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Abstract

This thesis proposes techniques to mitigate multiple bit errors in GF arith-

metic circuits. As GF arithmetic circuits such as multipliers constitute the

complex and important functional unit of a crypto-processor, making them

fault tolerant will improve the reliability of circuits that are employed in

safety applications and the errors may cause catastrophe if not mitigated.

Firstly, a thorough literature review has been carried out. The merits of ef-

 cient schemes are carefully analyzed to study the space for improvement

in error correction, area and power consumption.

Proposed error correction schemes include bit parallel ones using opti-

mized BCH codes that are useful in applications where power and area are

not prime concerns. The scheme is also extended to dynamically correct-

ing scheme to reduce decoder delay. Other method that suits low power

and area applications such as RFIDs and smart cards using cross parity

codes is also proposed. The experimental evaluation shows that the pro-

posed techniques can mitigate single and multiple bit errors with wider

error coverage compared to existing methods with lesser area and power

consumption. The proposed scheme is used to mask the errors appearing

at the output of the circuit irrespective of their cause.

This thesis also investigates the error mitigation schemes in emerging tech-

nologies (QCA, CNTFET)to compare area, power and delay with existing

CMOS equivalent. Though the proposed novel multiple error correcting

techniques can not ensure 100% error mitigation, inclusion of these tech-

niques to actual design can improve the reliability of the circuits or in-

crease the dif culty in hacking crypto-devices. Proposed schemes can also

be extended to non GF digital circuits.
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Chapter 1

Introduction

1.1 Motivation

Cryptographic chips have gained signi!cant popularity owing to the growing demand

for security in day-to-day applications such as TV set-top boxes, bank ATMmachines,

mobile communications, and digital right management, where dedicated cryptographic-

processors play key role [1; 2]. Most of these processors execute popular encryption

and decryption algorithms with much higher ef!ciency and throughput as compared to

the software exclusive cryptography on generic processors. This is due to the fact that,

the stand alone cryptographic hardware proved to be faster and less power consum-

ing compared to when these cryptography algorithms are implemented over generic

processors.

Nowadays, dedicated cryptographic co-processors are commonly used to delicately

perform authentication operations in secure data processing applications. However, it

has recently been shown that such stand alone cryptography hardware can be hacked

deliberately by controlled radiation or light probing with high energy radiation parti-

cles in order to gain access to the sensitive information stored internally. These kinds

of attacks based on radiation bombardment are widely known as transient attacks [3].

The radiation interferences in digital circuit operations were initially considered to be

due to the decay of the packaging, however, as technology is evolving, this is also be-

coming an instrument for intruding into the inner details of the hardware. This is in

addition to other fault causes, e.g. manufacturing defects, etc., for hardware to become

faulty and thus providing erroneous results while operating. Thus it is vital to ensure

1



1.1 Motivation

that such delicate devices continue to perform fault-free even when they are subjected

to attacks or other kinds of manufacturing faults [4].

Due to the random nature of these radiation induced attacks, it is quite hard to

model and mitigate such malicious eavesdropping. The crypto-processors often con-

tain highly sensitive information such as the secret key and other con!dential data. For

example a bank ATM smart card contains information of the cardholder which is meant

to be secret to the third party [5]. An attacker, with the malicious intent of disrupting

civil and government infrastructures, can attempt to break into the crypto-processor�s

core for receiving the sensitive information by subjecting it to radiations under a con-

trolled environment in a complex laboratory set up. Such radiation induced attacks can

also reveal the internal architectures of a chip in a potential Intellectual Property (IP)

theft [6]. Such attacks mainly need the actual crypto-chip to be exposed hence they

are categorized as invasive type of attacks. Also the invasive attacks involve exposing

the chip using an electron microscope to learn the physical layout of the chip, which in

turn can help the hacker to carry out reverse engineering to predict the actual circuitry

that perform the operation, resulting in IP theft [7; 8].

Other categories of attacks are known as non-invasive attacks. This is due to the

fact that, the secret information within the chip is hacked without physically exposing

or damaging the chip [9]. These types of attacks are also known as side channel based

attacks. The side channels of a chip can manifest in various forms, e.g. through the

test scan chains, power signatures corresponding to critical on chip operations, acoustic

signatures, timing information, etc. Each of these critical signatures can provide vital

information to the hacker which can be used to reveal the secret information. For

example, the scan chains are mainly accommodated in a chip in order to test the chip

for any permanent faults such as manufacturing defects. Testing of an Integrated circuit

(IC) is done by feeding a known set of test patterns through the scan chains in test

mode and observing the response of these test vectors at the output for any error. This

highly effective feature of testability can be misused by making the circuit or device

malfunction with certain predetermined test cases and learn the secret information from

the response of the circuit to the test vectors.

Another active eavesdropping that can happen due to additional circuits added to

the actual layout during manufacturing stage. Due the globalization of semiconductor

industries where the chips are manufactured in a third party semiconductor foundry. In
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Figure 1.1: Various sources of information infringement in GF arithmetic circuits

such cases, the addition of intruder circuits also known as hardware trojans that make

the circuit temporarily faulty (under hacking mode) to help the attacker to gather the

hidden data or a security key that is been protected in the cryptographic chip. Such

trojan circuits may inject faults in active mode or they leak information through a

wireless channel.

The fault mitigation schemes presented in this thesis encompass both deliberate as

well as unintentional or natural causes that introduce bit  ips in actual functional block.

The unintentional or natural causes of faults include manufacturing defects mainly

due to the defects/imperfections in the manufacturing process such as due to trapped

dust particles on the die creating unwanted open or short circuits, defects that occur

in integrated circuits due to aging, electron migration, the harsh working environment

where these circuits are deployed for example when the integrated circuits are deployed

in space related applications where they are continuously in contact with cosmic rays,

etc. Some of the major sources of faults, errors and attacks on a GF (Galois Field)

arithmetic circuit appears in Figure 1.1.
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Owing to the these facts, it is necessary to ensure that secure devices continue to

perform fault free under all circumstances by keeping all the hidden information secret.

To alleviate transient attacks on cryptography hardware, this thesis proposes fault tol-

erant architectures as a way forward. The idea is to mask the effects of the faults/errors

for continued uninterrupted operations even in the presence of the errors/attacks that

produces incorrect logic output.

1.2 Aim of the Thesis

There are many cryptography algorithms that are used to encrypt and decrypt the infor-

mation that needs to be secured. The most widely used one is private key cryptography

(PKC). This is because, the users following PKC has to maintain only one private

key and the information can be send to a user using his public key, which is publicly

available. Again in various PKC schemes, Elliptic Curve PKC (ECPKC) is the recent

research area because of its enhanced security for smaller key sizes compared to other

popular cryptography algorithms [10; 11]. Cryptography hardware in general and a

crypto-processor in speci!c contain various arithmetic logic units based on Finite Field

or Galois Field (FF or GF) algebra. The ease of implementation and their carry free

logic made GF VLSI circuits more popular and widely used in security applications.

The cryptographic hardware relies heavily on one or more highly complex multiplier

circuits in order to perform various cryptographic algorithms. As such, the multiplier

circuits are often the most complex units in a crypto-processor and tend to occupy the

largest chip area [2]. Hence they are undoubtedly a key target of an attacker as well as

crucial when possessing permanent faults. Also a permanent fault on these processing

elements can be proved costly in terms of erroneous operations. Hence care should be

taken to make this critical block fault tolerant. As a result, this thesis is focused on

GF multiplier test bench circuits that are designed over binary Galois Fields. This is

due to the fact that the application speci!c VLSI circuits for cryptography applications

are mostly de!ned over Galois Fields. It is observed that very complex cryptography

arithmetic circuits (for example a NIST/FIPS standards suggest 163-bit multiplier for

Elliptic Curve Cryptography (ECC) arithmetics) often possess very high fan-out, mak-

ing the faults or injected errors at a critical node propagate to multiple outputs thus

resulting in multiple bit errors at the output. Considering the applicability and the need
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for fault tolerant architectures in such critical applications, this thesis aims to con-

tribute various novel fault tolerant designs and architectures to prevent the integrated

circuits from being succumbed to erroneous operations in presence of manufacturing

faults (e.g. manufacturing defects, etc.), transient errors/faults (e.g. due to cosmic rays,

etc.), and malicious attacks based transient errors. This thesis consider and proposes

ef!cient multiple error correction as a method of fault tolerance. Even though there

exists many reported published works on error detection and correction, it is observed

from the critical review that there are very few multiple error correcting architectures

to alleviate the issue of multiple bit errors [12].

Potential Requirements of Fault Tolerant Circuits Modern day computing hard-

ware requires much more processing power to perform complex computations ef!-

ciently and quickly than ever before. The rapid advances in integration technology,

driven by Moores law, made it possible to meet such high integration density in VLSI

circuits, which can be as high as a trillion or more transistors in a single die. However,

such a rapid miniaturization of devices resulted in scaling down other device parame-

ters such as power supply (VDD), threshold voltage (Vth), etc., along with it. Scaling

in theVDD andVth can make these tiny devices susceptible to transient induced faults.

Such adverse problems also affect the devices that are deployed in security related

application such as PKC [11; 12].

As one know, a permanent manufacturing fault will produce erroneous results on

all the times. In addition to this, the transient faults injected to these minute devices

may give an intelligent attacker the information that he is looking for. This will include

a secret key information, the type of algorithm that the device executing, the hardware

structure etc. Owing to these facts, there were many approaches proposed to make such

critical ASICs tolerant towards various faults that affect the yield and performance of

the systems. This clearly shows the potential interest of fault tolerant architectures and

their vital application in designing reliable and fault tolerant circuits.

1.3 Organization of the Thesis

Ever growing demand for secure computing and rapid advancement in technology node

succeeded in providing security and privacy in modern day computing. However, vari-
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ous factors like hardware implementation weaknesses, unavoidable naturally occurring

faults creates a loophole for a potential attacker with malicious intention to sneak in.

Though there are several ways of gathering secret information from hardware, this the-

sis mainly focuses on faults or attacks predominantly affecting the logic functionality

of the circuit by creating bit  ips in the circuit to produce erroneous output. Basic

outline of the rest of the thesis is outlined as follows,

Chapter 1 gives motivation and the requirement for fault tolerant circuit technique

and their critical applications in cryptography hardware. The rest of the thesis is orga-

nized as follows.

In Chapter 2, the fundamentals of algebraic arithmetic operations and background

of Faults, Errors and transient attacks over GF arithmetic circuits are presented. This

includes the theory of Groups, Rings and Fields and arithmetic operations over them.

The fundamental arithmetic operations such as addition and multiplication over binary

Galois Fields are also discussed for completeness of the remaining chapters in this

thesis. However, this thesis focuses on the arithmetic circuits that are de!ned over

binary extension !elds only. The underlying theory presented in this thesis can be

extended over non binary !elds and their extensions. For completeness, various faults,

their occurrences and various possible attacks on the GF arithmetic circuits are also

explained brie y for completeness in this chapter. However, this thesis mainly focuses

on fault tolerant schemes for mitigating errors or faults resulting in single or multiple

bit errors at the output.

Chapter 3 summarizes the state of the art fault tolerant architectures that are avail-

able in literature. In this chapter various error detection and correction schemes that

are closely related to this thesis are critical reviewed and reported. The main focus of

this chapter is on error detection schemes such as concurrent Error Detection (CED)

and other fault tolerant architectures mainly over the Galois Fields and other digital

circuits. The GF arithmetic architectures explained in this chapter includes bit-parallel

and digit serial arithmetic circuits de!ned over various basis of binary !elds. For

completeness, some of the fault tolerant techniques for memory designs are also re-

viewed in this chapter. Finally, the baseline research which was carried out based

on the Reed-Solomon codes, initiated the research towards other novel multiple error

correcting techniques are brie y explained in this chapter. A part of this thesis ap-
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peared in the Proceedings of the IEEE Int. Symposium on Electronic System Design

(ISED�2010),Bhubaneswar, India [13].

A novel multiple error correction architecture based on t-error correcting BCH

codes is proposed in Chapter 4. This architecture is developed to detect and correct

multiple bit errors at the output in high speed applications where area overhead is

not the prime concern. The !rst part of this chapter presents the fundamental the-

ory of classical BCH code with a design example. A closed form equation for par-

ity generation and syndrome computation is derived. The second part of this chapter

presents the extended version of the multiple error correction scheme to a dynamically

error correctable architecture in order to reduce the unwanted delay from the correc-

tion block of the architecture in the absence of an error. Finally, the last part of this

chapter reports the experimental analysis and results of the proposed architecture over

GF multiplier test bench circuits of various complexities. Partial results presented in

this chapter have appeared in peer reviewed journal article and conferences: Interna-

tional Journal of Electronics (Open Access MDPI), ISSN 2079-929 [14], In Proceed-

ings of the IEEE/ACM Int. Symposium Quality Electronic Design (ISQED�2011),

Santa Clara, USA, March 2011 [10] and In Proceedings of the 20th European Confer-

ence on Circuit Theory and Design, ECCTD2011, Linkoepoing, Sweden, August 2011

[15]. The design techniques presented in this chapter are also patent pending (Patent

No. 1114831.9. Filed on 26 August, 2011).

In Chapter 5, a novel low complexity cross parity code, highly suitable for hardware

implementations, is proposed for multiple error correction. As opposed to the design

architecture proposed in Chapter 4, the Cross parity based techniques are well suited

for low power and area constrained applications. The motivation of this technique is

to correct as many multiple error patterns, containing single and multiple errors, as

possible, while keeping the area and power overhead as low as possible. This chapter

also explains the design techniques in details with a design example. The performance

evaluation to predict the fault coverage is done with fault analysis and mathematical

bounds on the minimum and maximum number of error patterns this technique can

detect/correct are also presented. Results presented in this thesis have appeared in

Proceedings of the IEEE Int. Symposium Quality Electronic Design (ISQED�2012),

Santa Clara, USA, March 2012 [16] also submitted to the journal IEEE Trans. on

Very Large Scale Integrated Systems (under review) in June 2012. The architecture is
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also patent pending in application M. Poolakkaparambil, A. Jabir, J. Mathew, and D.

