

Sana Latif

CONTINUOUS INTEGRATION FOR FAST
SOC ALGORITHM DEVELOPMENT

 Information Technology and
Communication Sciences

Master Thesis
 October 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/287373196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

ABSTRACT

Sana Latif: Continuous Integration for Fast SoC Algorithm Development
Master Thesis
Tampere University
Master of Science (Technology)
October 2019

Digital systems have become advanced, hard to design and optimize due to ever-growing
technology. Integrated Circuits (ICs) have become more complicated due to complex computa-
tions in latest technologies. Communication systems such as mobile networks have evolved and
become a part of our daily lives with the advancement in technology over the years. Hence, need
of efficient, reusable and automated processes for System-on-a-Chip (SoC) development has
been increased. Purpose of this thesis is to study and evaluate currently used SoC development
processes and presents guidelines on how these processes can be streamlined.

The thesis starts by evaluating currently used SoC development flows and their advantages
and disadvantages. One important aspect is to identify step which cause duplication of work and
unnecessary idle times in SoC development teams. A study is conducted and input from SoC
development experts is taken in order to optimize SoC flows and use of Continuous Integration
(CI) system. An algorithm model is implemented that can be used in multiple stages of SoC
development at adequate complexity and is “easy enough” to be used for a person not mastering
the topic. The thesis outcome is proposal for CI system in SoC development for accelerating the
speed and reliability of implementing algorithms to RTL code and finally into product. CI system
tool is also implemented to automate and test the model design so that it also remains up to date.

Keywords: Continuous Integration, Mobile networks, Algorithm model, SoC, Communication

system, DSP, Jenkins, CI, Modeling

2

PREFACE

This thesis is done with Nokia Solutions & Networks, Finland. I dedicate this thesis to my

late father Muhammad Latif, who believed and trusted his daughter’s dreams.

First and foremost, I would like to thank my supervisors Mika Kuulusa and Jukka Re-

unamaki for their admirable guidance and support during the whole process. I would also

like to express my foremost gratitude to my examiners Prof. Mikko Valkama, Prof. Timo

D. Hämäläinen and Dr. Antti Rautakoura for their valuable feedback. A special thanks

goes to my line manager Sakari Patrikainen for giving me the opportunity to do this thesis

with Nokia.

Additionally, my deepest respect goes to my colleague Muazam Ali and team lead Arto

Palin for their valuable contributions and advice. I also want to thank all the respondents

who participated voluntarily in my research study and gave their time and sincere opin-

ions.

Furthermore, a special acknowledgment to my siblings for their encouraging support and

prayers during the stressful time. Finally, I will always be indebted to my mother Jannat

Bi for her prayers and pushing me to pursue my masters.

Tampere, 30 October 2019

Sana Latif

3

CONTENTS

1. INTRODUCTION .. 8
1.1 Thesis Objective .. 9

1.2 Thesis Organization ... 9

2. COMMUNICATION SYSTEMS ... 10
2.1 Mobile Networks .. 10

2.2 Evolution of Mobile Networks ... 11

2.3 Radio Access Network ... 12

2.4 Physical Layer .. 13

2.5 Fifth Generation: Future of Mobile Networks 14

3. DIGITAL SYSTEMS .. 15
3.1 Overview .. 15

3.2 Digital System Design Flow .. 16

3.3 Integrated Circuits .. 18

3.4 IP blocks .. 18

3.5 SoCs .. 19

3.5.1 ASIC ... 20

3.5.2 FPGA .. 20

3.6 SoC Algorithm Modeling .. 21

3.6.1 Modeling Flow ... 22

3.7 SoC Hardware Design Process .. 23

3.7.1 Design Flow .. 23

3.7.2 Design Tools and Languages ... 24

3.7.3 Design Reusability .. 24

3.8 SoC Hardware Verification ... 25

3.8.1 Verification Flow ... 25

3.8.2 Verification Methodologies .. 26

3.8.3 Verification Tests .. 27

3.8.4 Verification Languages ... 27

4. DATA REPRESENTATION ... 28
4.1 Binary Representation .. 28

4.1.1 2’s Complement .. 28

4.2 Fixed-Point Representation .. 29

4.2.1 Integer Representation ... 29

4.2.2 Fractional Representation ... 30

4.3 Floating-Point Representation .. 30

4.3.1 IEEE-754 Standard ... 31

4.4 Quantization Effects ... 32

4.5 Data Representation in Digital Electronics Design 33

5. CONTINUOUS INTEGRATION SYSTEM FOR SOC .. 35

4

5.1 Continuous Integration System .. 35

5.1.1 CI System Benefits ... 37

5.1.2 CI System Tools.. 37

5.2 CI System for SoC ... 38

5.3 Potential Problems in CI for SoC .. 39

5.4 Proposed Solutions for CI for SoC ... 40

6. MODEL DESIGN WITH CI IMPLEMENTATION .. 41
6.1 System Architecture ... 41

6.2 Simulink Model ... 42

6.3 CI System for Model Implementation ... 45

6.3.1 Jenkins Testcase .. 45

6.4 Result Analysis .. 48

6.5 SoC Practices Research and Findings ... 48

7. CONCLUSIONS AND FUTURE WORK .. 51
REFERENCES... 52

5

LIST OF FIGURES

Figure 1. Block diagram of a basic communication system 10
Figure 2. Mobile network ... 11
Figure 3. Evolution of mobile networks .. 12
Figure 4. Radio access network .. 12
Figure 5. Downlink physical layer architecture .. 13
Figure 6. Digital system design flow .. 18
Figure 7. A basic SoC model .. 19
Figure 8. Model based design workflow .. 22
Figure 9. HDL model design flow .. 24
Figure 10. HDL model verification flow .. 25
Figure 11. Fixed-point number representation ... 29
Figure 12. Fixed-point signed and unsigned number representation 30
Figure 13. Basic floating-point number representation .. 31
Figure 14. Quantization techniques ... 32
Figure 15. Data Representation in Digital Design Flow ... 34
Figure 16. Continuous integration design flow... 36
Figure 17. Jenkins-CI tool features ... 38
Figure 18. Channel filter model block diagram .. 41
Figure 19. Simulink model block diagram .. 42
Figure 20. Input parameters of the S-block ... 43
Figure 21. Sample rate setup .. 43
Figure 22. Register values to call C++ function ... 43
Figure 23. Signal at output port ... 44
Figure 24. Signal before and after channel filtering ... 44
Figure 25. Jenkins web interface to setup a new project 45
Figure 26. Jenkins Post-build actions .. 46
Figure 27. (top) Check if grid or Jenkins environment, (bottom) Environment

based setup for MATLAB ... 46
Figure 28. Bash script snippet to track changes and run test 47
Figure 29. Jenkins exit code ... 47
Figure 30. Jenkins script runs and test Simulink model ... 48
Figure 31. S-function mdlStart method to initialise state vectors 55
Figure 32. Input data at port 1 ... 55
Figure 33. MATLAB function to check input validity .. 56

6

LIST OF SYMBOLS AND ABBREVIATIONS

1G First Generation
2G Second Generation
3G Third Generation
4G Fourth Generation
ADC Analog to Digital Converter
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
AXI Advanced Extensible Interface
BTS Base Transceiver Station
CDMA Code Division Multiple Access
CI Continuous Integration
CLB Configurable Logic Block
DAC Digital to Analog Converter
DFE Digital Front End
DL Downlink
DRC Design Rule Violations
DSP Digital Signal Processing
DSPs Digital Signal Processors
DUT Design Under Test
eNB Evolved Node B
ERC Electrical Rule Violations
EVM Error Vector Magnitude
FPGA Field Programmable Gate Array
FSM Finite State Machine
GDSII Graphic Database System for Information Interchange
GSM Global System for Mobile
HDL Hardware Descriptive Language
HW Hardware
IC Integrated Circuit
IP Intellectual Property
IQ In-phase Quadrature
ISI Inter-symbol Interference
IPXACT An XML based standard
LTE Long term Evolution
LSB Least Significant Bit
LVS Layout vs Schematic
M2M Machine to Machine
MAC Multiple Access Control
MSB Most Significant Bit
OFDM Orthogonal Frequency Division Multiplexing
OVM Open Verification Methodology
PARP Peak-to-Average Power Ratio
PDCP Packet Data Control Protocol
PHY Physical
PLL Phase Locked Loop
RAN Radio Access Network
RAM Random Access Memory
RLC Radio Link Control
RRC Radio Resource Control
RRM Radio Resource Management
RTL Register Transfer Level
SC-FDMA Single Carrier Frequency Division Multiple Access

7

SoC System on a Chip
SQNR Signal to Quantization Noise Ratio
TDD Time Division Duplex
UE User Equipment
UL Uplink
UVM Universal Verification Methodology
VHDL Very High Speed Integrated Circuit Hardware Description Language
VHSIC Very High Speed Integrated Circuit

8

1. INTRODUCTION

Communication is the process that starts from anything that needs an exchange between

two entities. We use communication in our daily life from sharing ideas to communicating

with people around the globe. Hence, constant advancement has become a necessity.

Communication systems have evolved and become a part of our existence with the ad-

vancement in technology over the years. Examples of modern-day communication sys-

tems include Internet, mobile networks, audio and TV broadcast systems etc.

Mobile networks play a huge role in personal as well as work life due to increasing need

in effective and timely communication. Over the years, mobile networks have become

advanced through number of generations with added features in each network genera-

tion. A mobile network comprises of a device and a network of base stations communi-

cating over a wireless radio network. In Radio Access Network (RAN), Physical Layer

(PHY) communication plays an important role to understand cellular mobile networks.

