270 research outputs found

    Continuous Integration for Fast SoC Algorithm Development

    Get PDF
    Digital systems have become advanced, hard to design and optimize due to ever-growing technology. Integrated Circuits (ICs) have become more complicated due to complex computations in latest technologies. Communication systems such as mobile networks have evolved and become a part of our daily lives with the advancement in technology over the years. Hence, need of efficient, reusable and automated processes for System-on-a-Chip (SoC) development has been increased. Purpose of this thesis is to study and evaluate currently used SoC development processes and presents guidelines on how these processes can be streamlined. The thesis starts by evaluating currently used SoC development flows and their advantages and disadvantages. One important aspect is to identify step which cause duplication of work and unnecessary idle times in SoC development teams. A study is conducted and input from SoC development experts is taken in order to optimize SoC flows and use of Continuous Integration (CI) system. An algorithm model is implemented that can be used in multiple stages of SoC development at adequate complexity and is “easy enough” to be used for a person not mastering the topic. The thesis outcome is proposal for CI system in SoC development for accelerating the speed and reliability of implementing algorithms to RTL code and finally into product. CI system tool is also implemented to automate and test the model design so that it also remains up to date

    Project-based Learning within a Large-Scale Interdisciplinary Research Effort

    Full text link
    The modern engineering landscape increasingly requires a range of skills to successfully integrate complex systems. Project-based learning is used to help students build professional skills. However, it is typically applied to small teams and small efforts. This paper describes an experience in engaging a large number of students in research projects within a multi-year interdisciplinary research effort. The projects expose the students to various disciplines in Computer Science (embedded systems, algorithm design, networking), Electrical Engineering (circuit design, wireless communications, hardware prototyping), and Applied Physics (thin-film battery design, solar cell fabrication). While a student project is usually focused on one discipline area, it requires interaction with at least two other areas. Over 5 years, 180 semester-long projects have been completed. The students were a diverse group of high school, undergraduate, and M.S. Computer Science, Computer Engineering, and Electrical Engineering students. Some of the approaches that were taken to facilitate student learning are real-world system development constraints, regular cross-group meetings, and extensive involvement of Ph.D. students in student mentorship and knowledge transfer. To assess the approaches, a survey was conducted among the participating students. The results demonstrate the effectiveness of the approaches. For example, 70% of the students surveyed indicated that working on their research project improved their ability to function on multidisciplinary teams more than coursework, internships, or any other activity

    Design and test of readout electronics for medical and astrophysics applications

    Get PDF
    The applied particle physics has a strong R&D tradition aimed at rising the instrumentation performances to achieve relevant results for the scientific community. The know-how achieved in developing particle detectors can be applied to apparently divergent fields like hadrontherapy and cosmic ray detection. A proof of this fact is presented in this doctoral thesis, where the results coming from three different projects are discussed in likewise macro-chapters. A brief introduction (Chapter 1) reports the basic features characterizing a typical particle detector system. This section is developed following the data transmission path: from the sensor, the data moves through the front-end electronics for being readout and collected, ready for the data manipulation. After this general section, the thesis describes the results achieved in two projects developed by the collaboration between the medical physics group of the University of Turin and the Turin section of the Italian Nuclear Institute for Nuclear Physics. Chapter 2 focuses on the TERA09 project. TERA09 is a 64 channels customized chip that has been realized to equip the front-end readout electronics for the new generation of beam monitor chambers for particle therapy applications. In this field, the trend in the accelerators development is moving toward compact solutions providing high-intensity pulsed-beams. However, such a high intensity will saturate the present readout electronics. In order to overcome this critical issue, the TERA09 chip is able to cope with the expected maximum intensity while keeping high resolution by working on a wide conversion-linearity zone which extends from hundreds of pA to hundreds of μA. The chip gain spread is in the order of 1-3% (r.m.s.), with a 200 fC charge resolution. The thesis author took part in the chip design and fully characterized the device. The same group is currently working on behalf of the MoVeIT collaboration for the development of a new silicon strip detector prototype for particle therapy applications. Chapter 3 presents the technical aspects of this project, focusing on the author’s contribution: the front-end electronics design. The sensor adopted for the MoVeIT project is based on 50 μm thin sensors with internal gain, aiming to detect the single beam particle thus counting their number up to 109 cm2/s fluxes, with a pileup probability < 1%. A similar approach would lead to a drastic step forward if compared to the classical and widely used monitoring system based on gas ionization chambers. For what concerns the front-end electronics, the group strategy has been to design two prototypes of custom front-end: one based on a transimpedance preamplifier with a resistive feedback and the other one based on a charge sensitive amplifier. The challenging tasks for the electronics are represented by the charge and dynamic range which are respectively the 3 - 150 fC and the hundreds of MHz instantaneous rate (100 MHz as the milestone, up to 250 MHz ideally). Chapter 4 is a report on the trigger logic development for the Mini-EUSO detector. Mini-EUSO is a telescope designed by the JEM-EUSO Collaboration to map the Earth in the UV range from the vantage point of the International Space Station (ISS), in low Earth orbit. This approach will lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space. Due to its 2.5 μs time resolution, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earth’s atmosphere. In order to maximize the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection over different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and carefully integrated into the data processing system prior to the launch. The author took part in the trigger integration in hardware, laboratory trigger tests and also developed the firmware of the trigger ancillary blocks. Chapter 5 closes this doctoral thesis, with a dedicated summary part for each of the three macro-chapters

