1,202 research outputs found

    AN EFFICIENT ERROR DETECTION AND CORRECTION METHOD FOR TIMING ERRORS

    Get PDF
    Timing errors are an important concern in nanometer CMOS technologies. A promising way to overcome the timing errors is the development of error detection and correction techniques. A local error detection and correction technique is done in this work. It is based on a new bit flipping flip flop. Whenever a timing error is detected, it is corrected by complementing the output of the corresponding flip flop. No extra circuitry is inserted in the design. Timing errors are identified and corrected within a single cycle and hence design complexity is reduced which results in reduced power consumption and low silicon area when compared to the earlier designs

    Multiple bit error correcting architectures over finite fields

    Get PDF
    This thesis proposes techniques to mitigate multiple bit errors in GF arithmetic circuits. As GF arithmetic circuits such as multipliers constitute the complex and important functional unit of a crypto-processor, making them fault tolerant will improve the reliability of circuits that are employed in safety applications and the errors may cause catastrophe if not mitigated. Firstly, a thorough literature review has been carried out. The merits of efficient schemes are carefully analyzed to study the space for improvement in error correction, area and power consumption. Proposed error correction schemes include bit parallel ones using optimized BCH codes that are useful in applications where power and area are not prime concerns. The scheme is also extended to dynamically correcting scheme to reduce decoder delay. Other method that suits low power and area applications such as RFIDs and smart cards using cross parity codes is also proposed. The experimental evaluation shows that the proposed techniques can mitigate single and multiple bit errors with wider error coverage compared to existing methods with lesser area and power consumption. The proposed scheme is used to mask the errors appearing at the output of the circuit irrespective of their cause. This thesis also investigates the error mitigation schemes in emerging technologies (QCA, CNTFET) to compare area, power and delay with existing CMOS equivalent. Though the proposed novel multiple error correcting techniques can not ensure 100% error mitigation, inclusion of these techniques to actual design can improve the reliability of the circuits or increase the difficulty in hacking crypto-devices. Proposed schemes can also be extended to non GF digital circuits

    Integrated circuit & system design for concurrent amperometric and potentiometric wireless electrochemical sensing

    Get PDF
    Complementary Metal-Oxide-Semiconductor (CMOS) biosensor platforms have steadily grown in healthcare and commerial applications. This technology has shown potential in the field of commercial wearable technology, where CMOS sensors aid the development of miniaturised sensors for an improved cost of production and response time. The possibility of utilising wireless power and data transmission techniques for CMOS also allows for the monolithic integration of the communication, power and sensing onto a single chip, which greatly simplifies the post-processing and improves the efficiency of data collection. The ability to concurrently utilise potentiometry and amperometry as an electrochemical technique is explored in this thesis. Potentiometry and amperometry are two of the most common transduction mechanisms for electrochemistry, with their own advantages and disadvantages. Concurrently applying both techniques will allow for real-time calibration of background pH and for improved accuracy of readings. To date, developing circuits for concurrently sensing potentiometry and amperometry has not been explored in the literature. This thesis investigates the possibility of utilising CMOS sensors for wireless potentiometric and amperometric electrochemical sensing. To start with, a review of potentiometry and amperometry is evaluated to understand the key factors behind their operation. A new configuration is proposed whereby the reference electrode for both electrochemistry techniques are shared. This configuration is then compared to both the original configurations to determine any differences in the sensing accuracy through a novel experiment that utilises hydrogen peroxide as a measurement analyte. The feasibility of the configuration with the shared reference electrode is proven and utilised as the basis of the electrochemical configuration for the front end circuits. A unique front-end circuit named DAPPER is developed for the shared reference electrode topology. A review of existing architectures for potentiometry and amperometry is evaluated, with a specific focus on low power consumption for wireless applications. In addition, both the electrochemical sensing outputs are mixed into a single output data channel for use with a near-field communication (NFC). This mixing technique is also further analysed in this thesis to understand the errors arising due to various factors. The system is fabricated on TSMC 180nm technology and consumes 28µW. It measures a linear input current range from 250pA - 0.1µW, and an input voltage range of 0.4V - 1V. This circuit is tested and verified for both electrical and electrochemical tests to showcase its feasibility for concurrent measurements. This thesis then provides the integration of wireless blocks into the system for wireless powering and data transmission. This is done through the design of a circuit named SPACEMAN that consists of the concurrent sensing front-end, wireless power blocks, data transmission, as well as a state machine that allows for the circuit to switch between modes: potentiometry only, amperometry only, concurrent sensing and none. The states are switched through re-booting the circuit. The core size of the electronics is 0.41mm² without the coil. The circuit’s wireless powering and data transmission is tested and verified through the use of an external transmitter and a connected printed circuit board (PCB) coil. Finally, the future direction for ongoing work to proceed towards a fully monolithic electrochemical technique is discussed through the next development of a fully integrated coil-on-CMOS system, on-chip electrodes with the electroplating and microfludics, the development of an external transmitter for powering the device and a test platform. The contributions of this thesis aim to formulate a use for wireless electrochemical sensors capable of concurrent measurements for use in wearable devices.Open Acces

