Properties

The algorithm will return two sets G and O with properties which are recalled in 21.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.AVI(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

The last six parameters are optional.

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.AVI(Points:MAT, Epsilon:RAT, Delta:RAT, ForbiddenTerms:LIST,
NormalizeType:INT):Object

Points has to be a CoCoA matrix containing X and Epsilon ε is a rational number. These
parameters always have to be supplied.

Delta is used for truncating small coe�cients of polynomials, if not supplied the default value
of 0.00000000001 will be used.

ForbiddenTerms is a list which contains the terms which are not allowed to show up in the
order ideal.

8.1. Overview of Functions Which Were Implemented in ApCoCoA 293

NormalizeType is an integer in the range [1..4] . It determines if and how the points in X will
be normalised. The default value is 2 . If NormalizeType equals 1, each coordinate is divided
by the maximal absolute value of the corresponding column of the matrix. This ensures that all
coordinates of the points are in [-1,1]. With NormalizeType=2 no normalisation is done at all.
NormalizeType=3 shifts each coordinate to [-1,1]. So its minimum is mapped to -1 and the
maximum to one, describing a unique a�ne mapping. The last option is NormalizeType=4.
In this case, each coordinate is normalised using the column's Euclidean norm.

The algorithm returns a list which contains G and O .

Example

The following CoCoA example explains the basic steps how AVI can be used in production
modelling:

X := Mat([[...]]); -- measurements

P := Mat([[...]]); -- measured production data

Epsilon := 0.1; -- threshold number

AppBB := Num.AVI(X, Epsilon); -- apply the AVI algorithm

ProdPoly := $apcocoa/numerical.ProjectAVI(X, P, AppBB[2]);

-- find a production polynomial with respect to the OI

-- contained in AppBB[2]

The Eigenvalue Algorithm

The eigenvalue algorithm (30) computes the zero set of a zero-dimensional polynomial ideal over
P = Q [x1, ..., xn] . The algorithm expects as input a border basis of the ideal. The border basis
does not have to be exact. The result remains reasonably stable as long as the input is a δ -
approximate border basis, where δ is in the order of magnitude of the machine accuracy εmachine .

Properties

The algorithm expects as input an (almost) exact O -border basis G and the order ideal O . It
will return two matrices containing the real and imaginary parts in double accuracy of the points
in the zero set of G .

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.RatPoints(BB:LIST, OrderIdeal:LIST)):LIST of MAT

294 Chapter 8. Appendix

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.RatPoints(BB:LIST, OrderIdeal:LIST)):LIST of MAT

BB has to be a list of polynomials of an (almost) exact O -border basis, OrderIdeal is a list
containing the elements of O .

The algorithm returns a list containing two matrices. The �rst one contains the real part and
the second one the imaginary part of the points in the zero set of G .

Examples

Points := Mat([[2/3,0,0],[0,10,0],[0,0,1/3]]); -- some real points

R := Num.ABM(Points, 0); -- use the ABM algorithm to compute

-- an exact border basis

Points := Num.RatPoints(R[1], R[2]);

The Approximate Diagonalisation Algorithm

The approximate diagonalisation algorithm (31) computes a set of approximate eigenvectors for a
set of square matrices. With the help of the approximate eigenvector matrix the original matrices
can be approximately diagonalised.

Properties

Given a set of n square matrices A1, ..., An ∈ Matm (Q) the algorithm computes a matrix V

and its inverse V −1 containing the approximate joint eigenvectors of A1, ..., An . The user must
specify a maximal number of iterations which are performed before the result is returned. A
practical value for the maximal number of iterations is 8, after which the matrix V usually has
converged.

CoCoAL interface

The algorithm can be called directly from the ApCoCoA UIs (both Eclipse and QT) via the
command:

Num.SimDiag(A:LIST, MaxIt:INT):[B:MAT, C:MAT]

Note that if the algorithm is to be called inside another function, the alias Num cannot be used
and one has to give the full function name which is

$apcocoa/numerical.SimDiag(A:LIST, MaxIt:INT):[B:MAT, C:MAT]

8.2. Pseudo Code 295

A is a list of squrare matrices containing rational entries. MaxIt is an integer which determines
the maximal number of iterations.

