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ABSTRACT 

Sana Latif: Continuous Integration for Fast SoC Algorithm Development 
Master Thesis 
Tampere University 
Master of Science (Technology) 
October 2019 

 

Digital systems have become advanced, hard to design and optimize due to ever-growing 
technology. Integrated Circuits (ICs) have become more complicated due to complex computa-
tions in latest technologies. Communication systems such as mobile networks have evolved and 
become a part of our daily lives with the advancement in technology over the years. Hence, need 
of efficient, reusable and automated processes for System-on-a-Chip (SoC) development has 
been increased. Purpose of this thesis is to study and evaluate currently used SoC development 
processes and presents guidelines on how these processes can be streamlined. 

The thesis starts by evaluating currently used SoC development flows and their advantages 
and disadvantages. One important aspect is to identify step which cause duplication of work and 
unnecessary idle times in SoC development teams. A study is conducted and input from SoC 
development experts is taken in order to optimize SoC flows and use of Continuous Integration 
(CI) system.  An algorithm model is implemented that can be used in multiple stages of SoC 
development at adequate complexity and is “easy enough” to be used for a person not mastering 
the topic. The thesis outcome is proposal for CI system in SoC development for accelerating the 
speed and reliability of implementing algorithms to RTL code and finally into product. CI system 
tool is also implemented to automate and test the model design so that it also remains up to date. 

 
 
Keywords: Continuous Integration, Mobile networks, Algorithm model, SoC, Communication 

system, DSP, Jenkins, CI, Modeling 
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1. INTRODUCTION 

Communication is the process that starts from anything that needs an exchange between 

two entities. We use communication in our daily life from sharing ideas to communicating 

with people around the globe. Hence, constant advancement has become a necessity. 

Communication systems have evolved and become a part of our existence with the ad-

vancement in technology over the years. Examples of modern-day communication sys-

tems include Internet, mobile networks, audio and TV broadcast systems etc. 

Mobile networks play a huge role in personal as well as work life due to increasing need 

in effective and timely communication. Over the years, mobile networks have become 

advanced through number of generations with added features in each network genera-

tion. A mobile network comprises of a device and a network of base stations communi-

cating over a wireless radio network. In Radio Access Network (RAN), Physical Layer 

(PHY) communication plays an important role to understand cellular mobile networks. 

Digital systems are the backbone of wireless mobile networks. Mobile networks commu-

nication is mainly based on Digital Signal Processing (DSP) algorithms. Digital systems 

are meant to deal with DSP applications that set strong requirements such as real-time 

computations, power, frequency and area. Digital systems are implemented on high per-

formance devices, such as Field Programmable Gate Arrays (FPGAs) and Application 

Specific Integrated Circuits (ASICs) to meet the requirements of communication sys-

tems. In modern era, digital systems have become extremely complex which brings the 

need of SoC. To establish mobile RAN architecture, SoCs are used for their deployment. 

It is extremely important to streamline and automate the SoC development processes 

because of the complex nature of SoC devices, to reduce the cost, resources and time 

to market. SoC industry requires to implement development models to fulfil these needs. 

DevOps extends the agile methodologies to swiftly deliver products in an automated and 

integrated process. 

CI is an agile practice that enhance benefits of development models. Although, CI was 

developed initially for software development, but it helps in faster release and feedback 

mechanism as well. To implement this software development model in SoC develop-

ment, it has its own benefits and complications. However, the result is a well-integrated 

and cohesive product. CI implementation in hardware development automate overall 

SoC processes and seamless working between different teams. For CI implementation 
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in SoC development, a literature research is carried out to identify the potential problems 

and solutions. 

A part of the research work is to automate and streamline work between different SoC 

development teams. A Simulink model is designed so that it can be used in different 

stages of SoC design. CI system is also implemented by using Jenkins which is a CI tool 

for automating the build and testing of the model design. 

Another research study is conducted with different SoC development experts to identify 

the gaps in SoC development workflows, steps to avoid duplication of work and idle time. 

Input from SoC experts is also considered on usability and benefits of CI in their daily 

workflow. 

1.1 Thesis Objective 

The main objective of this thesis research work is to study and evaluate currently used 

SoC development processes and flows. In addition, it presents guidelines on how CI can 

be implemented to streamline SoC workflows and avoid duplication of work. Moreover, 

a model is designed that can be used in different stages of SoC development with ade-

quate complexity and is easy enough to be used for a person not mastering the topic. CI 

system tool is also implemented to automate and test the model design so that it remains 

up to date. 

1.2 Thesis Organization 

This thesis document is organized as follows: 

Chapter 2 explains the basics of communication systems, mobile networks and its evo-

lution. In addition, it gives an overview of RAN, PHY layer architecture and future of 

mobile networks. 

Chapter 3 defines the basic concepts of signals, DSP, digital systems, IP (Intellectual 

Property) blocks, ICs and gives an overview of SoC system. It further discusses different 

SoC development flows, tools and processes that are being used in the industry as well 

as academia. 

Chapter 4 discusses the different formats of data representations, data storage and data 

processing. 

Chapter 5 presents basic concepts of CI, its benefits and tools in SoC development. 

Chapter 6 discusses about the practical work, a Simulink model implementation using 

Jenkins CI tool. 

Chapter 7 discusses conclusions and future work. 
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2. COMMUNICATION SYSTEMS 

Communication system can be defined as an exchange of information from source to 

destination over a medium. The information to be sent can be analog or digital, however 

the medium to transmit and receive information is always analog and continuous in na-

ture for example cables and radio waves etc [3]. In Digital Communication, analog sig-

nals are first converted into digital signals and then transmitted over a channel depending 

on the modulation technique. Once again at the receiver end, the signal is converted 

back from digital to analog. Figure 1 presents a basic communication system block dia-

gram. 

 

Information 
Source

Communication 
System

Information 
Sink

Transmitter
Communication 

Channel
Receiver

 
Figure 1.  Block diagram of a basic communication system 

 

In the last four decades, the key revolutionary technologies have been digital communi-

cation systems such as mobile cellular network, satellite communication and wireless 

sensor networks etc. [1]. 

2.1 Mobile Networks 

A mobile network is a digital communication system where a targeted data communica-

tion between at least one fixed transceiver and a mobile wireless transceiver over a land 

area called cell is established. Each cell is served by at least one Base Transceiver Sta-

tions (BTS) that provides network coverage to mobile User Equipment (UE). There are 

many benefits of cellular architecture such as frequency reuse by allocating different 

frequencies to neighbouring cells, less power consumption and large coverage area than 

single high power BTS [4]. Figure 2 presents a simple mobile network. 
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Figure 2. Mobile network 

2.2 Evolution of Mobile Networks 

Mobile networks have evolved through a series of generations, each with improved tech-

nology and features from the previous generation. The First Generation (1G) mobile net-

work was deployed in 1980’s and it used analog transmission with one call per radio 

channel. In 1G, voice during a call was just modulated to higher frequencies by using 

frequency modulation [2]. Few of the breakdowns of 1G were poor & noisy voice quality, 

less secure and unencrypted transmission. 

Second Generation (2G) mobile network was launched in 1990’s, one of the major im-

provements was introduction of digital transmission and Global System for Mobile (GSM) 

standard. In 2G, digital voice calls, high data rates, SMS and email services were offered 

due to Code-Division Multiple Access (CDMA) implementation [14]. 

The evolution of Third Generation (3G) mobile network marks the start of smart phone 

era. In early 2000’s, 3G unities multiple technologies to deliver higher data rates on 

higher frequency bands for transmission. Some of the new features included video call, 

higher number of users per cell, increased security, location tracking and maps [3]. 