Digital systems are the backbone of wireless mobile networks. Mobile networks commu-

nication is mainly based on Digital Signal Processing (DSP) algorithms. Digital systems

are meant to deal with DSP applications that set strong requirements such as real-time

computations, power, frequency and area. Digital systems are implemented on high per-

formance devices, such as Field Programmable Gate Arrays (FPGAs) and Application

Specific Integrated Circuits (ASICs) to meet the requirements of communication sys-

tems. In modern era, digital systems have become extremely complex which brings the

need of SoC. To establish mobile RAN architecture, SoCs are used for their deployment.

It is extremely important to streamline and automate the SoC development processes

because of the complex nature of SoC devices, to reduce the cost, resources and time

to market. SoC industry requires to implement development models to fulfil these needs.

DevOps extends the agile methodologies to swiftly deliver products in an automated and

integrated process.

CI is an agile practice that enhance benefits of development models. Although, CI was

developed initially for software development, but it helps in faster release and feedback

mechanism as well. To implement this software development model in SoC develop-

ment, it has its own benefits and complications. However, the result is a well-integrated

and cohesive product. CI implementation in hardware development automate overall

SoC processes and seamless working between different teams. For CI implementation

9

in SoC development, a literature research is carried out to identify the potential problems

and solutions.

A part of the research work is to automate and streamline work between different SoC

development teams. A Simulink model is designed so that it can be used in different

stages of SoC design. CI system is also implemented by using Jenkins which is a CI tool

for automating the build and testing of the model design.

Another research study is conducted with different SoC development experts to identify

the gaps in SoC development workflows, steps to avoid duplication of work and idle time.

Input from SoC experts is also considered on usability and benefits of CI in their daily

workflow.

1.1 Thesis Objective

The main objective of this thesis research work is to study and evaluate currently used

SoC development processes and flows. In addition, it presents guidelines on how CI can

be implemented to streamline SoC workflows and avoid duplication of work. Moreover,

a model is designed that can be used in different stages of SoC development with ade-

quate complexity and is easy enough to be used for a person not mastering the topic. CI

system tool is also implemented to automate and test the model design so that it remains

up to date.

1.2 Thesis Organization

This thesis document is organized as follows:

Chapter 2 explains the basics of communication systems, mobile networks and its evo-

lution. In addition, it gives an overview of RAN, PHY layer architecture and future of

mobile networks.

Chapter 3 defines the basic concepts of signals, DSP, digital systems, IP (Intellectual

Property) blocks, ICs and gives an overview of SoC system. It further discusses different

SoC development flows, tools and processes that are being used in the industry as well

as academia.

Chapter 4 discusses the different formats of data representations, data storage and data

processing.

Chapter 5 presents basic concepts of CI, its benefits and tools in SoC development.

Chapter 6 discusses about the practical work, a Simulink model implementation using

Jenkins CI tool.

Chapter 7 discusses conclusions and future work.

10

2. COMMUNICATION SYSTEMS

Communication system can be defined as an exchange of information from source to

destination over a medium. The information to be sent can be analog or digital, however

the medium to transmit and receive information is always analog and continuous in na-

ture for example cables and radio waves etc [3]. In Digital Communication, analog sig-

nals are first converted into digital signals and then transmitted over a channel depending

on the modulation technique. Once again at the receiver end, the signal is converted

back from digital to analog. Figure 1 presents a basic communication system block dia-

gram.

Information
Source

Communication
System

Information
Sink

Transmitter
Communication

Channel
Receiver

Figure 1. Block diagram of a basic communication system

In the last four decades, the key revolutionary technologies have been digital communi-

cation systems such as mobile cellular network, satellite communication and wireless

sensor networks etc. [1].

2.1 Mobile Networks

A mobile network is a digital communication system where a targeted data communica-

tion between at least one fixed transceiver and a mobile wireless transceiver over a land

area called cell is established. Each cell is served by at least one Base Transceiver Sta-

tions (BTS) that provides network coverage to mobile User Equipment (UE). There are

many benefits of cellular architecture such as frequency reuse by allocating different

frequencies to neighbouring cells, less power consumption and large coverage area than

single high power BTS [4]. Figure 2 presents a simple mobile network.

11

Figure 2. Mobile network

2.2 Evolution of Mobile Networks

Mobile networks have evolved through a series of generations, each with improved tech-

nology and features from the previous generation. The First Generation (1G) mobile net-

work was deployed in 1980’s and it used analog transmission with one call per radio

channel. In 1G, voice during a call was just modulated to higher frequencies by using

frequency modulation [2]. Few of the breakdowns of 1G were poor & noisy voice quality,

less secure and unencrypted transmission.

Second Generation (2G) mobile network was launched in 1990’s, one of the major im-

provements was introduction of digital transmission and Global System for Mobile (GSM)

standard. In 2G, digital voice calls, high data rates, SMS and email services were offered

due to Code-Division Multiple Access (CDMA) implementation [14].

The evolution of Third Generation (3G) mobile network marks the start of smart phone

era. In early 2000’s, 3G unities multiple technologies to deliver higher data rates on

higher frequency bands for transmission. Some of the new features included video call,

higher number of users per cell, increased security, location tracking and maps [3].

Fourth Generation (4G) or Long Term Evolution (LTE) mobile network, offered funda-

mental changes in mobile communication such as higher data rates with improved spec-

tral efficiency. LTE mobile network offered advanced multimedia services and compati-

bility with previous generations that helped in easier network upgrade and deployment.

New PHY layer wireless technologies were introduced to transmit voice and data at the

same time [2].Orthogonal Frequency Division Multiplexing (OFDM) was first used to

avoid Inter-Symbol Interference (ISI) due to higher bandwidths. Multiple Input Multiple

Output (MIMO) technology is one of the differentiating aspects of LTE that helped to offer

12

higher data rates [4]. Figure 3 presents evolution of mobile networks through the years

from 1G to LTE [21].

Figure 3. Evolution of mobile networks

2.3 Radio Access Network

A RAN helps to connect UE to its core network through radio connections, Figure 4 pre-

sents basic RAN. It is a major part of mobile network that resides between UE, BTS and

antennas. Silicon chips such as SoC provides RAN functionality in both core network

and UE. RAN architecture consists of PHY, Radio Link Control (RLC), Medium Access

Control (MAC), Packet Data Control Protocol (PDCP) layers and Radio Resource Con-

trol (RRC) protocol. In 4G, some of the main functionalities of RAN includes, Radio Re-

source Management (RRM), scheduling, compression/decompression of the DL/UL user

plane packet headers and HARQ error correction etc [20].

Core Network

RAN

eNB
eNB

Figure 4. Radio access network

13

2.4 Physical Layer

In RAN, PHY layer functionality is the main part of the architecture. It provides data and

control information transfer between BTS/Evolved Node B (eNB) and UE. Figure 5 pre-

sents general block diagram of PHY layer architecture in downlink [2].

The PHY layer is responsible for coding techniques, modulation, multiantenna pro-

cessing and implements advance technologies like MIMO and OFDM. It also handles

mapping of MAC transport channels to PHY channels. PHY layer implements multiple

technologies to offer spectral efficiency and high data rates. OFDMA allows high through-

put in the downlink and Single Carrier-FDMA (SC-FDMA) in the uplink reduces Peak-to-

Average Power Ratio (PARP). Adaptive modulation and coding maximize data rates at

individual and cell level. Few of the PHY layer features are dynamic bandwidth allocation

to users and high cell-edge performance. PHY layer considers path losses and environ-

mental interferences while designing control channels and reference signals [4].

CRC Insertion

Segmentation

Coding

HARQ

Scrambling

Modulation

Antenna Mapping

Transport blocks
from MAC layer

Physical Layer

Figure 5. Downlink physical layer architecture

14

2.5 Fifth Generation: Future of Mobile Networks

Mobile technology’s global trends are changing rapidly, the need of high data rates, high

speed and low latency have become crucial. It is predicted that in 5th Generation (5G)

mobile technology, features such as controlling home appliances from any part of the

world to extreme music & video streaming will become part of our daily lives. Some of

the potential global trends in future mobile network development are [14]:

 Autonomous driving

 Machine to machine communication (M2M)

 Remote robotic surgery

 Device remote controlling

 Virtual Reality

 Bandwidth throughput

 Smart cities

 Healthcare data management

 Real time gaming

 Bi-directional remote controlling

 Wireless cloud-based office

 Video streaming etc.

In order to enable these services new technologies are being designed for future mobile

networks and some of the stand-out technology features are [21]:

 Scalability: Scalable numerology with dynamic TDD.

 Low latency: Mini time slots

 Forward Compatibility: Bandwidth parts with no fixed time relationship be-
tween channels

 Beamforming: Initial access / Beam sweeping with massive MIMO

 Network slicing

There are many design challenges despite the positive outlook and motivation for future

technologies. In 5G at millimeter wavelength (>6GHz), large number of antennas will be

required to provide coverage which in return is going to increase the deployment cost. In

addition, energy efficiency and security will be high risk areas. As a result of network

densification, challenges will arise in interference, energy and mobility management [20].

15

3. DIGITAL SYSTEMS

This chapter defines the basic concepts of signals, DSP, digital systems, IP blocks, ICs

and gives an overview of SoC. This chapter also discusses different SoC development

flows, tools and processes that are being used in the industry as well as academia.

3.1 Overview

A signal is anything that carries information, for example, sound, smoke or heat etc.