The algorithm returns a list containing two matrices. The �rst one contains the approximate
eigenvectors of A1, ..., An . The second one is the inverse of the �rst matrix.

Example

-- example 1

-- using exact multiplication matrices

BBasis := Num.ABM([[2/3,0,0], [0,10,0], [0,0,1/3]], 0);

MM1 := Transposed(BB.MultMat(1, BBasis[2], BBasis[1]));

MM2 := Transposed(BB.MultMat(2, BBasis[2], BBasis[1]));

Result := Num.SimDiag([MM1, MM2], 8);

Dec(Result[2]*MM1*Result[1],3);

Dec(Result[2]*MM2*Result[1],3);

-- example 2

-- using approximate multiplication matrices

M1 := Mat([[0, 0, -0.079, -0.018],[0, 0, 0.032, -0.012],

[1, 0, 1.056, -0.012],[0, 1, -0.060, 1.025]]);

M2 := Mat([[0, -0.063, 0, -0.018],[1, 1.026, 0, -0.012],

[0, 0, 0, -0.012], [0, 0, 1, 1.025]]);

M1 := Transposed(M1);

M2 := Transposed(M2);

Result := Num.SimDiag([M1,M2], 8);

Dec(Result[2]*M1*Result[1],3); -- M1 approximately diagonalised

Dec(Result[2]*M2*Result[1],3); -- M2 approximately diagonalised

8.2 Pseudo Code

In this thesis we make use of pseudo code to write down algorithms. The advantage of pseudo
code compared with a fully featured programming languages like e.g. C++/C#/Pascal/... is
the higher level of abstraction which it provides. This allows us to write down algorithms in a
more compact form without having to pay too much attention to details which might obfuscate
the central ideas of the individual procedures.

As we use the algorithm2e package for typesetting the algorithms the control structures (e.g.
while or for loops, if . . . then . . . else clauses, ...) have a Pascal like syntax. We give a short
overview of the notation and the conventions which we use for our pseudo code.

296 Chapter 8. Appendix

If the code should not be self explanatory we will use comments to clarify some of its properties.

Comments

/* This is a multi line comment which can be used to describe more complex

issues */

Instructions;
// This is a single line comment

Instructions;

In our notation we distinguish between assignments and logical operators.

Assignment and logical operators

// Assigns {1, 2, 3} to the variable A

A := {1, 2, 3} ;
// Assigns the boolean value true to B

B := (A = A) ;

Control Structures

The following represents an non-exhaustive overview of some common control structures used
throughout computer sciences and how they are represented in this work.

If ... then ... else clause

if Condition 1 then

Instructions;
else if Condition 2 then

Instructions;
else

Instructions;
end

While loop

while Condition do

Instructions;
end

For loop

for i = 1 to 100 do

Instructions;
end

8.2. Pseudo Code 297

Data Structures

Variables containing elementary data types like integers, real/complex numbers (represented by
�oating point numbers) and strings will receive no special notation. If the data type of a variable
is clear from the context and no ambiguity can arise we will not specify it explicitly.

Data structures

// A is a list

A := [1, 5, 5, 9] ;
// L is an empty list

L := [] ;
// B is a set

B := {1, 5, 9} ;
/* Algorithm(P1, P2) returns two objects (the types should be clear from

the context) which are stored in the variables b1 and b2 */

[b1, b2] := Algorithm(P1, P2) ;

List Manipulations

Let A = [a1, a2, a3] and B = [b1, b2, b3] be lists.

List manipulations

// Concatenates the lists A and B such that C = [a1, a2, a3, b1, b2, b3]

C := concat(A,B) ;
// Removes the element b2 from the list C

remove(C, b2);
/* Returns the minimal element in the list C, if the elements in C can be

ordered */

min(C);
/* Returns the maximal element in the list C, if the elements in C can be

ordered */

max(C);

298 Chapter 8. Appendix

Matrix Manipulations

As we are often manipulating matrices in our algorithms we will declare the abbreviations for
some common matrix operations which we utilise in our pseudo code. Let A ∈ Matm,n (K) ,
C ∈ Matm,k (K) , and R ∈ Matl,n (K) be arbitrary matrices.

