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List of abbreviations  

 

s  saturated water content  
A          is the tortuosity index 

a          tube shape factor 
CAS      central absolute sensitivity here defined  
Ce  Nash–Sutcliffe coefficient of model efficiency  
CPRS      central parameter relative sensitivity  
CPRS   central parameter relative sensitivity  
CTRS     central total sensitivity analysis  
ECa  apparent soil electrical conductivity  
ECw    soil water (fully saturated soil or soil solution)  

EMI  electromagnetic induction  
ET        evapotranspiration 
ETo  reference evapotranspiration 
FF  formation factor 
K(h)  unsaturated hydraulic conductivity 
K-C  Kozeny and Carman 
Ks  saturated hydraulic conductivity  
KsAm  Arithmetic mean of saturated hydraulic conductivity 
KsGM  geometric mean of saturated hydraulic conductivity 
L         tortuosity exponent 
m        cementation exponent of  
MVG  van Genuchten-Mualem 
N        the depolarization factor 

p         saturation index 

pf          perturbation factor 
PTF  pedotransfer functions 
R2   coefficient of determination R –square  
RMSE  root-mean-square deviation  
S  degree of saturation  
S(t)       sensitivity function 

SA  sensitivity analysis 
Sp        specific surface area and  
TDR  time domain reflectometry 
x           parameter 
 xj         parameter value  
y(t)       output variable 
Δxj        perturbation,  
θ(h)  soil water retention curve 
ρb  bulk density  
Ψ  matric potential  

  porosity  
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Management summary  

Water scarcity and the presence of water of good quality is a serious public concern since it 
determines the availability of water to society. Water scarcity especially in arid climates and 
due to extreme droughts related to climate change drive water use technologies such as 
irrigation to become more efficient and sustainable. Plant root water and nutrient uptake is 
one of the most important processes in subsurface unsaturated flow and transport modeling, 
as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching 
to the groundwater, and exerts a major influence on predictions of global climate models. To 
improve irrigation strategies, water flow needs to be accurately described using advanced 
monitoring and modeling. Our study focuses on the assimilation of hydrological data in 
hydrological models that predict water flow and solute (pollutants and salts) transport and 
water redistribution in agricultural soils under irrigation. Field plots of a potato farmer in a 
sandy region in Belgium were instrumented to continuously monitor soil moisture and water 
potential before, during and after irrigation in dry summer periods. The aim is to optimize the 
irrigation process by assimilating online sensor field data into process based models. 
Over the past year, we demonstrated the calibration and optimization of the Hydrus 1D model 
for an irrigated grassland on sandy soil. Direct and inverse calibration and optimization for 
both heterogeneous and homogeneous conceptualizations was applied. Results show that 
Hydrus 1D closely simulated soil water content at five depths as compared to water content 
measurements from soil moisture probes, by stepwise calibration and local sensivity analysis 
and optimization the Ks, n and α value in the calibration and optimization analysis. The errors 
of the model, expressed by deviations between observed and modeled soil water content 
were, however, different for each individual depth. The smallest differences between the 
observed value and soil-water content were attained when using an automated inverse 
optimization method. The choice of the initial parameter value can be optimized using a 
stepwise approach. Our results show that statistical evaluation coefficients (R2, Ce and RMSE) 
are  suitable benchmarks to evaluate the performance of the model in reproducing the data. 
The degree of water stress simulated with Hydrus 1D suggested to increase irrigation at least 
one time, i.e. at the beginning of the simulation period and further distribute the amount of 
irrigation during the growing season, instead of using a huge amount of irrigation later in the 
season. 
In the next year, we will further look for to the best method (using soft data and methods for 
instance PTFs, EMI, Penetrometer) to derive and predict the spatial variability of  soil hydraulic 
properties (saturated hydraulic conductivity) of the soil and link to crop yield at the field scale. 
Linear and non-linear pedotransfer functions (PTFs) have been assessed to predict 
penetrometer resistance of soils from their water status (matric potential, ψ and degree of 
saturation, S) and bulk density, ρb, and some other soil properties such as sand content, Ks etc.  
The geophysical EMI (electromagnetic induction) technique provides a versatile and robust 
field instrument for determining apparent soil electrical conductivity (ECa). ECa, a quick and 
reliable measurement, is one of ancillary properties (secondary information) of soil, can 
improve the spatial and temporal estimation of soil characteristics e.g., salinity, water content, 
texture, prosity and bulk density at different scales and depths. According to previous 
literature on penetrometer measurements, we determined the effective stress and used some 
models to find the relationships between soil properties, especially Ks, and penetrometer 
resistance as  one of the prediction methods for Ks. The initial results obtained in the first 
yearshowed that a new data set would be necessary to validate the results of this part.  
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In the third year, quasi 3D-modelling of water flow at the field scale will be conducted. In this 
modeling set -up, the field will be modeled as a collection of 1D-columns representing the 
different field conditions (combination of soil properties, groundwater depth, root zone 
depth). The measured soil properties are extrapolated over the entire field by linking them to 
the available spatially distributed data (such as the EMI-images). The data set of predicted Ks 
and other soil properties for the whole field constructed in the previous steps will be used for 
parameterising the model. Sensitivity analysis ‘SA’ is essential to the model optimization or 
parametrization process. To avoid overparameterization, the use of global sensitivity analysis 
(SA) will be investigated. In order to include multiple objectives (irrigation management 
parameters, costs, …) in the parameter optimization strategy, multi-objective techniques such 
as AMALGAM have been introduced. We will investigate multi-objective strategies in the 
irrigation optimization.  
 