Signals are of different types, but we generally divide them in two categories, a continu-

ous-time signal and a discrete-time signal. A continuous-time signal can be defined and

represented at any instance of time whereas a discrete-time signal is only represented

at discrete intervals of time [3]. A discrete signal can be converted into a pattern of bits

(1s and 0s) which is called as a digital signal. In computer systems, signals in digital

format are easily represented because each sample can be represented as a sequence

of bits.

Processing of digital signals defines the digital signal processing and the systems pro-

cessing them are called as digital systems. In the modern era, digital systems have been

constantly replacing the analog systems. Nowadays, digital systems are most important

in the organizations. Digital systems are designed to store, process and communicate

digital information using binary system. Digital systems can vary from a CD player to as

complex as mobile networks. Digital systems bring major advantages over old analog

systems such as [5]:

 Easier to design

 Less effected by noise

 More precise and accurate

 Easily programmable

 Cost effective

Digital systems are meant to deal with DSP applications that set strong requirements

such as real-time computations, power, frequency and area [6]. Digital systems are im-

plemented on ASICs and FPGAs.

The following section presents the digital system design flow in general.

16

3.2 Digital System Design Flow

Modern day designs of digital systems demand different design methodologies and level

of abstractions in order to meet the strong requirements set by their applications. In the

section below, general steps of digital system design are given [7]:

Specifications: The first step in the digital design is usually to define the system speci-

fications. Specifications can either be defined by the customer of that product or an au-

thoritative body that defines functional requirements for a reliable and efficient design

such as power, area and performance etc.

Architecture: An architect designs and specifies how the system will be implemented

by defining memories, timing budget, software/hardware, power management etc in or-

der to achieve design goals set by specifications. Sub-blocks or IPs specifications are

also derived from the top-level system architecture design.

Algorithm Model: An algorithm model is implemented mostly in higher level languages

to observe the system’s behaviours at the inputs and at the outputs according to the

specifications. The model does not define steps on how to implement a design on phys-

ical level but provide ideal behaviour of the prospective system. Reference models for

digital hardware design verification also fall under this category [24].

Hardware Description Model: Hardware Description model of the system is usually

developed in Hardware Descriptive Language (HDL). Entire system is divided into the

subsystems and then subsystems are further divided into the IP blocks. Two most com-

monly used HDL languages in the industry and in academia are VHDL that stands for

Very High-Speed Integrated Circuit (VHSIC) HDL and Verilog.

Verification: HDL model verification is divided into certain subcategories such as [8]:

 Preliminary Verification: It is important to do some preliminary or sanity verification

in parallel with Register Transfer Level (RTL) design and it is mostly done by the HDL

model designer. In simple words, design is checked to confirm if it compiles correctly

and did not break any of the existing features.

 Functional Verification: During the design stage, verification testbench environ-

ment is set by the verification engineers using hardware verification languages. A

testbench is simply a piece of code which is meant to verify the functional correctness

of the HDL model. VHDL, Verilog and SystemVerilog are the commonly used lan-

guages to write verification testbenches in the industry and academia.

17

Logic Synthesis: It is the process of translating RTL HDL model into an optimized gate

level representation which is named as a netlist. The verified RTL code is synthesized

into logic gates by the synthesis tools [6].

Logical Equivalence Testing: Once we have gate level netlist and verified RTL code,

instead of verifying netlist both are compared on the Boolean level. This equivalence

check result should be same, after that tested netlist can be used in next level of digital

design.

Static Timing Analysis: It’s the last step in frontend design part of the digital system.

This analysis is done to verify the performance, frequency and timing of the design and

it is then sent to the backend design team.

Floor Planning: It’s the first step in backend design, to decide where and how the syn-

thesized design is to be placed on the chip die. At this stage, power planning is also done

on how to route power within the design.

Clock-Tree Synthesis: In this step, it is made sure that every flip-flop receives clock

signal at the same time in the whole design.

Routing: This process determines the path through which cells are to be connected and

what path interconnection takes.

Physical Verification: The final routed design goes through multiple checks like Design

Rule Violations (DRC), Electrical Rule Violation (ERC), Layout vs Schematic (LVS) etc.

in order to confirm all the requirements are met [8].

Post Layout Timing Analysis: As a last step in backend design, after all the checks

design is verified one more time to confirm timing correctness.

GDSII generation & Fabrication: After the back-end design, the Graphic Database Sys-

tem for Information Interchange (GDSII) stream created from the layout and sent to the

fabrication company for chip fabrication.

Post Fabrication Testing: After fabrication, all the chips for any manufacturing errors

are tested against the required specification and expected results before sending them

to the market or customers. Figure 6 presents the digital design flow.

18

System specification

Post Fabrication Testing

System Architecture

Algorithm Model

HDL Model

RTL Verification

Logic Synthesis

Logic Equivalence Testing

Static Timing Analysis

Floor Planning

Clock Tree Synthesis

Routing

Physical Verification

Post Layout Timing

Analysis

GDSII generation &

Fabrication

Figure 6. Digital system design flow

3.3 Integrated Circuits

ICs are electronic components that unite a group of electronic devices like millions of

transistors, resistors and capacitors etc on a small flat area made of semi conducting

material mostly silicon [5]. These small chips can perform calculations and processing of

stored data in both analog or digital form. In modern days, ICs are evolving and their

functionalities vary from a simple amplifier to processor or even a whole computer

memory. Moore’s law states that the “number of transistors per chip gets doubled after

each one and a half year and at the same time decreasing in size from micro to nano-

metres” [7].

3.4 IP blocks

In Digital system design, IPs are building blocks that make up the whole digital system.

However due to increase in complexity and advancement of technology in SoC, IPs are

reused extensively to save time and man power as well as to reduce time-to-market.

Even if the two SoCs are different in functionality and design, there are always multiple

blocks that are present in every SoC for example AXIs etc., so constant redesign is not

19

necessary instead reuse is the way to go. Different design tools act as connectivity tis-

sues in the chip and play a role in filling the gaps between new and old IPs. There are

two different types of IP cores; hard and soft. Hard core IPs usually have certain defined

functionalities and cannot be modified by designers. However, soft core IPs are adjust-

able according to the certain design requirements [10]. IP reuse also brings certain dis-

advantage such as challenging to debug and optimize the design. In addition to it, bad

documentation can also lead to more time in understanding the design.

To facilitate automation and reuse of IPs in SoC design, IPXACT standard format is used

between most of the IP vendors and SoC development companies. IPXACT is an open

standard XML-based format.

3.5 SoCs

A SoC systems can be classified into two main categories as ASICs and FPGAs. It is an

integrated circuit that integrates custom logic on a single chip such as, microprocessors,

coprocessors, digital signal processors (DSPs), hardware accelerators, on-chip memory,

peripherals, external interfaces, analog and custom circuitry and all types of other system

and processing components.

Figure 7 demonstrates some of the basic elements of a SoC system, that includes as-

sortment of processors connected to memory elements. The SoC can also have analog

circuitry for handling sensor data, analog to digital convertor, or to support wireless data

transmission or reception etc [7].

Media
Processor

Core
Processor

Vector
Coprocessor

Memory
Analog and

Custom
Circuitry

System
Components

Interconnects

Figure 7. A basic SoC model

The distinguishing factor between SoC and a general-purpose IC is the specific require-

ment for the target design. The requirements are assumed to be known beforehand so

that the foundation of the system can be laid accordingly. This emphasis on selection

20

and configuration of system components for tailored application distinguishes system

architecture from computer architecture.

3.5.1 ASIC

As the name suggests, ASICs are customized ICs designed for a specific application.

An ASIC can be categorized as a SoC if it contains one or multiple processors. ASICs

are designed for a specific purpose and their functionality remains the same for their

entire lifetime and their functional logic cannot be modified. ASICs are very expensive,

time and resource consuming ICs to develop but they offer extremely high performance

and low power consumption [22].

3.5.2 FPGA

ASICs offer extremely high performance and lower power consumption. However, we

cannot modify any of its algorithmic digital functional logic because these algorithms are

frozen in the silicon chip. This brings the need for FPGAs, as the name suggests FPGA

ICs are field programmable to operate according to the intended applications designs.

FPGA devices are made up of hundreds of thousands of Configurable Logic Blocks

(CLBs) connected through hundreds of thousands of programmable interconnects. Flip-

Flops, Multiplexers and Look-up Tables are the primary building blocks of CLBs. In ad-

dition to the CLBs, FGPA devices also contain PLLs, block RAMs, DSPs and external

memory controllers [6]. Table 1 provides the comparison between FPGAs and ASICs.

Comparison between FPGA and ASIC

FPGA ASIC

Reconfigurable logic Fixed logic

Faster time to market Takes longer time

More power consumption Power efficient

Not suited for high volume production as

large FPGAs are expensive and not justifia-

ble for high volume production

Suited for high volume production due to less cost/unit

but expensive to develop in comparison to FPGAs

Limited in operating frequency due to routing

and configurable logic

Higher operating frequency since its optimized for spe-

cific function

Analog designs are not possible Analog circuitry is possible

Well suited for applications where the current

design might need to be upgraded so the

high cost is not the deciding factor but the re-

programmability of FPGAs

Not suitable for applications where the design needs

to be upgraded

Designers do not need to worry about back

end design

Designers need to care for every step from RTL down

to testing constraints

Table 1 . Comparison between FPGAs and ASICs

21

After the overview of digital systems, the following section discusses the algorithm mod-

eling in the SoC development.

