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ABSTRACT

Single Event Transient (SET) errors in ground-level electronic devices are a growing concern in the

radiation hardening field. However, effective SET mitigation technologies which satisfy ground-

level demands such as generic, flexible, efficient, and fast, are limited. The classic Triple Modular

Redundancy (TMR) method is the most well-known and popular technique in space and nuclear

environment. But it leads to more than 200% area and power overheads, which is too costly to

implement in ground-level applications. Meanwhile, the coding technique is extensively utilized

to inhibit upset errors in storage cells, but the irregularity of combinatorial logics limits its use in

SET mitigation. Therefore, SET mitigation techniques suitable for ground-level applications need

to be addressed.

Aware of the demands for SET mitigation techniques in ground-level applications, this thesis

proposes two novel approaches based on the redundant wire and approximate logic techniques.

The Redundant Wire is a SET mitigation technique. By selectively adding redundant wire

connections, the technique can prohibit targeted transient faults from propagating on the fly. This

thesis proposes a set of signature-based evaluation equations to efficiently estimate the protect-

ing effect provided by each redundant wire candidates. Based on the estimated results, a greedy

algorithm is used to insert the best candidate repeatedly. Simulation results substantiate that the

evaluation equations can achieve up to 98% accuracy on average. Regarding protecting effects, the

technique can mask 18.4% of the faults with a 4.3% area, 4.4% power, and 5.4% delay overhead

on average. Overall, the quality of protecting results obtained are 2.8 times better than the previous

work. Additionally, the impact of synthesis constraints and signature length are discussed.

Approximate Logic is a partial TMR technique offering a trade-off between fault coverage

and area overheads. The approximate logic consists of an under-approximate logic and an over-
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approximate logic. The under-approximate logic is a subset of the original min-terms and the over-

approximate logic is a subset of the original max-terms. This thesis proposes a new algorithm for

generating the two approximate logics. Through the generating process, the algorithm considers

the intrinsic failure probabilities of each gate and utilizes a confidence interval estimate equation

to minimize required computations. The technique is applied to two fault models, Stuck-at and

SET, and the separate results are compared and discussed. The results show that the technique can

reduce the error 75% with an area penalty of 46% on some circuits. The delay overheads of this

technique are always two additional layers of logic.

The two proposed SET mitigation techniques are both applicable to generic combinatorial log-

ics and with high flexibility. The simulation shows promising SET mitigation ability. The proposed

mitigation techniques provide designers more choices in developing reliable combinatorial logic

in ground-level applications.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

When an integrated circuit (IC) is operating in a radiation environment, it is vulnerable to a

strike from various energetic particles, such as protons, neutrons, alpha particles and other heavy

ions. As a high-energy particle penetrates through IC materials, extra electrons and holes are

generated along the track due to the ionization effect, as shown in Figure 1.1a. These excess

carriers will then be collected by the sensitive node nearby in two stages, ion drift (Figure 1.1b)

and ion diffusion (Figure 1.1c), and if the charge collected exceeds the charge threshold of the given

node, the state of the node is erroneously altered. These adverse interactions between high-energy

particles and semiconductor material are denoted as Single Event Effects (SEEs).

Cosmic rays are one of the major radiation sources. They are high-energy particles originating

from a sun particle event or other astrophysical processes outside the solar system. Cosmic rays

have two phases called primary cosmic rays and secondary cosmic rays. Primary cosmic rays are

the original product of astrophysical processes which consist of protons (85%), alpha particles

(14%) and other heavier nuclei (1%)[2]. They exist primarily in the space environment. In 1975,

Binder et al. identified that primary cosmic rays were the main culprit of single event errors

observed in a satellite integrated circuits [3]. This is the first published observation of SEEs.

Secondary cosmic rays are a product of collisions that occur when primary cosmic rays enter the

atmosphere. The interaction between high-energy particles and molecules in the air generate an

air shower of various secondary lighter particles, including neutrons, pions, positrons and muons,

as shown in Figure 1.2[4]. The flux of secondary particles has been discovered to be dependent on
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(a)

(b) (c)

Figure 1.1: Charge generation and collection phases in a reverse-biased
junction caused by the passage of a high-energy particle.

both altitude and longitude[5]. The strength of the radiation generally increases with the altitude

and longitude. In 1995, Taber and Normand summarized and released a series of experimental

results of SEEs at different flight altitudes, and indicated that the range of upset rates on avionics

overlaps with the range measured in low-earth orbit [6].

Unpurified packaging materials are another radiation source. The radioactive elements residing

in the unpurified materials were found occasionally to emit alpha particles. Alpha particles are +2

particles consisting of two protons and two neutrons. They have a relatively low penetration depth

and can be stopped by a few centimeters of air. However, the alpha particles emitted by unpurified

packaging materials can easily impact the chips within the package and cause soft errors like SEEs.

The first observation of SEEs caused by unpurified materials dates back to the late 1970s in Intel’s
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Figure 1.2: An air shower created by the collision between a primary cos-
mic particle and a molecule in the air.

new Dynamic Random-Access Memory (DRAM) chips [7, 8].

In addition, facilities like nuclear reactors and particle accelerators are artificial radiation sources.

Nuclear reactions mainly produce gamma radiation and neutron particles. Particle accelerators

produce high-energy protons and electrons which will interact with each other and create radioac-

tive secondary particles. Thus, sensors and control circuits operating in these facilities are highly

susceptible to a variety of radiation effects.

To summarize, primary cosmic rays are the major threat to circuits operating in a space en-

vironment. Within the atmosphere, primary cosmic particles interact with molecules in the air,

forming a cascade of lighter particles. Even though the energy of these secondary particles is at-

tenuated with the distance of penetration, there are still some energetic particles able to reach the

surface of the Earth. Thus, devices located from the ground up to flight altitudes are all affected

by secondary cosmic rays. Additionally, unpurified packaging materials are an insidious source of

radiation, threatening both ground and space devices. In facilities like nuclear reactors and particle

accelerators, radioactive particles produced during operation are also a potential threat to nearby

devices.

Non-destructive SEEs, which are called soft errors, are classified into two categories based

3



on the area struck by radiation particles: Single Event Upset (SEU) and Single Event Transient

(SET). If an energetic particle strikes the sensitive nodes of an element in Dynamic Random-

Access Memories (DRAMs), Static Random-Access Memories (SRAMs), latches or flip-flops,

and the induced voltage or current transient changes the state of the element, this incorrect state

will be preserved until the next writing operation. This phenomenon is referred to as an SEU.

Based on the result of a strike, an SEU error can be categorized into one of four groups: masked,

corrected, detected or silent [9, 10]. Without protection, the damage of a silent error may vary

from a single undesired operation to as serious as a system lockup.

On the other hand, if a radiation particle strikes a sensitive node in combinatorial logic, the

formed transient current will propagate along the sensitive paths and finally be latched by sequen-

tial elements. This phenomenon is referred to as an SET. For a long time, however, an SET was

considered to be a less challenging single event effect than an SEU due to three intrinsic masking

mechanisms found in combinatorial circuits, which can inhibit an SET from being latched and

which are described later.

Logical Masking: Logical masking is a mechanism utilizing the concepts of dominant value and

don’t-care in logical operations. If it is the case that when an input of a gate holds a particular

value (1 or 0), and it follows that the output of the gate is always either 1 or 0, notwithstand-

ing the values of other side inputs, then this specific value is denoted as the dominant value

and the status of the dominated side inputs are denoted as don’t-care. For example, if an

SET pulse propagates to an input of an AND gate, but another input occupies the dominant

value (0 in this case), the output of the gate will not be affected; therefore, the SET will be

masked (Figure 1.3a).

Electrical Masking: Each gate has a logic transition time. If the width of an SET pulse is shorter

than this time, the amplitude of the pulse will be attenuated while passing through the gate.

Then, this reduced amplitude will decrease the pulse width, and eventually, the pulse will

fade away as it propagates, as shown in Figure 1.3b. Generally, pulses wider than the tran-

sition time will not be attenuated, pulses shorter than half the time will be eliminated and

pulses in-between will be attenuated to some extent [11].
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(a) Logical masking

(b) Electrical masking

(c) Temporal masking

Figure 1.3: Three intrinsic masking mechanisms.

Temporal Masking: When an SET arrives at the input of a memory element, its pulse has to cover

completely the latching window so that this SET can be latched. In other words, it has to

arrive before the setup time and last until the hold time; otherwise it will be stopped (Figure

1.3c). Buchner et al. proposed the concept of “window of vulnerability” to define this time

interval when the memory element is sensitive to SET pulses [12].

Thus, for an SET induced error to be latched, the radiation particle must strike the sensitive area of

a node and collect sufficient charge to generate an SET pulse of sufficient duration and amplitude.

There also must exist an active path allowing the pulse to reach storage, and the storage must be
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within the window of vulnerability to latch the error. Thus, the probability of SET induced soft

error PSET can be evaluated by Equation 1.1 [13, 14]

PSET = (Flux)×
n

∑
i=1

AiQiPprop×Tmask (1.1)

where Flux is the flux of high-energy particles, which is independent of technologies, Ai is the

proportion of sensitive area of a node i, Qi is the probability that sufficient charge at node i can be

collected to form an SET pulse with sufficient amplitude and duration to survive from the electrical

masking, Pprop is the probability that the SET pulse can propagate to the storage cells, and Tmask is

the probability that the SET is latched.

1.2 Motivation

Moore’s Law projects that the performance of an integrated circuit will double approximately

every 18 months. This proved to be accurate for almost 50 years until the technology scaled down

to 22nm around 2012 [15] and progress was close to saturation. This performance improvement

resulted technically from the scaling of transistors. As feature size shrinks, transistor density of

a chip increases, which allows integrating more functional units into one chip; the power con-

sumption and transition delay also decreases, allowing the emergence of high performance and

low energy IC designs. While these advancements enormously contributed towards the wide ap-

plication of digital devices in a variety of fields, scientists also observed a rising susceptibility to

radiation effects, including SETs.

As technology scales, a single transistor’s physical area shrinks, which dramatically increases

the density of transistors on a chip. In 1978, the Intel 8086 processor, which gave rise to the

famous x86 architecture, was first introduced. It was the most advanced processor at that time, was

produced with a 3000nm process, and had an average of 88 transistors per square mm. Today, the

Intel Broadwell-EP Xeon 22-core processor with the 14nm process has reached an astounding 15.8

million transistors per square mm. Meanwhile, the smaller spacing between devices leads to lower

critical charge threshold and larger sensitive area per unit transistor. The increases in transistor
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density and sensitive area increase Ai in Equation 1.1, and thus, makes integrated circuits more

susceptible to SET effects .

At the same time, technology scaling is weakening combinatorial logic’s natural immunity.

As briefly introduced in Section 1.1, three intrinsic masking mechanisms inhibit the SET effect.

However, technology scaling, especially energy and frequency scaling, has shown varying degrees

of influence on these masking mechanisms. First, the scaling of operating frequencies, i.e., more

state transitions per unit time, increases the chance that an SET pulse is latched, and consequently,

reduces the effect of temporal masking. Electrical masking is also weakened by technology scaling.

SET pulses narrower than the unit transition time are likely to be attenuated during propagation

or to be filtered thoroughly before latching. However, technology scaling leads to faster transition

time on each unit, which in turn allows more SET pulses to propagate through the data path.

Experiments have indicated that modern circuit designs cannot rely on natural electrical masking

any longer [16]. Unlike temporal and electrical masking, logical masking is rarely influenced by

scaling. This is because logical masking is independent of the technology process and is only

relevant to a circuit’s own logic.

According to the evaluating model represented by Equation 1.1, the SET error rate is mainly

determined by five factors: Flux, Ai, Qi, Pprop and Tmask. Flux and Pprop are independent of

technology scaling. The ratio of sensitive area Ai increases with a transistor’s dimension scaling

and density increase. Meanwhile, the weakening of electrical and temporal masking exacerbate

Qi and Tmask. Overall, all these changes have rendered increasing SET error rates as technology

advances.

Decades of experiment and observation have confirmed the aforementioned deduction. The

first SET observation dates back to the early 80’s [17] when unit dimensions of main technolo-

gies were within a range of microns. During that period, the charge deposit phenomenon was

only observed occasionally on limited parts of circuits with exposure to relatively high radioac-

tive energies, and thus, it was not regarded as a major threat by most academics [18]. Following

the development of fast circuits (up to 100Mbps) in the 90’s, the increasing SET errors became

a growing concern to developers of space applications. In 1997, Buchner et al. made the predic-
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tion that SET errors will dominate soft errors as frequency increases, as shown in Figure 1.4[1].