Keywords: soil, Hydrus, modeling, water flow and solute transport, tensiometers, water 
content profile probes, sensitivity analysis, Ks, PTFs, ECa, model calibration, validation and 
optimization 
  



 6 

Chapter 1 Introduction 

 1.1 Scientific background  

Plants are dependent on soil water for their growth and in many cases irrigation is needed 
during the growing season to accommodate for this need. The efficient use of water, e.g. in 
irrigation, for food production is of utmost importance. Two important aspects which affect 
irrigation efficiency are the type of irrigation and irrigation scheduling. Optimizing the design 
of irrigation systems can maximize plant yield and decrease the volume of applied water. 
Approaching an optimum water supply for productivity (soil moisture being maintained near 
to the upper available water content or field capacity) is the goal of irrigation scheduling 
(Jones, 2004). Generally, four different approaches are used in irrigation management: i) 
controlling soil-water content in the root zone by its direct or indirect measurement in soil, 
i.e., “soil-based”, ii) using meteorological data and mathematical models that calculate 
evapotranspiration (ET), i.e.,  “weather-based”, iii) sensing of the plant response to water 
deficits by measuring crop parameters such as stem diameter, leaf thickness or stem sap flow, 
root pattern , i.e., “crop-based” , and iv) canopy temperature-based via infrared 
thermometers on land or boarded on aircrafts and/or satellites, i.e., remote sensing (Jones, 
2004; Evett et al., 2008; Pardossi et al., 2009). In this study, the potential of using a  a mix of 
these methods is explored. 
In the case of soil-based irrigation scheduling, optimizing the water use needs the accurate 
prediction of soil-water content and soil-water potential in the root zone in order to simulate 
infiltration, redistribution and evaporation processes. This in turn requires the determination 
of hydraulic properties (Hopmans et al., 2002) and conditions related to climatology at the 
upper boundary and groundwater dynamics at the lower boundary of the soil profile (Gandolfi 
et al., 2006). Water flow and redistribution in soils is governed by hydraulic properties that can 
be measured in the laboratory and in the field. Soil hydraulic properties derived from direct 
laboratory experiments on small soil samples (e.g., ring or column samples) are often not 
representative for the key hydrological processes at larger spatial scales observed in the field 
(e.g., Ritter et al., 2003; Vereecken et al., 2008). The discrepancy between the field and 
laboratory determination of soil water retention characteristics, i.e., the relationship between 
soil water content  and water potential θ(h) and the relationship between hydraulic 
conductivity and water potential K(h)  could be attributed to the inadequate representation of 
large pores in the laboratory, sample disturbance and spatial variability, hysteresis and/or 
overburden pressure, and scale effects related to the sample size (Field et al., 1985; Shuh et 
al., 1988). Next to the scale issue, soil hydraulic properties are also subject to temporal 
changes (Alletto and Coquet 2009; Or et al. 2000), which are attributed to the changes in soil 
structure induced by tillage, drying-wetting cycles, solution composition, biological activities, 
soil erosion and settlement, compaction, shrinking and swelling due to freeze-thaw cycles (Leij 
et al., 2002; Suwardji and Eberbach, 1998; Genereux et al., 2008; Petersen et al., 2008; 
Alakukku, 1996).  
It is well recognized that direct measurement of hydraulic properties -hard data- (in the field 
or on the laboratory) is often time consuming, labor intensive, costly, and changes or 
destructively samples the system. Finding a link between soft and hard data in the field could 
be a solution to this. Using PTFs to link hydraulic properties to other measurements such as 
“ECa“ or penetrometer data could be a way forward to estimate the spatial ditribution of 
hydraulic conductivity over the whole field.  
Real-time monitoring of surface and subsurface water flow flux, soil moisture, and water 
potential is critical if soil hydraulic properties, and their tempo-spatial variability are to be 
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accurately determined for dynamic modeling and irrigation process optimization. Recent 
developments in soil sensor technology (Evett et al., 2008; Pardossi et al., 2009) allow for easy 
monitoring of soil moisture and water potential and these can be used to determine field soil 
hydraulic properties and their temporal variability. 
To assess the soil water status in the root zone, evapotranspiration (ET) and precipitation are 
two important boundary conditions that need to be accurately assessed at the upper 
boundary of the soil profile (Brutsaert, 2005; Li et al.,  2012 ; Nosetto et al., 2012). There are a 
number of studies that have examined to estimate and evaluate evapotranspiration using 
remote sensing (Winsemiuse et al., 2008; Lazzara and Rana, 2010) and hydrological modelling 
(Li et al., 2012; Nosetto et al., 2012). Root uptake of water and nutrients is considered an 
important process controlling water flow (recharge) and nutrient transport (leaching) to the 
groundwater in numerical models simulating water content and fluxes in the subsurface and 
thus also  exerting a major influence on predictions of climate change impacts (Feddes and 
Raats, 2004). The common approach for estimating root water uptake through hydrological 
modeling is to relate the root length and mass distribution of roots to water uptake patterns. 
Numerical methods are increasingly established and adopted (calibrated, evaluated and 
validated) for application to water resources planning and management using hydrological 
models. They can be applied to solve realistic field and laboratory situation problems as 
opposed to analytical models (Šimůnek and van Genuchten, 2008). The Hydrus-1D model 
(Šimůnek et al., 2008a) that is used in this study has been used in a wide range of applications 
in research and irrigation management (e.g., Hanson et al., 2008; Forkutsa et al., 2009; 
Roberts et al., 2008, 2009),  water harvesting (Verbist et al., 2009), and also to simulate the 
fate of nutrients by evaluating and comparing fertilization strategies for different  crops  and 
contaminants in soils (e.g., Seuntjens et al., 2001, 2002a,b; Cote et al., 2003; Gärdenäs et al., 
2005; Ajdary et al., 2007; Crevoisier et al., 2008). 
Šimůnek and Hopmans (2002) defined calibration as the process of adjusting a model by 
manipulating the input parameters such as soil hydraulic parameters, initial and boundary 
conditions within a reasonable range, so that simulated variables match observed variables as 
close as possible by using for instance observed water content or pressure head data. Some 
methods of model calibration include trial and error, the sequential method, and automated 
minimization and parameter estimation techniques (parameterzation).  
Soil hydraulic parameters are the most effective input parameters to derive transient water 
flow throught the soil. Some times measured soil hydraulic parameters should be optimized. 
Estimating field soil hydraulic parameters (single or multi-objective)  can be done  by inverse 
modeling (soft data) of high frequency field soil moisture and soil water potential 
measurements (Vrugt et al., 2008). Care should be taken when using inverse modeling whith 
in-situ observations collected at different scales (Dane, 1999; Musters, 2000; Scott et al., 2000; 
Ritter et al., 2003; Wollschläger et al., 2009). Therefore, a sensitivity analysis ‘SA’ (local or 
global) is an essential step in the model optimization process. An example of the latter is the 
Levenberg–Marquardt optimization (local method) for single-objective inverse parameter 
estimation (Abbasi et al., 2003a, b; Simunek et al., 1999; Jacques et al., 2012). Recently, multi-
objective techniques such as AMALGAM have been introduced (Vrugt and Robinson, 2007) 
Excellent overview examples of the inverse modeling procedure can be found in Hopmans et 
al. (2002), Vrugt et al. (2008) and Wöhling and Vrugt (2011). 
 