Matrix manipulations

// Return the number of rows and columns of A

m := rows(A) ; n := cols(A) ;
// Returns true if A is the zero matrix and false otherwise

isZeroMatrix(A);
/* Returns the row and column index of the first non-zero element in

matrix A. The matrx is searched row wise. If A is the zero matrix

[0, 0] will be returned */

[r, c] := �ndFirstNonZeroIndex(A);
// Swaps the i-th and the j-th row of a matrix

swapRows(A, i, j);
// Swaps the i-th and the j-th column of a matrix

swapColumns(A, i, j);
/* Returns a matrix M ∈ Mati,j(K) whose entries are taken column-wise from

A. Throws an error if i · j 6= m · n */

M := reshape(A, i, j);
// Appends the matrix C at the right-hand side of A

M :=
(
A C

)
∈ Matm,n+k (K) ;

// Appends the matrix C at the left-hand side of A

M :=
(
C A

)
∈ Matm,n+k (K) ;

// Appends the matrix R at the bottom of A

M :=

(
A

R

)
∈ Matm+l,n (K) ;

// Appends the matrix R at the top of A

M :=

(
R

A

)
∈ Matm+l,n (K) ;

299

Bibliography

[1] The Algebraic Oil Research Project, see
http://www.algebraic-oil.uni-passau.de/.

[2] B. Otto. Linear Algebra With Applications. Third Edition. Prentice Hall, Upper
Saddle River New Jersey, 1995.

[3] B. S. W. Schröder. Mathematical Analysis: A Concise Introduction. John Wiley
& Sons, Hoboken New Jersey, 2007.

[4] J. Fox. Applied Regression Analysis, Linear Models, and Related Methods. Sage
Publications, 1997.

[5] L. N. Trefethen, D. Bau III. Numerical Linear Algebra. Society for Industrial and
Applied Mathematics (SIAM), 1997.

[6] G. H. Golub, C. F. van Loan. Matrix Computations. Third Edition. The Johns
Hopkins University Press, Baltimore MD, 1996.

[7] J. W. Demmel. Applied numerical linear algebra. Society for Industrial and Ap-
plied Mathematics (SIAM), 1997.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms.

Second Edition. MIT Press. September 2001.

[9] R. A. Horn, C. R. Johnson. Matrix analysis. Cambridge University Press, 1985.
Reprinted with corrections 1990.

[10] A. S. Householder. Unitary Triangularization of a Nonsymmetric Matrix. Journal
of the ACM 5 (1958), pp. 339�342.

[11] M. J. D. Powell and J. K. Reid. On applying Householder transformations to linear
least squares problems. In Proc. IFIP Congress 1968, North-Holland, Amsterdam,
The Netherlands (1969), pp. 122�126.

[12] G. Golub and W. Kahan. Calculating the singular values and pseudoinverse of a
matrix. SIAM, Journal on Numerical Analysis 2 (1965), pp. 205-224.

[13] J. H. Wilkinson. Convergence of the LR, QR and related algorithms. The Com-
puter Journal 8 (1965), pp. 77-84.

[14] D. A. Harville. Matrix Algebra from a Statistician's Perspective. Springer New
York, 1997.

http://www.algebraic-oil.uni-passau.de/

300 Bibliography

[15] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal. Numerical
Optimization - Theoretical and Practical Aspects. Second Edition. Universitext.
Springer Berlin, 2006.

[16] Y. Saad. Numerical Methods for Large Eigenvalue Problems - Revised Edition.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.

[17] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK
Users' Guide. Third Edition. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, SIAM, 1999.

[18] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra,
see http://cocoa.dima.unige.it.

[19] J. Abbott and A. M. Bigatti, CoCoALib: a C++ library for doing Computations
in Commutative Algebra, see http://cocoa.dima.unige.it/cocoalib.

[20] ApCoCoA: Applied Computations in Commutative Algebra, see
http://www.apcocoa.org.

[21] B. Buchberger and H. M. Möller. The construction of multivariate polynomials
with preassigned zeros. Proceedings of EUROCAM'82, Lecture Notes in Com-
puter Sciences 144, Springer Heidelberg (1982), pp. 24-31.

[22] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal of Pure
and Applied Algebra Vol. 196 (2005), pp. 251-270.

[23] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure and Ap-
plied Algebra Vol. 205 (2006), pp. 279-295.