Subsequently, an increasing number of studies set out to reveal the characteristics and the trends

of SETs, and they all reported the growing threat of SETs in reliability issues[19, 20, 21, 22]. In

2009 and 2010, Sridharan et al. conducted a study to evaluate the soft error on a supercomputer

and the surprising result was that the detected error rate on the unprotected devices reached as high

as 350 per minute[23]. As of today, the Semiconductor Industry Association (SIA) has clearly

identified transient errors in combinatorial logic as a major threat and a huge challenge to robust

system design in the future[24].

Figure 1.4: Prediction of soft error rate against clock frequency[1].

1.3 Objectives

Well aware of radiation problems including SETs, researchers have put in great effort to make

electronic devices resistant to errors caused by high-energy particles, a field known as radiation

hardening. Originally, radiation hardening was mainly aimed towards devices operating in space

or in high altitude flight, and around nuclear reactors and particle accelerators, where high-energy

particles are more intense and reliability is strictly required[25]. Radiation hardening techniques

involve all aspects of design, process and testing. Redundancy is a hardening theory widely uti-

lized in component and system design, e.g., Triple Modular Redundancy (TMR). There are also
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special processing techniques, like Silicon On Insulator (SOI), that are used to make the sensitive

area resistant to collecting charges. Additionally, space and nuclear-related projects may enclose

their critical circuits in a shield made of lead or other dense materials. With these technologies,

radiation-tolerant devices can resist radiation thousands of times stronger than ground-level com-

mercial devices can [26, 8, 27]. However due to the considerable time and effort required to

develop and test a radiation-tolerant design, the performance of radiation-hardened devices is typ-

ically two to four generations behind that of commercial devices.

With technology scaling, the sensitive area of a transistor increases, and the critical charge

for both combinatorial and sequential logic decreases, which makes new electronic devices more

susceptible to SEEs. Without protection, advanced computer chips can easily have an error rate in

excess of 50,000 FIT/chip, where one FIT (failure in time) is equivalent to one failure in one billion

hours. This rate is higher than the sum of all other reliability issues [24]. The increasing threat

makes radiation tolerance a necessity for designs even in applications at ground level. Previously,

ground-level design was mainly focused on protecting memory and registers, because they utilize

a significant portion of chip area and have dominant error rates. However, as discussed above, with

technology and frequency scaling, combinatorial logic errors may eventually dominate, negating

the effort of strategies focused on hardening conventional memory[13, 28]. Thus, developers need

to reallocate resources in both directions in order to achieve a balanced protecting effect in future

designs.

In order to withstand severe radiation environments, space and nuclear related designs have

to expend tremendous area, power and delay overheads on radiation hardening. For example, the

classic TMR needs more than 200% in area and power overheads as well as two extra layers of

delay. It also takes considerable extra time for developing and testing. Nevertheless, all these

demanding requirements may not be suitable for ground-level applications. First, ground-level

environment is not as severe as environment in space or around nuclear reactors. Then, instead

of pursuing extreme reliability, ground-level applications focus more on efficiency in radiation

protection. A balance between the protecting effect and overheads needs be achieved. Furthermore,

ground-level commercial applications are responsive to the newest technology, and thus, there is
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limited time for developing and testing the application of radiation hardening techniques. As a

result, a lightweight SET mitigation technique with the following features is the most desirable

solution for ground-level radiation applications:

Flexible trade-off: The trade-off between the protecting effect and cost overheads is adjustable.

The adjustable trade-off allows designers to achieve different SET coverage under various

design constraints.

High efficiency: The technique can achieve remarkable coverage with relatively low overheads.

General purpose: The technique should be applicable to most combinatorial circuits. The gen-

erality makes it possible to integrate the technique into automatic design flow with which

developers are able to utilize the mitigation technique without a complete knowledge of de-

sign.

Fast computation: The technique should be able to find a result close to optimal within reason-

able computing time. The fast computation guarantees the feasibility of the technique.

In this thesis, I will propose two generic and high efficient SET error mitigation techniques based

on the redundant theory. Since the techniques are aimed at generic combinatorial logic, they can be

utilized to most of digital designs. Additionally, the mitigation techniques protect the target design

by enhancing the logical masking effect, which is not affected by the technology or radiation

environment. The effectiveness of the proposed algorithms is tested by fault injection simulations.

1.4 Thesis Organization

Chapter 1 introduces the basic concepts around Single Event Transient effects. As technology

advances, the growing trend of SET errors is explained, which is the motivation for designing soft

error mitigation techniques for ground-level applications. The author then presents the objectives

of this thesis based on the special demands of ground-level applications.

Chapter 2 reviews state-of-the-art SET mitigation techniques. The techniques are classified

based on different levels of design granularity, ranging from the chip level to the process level.
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At the package and chip levels, shielding and package purifying are briefly introduced. At the

core and module levels, Triple Modular Redundancy and its extensions are discussed. At the cell

and process levels, techniques focusing on increasing the resupplying current and limiting charge

collection are discussed. Three main block level mitigation approaches, i.e., coding, redundant

logic and rewiring, are demonstrated and their features and limits are discussed.

Chapter 3 presents a new algorithm for quickly selecting redundant wires for the purpose of

masking logic faults. The approach is general purpose and can be applied to any combinatorial

circuit. Since the technique is based on increasing the logical masking of faults, it is thus inde-

pendent of technology scaling. In Section 3.1, the author briefly reviews the notions of signatures,

controllability and observability. Then, in Section 3.2, logic implications, redundant wires and

techniques for modifying circuits in order to insert redundant wires are discussed. Following this,

in Section 3.3, the author presents the new contribution, a novel algorithm for identifying, evalu-

ating and selecting implications. The simulation results are described in Section 3.4. This section

also includes a study of the influence of the synthesis constraints used in the original circuit.

Chapter 4 presents an enhanced approximate logic algorithm that quickly computes a series

of redundant logic functions with increasing fault-masking coverage. In Section 4.1, two differ-

ent fault models, stuck-at model and transient model, are introduced. In Section 4.2, the author

describes the proposed algorithm, and in Section 4.3, simulation results for several benchmark

circuits evaluated for stuck-at (SA) and transient faults are presented.

Chapter 5 summarizes the two presented SET mitigation techniques and outlines the contribu-

tions and future directions.
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CHAPTER 2

OVERVIEW OF SET MITIGATION TECHNIQUES

Studies on SET mitigation techniques have been conducted at different levels of design gran-

ularity, and researchers have proposed a variety of techniques spanning from the chip level down

to the process level, as shown in Figure 2.1. Generally, SET mitigation techniques are classified

into two types: fault avoidance and fault correction. Fault avoidance involves isolating radiation

sources from devices or constraining the amplitude or width of the pulse so as to minimize the

occurrence of the SET actively. Techniques at the package/chip level and the cell/process level

mainly fall into this type. On the other hand, fault correction method focuses on maximizing

the effects of the three masking mechanisms, which decreases the probability of the fault being

latched. Techniques of this type are mainly at the module and block levels that are closely related

to the design logic. In this section, a brief overview of the state of the art in SET mitigation is

presented.

2.1 Package and Chip Level

Protons and neutrons are two primary sources of radiation particles from cosmic rays[2].

Shielding is the most straightforward and widely applied strategy to protect digital circuits against

these particles. For different radiation sources, various shielding materials and strategies are used.

For example, an aluminum shielding in the range of 100-250 mils can achieve good protection

against protons in a space environment [8]. As for neutrons, materials with low quantivalence have

been found to be more effective[4]. Thick shields are required against high energetic particles;

nonetheless, it is challenging to eliminate all particles thoroughly. Moreover, this technique is

12



Figure 2.1: Summary of SET mitigation techniques.

not applicable to most ground-level commercial applications. Besides protons and neutrons, alpha

particles are another major culprit of SETs, and impure package materials are the primary source

of them. To control alpha particle emission, manufacturers adopt high-purity materials and go

through dedicated processes during manufacturing. These measures have dramatically decreased

the number of SETs induced by alpha particles.

2.2 Core and Module Levels

At the core or module level, Triple Modular Redundancy (TMR) is the most well-known and

widely applied SET mitigation technique[26]. As is shown in Figure 2.2, the TMR method initially

triplicates the target hardware module and then feeds the outputs of these three modules into a voter

circuit. The voter circuit takes the majority result as the final output, which ensures that all single-
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bit errors are corrected at the final output. Moreover, multi-bit errors can also be masked if they do

not affect the same outputs on more than one copy. Nevertheless, TMR requires more than 200%

area and power overhead, which is too costly for many ground-level applications. Consequently,

a selective TMR scheme is proposed in [29]. Instead of protecting the whole module, the scheme

identifies and triplicates only the part of the module with high error susceptibility. In [30], a

module used to select the final result based on the history index is proposed to replace the majority

voter. Another recent study [31] has looked at a generalization of the TMR called General Modular

Redundancy (GMR). In this technique, the TMR is relaxed by ignoring the output combinations

with a low probability of occurrence. However, the experimental results indicate the overheads are

still not far below the TMR.

(a) (b)

Figure 2.2: Triple Modular Redundancy.

2.3 Cell and Process Levels

At the cell level, researchers have put in great effort to adjust the parameters of layouts such

as transistor sizing and spacing. For example, gate resizing techniques prove to be effective in

fault avoidance because increasing the gate size can enhance the resupplying current, and in turn,

decrease the recovery time of transient pulses [32, 33]. In [34, 35], a method to minimize SETs by

replacing high-vulnerability nodes with alternative but insensitive implementations is proposed. In

[36], Jonathan et al. reported a new mechanism in which charge collection happened simultane-

ously on adjacent nodes, behaving in such a way as to quench the voltage transient. This pulse

quenching mechanism can effectively constrain the width of SET pulses.
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At the process level, studies mainly focus on how to limit the charge collection process at SET

origins, since the charge collection process is responsible for the voltage pulse generation and

directly influences the magnitude of the transient pulse. Mavis et al. proposed that by delicately

selecting node structure and materials, both width and amplitude of SET pulses can be effectively

limited[37]. Silicon on insulator (SOI) is a processing technology which places a layer of silicon

oxide between substrate and transistors, as demonstrated in Figure 2.3. This isolated structure

dramatically reduced the charge collected form adjacent materials. Experimental results has shown

that the SOI process has higher radiation tolerance than conventional bulk process[27].

However, the cell and process level techniques require either delicate layout designing or spe-

cific technologies, which usually conflicts with ground-level application’s need for fast design and

high-cost performance.

Figure 2.3: The structure of SOI technology.

2.4 Block Level

At the block level, the most common mitigation strategy is redundancy. Either physical or

logical redundancy protects the target circuit by comparing the circuit output with pre-generated

redundant information.
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2.4.1 Coding Techniques

Error detection and correction (EDAC) codes are a major class of redundant techniques. The

coding technique has been widely used in the digital communication area to ensure the correctness

of the message during transmission. The parity bit, for example, is the simplest coding form with

the ability to detect single-bit errors, and Hamming codes are a coding family with the ability to

correct single-bit errors and detect double-bit errors. Besides digital communication, the coding

technique has also been applied to and found effective in memory designs due to the memory’s reg-

ular structure. However, to protect the irregular combinatorial logic, the coding technique usually

requires a code generation logic called prediction logic (Figure 2.4). The cost of this prediction

logic highly depends on the target logic, the coding method as well as the coverage requirement.

In [38, 39, 40, 41], a series of Concurrent Error Detection (CED) methods based on the parity

code is proposed. On the other hand, Lo et al. applies both error detection and correction codes

to arithmetic circuits[42]. A customized Concurrent Error Correction (CEC) code is presented to

balance the protective coverage against the overhead incurred[43].

2.4.2 Redundant Logic Techniques

Redundant logic is another major class of mitigation techniques. A typical example is the

TMR method discussed on page 13. At the block level, in order to reduce TMR’s high overhead,

researchers proposed a group of partial TMR techniques named approximate logic. Approximate

logic consists of an approximation of the on-set and the off-set of the target combinatorial logic.

The generated approximations and the original logic will be connected to a checker logic. The

checker is a two-layer logic with an AND/OR structure, and its output is the final output of the cir-

cuit, as shown in Figure 2.5. Compared to the conventional TMR, the approximate logic technique

has more flexibility over cost control, whereas selecting a good approximation requires skillful

maneuvers.

The approximate logic technique was first published in [44]. It uses Binary Decision Diagrams

(BDDs) to represent the target circuit and generates the approximations by repeatedly pruning
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Figure 2.4: Basic structure of EDAC code approach implementation

the longest branch from the BDD tree. It assumes pruning the longest branch will remove the

logic taking the most overhead while losing the least coverage. However, this technique does not

scale well to large circuits since the BDD representation is not capable of handling large circuits.