1.2 Aim of the research and research strategy  

The objective of the PhD is to develop and test data assimilation methods for optimizing 
irrigation efficiency using a combination of sensors and process based soil hydrological 
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models. Sensors that will be used are soil moisture sensors and online tensiometers that 
measure water content and water potential in a fully automated field setup for quantitatively 
identifying flow processes in an agriculture soil. The monitoring data are continuously used to 
improve the model predictions of water status in the plant root zone and therefore the 
steering of the irrigation.  
 
New approaches in data assimilation will be used to improve the models. Data assimilation 
techniques in hydrology are thus far mostly related to integration of satellite-derived soil 
moisture at large spatial scales and not for local applications and in situ measurements (van 
Dijk and Renzullo, 2011). We will develop and test data-assimilation methods for irrigation 
management purposes, which are extremely relevant for arid and semi arid conditions, such 
as Iran, but also for the management of intensively used agricultural fields in West- and 
Southern Europe suffering from summer droughts related to climate change. 
 
The specific objectives are:  
1) Simulation of root water uptake in vadose zone and status of water in rhizosphere 
(including concentrations of solutes and nutrients or pollutants) using the Hydrus-1D model in 
combination with other state of the art crop based models like AquaCrop 
2) Determine soil hydraulic properties based on soft data and transfer methods  
3) Investigate the tempo-spatial variability of soil hydraulic properties, 
4) The improvement of irrigation management using sensors and models for water flow and 
redistribution in soils.  
5) Assimilate data from soil moisture sensors and tensiometers in hydrological models that 
predict water flow (and solute transport) in soils 
 

1.3 Summary of the research of the past year 

The study site is a sandy agricultural area at the border between Belgium and the Netherlands, 
where potatoes are grown. During the study period 2011-2012, the farmer cultivated grass. 
The area is flat and runoff is not considered to be important. The site was equipped with two 
weather stations located on the field. Soil-water content and pressure head have been 
recorded at several depths in the vadose zone.  At each location, one tensiometer was 
installed horizontally at a depth of 30 cm, whereas one soil water content profile probe was 
placed vertically allowing to measure soil-water content at 10, 20, 30, 40 and 50 cm depths 
(root zone). The tensiometers, water content profile probes and weather stations were 
connected to a CR800 data logger. All measurements were taken on an hourly basis.  
Soil samples were taken at eight locations and two depths (25 and 75 cm) to determine Ks,  
soil water retention curve data and some other basic soil properties. Parameters describing 
the soil hydraulic properties were fitted to the observed data set using RETC program for 
windows, version 6.02. In the topsoil layer, the organic carbon content, the silt and clay 
content, and total porosity and geometric Ks was higher as compared to the subsoil layer. Bulk 
density, sand content, arithmethic Ks and the water retention shape factors on the other hand 
show the opposite trend.  
Simulation of water flow and grass root water uptake in the vadose zone of the field was 
carried out by using HYDRUS- 1D version 4.16 for 122 days in 2011. The contribution of each 
input parameter and factor to the uncertainty of the outputs of a model is determined by 
manual calibration and sensivity analysis. A stepwise calibration approach was used to 
evaluate the effect of soil hydraulic parameters, soil layering, and root water uptake. To assess 
the effect of soil hydraulic parameters on water content simulations, simulations with varying 
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values for Ks, n and α were conducted. The effect of soil layering was evaluated by choosing 
either a homogeneous or a heterogeneous profile and changing the depth of each material. 
Regarding root water uptake, three different root density distributions (uniform, linear 
decrease, and linear increase-decrease) were analysed. Results indicated that a linear 
decreasing root density distribution and a 45-cm-deep first layer offered the best simulation 
results and this was used for the initial simulations in this study. In the stepwise calibration 
approach the model was not sensitive to changes in soil hydraulic parameters i.e. n and α 
while Ks was sensitive.  
To reduce the number of parameters of optimization and finalize the calibration process, local 
sensitivity analyses were conducted by calculating the central parameter relative sensitivity 
“CPRS”. According to the results α, n and Ks are most sensitive (in decreasing order) and the 
sensitivity changed over time with the seasonal changes in water status in both soil layers.  
In a third step of the modeling approach, an inverse modeling technique was applied. 
Determining optimal parameter values by minimizing the residuals between measured and 
simulated variable data is the most common approach in parameter optimization methods. In 
the inverse modeling process, first we optimized only the values for Ks of the two layers, 
taking initial values for Ks for each layer equal to the values estimated in the previous step of 
stepwise process, while keeping the other hydraulic parameters fixed to the measured values, 
and taking the thickness of the first layer equal to 45 cm and a linear root density decrease 
with depth. Afterward based on the SA result Ks, n and α were optimized for both layers. The 
root-mean-square deviation (RMSE), the coefficient of determination (R2), and the Nash–
Sutcliffe coefficient of model efficiency (Ce), were used to evaluate the difference between 
the observed and modeled data. It was concluded that in the automated calibration the 
performance criteria R2 and Ce were higher and RMSE was lower than in the manual 
calibration, indicating better model performance. The 2012 data set was used for validation of 
the calibrated model. 
Estimations of the field-scale saturated hydraulic conductivity were made using pedotransfer 
functions. Linear and non-linear Pedotransfer functions (PTFs) have been assessed to predict 
penetrometer resistance of soils from their water status (matric potential, ψ and degree of 
saturation, S)  bulk density, ρb, and some other soil properties such as sand content, Ks etc.  
The final goal of the analysis is to estimate Ks from other datasets available with a higher 
spatial resolution using PTFs. Apparent electrical conductivity (ECa), one of the ancillary 
properties (secondary information) of soil, could improve the spatial and temporal estimation 
of some soil properties at different scales and depths. Field ECa are derived from EMI sensors 
which are versatile and robust field instrument for determining bulk soil electrical 
conductivity. An ECa dataset is available for the field site and as part of this study, the 
estimation of saturated hydraulic conductivity from the ECa dataset based on the empirical 
relations of Archie’s law and Kozeny and Carman, “K-C” was assessed. Two hypothesis for this 
purpose were conducted. So far no hypothesis could be rejected and we need new data to 
validate and finalize the results. 
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Chapter 2 Report of the past period 