Fourth Generation (4G) or Long Term Evolution (LTE) mobile network, offered funda-

mental changes in mobile communication such as higher data rates with improved spec-

tral efficiency. LTE mobile network offered advanced multimedia services and compati-

bility with previous generations that helped in easier network upgrade and deployment. 

New PHY layer wireless technologies were introduced to transmit voice and data at the 

same time [2].Orthogonal Frequency Division Multiplexing (OFDM) was first used to 

avoid Inter-Symbol Interference (ISI) due to higher bandwidths. Multiple Input Multiple 

Output (MIMO) technology is one of the differentiating aspects of LTE that helped to offer 
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higher data rates [4]. Figure 3 presents evolution of mobile networks through the years 

from 1G to LTE [21]. 

 
Figure 3.  Evolution of mobile networks 

2.3 Radio Access Network 

A RAN helps to connect UE to its core network through radio connections, Figure 4 pre-

sents basic RAN. It is a major part of mobile network that resides between UE, BTS and 

antennas. Silicon chips such as SoC provides RAN functionality in both core network 

and UE. RAN architecture consists of PHY, Radio Link Control (RLC), Medium Access 

Control (MAC), Packet Data Control Protocol (PDCP) layers and Radio Resource Con-

trol (RRC) protocol. In 4G, some of the main functionalities of RAN includes, Radio Re-

source Management (RRM), scheduling, compression/decompression of the DL/UL user 

plane packet headers and HARQ error correction etc [20]. 

Core Network

RAN

eNB
eNB

 

Figure 4. Radio access network 
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2.4 Physical Layer 

In RAN, PHY layer functionality is the main part of the architecture. It provides data and 

control information transfer between BTS/Evolved Node B (eNB) and UE. Figure 5 pre-

sents general block diagram of PHY layer architecture in downlink [2]. 

The PHY layer is responsible for coding techniques, modulation, multiantenna pro-

cessing and implements advance technologies like MIMO and OFDM. It also handles 

mapping of MAC transport channels to PHY channels. PHY layer implements multiple 

technologies to offer spectral efficiency and high data rates. OFDMA allows high through-

put in the downlink and Single Carrier-FDMA (SC-FDMA) in the uplink reduces Peak-to-

Average Power Ratio (PARP). Adaptive modulation and coding maximize data rates at 

individual and cell level. Few of the PHY layer features are dynamic bandwidth allocation 

to users and high cell-edge performance. PHY layer considers path losses and environ-

mental interferences while designing control channels and reference signals [4]. 

CRC Insertion

Segmentation

Coding

HARQ

Scrambling

Modulation

Antenna Mapping

Transport blocks 
from MAC layer

Physical Layer

 
 

Figure 5. Downlink physical layer architecture 
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2.5 Fifth Generation: Future of Mobile Networks 

Mobile technology’s global trends are changing rapidly, the need of high data rates, high 

speed and low latency have become crucial. It is predicted that in 5th Generation (5G) 

mobile technology, features such as controlling home appliances from any part of the 

world to extreme music & video streaming will become part of our daily lives. Some of 

the potential global trends in future mobile network development are [14]: 

 Autonomous driving 

 Machine to machine communication (M2M) 

 Remote robotic surgery 

 Device remote controlling 

 Virtual Reality 

 Bandwidth throughput 

 Smart cities 

 Healthcare data management 

 Real time gaming 

 Bi-directional remote controlling 

 Wireless cloud-based office 

 Video streaming etc. 

 

In order to enable these services new technologies are being designed for future mobile 

networks and some of the stand-out technology features are [21]: 

 Scalability: Scalable numerology with dynamic TDD. 

 Low latency: Mini time slots  

 Forward Compatibility: Bandwidth parts with no fixed time relationship be-
tween channels 

 Beamforming: Initial access / Beam sweeping with massive MIMO 

 Network slicing 

 

There are many design challenges despite the positive outlook and motivation for future 

technologies. In 5G at millimeter wavelength (>6GHz), large number of antennas will be 

required to provide coverage which in return is going to increase the deployment cost. In 

addition, energy efficiency and security will be high risk areas. As a result of network 

densification, challenges will arise in interference, energy and mobility management [20]. 
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3. DIGITAL SYSTEMS 

This chapter defines the basic concepts of signals, DSP, digital systems, IP blocks, ICs 

and gives an overview of SoC. This chapter also discusses different SoC development 

flows, tools and processes that are being used in the industry as well as academia. 

3.1 Overview 

A signal is anything that carries information, for example, sound, smoke or heat etc. 

Signals are of different types, but we generally divide them in two categories, a continu-

ous-time signal and a discrete-time signal. A continuous-time signal can be defined and 

represented at any instance of time whereas a discrete-time signal is only represented 

at discrete intervals of time [3]. A discrete signal can be converted into a pattern of bits 

(1s and 0s) which is called as a digital signal. In computer systems, signals in digital 

format are easily represented because each sample can be represented as a sequence 

of bits. 

Processing of digital signals defines the digital signal processing and the systems pro-

cessing them are called as digital systems. In the modern era, digital systems have been 

constantly replacing the analog systems. Nowadays, digital systems are most important 

in the organizations. Digital systems are designed to store, process and communicate 

digital information using binary system. Digital systems can vary from a CD player to as 

complex as mobile networks. Digital systems bring major advantages over old analog 

systems such as [5]: 

 Easier to design 

 Less effected by noise 

 More precise and accurate 

 Easily programmable 

 Cost effective 

 

Digital systems are meant to deal with DSP applications that set strong requirements 

such as real-time computations, power, frequency and area [6]. Digital systems are im-

plemented on ASICs and FPGAs. 

The following section presents the digital system design flow in general. 
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3.2 Digital System Design Flow 

Modern day designs of digital systems demand different design methodologies and level 

of abstractions in order to meet the strong requirements set by their applications. In the 

section below, general steps of digital system design are given [7]: 

Specifications: The first step in the digital design is usually to define the system speci-

fications. Specifications can either be defined by the customer of that product or an au-

thoritative body that defines functional requirements for a reliable and efficient design 

such as power, area and performance etc. 

Architecture: An architect designs and specifies how the system will be implemented 

by defining memories, timing budget, software/hardware, power management etc in or-

der to achieve design goals set by specifications. Sub-blocks or IPs specifications are 

also derived from the top-level system architecture design. 

Algorithm Model: An algorithm model is implemented mostly in higher level languages 

to observe the system’s behaviours at the inputs and at the outputs according to the 

specifications. The model does not define steps on how to implement a design on phys-

ical level but provide ideal behaviour of the prospective system. Reference models for 

digital hardware design verification also fall under this category [24]. 

Hardware Description Model: Hardware Description model of the system is usually 

developed in Hardware Descriptive Language (HDL). Entire system is divided into the 

subsystems and then subsystems are further divided into the IP blocks. Two most com-

monly used HDL languages in the industry and in academia are VHDL that stands for 

Very High-Speed Integrated Circuit (VHSIC) HDL and Verilog. 

Verification: HDL model verification is divided into certain subcategories such as [8]: 

 Preliminary Verification: It is important to do some preliminary or sanity verification 

in parallel with Register Transfer Level (RTL) design and it is mostly done by the HDL 

model designer. In simple words, design is checked to confirm if it compiles correctly 

and did not break any of the existing features. 