Choudhury et al. solved this limitation by utilizing a circuit partitioning technique[45, 46]. On the

other hand, a technique which prunes the original circuit netlist and gives fault coverage estimation

dynamically is proposed by [47, 48]. While this method results in better scalability, the flexibility

may be limited by the structure of the original netlist. In addition, the approximate logic is capable

of masking timing faults [49].

2.4.3 Rewiring Techniques

Unlike the coding and the approximate logic methods generating redundancy on logic blocks,

the rewiring technique focuses on partially restructuring the circuit to increase the overall soft error
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Figure 2.5: The basic structure of the approximate logic technique.

rate (SER) resilience. The restructuring process mainly falls into two categories: local rewriting

and redundant wire addition, where the local rewriting refers to partially changing the circuit con-

nections while keeping the circuit’s original functionality, and the redundant wire addition, as the

name indicates, focuses on adding redundant wires to protect the critical nodes identified. The lo-

cal rewriting method results in less area overhead than the redundant wire addition method, while

its SER mitigation benefit is relatively lower. Since the rewiring technique operates on a subtler

scale than the other two techniques, it is more flexible and efficient, which is particularly suitable

to ground-level applications with moderate reliability requirements.

The largest difficulty in implementing the rewiring technique is identifying the critical nodes

given a complex netlist. In [50], the redundant wire addition method was first applied to soft error

mitigation. Its identification algorithm is based on fault injection simulations, which is known for

demanding tremendous simulations, and thus, is quite computationally expensive. In addistion, its

results are inaccurate due to the inevitable compromise made with the computational limitation and

the unexamined side effects induced by the newly added wires. In [51, 52, 53], techniques based

on local rewriting with more efficient identification algorithms are presented. However, they all

lack an algorithm which thoroughly and effectively takes all factors (like logical masking benefits

as well as newly induced faults after addition or restructuring) into consideration, and which gives

an accurate estimate about the gross benefits achieved in order to guide the SER hardening process.
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CHAPTER 3

LOW COST MITIGATION OF LOGIC FAULTS WITH RE-

DUNDANT WIRES

Chapter 2 reviewed state-of-the-art SET mitigation techniques classified based on the design

granularity. In this and next chapters, two novel block-level mitigation methods belonging to

rewiring and redundant logic techniques separately are presented.

3.1 Signature Based Method to Estimate Controllability and

Observability

For each internal node of a digital circuit, the difficulty of controlling the specific logic value

from circuit inputs and observing the value from circuit outputs are defined as controllability and

observability, respectively. These two metrics are closely related to and widely applied in circuit

testability analysis[54, 55, 56, 57, 58]. Likewise, the algorithms for evaluating and selecting redun-

dant wires rely on accurate determination of controllability and observability metrics for the circuit

nodes. In this project, a signature based method which is capable of accurately and efficiently es-

timating these metrics is introduced. In this chapter, we first review the notion of signatures and

then present how they can be used in the computation of controllability and observability metrics.

3.1.1 Signature

The probability of faults propagating through a combinatorial network depends on the state

of both inputs and nodes in a circuit. In some cases, probabilities are used to deduce the state
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of nodes; however, the drawback of this approach is that the correlation between the states on

different nodes is lost. Thus, when calculating the state probability of a node combination, these

approaches can easily lead to a significant difference between estimated and real values. In order

to reduce the error, more complicated probability reasoning methods are required.

A logic signature is a randomly generated sequence of logic values on all the nodes of a net-

work, and these signatures can be used to deduce the expected state of an individual node or the

expected state of a combination of multiple nodes. As shown in [52], logic signatures can be

effective in analyzing masking effects.

a

b
c

d
e

G1

G2

G3

G4

G5

f

G6

O1G7

O2

Sig(a)=01110101

Sig(b)=00110011

Sig(c)=10100110

Sig(d)=11101100

Sig(e)=01010110

Sig(f):10101010

Sig(G1)=10110111

Sig(G2)=11111110

Sig(G3)=10110110

Sig(G4)=00000110

Sig(G5)=00001000

Sig(G6)=10101110

Sig(G7)=00001000

Figure 3.1: Example circuit with random generated signatures.

A K-bit signature of a node n in a circuit C is a K-bit sequence of logic values appearing at

node n corresponding to a sequence of K input vectors (see Figure 3.1). The signature provides

information about the probability of a node having the logic value of 0 or 1. However, the kth bit

in the signature of one node is logically consistent with the kth bit in the signature of another node,

which facilitates reasoning about implications. A K-bit signature at node n can be represented as

shown in Equation 3.1.

SigK(n) = Fn(I1) ·Fn(I2) · · ·Fn(IK) (3.1)

where Ii indicates the ith random input vector, and Fn(Ii) ∈ 0,1 is the local value at n when the
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ith input vector is applied.

The algorithm used to generate K-bit signatures for all the nodes in a circuit C is shown in

Algorithm 1. SortTopological() sorts all the nodes in topological sequence, so that the nodes can

be evaluated in a single pass from input to output. RandomSignal() generates a random value

for the specified input. EvaluateParallel() computes the logic value for all of the input values

in parallel using the techniques originally described in [59]. The complexity of generating K-bit

signatures for a circuit with N nodes is O(N ·K).

Algorithm 1 : Signature Generation
function GENERATESIGNATURES(C,K) SORTTOPOLOGICAL(CNodes)

for j = 1 to k do
for i in CInputs do

I j(i) = RANDOMSIGNAL

end for
end for
for c in Nodessorted do

c = EVALUATEPARALLEL(I1 · · · Ik )
end for

end function

3.1.2 Controllability

In a given logic circuit, the 1(0) controllability of a given node is directly correlated to the

percentage of input vectors justifying the logical value 1(0) on the given node. In this paper, we

use a K-bit vector ccv(n) to estimate the v controllability of node n where v ∈ 0,1. When ccv(n)’s

ith bit is 1, it means the value of node n is set to v under the ith input vector; otherwise it is 0. Thus,

the computation of the v controllability of a node n is achieved by counting the number of 1s in the

the K samples within the vector ccv(n). Moreover, with the definition of signatures, approximating

ccv(n) with K-bit signatures is straightforward, as shown in Equation 3.2.

ccv(n)≈


Sigk(n) v = 1

Sigk(n) v = 0
(3.2)
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3.1.3 Observability

Depending on the input vector, there may or may not exist sensitized paths from a given node,

n, to at least one of the primary outputs. In this paper, we use obT,X(n) to represent the observability

of node n to any of the target nodes in the targeting set T while the sensitized path does not pass

through any of the nodes in the exclusion set X. When obT,X(n)’s ith bit is 1, it means that under

the ith input vector, the value at node n is observable on at least one of the target nodes in T without

passing through any nodes in the exclusion set X; otherwise, it is equal to 0. With this generalized

definition, the traditional observability of node n can be represented as obO,{}(n), where O stands

for all the primary outputs and the exclusion set X is empty. In [52], an algorithm for computing the

traditional observability obO,{}(n) is proposed, and here, we extended that algorithm to compute

the generalized concept of observability proposed.

This algorithm takes three arguments, C, T and X, as described above and is shown in Algo-

rithm 2.

Algorithm 2 : Observability Calculation
function COMPUTEOBS(C,T,X) SORTREVERSETOPOLOGICAL(CNodes)

for t in T do
obT,X(t) = All ONES

end for
for n in CNodes do

if n ∈ X then
obT,X(n) = All ZEROES

else
for f in Fanouts of n do

obT,X(n) |= COMPUTEOBSCOND(n, f )
end for

end if
end for

end function

The method SortReverseTopological() sorts all the nodes in circuit C in a reverse topological

sequence. The method ComputeObsCond(n,f) computes the conditions when node n is observable

through direct fanout f. It first decides the non-dominant values at the side inputs of n. Then it gets

the signatures of those side inputs and, if the non-dominant value is 0, inverts the corresponding
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signature. Finally, those signatures are ANDed with the observability of node f.

Table 3.1: Observability of Nodes in Example Circuit

signature ob{O1,O2},{} ob{O1,O2},{G5}
a 01110101 00001000 00000000
b 00110011 00001000 00000000
c 10100110 11011100 01010100
d 11101100 10000000 00000000
e 01010110 00000110 00000100
f 10101010 11111001 11111001

G1 10110111 10001010 00000000
G2 11111110 10000010 00000000
G3 10110110 10001010 00000000
G4 00000110 01010101 01010101
G5 00001000 10101110 00000000
G6 10101110 11111111 11111111
G7 00001000 11111111 11111111

Consider the six inputs, two outputs circuit shown in Figure 3.1. A set of randomly gener-

ated signatures and the resulting observability computations are shown in Table 3.1. Two sets of

observability are computed, both targeting the same primary outputs but the second one has an

excluded gate, G3. The ob{O1,O2},{}(c), for instance, is derived by computing the observability

through nodes G1 and G4 respectively and then ORing the two results. The ob{O1,O2},{}(G1) is

10001010 and since G1 is an OR gate whose non-dominant value is 0, the signature of b is inverted

to 11001100. ANDing these two gives the observability of c at the path through G1 which is

10001000. Similarly, the observability of c at the path through G4 is 01010100, and finally, ORing

these two gives ob{O1,O2},{}(c) which is 11011100.

If instead we want to compute the observability excluding gate G3, ob{O1,O2},{G3}(c), since the

path through G1 is blocked by the G3 node and is no longer observable, ob{O1,O2},{G3}(c) is equal

to the observability of c at the path through G4, which is 01010100.

Similar to Algorithm 1, the observability algorithm traverses the circuit in a single pass from

output to input, and for each node in the circuit, a constant number of basic signature operations

is performed. Thus the complexity of computing the observability for a circuit with N nodes is

O(N ·K).
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The application of controllability and the generalized observability will be described later

where they are used for selecting implications.

3.2 Redundant Wires

The proposed logic fault mitigation methodology is based on the logic coverage provided by

redundant wires. In this chapter, we review the basic notions of logic implications and redundant

wires, and how to modify circuits in order to insert redundant wires.

3.2.1 Logic Implications

An implication is a relationship that exists in a circuit between two nodes, called the source

(S) and the target (T). If it is the case that whenever S is true (or false), and it follows that T is

always either true or false, then there exists a 1-to-1 implication from S to T. Logic implications

have been widely used in areas like probabilistic analysis [48], logic optimization [60, 61], design

verification [62] and test-pattern generation [63]. In this project, logic implications are used to

guide the selection of redundant wires.

Let us consider the example circuit from Figure 3.1, but re-draw it to illustrate the implications

in Figure 3.2. It can be seen that when G3 = 1, then G5 = 0 because G5 is a NOR gate and the

dominant value of its inputs is 1. This implication is denoted as (G3,1)→ (G5,0).

3.2.2 Redundant Wires

A redundant wire, as the name implies, is a functionally redundant connection whose logic is

fully covered by the rest of the circuit, and thus, the addition of a redundant wire preserves the

functionality of the original circuit. As proposed in [50], implications can be used to identify and

generate redundant wires. The way redundant wires are inserted in the circuit is introduced in

Section 3.2.3. Like many spare redundancy methods used to mask faults, the redundant wire is

able to mask logical faults under its coverage from being observed on primary outputs. A model

for evaluating the protective effect of a redundant wire is proposed in Section 3.3.2.
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Figure 3.2: Example circuit with implications.

Let us once again consider the example circuit shown in Figure 3.2. It can be seen that when

G3 = 1, then G5 = 0 and G7 = 0. Let us suppose that when G3 = 1 and G6 = 1, there is a fault

at G5 that causes a bit flip (0→ 1). This fault would propagate to the output O1 and generate an

incorrect output value (1 instead of 0). If, however, a redundant wire were connected from G3 to

the input of G7, this fault would be masked at G7 and the outputs would be correct.

3.2.3 Circuit Modification

In this section, we discuss how to modify a netlist in order to insert redundant wires, based on a

given implication. First, given an implication, the basic idea behind how to insert a redundant wire

is to add a connection originating from the source to the input of the target gate. However, in order

to preserve the functionality of the original circuit, two necessary conditions must be satisfied. The

first condition is that the source of the implication must be out of the fan-out cone of the target. The
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reason is straightforward. Suppose the source is a transitive fan-out of the target and it is connected

back to the target, a combinatorial loop would be created.

The second condition is that the implicated value must be able to dominate the target. For

instance, the value 1 is the dominant value of OR and NAND gates, and value 0 is the dominant

value of AND and NOR gates. Of course, XOR gates have no dominant value and a NOT gate has

both 1 and 0 as dominant values. This condition combined with the manipulations introduced later

guarantee that the redundant wire will always be dominated under fault-free conditions, ensuring

that the circuit is not modified.
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(c) Redundant wire insertion by adding an inverter
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(d) Redundant wire insertion by adding an inverter and a checker

Figure 3.3: Netlist manipulation to insert redundant wires.