2.1 Achieved Results  

2.1.1 Description of study site and soil  

The study site is a sandy agricultural area at the border between Belgium and the Netherlands 
(N 51°19’08’’, E05°10’38’’) where potatoes were grown. The potato farmer applies several 
precision agricultural practices. For irrigation, he is using sprinkler irrigation to improve potato 
growth in the sandy soils during dry periods in summer. During the study period 2011-2012, 
the farmer cultivated grass. The area is flat and runoff is not considered to be important. The 
fluctuation of ground water table was between 80 and 140 cm below the ground surface. The 
site was equipped with two weather stations (type CM10, Campbell Scientific Inc., Utah, USA) 
located on the field. Soil-water content and pressure head was recorded (from 4 May  until 2 
September 2011 in the wet zone and from 1 January 2011 until 2 September 2011 in the dry 
zone) at several depths in the vadose zone at two locations, A and B, in a wet and dry zone of 
the field respectively (Fig. 1).  At each location, one tensiometer (type T4e, UMS, Munich, 
Germany, accuracy ±0.5 kPa) was installed horizontally at a depth of 30 cm, whereas one soil 
water content profile probe (type EasyAG50, Sentek Technologies Ltd., Stepney, Australia) was 
placed vertically allowing to measure soil-water content at 10, 20, 30, 40 and 50 cm depths 
(root zone). The tensiometers, water content profile probes and weather stations were 
connected to a CR800 data logger (Campbell Scientific Inc., Utah, USA). All measurements 
were taken on an hourly basis. The data set from the dry location (B) was used for the initial 
modeling.  
Soil samples were taken to determine soil saturated hydraulic conductivity and water 
retention curve (undisturbed 100 cm3 soil samples) and some soil properties such as texture, 
organic matter, CaCO3 (disturbed soil) at  two depths (0-50 cm and 50-100 cm) at eight 
locations along  a transect (Fig. 1). The transect was chosen to account for the maximum 
variation in soil properties based on a geophysical survey with an EM38 proximal sensor 
(Geonics Ltd, Ontario, Canada) which revealed a distinct zone with increased electrical 
conductivity crossing the transect.  
The soil water retention curve, θ(h), was determined using the sandbox method (Eijkelkamp 
Agrisearch Equipment, Giesbeek, the Netherlands) up to a matric head of -100 cm and the 
pressure plate apparatus for matric heads equal or below -200 cm, following the procedure 
outlined in Cornelis et al. (2005). Soil hydraulic properties were determined by fitting the 
parameters of the van Genuchten (vG) (van Genuchten, 1980) and Mualem model to the 
observed data set using the RETC program (van Genuchten et al., 1991). The saturated 
hydraulic conductivity (Ks) was determined using a laboratory permeameter (M1-0902e, 
Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) maintaining a constant head. 
The arithmetic mean of the values for each depth interval was used as an initial estimate for 
all scenarios and models. For Ks, besides the arithmetic mean, the geometric mean was also 
calculated for the calibration, since a number of field studies demonstrated that Ks is 
lognormally distributed rather than normally (Reynolds et al., 2000; Verbist et al., 2010). The 
soil properties along the transect are given in Table 1. In the topsoil layer, the organic carbon 
content, the silt and clay content, and total porosity and geometric mean Ks were higher as 
compared to the subsoil layer. Bulk density, arithmethic mean Ks on the other hand show the 

opposite trend. Also note that optimised saturated water content s was lower than total 
porosity, as was also reported by e.g., (van Genuchten et al., 1991). This is due to a portion of 
the total porosity not contributing to water movement because of air entrapment and the 
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presence of large pores  draining too rapidly to become saturated and because some pores 
are not connected or are blocked.  
 
Table 1. Measured physical and chemical soil properties 

Soil 
depth 

OC CaCO3 Sand Silt Clay Bulk 
density 

KsAM Ks GM ε ϴr ϴs α n 

cm (%) (%) (%) (%) (%) (mg m-3) (cm h-1) (cm h-1) (m3 m-3) (m3 m-3)   (m3 m-3) (cm-1)  

0-50 2.26 0.015 91.1 6.68 2.18 1.595 2.187 1.382 0.397 0.077 0.365 0.015 2.408 
50-100 0.71 0 93.5 4.78 1.67 1.782 2.271 1.308 0.388 0.055 0.378 0.019 2.549 

ϴr, ϴs are residual and saturate water content, respectively; α and n are shape parameters for the van 
Genuchten-Mualem equation, which was obtained by RETC software. Ks and ε denote the saturated 
hydraulic conductivity and porosity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A map of the study site with the  numbers denoting sampling points  and the capital 
letters (A and B) representing locations of soil moisture monitoring (wet and dry zone 
respectively).  
 