 Functional Verification: During the design stage, verification testbench environ-

ment is set by the verification engineers using hardware verification languages. A 

testbench is simply a piece of code which is meant to verify the functional correctness 

of the HDL model. VHDL, Verilog and SystemVerilog are the commonly used lan-

guages to write verification testbenches in the industry and academia. 
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Logic Synthesis: It is the process of translating RTL HDL model into an optimized gate 

level representation which is named as a netlist. The verified RTL code is synthesized 

into logic gates by the synthesis tools [6]. 

Logical Equivalence Testing: Once we have gate level netlist and verified RTL code, 

instead of verifying netlist both are compared on the Boolean level. This equivalence 

check result should be same, after that tested netlist can be used in next level of digital 

design. 

Static Timing Analysis: It’s the last step in frontend design part of the digital system. 

This analysis is done to verify the performance, frequency and timing of the design and 

it is then sent to the backend design team. 

Floor Planning: It’s the first step in backend design, to decide where and how the syn-

thesized design is to be placed on the chip die. At this stage, power planning is also done 

on how to route power within the design. 

Clock-Tree Synthesis: In this step, it is made sure that every flip-flop receives clock 

signal at the same time in the whole design. 

Routing: This process determines the path through which cells are to be connected and 

what path interconnection takes. 

Physical Verification: The final routed design goes through multiple checks like Design 

Rule Violations (DRC), Electrical Rule Violation (ERC), Layout vs Schematic (LVS) etc. 

in order to confirm all the requirements are met [8]. 

Post Layout Timing Analysis: As a last step in backend design, after all the checks 

design is verified one more time to confirm timing correctness. 

GDSII generation & Fabrication: After the back-end design, the Graphic Database Sys-

tem for Information Interchange (GDSII) stream created from the layout and sent to the 

fabrication company for chip fabrication. 

Post Fabrication Testing: After fabrication, all the chips for any manufacturing errors 

are tested against the required specification and expected results before sending them 

to the market or customers. Figure 6 presents the digital design flow. 
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Figure 6.  Digital system design flow 

3.3 Integrated Circuits 

ICs are electronic components that unite a group of electronic devices like millions of 

transistors, resistors and capacitors etc on a small flat area made of semi conducting 

material mostly silicon [5]. These small chips can perform calculations and processing of 

stored data in both analog or digital form. In modern days, ICs are evolving and their 

functionalities vary from a simple amplifier to processor or even a whole computer 

memory. Moore’s law states that the “number of transistors per chip gets doubled after 

each one and a half year and at the same time decreasing in size from micro to nano-

metres” [7]. 

3.4 IP blocks 

In Digital system design, IPs are building blocks that make up the whole digital system. 

However due to increase in complexity and advancement of technology in SoC, IPs are 

reused extensively to save time and man power as well as to reduce time-to-market. 

Even if the two SoCs are different in functionality and design, there are always multiple 

blocks that are present in every SoC for example AXIs etc., so constant redesign is not 
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necessary instead reuse is the way to go. Different design tools act as connectivity tis-

sues in the chip and play a role in filling the gaps between new and old IPs. There are 

two different types of IP cores; hard and soft. Hard core IPs usually have certain defined 

functionalities and cannot be modified by designers. However, soft core IPs are adjust-

able according to the certain design requirements [10]. IP reuse also brings certain dis-

advantage such as challenging to debug and optimize the design. In addition to it, bad 

documentation can also lead to more time in understanding the design. 

To facilitate automation and reuse of IPs in SoC design, IPXACT standard format is used 

between most of the IP vendors and SoC development companies. IPXACT is an open 

standard XML-based format. 

3.5 SoCs 

A SoC systems can be classified into two main categories as ASICs and FPGAs. It is an 

integrated circuit that integrates custom logic on a single chip such as, microprocessors, 

coprocessors, digital signal processors (DSPs), hardware accelerators, on-chip memory, 

peripherals, external interfaces, analog and custom circuitry and all types of other system 

and processing components. 

Figure 7 demonstrates some of the basic elements of a SoC system, that includes as-

sortment of processors connected to memory elements. The SoC can also have analog 

circuitry for handling sensor data, analog to digital convertor, or to support wireless data 

transmission or reception etc [7]. 

Media 
Processor

Core 
Processor

Vector 
Coprocessor

Memory
Analog and 

Custom 
Circuitry

System 
Components

Interconnects

 
Figure 7.  A basic SoC model 

The distinguishing factor between SoC and a general-purpose IC is the specific require-

ment for the target design. The requirements are assumed to be known beforehand so 

that the foundation of the system can be laid accordingly. This emphasis on selection 
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and configuration of system components for tailored application distinguishes system 

architecture from computer architecture. 

3.5.1 ASIC 

As the name suggests, ASICs are customized ICs designed for a specific application. 

An ASIC can be categorized as a SoC if it contains one or multiple processors. ASICs 

are designed for a specific purpose and their functionality remains the same for their 

entire lifetime and their functional logic cannot be modified. ASICs are very expensive, 

time and resource consuming ICs to develop but they offer extremely high performance 

and low power consumption [22]. 

3.5.2 FPGA 

ASICs offer extremely high performance and lower power consumption. However, we 

cannot modify any of its algorithmic digital functional logic because these algorithms are 

frozen in the silicon chip. This brings the need for FPGAs, as the name suggests FPGA 

ICs are field programmable to operate according to the intended applications designs. 

FPGA devices are made up of hundreds of thousands of Configurable Logic Blocks 

(CLBs) connected through hundreds of thousands of programmable interconnects. Flip-

Flops, Multiplexers and Look-up Tables are the primary building blocks of CLBs. In ad-

dition to the CLBs, FGPA devices also contain PLLs, block RAMs, DSPs and external 

memory controllers [6]. Table 1 provides the comparison between FPGAs and ASICs. 

 

Comparison between FPGA and ASIC 

FPGA ASIC 

Reconfigurable logic Fixed logic 

Faster time to market Takes longer time 

More power consumption Power efficient 

Not suited for high volume production as 

large FPGAs are expensive and not justifia-

ble for high volume production 

Suited for high volume production due to less cost/unit 

but expensive to develop in comparison to FPGAs 

Limited in operating frequency due to routing 

and configurable logic 

Higher operating frequency since its optimized for spe-

cific function 

Analog designs are not possible Analog circuitry is possible 

Well suited for applications where the current 

design might need to be upgraded so the 

high cost is not the deciding factor but the re-

programmability of FPGAs 

Not suitable for applications where the design needs 

to be upgraded 

Designers do not need to worry about back 

end design 

Designers need to care for every step from RTL down 

to testing constraints 

 

 

Table 1 . Comparison between FPGAs and ASICs 
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After the overview of digital systems, the following section discusses the algorithm mod-

eling in the SoC development. 

3.6 SoC Algorithm Modeling 

A model is conceptualization and simplification of the reality. Modeling can be said as a 

proactive approach to highlight aspects of a system and to help in order to solve the 

problems [7]. 

Complexity in SoC design is increasing at a rapid pace and faster time to market is also 

strongly required. To manage these complexities, the earliest steps that are taken to 

overcome these problems are to analyse and model the high-level abstract design before 

implementation. 

In general, there are certain goals for system modeling, such as [24]: 

 Performance evaluation of the design 

 Resource estimation for the design 

 Power consumption 

 Design-space estimation 

 Verification of functional correctness 

 Testing under multiple real-life scenarios 

This modeling flow and process enables engineers to evaluate design trade-offs, test 

design under multiple real-life scenarios. This approach helps to save huge amount of 

time at the stage of verifying the design. 