[24] B. Mourrain, P. Trébuchet. Generalized normal forms and polynomial system
solving. Proceedings of the International Symposium on Symbolic and Algebraic
Computation (2005), pp. 253-260.

[25] B. Mourrain. A new criterion for normal form algorithms. M. Fossorier, H. Imai,
S. Lin, A. Poli (eds.). Proceedings of AAECC-13. Honolulu 1999. LNCS 1719.
Springer Heidelberg (1999), pp. 440-443.

[26] B. Mourrain. Pythagore's dilemma, symbolic-numeric computation, and the bor-
der basis method. Symbolic-Numeric Computations (Trends in Mathematics)
(2007), pp. 223-243.

[27] J. Abbott, A. Bigatti, M. Kreuzer, L. Robbiano. Computing ideals of points.
Journal of Symbolic Computation Vol. 30 (2000), pp. 341-356.

[28] D. Heldt, M. Kreuzer, S. Pokutta and H. Poulisse. Approximate computation
of zero-dimenisonal polynomial ideals. Journal of Symbolic Computation Vol. 44
(2009), pp. 1566-1591.

[29] C. Fassino. An Approximation to the Gröbner Basis of Ideals of Perturbed Points:
Part I. Preprint 2007.

http://cocoa.dima.unige.it
http://cocoa.dima.unige.it/cocoalib
http://www.apcocoa.org

Bibliography 301

[30] M. Torrente. Application of algebra in the oil industry. Ph.D. Thesis. Scuola Nor-
male Superiore, Pisa, 2009.

[31] C. Paige, Z. Strakos. Bounds for the least squares distance using scaled total least
squares. Numerische Mathematik Vol. 91 No. 1 (2002), pp. 93-115.

[32] M. Kreuzer and H. Poulisse. Subideal border bases. Mathematics of Computation
Vol. 80 No. 274 (2011), pp. 1135�1154.

[33] J. Abbott, C. Fassino, and M. Torrente. Thinning out redundant empirical data.
Mathematics in Computer Science Vol. 1 No. 2 (2007), pp. 375-392.

[34] J. Abbott, C. Fassino, and M. Torrente. Stable border bases for ideals of points.
Journal of Symbolic Computation Vol. 43 (2008), pp. 883-894.

[35] C. Fassino: Almost vanishing polynomials for sets of limited precision points.
Journal of Symbolic Computation Vol. 45 (2010), pp. 19-37.

[36] G. Dahlquist, Å. Björck, N. Anderson. Numerical Methods. Englewood Cli�s New
Jersey, 1974.

[37] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge Tracts
in Mathematics and Mathematical Physics Vol. 19, Cambridge University Press,
1916.

[38] H. M. Möller and T. Sauer. H-bases for polynomial interpolation and system
solving. Advances in Computational Mathematics 12 (2000), pp. 335-362.

[39] H. M. Möller and T. Sauer. H-Bases I: The foundation. Curve and Surface �tting:
Saint�Malo 1999, Vanderbilt University Press (2000), pp. 325�332.

[40] H. M. Möller and T. Sauer. H-Bases II: Applications to Numerical Problems.
Curve and Surface �tting: Saint-Malo 1999, Vanderbilt University Press (2000),
pp. 333-342.

[41] T. Sauer. Approximate varieties, approximate ideals, and dimension reduction.
Numerical Algorithms 45 (2007), pp. 295-313.

[42] T. Sauer. Polynomial interpolation in several variables: lattices, di�erences, and
ideals. Studies in Computational Mathematics 12 (2006), pp. 191-230.

[43] J. Czekanski. Example computations for the approximate H-basis algorithm.
Private email conversation. University Giessen, April 2013.

[44] M. Kreuzer, H. Poulisse and J. Limbeck. Rational approximation of border bases.
Preprint 2013.

[45] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1. Springer
Heidelberg, 2000.

[46] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2. Springer
Heidelberg, 2005.

[47] IEEE 754: reprinted in SIGPLAN Notices Vol. 22 Nr. 2 (1987), pp. 9-25.

302 Bibliography

[48] W. Auzinger and H. Stetter. An elimination algorithm for the computation
of all zeros of a system of multivariate polynomial equations. R.G. Agarwal,
Y.M. Chow, S.J. Wilson (eds.). International Conference on Numerical Math-
ematics, Singapore 1988. Birkhäuser ISNM 86, Basel (1988), pp. 11-30.