2.1.2: Modeling at monitoring locations  

Simulation of water flow and root water uptake in the vadose zone of the field from 4 May, 
2011 at 13:00 (time 1) to 2 September, 2011 at 11:00 (time 2903) was carried out by using 
HYDRUS- 1D version 4.16. The  profile depth was 100 cm and two layers with different 
material properties according to the field measurements (Table 1) were chosen a priori. The 
van Genuchten-Mualem (MVG) soil hydraulic model without air entry value and hysteresis was 
used. Initial water content for the calibration periods was set to observed water contents of 
0.037, 0.048, 0.048, 0.066 and 0.102 m3 m-3 at a depth of 10, 20, 30, 40 and 50 cm, 
respectively. The boundary conditions for water flow were an atmospheric boundary 
condition with surface runoff for the upper and free drainage for the lower boundary 
condition. The pore connectivity parameter of the MVG model was fixed at l=0.5 (Schaap and 
Leij, 2000; Wöhling and Vrugt, 2011; Verbist et al., 2012). The Feddes model (Feddes et al., 
1977) without solute stress was used for root water uptake. Default values for grass (Taylor 
and Ashcroft, 1972) provided with Hydrus 1D were used.  
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2.1.2.1: Model calibration 

The contribution of each input parameter and factor to the uncertainty of the outputs of a 
model is determined by sensivity analysis. A stepwise calibration approach (initial calibration) 
was used to evaluate the effect of a) soil hydraulic parameters, b) soil layering, and c) root 
water uptake on water content simulations. To assess the effect of soil hydraulic parameters 
on water content simulations, simulations with varying values for Ks (between 0.1-20 cm h-1;  
with all other parameters fixed to measured values), for n (between 1-5; all other parameters 
fixed to measured values), and α (limited between 0.001-0.1; all other parameters fixed to 
measured values) were conducted.  
The effect of soil layering was evaluated by changing the depth of the two soil materials (first 
and second layer), and by considering a homogeneous profile (one layer of soil) by calculating 
the effective Ks based on soil layer thickness. Regarding root water uptake, three different 
root density distributions (uniform, linear decrease with maximum at the soil surface and zero 
value at the bottom of root zone, and increase from the ground surface to depth of 50 cm 
followed by a decrease from 50 cm to 100 cm) were analysed. Results (not shown here) 
indicated that a linear decreasing root density distribution and a 45-cm-deep first layer 
offered the best simulation results and this was further used for the  simulations in this study. 
The effect of soil layering was evaluated by changing the depth of the two soil materials (first 
and second layer), while keeping all other hydraulic parameters fixed for both layers. The 45-
cm-deep first layer was the best result with measured soil Hydrualic parameter values in this 
step. The model was not sensitive to changes in soil hydraulic parameters α and n in the initial 
calibration but this was further investigated in the systematic sensitivity analysis SA. The 
statistical goodness-of-fit for the simulations of the initial calibration with measured hydraulic 
values are summarized in table 2. 
 
Table 2. Statistic criteria for the fit between measured and simulated soil water content at 
different depths in initial calibration approach. 
 
 
 
 
 
 
R2, RMSE and Ce are the coefficients of determination, the root-mean-square deviation, and the Nash–Sutclife coefficient of 
efficiency. 

2.1.2.2: Sensitivity analysis (SA) approach  

Local sensitivity analysis was conducted by linking the following equations in the Python 
software and Hydrus 1D. Sensitivity analysis was defined as a “sensitivity study" of the 
uncertainty in outputs of a mathematical model or system (numerical or otherwise) to 
changes in the uncertainty of parameters, inputs or initial conditions which are often poorly 
known. Local and global sensitivity analysis are two large categories of sensitivity analysis. 
Generally in model calibration purposes,  the local sensitivity analysis has been used to find 
the most relevant parameters. Local sensitivity analysis methods have a relevance to small 
changes of parameters, while global methods concern  the effect of simultaneous, possibly 
orders-of- magnitude parameter changes (Saltelli et al., 2008). To reduce the number of 
parameters that need to be optimized, local sensitivity analyses are often performed that 
evaluate model output for each parameter perturbation in a one-at-a-time approach (Verbist 
et al., 2012). A dynamic sensitivity function can be written as follows: 

Statistic criteria Observation nodes- Depth (cm) 

 10 20 30 40 50 

R2 0.678 0.755 0.775 0.773 0.805 

RMSE 13.227 11.886 4.307 2.185 6.022 

Ce -1.045 -0.816 0.514 0.648 -8.611 
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        (1) 

Where S(t), y(t) and x denote sensitivity function, output variable and parameter respectively. 
If an output variable (y) significantly changes due to the small changes of an interested 
parameter (x), it is called sensitive to the parameter.  
This partial derivative can be calculated analytically or numerically with a finite different 
approach by local linearity assumption of the model. Local sensitivity functions evaluate the 
partial derivative around the nominal parameter values. The central differences of sensitivity 
function are used to rank the parameter sensitivities and can be expressed as follows: 

                  (2) 

 

     
     

  
       

                       

    
    (3) 

     
     

  
 
  

 
                               

     

  
               (4) 

where pf is the perturbation factor, xj is the parameter value and Δxj is the perturbation, CAS is 
the central absolute sensitivity, CTRS  is the central total sensitivity analysis and CPRS is central 
parameter relative sensitivity.  
Figure 2 illustrates the results of the SA as a function of  time for α, n and Ks. A perturbation 
factor of 0.01 could be better but smaller perturbation factors are not possible given the 
output accuracy of Hydrus-1D so a perturbation factor 0.1 was chosen.  During SA analysis of 
each parameter at specific layer, the value of other parameters was fixed to the average of the 
measured values. According to the results α, n and Ks are sensitive in both layers and the 
sensitivity is largest for α, then n and finally Ks. The results also show for all parameters a 
change in sensitivity with time with the seasonal changes in water status.  
 