At the time of designing a system model, irrelevant details are not considered but the 

abstract of the design. One of the approaches that leads to an efficient design, is to divide 

and conquer while forming hierarchies. 

Some other qualities in addition to the ones mentioned earlier of a good model are [6]: 

 Easy to understand 

 Accurate representation of the specifications 

 Affordable so that it is easier to develop to study actual design 

 Answers all the analytical behaviour of the actual system 
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3.6.1 Modeling Flow 

Figure 8 presents the workflow of a model-based design [25]. 
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Figure 8. Model based design workflow 

Below are the few methods a model can be represented, such as [24]: 

 Graphical Design: This method uses block diagrams and graphs in designing a 

model. Different design tools are used, such as MATLAB and Simulink allow engi-

neers to comprehend by swiftly prototyping their algorithms into models. 

 Textual Design: This method uses mathematical expressions and programming lan-

guages such as C, C++, System C, Python and MATLAB tool to design a system 

model in the industry as well as academia. Multiple tools are used in designing such 

system models that support and compile one or all the above-mentioned program-

ming as well as system modeling languages. In this method even a simple text editor 

can work to develop a system model. 

 Hybrid Design: This method uses both graphical and hybrid methods together to 

design a system model. 
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3.7 SoC Hardware Design Process 

The HDL model design process encompasses specifications from the start to a plan that 

consists of all the information required for physical construction at the end. The HDL 

model design process begins with designing the SoC system architecture that is usually 

designed by a SoC architect. System architecture defines the overall hierarchy of the 

design, such as system architecture, subsystems architecture, IP blocks and intercon-

nect blocks. Breaking down functionality of the entire SoC system into smaller subsys-

tems and IP blocks makes the SoC development process easier. It brings many benefits, 

such as project management, algorithm modeling, HDL model development and verifi-

cation etc [22]. 

Digital logic design, computer architecture and HDL model design languages along with 

concepts of mathematics help the HDL model design engineers in development of digital 

system design or a SoC system development. Some important logical functional blocks 

that are written in HDL languages, help in development of complex HDL model design. 

Combinational logic components, sequential logic elements, registers, Finite State Ma-

chines (FSMs), Arithmetic Logic Units (ALUs), decoders and multiplexers etc. are some 

of the examples of logical functional blocks or elements. 

In the SoC development, many analog logic blocks or components are also designed 

that help us to interact with real world, such as Digital to Analog Converters (DAC), An-

alog to Digital Converters (ADC) and clock generating units such as Phase Locked Loops 

(PLLs) [5]. 

3.7.1 Design Flow 

HDL model of an IP block or any logical functional block or component goes through the 

different design flow steps until the block is ready for integration at subsystem or system 

level. Different design and verification methodologies are used to the block that is ready 

for integration at a higher level as depicted in the Figure 9 [23]. 
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Figure 9. HDL model design flow 

3.7.2 Design Tools and Languages 

In HDL model design process of the SoC development, different HDL model design tool 

and HDL languages are used in the industry as well as in academia. It involves different 

HDL languages editors, compilers, linting, testbench development, synthesis and power 

analysis tools.  HDL model design engineers use different languages, such as, VHDL, 

Verilog, SystemVerilog and System C etc for HDL modeling of the digital hardware [6]. 

3.7.3 Design Reusability 

Modern day SoCs are extremely complex, it makes the development of a SoC system 

extremely difficult to start from scratch. This is where the need to reuse the existing IPs 

arises. There are different vendors that provide the pre-verified reusable IPs in IPXACT 

format which is an open XML-based standard [6]. Section 3.4 discusses more about IP 

reuse. 
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3.8 SoC Hardware Verification 

This section discusses the digital hardware or HDL model verification in general as well 

as from SoC viewpoint. Verification is the most important part in the process of any sys-

tem development, and it cannot be omitted from the process. A system can only be 

claimed to behave functionally correct after the proper verification of all the system fea-

tures is completed and the system has passed all the verification tests [10]. 

In a SoC system development, approximately 60-80% system design efforts are dedi-

cated to the system verification. Therefore, reusability of the pre-verified IP blocks from 

inhouse and other IP vendors helps in saving cost, time, efforts and other resources [8]. 

3.8.1 Verification Flow 

The digital hardware verification process in a SoC development or in any other digital 

hardware system design starts at the same time with HDL model design. 

Figure 10 present the generic digital hardware verification process [8][10]. 
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Figure 10. HDL model verification flow 
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It is extremely important to properly verify the system so that it meets the performance, 

power, security and safety requirements of the design. The verification process is an 

extremely critical part of the system design cycle, as any bug in the design not found and 

debugged before tape-out can make the whole chip useless or cause millions of dollars 

in lose. 

Digital hardware system design and verification projects are developed in parallel. Spec-

ifications decide the features to be designed and verified in the system. Reference mod-

els are developed to verify the functional behaviour of the system. Testbenches are de-

veloped to test the actual design against the reference model, where a testbench is a 

simple piece of code that helps to verify the functional correctness of the design. Refer-

ence models are meant for providing a set of reference input/output vectors to the 

testbench so that it can verify the behaviour of the actual design. Verification completes 

once the system output behaviour is matched against the reference model data [7]. 

3.8.2 Verification Methodologies 

There are many different digital hardware verification methodologies being used in the 

FPGAs and ASIC SoCs. The most common method in the academia is writing HDL 

testbenches to verify the digital systems but sometimes advance verification methodol-

ogies are also used. 

However, in industries advance methods of verification in addition to HDL testbenches 

are being followed worldwide such as Universal Verification Methodology (UVM) and 

Open Verification Methodology (OVM) etc which depends on the need and requirements 

of a system [8]. 

There are multiple approaches that are used in the testbench development as well as 

verification processes and flows such as top-down, bottom-up, platform and system in-

terface based etc. 

Top-down and bottom-up are the most common methods to verify a system. In the top-

down approach, system level verification is done before the block or IP level verification. 

However, bottom-up approach is the most common one which does the block level ver-

ification before the system level verification [10]. 
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3.8.3 Verification Tests 

There are different verification tests that are performed in verification process, such as 

[8]: 

 Random testing to verify the design against random input data 

 Functional testing to verify the functional correctness of the specified features  

 Regression testing to make sure exiting functionality does not break after each 
bug fix 

3.8.4 Verification Languages 

There are many languages and tools that are being used in the industry and academia 

to develop the testbenches for verification of a digital system. VHDL, Verilog and Sys-

temVerilog etc. are the most common ones among all [7]. 
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4. DATA REPRESENTATION 

This chapter discusses the different formats of data representation, storage and pro-

cessing. In computer systems and SoC system development we always deal with nu-

meric data which makes it very important to understand how this numeric data is repre-

sented. The following section discusses the binary representation of data. 

4.1 Binary Representation 

In computer systems, binary representation of data is very important because digital 

electronic systems and devices works on the concept of two known states, on and off 

state. Numeric data is represented using only two levels such as true or false, on or off 

and high or low. This representation of data in 0s and 1s is called the binary representa-

tion [5]. 