For example, in the circuit shown in Figure 3.3, we can identify two implications, (G4,1)→

(G7,0) and (G4,1)→ (G3,1). Both of their target gates are AND gates, while their implicated

values are 0 and 1, respectively. Since the dominant value of an AND gate is 0, we can add a
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redundant wire by inverting the output of G4 and adding it to the input of G7 for the first implica-

tion, as shown in Figure 3.3c. But for the second implication, connecting the output of G4, whether

inverted or not, to the input of G3 will change the original functionality.

Besides the necessary conditions discussed above, there are two additional factors which in-

fluence the addition of redundant wires. The first factor is the implicant value of the implication.

If it dominates the target gate, then the source can be connected directly to the input of the target

gate. Otherwise, an inverter must be inserted before connecting the source to the target. Figure

3.3b and Figure 3.3c show the insertion of implications ( f ,0)→ (G7,0) and (G4,0)→ (G7,0),

which illustrate these two situations. Notice that the second situation introduces a new inverter

into the circuit, and consequently, increases the risk of faults. Our evaluation algorithm will take

into consideration the new faults that can occur in the gates that are inserted when an implication

is mapped.

Another factor is the maximum number of inputs to a single logic gate in the library. When the

target gate already has the maximum number of inputs, a gate-separating operation is required. In

this case, the target gate is broken into two smaller, equivalent gates. For example, Figure 3.3d,

illustrates the insertion of the implication (G4,1)→ (G7,0), assuming the maximum number of

inputs to an AND gate is 2. In this case, instead of using a 3-input AND gate, we have to separate

G7 into two 2-input AND gates and then connect them. Since the prediction of the occurrence and

consequence of the gate separation is difficult at the evaluation stage, our evaluation algorithm will

ignore the effects caused by this factor. However, during the separating operation, the wires with

larger probability to dominate the target will be placed closer to the target, so that the newly added

gate will be masked to the utmost, and thus, the influence of the added gate is minimized.

In addition, for implications not meeting the second necessary conditions, our approach is to

add a gate as a checker behind the target. This method is also used by [52] and [64]. Depending

on the implicated value, either an AND gate or an OR gate is inserted. Unlike the previous cases,

this case introduces one more gate, and hence, leads to extra fault sources as well as larger area,

power and timing overheads. Like the situation using inverters, this side effect is considered during

the evaluation stage. As a result, when other conditions are equal, implications that do not require
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inserting extra gates will be favored over those which require extra gates.

3.3 Algorithm for Evaluating and Selecting Logic Implications

The overall process of protecting a circuit begins with identifying all the implications. Next,

we must evaluate the benefit from the implications, and finally, we must select which implications

to add. These three steps are described in the following three sections.

3.3.1 Identification

The challenge in using redundant wires to mask faults is first to identify a complete set of

implications, and then, to rank them based on their fault-masking capability. In this section, we will

focus on the first challenge. Two kinds of identification algorithms have been proposed. [64, 52]

present simulation-based approaches. They first run a certain number of random simulations, then

using the simulation vectors, they filter out pairs of nodes for which no consistent relation exists.

They then use a satisfiability (SAT) solver to verify the remaining pairs. Even though the simulation

step narrows down the number of candidate pairs, this strategy still requires a large number of SAT

verification operations.

Another approach proposed in [50] is based on justifications. In this methodology, the wires

with known values are called justified and those with uncertain values are called unjustified. Justi-

fication is the process of inferring the value of an unjustified pin of a gate when the value of some

other pins are known and there exists one single possible value for the unjustified pin. Justification

can take place in both the forward and backward directions. In terms of using only backward jus-

tifications or both, [50] proposed two direct implication methods. Consider G7 in Figure 3.2 as an

example. First, assume that G7 is set to 1 and then its inputs G5 and G6 are justified to 1 because

G7 is an AND gate. Further, as G5 is set to 1, G3 and a are both justified to 0. At this point,

no more wires can be justified. Equivalently, by applying the contrapositive, we get implications

which could be used for the redundant wire addition. The complexity of forward and backward

justification is linear with the number of gates.
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However, the direct implication methods could miss a class of implications called indirect

implications which cannot be inferred using forward and backward justifications. In the previous

example, as G3 is an AND gate and its value is justified to 0, we cannot justify the value of either

G1 or G2 any longer. Thus, they are considered unjustified. However, if we temporarily set G1 to

0, we could justify b, c and G4 to 0. Similarly, if G2 is temporarily set to 0 then d, e and G4 will

be justified to 0. We notice that G4 is always equal to 0 when G3 is 0 regardless of the value of G1

or G2, and thus, there exists an indirect implication (G3,0)→ (G4,0).

During the process of looking for indirect implications, we must temporarily inject logical

values at certain nodes in order to conduct further justifications and check the consequences at

the end. This kind of technique is called learning, as defined by [63]. In [50], they propose their

third variant of identification algorithms based on this recursive learning technique. With unlimited

recursion depth, this method has the ability to identify all direct and indirect implications, but its

complexity increases exponentially with the recursion depth. In order to trade off for execution

time, they limited the recursion depth.

In this section, a novel identification technique utilizing the law of contrapositive and implica-

tion lookup tables is proposed. Since implications follow the law of contrapositive, i.e., negating

and switching the two parts of an implication is logically equivalent to its origin, an implication can

be identified whenever its original or contraposed form is identified. Furthermore, we found that

the contraposed forms of most indirect implications are direct implications. For example, in the

circuit in Figure 4, (G3,0)→ (G4,0) is an indirect implication while (G4,1)→ (G3,1) is a direct

implication. Thus, in order to save identified implications, in our approach, shown in Algorithm 3,

we introduce an implication lookup table T in which each element represents an implication rela-

tionship between two corresponding nodes. The nodes in circuit C are sorted in a topological order.

For each node n in this order, we search the lookup table for identified implications which imply

node n, like (m,u)→ (n,0). By applying the contrapositive law, a new implication (n,1)→ (m, ū)

is identified, and thus, m = ū is justified. After the table has been searched, further direct justifica-

tions are applied based on all the justified assignments. As shown in the pseudo-code, the above

procedure must be repeated twice, one for implicant n = 0 and one for n = 1.
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Algorithm 3 : Low Effort Implication Identification
function IDENTIFYIMPLICATIONSLOWEFFORT(C)

SORTTOPOLOGICAL(CNodes)
Create and Init Implication Table T
for n in Cnodes do

for m prior to n do
if T [(m = u)→ (n = 0)] is true then

JUSTIFY(m = ū)
T [(n = 1)→ (m = ū)]← true

end if
end for
Further justifications
for m prior to n do

if T [(m = u)→ (n = 1)] is true then
JUSTIFY(m = ū)
T [(n = 0)→ (m = ū)]← true

end if
end for
Further justifications

end for
end function

Table 3.2 is an example of the implication lookup table derived from the circuit in Figure 3.1,

which illustrates how to identify implications with the proposed algorithm. For simplicity, only the

referenced items are shown. In the table, each line represents an implicant source and each column

represents a conclusion. A value T(true) in a cell means the corresponding implication exists and

is identified. At the start, the full table is initialized to false. Based on the topology, the algorithm

starts with node c. First, it looks for cells that are set to T in the column with c = 1 but there is

no such cell at the start. Then, it tries to perform backward and forward justification based on the

assignment c = 0 and finds the justified assignment G4 = 0. Thus, this implication is saved into

the cell in the first line (c = 0) and fifth column (G4 = 0). Similarly, we identify and record the

implications with implicants c = 1, e = 0, and e = 1. When it comes to identifying implications

with implicant G4 = 1, by looking up the fifth column (G4 = 0) in the table, the algorithm finds

two implications, thus c = 1 and e = 1 are justified. Based on the justified assignments G4 = 0,

c = 1 and e = 1, assignments G1 = 1, G2 = 1 and G3 = 1 are justified and all these implications

are marked in the fifth row (G4 = 0) of the table. At the end, with this lookup table, indirect
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implications (G3,0)→ (G4,0) can be easily identified by looking up the last column (G3 = 1).

Finally, all the implications are identified and ready for use in the next phase.

Table 3.2: Implication Lookup Table

c e G4 G1 G2 G3
0 1 0 1 0 1 0 1 0 1 0 1

c
0 T
1 T

e
0 T
1 T

G4
0
1 T T T T T

G1
0 T T T
1

G2
0 T T T
1

G3
0 T
1 T T

Even though the proposed algorithm (identifyImplicationLowEffort) is able to identify effi-

ciently both direct and indirect implications, the results are dependent on the topological sequence,

i.e., different topological sequences lead to different results. For instance, in the example circuit,

G3 and G4 have no dependence upon each other, and thus, their order in the topological sequence

is uncertain. If G3 was prior to G4, opposite from the order used in the previous example, the

indirect implication will not be identified. To solve this problem, we propose an improved algo-

rithm with the help of a trace-back mechanism (identifyImplicationHighEffort, see Algorithm 4).

Unlike the previous algorithm which processes all the nodes in a single pass, the improved algo-

rithm maintains a stack. Normally, each node will be processed in the same topological order as

in the low-effort algorithm. However, if a new implication is identified, but the implicant node n

of its contraposed form has already been processed, the algorithm will push a new task to re-visit

node n at the top of the task stack, because this contraposed implication was not identified when

n was processed previously. In the next loop, the algorithm will go back and redo the justification

with the newly found assignments. Because of the implication lookup table, once an assignment

is justified, there is no need to justify it again when the algorithm returns to process a previously
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processed node.

The two proposed algorithms both run in linear time with respect to the number of implications

in the circuit, since the implication lookup table avoids unnecessary justifications. In terms of

space complexity, the implication lookup table is a two-dimension array with the size of 2n×2n,

where n is the number of nodes in the circuit. Note also that, unlike other implication identifica-

tion methods which target only identifying implications with certain assignment as implicant, the

proposed methods need first to find out all the implications and then to check the lookup table for

implications demanded. This may be unnecessary under certain circumstances, but it is required

with our system because it needs to list all the implications for further evaluation and selection.

Algorithm 4 : High-Effort Implication Identification
function IDENTIFYIMPLICATIONSHIGHEFFORT(C)

INITIALIZE(Implication Table T )
INITIALIZE(Stack S)
SORTREVERSETOPOLOGICAL(CNodes)
while S not empty do

n← S.pop()
SEARCHIDENTIFIEDIMPLICATION(T,n = 0)
DIRECTIMPLICATION(n = 0)
SEARCHIDENTIFIEDIMPLICATION(T,n = 1)
DIRECTIMPLICATION(n = 1)
for new implication (n = v)→ (m = u) do

if m < n in topological order &&
(m = ū)→ (n = v̄) not found then
S.push(m)

end if
end for

end while
end function

3.3.2 Evaluation

When using redundant wires to protect logic against transient faults, assessing the protective

effect of each implication is one of the core problems. It directly helps guide the candidate selection

procedure, and hence, significantly influences the final protective performance. In [64, 50], the

assessment of implications is performed by fault injection simulations. However, the execution
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time of fault injections depends on many factors, such as the number of input vectors, the number

of nodes in the circuit and the number of implications. Only a modest number of simulations can be

performed, which will limit the accuracy. On the other hand, in [52, 32, 53], mathematical models

for implication evaluation were proposed. In this section, a novel evaluation model quantitatively

and systematically taking multiple factors into account is introduced.

Implications can be generally classified into three groups on the basis of the relative position

between S and T. They are:

Group 1: S is within the fan-in cone of T;

Group 2: S and T only share part of their fan-in cones;

Group 3: T is within the fan-in cone of S.

As discussed in Section 3.2.3, implications in the third group are not relevant since adding re-

dundant wires will form combinatorial loops. As for the first two groups, although S and T have

different relative positions, in our evaluation model they are treated equivalently. In our model, a

circuit is divided into three zones based on the effects that gates in each zone may bring about. In

Figure 3.4, an example implication and its three effect zones are illustrated. Zone A is the fan-in

cone of the target T. Gates in this zone are under the coverage of the implication and are poten-

tially protected by the corresponding redundant wire. Zone B includes the source and its transitive

fan-ins. Unlike Zone A, the gates in this zone may become more sensitive because inserting the

redundant wire will introduce extra fan-out paths from them. Also, notice that Zone A and Zone

B are not mutually exclusive. For implications belonging to Group 1, Zone B is entirely included

in Zone A. But for implications in Group 2, Zone A and Zone B partially overlap. Zone C includes

newly added gates due to the redundant wire insertion. Based on the type of the implication to

be inserted, it may contain an inverter (NOT), a checker (AND or OR), both or empty. As these

newly added gates will introduce new fault sources, this zone has an adverse impact on the final

protective effect.
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Figure 3.4: Zones for protection effect evaluation.