2.1.2.3:  Inverse estimation 

Determining optimal parameter values by minimizing the residuals between measured and 
simulated variable data is the most common approach in parameter optimization methods. A 
period between 1304 h (27 June 20:00) and 2903 h (2 September  11:00) was chosen as the 
inverse simulation period for each of the five depths, which means that we had 8016 soil-
water content records with hourly precipitation and evaporation input data. In this part of the 
study Hydrus 1D is  run inversely using simulations of soil water content to optimize the values 
for α ,n and Ks of the two layers (based on SA). Furthermore the layer depth was also 
optimized. The best result was obtained for a thickness of 30 cm for the  first and 70 cm for 
the second soil layer. The results of the parameter optimization and the performance criteria 
calculated for the fit between measured and simulated soil water content (water flow) for the 
case of the 30 and 70 cm depth of layers are presented in table 4. The best  simulated time 
series of soil water content with the inverse modeling are depicted in figure 3. Results show 
the inverse model overestimates the simulated data at 30 and 40 cm depth during the first 
half of the simulation period. During the optimization the α and n values  increased and 
decreased respectively.  The Ks value decreased for the first layer (to 1.899 cm h-1) and 
increased for the second layer( to 99.082 cm h-1). 
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Figure 2. The sensitivity analysis “SA” results for parameters as a function of time. The number 

1 and 2 correspond to first and second layer. 

 
Table 4. Optimized hydraulic parameters for 30 and 70 cm depth of layers and calculated 
performance criteria for the fit between measured and simulated soil water content . 

 Parameter Optimized value Lower Upper RSQ Mass balance error 

Fi
rs

t 

la
ye

r 

α (cm-1) 0.036288 00.034677 0.037899 0.841 0.243% 

N 1.2459 1.2392 1.2525 

Ks (cm h-1) 1.899 1.7226 2.0753 

     

Se
co

n
d

 

la
ye

r 

α (cm
-1

) 0.025826 0.021846 0.029806 

N 1.3019 1.2909 1.3129 

Ks (cm h-1) 99.082 70.001 128.16 

 Depth (cm) 10 20 30 40 50 

P
er

fo
rm

a
n

ce
 c

ri
te

ri
a

 R2 0.834 0.922 0.775 0.769 0.780 

RMSE 4.107 2.743 5.365 2.420 1.087 

Ce 0.803 0.903 0.245 0.568 0.687 

R2, RMSE and Ce are the coefficient of determination, the root-mean-square deviation, and the Nash–Sutcliffe 
coefficient of efficiency (cm3cm-3). 
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Figure 3. Observed and simulated time series of soil water content with inverse modeling for 

30 and 70 cm depth of layers at a) 10, b) 20, c) 30, d) 40 and e) 50 cm depth. 

2.1.2.4:  Model validation  

For validation purposes, the optimized values were used to simulate water flow and root 
water uptake in the vadose zone from 1 March, 2012 at 00:00 (time 1) to 25 November, 2012 
at 23:00 (time 6480). The statistical goodness-of-fit criteria for the simulations are depicited in 
table 5. The best simulated time series of soil water content are shown in Figure 4. 
Table 5. Statistic criteria for the fit between measured and simulated soil water content at 
different depths in validation approach. 
 
 
 
 
 
R2, RMSE and Ce are the coefficients of determination, the root-mean-square deviation, and the Nash–Sutclife coefficient of 
efficiency. 

Statistic criteria Observation nodes- Depth (cm) 

 10 20 30 40 50 
R

2
 0.521 0.457 0.094 0.133 0.098 

RMSE 4.579 4.004 6.486 3.225 5.269 
Ce 0.945 0.941 0.886 0.935 0.692 
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Figure 4. Observed and simulated time series of soil water content for 30 and 70 cm depth of 

layers at a) 10, b) 20, c) 30, and d) 40 cm depths for validation period. 

2.1.3: Field scale Ks determination by Pedotransfer functions (PTFs) 

2.1.3.1: Penetrometer dataset and soil physical properties  

Field estimates of the  saturated hydraulic conductivity were made using pedotransfer 
functions based on other available measurements such as penetrometer resistance and soil 
physical properties. Linear and non-linear pedotransfer functions (PTFs) have been tested to 
predict penetrometer resistance of soils from their water status (matric potential, ψ and 
degree of saturation, S)  bulk density, ρb, and other soil properties such as sand content, Ks 
etc. The aim of this analysis is to estimate Ks from other available datasets with a higher 
spatial resolution using PTFs.  According to literature on penetrometer measurements, we 
determined the effective stress and used some PTF equations to find the relationships 
between soil properties, and pentrometer resistance as one of the prediction ways of Ks. We 
concluded that the results were not satisfactory with the limited set of  soil properties 
available and new measurements are necessary to further evaluate this. 

2.1.3.2: Apparent electrical conductivity (ECa) dataset and  soil physical properties  

The Electromagnetic induction (EMI) technique provides a versatile and robust field 
instrument for determining apparent soil electrical conductivity (ECa). ECa measurements with 
EMI sensor, a DUALEM-21S sensor (DUALEM, Milton, ON, Canada), were already conducted to 
map the depth to a contrasting textural layer in the our field site. Details about the method of 
ECa measurements with the DUALEM-21S sensor can be found in Saey et al. (2009). ECa, a 
quick and reliable measurement, is one of the ancillary properties (secondary information) of 
soil and could improve the spatial and temporal estimation of some soil properties at different 

file:///D:/phD%20programs/work%20plan/SAEY%20T.,%20VAN%20MEIRVENNE%20M.,%20VERMEERSCH%20H.,%20AMELOOT%20N.%20&%20COCKX%20L.,%202009.%20A%20pedotransfer%20function%20to%20evaluate%20soil%20profile%20heterogeneity%20using%20proximally%20sensed%20apparent%20electrical%20conductivity.%20Geoderma%20150%20:389-395
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scales and depths. The interesting question for our study is “can unsaturated and saturated 
hydraulic conductivity (field-scale) be predicted from ECa data?”. The correlations between 
ECa data and hydraulic properties were investigated in order to find Ks (spatial scale) based on 
ECa data.  
The estimation of saturated hydraulic conductivity from the ECa dataset based on the 
empirical relations of Archie’s law and Kozeny and Carman, “K-C” has been assessed. Empirical 
Archie’s law (1942) and theoretical equations of Sen et al., (1981) are used by many 
researchers to describe the electrical conductivity in clean sandstone, non-clean sand, gravel 
aquifer, sedimentary rocks and porous media (Cosentini et al., 2012;Doussan and Ruy, 2009; 
Friedman and Seaton, 1998;Huntley, 1986; Khalil and Santos, 2009; Morin et al., 2010; Niwas 
and de Lima, 2003; Sen et al., 1981; Slater, 2007). The formation factor equation can be 
written as:     