To convert a decimal number to a binary number, we find all the powers in 2 and then 

add them to calculate the required binary number. Each 0 and 1 digit in the binary num-

ber representation defines a bit and a group of 8 bits is termed as a byte.  For example, 

a decimal number 89 is represented in the binary format as follows: 

8910 = (1011001)2 

8910= 1×64 + 0×32 + 1×16 + 1×8 + 0×4 + 0×2 + 1×1 

8910 = 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 

8910 = (1011001)2 

4.1.1 2’s Complement 

Two’s complement is a convention that represents signed binary integers. To represent 

a negative number through this convention, we first invert all the bits from 0 to 1 and 1 

to 0 then add 1 to the reversed number as follows: 

 To represent -89, first we will write binary form of 892 = (1011001)2 

 Reverse all the bits to 0100110 

 Now add 1 to the reversed bits 0100110 + 1 = 0100111 

The representation of -89 in 2’s complement is (0100111)2 
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Below sections presents Fixed-point and Floating-point binary representations. They are 

the most important representations of data in the binary format among others in the field 

of digital system design [3]. 

4.2 Fixed-Point Representation 

Fixed-point data representation is characterized by the fixed position of radix point, 

where the Least Significant Bit (LSB) or the bits before the radix point represent integer 

part and Most Significant Bit (MSB) or the bits after the radix point represents fractional 

part of the real number. Decision about selection of bits always depends on the require-

ments, whether MSB and LSB bits represent fraction and integer part of the number 

respectively or vice versa. For signed numbers, one bit is reserved for sign representa-

tion in data [7]. 

Figure 11 presents the generalized fixed-point representation. 

B4 B3 B2 B1 B0B5...Bn-1Bn

LSBMSB

Binary point

 
Figure 11.  Fixed-point number representation 

In the fixed-point representation, the radix point position is predefined based on system 

requirements, more precision is achieved with more bits after the radix point. It is im-

portant to pay attention that in the memory radix point is not kept but it is a way to interpret 

stored bits of data [13]. 

4.2.1 Integer Representation 

In the case of integer data representation, we consider the radix point at the end. To 

represent numeric range of n numbers of bits, we have [30]: 

0 ≤ 𝑥 ≤  2𝑛 − 1 

The above representation can only show numbers in the positive range, hence called 

unsigned binary representation. If we take 4 bits, the represented range of numbers is 

0-15. 

Signed binary representation is defined to represent negative numbers which is: 

−2𝑛−1  ≤ 𝑥 ≤  2𝑛−1  − 1 
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With the above formula the represented number range stays the same, but the highest 

positive number that can be represented is reduced to half. First bit is used to signify 

sign of the number so for 4 bits, now the numbers that can be represented are from -8 

to 7 [30]. 

4.2.2 Fractional Representation 

For fractional data representation place of radix point is interchangeable according to the 

number of fractional bits assigned. In signed fractional representation, one bit is reserved 

for sign and rest of the bits are reserved to represent fractional and integer part of the 

number. Figure 12 represents fixed point signed and unsigned fractional representation 

[31]. 

I

Fraction Field

F

Integer Field

Unsigned Fixed-Point

Signed Fixed-point

IS

Fraction FieldSign

F

Integer Field
 

Figure 12. Fixed-point signed and unsigned number representation 

4.3 Floating-Point Representation 

In floating-point data representation, as the name suggests radix point can float or placed 

anywhere comparative to a number’s significant digit. The floating-point data represen-

tation is very important in DSP computations where numbers are represented with large 

dynamic range. To represent numbers with large dynamic range, more bits are required 

to represent the smallest and largest number in the range. It results in decreased pro-

cessing speed, more surplus memory and high cost [13]. 

Floating-point arithmetic with scientific notation representation was introduced to over-

come this issue. This representation with its exponent increases the dynamic range rep-

resentation with a smaller number of bits. Scientific notation of a number consists of a 

mantissa, a radix and an exponent, it is expressed as follows: 

Mantissa x Radix exponent 
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In binary floating-point number system, the represented number has a signed binary 

mantissa and an exponent with a radix of 2. As per above representation, fractional part 

is the mantissa that represents accuracy in the computations. However, exponent rep-

resents the dynamic range of a number. For the representation of larger dynamic ranges, 

number of bits increases to represent the exponent. For higher accuracies in the com-

putations, number of bits increases to represent the mantissa [30]. 

4.3.1 IEEE-754 Standard 

To represent floating-point data, different standards have been introduced but IEEE-754 

standard is the most widely used with a few exceptions. This data representation is di-

vided into three fields to represent a floating-point number; one-bit sign, exponent bits 

and fraction bits as presented in Figure 13. The sign of the fraction field indicates the 

sign of the whole number whereas the sign of the exponent indicates the magnitude of 

the entire number [31]. 
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Figure 13.  Basic floating-point number representation 

 

IEEE-754 standard has different floating-point formats of which ’32-bit single precision’ 

and ’64-bit double precision’ are more commonly used. Table 2 represents different for-

mats with exponent ‘E’ and fractional bits ‘F’ division [31]. 

 

Common Name 
No. of 
Bits 

Sign 
bit 

Expo-
nent 

Fraction 
Max. Expo-
nent 

Min. Exponent 

Half Precision 16 1 5 10 15 -14 

Single Precision 32 1 8 23 127 -126 

Double Precision 64 1 11 52 1023 -1022 

Quadruple Precision 128 1 15 112 16383 -16382 

 

 

Table 2 IEEE-754 Floating-Point Standard 
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4.4 Quantization Effects 

Quantization is the process of converting analog signal into digital domain, due to the 

nature of analog signal having infinite values. The received digital signal have to be 

quantized to a certain set of values. The quantization of an analog signal from infinite 

samples to a finite number of samples results in errors and affects on signal quality. 

These errors and degradation of signal quality is termed as quantization errors. There 

are two main groups of quantization techniques, truncation and rounding [13]. Figure 14 

presents the different quantization techniques [29]. 

Quantization

Truncation Quantization Rounding Quantizat ion

Round Towards Nearest Round Towards Zero Round towards    Round Towards -  

 
Figure 14.  Quantization techniques 

 

Truncation is defined as a process where bits exceeding from the allowed number range 

regardless of the number sign are dropped-off from the LSB side. However, in the round-

ing-off technique, extra bits are dropped-off while rounding the number to the next near-

est number in allowed number of bits. Table 3 presents affects of fixed-point and floating-

point quantization [29]. 

Fixed-point representation Floating-point representation 

Quantization error is additive Quantization error is multiplicative in nature 

The power of the error remains constant Due to continuous change in quantization step, 

error power also changes constantly 

Noise level is represented by number of 

bits 

Noise level is represented by bits in mantissa 

Removing quantization error is easy Removing quantization error is complex 

Quantization error is constant irrespec-

tive of signal value 

Quantization error increases with the increase in 

signal value 

 

Table 3 Quantization affects on Fixed-point vs floating-point data representation  
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4.5 Data Representation in Digital Electronics Design 

In digital electronics, data or instructions are not entered and processed by directly using 

human language. The data such as numbers, symbols or pictures etc are first converted 

into machine readable format that is binary form before processing. Digital electronic 

components like processors all are made of millions of electronic circuits. In electronic 

circuits, high voltage is interpreted as ‘1’ and low voltage is interpreted as ‘0’ similar to 

switching an electronic circuit ‘on’ and ‘off’. This forms the base for using binary number 

system in digital electronics. The following paragraph discusses the reasons why we use 

binary system in digital electronics. 

Developing devices that can understand human languages directly is proven difficult be-

cause of its complex nature. However, constructing electronic circuits based on ‘off & on’ 

logic is simple in comparison. All forms of data are possible to represent in binary number 

representation. Few of the other benefits are more reliable digital devices, small in size 

and use less energy when compared to analog devices. The basic unit of binary repre-

sentation in digital electronics is bit. 