3.6 SoC Algorithm Modeling

A model is conceptualization and simplification of the reality. Modeling can be said as a

proactive approach to highlight aspects of a system and to help in order to solve the

problems [7].

Complexity in SoC design is increasing at a rapid pace and faster time to market is also

strongly required. To manage these complexities, the earliest steps that are taken to

overcome these problems are to analyse and model the high-level abstract design before

implementation.

In general, there are certain goals for system modeling, such as [24]:

 Performance evaluation of the design

 Resource estimation for the design

 Power consumption

 Design-space estimation

 Verification of functional correctness

 Testing under multiple real-life scenarios

This modeling flow and process enables engineers to evaluate design trade-offs, test

design under multiple real-life scenarios. This approach helps to save huge amount of

time at the stage of verifying the design.

At the time of designing a system model, irrelevant details are not considered but the

abstract of the design. One of the approaches that leads to an efficient design, is to divide

and conquer while forming hierarchies.

Some other qualities in addition to the ones mentioned earlier of a good model are [6]:

 Easy to understand

 Accurate representation of the specifications

 Affordable so that it is easier to develop to study actual design

 Answers all the analytical behaviour of the actual system

22

3.6.1 Modeling Flow

Figure 8 presents the workflow of a model-based design [25].

System

Specifications

High-Level

Design

Low-Level

Design

Determine Modeling Goals

Determine Components

Design New Components

Analyze Model

Modeling System Layout

Model Components

Requirements

System Level

Design

Subsystem Design

Complete

Integration and Test

System Integration

and Test

Subsystem

Integration and Test

Figure 8. Model based design workflow

Below are the few methods a model can be represented, such as [24]:

 Graphical Design: This method uses block diagrams and graphs in designing a

model. Different design tools are used, such as MATLAB and Simulink allow engi-

neers to comprehend by swiftly prototyping their algorithms into models.

 Textual Design: This method uses mathematical expressions and programming lan-

guages such as C, C++, System C, Python and MATLAB tool to design a system

model in the industry as well as academia. Multiple tools are used in designing such

system models that support and compile one or all the above-mentioned program-

ming as well as system modeling languages. In this method even a simple text editor

can work to develop a system model.

 Hybrid Design: This method uses both graphical and hybrid methods together to

design a system model.

23

3.7 SoC Hardware Design Process

The HDL model design process encompasses specifications from the start to a plan that

consists of all the information required for physical construction at the end. The HDL

model design process begins with designing the SoC system architecture that is usually

designed by a SoC architect. System architecture defines the overall hierarchy of the

design, such as system architecture, subsystems architecture, IP blocks and intercon-

nect blocks. Breaking down functionality of the entire SoC system into smaller subsys-

tems and IP blocks makes the SoC development process easier. It brings many benefits,

such as project management, algorithm modeling, HDL model development and verifi-

cation etc [22].

Digital logic design, computer architecture and HDL model design languages along with

concepts of mathematics help the HDL model design engineers in development of digital

system design or a SoC system development. Some important logical functional blocks

that are written in HDL languages, help in development of complex HDL model design.

Combinational logic components, sequential logic elements, registers, Finite State Ma-

chines (FSMs), Arithmetic Logic Units (ALUs), decoders and multiplexers etc. are some

of the examples of logical functional blocks or elements.

In the SoC development, many analog logic blocks or components are also designed

that help us to interact with real world, such as Digital to Analog Converters (DAC), An-

alog to Digital Converters (ADC) and clock generating units such as Phase Locked Loops

(PLLs) [5].

3.7.1 Design Flow

HDL model of an IP block or any logical functional block or component goes through the

different design flow steps until the block is ready for integration at subsystem or system

level. Different design and verification methodologies are used to the block that is ready

for integration at a higher level as depicted in the Figure 9 [23].

24

Specifications

Architecture

Functional
Specifications

Technical
Specifications

TestbenchHDL Model

RTL Verification

Compilations

Linting

Sanity
Verification

Area, Timing
and Power
Analysis

Test
Coverage
Approver

Logic
Synthesis

Ready for Integration

Figure 9. HDL model design flow

3.7.2 Design Tools and Languages

In HDL model design process of the SoC development, different HDL model design tool

and HDL languages are used in the industry as well as in academia. It involves different

HDL languages editors, compilers, linting, testbench development, synthesis and power

analysis tools. HDL model design engineers use different languages, such as, VHDL,

Verilog, SystemVerilog and System C etc for HDL modeling of the digital hardware [6].

3.7.3 Design Reusability

Modern day SoCs are extremely complex, it makes the development of a SoC system

extremely difficult to start from scratch. This is where the need to reuse the existing IPs

arises. There are different vendors that provide the pre-verified reusable IPs in IPXACT

format which is an open XML-based standard [6]. Section 3.4 discusses more about IP

reuse.

25

3.8 SoC Hardware Verification

This section discusses the digital hardware or HDL model verification in general as well

as from SoC viewpoint. Verification is the most important part in the process of any sys-

tem development, and it cannot be omitted from the process. A system can only be

claimed to behave functionally correct after the proper verification of all the system fea-

tures is completed and the system has passed all the verification tests [10].

In a SoC system development, approximately 60-80% system design efforts are dedi-

cated to the system verification. Therefore, reusability of the pre-verified IP blocks from

inhouse and other IP vendors helps in saving cost, time, efforts and other resources [8].

3.8.1 Verification Flow

The digital hardware verification process in a SoC development or in any other digital

hardware system design starts at the same time with HDL model design.

Figure 10 present the generic digital hardware verification process [8][10].

HDL Model DesignHDL Model Verif ication

Specificat ions
Planning

Verification Plan

Test Case Plan

Coverage Reports

Regression Reports

H
a
rd

w
a

re
 D

e
s
ig

n

Testbench HDL Design

MATLAB Reference Model

Dynamic/Stat ic Verification

Verification Complete

S
ti
m

u
lu

s

G
e

n
e

ra
ti
o
n

R
e
fe

re
n
c
e

Figure 10. HDL model verification flow

26

It is extremely important to properly verify the system so that it meets the performance,

power, security and safety requirements of the design. The verification process is an

extremely critical part of the system design cycle, as any bug in the design not found and

debugged before tape-out can make the whole chip useless or cause millions of dollars

in lose.

Digital hardware system design and verification projects are developed in parallel. Spec-

ifications decide the features to be designed and verified in the system. Reference mod-

els are developed to verify the functional behaviour of the system. Testbenches are de-

veloped to test the actual design against the reference model, where a testbench is a

simple piece of code that helps to verify the functional correctness of the design. Refer-

ence models are meant for providing a set of reference input/output vectors to the

testbench so that it can verify the behaviour of the actual design. Verification completes

once the system output behaviour is matched against the reference model data [7].

3.8.2 Verification Methodologies

There are many different digital hardware verification methodologies being used in the

FPGAs and ASIC SoCs. The most common method in the academia is writing HDL

testbenches to verify the digital systems but sometimes advance verification methodol-

ogies are also used.

However, in industries advance methods of verification in addition to HDL testbenches

are being followed worldwide such as Universal Verification Methodology (UVM) and

Open Verification Methodology (OVM) etc which depends on the need and requirements

of a system [8].

There are multiple approaches that are used in the testbench development as well as

verification processes and flows such as top-down, bottom-up, platform and system in-

terface based etc.

Top-down and bottom-up are the most common methods to verify a system. In the top-

down approach, system level verification is done before the block or IP level verification.

However, bottom-up approach is the most common one which does the block level ver-

ification before the system level verification [10].

27

3.8.3 Verification Tests

There are different verification tests that are performed in verification process, such as

[8]:

 Random testing to verify the design against random input data

 Functional testing to verify the functional correctness of the specified features

 Regression testing to make sure exiting functionality does not break after each
bug fix

3.8.4 Verification Languages

There are many languages and tools that are being used in the industry and academia

to develop the testbenches for verification of a digital system. VHDL, Verilog and Sys-

temVerilog etc. are the most common ones among all [7].

28

4. DATA REPRESENTATION

This chapter discusses the different formats of data representation, storage and pro-

cessing. In computer systems and SoC system development we always deal with nu-

meric data which makes it very important to understand how this numeric data is repre-

sented. The following section discusses the binary representation of data.

4.1 Binary Representation

In computer systems, binary representation of data is very important because digital

electronic systems and devices works on the concept of two known states, on and off

state. Numeric data is represented using only two levels such as true or false, on or off

and high or low. This representation of data in 0s and 1s is called the binary representa-

tion [5].

To convert a decimal number to a binary number, we find all the powers in 2 and then

add them to calculate the required binary number. Each 0 and 1 digit in the binary num-

ber representation defines a bit and a group of 8 bits is termed as a byte. For example,

a decimal number 89 is represented in the binary format as follows:

8910 = (1011001)2

8910= 1×64 + 0×32 + 1×16 + 1×8 + 0×4 + 0×2 + 1×1

8910 = 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

8910 = (1011001)2

4.1.1 2’s Complement

Two’s complement is a convention that represents signed binary integers. To represent

a negative number through this convention, we first invert all the bits from 0 to 1 and 1

to 0 then add 1 to the reversed number as follows:

 To represent -89, first we will write binary form of 892 = (1011001)2

 Reverse all the bits to 0100110

 Now add 1 to the reversed bits 0100110 + 1 = 0100111

The representation of -89 in 2’s complement is (0100111)2

29

Below sections presents Fixed-point and Floating-point binary representations. They are

the most important representations of data in the binary format among others in the field

of digital system design [3].