   
   

   
                           (5) 

Where ECw and ECa denote  soil water (fully saturated soil or soil solution) and bulk soil 
electrical conductivity or apparent electrical conductivity respectively. Another formulation is:      

                                (6) 

Where A is the tortuosity index (A=(Le/L)2) related to the type of rock and porous media (often 
determined by regression methods). ε is porosity and m defined as the  porosity exponent , 
cementation index  or shape factor. In ideal conditions, normally A=1 (not tortuosity and  
Le=L); For high-porosity granular materials such as soils, we typically set m=1.5, and for 
consolidated rocks with lower porosity, we typically use a cementation exponent of m=2.0 
(Sen et al., 1981; Mendelson and Cohen, 1982; Sen, 1984; Robinson and Friedman, 2001). 
Lesmes and Friedman (2005) mentioned the following equation for spherical grains: 

   
    

        
                              (7) 

With N the depolarization factor (Jones and Friedman, 2000) defined as: 

      
 

                    
           (8) 

The depolarization factors for a sphere (a/b=1) are N (a, b, c)= 1/3, 1/3, 1/3. 
The formation factor is an intrinsic property that remains constant with varying fluid 
conductivity. In saturated conditions the intrinsic formation factor is the same as the apparent 
formation factor. 
The second empirical equation that  is called second Archie’s law can be written as: 

                                 (9) 
Where S is a saturation degree; p saturation index with a value for sand and silt estimated as 2 
and 1.98 respectively (Cosentini et al., 2012). The saturation index is usually larger than the 
cementation index (n>m), because as saturation decreases, the water films surrounding the 
grains become thinner and the conducting paths become more tortuous (lesmens and 
Friedman, 2005). For coarse-textured sands, the semi-empirical model of Mualem and 
Friedman (1991) predicts that m=1+L and p=2+L, where the tortuosity exponent L can be 
taken as 0.5 from Mualem’s (1976) model for predicting the soil-water-retention function 
parameters, making m=1.5 and p=2.5. 
Slater (2007) has used effective porosity instead of porosity (ε). Waxman and Smits (1968) also 
proposed the above equation (5) who studied the effects of saturation on the electrical 
conductivity of oil-bearing shaly sandstones. 
Archie’s law in constant porosity and water salinity conditions is: 

   

   
                                   (10) 
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The Kozeny and Carman, or K-C equation(Carman, 1939), can be expressed as: 

   
 

    
                         (11) 

Where  ks, Sp and a are the hydraulic permeability, specific surface area and tube shape factor 
(a dimensionless number between 1.7 and 3) 
Purvance and Andricevic (2000b) derived a linear log–log empirical relation between  K and 
ECa (Slater, 2007): 

                                (12) 

The relationship between formation factor (FF) and hydraulic conductivity takes the form 
(Mazac and Landa 1979):  

                             (13) 

In the last two equations (12 and 13), a and b are fitting parameters. 

Two hypotheses for 0-50 cm of soil depth data were tested:  

H0 (1), assume that the maximum measured ECa correspongs to the saturated soil bulk (soil 
solution) EC and derive FF from Eq. (5); there is no relationship between soil moisture, EC and 
effective formation factor levels and Ks; parameters a (0.7747) and b (0.8455) of empirical 
equation 13 were derived from Ks plotted vs FF (fig 4 a). Afterwards by assuming a constant 
porosity and water salinity of the soil, the degree of saturation can be calculated with 
equation 10. Results of this step has been compared to typical first Archie’s law (fig 4 b). 
Finally, predicted Ks is compared with measured Ks (fig 4c).     

H0 (2), assume a saturation condition, derive the maximum measured EC or saturated soil bulk 
(soil solution) EC with second Archie’s law, (equation 9); there is no relationship between soil 
moisture levels and EC. Using equations 7 and 8, m was determined as 1.5, and by assuming 
tortuosity index equal to 1, FF was calculated based on eqation (6). Measured Ks was plotted 
vs FF and the parameters a and b from the empirical equation 13 were derived (fig 5a). Finally, 
measured Ks is plotted vs predicted Ks (Figure 5b).  

The result of the first and second hypothesis are shown in figures 4 and 5. Both approaches 
were acceptable based on the available data. New data are needed to further validate this.  

 

 

 

 
 
 

a)                                                                                              b) 
 
 
 
 
 
 
 

c) 
Figure 4. Relations between Ks (cm/h) and FF (a), and ECa (mS/cm) and S (b) for the top 50 cm of soil 
and measured Ks vs predicted Ks (c) based on relation between Ks an FF under first hypothesis H0(1). 
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Figure 5. Relations between Ks and FF, and measurd Ks vs predicted Ks based on relation 
between Ks an FF under second hypothesis H0(2). 

2.2: Scientific in- and output 

Courses and workshops 

- Aquacrop workshop from Monday 16th to Friday 20th July 2012 at KU Leuven 
University, by Dirk Raes 

- ENVITAM course on HP1 (HYDRUS + PHREEQC). From 25th to 28th  March 2013 at Gent 
University (Faculty of Bioscience Engineering), by Diederik Jacques. 

- Contaminant transport in soil, second semester 2012-2013, Gent University, by Prof. 
Piet Seuntjens 

- Soil physics, first semester 2012-2013, Gent University (Faculty of Bioscience 
Engineering), by Prof. Wim Cornelis 

- Land information system, second semester 2012-2013, Gent University (Faculty of 
Bioscience Engineering), by Prof. Ann Verdoodt 

- Intermediate academic English course, first semester 2012-2013, Gent University, by 
university language center (UTC) 

 
Publications 

- Rezaei, M., P. Seuntjens, I. Joris, W. Boënne, W. Cornelis (2013). Estimation of hydraulic 
properties in a two-layered sandy soil for irrigation management purposes, in 
preparation.  