Pradhan. Cross parity based error tolerant electronic circuit design. In US Patent No.

61/608,694. Filed on 9 March, 2012.

The possible CMOS replacement technologies and effect of faults over the Emerg-

ing technologies are evaluated in Chapter 6. Due to further reduction in feature size,

such emerging technologies are more vulnerable to manufacturing faults and attacks

that create bit  ips. For feasibility check of conventional fault tolerant techniques over

these fairly new technologies, this chapter investigates the Hamming code based con-

current error detection scheme over Carbon Nano Tube Field Effect Transistors (CNT-

FET) and Quantum Cellular Automata (QCA) based emerging technologies. The area,

power, and delay overheads of these emerging technologies in comparison with CMOS

circuits are analyzed in this chapter. Results presented in this chapter are appeared in

the peer reviewed conferences, M. Poolakkaparambil, J. Mathew, and A. Jabir. Fault

Resilient Galois Field Multiplier Design in Emerging Technologies. In Proc. Int. Conf.

on Eco-friendly Comp. and Comm. Systems, ICECCS�2012 (Springer Lecture Notes

in Computer Science (LNCS)), India, August 2012 [17] and M. Poolakkaparambil,

J. Mathew, A. Jabir, and S. Mohanty. Concurrent Error Detection Over Binary Ga-

lois Fields in CNTFET and QCA technologies. In Proc. IEEE Int. Symp. on VLSI

(ISVLSI�2012), Texas, USA, August 2012 [18].

Finally Chapter 7 discuss the conclusion of this thesis and provide insights to the

possible future extension of this research thesis. Even though both CMOS and other

emerging technologies such as QCA and CNTFETs are prone to faults, the sources of

fault may not be the same. For example, in QCA one of the possible fault sources can

be due to the displacement of the QCA cells creating unwanted inversion hence the bit

 ip in logic. Similarly in CNTFETs, the errors may vary due to the different physical

and chemical properties on carbon nano tube in comparison with the poly silicon gate

in CMOS. Hence, new methodologies at manufacturing level and circuit level may be

developed towards alleviating such imperfections and there by the resulting faults.
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Chapter 2

Finite Field Arithmetic Circuits and

Factors Affecting their Reliability

2.1 Introduction

Finite Fields or Galois Fields (GF) !nd applications mainly in error correcting codes

and cryptography. Generally the cryptographic algorithms are implemented in soft-

ware domain and they are executed using a general purpose processor. However, re-

quirements for low power, low area, and high speed computational units in applications

like RFID and smart cards gave rise to the need for application speci!c cryptography

embedded processors. Such processors mainly constitute arithmetic units designed

over GF for faster and ef!cient computation. In particular, public key cryptographic

algorithms such as the Elliptic Curve Cryptography (ECC) constitutes several addition,

multiplication, and inversion stages over GF. Hence this chapter !rstly introduces !nite

!eld algebra, various operations over them, and their equivalent hardware implementa-

tions. The proofs for the standard theorems used in this thesis are from [19; 20; 21]. In

addition, various notions of faults and attacks over VLSI structures are also presented

in this chapter for better understanding of hardware based attacks and other common

sources of faults. The general attacks against crypto-hardware and other vlsi hardware

circuits are explained for completeness of the thesis. However, the contributions of

this thesis is focused on tolerance against faults and attacks that mainly manipulate the

logic function of the circuit.
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2.2 Groups, Rings, and Fields

2.2 Groups, Rings, and Fields

Algebra in general can be considered as operations over a set of elements with unique

properties. Depending on the characteristics of these unique operations and the prop-

erties of these sets, the algebras are classi!ed into Groups, Rings, and Fields.

Groups

De nition 1 A set of elements G is said to be a group if a binary operation ∗ is de ned

over the set elements and they satisfy the following axioms,

1. Associativity: A ∗ (B ∗ C) = (A ∗ B)∗ C, ∀ A,B,C ∈ G.

2. Commutativity: A ∗ B = B ∗ A, ∀ A,B ∈ G.

3. Inverse: For any non zero element A ∈ G, there exists another element A−1,

called the inverse of A, such that A ∗ A−1 = A−1 ∗ A = 1.

4. Unity: There exists an identity element 1 such that, A ∗ 1 = 1 ∗ A = A, ∀ A ∈ G.

Rings

De nition 2 A set of elements R is said to be a ring if two binary operations +, ∗ are

de ned over them and they satisfy the following axioms,

1. Associativity: A ∗ (B ∗ C) = (A ∗ B)∗ C, ∀ A,B,C ∈ R.

2. Commutativity: A ∗ B = B ∗ A, ∀ A,B ∈ R.

3. Distributivity: A ∗ (B + C) = (A ∗ B) + (A ∗ C),

4. Multiplicative Identity: There exists and identity element 1 for ∗ operation such

that, A ∗ 1 = 1 ∗ A = A, ∀ A ∈ R.

5. Additive Identity: There exists an identity element 0 for + operation such that, A

+ 0 = 0 + A = A, ∀ A ∈ R.

10
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Fields

De nition 3 A set of elements F is said to be a Field if two binary operations +, ∗ are

de ned over them and they satisfy the following axioms,

1. Multiplicative Identity: There exists and identity element 1 for ∗ operation such

that, A ∗ 1 = 1 ∗ A = A, ∀ A ∈ F.

2. Additive Identity: There exists and identity element 0 for + operation such that,

A + 0 = 0 + A = A, ∀ A ∈ F.

3. If F forms a commutative ring.

4. Inverse: For any non zero element A ∈ F, there exists another element A−1,

called as the inverse of A, such that A ∗ A−1 = A−1 ∗ A = 1.

Properties of Fields The !elds have certain properties and distinct characteristics

that makes them unique. The number of elements in a !eld is known as the order

of the !eld. However, to ef!ciently de!ne the cryptographic algorithms and perform

their faster operations, the !elds must have a !nite set of elements, in which case

they are known as !nite !elds. The operations over the !nite !elds, e.g. addition,

multiplication, division, and inversion, are all closed, i.e. the results of the operations

are also contained in the !nite !elds. Hence, the set is called as a closed set over these

operations.

A set forms a !nite !eld F having order n, where n = pm, if and only if p is prime

number and is known as the characteristics of the !eld. If m = 1, then the !eld is

called the prime !eld. For anym> 1, the !eld is known as an extension !eld. It is noted

that for hardware implementation with binary encoding, the !elds used are with order

2m also known as the binary extension !elds and is denoted by GF(2m). This is simply

because all arithmetic over binary extension !elds can be realized using only the AND-

XOR logic. Also another advantage is that arithmetic operations overGF(2m) is carry-

free and would help to perform the cryptographic application faster and ef!ciently over

binary extension domain compared to prime domain. This characteristics of binary

!elds is very attractive when designing low power, low end application speci!c crypto-

processors. As this thesis focuses mainly on the binary extension !elds, the rest of this

thesis is constrained to operations over GF(2m).
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2.2.1 Polynomials over Fields

The classical way of representing !nite !elds over GF(2m) is using monic irreducible

polynomials of the form P(x) = xm−1+∑m−2
i=0 pi.x

i, where pi ∈ GF(2). Other than the

elements 0 and 1, the !eld consists of elements that are multiples of the element α ,

also known as the primitive element, where α is the root of P(x), i.e. P(α) = 0. P(x)

is also known as the primitive polynomial of the !eld. Hence, the binary extension

!eld GF(2m) is generated as powers of the primitive element α . The resulting set of

elements of the !eld is {1,α,α2,α3, ...,αm−1}, which is also known as the Polyno-

mial Basis (PB) or the Standard Basis. To make sure that the operations over the !eld

are !nite, any element in the !eld having power >m−1 is reduced to an element with

power < m−1 by using the primitive polynomial P(x). Any element A ∈ GF(2m) can

be represented using the elements in PB. The elements A, B where, A,B ∈ GF(2m) is

represented in PB as, A(x) = ∑m−1
i=0 aix

i, and B(x) = ∑m−1
i=0 bix

i, , where ai, bi ∈ GF(2).

Example 1 Let us consider an example of GF(24). Let P(x)=x4+ x3+1 be the prim-

itive polynomial with α being the primitive root. The  eld GF(24) has 16 elements

including the additive and multiplicative identities. The generated elements of the  eld

in both polynomial form and bit vector form are given in Table 2.1.

It is noted that, any element having power greater than α3 is reduced to an element

with power less than or equal to 3 with the primitive polynomial. It is possible that

multiple primitive polynomial may exist for a  eld over GF(2m). The properties of the

 eld, especially the complexity of the hardware implementations of its basic operations,

very much depend upon the primitive polynomial that is chosen. For example for the

 eld GF(24), x4 + x+ 1 is another possible primitive polynomial for generating the

 eld. The primitive polynomial x4+x+1 generates completely different  eld elements.

Finite Field Arithmetic over Polynomial Basis Let GF(2) represents the base !eld

and GF(2m)represents the binary extension !eld [22]. Then, GF(2m)forms a !nite

!eld that contains exactly 2m−1 elements. Any pair of elements A, B ∈ GF(2m)can be

represented in polynomial form as,

A(x) =
m−1

∑
i=0

aix
i. (2.1)
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Table 2.1: GF(24) elements in PB with P(x) = x4+ x3+1.

GF(24) elements Polynomial Representation Bit Vector

0 0 0000

1 1 0001

α α 0010

α2 α2 0100

α3 α3 1000

α4 α3+1 1001

α5 α3+α +1 1011

α6 α3+α2+α +1 1111

α7 α2+α +1 0111

α8 α3+α2+α 1110

α9 α2+1 0101

α10 α3+α 1010

α11 α3+α2+1 1101

α12 α +1 0011

α13 α2+α 0110

α14 α3+α2 1100
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B(x) =
m−1

∑
i=0

bix
i. (2.2)

Addition over Polynomial Basis Addition over GF(2m) is a simple and straightfor-

ward operation. The addition of two elements A and B ∈ GF(2m) is just the XOR

operation of the individual bits of A and B respectively. This can be shown as,

A(x)+B(x) mod P(x) =
m−1

∑
i=0

(ai +bi)x
i. (2.3)

Multiplication over Polynomial Basis Unlike addition, multiplication over PB is

considered to be a complex operation in GF algebra [23]. The majority of the cryp-

tographic algorithms constitute several GF addition and multiplication stages. Due to

the complexity of GF multipliers, several multiplication algorithms and their equiva-

lent hardware implementations have been attempted by researchers across the globe

[24; 25; 26; 27].

The classical approach of GF multiplication of two elements A(x), B(x) ∈ GF(2m)

is represented as,

C(x) = A(x) ·B(x) mod P(x). (2.4)

where, P(x) is the primitive polynomial and C(x) is the multiplication result. This is

also known as the two-stepmultiplication. In step 1, both multiplicands A(x) and B(x)

having maximum powers m− 1 are multiplied producing an intermediate multiplica-

tion result I(x) having the maximum power of 2m− 2. In step 2, the intermediate

product I(x) is reduced with the primitive polynomial P(x) thus yielding the !nal re-

duced productC(x) having power m−1.

The classical PB multiplication could be better explained with the same !eld over

GF(24) considered in Example 1.

Example 2 Let A(x) and B(x) be the two multiplicands ∈ GF(24). Also let P(x) =

x4+ x3+1 be the primitive polynomial with α being the primitive root. Then,
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A(x) =
3

∑
i=0

aix
i (2.5)

= a0+a1x+a2x
2+a3x

3.

Similarly, B(x) can be represented as,

B(x) =
3

∑
i=0

bix
i (2.6)

= b0+b1x+b2x
2+b3x

3.

The intermediate product term I(x) is given by,

I(x) =

(

3

∑
i=0

aix
i

)(

3

∑
i=0

bix
i

)

= a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x
2+(a0b3+a1b2+a2b1+a3b0)x

3

+(a1b3+a2b2+a3b0)x
4+(a2b3+a3b2)x

5+a3b3x
6 (2.7)

To get the  nal reduced multiplication result from Equation 2.7, a modular reduc-

tion operation should be performed with the primitive polynomial P(x)=x4 + x3 + 1.

Hence, all the terms in Equation 2.7 having power greater than 3 will be reduced as

given in Equation 2.4 and Table 2.1. the  nal product will be,

C(x) = a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x
2

+ (a0b3+a1b2+a2b1+a3b0)x
3

+ (a1b3+a2b2+a3b0)(x
3+1)+(a2b3+a3b2)(x

3+ x+1)

+ a3b3(x
3+ x2+ x+1) (2.8)

= (a0b0+a1b3+a2b2+a3b0+a2b3+a3b2)

+ (a0b1+a1b0+a2b3+a3b2+a3b3)x

+ (a0b2+a1b1+a2b0+a3b3)x
2

+ (a0b3+a1b2+a2b1+a3b0+a1b3+a2b2

+ a3b0+a2b3+a3b2+a3b3)x
3 (2.9)
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Matrix Formulation of Polynomial Basis Multiplication It was Mastrovito [26]

who simpli ed the classical PB multiplication into a much simpler matrix form. In

the Mastrovito algorithm, the  nite  eld polynomial multiplication and the modular

reduction is combined into a single step, known as the Mastrovito product matrix. The

generic Mastrovito algorithm is given by,

[C] = [M] · [B] (2.10)

where, [C] is the PB multiplication output, [M] is the Mastrovito multiplication matrix,

and [B] is the multiplicand. The Mastrovito matrix is obtained from the multiplicand

matrix [A] and the irreducible primitive polynomial matrix [P] [28].