[49] H. Stetter. Numerical Polynomial Algebra. SIAM, Philadelphia, 2004.

[50] J. Cai. Computing Jordan Normal Forms Exactly for Commuting Matrices in
Polynomial Time. International Journal of Foundations of Computer Science
Vol. 5 (1994), pp. 293-302.

[51] L. Mirsky. An introduction to Linear Algebra. Oxford University Press, New York,
1955.

[52] A. Bernstein. Almost eigenvectors for almost commuting matrices. SIAM Journal
of Applied Mathematics Vol. 21. No. 2 (1971), pp. 232�235.

[53] T. Fu and X. Gao. Simultaneous diagonalization with similarity transformation
for non-defective matrices. Conference Proceedings of ICASSP 2006, Vol. 4.

[54] A. J. van der Veen, P. B. Ober, and E. F. Deprettere. Azimuth and elevation
computation in high resolution DOA estimation. IEEE Transactions on Signal
Processing Vol. 40 (1992), pp. 1828�1832.

[55] M. Haardt and J. A. Nossek. Simultaneous Schur decomposition of several non-
symmetric matrices to achieve automatic pairing in multidimensional harmonic
retrieveal problems. IEEE Transactions on Signal Processing Vol. 46 (1998),
pp. 161�169.

[56] P. Strobach. Bi-iteration multiple invariance subspace tracking and adaptive ES-
PRIT. IEEE Transactions on Signal Processing Vol. 48 (2000), pp. 442�456.

[57] L. de Lathauwer, T. de Moor, and J. Vandewalle. Computation of the canon-
ical decomposition by means of a simultaneous generalized Schur decomposition.
SIAM Journal of Matrix Analysis and Applications Vol. 26 No. 2 (2004), pp.
295-327.

[58] A. Ruhe. On the quadratic convergence of a generalization of the Jacobi method
to general matrices. BIT Numerical Mathematics Vol. 8 No. 3 (1968), pp. 210-231.

[59] P. J. Eberlein. A Jacobi-like method for the automatic computation of eigenvalues
and eigenvectors of an arbitrary matrix. Journal of the Society for Industrial and
Applied Mathematics Vol. 10 No. 1 (1962), pp. 74�88.

[60] L. Mirsky. On the minimization of matrix norms. The American Mathematical
Monthly Vol. 65 No. 2 (1958), pp. 106-107.

[61] H. H. Goldstine and L. P. Horwitz. A procedure for the diagonalization of normal
matrices. Journal of the Association for Computing Machinery Vol. 6 (1959),
pp. 176-195.

Bibliography 303

[62] A. Gerstner, R. Byers, and V. Mehrmann. Numerical methods for simultaneous
diagonalisation. SIAM. Journal of Matrix Analysis and Applications Vol. 14 No. 4
(1993), pp. 927-949.

[63] E. Organick. A FORTRAN IV Primer. Addison-Wesley, 1966.

[64] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Paperback Edition. Oxford
University Press, New York, 1988.

[65] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini:
Software for Numerical Algebraic Geometry. Available at
http://www.nd.edu/~sommese/bertini/.

[66] A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical decomposition
of the solution sets of polynomial systems into irreducible components. SIAM
Journal of Numerical Analysis Vol. 38 (2001), pp. 2022-2046.

[67] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Opera-

tions Research. Springer New York, 1999.

[68] D. H. Brandwood. A complex gradient operator and its application in adaptive ar-
ray theory. IEEE Proceedings for Communications, Radar and Signal Processing
Vol. 130 No. 1 (1983), pp. 11-16.

[69] J. Abbott, M. Kreuzer, and L. Robbiano. Computing zero-dimensional schemes.
Journal of Symbolic Computation Vol. 39 (2005), pp. 31-49.

[70] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P Zimmermann. MPFR: A
Multiple-Precision Binary Floating-Point Library with Correct Rounding. ACM
Transactions on Mathematical Software Vol. 33 No. 2 (2007), pp. 1-14.

[71] C. Liner. Elements of 3-D Seismology. Second Edition. PennWell, 2004.

[72] K. W. Morton, D. F. Mayers. Numerical Solution of Partial Di�erential Equa-

tions: An Introduction. Cambridge University Press, 2005.