3.3.2.1 Evaluation of Zone A

Zone A is the transitive fan-in cone of the target. Under different input combinations, different

paths within this zone are sensitized and all the gates on the sensitized paths will control the

logic value of the target. If a fault occurs in a gate along these paths, it will affect the target and

may propagate further causing an error at the primary outputs. However, with a redundant wire

originating from a source to this target, this fault will be masked at the target and thus prevented

from further propagation. Clearly, the bigger this probability is, the better the candidate redundant

wire protects the given gate. Based on these observations, three conditions for a fault occurring at

a gate in Zone A to be masked by the corresponding redundant wire can be identified.

AC1: The source must hold the implicant value;

AC2: There must exist at least one sensitized path from the fault to at least one primary output,

while all of these paths must pass through the target;

AC3: The fault must not distort the source and the target simultaneously.
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The first and the third conditions are straightforward. If the source value is not the implicant value

or it is modified by the fault, it cannot dominate the target, and thus, the redundant wire will not stop

the fault. The second condition addresses two requirements. First, the existence of sensitized paths

guarantees that this fault could be observed in the absence of protection. Otherwise, protecting

this fault is unnecessary. Second, if we assume that there exist sensitized paths that do not pass

through the target, the fault will propagate through these paths despite the protection provided by

the redundant wire.

Given these three conditions, the probability of a fault occurring at gate g to be masked by the

implication i can be represented as shown in Equation 3.3.

Pprotect(g, i) = P(AC1∩AC2∩AC3) (3.3)

where P(AC1∩AC2∩AC3) is the probability of the intersection of all three conditions. Further-

more, the condition AC1 can be represented by ccu(S), where u is the implicant value.

As for the condition AC2, its probability can be evaluated by ob{all ouputs},{}(g)−ob{all out puts},{T}(g).

Here, as defined in Section 3.1, ob{all out puts},{}(g) is a K-bit sequence corresponding to the signa-

ture and the ith 1 in this vector means gate g is observable to at least one primary output under the

ith input vector of the signature. Similarly ob{all out puts},{T}(g) is a K-bit sequence but the 1s in this

vector represent the condition that there exist sensitized paths from gate g to any output without

passing through the target T. The subtraction generates a binary sequence with the same length

where its ith bit is set to 1 if and only if the ith bit in the first vector is 1 and the corresponding bit

in the second vector is 0. Specifically, a 1 in the ith position of this vector means that there exist

sensitized paths from gate g to primary outputs and all of these paths pass through the target T.

Finally, the condition AC3 can be evaluated by ob{T},{}(g)−ob{S},{}(g), which represents the

probability that a fault on gate g is observable to the target T while not observable to the source S.

With the proposed signature representations for each condition, the probability can be calcu-

lated by Equation 3.4. This equation represents the ratio of the number of input vectors that meet

all three conditions to the number of bits in the signature, and thus, is an estimate of the probability

that faults in a specific gate will be masked by a specific redundant wire.
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Pprotect(g, i)≈
∣∣ccu(s)&(ob{all out puts},{}(g)−ob{all out puts},{T}(g))&(ob{T},{}(g)−ob{S},{}(g))

∣∣
K

(3.4)

With the above single-gate protective effect estimation equation, the protective effect of an

implication for all gates in Zone A can be estimated by Equation 3.5.

E f f ectZoneA(i)≈ ∑
g∈ZoneA

Pprotect(g, i)× fg (3.5)

where fg is the failure rate for gate g.

Let us take the implication (G4,1)→ (G5,0) from Figure 3.2 as an example. The Zone A of the

target G5 includes three gates: G1, G2 and G3. For gate G3, the condition AC1 will be cc1(G4) =

00000110, and the condition AC2 will beob{O1,O2},{}(G3)− ob{O1,O2},{G5}(G3) = 10001010−

00000000 = 10001010. As for the condition AC3, since G3 is not observable to the source G4, the

result is simply equal to ob{G5},{}(G3) = 10001010. Finally, the estimated masking probability

on G3, Pprotect(G3,(G4,1)→ (G5,0))≈ 1/8. This result is consistent with the result achieved by

the Mandatory Assignment(MA) method proposed in [48] which finds the equivalent conditions

(c = 1, e = 1, a = 0) for the proposed conditions.

3.3.2.2 Evaluation of Zone B

As shown in Figure 5, Zone B contains the source and its transitive fan-ins. Due to the extra

fan-out path introduced by inserting the redundant wire, the susceptibility of the gates in this zone

to transient faults will increase. Thus, this side effect needs to be evaluated in order to assess

thoroughly the protective effect. Similar to the procedure to evaluate Zone A, we will first analyze

the necessary conditions and then propose how to approximate using signature representations.

First, the originally unobservable fault must be able to propagate to the source. Only in this

way, after inserting the redundant wire originating from the source, will it be possible for this fault

to propagate along the new fan-out path. In addition, this fault must be unovservable originally,

because we are calculating the extra faults to which a new redundant wire will lead. Furthermore,
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suppose this fault arrives at the input side of the target via this new path; the target gate must hold

the non-dominant value so as to let this fault pass through. The reason is that when the target has

the non-dominant value, all of its inputs, including the newly added redundant wire, will hold to

their non-dominant values, respectively. At this state, any incorrect value at the redundant wire

will flip the target, i.e.. the fault will pass through the target. Finally, the last condition is that

the target must be observable on primary outputs so that the fault can eventually be observed. In

summary, the conditions where a fault can lead to a new error after the insertion of a redundant

wire are listed below:

BC1: The fault is observable to the source but is not observable to any of the primary outputs;

BC2: The target holds the non-dominant value;

BC3: The target is observable to at least one primary output.

With the three conditions above, the probability that an unobservable fault at a gate g∈ ZoneB will

create a new error after converting the implication i into a new redundant wire can be generally

represented by Equation 3.6.

PNewError(g, i) = P(BC1∩BC2∩BC3) (3.6)

where P(BC1∩BC2∩BC3) is the probability of the intersection of all three conditions. Again,

the condition BC1 can be approximately evaluated by the signature based expression ob{S},{}(g)−

ob{all out puts},{}(g), and the condition BC2 and BC3 can be evaluated by the expressions ccv̄(T )

and ob{all out puts}{}(T ), respectively, where v̄ stands for the non-dominant value of the target . By

replacing each condition with its signature format counterpart, the probability PNewError(g, i) can

be evaluated by Equation 3.7.

PNewError(g, i)≈
∣∣(ob{S},{}(g)−ob{all out puts},{}(g))&ccv̄(T )&ob{all out puts}{}(T )

∣∣
K

(3.7)

With the above single-gate side effect estimation equation, the overall side effect of a redundant
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wire on Zone B can be approximated by Equation 3.8.

E f f ectZoneB(i)≈ ∑
g∈ZoneB

PNewError(g, i)× fg (3.8)

Taking the example implication (G4,1)→ (G5,0) in Figure 3.2, we can see that the impli-

cation’s Zone B includes only one gate, G4. Signatures satisfying the three conditions BC1,

BC2 and BC3 are ob{G4},{}(G4)− ob{all out puts},{}(G4) = 11111111− 01010101 = 10101010,

cc1(G5) = 10101110 and ob{all out puts},{}(G5) = 10101110. So the estimation of the probability

of new errors for this implication is |10101010&00001000&10101110|/8 = 1/8, which means,

given a fixed failure rate on gate G4, its probability to convert a fault to an observable error will

rise 12.5% due to the redundant wire insertion.

3.3.2.3 Evaluation of Zone C

Zone C does not contain any of the original gates in the circuit. Instead, it contains the extra

gates that must be inserted for the new implication. As described in Section 3.2.3, if the implicant

value is not the dominant value, the addition procedure will add an inverter into this zone, and

likewise, if the implicated value is not the dominant value, the procedure will insert a checker gate.

It is possible that these new gates will introduce new faults and this is especially significant in

smaller circuits. Hence, the objective of evaluating the effects of this zone is to estimate the effects

of errors originating from these newly added gates.

Figure 3.5 supposes the driving gate of the target T is a two-input AND gate and lists the

four different situations in Zone C which are classified by whether the implicant value (S) or the

implicated value (T) is the dominant value (Zero) or not at the corresponding pins. We will analyze

each case separately.

Figure 3.5a shows the case where both the implicant (S = 0) and implicated (S = 0) values are

dominant, and thus, the source S can be directly linked to the input of target T. In this case, there

are no extra gates inserted and consequently no extra faults will occur in Zone C.

In Figure 3.5b, the implicant value (S= 1) does not dominate the target, and during the addition,

an inverter is needed between the source and the target to flip the non-dominant value from the
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Figure 3.5: Example of new gates in Zone C

source. Since this inverter directly connects to the source, we can treat it as an extension of Zone

B, and thus, the evaluation methods proposed for Zone B are applicable to this inverter as well.

Moreover, as it is a newly added gate and is only connected between the source and the target, the

first condition BC1 is always true. Thus, the error probability of this inverter can be represented as

shown in Equation 3.9.

Pinverter(i) = P(BC2∩BC3) (3.9)

The third type of Zone C is when the implicated value (T = 1) does not dominate the target.

Specifically, in Figure 3.5c, the implicated value does not dominate the target’s driven gate (AND),

and hence, an OR gate checker is inserted. In this case, we denote the output of the checker as the

new target wire so that if this Zone C is treated as a black box, then the part of the circuit outside

the box will not notice any changes in terms of wire connection. By comparing the modified

circuit with the original one, we find that some of the errors due to the old target (AND) will be

masked because of the logic masking effect provided by the checker (OR), but the newly added

checker itself will potentially introduce new errors. Hence, we have to evaluate these two impacts

separately.

The calculation of the error probability on the newly added checker is relatively straightforward
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since it is equal to the observability of the old target, and thus, can be represented in Equation 3.10.

Pchecker(i)≈
∣∣ob{all out puts},{}(T )

∣∣
K

(3.10)

On the other hand, the calculation of the masking effects on the original target gate requires us

to compare the old and new error probabilities. In the original circuit, the old error probability is

equal to the observability of the old target, which can be represented as ob{all out puts},{}(T ). As for

the new error probability, it is determined by two necessary conditions:

CC1: The source must hold the non-dominant value;

CC2: The target is observable to at least one primary output.

Based on the conditions above, the masking effects on the old target can be evaluated by Equation

3.11.

Pold target ≈
ob{all out puts},{}(T )

K
−

ccū&ob{all out puts},{}(T )
K

(3.11)

where ū is the non-dominant value of the source.

The last case in Zone C, as shown in Figure 3.5d, is a combination of case 3.5b and case 3.5c,

and thus, its effect is the sum of these two cases.

To summarize, there are four cases for Zone C based on the implication to be inserted, and for

each case we have shown how to evaluate the effect of new faults introduced by the extra gate(s).

3.3.2.4 Evaluation of Overlap Between Implications

The previous sections have introduced to the individual implication evaluation. However, dur-

ing the implication evaluation and selection procedure, when some implications have been selected

and their corresponding redundant wires have been inserted, applying the evaluation equations pro-

posed above may lead to a considerable overestimation of the protective effects. This is because

the proposed model is derived based on the single redundant wire insertion while the impact of

multiple redundant wires is not considered. Specifically, an error might be masked by multiple
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implications, and as long as any of them is selected, the others’ protection of this error becomes

redundant.

In order to overcome this shortcoming, a new K-bit vector called COV is introduced, which

corresponds to the K-bit signature. For an arbitrary gate g in the circuit, COV (g) is defined as a

K-bit sequence whose ith bit equals 1 if the corresponding bit in the signature has been masked by

the selected implications; otherwise, it equals 0. During the algorithm, the algorithm maintains an

instance of this vector for each gate in the circuit. At the start, all the COV vectors are initialized

to 0s. Each time an implication is selected, its coverage on each gate is recorded into the corre-

sponding COV vectors. When an unselected implication is evaluated, its intrinsic coverage, as well

as the COV vectors, will be considered together to give an overall protective effect evaluation for

Zone A.

The new probability approximation can be represented as shown in Equation 3.12. By replacing

Equation 3.4 with Equation 3.12, Equation 3.5 is now able to give an error coverage evaluation

which accounts for the overlapping protection from the previous implications. Of course, the

negative effect of Zone B and Zone C must still be considered. Finally, the effect of a given

implication i can be expressed as shown in Equation 3.13.