There are several extended Mastrovito algorithms proposed to further simplify the

matrix based multiplication. The most popular one is by Hasan. et. al [29] in which

a more generalized version of the Mastrovito algorithm has been proposed for bit par-

allel architectures characterized over special primitive polynomials such as trinomials,

Equally Spaced Polynomials (ESP) and certain classes of pentanomials. The general-

ized Mastrovito algorithm is given in the following,

Let A and B be the two multiplicands with A = [a0,a1,a2, . . . ,am−1] and B =

[b0,b1,b2, . . . ,bm−1]. The ais and bis, where 0 ≤ i ≤ m−1, are the coordinates of

A and B respectively. The formulation is based on three matrices namely, an m×m

reduction matrix Q, a m×m lower triangular matrix L and a (m−1)×m upper trian-

gular matrixU . The matrix based multiplication is formulated as an inner product (IP)

network with two vector outputs ~d and~e respectively, where,

~d = L~b (2.11)

~e = U~b, (2.12)

The L andU matrices can be represented as,

L =



















a0 0 0 0 · · · 0

a1 a0 0 0 · · · 0

a2 a1 a0 0 · · · 0
...

. . .
. . .

...

am−2 am−3 · · · a1 a0 0

am−1 am−2 · · · a2 a1 a0



















(2.13)
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U =















0 am−1 am−2 · · · a2 a1
0 0 am−1 · · · a3 a2
...

. . .
. . .

...

0 0 · · · 0 · · · am−1 am−2
0 0 · · · 0 · · · 0 am−1















(2.14)

Also,~b= [b0,b1,b2, . . . ,bm−1]
T , a column vector of the coordinates of multiplicand

B, where xT represents the x transpose. The matrices L and U.

The multiplication outputs are given by the equation

~c = ~d+QT~e, (2.15)

where the matrix Q, known as the reduction matrix, is dependent on the irreducible

polynomial. The vector~c = [c0,c1,c2, . . . ,cm−1]
T represents the multiplication result.

The remaining chapters in this thesis use the bit parallel multiplier structures as a

design examples in order to test the proposed fault tolerant architectures. Hence, the

bit parallel PB matrix multiplication scheme, based on the example in Section 2.2.1, is

explained below for completeness.

Example 3 Let us consider Equation 2.7. Let ∑m−1
i=0 di represent the coef cient of the

 rst m−1 terms. Similarly, let ∑2m−1
i=m ei represent the coef cient of the rest of the terms

having power from m to 2m−1 of the multiplication inner products before the modular

reduction. Hence, Equation 2.7 can be rewritten as,

I(x) = d0+d1x+d2x
2+d3x

3

+e0x
4+ e1x

5+ e2x
6 (2.16)

From the primitive polynomial P(x) = x4+x3+1, the terms having powers greater

than m− 1 can be calculated. Hence the term x4 = x3 + 1, x5 = x(x4) = x(x3 + 1)

= x4 + x = x3 + x+ 1, x6 = x(x5) = x(x3 + x+ 1) = x4 + x2 + x = x3 + 1+ x2 + x =

x3 + x2 + x+ 1. Substituting these higher order terms back into Equation 2.16 and

further simpli ed to obtain the equation C(x) = I(x) mod P(x),

C(x) = (d0+ e0+ e1+ e2)+(d1+ e1+ e2)x+(e2+d2)x
2

+(d3+ e0+ e1+ e2)x
3 (2.17)
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The Equation 2.17 can be represented in terms of a matrix multiplication of the

form given in Equation 2.15 as shown below,
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(2.18)

which is of the form given in the Equation 2.15.

The equivalent VLSI circuit and its more generic form are shown in Fig. 2.1.

2.2.2 Finite Fields over Normal Basis

Similar to the PB,  nite  elds can be constructed over other basis, for example, the

Normal Basis (NB). For every polynomial basis over GF(2m), there exist a NB for ev-

ery integer m. Any element β ∈ GF(2m)form a NB of the form {β ,β 21,β 22, ...,β 2m−1}

over GF(2m), where β is known as the NB element or the constructor element of the

NB similar to the element α for the PB. In fact, the element β is always a power of

the element α over the NB. One important fact is that all the elements in the NB are

linearly independent, i.e. the sum of all elements in the NB yields the value 1.

Any element A ∈ GF(2m) can be represented in the NB as,

A(x) =
m−1

∑
i=0

aiβ
2i . (2.19)

Properties of NB The  nite  elds de ned over the NB  nds critical applications

in cryptography due to several reasons. One of the main reason is that a squaring

operation in the NB is just a cyclic left shift operation. The shift operation in hardware

is very simple and hence considered to be of zero cost. On the other hand, squaring is

complex in the PB.

Let A ∈ GF(2m) represent an element of the NB, where A is given by,

A = a0β +a1β
21 +a2β

22 + ...+am−1β
2m−1 (2.20)
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Figure 2.1: GF(24) multiplier

then the square of A is given by,

A2 = am−1β +a0β
21 +a1β

22 + ...+am−2β
2m−1 (2.21)

Addition of elements in NB is just simple XOR operation between the individual

bits as in the case of PB.
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Multiplication over NB Although the squaring operation is comparatively simple in

NB, construction of the NB is not straight forward as in case of the PB. Although there

exists a NB for every PB over GF(2m),  nding the right root α for which the NB exist

is a dif cult task. This means that one has to  nd the right power of α for which all

the elements in NB are linearly independent.

Let A,B∈GF(2m) denote two elements in the NB. Then the multiplication product

C is given by,

C(x) =
m−1

∑
i=0

aiβ
2i
m−1

∑
j=0

b jβ
2 j mod P(x) (2.22)

Let us consider the design example of GF(24) that is considered in Example 2.

With primitive polynomial P(x) = x4 + x3 + 1 and α being its primitive root, the

elements {β ,β 21,β 22, ...,β 2m−1} form a NB with α = β . Hence, the NB elements

A,B ∈GF(24) can be represented as, A = a0β +a1β
2+a2β

22 +a3β
23 and B = b0β +

b1β
2+b2β

22 +b3β
23 . The multiplication productC is given by,

C(x) = (a0β +a1β
2+a2β

22 +a3β 23)(b0β +b1β
2+b2β

22 +b3β
23)

= (a2b3+a3b2)β
12+(a1b3+a3b1)β

10

+ (a2b2)β
8+(a2b1+a1b2)β

6

+ (a2b0+a0b2)β
5+(a1b1)β

4+(a0b1+a1b0)β
3

+ (a0b0)β
2+(a3b3)β (2.23)

The elements {β 3,β 5,β 6,β 9,β 10,β 12} can be found from the primitive polynomi-

als as, β 12 = (β 2+β 4+β 8), β 10 = (β 2+β 8), β 9 = (β +β 4+β 8), β 6 = (β +β 2+β 4),

β 5 = (β + β 4), β 3 = (β + β 2 + β 8). Substituting these values in Equation 2.23 gives

the four product bits ofC as given below,

C(x) = (a2b2+a3b2+a2b3+a3b1+a1b3+a3b0+a0b3+a1b0+a0b1)β

+ (a1b1+a2b1+a1b2+a2b0+a0b2+a2b3+a3b2+a0b3+a3b0)β
2

+ (a0b0+a1b0+a0b1+a1b3+a3b1+a1b0+a2b1+a3b2+a2b3)β
4

+ (a3b3+a0b3+a3b0+a0b2+a2b0+a0b3+a1b0+a2b2+a1b2)β
8
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Here, each product bit has a mutual relationship between them. The higher order

bits are just the cyclic shift operations of the lower order bits. This property was  rst

observed by Massey-Omura and hence this style of multiplication is known as Massey-

Omura multiplication [30]. Since then, several optimized multiplications over NB have

been proposed [31]. Similar to the PBmultiplication, a matrix multiplication algorithm

has been proposed in [28]. It is also noted that for certain powers of α ∈ GF(2), the

resulting NB is optimized. Such NB are known as the Gaussian NB [31].

Close observations of these multiplication structures show that, these are highly

vulnerable to faults that can result in multiple bit errors at the outputs. This is due

to their huge area compared to other functional blocks and internal node fan outs.

The following sections discuss the main sources of faults in VLSI circuits (including

crypto-hardware circuits those are the main targets of hardware attacks), some of which

can be misused for malicious attacks on systems.

2.3 Faults in Integrated Circuits

Faults are the fundamental cause leading to the failure of any system in general. In

case of an integrated circuit, including the GF ICs, faults often give rise to one or more

errors and the errors may or may not result in the temporal or permanent failure of the

device or system that the integrated circuit is a part of. The terms faults, errors, and

failures are often used in the context of fault-tolerant computing as these are dependent

on one another and decides the reliability of the the device under consideration. This

section hence throw limelight on the various faults and other factors affects the reli-

ability of GF ICs and the VLSI circuits in general [32]. The cryptographic hardware

rely heavily on one or more highly complex multiplier circuits. As such, the multiplier

circuits are often the most complex units in a crypto-processor and tend to occupy the

largest chip area [2]. Hence they are undoubtedly a key target of an attacker.

More elaborately the technical terms Fault, Error, Failure and the causes of these

are explained in the following parts of this chapter,

Fault The term fault refers to any imperfection caused by any hardware or software

component of a system due to a physical damage (defects) or similar factors. The fault

can either be permanent or temporary.
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Error Error is the aftermath of the fault in a system. An erroneous system produces

incorrect or infeasible results as compared to the expected results as a result of the

fault. The error can be either permanent error or temporary depending up on whether

the fault is permanent or temporary.

Failure A hardware failure happens when it provides incorrect output due to a tem-

porary or a permanent fault.

Depending upon the nature and occurrence of these fault in GF arithmetic circuits,

they are divided mainly into nonmalicious and malicious faults [2]. The properties of

these faults and their subdivisions are explained brie!y in the following sections of this

chapter.

2.3.1 Nonmalicious Faults

Nonmalicious faults are naturally occurring faults or faults which are not intentional

and that affects the reliability of the GF ICs and the digital VLSI circuits in general.

The effects of such faults on chip wafer have a predictable behavior which can be mod-

eled. The main causes of these are faults from manufacturing process variations of the

nano scale VLSI circuits (faults happening during various abstractions of fabrication

steps) as well as the noisy environment these devices are deployed in.

Manufacturing Faults Manufacturing faults are the ones that may cause permanent

faults in VLSI circuits during the fabrication. Today�s manufacturing technology is far

more complex than it was a decade ago. The complicated manufacturing process con-

sists of many fabrication steps. Various chemicals are used during the fabrication steps

of the ICs and they need to be etched away or cleaned away completely. However, in

most cases many of the chemical particles (Alien particles) will remain on the silicon

surface causing foreign particle contamination with the metallic wires. Such contami-

nation may contribute unwanted open or short circuits between the nano metallic wires

connecting devices within the circuits. These can result in the, so called, stuck-at faults

or stuck-open faults. Both stuck-at and stuck-open faults are permanent in nature and

hence can cause the device to perform erroneously [33].
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(a) Open circuit fault: example 1.

(b) Open circuit fault: example 2.

Figure 2.2: Stuck open faults due to alien particle contamination [33].

It is also possible that the materials used in the IC manufacturing can change their

properties due to many reasons. For example, corrosion can cause the material to

corrode away and cause permanent stuck-open faults to appear on a particular metal

line. Also a weak deposition of metallic layer can result in electron migration when

high current passes through it for prolonged periods of time, causing stuck-open faults.

Though the process variation during manufacturing is uniform across the wafer,

faults concentrating on a particular spot on the wafer is dif cult to model on unpre-

dictable during manufacturing. Hence, these faults are also called as spot defects.

Fig. 2.2(a) and Fig. 2.2(b) refer to the stuck-open (open circuit) faults resulting

from deposition of foreign particles during the fabrication process. Similarly, Fig. 2.3(a)

and Fig. 2.3(b) refers to the closed circuit or stuck-at faults. Open circuit fault due to

the corrosion of metallic wire is shown in Fig. 2.4.
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(a) Short circuit fault: example 1.

(b) Short circuit fault: example 2.

Figure 2.3: Stuck at faults due to alien particle contamination [33].

Figure 2.4: Stuck open fault due to metallic corrosion [33]

Faults from Operating Environment The faults resulting from noisy operating en-

vironment are random and temporal in nature. These faults are also known as transient
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faults and the error caused by these faults are generally known as soft errors. Evolution

of complex, modern VLSI technology, and high integration density are the major cause

of the transient faults. As the integration density increases, the nano devices become

more susceptible towards the transient faults. The soft errors are the results of high

energy particle strikes on the integrated circuit when they are deployed in radiation

prone environments such as in space applications [3].

When high energy particles, such as alpha, gamma, and other cosmic rays, strike on

the silicon surfaces of an IC, it can produce an ionization current close to the depletion

region of the transistor causing the transient charge carriers to be collected at the gate

region. This phenomenon will produce unwanted glitches and hence can give rise to

soft (temporal) errors. The soft errors caused by such radiation induced current pulses

are often known as a Single Event Upset (SEU) or Multiple Event Upsets (MEU).

SEUs and MEUs are a major concern in memory circuits, integrated circuits deployed

in space, and other avionics applications, and in radio active plants [34].