    Timing error tolerance in nanometer ICs

    Full text link
    Abstract—Timing error tolerance turns to be an important design parameter in nanometer technology, high speed and high complexity integrated circuits. In this work, we present a low cost, multiple timing error detection and correction technique, which is based on a new Flip-Flop design. The proposed design approach provides timing error tolerance at the small penalty of one clock cycle delay in the circuit operation for each error correction. In addition, it is characterized by very low silicon area requirements compared to previous design schemes in the open literature. The proposed technique has been applied in a 90nm pipeline design of a digital FIR filter and the simulation results validated its efficiency

    Design of Asynchronous Circuits for High Soft Error Tolerance in Deep Submicron CMOS Circuits

    Get PDF
    As the devices are scaling down, the combinational logic will become susceptible to soft errors. The conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior of null convention logic (NCL) circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-error correction and a novel technique to improve the robustness of threshold gates, which are basic components in NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are also presented

    HARDWARE ATTACK DETECTION AND PREVENTION FOR CHIP SECURITY

    Get PDF
    Hardware security is a serious emerging concern in chip designs and applications. Due to the globalization of the semiconductor design and fabrication process, integrated circuits (ICs, a.k.a. chips) are becoming increasingly vulnerable to passive and active hardware attacks. Passive attacks on chips result in secret information leaking while active attacks cause IC malfunction and catastrophic system failures. This thesis focuses on detection and prevention methods against active attacks, in particular, hardware Trojan (HT). Existing HT detection methods have limited capability to detect small-scale HTs and are further challenged by the increased process variation. We propose to use differential Cascade Voltage Switch Logic (DCVSL) method to detect small HTs and achieve a success rate of 66% to 98%. This work also presents different fault tolerant methods to handle the active attacks on symmetric-key cipher SIMON, which is a recent lightweight cipher. Simulation results show that our Even Parity Code SIMON consumes less area and power than double modular redundancy SIMON and Reversed-SIMON, but yields a higher fault -detection-failure rate as the number of concurrent faults increases. In addition, the emerging technology, memristor, is explored to protect SIMON from passive attacks. Simulation results indicate that the memristor-based SIMON has a unique power characteristic that adds new challenges on secrete key extraction

    ASSESSING AND IMPROVING THE RELIABILITY AND SECURITY OF CIRCUITS AFFECTED BY NATURAL AND INTENTIONAL FAULTS

    Get PDF
    The reliability and security vulnerability of modern electronic systems have emerged as concerns due to the increasing natural and intentional interferences. Radiation of high-energy charged particles generated from space environment or packaging materials on the substrate of integrated circuits results in natural faults. As the technology scales down, factors such as critical charge, voltage supply, and frequency change tremendously that increase the sensitivity of integrated circuits to natural faults even for systems operating at sea level. An attacker is able to simulate the impact of natural faults and compromise the circuit or cause denial of service. Therefore, instead of utilizing different approaches to counteract the effect of natural and intentional faults, a unified countermeasure is introduced. The unified countermeasure thwarts the impact of both reliability and security threats without paying the price of more area overhead, power consumption, and required time. This thesis first proposes a systematic analysis method to assess the probability of natural faults propagating the circuit and eventually being latched. The second part of this work focuses on the methods to thwart the impact of intentional faults in cryptosystems. We exploit a power-based side-channel analysis method to analyze the effect of the existing fault detection methods for natural faults on fault attack. Countermeasures for different security threats on cryptosystems are investigated separately. Furthermore, a new micro-architecture is proposed to thwart the combination of fault attacks and side-channel attacks, reducing the fault bypass rate and slowing down the key retrieval speed. The third contribution of this thesis is a unified countermeasure to thwart the impact of both natural faults and attacks. The unified countermeasure utilizes dynamically alternated multiple generator polynomials for the cyclic redundancy check (CRC) codec to resist the reverse engineering attack