4.2 Fixed-Point Representation

Fixed-point data representation is characterized by the fixed position of radix point,

where the Least Significant Bit (LSB) or the bits before the radix point represent integer

part and Most Significant Bit (MSB) or the bits after the radix point represents fractional

part of the real number. Decision about selection of bits always depends on the require-

ments, whether MSB and LSB bits represent fraction and integer part of the number

respectively or vice versa. For signed numbers, one bit is reserved for sign representa-

tion in data [7].

Figure 11 presents the generalized fixed-point representation.

B4 B3 B2 B1 B0B5...Bn-1Bn

LSBMSB

Binary point

Figure 11. Fixed-point number representation

In the fixed-point representation, the radix point position is predefined based on system

requirements, more precision is achieved with more bits after the radix point. It is im-

portant to pay attention that in the memory radix point is not kept but it is a way to interpret

stored bits of data [13].

4.2.1 Integer Representation

In the case of integer data representation, we consider the radix point at the end. To

represent numeric range of n numbers of bits, we have [30]:

0 ≤ 𝑥 ≤ 2𝑛 − 1

The above representation can only show numbers in the positive range, hence called

unsigned binary representation. If we take 4 bits, the represented range of numbers is

0-15.

Signed binary representation is defined to represent negative numbers which is:

−2𝑛−1 ≤ 𝑥 ≤ 2𝑛−1 − 1

30

With the above formula the represented number range stays the same, but the highest

positive number that can be represented is reduced to half. First bit is used to signify

sign of the number so for 4 bits, now the numbers that can be represented are from -8

to 7 [30].

4.2.2 Fractional Representation

For fractional data representation place of radix point is interchangeable according to the

number of fractional bits assigned. In signed fractional representation, one bit is reserved

for sign and rest of the bits are reserved to represent fractional and integer part of the

number. Figure 12 represents fixed point signed and unsigned fractional representation

[31].

I

Fraction Field

F

Integer Field

Unsigned Fixed-Point

Signed Fixed-point

IS

Fraction FieldSign

F

Integer Field

Figure 12. Fixed-point signed and unsigned number representation

4.3 Floating-Point Representation

In floating-point data representation, as the name suggests radix point can float or placed

anywhere comparative to a number’s significant digit. The floating-point data represen-

tation is very important in DSP computations where numbers are represented with large

dynamic range. To represent numbers with large dynamic range, more bits are required

to represent the smallest and largest number in the range. It results in decreased pro-

cessing speed, more surplus memory and high cost [13].

Floating-point arithmetic with scientific notation representation was introduced to over-

come this issue. This representation with its exponent increases the dynamic range rep-

resentation with a smaller number of bits. Scientific notation of a number consists of a

mantissa, a radix and an exponent, it is expressed as follows:

Mantissa x Radix exponent

31

In binary floating-point number system, the represented number has a signed binary

mantissa and an exponent with a radix of 2. As per above representation, fractional part

is the mantissa that represents accuracy in the computations. However, exponent rep-

resents the dynamic range of a number. For the representation of larger dynamic ranges,

number of bits increases to represent the exponent. For higher accuracies in the com-

putations, number of bits increases to represent the mantissa [30].

4.3.1 IEEE-754 Standard

To represent floating-point data, different standards have been introduced but IEEE-754

standard is the most widely used with a few exceptions. This data representation is di-

vided into three fields to represent a floating-point number; one-bit sign, exponent bits

and fraction bits as presented in Figure 13. The sign of the fraction field indicates the

sign of the whole number whereas the sign of the exponent indicates the magnitude of

the entire number [31].

ES

Fraction FieldSign

F

Exponent Field

Figure 13. Basic floating-point number representation

IEEE-754 standard has different floating-point formats of which ’32-bit single precision’

and ’64-bit double precision’ are more commonly used. Table 2 represents different for-

mats with exponent ‘E’ and fractional bits ‘F’ division [31].

Common Name
No. of
Bits

Sign
bit

Expo-
nent

Fraction
Max. Expo-
nent

Min. Exponent

Half Precision 16 1 5 10 15 -14

Single Precision 32 1 8 23 127 -126

Double Precision 64 1 11 52 1023 -1022

Quadruple Precision 128 1 15 112 16383 -16382

Table 2 IEEE-754 Floating-Point Standard

32

4.4 Quantization Effects

Quantization is the process of converting analog signal into digital domain, due to the

nature of analog signal having infinite values. The received digital signal have to be

quantized to a certain set of values. The quantization of an analog signal from infinite

samples to a finite number of samples results in errors and affects on signal quality.

These errors and degradation of signal quality is termed as quantization errors. There

are two main groups of quantization techniques, truncation and rounding [13]. Figure 14

presents the different quantization techniques [29].

Quantization

Truncation Quantization Rounding Quantizat ion

Round Towards Nearest Round Towards Zero Round towards Round Towards -

Figure 14. Quantization techniques

Truncation is defined as a process where bits exceeding from the allowed number range

regardless of the number sign are dropped-off from the LSB side. However, in the round-

ing-off technique, extra bits are dropped-off while rounding the number to the next near-

est number in allowed number of bits. Table 3 presents affects of fixed-point and floating-

point quantization [29].

Fixed-point representation Floating-point representation

Quantization error is additive Quantization error is multiplicative in nature

The power of the error remains constant Due to continuous change in quantization step,

error power also changes constantly

Noise level is represented by number of

bits

Noise level is represented by bits in mantissa

Removing quantization error is easy Removing quantization error is complex

Quantization error is constant irrespec-

tive of signal value

Quantization error increases with the increase in

signal value

Table 3 Quantization affects on Fixed-point vs floating-point data representation

33

4.5 Data Representation in Digital Electronics Design

In digital electronics, data or instructions are not entered and processed by directly using

human language. The data such as numbers, symbols or pictures etc are first converted

into machine readable format that is binary form before processing. Digital electronic

components like processors all are made of millions of electronic circuits. In electronic

circuits, high voltage is interpreted as ‘1’ and low voltage is interpreted as ‘0’ similar to

switching an electronic circuit ‘on’ and ‘off’. This forms the base for using binary number

system in digital electronics. The following paragraph discusses the reasons why we use

binary system in digital electronics.

Developing devices that can understand human languages directly is proven difficult be-

cause of its complex nature. However, constructing electronic circuits based on ‘off & on’

logic is simple in comparison. All forms of data are possible to represent in binary number

representation. Few of the other benefits are more reliable digital devices, small in size

and use less energy when compared to analog devices. The basic unit of binary repre-

sentation in digital electronics is bit.

In digital design flow, specifications are usually written in textual representation to define

system behaviour and performance. The next step is the design of algorithm model with

the specifications defined. Most of the time system modeling is done by using tools such

as MATLAB, Simulink, C/C++ etc. to simulate DSP algorithms. At this design stage,

MATLAB model uses floating-point arithmetic due to the need of accurate computations

and ideal system performance analysis. MATLAB model is used as reference and it helps

to generate input data for bit-exact C++ model testing and provide information of the

signal quality of the C++ model. Although MATLAB model uses floating-point arithmetic,

C++ model provides fixed-point bit exact reference stimulus and response vectors to be

used later in verification of the HDL design.

After the algorithm modeling, the design is implemented in fixed-point binary arithmetic

at RTL using HDL. At verification stage of digital design flow, reference stimulus vector

is fed to the Design Under Test (DUT) as represented in the Figure 15. The simulation

output data of DUT is dumped and compared with reference response vectors to verify

the functional correctness of the HDL design. This process is iterated until expected re-

sults are achieved or the HDL model is fully verified.

34

Specificat ions (text)

C++ Model (Fixed-point bit exact)

MATLAB Reference Model

(Floating-point)

R
e
fe

re
n
c
e

R
e
s
p

o
n

s
e
 V

e
c
to

r

R
e
fe

re
n
c
e

S
ti
m

u
lu

s
 V

e
c
to

r

Testbench

DUT (Fixed-point HDL model)

Floating-point

Fix-point

Pass/Fail

Fix-point

Figure 15. Data Representation in Digital Design Flow

The selection of arithmetic data representation is very crucial in digital electronics as it

has the highest impact on cost/performance trade-off [30]. One of the two data types

from fixed-point or floating-point are selected due to system requirements.

Fixed-point data representation is selected due to low power, small silicon area, low la-

tency and simple circuitry. However, floating-point offers higher accuracy, greater dy-

namic range and Signal to Quantization Noise Ratio (SQNR) [32].

Even though floating-point offers higher dynamic range for data greater than 16-bits but

computations become complex with varying exponent for different data. One of the key

requirements in embedded systems is achieving low power. Based on IEEE-754 stand-

ard, floating-point arithmetic needs minimum of 32-bits while fixed-point mostly requires

6 to 16 bits. The use of more bits leads to larger bus sizes, memories and complex

computations that results in more power consumption and high cost architecture [31].

Hence in digital electronic design, fixed-point arithmetic is preferred over floating-point

unless it cannot be avoided.

35

5. CONTINUOUS INTEGRATION SYSTEM FOR

SOC

In this chapter, we will discuss about CI due to advancement in technology and the need

to release faster time-to-market products. It became crucial for organizations to deliver

innovative products in a consistent and reliable manner.

In this scenario, companies have to better respond to dynamic market requirements by

following latest development models that will help to improve performance and quality

control. The answer to an efficient and reliable system is Agile methodologies and

DevOps culture. DevOps extends the agile methodologies to swiftly deliver products in

an automated and integrated process. CI is an agile practice that helps to verify and

integrate code from the early stages of the design cycle [9].