Until the early 21st century, the issue of soft errors from radiation and collected

charged particles by the nano devices was considered to be more of a theoretical pos-

sibility than an actual practical issue. However, in 2000, SUN reported their ULTRA-

SPARC II work stations malfunctioning due to the radiation induced soft errors. Ini-

tially, the causes of the problem were unclear, but eventually it was discovered that the

root cause of the issue was from the IBM memory blocks in the workstations, which

were susceptible to radiation [35]. Hence, it is evident that the SEUs� and MEU�s are

serious issues that need addressing at the design stages of today�s highly integrated

circuits to enhance their reliability.

2.3.2 Malicious Faults

Inspired by the nonmalicious faults, researchers have reverse engineered the effects of

transient faults in VLSI circuits and then applied this to test the amount of information

that can be decoded from the devices under faulty conditions. The research  eld fo-

cuses intruding and gaining information maliciously from dedicated GF VLSI circuits

are commonly known as crypt analysis. Cryptanalysis generally uses various device

channels and other intrusion techniques to infer information from a hardware device
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know as the side channel attacks. As the crypto-GF circuits are mainly used in secu-

rity applications, they always prove to be the main focus of such attacks. Many such

attacks are reported in [36; 37; 38; 39].

As these researches suggest, in critical applications such as cryptography the faulty

operations can be carefully analyzed to reveal the secret information such as the secret

keys and the Intellectual Property (IP) of the chip. The intentional intrusion to reveal

such secret information is mainly classi ed into two major categories, namely, invasive

and non-invasive attacks as discussed below.

2.3.2.1 Invasive Attacks

The invasive attacks on VLSI chips are mainly done by physically breaking into the

chip. This implies that the attacker will physically damage the packaging of the chip

to expose the silicon die in order to obtain the secret information. Hence, the invasive

attacks usually need sophisticated and expensive laboratory set up. The two primary

forms of invasive attacks are radiation induced attacks using photo probing and reverse

engineering based on the optical imaging of the chip�s internal for IP theft [40].

Radiation Induced Attacks Radiation induced faults are primary type of invasive

attacks. In this, the attacker physically tampers the chip using chemicals and other

methods to expose the silicon die [40]. Fig. 2.5 shows example pictures of chip dies

exposed by various means [40].

Once the die is exposed, the attacker can impart controlled radiation beams or light

beams using a radiation probing mechanism in a laboratory environment. An example

setup of such a mechanism is as shown in Fig. 2.6.

Other high energy particles such as alpha, gamma, and other cosmic rays under

controlled laboratory set ups can also used be to inject temporal radiation based faults

at selected critical or sensitive parts of a chip. The attacker then records the response

of the chip under test to analyze the erroneous data. With the help of sophisticated

instruments, one can gather enough information to break the security aspects of a chips

[40].
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Figure 2.5: Integrated chips being exposed by various means [40].

Figure 2.6: Laser probing setup to induce transient error [40].
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IP Theft by Optical Imaging A certain class of attackers are more interested in

the IP of the chips rather than the information they process. Gathering the IP of a

particular IC may enable them to clone the IP and reproduce the chip violating the

copy protection rules. Such events are a major threat to big industries, which are

manufacturing game consoles, cell phones, high performance processors, etc.

Figure 2.7: Optical imaging and reverse engineering [41].

Fig. 2.7 shows an example picture of a chip whose internals are magni ed under

an electron microscope. From such optical imaging techniques, the attacker can eas-
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ily obtain the internal structure of the IC and perform a reverse engineering step to

reconstruct the whole IC and clone the IP.

2.3.2.2 Non-invasive Attacks

Non-invasive attacks are the ones in which the attacker extracts the required details

from the integrated chip without physically tampering. In order to achieve this target,

the hacker makes use of the weaknesses in hardware implementation of the chip or

the software that runs on the hardware. These weak channels leaking information

unintentionally to the outside world are known as the side channels. The side channels

of an IC can be its power consumption while it is performing some operations, the

Electro Magnetic Flux (EMF), timing pro le of algorithms while they are executed,

sound signatures, or even the test data from scan chains meant for testing the ICs.

As compared to the invasive attacks, the non-invasive attacks uses less complicated

and less expensive equipment to analyze and decode the side channel information.

However, the decoding of the side channels may require a high degree of expertise

and this may be reduced to a certain extent using sophisticated equipments for crypt

analysis.

Differential Power Analysis There are many reported articles related to the differ-

ential power analysis based attacks on VLSI circuits, speci cally the crypto-processors

[2; 42]. The classical approach of measuring power pro le is to measure the current

consumption by the hardware while performing various arithmetic operations. The

power dissipated for various operations are different from one another they are mea-

sured by inserting a resistance across the power or ground pin to get the equivalent

current. This recorded data is then statistically analysed to get the secret information

that the attacker is looking for [43].

Fig. 2.8 shows the current consumption of a processor during various execution

stages of a crypto-smart-card-processor. With proper equipments, such a pro le could

be decoded for other arithmetic operations as well. Thus by recognizing the power

pro le for logic �0� and logic �1�, the scheme could be extended to understand the

power pro le of a combination of bits and hence the secret data that the hardware

processes.
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Figure 2.8: Basic example of differential power analysis [44].

Timing Attacks Similar to the power attacks, the timing signature of various algo-

rithms running on a cryptography hardware could be analyzed to predict the data that

the hardware is processing. In the case of cryptography hardware, the assumptions

made by an attacker can be narrowed down further as the application speci c crypto-

hardware implements a particular cryptography algorithm [44].

Figure 2.9: Basic example of differential timing attack [44].

Fig. 2.9 shows an example timing pro le of an algorithm [44]. By accumulat-
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ing information over various runs of the algorithm, one can gather major information

about the secret data, passwords, or even the secret public key of a particular crypto-

algorithm.

Electromagnetic Flux Similar to the timing and differential power spectrums, the

EMF around a cryptography hardware can also leak information in terms of electro

magnetic signals. There is little reported reported research on this area, such as in [45;

46], which successfully reported attacks based on EMF. It is observed that the current

consumptions by the CMOS transistor devices are data dependent. As the current

!ows through the nano CMOS switches, it produces EMF. The intensity of these !ux

depends on the switching frequency. This implies that the current !ow essentially

depends on the data the hardware is processing. Thus such data dependability EMF of

the nano devices can be exploited to leak information while they are in operation. An

example setup of the EMF based attack is shown in Fig. 2.10 [45].

Figure 2.10: Attack based on electro-magnetic !ux [45].

Scan Chain Based Attack Testability is one of the most vital features of modern

VLSI structures. A scan chain is integrated in almost all hardware present today. The
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primary requirement of the scan chain is to provide full external access (controllability

and observability) to all the modules within the hardware for testability against perma-

nent faults, such as stuck-at and stuck-open faults [47; 48]. However, this additional

feature could be misused for malicious gain in leaking out information from the hard-

ware. The application speci c processor for example could be fed with fault based test

vector sets and the response from the hardware could be observed to understand the

internals of the hardware. This has been under intense investigation for a number of

years and there are many published researches, e.g. in [49].

2.3.3 Hardware Trojans

Due to the increasing complexities in the fabrication process of the ICs, more and

more VLSI design industries are relying on off shore third party fabrication foundries.

Nowadays, none of the smaller industries, apart from a hand full of major industries,

have in house fabrication facilities owing to the enormous cost, complexities, and ef-

forts involved. As a result, after the fab-less design stages, i.e. from the tape out stage

of a design till it is manufactured, the designer has very little control over the rest of

the design cycle. In such scenarios, it is possible that someone with malicious inten-

sions to alter the actual design by adding or modifying the circuits in a very small and

potentially undetectable manner in order to leak out information to the outside world

without altering the basic functionality of the chip. Such additional circuitry added

for malicious gain is known as hardware Trojans [36; 50]. Depending upon the way

the additional circuitry (Trojan) is activated, there are several ways one can design

hardware trojans [36]. Having access to the whole design, it is not hard for a third

party to precisely insert an additional circuit that will not be activated in normal test-

ing phase of the chip. This makes such Trojans very dif cult to detect. The major

classi cations of hardware Trojans include circuits that introduce false logic into the

actual combinational logic when they are active, and circuitry that leaks information

over side channels such as wireless channel without affecting the actual functionality

of the chip [36; 51].
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2.4 Summary

This chapter brie!y explains the basics of  nite  eld and the arithmetic operations over

them. Further chapters in this thesis consider arithmetic circuits over GF(2m), hence

the basics of various basis such as polynomial basis and normal basis are brie!y ex-

plained. As  nite  eld circuits are mainly used in cryptographic application, reliability

of these circuits by various means of faults and attacks are brie!y explained in this

chapter. The main sources of faults and attacks are briefed out for completeness of the

thesis. However, further chapters of this thesis mainly focus on faults and attacks that

manipulate the logic functionality of the device.
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Chapter 3

Literature Review and Baseline

Research

3.1 Introduction

The range of wide varieties of application speci c VLSI hardware in modern day com-

puting include mobile and wireless networks, banking sectors, transportation, space

applications, commercial electronics equipments and defence applications. Hence

fault tolerant computing system design is an inevitable  eld in the VLSI hardware

industry as their unavailability at a particular time due to an error or a fault can be

catastrophic. Chapter 2 brie!y explains the major sources of faults and attacks in VLSI

circuits. However this thesis is mainly constrained to such attacks where the fault may

manipulate the logic function of the system hence giving invalid or erroneous results

at the output. It has been widely reported that attacks on VLSI hardware apart from

permanent stuck-at and stuck-open faults are mainly seen in cryptography related ap-

plications. This chapter hence conducts a literature survey of the most important fault

tolerant schemes in  nite  eld circuits and few of the other VLSI structures closely

related to the techniques presented in this thesis.
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3.2 Fault Resilience

As discussed in Chapter 2, the fault sources are vast and have unique properties. Even

though they differ in properties and the way of their occurrence, more often the end

effect is the same. In order to  nd a way of mitigating such faults or attacks, researches

have been carried out till today. Due to the divergent behavior of the faults and due

to the dissimilarities in architecture of the digital circuits, proposing a generic fault

tolerant scheme is quite hard. The fault tolerant architectures differ from one to an-

other depending on the nature of the faults that they deal with. Also, the fault tolerant

schemes are only an additional option to improve the reliability of the circuit. This

means, no fault tolerant schemes or architectures can guarantee 100% fault tolerance.

How ever they can tolerate the faults up to a certain extent and also make the hardware

based attack more dif cult. The requirement of fault resilient architectures in modern

crypto-VLSI circuits are well explained in [52].

Over the years, several mitigation schemes have been proposed to increase the

reliability of the digital integrated circuits. Research proves mainly two kind of circuits

are affected by faults or fault based attacks. They are memory circuits and hardware

circuits used in secure computing. The section 3.2 of this chapter hence summarise

the most relevant fault tolerant techniques reported in the public domain. This chapter

also brie!y explains the baseline research based on word error correction that has lead

to the development of other novel fault tolerant techniques explained in the following

chapters of this thesis.

3.2.1 Triple Modular Redundancy (TMR)

TMR is the most simple and commonly followed fault mitigation scheme of until to-

day. It gained popularity due to its ease of implementation. The fundamental operation

of TMR is based on hardware duplication. This means, the actual circuitry that needs

to be fault tolerant is replicated three times. A voter is then used to monitor the oper-

ation of the three identical circuits. The voter then compares the results of the circuits

at the end of the computation [53]. If two out of three circuits agree one result to be

correct, the voter stick to that as the  nal result of the circuit [54; 55; 56].

The block diagram of TMR is as shown in Fig. 3.1. Though TMR based design is

very easy to implement, it possesses a huge space overhead. Replicating the hardware
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Figure 3.1: Triple Modular Redundancy.

twice additional to the actual functional block itself would impose 200% area overhead.

In addition to the hardware replication, for a better decision making in TMR, one often

need a complex voter circuit that may take the area overhead much beyond 200%. This

is a huge drawback in application having restrictions in area and power consumption.

Another drawback of the approach is that the whole reliability of TMR depends

on the voter. Also the critical assumption made is that the error happens only in one

functional block out of three. Design complexity of the voter is also not trivial and

straightforward for better reliability.

3.2.2 Fault Tolerance by Error Detection

Error detection schemes are the most well known and widely reported method of fault

mitigation. This method is generally known as Concurrent Error Detection (CED).

In CED, the error occurrence is generally detected and !agged by extra circuitry that

36



3.2 Fault Resilience

is added to the actual functional block. This means the error occurrence is detected

during the normal operation of the actual circuit. Hence the name Concurrent Error

Detection [57; 58; 59]. Depending upon whether the error has occurred or not, the

actual computation is either stalled or continued without interruption. Once the error

!ag is active, appropriate action should be taken to mitigate the error. This is done by

rolling back and recomputing from the point that is interrupted by the error. Some CED

schemes also modify the actual structure of the circuit to incorporate error detection

features in it. However such methods are architecture dependent and hence needing a

complex modi cation when changes to the existing circuit architecture is required.

Figure 3.2: Parity based error detection.

In [60], a parity based error detection scheme is reported. This is one among many

method for error detection in digital circuits. In parity based CED, a parity predictor

circuit is attached to the actual circuit under test. The primary input is passed to the

parity predictor simultaneously as compared to the main circuit. While the device

performs its operation, the parity is generated by the parity generator circuit causing
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no extra delay. Once the computation of the main circuitry is  nished, the output is

passed to the checker to be compared with the predicted parity for the occurrence of an

error. The basic architecture of a parity based CED is as shown in Fig. 3.2. Research

presented in [27; 61] presents CED on digit serial and systolic circuit architectures.

Another CED technique is based on scaling techniques. In scaling technique, the

input to the actual functional block is scaled up by some factor and the computation

is performed. After the computation, the functional correctness of the results are per-

formed by few GF divisions to remove the scaling factor. The research reported in

[62; 63] are examples for error detection based on scaling techniques.