    Study of Single Event Transient Error Mitigation

    Get PDF
    Single Event Transient (SET) errors in ground-level electronic devices are a growing concern in the radiation hardening field. However, effective SET mitigation technologies which satisfy ground-level demands such as generic, flexible, efficient, and fast, are limited. The classic Triple Modular Redundancy (TMR) method is the most well-known and popular technique in space and nuclear environment. But it leads to more than 200% area and power overheads, which is too costly to implement in ground-level applications. Meanwhile, the coding technique is extensively utilized to inhibit upset errors in storage cells, but the irregularity of combinatorial logics limits its use in SET mitigation. Therefore, SET mitigation techniques suitable for ground-level applications need to be addressed. Aware of the demands for SET mitigation techniques in ground-level applications, this thesis proposes two novel approaches based on the redundant wire and approximate logic techniques. The Redundant Wire is a SET mitigation technique. By selectively adding redundant wire connections, the technique can prohibit targeted transient faults from propagating on the fly. This thesis proposes a set of signature-based evaluation equations to efficiently estimate the protecting effect provided by each redundant wire candidates. Based on the estimated results, a greedy algorithm is used to insert the best candidate repeatedly. Simulation results substantiate that the evaluation equations can achieve up to 98% accuracy on average. Regarding protecting effects, the technique can mask 18.4% of the faults with a 4.3% area, 4.4% power, and 5.4% delay overhead on average. Overall, the quality of protecting results obtained are 2.8 times better than the previous work. Additionally, the impact of synthesis constraints and signature length are discussed. Approximate Logic is a partial TMR technique offering a trade-off between fault coverage and area overheads. The approximate logic consists of an under-approximate logic and an over-approximate logic. The under-approximate logic is a subset of the original min-terms and the over-approximate logic is a subset of the original max-terms. This thesis proposes a new algorithm for generating the two approximate logics. Through the generating process, the algorithm considers the intrinsic failure probabilities of each gate and utilizes a confidence interval estimate equation to minimize required computations. The technique is applied to two fault models, Stuck-at and SET, and the separate results are compared and discussed. The results show that the technique can reduce the error 75% with an area penalty of 46% on some circuits. The delay overheads of this technique are always two additional layers of logic. The two proposed SET mitigation techniques are both applicable to generic combinatorial logics and with high flexibility. The simulation shows promising SET mitigation ability. The proposed mitigation techniques provide designers more choices in developing reliable combinatorial logic in ground-level applications

    Black Box Model based Self Healing Solution for Stuck at Faults in Digital Circuits

    Get PDF
    The paper proposes a design strategy to retain the true nature of the output in the event of occurrence of stuck at faults at the interconnect levels of digital circuits. The procedure endeavours to design a combinational architecture which includes attributes to identify stuck at faults present in the intermediate lines and involves a healing mechanism to redress the same. The simulated fault injection procedure introduces both single as well as multiple stuck-at faults at the interconnect levels of a two level combinational circuit in accordance with the directives of a control signal. The inherent heal facility attached to the formulation enables to reach out the fault free output even in the presence of faults. The Modelsim based simulation results obtained for the Circuit Under Test [CUT] implemented using a Read Only Memory [ROM], proclaim the ability of the system to survive itself from the influence of faults. The comparison made with the traditional Triple Modular Redundancy [TMR] exhibits the superiority of the scheme in terms of fault coverage and area overhead. 
    • …
    corecore