In digital design flow, specifications are usually written in textual representation to define 

system behaviour and performance. The next step is the design of algorithm model with 

the specifications defined. Most of the time system modeling is done by using tools such 

as MATLAB, Simulink, C/C++ etc. to simulate DSP algorithms. At this design stage, 

MATLAB model uses floating-point arithmetic due to the need of accurate computations 

and ideal system performance analysis. MATLAB model is used as reference and it helps 

to generate input data for bit-exact C++ model testing and provide information of the 

signal quality of the C++ model. Although MATLAB model uses floating-point arithmetic, 

C++ model provides fixed-point bit exact reference stimulus and response vectors to be 

used later in verification of the HDL design. 

After the algorithm modeling, the design is implemented in fixed-point binary arithmetic 

at RTL using HDL. At verification stage of digital design flow, reference stimulus vector 

is fed to the Design Under Test (DUT) as represented in the Figure 15. The simulation 

output data of DUT is dumped and compared with reference response vectors to verify 

the functional correctness of the HDL design. This process is iterated until expected re-

sults are achieved or the HDL model is fully verified. 
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Figure 15. Data Representation in Digital Design Flow 

 

The selection of arithmetic data representation is very crucial in digital electronics as it 

has the highest impact on cost/performance trade-off [30]. One of the two data types 

from fixed-point or floating-point are selected due to system requirements. 

Fixed-point data representation is selected due to low power, small silicon area, low la-

tency and simple circuitry. However, floating-point offers higher accuracy, greater dy-

namic range and Signal to Quantization Noise Ratio (SQNR) [32]. 

Even though floating-point offers higher dynamic range for data greater than 16-bits but 

computations become complex with varying exponent for different data. One of the key 

requirements in embedded systems is achieving low power. Based on IEEE-754 stand-

ard, floating-point arithmetic needs minimum of 32-bits while fixed-point mostly requires 

6 to 16 bits. The use of more bits leads to larger bus sizes, memories and complex 

computations that results in more power consumption and high cost architecture [31]. 

Hence in digital electronic design, fixed-point arithmetic is preferred over floating-point 

unless it cannot be avoided. 
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5. CONTINUOUS INTEGRATION SYSTEM FOR 

SOC 

In this chapter, we will discuss about CI due to advancement in technology and the need 

to release faster time-to-market products. It became crucial for organizations to deliver 

innovative products in a consistent and reliable manner. 

In this scenario, companies have to better respond to dynamic market requirements by 

following latest development models that will help to improve performance and quality 

control. The answer to an efficient and reliable system is Agile methodologies and 

DevOps culture. DevOps extends the agile methodologies to swiftly deliver products in 

an automated and integrated process. CI is an agile practice that helps to verify and 

integrate code from the early stages of the design cycle [9]. 

5.1 Continuous Integration System 

CI was first developed for improving software development cycle. One of the reasons 

was to automate integration process that takes a big part of the development process in 

traditional software development cycle [16]. 

CI goes hand in hand with the evolution of development models. This methodology 

emerged at the same time and hence why is defined as: 

 “A software development practice where each team member integrates their work reg-

ularly, usually each developer integrates at least daily - leading to multiple integrations 

per day. Each integration is verified by an automated build (including test) to detect errors 

as quickly as possible [19].” 

As a result of following this approach, a cohesive software with reduced integration is-

sues is developed. This technique also helps to save large amount of time and human 

resources. Some of the mandatory requirements to implement a CI system that is pre-

sented in the Figure 16 are [9]:  

 Version Control Repository 

 Build script 

 CI server 

 Feedback mechanism of choice 
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Figure 16. Continuous integration design flow 

 

In order to design a CI system, below are the summarized main rules to implement [19]: 

1. Design automated tests to run on local machine before committing. 

2. After local test pass, submit to the version control repository. 

3. After certain time intervals, CI server checks for any possible change. 

4. In case of CI server detects any change in central repository, it fetches the latest 

code from the version control repository. Main purpose of CI server is to perform 

build process and creates scripts to integrate code centrally. 

5. CI server sends build results to the team members via email or SMS etc. notifi-

cations. 

6. In case of any change detected in central repository, CI system goes to step 4 

and continues till the end. 
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5.1.1 CI System Benefits 

CI was first designed and implemented for software development project, even than the 

benefits of this methodology are applicable for both software and hardware development. 

Some of the benefits of CI system are given below [16][19]: 

 CI helps to automate the usual repetitive manual processes like code compilation, 
testing and integration. 

 Higher code quality is achieved due to the fact that the code which is in version 
control works. 

 CI increases confidence in the work done, helps in risk reduction and leaves no 
room for the fear of undelivered project. 

 Complete overview of the system at all times with the knowledge of what works, 
work done and any bugs in the system. 

 Due to frequent commits, a small bit of the system is changed. Designers don't 
have to look far in order to detect bugs, hence easier to fix because of less bugs 
at each stage. 

 CI allows better project visibility and makes collaboration easier between the 
teams. 

 Better division of work responsibilities among teams due to impartial CI system. 

 CI helps in better project planning and time-to-market estimates because of cur-
rent status visibility. 

5.1.2 CI System Tools 

There are numerous CI tools that are available in the market. However, selection of the 

tool depends upon multiple factors but the main feature targeted is automating the design 

development processes. There are many CI tools such as Jenkins, Bamboo, CircleCI 

and Codeship etc. All of the CI tools offer almost similar features with few exceptions 

from each other [16]. Although there are frequent releases of new tools, Jenkins is the 

most used and readily available open-source tool. Despite being open-source low cost 

tool, Jenkins has the largest library of available plugins. Rest of the Jenkins features are 

given below and presented in Figure 17 that demonstrates its convenience of use [15]: 

 Multilanguage support 

 Easy configuration 

 Compatible with all version control systems 

 Supports extension to customise a project 

 Largest number of plugins 

 RSS/E-mail/IM easy feedback integration 
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Figure 17. Jenkins-CI tool features 

5.2 CI System for SoC 

Implementation of Agile methodologies in design and verification processes of hardware 

development and need for CI implementation was realized early on. During different 

stages of SoC development, concepts of CI helps in building test cases, designing re-

gression/non-regression tests and coverage driven verification [18]. 

Hardware development consists of many parallel processes despite the contrary belief 

of delivering one final chip at the end. It requires development of functional block (IPs) 

mainly from modeling to designing in RTL while integrating and updating the blocks. Until 

the first silicon sample which too needs integration and packaging, each step can utilize 

benefits that a CI system offers [17]. 

From SoCs modeling perspective, different functionalities and feature are continuously 

added in models which requires multiple builds and tests to confirm their status. At RTL 

level, designing modules and then integrating them to higher level systems can utilize 

integration and build methodology. Functional and regression tests are done for the ver-

ification of IPs for both system and subsystem level. All of these indications confirm the 

benefits of CI in hardware development. 
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One of the benefits of CI is the confirmed availability of working code in the repository. 

This allows better collaboration between different teams; one scenario is the timely setup 

of test vectors and verification environment from design model to check RTL design be-

fore its completion. One more example is that layout teams can use the CI code from 

repository anytime and start with synthesis because of no likely issues due to already 

passed pre-checks [16]. 

In hardware, CI helps to better analyse bug-fixes and need of new features because of 

the frequent sanity checks. Other benefits of CI in SoC includes, preventing designers to 

keep massive code changes at their desk because of frequent commits which plays a 

huge role in faster time-to-market expectation of the customers. 

5.3 Potential Problems in CI for SoC 

Implementation of CI systems for hardware provides a lot of benefits but there are many 

problem areas which hardware designers face while using CI systems for their work. 