    East Lancashire Research 2008

    Get PDF
    East Lancashire Research 200

    Systematische Transaction-Level-Kommunikations-Modellierung mit SystemC

    Get PDF
    An emerging approach to embedded system design is to assemble them from a library of hardware and software component models (IP, intellectual property) using a system description language, such as SystemC. SystemC allows describing the communication among IPs in terms of abstract operations (transactions). The promise is that with transaction-level modeling (TLM), future systems-on-chip with one billion transistors and more can be composed out of IPs as simply as playing with LEGO bricks. However, reality is far out. In fact, each IP vendor promotes another proprietary interface standard and the provided design tools lack compatibility, such that heterogeneous IPs cannot be integrated efficiently. A novel generic interconnect fabric for TLM is presented which aims at enabling inter-operation between models of different levels of abstraction (mixed-mode) and models with different interfaces (heterogeneous components), with as little overhead as possible. A generic, protocol independent representation of transactions is developed, among with an abstraction level formalism. This approach is shown to support systematic simulation of state-of-the-art buses and networks-on-chip such as IBM CoreConnect and PCI Express over several levels of TLM abstraction. A layered simulation framework for SystemC, GreenBus, is developed to examine the proposed concepts. The thesis discusses new implementation techniques for communication modeling with SystemC which outperform the existing approaches in terms of flexibility, simulation accuracy, and performance. Based on these techniques, advanced concepts for TLM-based hardware/software co-design and FPGA prototyping are examined. Several experiments and a video processor case study highlight the efficiency of the approach and show its applicability in a TLM design flow.Eingebettete Systeme werden zunehmend auf Basis vorgefertigter Hard- und Softwarebausteine entwickelt, die in Form von Modellen (IP, Intellectual Property) vorliegen. Hierzu werden Systembeschreibungssprachen wie SystemC eingesetzt. SystemC ermöglicht, die Kommunikation zwischen IPs durch abstrakte Operationen, sog. Transaktionen zu beschreiben. Mit dieser Transaction-Level-Modellierung (TLM) sollen auch zukünftige Systeme mit 1 Milliarde Transistoren und mehr effizient entwickelt werden können. Idealerweise sollte das Hantieren mit IPs dabei so einfach sein wie das Spielen mit LEGO-Steinen. In der Realität sind jedoch IPs unterschiedlicher Hersteller nicht ohne weiteres integrierbar, und auch die Entwurfswerkzeuge sind nicht kompatibel. In dieser Doktorarbeit wird ein neuer, generischer Ansatz für die Transaction-Level-Modellierung mit SystemC vorgestellt, der Kommunikation zwischen Modellen auf unterschiedlichen Abstraktionsebenen (Mixed-Mode) und mit unterschiedlichen Schnittstellen (heterogene Komponenten) möglich macht. Der zusätzlich benötigte Simulations- und Code-Aufwand ist minimal. Ein protokollunabhängiges Transaktionsmodell und ein formaler Ansatz zur Beschreibung von Abstraktionsebenen werden vorgestellt, mit denen verschiedenartige Busse und Networks-on-Chip wie IBM CoreConnect und PCI Express auf verschiedenen TLM-Abstraktionsebenen simuliert werden können. Ein modulares Simulationsframework für SystemC wird entwickelt (GreenBus), um die vorgeschlagenen Konzepte zu untersuchen. Anhand von GreenBus werden neue Implementierungstechniken diskutiert, die den existierenden Ansätzen in Flexibilität, Simulationsgenauigkeit und -geschwindigkeit überlegen sind. Die Vor- und Nachteile der entwickelten Techniken werden mit Experimenten belegt, und eine Videoprozessor-Fallstudie demonstriert die Effizienz des Ansatzes in einem TLM-basierten Entwurfsfluss

    Hands on Media History:A New Methodology in the Humanities and Social Sciences

    Get PDF
    • …
    corecore