  
 

  

http://minerva.ugent.be/main/announcements/announcements.php?cidReq=I00155302012&source=whatsnew
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Chapter 3: Future perspectives  

 3.1 Evaluation of the results and currently missing elements  

The dataset now consists of data for two growing seasons and will be kept up-to-date  for the 
next years for validation of our results. Monitoring equipment in the field will be checked for 
performance regularly. We will install new sensors in the field for two or three repetitions at 
locations or other places (higher accuracy of measurement and avoid ill-posed optimization).. 
Selection of the best location to install new sensors (soil mositure probes and tensiometers) in 
the field will be part of the research plan for next year.We will derive a groundwater depth for 
the field based on the DEM (digital elevation model) and check this with measurements of 
groundwater depth in the field.  
 
Two hypotheses for the purpose of estimating the soil hydraulic properties from the field were 
investigated. So far no hypothesis could be rejected and we need new data to validate and 
finalize the results. Therefore additional sampling will be conducted. To this respect, a design-
based and model-based sampling strategy was investigated. A user-friendly software package 
(ESAP) developed by Lesch et al. (2000), which uses a response-surface sampling design, has 
proven to be particularly effective in delineating spatial distributions of soil properties from 
ECa survey data (Corwin and Lesch, 2005).  The ESAP model was used for a full sample design 
(20 locations). For the model based sampling design the Fuzzme software (Minasny, and 
McBratney, 2002) was used to classify the ECa field data set. According to the results, a 
classification using 3 classes came out best. The interesting result  was that the suggested 20 
locations from the ESAP model (design-based approach?) exactly cover the three classes of 
Fuzzme output (model-based approach?). Therefore the model-based sampling strategy (ESAP 
model) was chosen and soil sampling and field Ks measurements will be conducted in the next 
step. Figure 6 shows the map of the classified site with Fuzzme and the 20 soil sampling 
locations with the ESAP software. 
 
 
 
 
 
 
 
 
 
 
 
 

a)                                                                                         b) 
 
Figure 6. a) Field site classified with Fuzzme software (red, green and blue circles) and 20 
sampling locations from ESAP software (black dots) and b) ECa map (0-100cm) of the field 
(from www.orbit.ugent.be). 
 
We will futher investigate the correlations between ECa data and hydraulic properties. 
Additional measurements of Ks in the field will allow to find and validate a relationship 
between soil properties and the apparent electrical conductivity (ECa), measured by the 
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EM38DD sensor. This way, a spatial distribution of Ks for the whole field can be derived. In this 
respect, a sampling design is developed using a model ESAP where soil samples will be taken 
(fig 6) and soil physical properties will be measured (in the field and lab).  
 
Sensor readouts will be fed to the Hydrus models and water flow in the plant root zone will be 
calculated. When new measurements become available they are assimilated in the model to 
further optimize the model parameters and to improve the model predictions. The improved 
model predictions will be used to activate or deactivate the irrigation, based on the plant 
requirements, chemical composition of solution and the climatological conditions. The 
irrigation can be optimized using optimization algorithms using predefined criteria in terms of 
minimal water use and maximal growth. 

 In a further modelling set-up, quasi 3D-modelling of water flow at the field scale will be 
conducted.  The field will be modeled as a collection of 1D-columns representing the different 
field conditions (combination of soil properties, groundwater depth, root zone depth The data 
set of predicted Ks and other soil properties for the whole field constructed in the previous 
steps will be used for parameterising the model. 

3.2 Planning 

The literature study will situate the research in scientific literature. During the execution of the 
research plan, literature searches will be carried out for all of the different topics. This may 
lead to changes in the work plan during execution. Reporting will be done to Ghent University, 
Vito and the Ministry of science, research and technology of Iran. Below is a work schedule for 
the four year period (table 6).  
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Table 6: Overview of working schedule 
<Meisam Rezaei> 

Actualised working schedule on <23.5.2013> 
Started on <15.02.2012> 

Tasks and parts of tasks YEAR 1 YEAR 2 YEAR 3 YEAR 4 

Task 1 Literature Review, existing data analysis and work plan                  
literature review: models, processes, inverse modeling, data assimilation methods, ECa, Penetrometer…………………  ■ ■ ■ ■ ■            
data analysis existing data field site at Vandenborne     ■            
GIS analysis field data and point-to-field extrapolation of hydraulic properties (in collaboration with UGhent)    ■             
Finding relationship between soil properties and available data (correlation and regression)   ■ ■ ■             
completing proposal writing work plan ■ ■               

Task 2 Parameter estimation and model calibration                  
manual calibration of historical data set ■ ■ ■ ■             
inverse optimisation using Hydrus   ■ ■             

Task 3 Modelling                  
setup 1D hydrological models for individual soil columns ■ ■ ■ ■             
root distribution, plant uptake and ET- Crop based modeling   ■ ■             
setup quasi 3D hydrological model (parallel columns) for the field site at Vandenborne                 
Application of data assimilation tools to sensor data Include weather forecast in predictions on water flow                 

Task 4 Field work and additional collection of data                  
Installation of new sensor   ■ ■              
Checking the data set and equipments twice to four times a month  ■  ■             
Soil description and delineation of groundwater depth- soil sampling                 
Laboratory analysis                 

Task 5 Reporting                 
Draft paper on the modelling.......,     ■             
Draft a paper on penetrometer data and ECa data set    ■             
take a note and writing a draft of thesis.   ■ ■             
Journal and conference paper                  

Task 6 Doctoral education                  
Course on Contaminant Transport in Soil, Physical Land Resources, Soil Physics, Land information system ■ ■ ■ ■ ■            
 English language and writing course   ■ ■             

Legend: (The vertical green line indicates the end of the present quarter) 

 Planning starting doctorate ■ Finished   Not planned, additional quarters  Planned but not realised  
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