Pprotect withCOV (g, i)≈
|ccu(s)&(ob{allout puts},{}(g)−ob{allout puts},{T}(g))&(ob{T},{}(g)−ob{S},{}(g))&COV (g))|

K

(3.12)

E f f ect(i) = E f f ectZoneA(i)−E f f ectZoneB(i)−E f f ectZoneC(i) (3.13)

3.3.3 Selection

The selection algorithm is used to select valuable implications and to insert the corresponding

redundant wires into the given circuit. Finding the truly optimal combination of redundant wires

is computationally infeasible. Therefore, we propose a greedy algorithm which can find a near

optimal solution in a reasonable time frame, as shown in Algorithm 5.

41



Algorithm 5 : Implication Selection
function SELECTION(C)

R←{}
COV ← 000 · · ·000∀i ∈C
T ← IDENTIFYIMPLICATIONSHIGHEFFORT(C)
for i ∈ T do

POSN← COMPUTEEFFECT(i)
INSERTAT(R,POSN, i)

end for
while EFFECT(R. f irst) > threshold do

INSERTWIRE(R. f irst)
UPDATECOV(R)
REMOVE(R. f irst)
LAZYUPDATEEFFECT(R)

end while
end function

The system initially creates an implication rank list R and, for each gate, a coverage vector

COV. During the selection process, the rank list R keeps all the implication candidates in descend-

ing order so that the algorithm can easily retrieve the next best candidate. Next, the algorithm

introduced in Section 3.3.1 is applied to find all the implications within the circuit. These implica-

tion candidates are then evaluated with the evaluation model described in Section 3.3.2. After the

first round of the evaluation process, all implications are ranked and placed into rank list R.

With the preparation work completed, the system starts the selection procedure which repeat-

edly selects the best implication candidate from the rank list R and inserts the corresponding re-

dundant wire into the circuit. After each selection round, a re-evaluation process is applied to the

remaining implications so as to eliminate the overlapping effect introduced in Subsection 3.3.2.4.

This re-evaluation process is performed in a lazy fashion. It starts by re-evaluating the best remain-

ing implication, and if it still ranks as the best candidate, the re-evaluation process stops; otherwise,

this implication will be inserted at its proper place in the list R and the re-evaluation process moves

on to the next best candidate. In this way, only a small number of implications are re-evaluated

after each selection. The selection loop terminates when the evaluated protective effect of the best

current candidate is smaller than a threshold set in advance. This threshold can be regarded as an

error estimation of the evaluation model. When the evaluation result reaches this threshold, the

42



benefit is considered insignificant. In our simulations, this threshold is set to an empirical value

ranging from 0.2 to 1, depending on the target circuit.

3.3.4 Summary

Figure 3.6: High-level Algorithm Flow.

Figure 3.6 shows the overall workflow of the proposed method. The flow starts with a gate

level netlist of the target circuit. Then, the implication identification procedure will find and list

all the direct and indirect implication candidates by applying the algorithms introduced in Section

3.3.1. With the gate information (such as gate types as well as gate failure rates) from the technol-
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ogy library, the implication evaluation procedure estimates the protective effect of each candidate

based on the method introduced in Section 3.3.2 and creates a ranking list for the following se-

lection procedure. The selection procedure takes a greedy strategy by always choosing the current

best candidate. The chosen candidate will then be inserted into the target netlist as per the redun-

dant wire generation methodology discussed in Section 3.2.3. If the current chosen candidate’s

estimated effect is higher than a preset empirical threshold, the work flow will loop back and the

remaining candidates will be re-evaluated in order to eliminate the influence of present selections.

Otherwise, the whole process will terminate and output the protected netlist.

In Section 3.4, the implication identification results are compared with the results from [50],

and the evaluation results are compared with the fault injection statistics. Then, the overall protec-

tion results are presented, and a concept called Quality of Result (QoR) is introduced in order to

illustrate quantitatively the effectiveness of the proposed protection method. Also, the influence of

two attributes on the final protective effects are discussed.

3.4 Simulation Results

The algorithm described in Section 3.3 was implemented in C++ and tested on a series of

benchmark circuits from the ISCAS’89 and LGSynth93 suites. The selected circuits were synthe-

sized into the 45nm Nangate Library [65] using Synopsys DC®. The failure rate of the original

and the protected circuits was evaluated by fault injection simulation with random input vectors. In

all cases, one million fault injections were performed, with the faults randomly distributed over all

the gates in the circuit, including the newly added gates in the protected circuits. The area, power

and delay results were estimated by the Synopsys DC®. All the results are presented based on 512

bits signatures.

3.4.1 Implication Identification

The first step of the protection process is identifying the implications. In Table 3.3, the number

of implications identified by both the low-effort (Algorithm 3) and the high-effort (Algorithm 4)
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algorithms are listed and compared with the number achieved by the indirect method presented

in [50]. The data shows that the proposed methods can identify 157.9% and 163.7% more im-

plications than the indirect method while only taking 2.7% and 3.2% of [50]’s execution time on

average, respectively.

By comparing the results of Algorithm 3 and 4, we can see the implications identified by the

high-effort algorithm always outnumber the ones identified by the low-effort. This is consistent

with the design purpose of the two algorithms. In terms of the time consumption, the high-effort

algorithm in most cases takes longer than the low-effort and the greater the difference, the more

extra implications the high-effort algorithm can identified. The exceptions may be caused by the

instability of the work machine’s runtime status, such as CPU temperature.

All the subsequent results were based on the implications generated by the high-effort algo-

rithm.

Table 3.3: Results of Identification Algorithm

Circuit
Indirect [19] Indirect Low Effort Indirect High Effort
# Time(s) # Time(s) # Time(s)

s298 1971 403 2326 3 2378 3
s344 2378 427 3941 9 3965 9
s641 8971 931 11629 121 11666 124
s386 3762 137 7375 11 7897 10
s444 2450 933 3710 10 3859 11
s713 9007 1125 12828 158 12962 226
s526 3203 4223 4694 9 4915 10
s510 9085 4354 19046 19 19488 20
s820 24763 67412 24424 50 25119 69
s832 27856 88849 24250 67 24985 85
s953 32015 21020 68099 114 71458 138
s1196 27445 234116 52199 148 55217 165
s1238 27127 319916 52514 139 55935 158
s1423 12654 42380 18547 421 18755 418
s1488 54922 19804 96112 295 99978 352
s1494 58197 34507 95278 378 99217 379
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3.4.2 Protective Effect Evaluation

Besides identifying adequate implication candidates, another key factor of the redundant-wire-

based SET mitigation method is to evaluate the protective effect of a set of redundant wires (Section

3.3.2). To validate the accuracy of the evaluation algorithm, we compared the simulation results

obtained by fault injection simulation to the estimated reduction of failure rate.

In the simulation, a stuck-at fault model is adopted to evaluate the susceptibility of each circuit.

This model assumes that all the erroneous signals caused by radiation effect are long and strong

enough to survive both electrical masking and temporal masking. Thus, it allows the simulation to

focus on logical masking only. Each node of a circuit has its intrinsic failure rate, and in general the

technology adopted as well as the cell type are the determinants of its value. Here, we designate

this per-gate failure rate as fi, and the propagation rate of a fault at a given gate i as EPPi(V ), where

V is the given set of input vectors. Given the fault model above, the failure rate of a whole circuit

can be represented by Equation 3.14.

FailureRatecct = ∑
i∈Gates

fi×EPPi(V ) (3.14)

The failure rate reduction estimated by the evaluation algorithm and its corresponding simula-

tion results are summarized in Table 3.4. From left to right, the table lists the name of the circuit,

the number of gates, the number of added redundant wires, the estimated failure rate reduction, the

simulation results and the percentage error between the two. The simulation data are calculated by

Equation 3.14. Here, we assume fi is a constant equal to 1. However, in a practical application we

can assign fi to a technology specific value. The estimated failure rate reduction is an accumulation

of the evaluated protective effect of added redundant wires.

The percentages of evaluating errors are less than 1% in more than half of the benchmarks (13

of 23) and below 5% in almost all the benchmark set. The absolute average percentage of errors

is only 1.93%. However, we cannot find a clear trend toward the evaluating errors from the data.

A variety of factors such as benchmark scales, circuit structures and numbers of added redundant

wires contribute together to the algorithm accuracy.
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Table 3.4: Results of Evaluation Algorithm

Circuit # Gates Redundant
Wires

Estimated
Reduction

Simulated
Reduction

% Error

s298 119 4 59.54 59.39 0.25
s344 160 10 79.05 79.4 -0.44
s641 379 15 205.89 206.07 -0.09
s386 159 10 37.04 36.75 0.78
s444 181 10 73.61 73.94 -0.45
s713 393 15 206.35 211.1 -2.25
s526 193 11 81.07 80.31 0.95
s510 211 23 83.44 81.95 1.82
s820 289 17 55.55 56.21 -1.17
s832 287 15 56.46 56.48 -0.04
s953 395 51 135.61 120.02 12.99
s1196 529 37 124.72 126.57 -1.46
s1238 508 29 126.03 125.68 0.28
s1423 657 53 273.95 274.52 -0.21
s1488 653 41 131.1 137.51 -4.66
s1494 647 69 122.25 126.8 -3.59
alu2 244 29 106.8 112.07 -4.7
ex5p 239 20 115.5 116.17 -0.58
f5lm 102 13 43.45 44.81 -3.04
inc 88 20 39.38 37.98 3.69

sao2 109 20 16.86 16.93 -0.41
alu4 653 40 44.31 44.55 -0.54
cmb 14 1 4.15 4.15 0

ABS Average: 1.93

3.4.3 Protection Results

The selecting algorithm incrementally picks the implication candidate and inserts it into the

target netlist. This selecting procedure will generate a series of netlists, each of which receives an

increasing fault-masking level, as well as additional area and power overheads. By tracking the

status of these intermediate netlists, we can have a different view of the algorithm. Figures 3.7

and 3.8 illustrate the changes of overheads versus the percentages of failure rate reduction in two

benchmarks. In S713, the proposed SET mitigation method achieves a 17.8% failure rate reduction

with a 2.4% area overhead and a 3.2% power overhead. In S1488, the method achieves a 21.3%

failure rate reduction at the cost of an extra 3.2% area and 3% power overhead.
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The rising trend lines in both figures indicate the circuit overheads increase with the addition

of redundant wires. In addition, with more redundant wires added, the slope of the trend lines

becomes steeper, which means that in order to achieve the same reduction percentage, more over-

heads are incurred toward the end than at the start. This observation proves that the method adds

redundant wires in descending order by their protective effects. We can also see that the power

overhead always increases with the growth of the area overhead, while the increase of timing over-

head does not share the same pattern. The addition of redundant wires may not affect the total

circuit delay as long as the number of circuit layers is not increased after addition. Thus, the

resulting timing overhead is highly dependent on the structure of the target circuit.
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Figure 3.7: Failure rate reduction for benchmark S713.

The results when applying the proposed SET mitigation method are summarized in Table 3.5.

We selected 16 circuits from the ISCAS’89 benchmarks and compare at the results to those pub-

lished by [50]. The first five columns display the basic information about each benchmark. The

sixth column is the percentage of error rate reduction achieved when the selecting algorithm ter-

minates. This value is the ratio of the reduced error rate to the original. Columns 7-9 list the

corresponding overheads in area, power and delay, respectively, and the tenth column is the num-

ber of added redundant wires. The eleventh column introduces a new concept called the Quality of

Result (QoR). This metric is the ratio of the error rate reduction to the area overhead, which gives
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Figure 3.8: Failure rate reduction for benchmark S1488.

us a simple way to measure the effectiveness of a mitigation method at a unit area cost. The three

right columns are the corresponding results published by or calculated based on [50].

From the data in Table 3.5, we see the reduced percentages of error rate range from 4.5% to

as high as 49.7%. The average percentage is 18.4%. The average area, power and delay over-

heads are 4.3%, 4.4% and 5.4%, respectively. For each circuit, its power overhead is close to its

area overhead, while its delay overhead varies dramatically, which is consistent with the aforemen-

tioned analysis. The average QoR is 4.9, i.e., 4.9% error rate reduction per 1% area overhead. By

comparing to [50]’s results, we can see that the proposed method can achieve a better protective

effect while causing less than half of the overhead. The average QoR is 2.9 times higher than [50]’s

result.