Some of the potential problems which SoC hardware teams face are [9][18]: 

 One of the problem occurs due to unavailability of test cases to RTL design 

team in advance by verification team. In this case, committed code should be 

considered as only a primary release. 

 Due to large number of features, integrating an IP can take a long time. 

Hence, designers cannot commit several times in a day. 

 In CI systems one of the most undesired practise is to commit broken code, 

but in hardware this sometimes can be a possibility. Broken code is commit-

ted for backend teams to analyse and do floor planning. 

 One of the CI practise that gets violated is to fix broken builds immediately. 

For example, when verification team tests the integrated IP and provides a 

fix. Then once again design team integrates the IP. This whole process takes 

time then recommended immediate actions. 

 The recommended debug time for a broken build is 10-20 minutes or else 

revert the commit to previous stable state. However, in hardware simulations 

can take hours ultimately debugging also takes much more time. 

 In CI systems, it is recommended to keep the build time around 10 minutes 

which cannot be applied for hardware implementation as the build time can 

lead up to hours. 

 For successful CI implementation, it is not recommended to go home with a 

broken build. In hardware design, it is not possible as it takes a long time to 

fix a build. 
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5.4 Proposed Solutions for CI for SoC 

In order to make CI system work seamlessly and efficiently for SoC flows, there are few 

adaptations made to make it work best for hardware development [17][18]: 

 In CI it is suggested to commit multiple times a day in version control repository. 

However, in hardware it can be as soon as a new functionality is added so that it 

can be verified regularly. 

 One solution to the issue of committing broken code for backend teams in hard-

ware is to implement a workaround to artificially keep the status passing. 

 In order to speed up the whole process, isolate sanity tests that take less time 

and create a dedicated test suite. 

 In CI for hardware, it is better to design separate checks to test different features. 

This will help to isolate the problem in less time with few tests given the design 

does not work. 

 In hardware, fixing bugs can take a lot of time due to complex design. A proposed 

solution is to revert the design to an older commit and fix the problem on a local 

machine before committing it back to the central repository. 

 To save time, separate more complex/full test suits for overnight run. 
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6. MODEL DESIGN WITH CI IMPLEMENTATION 

This chapter discusses about the Simulink model and its implementation. Jenkins CI tool 

is used to build and run the test case in order to confirm the correct model functionality. 

Section 6.5 discusses the results of research study conducted and possible actions to 

improve SoC development. 

6.1 System Architecture 

The base model is a frequency domain channel filter that is filtering one carrier [26][27]. 

The whole modeling design has three phases, first is the MATLAB floating point refer-

ence model, second phase is modeling C++ bit exact model and then designing Simulink 

model. 

The MATLAB model act as a test bench for bit exact C++ model and to also quickly test 

new features. C++ bit exact model is developed so that it can be used in actual test-

ing/verification process of SoC development. Simulink model uses C++ bit exact model 

so that it can be further used in MATLAB to provide bit exact model to digital front end 

(DFE). Figure 18 presents relativity between MATLAB and C++ models. 

C++ Bit Exact Model

MATLAB Reference Model

FC-Block FFT IFFT Tail RemoveX

Control

Filter Input Filter Output

FC-Block FFT IFFT & Tail RemoveX

Control

Filter Input Filter Output

 
 

Figure 18. Channel filter model block diagram 
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6.2 Simulink Model 

To design this model, first we need to run existing C/C++ model in Simulink. The C++ 

model takes input signal generated by using MATLAB. For actual simulation there are 

two input signals; data and configuration. The data is vector of I/Q samples and the con-

figuration is a control vector that defines the information related to current symbol. Figure 

19 presents block diagram of the Simulink model. 

 

Simulink Model

S-function Block

FC-Block FFT
IFFT & Tail 

RemoveX

Control

Filter Input Filter 

Output

MATLAB function
Input signal from 

MATLAB

 
Figure 19. Simulink model block diagram 

 

Input data that is generated by using MATLAB, in Simulink model ‘Signal from Work-

space’ block is used to feed the input data to C   model. Both I/Q samples and control 

have header, which defines whether input is valid or not. 'MATLAB function’ block is used 

to define a function that checks input and feed to C++ model. To examine the symbol id 

that checks data validity, read the configuration values and reset the counter for next 

samples accordingly. 

There is a S-function method in Simulink to run the existing C++ model, which is a com-

puter language description of a block that is written in C, C++, MATLAB or Fortran. S-

functions are compiled as MEX (MATLAB executables) files, providing an interface be-

tween MATLAB and functions written in C/C++. When complied, it allows to automatically 

invoke external function as if they are built-in to execute Simulink model. The signal gen-

erated are then fed into S-function block as input. Multiple set of S-function callback 

methods are implemented to perform tasks required at each simulation stage. Following 

paragraphs in this section presents a few of these methods. 

Figure 20 presents the snippet of mdlInitializeSizes callback method. It defines the size 

of several parameters in the SimStruct, for example number of inputs, output, states and 

parameters of the block. 

 

https://se.mathworks.com/help/simulink/sfg/mdlinitializesizes.html
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Figure 20. Input parameters of the S-block 

Figure 21 presents the mdlInitializeSampleTimes that specifies the sample rates at 

which this S-function works. 

 
Figure 21. Sample rate setup 

In mdlStart callback method, it initializes the state vectors of the S-function. Figure 22 

presents how the register values from text file are fed that contains current symbol infor-

mation to call C++ function. 

 
Figure 22. Register values to call C++ function 
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One of the most important callback methods is mdlOutputs, it computes the signals that 

the S-function block emits. Figure 23 presents, valid output complex sample data is 

transmitted to output port by calling C++ function to the output port and separating the 

real and imaginary parts. 

 

Figure 23. Signal at output port 

mdlTerminate – performs any actions essential for the termination of simulation. If no 

actions are needed, this function can be executed as a stub. 

Finally, Figure 24 presents frequency domain channel filter’s input and output signal 

spectrum [26][28]. 

 

Figure 24. Signal before and after channel filtering 

 



45 

 

6.3 CI System for Model Implementation 

Chapter 5, section 5.2 discusses the benefits of CI implementation in hardware develop-

ment. There are few other reasons due to which CI system is recommended in model 

design such as multiple people using or modifying the same model. CI is used to avoid 

using broken models and only the working model stays in repository. One more practise 

that modeling team takes advantage is in case of new tool releases, CI can test all the 

used cases with new release and verify existing models. 

6.3.1 Jenkins Testcase 

Continuous integration tool Jenkins is used to test build results and working of Simulink 

model. To check, input signal is filtered according to the control information. A testcase 

was implemented in Jenkins to check received signal quality. The error vector magnitude 

(EVM) is a measurement for signal quality and it defines the error and actual signal rela-

tion [26]. It is confirmed that the build is good after the testcase passes in Jenkins. Jen-

kins is also used to automate release notes with other SoC teams, for promoting results 

to higher level instead of carrying out manual testing and creating releases to inform 

relevant teams. 

This section explains, how to setup a project with CI tool for testing and building different 

targets. First step is to create a new item in Jenkins and then write the name of the 

project and select ‘free style project’ as presented in Figure 25. 