[73] A. Fichtner. Full seismic waveform modelling and inversion. Advances in Geo-

physical and Environmental Mechanics and Mathematics. Springer Berlin, 2011.

[74] É. Robein. Velocities, time-imaging, and depth-imaging in re�ection seismics:

principles and methods. EAGE Publications, 2003.

[75] S. Linda and S. George. Computer Vision. Prentice-Hall, 2001.

[76] L. Badescu and M. Vladimir. Algebraic Surfaces. Springer New York, 2001.

http://www.nd.edu/~sommese/bertini/

	Introduction
	Motivation
	Main Results
	Outline of the Thesis

	Mathematical and Algorithmic Foundation
	Notation
	Basic Definitions from Algebra
	Basic Definitions from (Numerical) Linear Algebra
	Measuring Computational Cost
	Runtime of Basic Linear Algebra Algorithms

	Canonical Matrix Factorisations
	PLURQ Decomposition
	Schur Decomposition
	QR Decomposition
	Eigendecomposition
	Jordan Normal Form
	Singular Value Decomposition (SVD)

	Moore-Penrose Pseudoinverse
	Numerical Stability
	Arithmetic with Floating Point Numbers
	Condition of a Problem and Stability of Algorithms

	QR Decomposition via Householder Triangularisation
	Computation of Eigenvalues and Eigenvectors
	The General Eigenvalue Problem
	The Hermitian Eigenvalue Problem

	The (Linear) Least Squares Problem
	Solutions of the Inhomogeneous Least Squares Problem
	Conditioning of the Least Squares Problem
	Solutions of the Homogeneous Least Squares Problem

	Border Bases
	Exact Border Bases
	Numerical Stability of Border Bases
	Affine Point Sets
	The Buchberger-Möller Algorithm for Border Bases
	Runtime Analysis of the Buchberger-Möller Algorithm
	Implementation in ApCoCoA
	Basis Transformation

	The AVI/ABM Family of Algorithms
	Approximate Border Bases
	The AVI Algorithm
	Runtime analysis of the AVI algorithm
	Shortcomings of the AVI algorithm
	Implementation in ApCoCoA

	The ABM Algorithm
	Runtime Complexity of the ABM Algorithm
	Enhancing the Numerical Stability of the ABM Algorithm
	Shortcomings of the ABM Algorithm
	A Modified ABM Algorithm and a Practical Error Bound
	Implementation in ApCoCoA

	Approximation by Polynomial Functions
	The Extended ABM Algorithm
	Runtime Complexity of the Extended ABM Algorithm
	Enhancing the Numerical Stability of the Extended ABM Algorithm
	Shortcomings of the Extended ABM Algorithm
	Implementation in ApCoCoA

	The BB ABM Algorithm
	Runtime Complexity of the BB ABM Algorithm
	Shortcomings of the BB ABM Algorithm
	Implementation in ApCoCoA

	Practical Considerations and Extensions
	Subideal Variants

	Comparison with other Approaches
	Approximate H-Bases
	The SOI Algorithm
	The Numerical Buchberger-Möller Algorithm (NBM)
	Numerical Comparison

	The Rational Recovery Problem
	Multiplication Matrices for Border Bases
	The Eigenvector Algorithm
	Simultaneous Quasi-Diagonalisation
	Building Blocks
	Choice of Parameters in the Shear Transformation
	Choice of Parameters in the Unitary Transformation
	The SIMQDIAG Algorithm
	Parameter Choice for Real Input Data
	Comparison with other Approaches

	A Sum of Squares Heuristic for the Rational Recovery Problem
	The Polak-Ribière Conjugate Gradient Algorithm

	Applications
	Revealing Polynomial Relations in Real Data
	Finding Specific Relations

	Seismic Imaging
	Basic Principles of Seismic Wave Propagation
	Established Methods
	Recovery of the Velocity Field using the Extended ABM Algorithm
	Examples

	Revealing Unconventional Geological Structures
	Approximation of Geological Structures using the ABM Algorithm

	Stable Computation of Polynomial Roots

	Conclusions and Outlook
	Appendix
	Overview of Functions Which Were Implemented in ApCoCoA
	Pseudo Code

	Bibliography