Time redundancy based methods are also used in detecting errors during the run-

time. In time redundancy methods, the device is initially fed with the actual operands

and  rst computation is performed. In step 2, a shifted version of the inputs are fed into

the same circuit used for computation. At the end of the computation, the results of

the second operation is shifted back and compared with the  rst computation to check

the correctness of the result. Some of the research on time redundant techniques are

reported in [64; 65; 66].

An error detection scheme presented in [6] is based on invariant relation relation-

ships of the logic under test. This method utilises logic implication checks as a method

of detecting errors in the actual circuit. However the logic implication of a circuit is

purely dependent on the circuit and hence very complicated to generalise for other

circuits. Also it is not that straight forward to derive the logic implications of a large

circuit.

Though the reported CED techniques helps us to detect multiple error occurrence,

none of these techniques have the capability of correcting them. This is the major

drawback of the CED based error tolerant techniques. The detected error has to be dealt

with a time redundant manner to eliminate the error. This is often done by using roll

back and recompute causing huge time overhead and hence affecting the performance

of the actual circuit. This is often inappropriate in applications like cryptography.

3.2.3 Fault Tolerance using Error Correction Techniques

The main drawback with errors detection schemes is that it can cause a break in the

actual computation till the detected errors are successfully mitigated. This laid the
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foundation to research in ef cient error correction schemes. Though the error correc-

tion provides a platform for ef cient computing with an increase in reliability of the

device, the cost associated with it is often high. Also various applications need various

levels of error correction capabilities. For example memory circuits are well known

areas where error correction schemes are integrated initially. This is due to the high

requirement for storing and retrieving data from memories in the presence of various

error sources. Researches reported in [67; 68] explain effects of the errors in memory

circuits and some of the methods to mitigate such errors.

It is noted that not only memory modules but also the logic circuits that are vul-

nerable to faults need to be fault resilient. Owing to this fact, researches have made

efforts to develop ef cient error correcting architectures to correct single and multiple

errors in the logic circuits.

One among the most well known approach that is widely used for error correction is

Single Error Correction and Double Error Detection (SEC/DED). The SEC/DED tech-

nique is normally based on well known Hamming codes or Low Density Parity Codes

(LDPC). In this technique, the Hamming code based parity generator is attached to

the actual functional block to predict parity from the primary input. This means the

parity is predicted in parallel with the actual functional block. Once the parity is gener-

ated, those are passed along with the actual functional block outputs to error correction

block to check and correct any single bit error. With SEC/DED, one can either detect

two bit errors or correct single bit error. The most commonly used SEC/DED error

correction technique is based on well known Hamming code or LDPC code [68; 69].

However researches reported in [37; 69] have proposed error correction schemes to

correct 2 bit errors based on a split Hamming code based technique. In split Hamming

code technique, the odd and even bit of the functional block outputs are grouped and

encoded separately using Hamming codes. Both groups are dealt separately and hence

help us to detect two bit errors and correct single bit error in each group. However this

technique can not cop with more than one bit error in a single group. This means, if

two or more bit error occurs in either odd or even group, the whole system fails.
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3.3 Baseline research

It is evident from the above discussions that there are not many multiple error cor-

recting architectures for  nite arithmetic circuits which are the fundamental building

blocks of crypto-hardware. Due to the high fan out and gate sharing structure of the

 nite  eld arithmetic circuits, error or faults affecting a critical node (a gate whose

output is shared between many other gates) may prorogate multiple bit errors to the

output. Hence multiple error correcting architectures that can correct more than two

bit errors are vital to ensure reliability in crypto arithmetic circuits. The inner structure

of the  nite  eld multiplier and its susceptibility towards faults and the possibility of

producing multiple bit errors are discussed in detail in Chapter 6.

Though such additional circuits increase the reliability of the actual circuit, this is

often costly in terms of area overhead and delay overhead. This additional overhead

can affect the overall performance of the application speci c crypto-hardware. Hence

the main design challenge is to develop schemes that give a tradeoff between the the

performance, area, delay and power.

Following part of this chapter brie!y discusses a word level multiple error correct-

ing architecture based on Reed Solomon coding [13]. This section serves as a baseline

research that leads to other novel multiple error correcting architectures presented in

the following chapters.

3.3.1 Word Level Error Correction over GFCircuits using RSCodes

In word level error correction, the output bits of the actual circuit (GF arithmetic circuit

in this case) are grouped as words having multiple bits. Hence the name world level

multiple bit error correction.

The Reed-Solomon (RS) codes are well known multiple bit error correction algo-

rithms that has burst error correction capability. The RS codes were  rst proposed

by Reed and Solomon in 1960 [70]. RS codes became very popular and accepted in

fault tolerant computing and applications due to their burst error correction capability

in a noisy environment [20]. They fall into the category of Forward Error Correction

(FEC) codes, also known as linear block codes. They are known as linear block codes

because the output bits of a functional block that need to be error tolerant are grouped
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into linear blocks having multiple bits. In other words, the output bits are grouped

into several word blocks containing multiple bits per each word block. The parity bits

for each word block are then computed using a parity predictor circuit. The gener-

ated parity bits are unique to the individual word block. The RS codes are mainly

used in the communication bases application where burst error correction is required

mostly. In such application, the encoding and decoding of the bits are done more of

a sequential fashion than a parallel way. Hence, the RS error correction architecture

needs to be modi ed to enable multiple error correction in logic circuits such as  nite

 eld arithmetic circuits.

As the RS code treats the functional blocks output as a word block, they are pow-

erful in correcting errors that occur in a cluster among various blocks. Though it can

correct multiple bit errors, the main challenge is decoding the encoded RS code words.

The decoding is complex in RS codes as one deal with the bits as word blocks. Hence,

we need to  nd the error location (which block the error that has occurred) and what

is the correct value (magnitude) of that particular block. This is a dif cult task as

compared to the codes that with output bits treated individually despite as blocks.

Using RS codes along with  nite  eld arithmetic circuits is quite ef cient as both

work on extended binary  eld GF(2m)"In RS codes, each word block in the RS code

word is an element from the corresponding Galois  eld GF(2m).

As in any error correction code, The fundamental parameters of the RS code in-

clude:

The word blocks in a code word: n = 2m−1 (3.1)

Number of message bits: k ≤ mt (3.2)

Number of check bits: n− k = 2t ≤ mt (3.3)

Number of error to be corrected: t ≤ mt (3.4)

Minimum distance: dmin ≥ 2t+1 (3.5)

In order to to incorporate RS code based error correction, one need to appropri-

ately choose the  nite  eld and a generator polynomial over that  eld. The generator

polynomial and its root over the  nite  eld are the important parameters that decide
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the nature of the  eld and operations over that  eld. Let the roots be β i to β i+2t−1, the

generator polynomial be g(X).

Let us represent the original output bits from the functional block and the RS code

word using polynomials over  nite  elds. The coef cients of the polynomial are out-

put word blocks (that contains multiple bits organised as a word) and the parity word

blocks. Also the power of X represents the position of the word block in the code

word. The actual functional block output bits are represented as c(X) and the encoded

RS code word is denoted after encoding is represented as o(X). The polynomial that

represents the code word is related to the polynomial that represents the output bits

through the generator polynomial g(X). The generator polynomial can be represented

as,

g(X) = (X +β i)(X +β i+1) · · ·(X +β i+2t−2)(X +β i+2t−1) (3.6)

where t is number of word blocks that can be corrected.

The RS codeword that contain both the output bits of the functional block and the

parity bits can generated using the formula,

o(X) = c(X)g(X) (3.7)

If m(X) is of degree k−1 and g(X) is of degree 2t, then the resultant code word will be

of degree 2t+k−1= n−1. However, for practical purposes, systematic encoding has

the advantage of reducing the complexity in retrieving the original bits after decoding.

Systematic encoding means that the redundant information is appended to the original

message.

3.3.1.1 Reed-Solomon Encoding

The classical bit-parallel multiplier which is used as a design example is generated

using the method described in [29]. A GF(215) bit parallel multiplier has been con-

sidered as a design example that need to be made fault tolerant using the proposed RS

code based multiple error correction architecture. The basic block diagram of the fault

tolerant architecture for the mentioned design example is as shown in Fig. 3.3. The

architecture mainly consists of the actual functional unit that needs to be made fault
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tolerant, a parity bit generator, syndrome generation block, a decoder that  nds the

exact position of the erroneous word block and its magnitude and  nally the correction

logic (�m� XOR gates).

Figure 3.3: Basic block diagram of RS based error correction architecture.

The Table 3.3.1.1 shows the  eld elements of GF(23) that is generated using the

primitive polynomial P(x) = x3 + x +1. Each block of the RS code under considera-

tion belongs to this  eld.

Let us consider a bit parallel multiplier de ned over GF(215). The generator poly-

nomial considered is g(X) = (X + β )(X + β 2). i.e. g(X) = X2 + β 4X + β 3 having

roots β and β 2. The generator polynomial is then used to encode the output bits of the
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Table 3.1: Field elements GF(8) with P(x) = x3+ x+1

Element Representation

0 000

1 001

β 010

β 2 100

β 3 =β+1 011

β 4=β 2+β 110

β 5=β 2+β + 1 111

β 6=β 2+0 + 1 101

β 7= 1 001

15-bit bit parallel multiplier in to word blocks containing both the multiplier output as

well as the parity bits.

The multiplier outputs are represented as
→
c = [c0,c1,c2, . . . ,c14]

T . Using RS en-

coding, the 15-bit multiplier outputs are grouped into 5 word blocks with 3 bits in each

block. Each block is de ned over the  eld GF(23) as shown in Table 3.3.1.1. The  ve

3-bit word blocks are denoted using C4,C3,C2,C1, and C0 respectively. The explained

example corrects one word block out of 7 (means, t = 1). This means it eventually

correct 3 bits at a time providing multiple error correction.

Let RP1 and RP0 denotes the two word blocks containing parity bits that are gen-

erated from the input operand bits. Using the formula RP(x) = xn−kC(x) mod g(x), a

closed close expression for RP1 and RP0 can be derived. That is,

RP0 = βC4+βC3+β 3C2+C1+β 3C0 (3.8)

RP1 = β 4C4+β 5C3+β 5C2+C1+β 4C0 (3.9)

However, the terms C4,C3, ·,C0 refers to the word blocks having 3 bits each. They are
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computes as,

C4 = (c14,c13,c12)

C3 = (c11,c10,c9)

C2 = (c8, c7,c6)

C1 = (c5, c4,c3)

C0 = (c2, c1,c0) (3.10)

Once the C values are calculated, the co-ef cient terms βCs′ of Equation 3.8 and

3.9 are calculated as follows,

βC4 = (c13,c14+ c12,c14).

βC3 = (c10,c11+ c9,c11).

β 3C2 = (c8+ c7,c8+ c7+ c6,c8+ c6).

C1 = (c5,c4,c3).

β 4C0 = (c2+ c1+ c0,c1+ c0,c2+ c1). (3.11)

Substituting Equation 3.10 and 3.11 in Equations 3.8, we get:

RP0 = (rp02,rp01,rp00).

rp02 = c13+ c10+ c8+ c7+ c5+ c2+ c1+ c0.

rp01 = c14+ c12+ c11+ c9+ c8+ c7+ c6+ c4+ c1+ c0.

rp00 = c14+ c11+ c8+ c6+ c3+ c2+ c1.

rp02 = d13+ e13+ e12+d10+ e10+ e9+d8+ e8+d7+ e6+d5+ e5+ e4

+ d2+d1+d0+ e0.

rp01 = d14+ e13+d11+ e11+ e10+d9+ e9+d8+d7+d6+ e5+d4+ e4

+ e3+d1+ e1+d0.

rp00 = d14+ e14+ e13+d11+ e11+ e10+d8+ e8+ e7+d6+ e6+ e5+d3

+ e3+d2+ e1+d1+ e1+ e0. (3.12)
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Similarly, individual terms of Equation 3.9 is computed as:

β 4C4 = (c14+ c13+ c12,c13+ c12,c14+ c13).

β 5C3 = (c10+ c9,c9,c11+ c10+ c9).

β 5C2 = (c8+ c7,c6,c8,c7+ c6).

C1 = (c5,c4,c3).

β 4C0 = (c2+ c1+ c0,c1+ c0,c2+ c1). (3.13)

Equation 3.13 then substituted in Equation 3.9 to derive level expression for RP1 as

following:

RP1 = (rp12,rp11,rp10).

rp12 = c14+ c13+ c12+ c10+ c9+ c8+ c7+ c5+ c2+ c1+ c0.

rp11 = c13+ c12+ c9+ c6+ c4+ c1+ c0.

rp10 = c14+ c13+ c11+ c10+ c9+ c8+ c7+ c6+ c3+ c2+ c1.

rp12 = d14+ e13+d12+ e10+ e9+d9+ e8+ e7+d7+ e6+ e7+d5+ e4+ e5

+ d2+d1+d0+ e0.

rp11 = d13+ e13+ e12+d12+ e10+ e9+d9+ e8+ e7+d6+ e6+ e5+d4+ e4+ e3

+ d1+d1+d0.

rp10 = d14+ e14+d13+ e12+d11+ e11+d10+d9+ e8+d7+ e7+ e6

+ d3+ e3+ e2+d1+ e1+ e0. (3.14)

The expressions detailed above are used to design the RS parity prediction block

as shown in Fig. 3.3.

3.3.1.2 Error position and Magnitude Detection

Once the parity check bits are generated, they can be used to determine the occurrence

of an error in any of the word blocks. In order to provide suf cient information to

the decoder, a set of syndromes are generated from the parity bits generated. The

fundamental steps of decoding includes:

• Detecting the presence of an error during computation.
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• Locating the position of the erroneous block (word block that is in error).