5.1 Continuous Integration System

CI was first developed for improving software development cycle. One of the reasons

was to automate integration process that takes a big part of the development process in

traditional software development cycle [16].

CI goes hand in hand with the evolution of development models. This methodology

emerged at the same time and hence why is defined as:

 “A software development practice where each team member integrates their work reg-

ularly, usually each developer integrates at least daily - leading to multiple integrations

per day. Each integration is verified by an automated build (including test) to detect errors

as quickly as possible [19].”

As a result of following this approach, a cohesive software with reduced integration is-

sues is developed. This technique also helps to save large amount of time and human

resources. Some of the mandatory requirements to implement a CI system that is pre-

sented in the Figure 16 are [9]:

 Version Control Repository

 Build script

 CI server

 Feedback mechanism of choice

36

Build

Central
Repository

CI Feedback

Figure 16. Continuous integration design flow

In order to design a CI system, below are the summarized main rules to implement [19]:

1. Design automated tests to run on local machine before committing.

2. After local test pass, submit to the version control repository.

3. After certain time intervals, CI server checks for any possible change.

4. In case of CI server detects any change in central repository, it fetches the latest

code from the version control repository. Main purpose of CI server is to perform

build process and creates scripts to integrate code centrally.

5. CI server sends build results to the team members via email or SMS etc. notifi-

cations.

6. In case of any change detected in central repository, CI system goes to step 4

and continues till the end.

37

5.1.1 CI System Benefits

CI was first designed and implemented for software development project, even than the

benefits of this methodology are applicable for both software and hardware development.

Some of the benefits of CI system are given below [16][19]:

 CI helps to automate the usual repetitive manual processes like code compilation,
testing and integration.

 Higher code quality is achieved due to the fact that the code which is in version
control works.

 CI increases confidence in the work done, helps in risk reduction and leaves no
room for the fear of undelivered project.

 Complete overview of the system at all times with the knowledge of what works,
work done and any bugs in the system.

 Due to frequent commits, a small bit of the system is changed. Designers don't
have to look far in order to detect bugs, hence easier to fix because of less bugs
at each stage.

 CI allows better project visibility and makes collaboration easier between the
teams.

 Better division of work responsibilities among teams due to impartial CI system.

 CI helps in better project planning and time-to-market estimates because of cur-
rent status visibility.

5.1.2 CI System Tools

There are numerous CI tools that are available in the market. However, selection of the

tool depends upon multiple factors but the main feature targeted is automating the design

development processes. There are many CI tools such as Jenkins, Bamboo, CircleCI

and Codeship etc. All of the CI tools offer almost similar features with few exceptions

from each other [16]. Although there are frequent releases of new tools, Jenkins is the

most used and readily available open-source tool. Despite being open-source low cost

tool, Jenkins has the largest library of available plugins. Rest of the Jenkins features are

given below and presented in Figure 17 that demonstrates its convenience of use [15]:

 Multilanguage support

 Easy configuration

 Compatible with all version control systems

 Supports extension to customise a project

 Largest number of plugins

 RSS/E-mail/IM easy feedback integration

38

Jenkins

Build

Easy

configurations

Supports

extensions

Version control

system

Plugins

Maven

Git

Continuous

tesing

Easy feedback

integrat ion

Figure 17. Jenkins-CI tool features

5.2 CI System for SoC

Implementation of Agile methodologies in design and verification processes of hardware

development and need for CI implementation was realized early on. During different

stages of SoC development, concepts of CI helps in building test cases, designing re-

gression/non-regression tests and coverage driven verification [18].

Hardware development consists of many parallel processes despite the contrary belief

of delivering one final chip at the end. It requires development of functional block (IPs)

mainly from modeling to designing in RTL while integrating and updating the blocks. Until

the first silicon sample which too needs integration and packaging, each step can utilize

benefits that a CI system offers [17].

From SoCs modeling perspective, different functionalities and feature are continuously

added in models which requires multiple builds and tests to confirm their status. At RTL

level, designing modules and then integrating them to higher level systems can utilize

integration and build methodology. Functional and regression tests are done for the ver-

ification of IPs for both system and subsystem level. All of these indications confirm the

benefits of CI in hardware development.

39

One of the benefits of CI is the confirmed availability of working code in the repository.

This allows better collaboration between different teams; one scenario is the timely setup

of test vectors and verification environment from design model to check RTL design be-

fore its completion. One more example is that layout teams can use the CI code from

repository anytime and start with synthesis because of no likely issues due to already

passed pre-checks [16].

In hardware, CI helps to better analyse bug-fixes and need of new features because of

the frequent sanity checks. Other benefits of CI in SoC includes, preventing designers to

keep massive code changes at their desk because of frequent commits which plays a

huge role in faster time-to-market expectation of the customers.

5.3 Potential Problems in CI for SoC

Implementation of CI systems for hardware provides a lot of benefits but there are many

problem areas which hardware designers face while using CI systems for their work.

Some of the potential problems which SoC hardware teams face are [9][18]:

 One of the problem occurs due to unavailability of test cases to RTL design

team in advance by verification team. In this case, committed code should be

considered as only a primary release.

 Due to large number of features, integrating an IP can take a long time.

Hence, designers cannot commit several times in a day.

 In CI systems one of the most undesired practise is to commit broken code,

but in hardware this sometimes can be a possibility. Broken code is commit-

ted for backend teams to analyse and do floor planning.

 One of the CI practise that gets violated is to fix broken builds immediately.

For example, when verification team tests the integrated IP and provides a

fix. Then once again design team integrates the IP. This whole process takes

time then recommended immediate actions.

 The recommended debug time for a broken build is 10-20 minutes or else

revert the commit to previous stable state. However, in hardware simulations

can take hours ultimately debugging also takes much more time.

 In CI systems, it is recommended to keep the build time around 10 minutes

which cannot be applied for hardware implementation as the build time can

lead up to hours.

 For successful CI implementation, it is not recommended to go home with a

broken build. In hardware design, it is not possible as it takes a long time to

fix a build.

40

5.4 Proposed Solutions for CI for SoC

In order to make CI system work seamlessly and efficiently for SoC flows, there are few

adaptations made to make it work best for hardware development [17][18]:

 In CI it is suggested to commit multiple times a day in version control repository.

However, in hardware it can be as soon as a new functionality is added so that it

can be verified regularly.

 One solution to the issue of committing broken code for backend teams in hard-

ware is to implement a workaround to artificially keep the status passing.

 In order to speed up the whole process, isolate sanity tests that take less time

and create a dedicated test suite.

 In CI for hardware, it is better to design separate checks to test different features.

This will help to isolate the problem in less time with few tests given the design

does not work.

 In hardware, fixing bugs can take a lot of time due to complex design. A proposed

solution is to revert the design to an older commit and fix the problem on a local

machine before committing it back to the central repository.

 To save time, separate more complex/full test suits for overnight run.

41

6. MODEL DESIGN WITH CI IMPLEMENTATION

This chapter discusses about the Simulink model and its implementation. Jenkins CI tool

is used to build and run the test case in order to confirm the correct model functionality.

Section 6.5 discusses the results of research study conducted and possible actions to

improve SoC development.

6.1 System Architecture

The base model is a frequency domain channel filter that is filtering one carrier [26][27].

The whole modeling design has three phases, first is the MATLAB floating point refer-

ence model, second phase is modeling C++ bit exact model and then designing Simulink

model.

The MATLAB model act as a test bench for bit exact C++ model and to also quickly test

new features. C++ bit exact model is developed so that it can be used in actual test-

ing/verification process of SoC development. Simulink model uses C++ bit exact model

so that it can be further used in MATLAB to provide bit exact model to digital front end

(DFE). Figure 18 presents relativity between MATLAB and C++ models.

C++ Bit Exact Model

MATLAB Reference Model

FC-Block FFT IFFT Tail RemoveX

Control

Filter Input Filter Output

FC-Block FFT IFFT & Tail RemoveX

Control

Filter Input Filter Output

Figure 18. Channel filter model block diagram

42

6.2 Simulink Model

To design this model, first we need to run existing C/C++ model in Simulink. The C++

model takes input signal generated by using MATLAB. For actual simulation there are

two input signals; data and configuration. The data is vector of I/Q samples and the con-

figuration is a control vector that defines the information related to current symbol. Figure

19 presents block diagram of the Simulink model.

Simulink Model

S-function Block

FC-Block FFT
IFFT & Tail

RemoveX

Control

Filter Input Filter

Output

MATLAB function
Input signal from

MATLAB

Figure 19. Simulink model block diagram

Input data that is generated by using MATLAB, in Simulink model ‘Signal from Work-

space’ block is used to feed the input data to C model. Both I/Q samples and control

have header, which defines whether input is valid or not. 'MATLAB function’ block is used

to define a function that checks input and feed to C++ model. To examine the symbol id

that checks data validity, read the configuration values and reset the counter for next

samples accordingly.

There is a S-function method in Simulink to run the existing C++ model, which is a com-

puter language description of a block that is written in C, C++, MATLAB or Fortran. S-

functions are compiled as MEX (MATLAB executables) files, providing an interface be-

tween MATLAB and functions written in C/C++. When complied, it allows to automatically

invoke external function as if they are built-in to execute Simulink model. The signal gen-

erated are then fed into S-function block as input. Multiple set of S-function callback

methods are implemented to perform tasks required at each simulation stage. Following

paragraphs in this section presents a few of these methods.