 
Figure 25. Jenkins web interface to setup a new project 

Next step is to configure the project, copy the repository URL from GitHub. If the project 

is built at this phase, it will clone the repository to workspace. After the initial build, add 

URL and secret token from the Jenkins to GitLab project. As presented in Figure 26, 

select ‘incoming’ branch to trigger the build and ‘Merge Results’ for every time code is 

pushed to the incoming branch. Recipients and email alerts are also setup at this phase. 
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Figure 26. Jenkins Post-build actions 

Jenkins job is triggered at every commit to the incoming branch. For Jenkins tool, bash 

script is in the root of the repository to build and test for both desktop and Unix. This 

script also merges master and incoming code to check updated master’s functional cor-

rectness. In the bash script, setup for the different environment is done to load correct 

compile environment and MATLAB in grid or desktop. Figure 27 presents bash script’s 

snippet for environment setup. 

 
Figure 27. (top) Check if grid or Jenkins environment, (bottom) Environment 

based setup for MATLAB 
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To track the changes in the selected directories, paths are given to compare latest and 

previous versions by running compilations and tests as presented in Figure 28. 

 

Figure 28.  Bash script snippet to track changes and run test 

This bash script also checks the code in Unix or desktop to start Jenkins job. It is im-

portant to provide correct exit codes so the Jenkins tool can differentiate between a suc-

cessful and unsuccessful test. Figure 29 presents Jenkins exit code in case of incorrect 

test results. 

 
Figure 29. Jenkins exit code 
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Figure 30 presents grid results in case of changes in Simulink model and a successful 

testcase result. 

 
Figure 30. Jenkins script runs and test Simulink model 

6.4 Result Analysis 

The reason behind designing a C++ model of the same exact MATLAB refence model is 

that it can be used for RTL verification of this particular system in later stages of SoC 

design. The benefit of designing a Simulink model is that the C++ bit exact model can be 

used further in other models to provide bit exact filtered data especially to DFE model. 

Due to use of CI system, the aim of designing a model that is always up to date, at an 

adequate complexity and is easy enough to be used for a person not mastering the topic 

is achieved. 

6.5 SoC Practices Research and Findings 

This section describes about the study conducted as part of the research work done for 

the thesis work. The first section describes about the interview group and selection cri-

teria. In the next section, results and proposed actions are discussed. 

In order to conduct research study, multiple experts from different SoC development 

teams were selected such as few individuals from modeling team, RTL design and veri-

fication teams. All the members volunteered for the study. No particular study style is 
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followed but a relax discussion sessions with each expert so that they can speak without 

feeling conscious or pressurised. The research group includes, people from different na-

tionalities with varying work experience of 5 years up to 25 years. Although no particular 

format was followed but to start the conversation below question was asked: 

What are the potential problems you face w.r.t your work and other SoC teams? 
Some ideas to improve overall SoC development process and impact of CI in your 
work. 

Meanwhile, during the discussion wrote down things that came up and sometimes asked 

additional questions to elaborate the point made. Each session in duration lasted around 

20 minutes to about 45 minutes. Below are the findings of the study conducted: 

 One of the top suggestions given by multiple experts is to put more efforts in 

better planning and resource allocation from the beginning of the project. Taking 

away engineers or adding more resources later in project often results in turbu-

lence among the teams. 

 CI system is utilized in modeling work and it helps to keep the code clean and 

avoids breaking the models. It helps to test commits to central repository and 

model testing. 

 Most of the modeling engineers don’t have hardware design knowledge which 

leads them to not optimally design fixed point models. One of the key suggestions 

for modeling engineers is to have trainings to better understand hardware side of 

the design. 

 Using tools to auto generate code such as from MATLAB to C/C++ is not con-

venient. It contains a lot more redundancy and is hard to explain other 

teams/members utilizing that model. 

 One more suggestion for better project planning is to decide resource allocation 

before the start of the project and keep them updating, for example number of 

licenses and server space estimation etc. 

 Hardware designers find use of Jenkins tool very helpful in their daily tasks as it 

helps them to not forget about testing and building their code. 

 One of the issues highlighted was, HDL designers don’t put needed efforts in 

verification of their design. By making very basic testbenches and leave the work 

on verification teams which leads to wastage of time. Proposed solution was to 

put more efforts in verification so that verification team does not have to initiate 

bug fixes too many times. 
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 It was also recommended by one of the designers to use hardware emulators to 

run verification tools instead of normal serves. This helps to avoid long time 

queues, as hardware emulators supports range of verification objectives - from 

hardware verification, hardware/software integration to operating system testing. 

 One of the problems verification team encounter is due to dynamic design archi-

tecture and specifications. In this case it becomes difficult to develop 

testbenches. However, it is suggested to have architecture finalised before pro-

ceeding with RTL design and verification. 

 It is recommended to develop reusable testbench components, so that they can 

be used in other projects. This will save a lot of time and helps in early delivery. 

 One other area highlighted is to have company specific libraries on top of UVM 

to develop reusable testbench components and a common infrastructure rather 

than every team working on their own to develop testbenches. 

 It is highly recommended to have adequate infrastructure such as EDA licenses, 

CPUs and servers so that engineers don’t wait for the availability of licenses in-

stead utilise their time efficiently. 

 As part of SoC design methodology, unified development (emulation+soft-

ware+verification) should be followed for development to achieve better results. 

 One of the suggestion given by a verification engineer is to have better coordina-

tion between universities and SoC companies. A better curriculum to train stu-

dents for verification work will eventually help companies to have well trained 

employees. 

 System Verilog is recommended to be adopted in order to design complex SoCs. 

In case of one language for both design and verification, results in more optimised 

EDA tools and it will help to shuffle resources between the two teams. 

 For better IP reuse and verification teams, more efforts in clear documentation of 

design specifications and user guidelines should be spent. 

 One expert highlighted the importance of having one designated team for ana-

lysing the areas that needs improvement throughout SoC teams. This team 

should constantly evaluate and present idea to improve overall working of the 

teams. 

 Key users for each tool should be allocated so that they can provide support and 

small trainings now and then for better utilization of the tool and its new features. 
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7. CONCLUSIONS AND FUTURE WORK 

SoC development is a complex process that needs multistage development flows and 

tools. In this thesis, currently used SoC processes are evaluated to identify the areas 

that can be improved. A literature study is done to present ideas on how to implement CI 

for hardware development. Even though implementation of CI in hardware development 

has its own limitations; faster turn around and better integration among different teams 

makes it highly suitable. Better project management, clear status of design and ease of 

integration with version control systems are few of the benefits which allows organization 

to keep on using CI for SoC development. 

As part of the thesis hands-on work to automate and streamline work between different 

teams in SoC development. A model is designed in Simulink so that it can be used in 

different stages of SoC development. CI system is also implemented by using Jenkins; 

a CI tool for automating design build and testing reliability of the model design. The ben-

efit of designing a Simulink model is that the C++ bit exact model can be used further in 

other models to provide bit exact filtered data especially to DFE. 

A research study was conducted with different SoC development experts to identify ar-

eas in SoC development cycle where improvements are needed, usability and benefits 

of CI in their work. 

The purpose of the thesis is achieved by learning about SoC development flows, pre-

senting guidelines and recommending actions to improve existing flows and implemen-

tation of CI system in SoC. The outcome of the thesis is attained by evaluating benefits 

of CI system in hardware and practically implementing CI in model design. 

The model designed in this thesis sets a very strong base for the implementation of bit 

exact model for other devices as an extension to this work in future. One other future 

extension of this work can be to design a system level algorithm model. Additionally, 

research studies should be organized sporadically to track improvements in SoC flows 

and to understand new arising issues. 
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APPENDIX A: 

 
Figure 31. S-function mdlStart method to initialise state vectors 

 

 

Figure 32. Input data at port 1 
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Figure 33. MATLAB function to check input validity 
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