3.4.4 Impact of Synthesis Constraints

It is known that timing constraints have a significant impact on the structure of a synthesized

netlist. Usually, a tighter constraint on timing will lead to less gate and logic sharing, and less

circuit depth. In this section, we explore the influence of timing constraints on the proposed method

by applying the method on two netlists synthesized with different constraints. In Table 3.6, six

LGSynth93 benchmarks are selected, and each benchmark is synthesized separately with both
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Table 3.5: Protection Results

Name
# # # # % Error Area Power Delay # Implications

QoR
% Error Area QoR

PI PO Gates Inv Reduction % % % Added Reduc. [50] % [50] [50]
s298 17 20 75 44 4.5 1 0.8 0 4 4.6 5.3 2.1 2.6
s344 24 26 101 59 6.5 2.7 2.9 10.9 10 2.4 2.2 2.2 1
s641 54 43 107 272 19.6 1.5 2.6 2.7 15 13.3 6.1 2.8 2.2
s386 13 13 118 41 36.1 5 1.9 5.9 10 7.3 5.5 2.9 1.9
s444 24 27 119 62 14.1 3.4 4.9 0 10 4.2 13 10.8 1.2
s713 54 42 139 254 17.8 2.4 3.2 2.5 15 7.5 8.5 4.7 1.8
s526 24 27 141 52 8.6 3.2 4.4 0 11 2.7 5 3.4 1.5
s510 25 13 179 32 23.7 8 10.1 22.7 23 2.9 23.8 17.9 1.3
s820 23 24 256 33 11.4 2.9 2.3 0 17 4 17.4 7.3 2.4
s832 23 24 262 25 10.4 1.8 1.5 0 15 5.7 17.1 7.2 2.4
s953 45 52 311 84 49.7 11.4 8.9 20.6 51 4.4 42 17.5 2.4
s1196 32 32 388 141 20 6.4 7.7 9.2 37 3.1 23.7 15.1 1.6
s1238 32 32 428 80 15.9 7.1 9.3 8 31 2.3 38 21.4 1.8
s1423 91 79 490 167 6.4 2.9 1.5 0.7 53 2.2 15 16.1 0.9
s1488 14 25 550 103 21.3 3.2 3 1 41 6.7 9.8 7 1.4
s1494 14 25 558 89 28.3 5.5 5.2 1.9 69 5.1 18.5 17.5 1.1

Average 18.4 4.3 4.4 5.4 25.8 4.9 15.7 9.7 1.7

a lower and a higher timing constraints. The error reduction percentage and the corresponding

overheads were collected after applying the proposed method on both generated netlists.

The results indicate that the proposed method can achieve higher error reduction rates while

causing less area and power overheads on the tighter constrained netlists. A possible explanation

of this result is that the synthesis with a tighter constraint will generate a netlist with less gate

and logic sharing, which means the gates in the generated netlist will have fewer fan-outs. Based

on the evaluation analysis in Section 3.3.2, a gate with fewer fan-outs will be better protected

by redundant wires. However, the delay overheads increase extremely rapidly due to the tightly

constrained netlists’ high sensitivity towards timing.

3.4.5 Impact of Signature Length

The signature technique provides a simple but effective way to evaluate the protective effect a

set of redundant wires can provide, and the evaluating results directly guide the selecting process

of the proposed method. In order to explore the influence of signature lengths on performance, we

selected 16 benchmarks and re-executed the redundant wire method on these benchmarks but with

different signature lengths (128-bit and 32 bit). The collected error reduction and area overhead

results were compared to the benchmark results (512-bit signatures) and are represented as a per-
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Table 3.6: Impact of Synthesis Constraints

Circuit
# Extra % % % % #

Gates Delay Error Area Power Delay Wires
(ns) Reduction

alu2
244 0.86 11.50 9.50 8.80 8.10 40
415 0.51 16.10 4.40 4.80 23.50 40

ex5p
239 0.56 4.70 4.00 4.00 3.60 20
403 0.32 9.60 2.20 2.50 15.60 20

f51m
102 0.5 6.70 5.30 7.40 4.00 13
167 0.35 10.60 4.20 5.50 17.10 15

inc
88 0.45 19.50 11.40 14.30 55.50 20

144 0.3 23.70 4.90 5.20 39.00 18

sao2
109 0.55 19.10 13.30 11.70 9.10 20
170 0.34 51.80 3.40 4.30 32.40 13

alu4
653 1.12 11.00 3.10 3.50 0.90 29

1220 0.52 27.10 2.40 2.50 65.40 41

centage of the benchmark results. Thus, a number less than 100% on the error reduction means the

protective result is not as good as the benchmark result, and a number more than 100% on the area

overhead means the resulting overhead is higher than the benchmark result.

Table 3.7 lists the 128-bit and 32-bit results as a percentage of the benchmark results (512-bit).

From the data, we can see that in most cases, the results obtained from shorter signatures are worse

than the ones from longer signatures. On average, the 128-bit can achieve a 94% protective effect

of the benchmark results and the 32-bit can achieve 88% by causing equal area overhead. However,

since the selecting algorithm adopts a greedy strategy, there are cases where a sub-optimal choice

in the earlier selecting decisions will lead to a better final solution. Therefore, in a few cases, the

shorter signatures can produce a better result.

3.5 Conclusions

We presented a redundant-wire-based SET mitigation approach. The approach utilizes the

signature-based evaluating equations to guide the selection. Simulation results indicate this new

selection method is more efficient than those of previous works. The simulation results also show

that the proposed approach can achieve high coverage with a low cost, which is very suitable to
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Table 3.7: Impact of Vector Size on Quality of Results

Circuit
128-bit 32-bit

% Error Reduction % Area Overhead % Error Reduction % Area Overhead
s298 92.60 100.00 99.16 100.00
s344 87.73 146.15 85.51 76.92
s641 97.18 100.00 100.12 120.00
s386 91.41 90.32 76.52 100.00
s444 91.35 100.00 99.93 100.00
s713 100.70 88.46 99.70 146.15
s526 88.10 100.00 56.83 57.14
s510 100.29 103.57 81.68 105.36
s820 92.56 88.24 88.84 97.06
s832 90.84 131.82 81.03 100.00
s953 99.52 104.32 98.99 112.95

s1196 100.59 95.54 87.28 79.46
s1238 100.10 94.79 96.30 98.96
s1423 88.06 100.00 85.87 106.35
s1488 95.60 79.52 83.51 90.36
s1494 87.88 90.91 87.05 102.10

Average 94.03 100.85 88.02 99.55

ground-level applications.
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CHAPTER 4

NEW APPROXIMATE LOGIC BASED APPROACHES FOR

SYNTHESIS OF REDUNDANT COMBINATORIAL LOGIC

FOR SELECTIVE FAULT TOLERANCE

Chapter 3 presented a highly efficient SET error mitigation method based on redundant wire

technique. However, the number of good redundant wire candidates is limited in some circuits,

which constrains the maximum coverage the technique can achieve (e.g. average 18.4%). In

this Chapter, a new approximate logic based technique is presented. This technique will provide

designers with greater flexibility and its best effort case, which is also known as TMR, can reach a

100% coverage.

The proposed algorithm builds on concepts that were identified in [49, 29]. The basic idea is

that any combinatorial logic function, G, can be augmented with a simpler approximation of the

min-terms (F) and the max-terms (H), as shown in Figure 4.1. For any input vector for which F is

true, G is also true. As a result, if there is a fault causing G to incorrectly be false, then it may be

corrected by F . In a similar way, H may fix faults where G is incorrectly true.

(a) Form 1 (b) Form 2

Figure 4.1: Approximate Logic Functions
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Potentially F or H can be empty (e.g., H = 1, F = 0). The maximum added delay is two gates,

and if either F or H is empty, the delay is a single gate.

4.1 Fault Model and Evaluation Method

The failure rates of gates vary significantly. Clearly, an inverter consisting of two transistors is

less prone to SET faults than a complex gate with 10 transistors, like an XOR, as seen in Figure 4.2.

The sensitivity to radiation-induced SETs can vary by nearly an order of magnitude, as seen from

the simulation results for six cells taken from a 28nm commercial cell library [66] shown in Figure

4.3. For these reasons, we need to consider the actual technology failure rates when synthesizing

redundant logic functions. We assume that the per-gate FIT rate, fi, has been characterized in

advance.

Figure 4.2: Layout of INV and XOR Gate

Figure 4.3: Transient Sensitivity of 28nm Gates.

Due to the logical masking effect, a fault in a given gate has a probability of propagation to the
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outputs that we designate EPPi(V ), where V is a set of selected input vectors, and fi is the FIT rate

for the given gate. The FIT rate of the full circuit is given by Equation 4.1:

FITcct = ∑
i∈Gates

fi×EPPi(V ) (4.1)

The goal is to reduce the circuit-level failure rate using redundant logic, while minimizing the

area and power overhead. We evaluate FITcct , using Equation 4.1, both for the original circuit and

then for the protected circuit with the redundant logic. When evaluating the protected circuit, the

failure rate of the gates in the redundant logic is included. Thus, to yield a net improvement in

reliability, the fault masking of the redundant gates must more than offset the increased intrinsic

failure rate due to a higher gate count.

4.2 Proposed Algorithm

Many problems in logic synthesis are NP-hard [67], and thus, heuristics must be used to find

solutions in a reasonable time. The starting point for the proposed algorithm is a minimal two-

level representation of the original logic function, as produced by the Espresso logic minimizer

[68]. Consider an example logic function with two outputs, G0 and G1, whose Karnaugh map is

shown in Figure 4.4. After logic minimization, the list of cubes is shown in Table 4.1.

Figure 4.4: Karnaugh Map Examples

The algorithm selects cubes from this list to add to the F or H approximate functions, as shown

in Figure 4.5. A fault reduction (FR) metric is computed for each cube using Equation 4.2. The
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Table 4.1: Logic Cubes for Example Circuit

TERM TYPE COVERAGE
G0

0 - - 1 max 4
0 - 1 - max 4
1 0 0 0 max 1
1 1 - - min 4
1 - - 1 min 4
1 - 1 - min 4
0 - 0 0 min 2

G1
0 - 0 - max 4
- 0 0 - max 4
0 0 - 1 max 2
- 1 1 - min 4
- - 1 0 min 4
1 1 - - min 4
1 - 1 - min 4

cover of the cube is trivial to obtain from the two-level representation and measures the number of

input vectors that will be protected by the cube, e.g., the number of covered vectors of 0--1 is 4

(0001, 0011, 0101 and 0111). The EPP (error propagation probability) is the likelihood that errors

in the gates actually affect one of the outputs, for the vectors covered by the cube. This probability

is estimated through fault-injection simulations.

FR(cube) = (#min/max− terms)× ÊPPl (4.2)

The cubes are ranked and the best cube is selected for addition to the approximate function (F

or H). After selecting one cube, the FR metric for the remaining cubes is recalculated in a lazy

fashion described below. The cubes are then re-sorted to identify the next best candidate.

The error propagation probability (EPP) is calculated by statistical fault injection on the gate-

level circuit using a digital simulator. Random input vectors, within the scope of the cube, are

generated based on the distribution of vectors in V (a set of vectors taken from an input trace). For

each fault injection, one gate is randomly chosen, weighted by the per-gate FIT rates, fi. A SA

(0 or 1) or SET is injected on the selected gate and it is determined if the fault propagates to a
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Figure 4.5: High-Level Algorithm Flow.

primary output. This biased fault injection approach was chosen in order to take into account the

actual expected failure rates of the gates in the mapped circuit. This ensures that the redundant

logic functions are optimized to cover the faults that are most likely to occur.

The objective is to perform the minimum number of fault injections necessary in order to iden-

tify the next best term to select. To avoid running more simulations than necessary, the simulations

are launched in small batches of size Nbatch. After the first batch of simulations, the value of EPP

is estimated (ÊPP) based on the fraction of simulations where the fault propagates to an output. If

we assume that the distribution of ÊPP is normal, then the confidence interval is given by Equa-

tion 4.3 [24, p130], which consists of the EPP estimate and the error bar. For 95%, 90% and 80%

confidence intervals, zα/2 is 1.96, 1.65 and 1.28, respectively.

ÊPPn± zα/2

√
ÊPPn(1− ÊPPn)

n
(4.3)

Using the number of cubes and the estimated EPP, the fault reduction (FR) is computed for

each cube and the cubes are ranked. Due to the error bars, at the top of the list, there may be
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multiple overlapping best candidates. In this case, additional fault injections are performed in

groups of Nstep in order to further reduce the error bars. Additional simulations are only run for

those cubes that are potentially the best candidate. A maximum of Nmax simulations is performed,

and if there are still multiple candidates, the term with the best FR is simply selected, disregarding

the other candidates whose FR estimate may overlap. In these cases, there is little difference

between the best candidates.