Figure 20 presents the snippet of mdlInitializeSizes callback method. It defines the size

of several parameters in the SimStruct, for example number of inputs, output, states and

parameters of the block.

https://se.mathworks.com/help/simulink/sfg/mdlinitializesizes.html

43

Figure 20. Input parameters of the S-block

Figure 21 presents the mdlInitializeSampleTimes that specifies the sample rates at

which this S-function works.

Figure 21. Sample rate setup

In mdlStart callback method, it initializes the state vectors of the S-function. Figure 22

presents how the register values from text file are fed that contains current symbol infor-

mation to call C++ function.

Figure 22. Register values to call C++ function

44

One of the most important callback methods is mdlOutputs, it computes the signals that

the S-function block emits. Figure 23 presents, valid output complex sample data is

transmitted to output port by calling C++ function to the output port and separating the

real and imaginary parts.

Figure 23. Signal at output port

mdlTerminate – performs any actions essential for the termination of simulation. If no

actions are needed, this function can be executed as a stub.

Finally, Figure 24 presents frequency domain channel filter’s input and output signal

spectrum [26][28].

Figure 24. Signal before and after channel filtering

45

6.3 CI System for Model Implementation

Chapter 5, section 5.2 discusses the benefits of CI implementation in hardware develop-

ment. There are few other reasons due to which CI system is recommended in model

design such as multiple people using or modifying the same model. CI is used to avoid

using broken models and only the working model stays in repository. One more practise

that modeling team takes advantage is in case of new tool releases, CI can test all the

used cases with new release and verify existing models.

6.3.1 Jenkins Testcase

Continuous integration tool Jenkins is used to test build results and working of Simulink

model. To check, input signal is filtered according to the control information. A testcase

was implemented in Jenkins to check received signal quality. The error vector magnitude

(EVM) is a measurement for signal quality and it defines the error and actual signal rela-

tion [26]. It is confirmed that the build is good after the testcase passes in Jenkins. Jen-

kins is also used to automate release notes with other SoC teams, for promoting results

to higher level instead of carrying out manual testing and creating releases to inform

relevant teams.

This section explains, how to setup a project with CI tool for testing and building different

targets. First step is to create a new item in Jenkins and then write the name of the

project and select ‘free style project’ as presented in Figure 25.

Figure 25. Jenkins web interface to setup a new project

Next step is to configure the project, copy the repository URL from GitHub. If the project

is built at this phase, it will clone the repository to workspace. After the initial build, add

URL and secret token from the Jenkins to GitLab project. As presented in Figure 26,

select ‘incoming’ branch to trigger the build and ‘Merge Results’ for every time code is

pushed to the incoming branch. Recipients and email alerts are also setup at this phase.

46

Figure 26. Jenkins Post-build actions

Jenkins job is triggered at every commit to the incoming branch. For Jenkins tool, bash

script is in the root of the repository to build and test for both desktop and Unix. This

script also merges master and incoming code to check updated master’s functional cor-

rectness. In the bash script, setup for the different environment is done to load correct

compile environment and MATLAB in grid or desktop. Figure 27 presents bash script’s

snippet for environment setup.

Figure 27. (top) Check if grid or Jenkins environment, (bottom) Environment

based setup for MATLAB

47

To track the changes in the selected directories, paths are given to compare latest and

previous versions by running compilations and tests as presented in Figure 28.

Figure 28. Bash script snippet to track changes and run test

This bash script also checks the code in Unix or desktop to start Jenkins job. It is im-

portant to provide correct exit codes so the Jenkins tool can differentiate between a suc-

cessful and unsuccessful test. Figure 29 presents Jenkins exit code in case of incorrect

test results.

Figure 29. Jenkins exit code

48

Figure 30 presents grid results in case of changes in Simulink model and a successful

testcase result.

Figure 30. Jenkins script runs and test Simulink model

6.4 Result Analysis

The reason behind designing a C++ model of the same exact MATLAB refence model is

that it can be used for RTL verification of this particular system in later stages of SoC

design. The benefit of designing a Simulink model is that the C++ bit exact model can be

used further in other models to provide bit exact filtered data especially to DFE model.

Due to use of CI system, the aim of designing a model that is always up to date, at an

adequate complexity and is easy enough to be used for a person not mastering the topic

is achieved.

6.5 SoC Practices Research and Findings

This section describes about the study conducted as part of the research work done for

the thesis work. The first section describes about the interview group and selection cri-

teria. In the next section, results and proposed actions are discussed.

In order to conduct research study, multiple experts from different SoC development

teams were selected such as few individuals from modeling team, RTL design and veri-

fication teams. All the members volunteered for the study. No particular study style is

49

followed but a relax discussion sessions with each expert so that they can speak without

feeling conscious or pressurised. The research group includes, people from different na-

tionalities with varying work experience of 5 years up to 25 years. Although no particular

format was followed but to start the conversation below question was asked:

What are the potential problems you face w.r.t your work and other SoC teams?
Some ideas to improve overall SoC development process and impact of CI in your
work.

Meanwhile, during the discussion wrote down things that came up and sometimes asked

additional questions to elaborate the point made. Each session in duration lasted around

20 minutes to about 45 minutes. Below are the findings of the study conducted:

 One of the top suggestions given by multiple experts is to put more efforts in

better planning and resource allocation from the beginning of the project. Taking

away engineers or adding more resources later in project often results in turbu-

lence among the teams.

 CI system is utilized in modeling work and it helps to keep the code clean and

avoids breaking the models. It helps to test commits to central repository and

model testing.

 Most of the modeling engineers don’t have hardware design knowledge which

leads them to not optimally design fixed point models. One of the key suggestions

for modeling engineers is to have trainings to better understand hardware side of

the design.

 Using tools to auto generate code such as from MATLAB to C/C++ is not con-

venient. It contains a lot more redundancy and is hard to explain other

teams/members utilizing that model.

 One more suggestion for better project planning is to decide resource allocation

before the start of the project and keep them updating, for example number of

licenses and server space estimation etc.

 Hardware designers find use of Jenkins tool very helpful in their daily tasks as it

helps them to not forget about testing and building their code.

 One of the issues highlighted was, HDL designers don’t put needed efforts in

verification of their design. By making very basic testbenches and leave the work

on verification teams which leads to wastage of time. Proposed solution was to

put more efforts in verification so that verification team does not have to initiate

bug fixes too many times.

50

 It was also recommended by one of the designers to use hardware emulators to

run verification tools instead of normal serves. This helps to avoid long time

queues, as hardware emulators supports range of verification objectives - from

hardware verification, hardware/software integration to operating system testing.

 One of the problems verification team encounter is due to dynamic design archi-

tecture and specifications. In this case it becomes difficult to develop

testbenches. However, it is suggested to have architecture finalised before pro-

ceeding with RTL design and verification.

 It is recommended to develop reusable testbench components, so that they can

be used in other projects. This will save a lot of time and helps in early delivery.

 One other area highlighted is to have company specific libraries on top of UVM

to develop reusable testbench components and a common infrastructure rather

than every team working on their own to develop testbenches.

 It is highly recommended to have adequate infrastructure such as EDA licenses,

CPUs and servers so that engineers don’t wait for the availability of licenses in-

stead utilise their time efficiently.

 As part of SoC design methodology, unified development (emulation+soft-

ware+verification) should be followed for development to achieve better results.

 One of the suggestion given by a verification engineer is to have better coordina-

tion between universities and SoC companies. A better curriculum to train stu-

dents for verification work will eventually help companies to have well trained

employees.

 System Verilog is recommended to be adopted in order to design complex SoCs.

In case of one language for both design and verification, results in more optimised

EDA tools and it will help to shuffle resources between the two teams.

 For better IP reuse and verification teams, more efforts in clear documentation of

design specifications and user guidelines should be spent.

 One expert highlighted the importance of having one designated team for ana-

lysing the areas that needs improvement throughout SoC teams. This team

should constantly evaluate and present idea to improve overall working of the

teams.

 Key users for each tool should be allocated so that they can provide support and

small trainings now and then for better utilization of the tool and its new features.

51

7. CONCLUSIONS AND FUTURE WORK

SoC development is a complex process that needs multistage development flows and

tools. In this thesis, currently used SoC processes are evaluated to identify the areas

that can be improved. A literature study is done to present ideas on how to implement CI

for hardware development. Even though implementation of CI in hardware development

has its own limitations; faster turn around and better integration among different teams

makes it highly suitable. Better project management, clear status of design and ease of

integration with version control systems are few of the benefits which allows organization

to keep on using CI for SoC development.

As part of the thesis hands-on work to automate and streamline work between different

teams in SoC development. A model is designed in Simulink so that it can be used in

different stages of SoC development. CI system is also implemented by using Jenkins;

a CI tool for automating design build and testing reliability of the model design. The ben-

efit of designing a Simulink model is that the C++ bit exact model can be used further in

other models to provide bit exact filtered data especially to DFE.

A research study was conducted with different SoC development experts to identify ar-

eas in SoC development cycle where improvements are needed, usability and benefits

of CI in their work.

The purpose of the thesis is achieved by learning about SoC development flows, pre-

senting guidelines and recommending actions to improve existing flows and implemen-

tation of CI system in SoC. The outcome of the thesis is attained by evaluating benefits

of CI system in hardware and practically implementing CI in model design.

The model designed in this thesis sets a very strong base for the implementation of bit

exact model for other devices as an extension to this work in future. One other future

extension of this work can be to design a system level algorithm model. Additionally,

research studies should be organized sporadically to track improvements in SoC flows

and to understand new arising issues.