• Computation of the actual magnitude (value) of the located erroneous block.

• Correction of the erroneous bits using the computed magnitude.

In this design example, the considered value is t = 1 . This means the the design ex-

ample can detect one erroneous word block (3 bits/block) out of seven word blocks (5

blocks containing multiplier outputs and 2 blocks containing the parity RP0 and RP1).

The decoding is done using well known Peterson-Gorenstein-Zierler (PGZ) algorithm

[19]. Even though there are many decoding algorithms that have been proposed for RS

decoding, the PGZ algorithm is the one having less computational complexity for least

t values [20]. According to PGZ algorithm C(x) denote the encoded multiplier output

RS code word. The erroneous code word r(x) can be represented as,

r(x) =C(X)+ e(x) (3.15)

where e(x) represents the error pattern that happened during the actual computation of

the multiplier. The syndrome values, denoted by Sis�, are obtained by substituting the

root βi to the erroneous code word r(x). This can be represented as,

Si = r(β i) =
n−1

∑
j=0

r j(β
i) j,1≤ i≤ 2t. (3.16)

The syndromes are used to predict the error occurrence. In case of an error the

syndrome will have a non zero value. The syndromes S1 and S2 are computed as

below,

Si = r(β i) =
2

∑
j=1

r j(β
i) j,1≤ i≤ 2. (3.17)

Let the multiplier output is represented in terms of RS code word as,

C(X) =C4X
6+C3X

5+C2X
4+C1X

3+C0X
2+RP1X +RP0. (3.18)
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Then the syndrome S1 = (s12,s11,s10) is generated by:

S1 =C4β
6+C3β

5+C2β
4+C1β

3+C0β
2+RP1β +RP0. (3.19)

The individual expressions of Equation 3.19 is computed as:

β 6C4 = (c12,c14,c13+ c12).

β 5C3 = (c10+ c9,c9,c11+ c10+ c9).

β 4C2 = (c8+ c7+ c6,c7+ c6,c8+ c7).

β 3C1 = (c5+ c4,c5+ c4+ c3,c5+ c3).

β 2C0 = (c2+ c0,c1+ c0,c1).

β 1RP1 = (rp11,rp12+ rp10,rp12).

RP0 = (rp02,rp01,rp00). (3.20)

Substituting Equation 3.20 in Equation 3.19 to get the the bit expressions of S1 as

following:

s12 = c12+ c10+ c8+ c7+ c6+ c5+ c4+ c2+ c0+ rp11+ rp02.

s11 = c14+ c9+ c7+ c6+ c5+ c4+ c3+ c1+ c0+ rp12+ rp10+ rp01.

s10 = c13+ c12+ c11+ c10+ c9+ c8+ c7+ c5+ c3+ rp10+ rp12+ rp00.(3.21)

Similarly, the syndrome S2 = (s22, s21,s20) can be evaluated using the polynomial

by substituting the root β 2 as,

S2 =C4β
12+C3β

10+C2β 8+C1β
6+C0β

4+RP1β
2+RP0. (3.22)
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The individual terms of S2 is computed in the following way:

S2 = C4β
5+C3β

3+C2β
1+C1β

6+C0β
4+RP1β

2+RP0.

β 5C4 = (c13+ c12,c12,c14+ c13+ c12).

β 3C3 = (c11+ c10,c11+ c10+ c9,c11+ c9).

β 1C2 = (c7,c8+ c6,c8).

β 6C1 = (c2,c5,c4+ c3).

β 4C0 = (c2+ c1+ c0,c1+ c0,c2+ c1).

β 2RP1 = (rp12+ rp10,rp12+ rp11,rp11).

RP0 = (rp02,rp01,rp00). (3.23)

Using Equation 3.23, the bit expressions for S2 are calculated as following:

s22 = c13+ c12+ c11+ c10+ c7+ c2+ c1+ rp12+ rp10+ rp02).

s21 = c12+ c11+ c10+ c9+ c8+ c6+ c5+ c1+ c0+ rp12+ rp11+ rp01.

s20 = c14+ c13+ c12+ c11+ c9+ c8+ c4+ c3+ c2+ c1+ rp11+ rp00. (3.24)

Once the syndromes are generated, they are passed to the RS decoder to evaluate

the error location and the magnitude. The implementation of PGZ algorithm for RS

decoding is given by,

X =
S2

S1
(3.25)

The error magnitude is given by,

Y =
S21
S2

(3.26)

Once the decoding is completed, the error location (the location of the word block

that is in error) and its magnitude (the actual value) are received. That information

then be used to correct the multiple bits contained in the erroneous word block.

3.3.2 Experimental Results

A behavioural model of the actual multiplier circuit and the error correction block is

implemented using VHDLTM. A 15-bit bit parallel GF multiplier has been considered
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for evaluating the functional correctness as well as for estimating other characteris-

tics such as area overhead. However the proposed technique can be easily scaled to

GF multipliers of any size. The design was simulated using ModelsimTM and was

tested for functionality by giving various random input vectors. The outputs from the

VHDLTM coded architecture are also validated against a standard multiplier function

to ensure the functional correctness. The architectures were synthesized using the

SynopsysTM design compiler and Synopsys Power CompilerTM to estimate the area

and power consumption. Here, one of the random error injected in to the multiplier

produced multiple bit errors in word block C3 that corresponds to 6
th word block in

the output RS code. The 7 word blocks generated are C4, C3,C2, C1,C0, RP1 and

RP0 respectively. Fig. 3.4 clearly shows the injected error in 6
th word block (changed

from 000 to 101), the computed erroneous location, magnitude and the corrected  nal

output.

Figure 3.4: VHDL functional simulation of the multiple error correction technique.

Table 3.2: Hardware overhead for GF(215) Multiplier with Multiple Error Correction

[13]

Field Multiplier area PP and Other Circuitry %

size in µm2 area in µm2 Overhead

GF(215) 8681.70 15958.868 184.82
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The area overhead of the proposed multiple error correcting technique for the spec-

i ed 15-bit multiplier design example is shown in Table 3.3.2. The overhead is shown

to be 185 %. However this preliminary design example proved to be more ef cient

than the well known and widely used N-modular redundancy scheme and corrects a

great number of bit errors than SEC/DED schemes. Hence the proposed preliminary

scheme enhance the reliability of the  nite  eld arithmetic circuits.

3.4 Summary

This chapter brie!y outlines the well known fault tolerant schemes that are used in the

fault tolerant GF arithmetic circuit design. The discussed techniques from literature re-

view include the CED schemes, error correction schemes such as SEC/DED schemes.

The merits and demerits of those schemes have been investigated. Detailed investiga-

tion of GF arithmetic circuits and the nature of multiple bit errors shows that multiple

bit error correction schemes are inevitable for fault tolerance in GF circuits. On the

basis of this, this chapter also describes the base line research for multiple error detec-

tion for PB multipliers over GF(2m)based on well known RS codes. The multiple error

correction architecture using the RS codes are explained brie!y using a design exam-

ple. The designs are modeled and simulated using industry standard EDA tools and its

functional correctness and area overhead has been reported for performance measure.

This baseline research serves as a stepping stone towards other novel contributions

detailed in the following chapters of this thesis.
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Chapter 4

BCH code Based Multiple-bit Error

Correction over Bit-parallel GF

Multipliers

4.1 Introduction

Malfunctioning of the integrated circuits (ICs) caused by numerous fault or error sources

can be a nightmare in critical applications. Various faults that affect the reliability

of the secure hardware devices can be permanent faults or temporary transient faults

[5; 6]. Signi cant research has been undertaken towards analyzing the impact of faults

on semiconductor based ICs and methodologies to mitigate them. Due to the high

device densities, large fan out, and special interest on the information they process, se-

cure hardware devices such as crypto-arithmetic circuits are easily vulnerable to faults.

Faults may be either natural or intentional [38]. In either case, such devices must be

fault tolerant to ensure their reliability. The main problem of faults or attacks that

manipulate logic functionality of the hardware circuit is that a single induced or per-

manent stuck at fault at any of the critical node of the device can cause multiple errors

at output. This is due to the high fan-out of the GF arithmetic circuits. Also with

sophisticated imaging technologies and electron microscopes, one can  nd the critical

node in a circuit and inject random faults into the circuit in one of the many ways dis-

cussed in Chapter 2. Natural faults occurring at critical nodes have the same impact as
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that of fault based attacks. Hence a novel scheme that can address multiple bit errors

is very important.

Owing to these facts, this chapter presents two novel multiple error correcting de-

sign techniques based on Bose-Chaudhuri-Hocquenghem (BCH) codes that can correct

burst errors. The proposed architecture is designed to address the high area overhead

of TMR, the time redundancy of CED and roll back, and to enable multiple error

correction, which is missing in most of the existing single error correcting designs.

Also unlike the techniques of [37; 71], which consider errors that occur only within

the functional block, the presented scheme considers the errors both in the functional

block as well as the redundant bit generation block. In this regard, the  rst method can

correct multiple transient errors anywhere within the design with a penalty of only an

extra decoder delay. In the second method, this has been further improved with novel

bypass circuitry, which is capable of saving the critical path delays by up to 50%.

4.2 The Proposed Methodology for Multiple Bit Error

Correction

Among the available error correcting schemes, there are no multiple error correcting

architectures for GF arithmetic circuits in the current literature. Due to the nature of

faults and the multiple errors caused by them, this section investigates the possibilities

of a multiple error correction scheme that can correct up to t random bit errors at the

output including those in the correction block. The presented architecture is based

on optimized BCH codes. This section explains the BCH error correction scheme to

mitigate radiation induced temporal errors in detail along with its ef cient hardware

implementation. The literature survey shows that, the techniques presented in this

chapter are the  rst to investigate such a scheme for fault tolerant Galois Field circuits.

However the scope of the proposed technique here is to focus on the errors that happen

on the internal nodes of the circuit. Hence assumption made is that the primary input

is error free.
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4.2.1 Bose-Choudhury-Hocquenghem Code

The Bose-Choudhury-Hocquenghem (BCH) codes belong to the family of cyclic codes

in which the message block is encoded using a polynomial g(x), called the generator

polynomial. The generator polynomial is the least common multiplier (LCM) of the

minimal polynomial for the selected powers with respect to GF(2m), provided that

each of the minimal polynomials should appear only once in the product. Here, the

message is treated as a whole block and encoded one at a time rather than encoding

continuously as in the case of convolution codes. The encoder block possesses no

memory, hence no information of the previous message blocks is available. This style

of encoding can be thought of as sliding an encoding window over the message bits. In

conventional BCH codes, the LFSR structure is used to encode incoming message bits

one at a time. Hence, the present encoded bit depends on the previous bit, which shows

that a memory is being used. In the proposed scheme, a parallel implementation of the

BCH encoder is introduced which encodes the message as a whole block and uses

no memory. The binary BCH codes are generalized Hamming codes. The BCH codes

detect and correct randomly located bit errors in a stream of information bits according

to its error correction capability (t). The burst error correcting codes, such as the Reed-

Solomon codes, correct multiple errors within a symbol or multiple symbols, but all

the bit errors must be within the same symbol. The most interesting aspect of the BCH

codes over the Reed-Solomon codes for the multiple error correction is the simplicity

in decoding the codewords. In this case, the bit�s location only needs to be determined

and not the correct value, as in the case of the Reed-Solomon codes. The basic block

diagram of the generic multiple bit error correction circuit using the binary BCH code

is shown in Fig. 4.1(a). The overall design contains a redundant bit generation block

that works in parallel with the functional block, an error detection and decoding block

that detects the occurrence of an error and its location, and  nally a decoder, apart from

the bit parallel multiplier functional block.

4.2.2 BCH Encoder and Decoder Design

The complete design of a BCH parallel encoder and decoder with an example is now

discussed. The bit parallel multiplier architecture is adopted from [29]. The general

representation of BCH code is BCH(n,k,d), where n is the size of the codeword or,
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Figure 4.1: BCH code based multiple detection and correction architectures. (a) Mul-

tiple error correction architecture; (b) Error detection and correction block.

in other words, it is the sum of the message length k, and the number of parity bits p

used for encoding, and d is the minimum distance (dmin) between the codewords. The

possible BCH codes for m≥ 3 and t < 2m−1 is given by the following expressions:

Block length: n = 2m−1 (4.1)

Number of check bits: n− k ≤ mt (4.2)

Minimum distance: dmin ≥ 2t+1 (4.3)

The codeword is formed by adding the remainder after dividing the shifted mes-

sage block by a generator polynomial g(x). All the codewords are multiples of the

generator polynomial. The generator polynomial is not just a minimal primitive poly-

nomial, but a combination of several polynomials corresponding to the powers of the
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4.2 The Proposed Methodology for Multiple Bit Error Correction

primitive element α ∈ GF(2m). In other words, g(x) is the least common multiple of

the minimal polynomials over the various powers of the primitive element α (powers

from α,α2, . . . ,α2t , where t is the error correction capability of the code). Then,

g(x) = LCM
(

m1(x),m2(x), . . . ,m2t(x)
)

(4.4)

where m1(x),m2(x), . . . ,m2t(x) are the minimal polynomials corresponding to the var-

ious powers of α . It is also noted that every even power of a primitive element has the

same minimal polynomial. Hence Eq. (4.4) is simpli ed to the following:

g(x) = LCM
(

m1(x),m3(x), . . . ,m2t−1(x)
)

. (4.5)

The basic principle and design of the bit-parallel BCH code based multiple error

correction scheme is explained with an example as follows. Let us consider a sim-

ple case of BCH(15,5,7), where n = 15 and k = 5. In this fairly small example, a

bit-parallel PB multiplier over GF(25) is considered. Let c = [co,c1,c2,c3,c4] be the

outputs of the multiplier. Then,

M(x) = c4x
4+ c3x

3+ c2x
2+ c1x+ c0. (4.6)

xn−kM(x) = xn−k(c4x
4+ c3x

3+ c2x
2+ c1x+ c0)

= c4x
14+ c3x

13+ c2x
12+ c1x

11+ c0x
10. (4.7)

as in this case n = 15 and k = 5.

