21,329 research outputs found

    Data assimilation of in situ soil moisture measurements in hydrological models: first annual doctoral progress report, work plan and achievements

    Get PDF
    Water scarcity and the presence of water of good quality is a serious public concern since it determines the availability of water to society. Water scarcity especially in arid climates and due to extreme droughts related to climate change drive water use technologies such as irrigation to become more efficient and sustainable. Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater, and exerts a major influence on predictions of global climate models. To improve irrigation strategies, water flow needs to be accurately described using advanced monitoring and modeling. Our study focuses on the assimilation of hydrological data in hydrological models that predict water flow and solute (pollutants and salts) transport and water redistribution in agricultural soils under irrigation. Field plots of a potato farmer in a sandy region in Belgium were instrumented to continuously monitor soil moisture and water potential before, during and after irrigation in dry summer periods. The aim is to optimize the irrigation process by assimilating online sensor field data into process based models. Over the past year, we demonstrated the calibration and optimization of the Hydrus 1D model for an irrigated grassland on sandy soil. Direct and inverse calibration and optimization for both heterogeneous and homogeneous conceptualizations was applied. Results show that Hydrus 1D closely simulated soil water content at five depths as compared to water content measurements from soil moisture probes, by stepwise calibration and local sensivity analysis and optimization the Ks, n and α value in the calibration and optimization analysis. The errors of the model, expressed by deviations between observed and modeled soil water content were, however, different for each individual depth. The smallest differences between the observed value and soil-water content were attained when using an automated inverse optimization method. The choice of the initial parameter value can be optimized using a stepwise approach. Our results show that statistical evaluation coefficients (R2, Ce and RMSE) are suitable benchmarks to evaluate the performance of the model in reproducing the data. The degree of water stress simulated with Hydrus 1D suggested to increase irrigation at least one time, i.e. at the beginning of the simulation period and further distribute the amount of irrigation during the growing season, instead of using a huge amount of irrigation later in the season. In the next year, we will further look for to the best method (using soft data and methods for instance PTFs, EMI, Penetrometer) to derive and predict the spatial variability of soil hydraulic properties (saturated hydraulic conductivity) of the soil and link to crop yield at the field scale. Linear and non-linear pedotransfer functions (PTFs) have been assessed to predict penetrometer resistance of soils from their water status (matric potential, ψ and degree of saturation, S) and bulk density, ρb, and some other soil properties such as sand content, Ks etc. The geophysical EMI (electromagnetic induction) technique provides a versatile and robust field instrument for determining apparent soil electrical conductivity (ECa). ECa, a quick and reliable measurement, is one of ancillary properties (secondary information) of soil, can improve the spatial and temporal estimation of soil characteristics e.g., salinity, water content, texture, prosity and bulk density at different scales and depths. According to previous literature on penetrometer measurements, we determined the effective stress and used some models to find the relationships between soil properties, especially Ks, and penetrometer resistance as one of the prediction methods for Ks. The initial results obtained in the first yearshowed that a new data set would be necessary to validate the results of this part. In the third year, quasi 3D-modelling of water flow at the field scale will be conducted. In this modeling set -up, the field will be modeled as a collection of 1D-columns representing the different field conditions (combination of soil properties, groundwater depth, root zone depth). The measured soil properties are extrapolated over the entire field by linking them to the available spatially distributed data (such as the EMI-images). The data set of predicted Ks and other soil properties for the whole field constructed in the previous steps will be used for parameterising the model. Sensitivity analysis ‘SA’ is essential to the model optimization or parametrization process. To avoid overparameterization, the use of global sensitivity analysis (SA) will be investigated. In order to include multiple objectives (irrigation management parameters, costs, 
) in the parameter optimization strategy, multi-objective techniques such as AMALGAM have been introduced. We will investigate multi-objective strategies in the irrigation optimization

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis

    Full text link
    The paper presents a slope stability analysis for a heterogeneous earthen levee in Boston, UK, which is prone to occasional slope failures under tidal loads. Dynamic behavior of the levee under tidal fluctuations was simulated using a finite element model of variably saturated linear elastic perfectly plastic soil. Hydraulic conductivities of the soil strata have been calibrated according to piezometers readings, in order to obtain correct range of hydraulic loads in tidal mode. Finite element simulation was complemented with series of limit equilibrium analyses. Stability analyses have shown that slope failure occurs with the development of a circular slip surface located in the soft clay layer. Both models (FEM and LEM) confirm that the least stable hydraulic condition is the combination of the minimum river levels at low tide with the maximal saturation of soil layers. FEM results indicate that in winter time the levee is almost at its limit state, at the margin of safety (strength reduction factor values are 1.03 and 1.04 for the low-tide and high-tide phases, respectively); these results agree with real-life observations. The stability analyses have been implemented as real-time components integrated into the UrbanFlood early warning system for flood protection

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    A group-theoretic approach to formalizing bootstrapping problems

    Get PDF
    The bootstrapping problem consists in designing agents that learn a model of themselves and the world, and utilize it to achieve useful tasks. It is different from other learning problems as the agent starts with uninterpreted observations and commands, and with minimal prior information about the world. In this paper, we give a mathematical formalization of this aspect of the problem. We argue that the vague constraint of having "no prior information" can be recast as a precise algebraic condition on the agent: that its behavior is invariant to particular classes of nuisances on the world, which we show can be well represented by actions of groups (diffeomorphisms, permutations, linear transformations) on observations and commands. We then introduce the class of bilinear gradient dynamics sensors (BGDS) as a candidate for learning generic robotic sensorimotor cascades. We show how framing the problem as rejection of group nuisances allows a compact and modular analysis of typical preprocessing stages, such as learning the topology of the sensors. We demonstrate learning and using such models on real-world range-finder and camera data from publicly available datasets
    • 

    corecore