52

REFERENCES

[1] A. B. Carlson, P. B. Crilly, J. C. Rutledge, “COMMUNICATION SYSTEMS -

An Introduction to Signals and Noise in Electrical Communication”, Published by

The McGraw-Hill, 4th International edition, 2002.

[2] E. Dahlman, S. Parkvall, J. Sköld, “4G LTE/LTE-Advanced for Mobile Broad-

band”, Published by Elsevier, 1st edition, 2011.

[3] M. S. Alencar, V. C. daRocha, “Communication Systems”, Published by Springer,

2005.

[4] B. Clerckx, C. Oestges, “MIMO Wireless Networks”, Published by Elsevier, 2nd

edition, January 23, 2013.

[5] B. Razavi, “Design of analog CMOS integrated circuits” Published by The

McGraw-Hill, 2001.

[6] H. Kaeslin, “Top-Down Digital VLSI Design”, Published by Morgan Kaufmann, 1st

edition, December 18, 2014.

[7] M. J. Flynn, W. Luk, “Computer System Design: System-on-Chip”, Published by

Wiley, 1st edition, October 11, 2011.

[8] J. Bergeron, “Writing Testbenches: Functional Verification of HDL Models”, Pub-

lished by Springer, 2nd edition, February 28th, 2003.

[9] A. Glover, S. Matyas, P. M. Duvall, “Continuous integration: improving software

quality and reducing risk”, Published by Addison-Wesley, 1st edition, 2007.

[10] P. Rashinkar, P. Paterson, L. Singh, “System-on-a-Chip Verification Methodology

and Techniques”, Published by Kluwer Academic Publishers, 2001.

[11] D. Lee, G. Y. Li and S. Tang, "Inter-cell interference coordination for LTE sys-

tems”, in proc. IEEE Global Communications Conference (GLOBECOM), Ana-

heim, CA, 2012, pp. 4828-4833.

[12] F. Boccardi et al., "Multiple-antenna techniques in LTE-advanced," in IEEE Com-

munications Magazine, vol. 50, no. 3, pp. 114-121, March 2012.

[13] K. Kalliojarvi and J. Astola, "Roundoff errors in block-floating-point systems,"

in IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 783-790, April

1996.

https://www.google.com/books?hl=en&lr=&id=hl6JZ8DKlFwC&oi=fnd&pg=PR7&dq=Integrated+circuits&ots=GtCPCoiRSf&sig=bGzUKnfTYEdqErTgJioUK4zB2Y4

53

[14] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo and G. Seco-Granados,

"Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G," in IEEE

Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1124-1148, Second

quarter 2018.

[15] J. F. Smart, “Jenkins: The Definitive Guide”, Published by O’Reilly media, 1st edi-

tion, July 2011.

[16] M. Shahin, M. Ali Babar and L. Zhu, "Continuous Integration, Delivery and De-

ployment: A Systematic Review on Approaches, Tools, Challenges and Prac-

tices," in IEEE Access, vol. 5, pp. 3909-3943, 2017.

[17] J. Engblom, "Virtual to the (near) end - Using virtual platforms for continuous inte-

gration," 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),

San Francisco, CA, 2015, pp. 1-6.

[18] “A Continuous Integration System for ASIC Development” Access date: 14 Sep

2019. Available online: http://agilesoc.com/articles/a-continuous-integration-sys-

tem-for-asic-development/

[19] “Continuous Integration” Access date: 14 Sep 2019. Available online:

http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14 /lec-

turas/10_Fowler_Continuous_Integration.pdf

[20] “Huawei 5G Wireless Network Planning Solution” White paper. Huawei technolo-

gies, 2018, https://www-file.huawei.com/-/media/corporate/pdf/white%20pa-

per/2018/5g_wireless_network_planing_solution_en_v2.pdf?la=en

[21] “The evolution of Mobile technologies” White paper. Qualcomm, June, 2014,

https://www.qualcomm.com/documents/evolution-mobile-technologies-1g-2g-3g-

4g-lte

[22] Jinhyun Cho, Soonwoo Choi and SooIk-Chae, "RTL generation of channel archi-

tecture templates for a template-based SoC design flow," 2008 Forum on Specifi-

cation, Verification and Design Languages, Stuttgart, 2008, pp. 251-252.

[23] V. B. Kleeberger, S. Rutkowski and R. Coppens, "Design & verification of auto-

motive SoC firmware," 2015 52nd ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), San Francisco, CA, 2015, pp. 1-6.

[24] Emilliano, C. K. Chakrabarty, A. K. Ramasamy and A. B. A. Ghani, "Matlab and

VHDL model of real time partial discharge detection using FPGA technol-

ogy," 2011 IEEE Conference on Open Systems, Langkawi, 2011, pp. 389-394.

[25] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim and R. Uribe, "Automatic

conversion of floating point MATLAB programs into fixed point FPGA based hard-

ware design," 11th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2003. FCCM 2003., Napa, CA, USA, 2003, pp. 263-264.

http://agilesoc.com/articles/a-continuous-integration-system-for-asic-development/
http://agilesoc.com/articles/a-continuous-integration-system-for-asic-development/
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14%20/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14%20/lecturas/10_Fowler_Continuous_Integration.pdf
https://www-file.huawei.com/-/media/corporate/pdf/white%20paper/2018/5g_wireless_network_planing_solution_en_v2.pdf?la=en
https://www-file.huawei.com/-/media/corporate/pdf/white%20paper/2018/5g_wireless_network_planing_solution_en_v2.pdf?la=en
https://www.qualcomm.com/documents/evolution-mobile-technologies-1g-2g-3g-4g-lte
https://www.qualcomm.com/documents/evolution-mobile-technologies-1g-2g-3g-4g-lte

54

[26] T. Levanen, J. Pirskanen, K. Pajukoski, M. Renfors and M. Valkama, "Transpar-

ent Tx and Rx Waveform Processing for 5G New Radio Mobile Communica-

tions," in IEEE Wireless Communications, vol. 26, no. 1, pp. 128-136, February

2019.

[27] J. Yli-Kaakinen, T. Levanen, M. Renfors, M. Valkama and K. Pajukoski, "FFT-Do-

main Signal Processing for Spectrally-Enhanced CP-OFDM Waveforms in 5G

New Radio," 2018 52nd Asilomar Conference on Signals, Systems, and Comput-

ers, Pacific Grove, CA, USA, 2018, pp. 1049-1056.

[28] J. Yli-Kaakinen, T. Levanen, M. Renfors and M. Valkama, "Optimized fast convo-

lution based filtered-OFDM processing for 5G," 2017 European Conference on

Networks and Communications (EuCNC), Oulu, 2017, pp. 1-6.

[29] Changchun Shi and R. W. Brodersen, "Floating-point to fixed-point conversion

with decision errors due to quantization," 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing, Montreal, Que., 2004, pp. V-41.

[30] L. S. A. Hamid, K. Shehata, H. El-Ghitani and M. ElSaid, "Design of Generic

Floating Point Multiplier and Adder/Subtractor Units," 2010 12th International

Conference on Computer Modelling and Simulation, Cambridge, 2010, pp. 615-

618.

[31] J. H. Min and E. E. Swartzlander, "Fused floating-point magnitude unit," 2013

IEEE 56th International Midwest Symposium on Circuits and Systems (MWS-

CAS), Columbus, OH, 2013, pp. 1383-1386.

[32] L. Wang, M. J. Schulte, J. D. Thompson and N. Jairam, "Hardware Designs for

Decimal Floating-Point Addition and Related Operations," in IEEE Transactions

on Computers, vol. 58, no. 3, pp. 322-335, March 2009.

55

APPENDIX A:

Figure 31. S-function mdlStart method to initialise state vectors

Figure 32. Input data at port 1

56

Figure 33. MATLAB function to check input validity

	1. Introduction
	1.1 Thesis Objective
	1.2 Thesis Organization

	2. Communication Systems
	2.1 Mobile Networks
	2.2 Evolution of Mobile Networks
	2.3 Radio Access Network
	2.4 Physical Layer
	2.5 Fifth Generation: Future of Mobile Networks

	3. Digital Systems
	3.1 Overview
	3.2 Digital System Design Flow
	3.3 Integrated Circuits
	3.4 IP blocks
	3.5 SoCs
	3.5.1 ASIC
	3.5.2 FPGA

	3.6 SoC Algorithm Modeling
	3.6.1 Modeling Flow

	3.7 SoC Hardware Design Process
	3.7.1 Design Flow
	3.7.2 Design Tools and Languages
	3.7.3 Design Reusability

	3.8 SoC Hardware Verification
	3.8.1 Verification Flow
	3.8.2 Verification Methodologies
	3.8.3 Verification Tests
	3.8.4 Verification Languages

	4. Data Representation
	4.1 Binary Representation
	4.1.1 2’s Complement

	4.2 Fixed-Point Representation
	4.2.1 Integer Representation
	4.2.2 Fractional Representation

	4.3 Floating-Point Representation
	4.3.1 IEEE-754 Standard

	4.4 Quantization Effects
	4.5 Data Representation in Digital Electronics Design

	5. Continuous Integration System For SoC
	5.1 Continuous Integration System
	5.1.1 CI System Benefits
	5.1.2 CI System Tools

	5.2 CI System for SoC
	5.3 Potential Problems in CI for SoC
	5.4 Proposed Solutions for CI for SoC

	6. Model Design with CI Implementation
	6.1 System Architecture
	6.2 Simulink Model
	6.3 CI System for Model Implementation
	6.3.1 Jenkins Testcase

	6.4 Result Analysis
	6.5 SoC Practices Research and Findings

	7. Conclusions and Future Work
	REFERENCES