The redundant bits are generated by the following:

P(x) = xn−kM(x) mod g(x). (4.8)

Let α be the primitive element of GF(24). The elements of GF(24) is shown in Table

4.1. Here, P(x) = x4 + x+ 1 is the primitive polynomial. The three minimal polyno-

mials m1(x), m3(x), and m5(x) are given by:

m1(x) = x4+ x+1, (4.9)

m3(x) = x4+ x3+ x2+ x+1, (4.10)

m5(x) = x2+ x+1. (4.11)
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4.2 The Proposed Methodology for Multiple Bit Error Correction

Table 4.1: GF(24) elements in PB.

GF(24) elements Bit vector

0 0000

1 0001

α 0010

α2 0100

α3 1000

α4 0011

α5 0110

α6 1100

α7 1011

α8 0101

α9 1010

α10 0111

α11 1110

α12 0100

α13 1111

α14 1001

For three bit error correction (t = 3), the generator polynomial for constructing the

codeword is then given by the following:

g(x) = LCM
(

m1(x),m3(x),m5(x)). (4.12)

Substituting the minimal polynomials, the following expression is obtained:

g(x) = x10+ x8+ x5+ x4+ x2+ x+1. (4.13)

Substituting the generating polynomial, the following expression is obtained:

P(x) = p9x
9+ p8x

8+ p7x
7+ p6x

6+ p5x
5+ p4x

4+ p3x
3

+p2x
2+ p1x

1+ p0.. (4.14)

where,
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4.2 The Proposed Methodology for Multiple Bit Error Correction

p0 = c0+ c2+ c4,

p0 = d0+d2+d4+ e0+ e1+ e2+ e3,

p1 = c0+ c1+ c2+ c3+ c4,

p1 = d0+d1+d2+d3+d4,

p2 = c0+ c1+ c3,

p2 = d0+d1+d3+ e1+ e2+ e3,

p3 = c1+ c2+ c4,

p3 = d1+d2+d4+ e0+ e2+ e3,

p4 = c0+ c3+ c4,

p4 = d0+d3+d4+ e0+ e2,

p5 = c0+ c1+ c2,

p5 = d0+d1+d2+ e2,

p6 = c1+ c2+ c3,

p6 = d1+d2+d3+ e0+ e3,

p7 = c2+ c3+ c4,

p7 = d2+d3+d4+ e1,

p8 = c0+ c2+ c3,

p8 = d0+d2+d3+ e0+ e1+ e3,

p9 = c1+ c3+ c4,

p9 = d0+d3+d4+ e0+ e2. (4.15)

where the d and e terms are the inner product terms of the multiplier [29]. Hence,

the  nal BCH encoded codeword for the bit parallel GF multiplier circuit is given as

the following expression:

E(x) = c4x
14+ c3x

13+ c2x
12+ c1x

11+ c0x
10+ p9x

9

+p8x
8+ p7x

7+ p6x
6+ p5x

5+ p4x
4

+p3x
3+ p2x

2+ p1x+ p0. (4.16)
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The redundant bits (check bits) are generated by a parallel redundant bit generation

unit as shown in Figure 4.1(a). The resulting parity bits along with the multiplier

outputs are passed on to the error detection and correction block (syndrome generation

and decoding) as shown in Figure 4.1(b). For three bit error correction capability (t =

3), six (2× t) syndromes need to be generated. The syndromes help us to determine

whether the computed multiplication results are error free or not. In case of error free

computation, the syndromes will be evaluated to zero. If the syndromes are nonzero,

then that !ags an erroneous computation. The syndromes are calculated using the

following expression:

Si(x) = E(x)|x=1,α ,...,α2t . (4.17)

The syndrome decoding is done by using the well known Peterson-Gorenstein-

Zierler algorithm. In the proposed technique only three syndromes are used to predict

and correct errors instead of 6 syndromes as in the case of classical BCH scheme. This

would reduce the area of the whole implementation. Here for three bit error correction,

one has to calculate only syndromes S1, S3, and S5. The generalized equation for

syndromes for this example of BCH(15,5,7) are given as follows:

S1 = s13α3+ s12α2+ s11α + s10.

S3 = s33α3+ s32α2+ s31α + s30.

S5 = s53α3+ s52α2+ s51α + s50. (4.18)

The equivalent bit expressions of all syndromes are given by the terms:
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4.2 The Proposed Methodology for Multiple Bit Error Correction

s10 = c4+ c3+ c2+ c0+ p8+ p7+ p4+ p0

s11 = c2+ c1+ c0+ p9+ p7+ p5+ p4+ p1

s12 = c3+ c2+ c1+ c0+ p8+ p6+ p5+ p2

s13 = c4+ c3+ c2+ c1+ p9+ p7+ p6+ p3

s30 = c4+ c0+ p9+ p5+ p4+ p0

s31 = c4+ c3+ p9+ p8+ p4+ p3

s32 = c4+ c2+ p9+ p7+ p4+ p2

s33 = c4+ c3+ c2+ c1+ p9+ p8+ p7+ p6+ p4+ p3+ p2+ p1

s50 = c4+ c2+ c1+ p9+ p8+ p6+ p5+ p3+ p2+ p0

s51 = c4+ c3+ c1+ c0+ p8+ p7+ p5+ p4+ p2+ p1

s52 = c4+ c3+ c1+ c0+ p8+ p7+ p5+ p4+ p2+ p1

s53 = 0. (4.19)

Determining whether the computation is error free is not suf cient; It is also needed

to correct these errors if they are present. For this, the error positions or error locations

of the erroneous bits have to be calculated. To determine the error positions effectively,

one has to decode the syndromes. The syndrome decoding block (error detection and

correction block represented as an ECB block) of the BCH based error correction tech-

nique contains an error locator polynomial generator block that  nds the root of the er-

ror locator polynomial and a decoder that eventually corrects the erroneous bits based

on the computed error position. For this purpose the computed syndrome values are

passed on to the error locator polynomial computation block, as shown in Fig. 4.1. For

the three (t = 3) bit error correction, one need three (t = 3) coef cients for the error

locator polynomial. Let σ1, σ2, and σ3 be the three coef cients of the error locator

polynomial. Then they are calculated as follows:

σ1 = S1, (4.20)

σ2 =

(

(S12S3)+S5
)

(S13+S3)
, and (4.21)

σ3 = (S13+S3+S1σ2). (4.22)
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4.2 The Proposed Methodology for Multiple Bit Error Correction

4.2.3 Improved Error Locator Design

Once the error locator polynomial is available, the roots of the polynomial will give

the error locations. The traditional algorithms for  nding the roots of the error locator

polynomial are based on exhaustive search methods. Another scheme for  nding the

roots is the Chien search algorithm, in which all the possible values of the primitive el-

ement α , ranging from α0,α, . . . ,α2m−1, are inserted into the error locator polynomial

to check if they satisfy the polynomial. In the proposed design, a bit parallel imple-

mentation of the area optimized Chien search algorithm is proposed. In particular, a

scheme is proposed in which the root of the error locator polynomial is checked only

among the powers of the primitive element α corresponding to the bit positions of the

message bits, i.e. the multiplier output bits. The roots of the error locator polynomial

corresponding to the parity bits are omitted in order to reduce the hardware complexity

and hence the chip area. For a 5-bit multiplier, the check is performed to  nd whether

α1,α2,α3,α4,α5 are roots of the error locator polynomial, which in turn corresponds

to the bit positions c4,c3,c2,c1 and c0 in the output of the multiplier. In other words,

if α is a root of the error locator polynomial, it says that the bit c4 of the multiplier is

erroneous, etc.

The decoder corrects the erroneous bit(s) corresponding to the information pro-

vided by the parallel root search block. Based on this design principle, the design is

extended to a 16-bit parallel PB multiplier over GF(216) and to a 45-bit parallel PB

multiplier over GF(245).

4.2.4 Optimized Decoder Design

The Chien search block produces information about the error location or error loca-

tions, depending on the number of errors present in the computation. Once the error

position is known, this information is passed on to the decoder for correction. The de-

coder block is a tree of XOR gates that does pairwise two input XOR operations over

the actual multiplication result and the correction value from the Chien search block.

In theory, if a bit is in error, the corresponding correction bit from the Chien search

block is an inverted value of the bit in error. Hence doing a simple XOR operation in

turn does a bit !ip that will restore the correct functional value out of the correction

block as shown in Fig. 4.1(b).

61



4.2 The Proposed Methodology for Multiple Bit Error Correction

4.2.5 Implementation Details

The design was simulated in ModelsimTM . Figure 4.2 shows the snapshot of a typ-

ical ModelsimTM simulation result. During the simulations, the faults are introduced

into the multiplier outputs randomly for checking the error correction capability of the

proposed scheme. The highlighted parts in Figure 4.2 show one of the many testing

values. The errors are introduced in the intermediate stages of the multiplier, which in

turn gave multiple bit errors at the multiplier output. In this case the errors are at bit

positions 1, 2, and 16, however the cout values show the corrected  nal output from

the BCH decoder. Although the example designs considered 2 to 5-bit error correction

capability, based on the theory presented in this chapter, the capability can be extended

to more than  ve bits and also to any digital circuit in general.

Figure 4.2: Simulation results of BCH code based multiple error correction.

4.2.6 Comparison with Existing Approaches

The area overhead for the various designs with 2, 3, 4 and 5 error correction capability

for a 45-bit multiplier is shown in Fig. 4.3(a). It is observed that for a  xed size

multiplier, the area increases with the number of bit error corrections.

62



4.2 The Proposed Methodology for Multiple Bit Error Correction

Original Design

0

20

40

60

80

100

120

140

160

180

% Area Overhead

With ECB

With ECB

Without ECB

5 Error4 Error3 Error2 Error

(a)

(b)

Figure 4.3: Area overhead analysis for comparative perspective. (a) Overhead analysis

of BCH based error correction scheme; (b) Block wise area of a 45-bit GF multiplier

with 3-bit error correction.

The area of the various blocks in the proposed multiple error correction scheme is

shown in Fig. 4.3(b). The additional area contribution to the over all design is due to
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4.3 Extension to Intelligent and Dynamically Error Correctable Architecture

the parity predictor block and the Chien search root  nding block.

Table 4.2: Comparison with other approaches for 45-bit multiplier.

Property TMR [37] [69] Proposed Proposed Proposed

#Error correction multiple single single 3 Errors 4 Errors 5 Errors

Coding technique Voting Hamming LDPC BCH BCH BCH

Overhead >200% >130% 120% 150.4% 164.04% 170.4%

Table 4.2 compares the area overhead of the proposed approach with other existing

related error detection or correction methods appeared in the literature.

Furthermore, for a given error correction capability, the extra hardware overhead

comes down signi cantly as the main multiplier block size increases. For example,

for the 5-, 16-, and 45-bit multipliers, it is observed that the extra hardware is 600%,

240%, and 150.4%, respectively, for 3-bit error correction capability.

4.3 Extension to Intelligent and Dynamically Error Cor-

rectable Architecture

From the above discussions, it is noted that the BCH error correction block runs in par-

allel with the example  nite  eld multiplier circuit all the time irrespective of the error

position or location. In other words, the error correction block in the entire circuitry

contributes towards the critical path delay almost all the time, thus affecting the speed

of operation, which is a vital factor in most of the present day VLSI systems. Hence

immense care has to be taken to reduce this factor as much as possible. In the proposed

error correction scheme, one needs the error correction block to be active only in case

of a fault or error. In this section, a scheme is proposed to intelligently activate the

ECB block only when there is an error injected or a fault has occurred in the circuit on

the !y. This scheme is proposed on the premise that the probability of occurrence of

an error is very low, e.g., it may happen only once in a million clock cycles. Therefore,

a modi cation is done on the proposed architecture to dynamically (on the !y) correct

the errors as they appear. This would free the design from unwanted delay penalties

due to the decoder block and make it more ef cient. When errors occur, the clock cy-

cle is dynamically extended by a gated clock and the data is captured in the following
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clock edge instead of the current clock edge where the errors appeared. This novel

scheme would give !exibility and time for the ECB block to be active and compute

the correct results from the parity information that is computed in parallel with the

multiplier and give the correct result in the following clock cycle. It should be noted

that, this is unlike CED and rollback, in which once an error is detected, other system

operations are halted until the re-computation is  nished. In the proposed technique,

this problem does not occur as the system runs without stalling.

4.3.1 The Proposed Extended Architecture

The critical path of the error correcting architecture without the dynamic error correc-

tion capability is shown in Fig. 4.4. Clearly, when no error is present in the design dur-

ing a speci c clock cycle, the critical path has the added delay of the decoder block.

In order to mitigate this issue, the architecture in Fig. 4.1(a) has been redesigned as

shown in Fig. 4.5(a). In comparison with the architecture in Fig. 4.1(a) the proposed

extended design has extra circuitry (with a minor hardware penalty) that checks for

the occurrence of an error. If no errors occurred during a multiplication operation, the

output is directly taken from the GF multiplier bypassing the computation result of the

error correction block. If there is a bit !ip at the multiplier output as a result of faults,

the error monitoring circuitry sets a !ag bit EN. Once the EN bit is high (indicating

the error), the GF multiplier result computed at the current clock cycle will be omitted

and an extra clock cycle will be given for correction. The corrected output will be

available in the next clock cycle. This is done using a clocked gate and an AND gate

array as shown in Fig. 4.5(a). Depending upon the signal EN, the critical path of the

design takes either path-i or path-ii as shown in Figure 4.5(d). The critical path is i

when EN signal is low (no error) and path ii is taken when EN is high (error occurred).