Table 4.2: Results after First Round

INPUTS
OUTPUT TYPE COVERAGE

#
FR

ERR
A B C D FI BAR

0 - - 1 G0 Max 4 20 2.6 0.546
- 1 1 - G1 Min 4 20 1.8 0.570
- - 1 0 G1 Min 4 20 1.8 0.570
1 1 - - G0 Min 4 20 1.8 0.570
1 - - 1 G0 Min 4 20 1.4 0.546
0 - 1 - G0 Min 4 20 1.4 0.546
1 1 - - G1 Min 4 20 1.2 0.526
1 - 1 - G0 Min 4 20 1.2 0.526
1 - 1 - G1 Min 4 20 1.0 0.496
0 - 0 0 G0 Min 2 20 0.8 0.280
0 0 - 1 G1 Max 2 20 0.7 0.273
1 0 0 0 G0 Max 1 20 0.7 0.131
- 0 0 - G1 Max 4 20 0.6 0.409
0 - 0 - G1 Max 4 20 0.4 0.344

Consider the example logic function shown in Figure 4.4. After the first round of the algorithm,

with 20 fault injections, the results are shown in Table 4.2. The term 0--1 has the highest FR metric,

however, there are three other terms (-11-, --10, 11--) with FR metrics that could overlap due to

the error bars. The remaining ten terms (not bold) can be eliminated as their FR metric is too low,

even considering the error bars, which are calculated using Equation 4.3.

After additional fault injections, the term 0--1 is selected as the first term to add to F . Before

proceeding to the next round, the table of min/max-terms is updated to reflect the overlap between

0--1 and other terms. For example, the uncovered terms for 0-1- is reduced to 2 (0011 and 0111).

For the next round, new fault injections must be performed to reflect the coverage provided by

the redundant logic that has been added, but this is only necessary for terms that overlap with the
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newly added, redundant term. Furthermore, the new FR can only be lower than the FR metric from

the previous round, and thus the previous FR estimate serves as a valid upper bound. Additional

fault injections are only performed for those terms which are potentially the next best-candidate

in the following round. In this way, a sequence of F , H functions are generated with each one

providing increasingly better coverage of G, taking into account the actual failure rates of the

library gates over a set of actual input vectors.

4.3 Simulation Results

Selected LGsynth93 and ISCAS benchmark circuits were synthesized into the 45nm Nangate

Library [65] using Synopsys DC™. For both the original and the protected circuits, the FIT rate

was evaluated using Equation 4.1. For the purpose of evaluating the circuit-level FIT rate, 10,000

fault injections were performed, to ensure small error bars. For the SA fault model, an arbitrary

FIT rate ( fi), was assigned to each gate, proportional to the number of transistors in the gate. For

the SET fault model, actual SET FIT rates and pulse widths for the NanGate library were used

[69].

We present the results as the FIT rate reduction which is the ratio of the protected FIT rate

to that of the original circuit. Note that this metric reflects the fact that failures can occur in the

redundant logic, and thus, represents a net FIT rate reduction. If the original FIT rate was 10 and

the reduced FIT rate is 5, the reduction is 2x.

The algorithm described in Section 4.2 was implemented using a Ruby script. The parameter

Nbatch was set between 20 and 100 based on the size of the circuit. Nmax was set to 400 and Nstep

was set to 10. An 80% confidence interval was used (zα/2 = 1.28) when evaluating the error

bars. The cubes were generated with Espresso and the fault injection simulations were performed

with Mentor’s Modelsim™. The redundant logic functions (F , H) produced by the script were

synthesized with Synopsys DC™.
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4.3.1 Simulation Results with SA Fault Model

Figures 4.6a, 4.6b and 4.6c show the area and power overhead required to achieve increasing

levels of SA fault masking for three circuits. Each point was produced after five additional cubes

were added to the redundant logic. The connecting lines show the order of cube selection. In some

cases, adding additional cubes reduces the area and power, presumably because the extra cubes

enable new logic simplification.

In Figure 4.6a, we see that initially a small overhead is required to achieve a significant re-

duction in the FIT rate. In Figures 4.6b and 4.6c, comparative data points from previous works

[47, 70] are shown. Note that the referenced works assumed a uniform, SA fault model.

4.3.2 Simulation Results with SET Fault Model

Figures 4.7a and 4.7b show the area and power overhead required to achieve increasing levels

of SET fault masking for s1488 and sao2. Since the absolute SET error rates are much lower

compared to SA fault rates, the relative uncertainties in the FR metric from the fault injection

are larger. More simulations are required to correctly rank the cubes, and the Nmax limit is often

reached. As a result, the cube selection is not always optimal and the resulting curves are not

consistently monotonic. However, the algorithm does generate a sequence of redundant logic

functions which significantly reduce the SET sensitivity. Table 4.3 summarizes the area, power

and timing overhead for nine circuits, showing the first generated result with at least a 2x reduction

in FIT rate, both for the SA and SET fault models.

4.3.3 Comparing Results between Fault Models

Because the absolute error rates are smaller with the SET fault mode, the cube ranking is more

difficult and more fault injections are required to identify the best candidate. We thus evaluated

the ability of the approximate logic generated using the SA fault model to mask SETs. Figure 4.8

shows the SET masking ability of redundant logic functions created by the algorithm using SA

fault model and an evaluation with SET faults for two circuits.
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(a) sao2

(b) alu2 and Comparison with [47] (c) alu4 and Comparison with [70]

Figure 4.6: Area, Power Overheads vs FIT Reduction Results with SA
Fault Model (SA)

The generated functions are actually very effective at masking SETs and this trend was ob-

served for other circuits. In order to better understand why this result was observed, for the s386

and alu4 circuit, the sensitivity of each gate was assessed using an SA and an SET fault models.

The gates were then ranked from the least to most sensitive. Figure 4.9 shows a scatter plot where

the horizontal axis is the gate’s sensitivity rank under the SET model, and the vertical axis, the

gate’s sensitivity rank under the SA model. The correlation is very strong. Based on these results,

it appears that redundant logic functions generated using an SA fault model also perform well at

masking SETs and they are easier to synthesize.
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(a) s1488

(b) sao2

Figure 4.7: Area, Power Overheads vs FIT Reduction Results with SET
Fault Model.

4.3.4 Effect of Logic Sharing on Fault Tolerance

During synthesis, we allowed the synthesis tool to share logic between the F and H functions

across multiple outputs, but it was ensured there was no logic sharing with the original function G.

We note that this approach is different from [47] where sharing between F and H was explicitly

prevented during synthesis. When logic sharing is prevented, faults in one of the approximate

functions are fully blocked because the original function and the other approximation are correct

(see Figure 4.1). However, this benefit comes with the downside that the area of the shared logic
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Table 4.3: Summary of SA and SET Results for Benchmark Circuits
(Nmax = 400)

Cct PI/PO # # FIT SA SET
Gates Terms Reduction Area Power Delay Area Power Delay

(%) (%) (%) (%) (%) (%)
sao2 10/4 70 167 2x 7 6 20 7 6 20
alu4 14/8 469 2066 2x 32 35 40 37 40 40
5xp1 7/10 65 153 2x 107 116 70 104 99 70
ex5p 8/63 188 652 2x 55 26 30 63 42 40
f51m 8/8 73 155 2x 101 89 50 84 77 50
inc 7/9 69 142 2x 61 71 50 63 75 40

s386 13/13 64 163 2x 24 22 30 16 11 30
s1488 14/25 297 1639 2x 45 59 30 40 47 30
s1494 14/25 298 1636 2x 52 66 40 42 48 40

Figure 4.8: SET Masking Effect of Redundant Logic Generated Using SA
Fault Model (s386 and s1488).

is increased.

To investigate which approach provides better overall results, the redundant logic functions

were synthesized for two circuits (sao2, inc) with and without logic sharing. The resulting circuits

were evaluated with an SA fault model and the results are shown in Figure 4.10.

When a small level of fault masking is required, both approaches have very similar perfor-

mance. For higher levels of fault masking, however, it appears better to prevent logic sharing

between F and H.

When the number of cubes is small, the potential for logic sharing is limited. However, as the
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Figure 4.9: Per Gate - Fault Model Correlation (sao2).

Figure 4.10: Effect of Logic Sharing (F , H) for sao2 and inc.

number of cubes increases, there is a greater chance that a single fault impacts a shared term in

both approximate functions. It thus appears better to prevent logic sharing between F and H.

4.3.5 Results Prediction

When we observe the performance of the algorithm on different circuits, it is apparent that

it is very effective in some cases (e.g., sao2) and less effective for others (e.g., inc). To identify

for which circuits the proposed algorithm is able to best generate approximate logic, we analyzed

the distribution of logic cubes of different size, as shown in Figure 4.11. Not surprisingly, the

algorithm performs well for circuits like sao2 and s1488 with large logic cubes which can provide
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high coverage at lower implementation cost.

Figure 4.11: Cube Size Distribution for sao2, inc and s1488.

4.4 Conclusions

We presented an approximate logic based SET fault tolerant approach. The approach takes the

probability of faults in different types of gates into account and utilizes the error bar estimation to

limit computations. The SA and SET fault-injection simulations show promising results for certain

types of circuits which are efficiently represented in Sum of Products (SOP) form.

65



CHAPTER 5

SUMMARY, CONCLUSION AND FUTURE WORK

5.1 Summary

This work proposed two new SET mitigation techniques for ground-level applications. The

utilized redundant wire and approximate logic techniques are both generic and can be applied to

any combinatorial circuits. The way in which the proposed algorithms incrementally add redun-

dancy provides users with the flexibility to balance the cost and reliability requirements. The work

also explored and proposed various techniques (like signature-based evaluation, table-based im-

plication identification and error bar) to accelerate effectively the generation process. Finally, the

simulation results substantiated that the proposed mitigation techniques are more efficient than

those in previous works.

The separated summary of the techniques are listed below.

Low Cost Mitigation of Logic Faults with Redundant Wires

The work has presented new algorithms which are able to identify quickly all the implications

in a logic circuit. These algorithms are able to find more implications and are significantly faster

than previous algorithms.

The work then developed a systematic approach for assessing the protective benefit when a

redundant wire is inserted into a circuit. This approach takes into account the beneficial masking

effects of the redundant wire as well as the fact that the redundant wire will increase the propagation

of other faults. It also evaluates the new faults that can occur in the added gates. The assessment

is performed using signature techniques which make it fast. The simulation data shows that the
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estimations are highly accurate. Using the list of implications and the evaluation technique, we

implemented a greedy algorithm to add iteratively redundant wires in order to protect logic circuits

from faults.

In the simulation section, it shows that the algorithm for identifying implications is signifi-

cantly faster than previous techniques. The quality of the protection solutions found using our

final algorithm is significantly better (288%) than those presented in [50].

The work studied the role that synthesis constraints on the original circuit play when adding

redundant wires. It was found that netlists generated with aggressive timing constraints are better

candidates for adding redundancy. The work also performed a study of the sensitivity of the results

to the length of the signature and found that even with 32-bit signatures, the reduction in the failure

rate protection is only 12%. Thus, the algorithms could be made even faster through the use of

shorter signatures, with only a modest reduction in the quality of the results.

Finally, the algorithms presented are more efficient than previous work for generating redun-

dant wires and have demonstrated that this technique can generate low cost (typically less than

10%) solutions for masking faults in large circuits.

New Approximate Logic based Approaches for Synthesis of Redundant Com-

binatorial Logic for Selective Fault Tolerance

The proposed algorithm generates circuits which achieve a modest (<3x) FIT rate reduction for

a lower cost than TMR. Protecting random, combinatorial logic from faults is a challenging prob-

lem. The proposed approach, based on an SOP representation and using realistic fault injections

shows promising results for certain types of circuits which are efficiently represented in SOP form.

The overheads are significant compared to those for protecting memories or other regular struc-

tures, but, the soft FIT rates due to combinatorial logic are no longer trivial and in an industrial

context, generic solutions are required which can be applied directly to a gate-level netlist.

The proposed technique can be applied automatically to any combinatorial circuit and the al-

gorithm is scalable due to the use of a two-level logic representation and the reduced number of

fault-injection simulations. Furthermore, the algorithm takes into account the relative probability
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of faults in different types of gates, something that is not considered in previous work.

The work studied the effect of logic sharing on the protective performance. The simulation

results indicated that when a small level of redundancy is required, the performance of both is

similar, but for a high level of redundancy, separating F and H logic is recommended. The work

also explored the relationship between the distribution of logic cubes and the effectiveness of the

proposed technique. We only touched the surface of this topic, but did show that the technique

performs better on circuits with large logic cubes.

5.2 Conclusion

In this paper, two novel SET mitigation methods based on redundant wire and approximate

logic techniques are proposed. Both methods are generic and provide great flexibility in the trade-

off between SET coverage and overhead. The simulation results showed low computational re-

quirement and efficient SET mitigation ability. The proposed mitigation techniques provide de-

signers more choices in developing reliable combinatorial logic in ground-level applications.

5.3 Future Work

The current results are collected from fault-injection simulations. In order to validate the pro-

posed techniques in a real environment, future work will need to implement the techniques on real

chips for radiation tests.
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