The timing diagram of the proposed extended design is shown in Fig. 4.6. The signal

ECLK follows the CLK as long as no errors occurred. Once EN signal goes high that

in turn drives ECLK to go low for one clock cycle. This adjustment enables the circuit

to provide a clock cycle delay for the error correction. However this happens only if

there is an error in the functional block. Otherwise, ECLK is the same as the global

CLK and the output follows the multiplier and hence no delay of the ECB block is
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added to the overall delay. The details of the error detection logic and correction block

are shown in Fig. 4.5(b) and Fig. 4.5(c), respectively.
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Figure 4.4: Critical path of a BCH code based multiple ECB circuit without dynamic

error correction technique.

4.3.2 Prototyping of the Extended Design

To validate and compare the proposed technique, the schemes both in BCH and ex-

tended Hamming code [69] based double error correction designs have been imple-

mented. For analysis, two structures (16- and 45-bit multipliers) are implemented with

both BCH and double error correcting Hamming structure (paring both even and odd

bits of the multiplier separately). These structures are then extended to dynamically

error correctable structures as discussed in the previous sections. Table 4.3 shows the

comparison of attributes such as the chip area, power, and delay of 16-bit versus the

45-bit PB GF multipliers. These designs are synthesized in both 180 nm and 90 nm
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TSMCTM technology. Table 4.4 shows the delay overhead due to the error correction

circuitry for the 16-bit and 45-bit BCH code based error correction scheme and similar

sized Hamming code based scheme. With the proposed scheme, in the absence of an

error, the computation delay is signi cantly reduced by bypassing the error correction

block, which in turn speeds up the overall computation time.

Table 4.3: Comparison of 16-bit versus 45-bit GF multiplier speci cations.

Mult. Size Area (um2) T-Power (uW ) Delay (nS) Area (um2) T-Power (uW ) Delay (nS)

(180nm) (180nm) (180nm) (90nm) (90nm) (90nm)

16-bit Mult. 10863.2 489 3.11 3029.4 78.5 0.6

45-bit Mult. 77514.5 3300 6.86 19795.6 375.46 1.06

Further comparison is presented in Fig. 4.7 and Fig. 4.8 with regard to the 16-

and 45-bit multipliers. Fig. 4.7 shows the percentage area overhead comparison of
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Table 4.4: Delay comparison of ECB blocks BCH vs Hamming.

Scheme 180nm 90nm

BCH(31,16) 7.8nS 1.95nS

Ham(24,16) 2.65nS 0.5nS

BCH(63,45) 11.76nS 2.37nS

Ham(55,45) 4.54nS 1.1nS
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Figure 4.7: Area comparison between BCH check-bit generator and error correction

block.

the BCH parity generation block against the error locator and correction block for a

45-bit multiplier. This shows that the area overhead increases as the error correction

capability �t� for a constant multiplier size. However the area overhead reduces for a

 xed number of required error correction with regard to increase in the multiplier size.

The area comparison of BCH vs. Hamming code implementation is shown in

Fig. 4.8. The area overhead of the dynamically error correctable multiplier schemes is

explored in Fig. 4.9. Though the percentage area overhead for the smaller designs is

large, for the larger multipliers, the area overhead is approximately 150%. The power

dissipation of the designs under consideration is shown in Fig. 4.10.
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4.4 ASIC Prototyping, Custom Chip Implementation,

and Fault Analysis

The BCH based error correction scheme is modeled in VHDL. For simulation and

validation of the error correction technique, 16-bit and 45-bit parallel PB multipliers as

design examples have been considered. Since the error correction logic is independent

of the multiplier logic, this scheme can be extended for bit parallel multipliers of any

size or to any digital circuit in general.

4.4.1 Physical Design in 180nm CMOS Technology

For the purpose of design implementation in silicon the design was synthesized using

the SynopsysTM design compiler in the 180 nm technology. The back-end process,

place and route, was done for a 45-bit GF multiplier with three error correction capa-

bilities using the Cadence EncounterTM tool set. For the completeness of the ASIC

design !ow, the  nal layout of the design is given as shown in Fig. 4.11. The device

complexity of the design can be seen from this layout.
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Figure 4.11: A 180 nm CMOS based physical design of the proposed 45-bit GF mul-

tiplier with multiple error correction capability.

4.4.2 Fault Coverage Analysis

To investigate the reliability of the proposed scheme, a behavioral fault analysis has

been conducted. The C++ behavior model of the 45-bit multiplier is made and in-

jected with multiple errors randomly for 500 times. Cases such as no error, single bit

error, 2-bit errors and so on up to 9-bit errors, with various bit error correction capa-

bilities are considered for the analysis. Fig. 4.12(a) shows the 1-bit, 3-bit, 4-bit and

5-bit error correcting designs up to 9 random faults. The green lines indicate the error

coverage by existing single bit correctable designs. The areas under the other lines in

Fig. 4.12(b) and Fig. 4.12(c), Fig. 4.12(d) show the number of faulty cases for each

design with a certain number of error correction capabilities (3 to 5-bit). The analysis

clearly shows that the proposed 3- to 5-bit error correcting designs cover more random

faults with slightly higher area overhead compared to existing single error correcting

designs. The literature review suggests that, this is the  rst presentation of multiple

bit error correction in functional blocks due to permanent and induced faults where as

all other existing approaches considered only either double error detection or single

error correction. In general for a t error correcting design, it can be shown that out of

∑m−1
j=0

(
n
j

)
total error combinations a total of ∑t

i=0

(
n
i

)
errors will be corrected.
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Figure 4.12: Analysis of the fault coverage of the proposed fault tolerant architecture:

(a) Fault coverage for 1 bit error with LDPC or Hamming; (b) Fault coverage for 3 bit

errors; (c) Fault coverage for 4 bit errors; (d) Fault coverage for 5 bit errors.

4.5 Summary

This chapter presented a novel technique and architecture for designing fault and attack

tolerant systems over  nite  elds based on the BCH codes. The designs were tested

with  nite  eld multipliers, which can be the target of malicious attacks owing to their

importance in cryptographic hardware. This chapter also presented an optimized bit

parallel implementation of the iterative Chien search algorithm for  nding the roots of

the error locator polynomials in the BCH error correction blocks. The designs were

further improved with a dynamically error correcting architecture, for reducing the

critical path delay penalty by up to 50% in the absence of any errors. This contributed

to signi cant performance enhancement in the absence of any errors. The proposed
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scheme can also tackle errors occurring both in the functional block as well as in the

redundant bit generation blocks. Further, the designs were also compared with other

existing error correcting schemes present in literature. ASIC prototyping and silicon

implementation of the proposed architectures were done in 180 nm and 90 nm CMOS

technology. The experimental results show that the proposed scheme has a lower com-

plexity in terms of area, delay and power compared with the TMR based techniques and

better error correction capability as compared to other existing well known techniques

such as Hamming and LDPC, with comparable area overheads, e.g., the area complex-

ity for 3-bit correction in a 45-bit multiplier is only 150% as compared to 200% of that

of TMR. Also, compared to 130% hardware overhead of the existing SEC techniques,

the hardware overhead of the proposed technique is well within acceptable margins

especially with its enhanced capability. As the error correcting blocks are independent

of the multiplier functional block, these designs could be easily extended to address

error corrections in other multiplier structures such as a digit serial multiplier.
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Chapter 5

Low Complexity Cross Parity Codes

for Multiple Error Correction in GF

Multiplier Structures

5.1 Introduction

On-line error detection and correction has been researched as an effective method of

mitigating errors in digital integrated circuits [72]. Occurrence of errors in a logic

block have become a major concern with the rapid proliferation of smaller feature

sizes in hardware fabrication technology. Furthermore, radiation based on-line fault

attacks in cryptographic-hardware is a real threat to security infrastructures [36]. The

main challenge in designing a fault tolerant scheme to mitigate both natural and inten-

tional faults that results in multiple bit error is optimizing the additional area overhead

of the error mitigating circuitry and hence the power consumption and related delay. In

applications like low power cryptography, where dedicated crypto-processors are em-

bedded inside a smart card or RFID, the electronic hardware has to be very compact

and area optimized to keep its power consumption and delay to a minimum acceptable

level. However, it is a challenging task to make such critical application circuits fault

tolerant by keeping constraints such as area and power low.

This chapter presents a novel multiple error correction technique, where the errors

can occur due to radiation induced transients or from manufacturing defects, based on

the cross parity scheme. The idea of introducing such a viable scheme is to provide
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a better trade off between area overhead and the fault tolerance capability. The key

idea is to detect and correct as many errors as possible with less area overhead and

less errors escaping. Lesser area also gives lesser power consumption, which could

be suitable for low power applications such as RFID, sensor network applications, and

smart cards.

5.2 The Proposed Cross Parity Code

The classical approach for multiple bit error detection and correction in digital arith-

metic circuits is to use the well known forward error correcting codes. The forward

error correcting codes are generally meant to correct erroneous data in communication

related applications, often known as burst error correction. Hence, the main challenge

of applying these methods directly for fault tolerant circuit design is often complex

and tricky. This is because of the complexity associated with decoding the error in-

formation in order to perform the correction. The decoding circuitry always consumes

comparatively higher area overhead though they give potential freedom in correcting

 xed multiple bit errors [10]. In critical applications where area overhead is a major

concern, fault tolerant circuits with a trade off between the number of corrected errors

and the area overhead is highly desirable. Such applications include, low end cryptog-

raphy processors (used in RFID smart cards for example) and sensor networks. In this

section, a novel methodology for multiple bit error correction in logic circuits, which

relies only on the error detection features of the well known BCH codes cross coupled

with simple output parity prediction, is proposed. This is done to save the area com-

plexity contribution from the decoding circuitry of these classical codes. By doing so

one can easily achieve a trade off between the area overhead and fault tolerance sim-

ply by avoiding the complex hardware implementations of the decoders for the error

correction codes. The proposed method is evaluated based on two major test bench

multiplier architectures  rstly, with bit parallel multipliers over binary extension  elds

incorporated in various crypto-cores, and later with a FIPS/NIST standard 163-bit digit

serial/word level multiplier typically used in the Elliptic Curve Cryptography (ECC)

hardware [73; 74]. The basic block diagram of the cross parity based scheme is as

shown in Fig. 5.1. The major blocks are the functional block that need to be transient
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error tolerant, cross parity predictor to detect the occurrence of errors, and a simple

error correction block.

B

Functional"Block
Cross"Code"Parity"

Predictor

Correction"Block

m m m m

m q

m

A

Figure 5.1: General block diagram of cross parity based error correction architecture.

Figure 5.2: Organization of functional block output in cross parity based error correc-

tion technique.
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5.2.1 Multiple Error Detection

The organization of the output bits of the functional block in the proposed cross parity

technique is shown in Fig. 5.2 for a 20-bit circuit. Here, the output bits of a circuit can

be grouped either in a uniform or in a completely random manner. Each row of the

grouped output bits can be encoded with any multiple error correcting codes, depend-

ing upon the number of error corrections needed. In this chapter, the BCH encoding

technique has been incorporated for encoding the rows, as the experimental results

have demonstrated that this encoding scheme has a wide range of error detection ca-

pabilities compared to other codes. However, the columns are encoded using a simple

output parity scheme. For the purpose of illustration, each row is encoded with BCH

codes that have minimum Hamming distance (dmin) of 7. The procedure is explained

with an example circuit constituting a 20-bit parallel  nite  eld multiplier in the fol-

lowing section.

5.2.2 Error Detection Using BCH Code Parity

The basic principle and design of the bit-parallel BCH(n,k,dmin) code based multiple

error detection is explained with a 20-bit multiplier arranged as shown in Fig. 5.2.

Let us consider a simple case of BCH(15,5,7), where n = 15 and k = 5. In this

fairly small example, a bit parallel Polynomial Basis (PB) multiplier over GF(25) is

considered. The  rst row of the bits is encoded using BCH codes as shown in Eq. (5.1)

and Eq. (5.2). In this case, as n = 15 and k = 5, the following expression is obtained:

M(x) = c4x
4+ c3x

3+ c2x
2+ c1x+ c0. (5.1)

xn−kM(x) = xn−k(c4x
4+ c3x

3+ c2x
2+ c1x+ c0)

= c4x
14+ c3x

13+ c2x
12+ c1x

11+ c0x
10. (5.2)

where, n− k = 10, and M(x) refers to the  rst group of bits of the 20-bit multiplier

circuit (Example bits of Row 1 of Fig. 5.2) and Xn−k is the n− k bit shifted version of

M(x).

The parity check bits are generated as follows:

P(x) = xn−kM(x) mod g(x). (5.3)
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5.2 The Proposed Cross Parity Code

Let us consider the generator polynomial of M(x) to be g(x) = x10 + x8 + x5 + x4 +

x2 + x+1. Then the parity expression for the  rst row for a 6 bit error detection is of

the following form:

P(x) = p9x
9+ p8x

8+ p7x
7+ p6x

6+ p5x
5+ p4x

4+ p3x
3

+p2x
2+ p1x

1+ p0. (5.4)

Let us consider a 3-bit correcting BCH code. Hence it can detect 6 bit errors in a

single code word. So to detect multiple errors in a 5-bit code, a total of ten parity bits

are needed. They are as follows:

p0 = c0+ c2+ c4, p0 = d0+d2+d4+ e0+ e1+ e2+ e3, p1 = c0+ c1+ c2+ c3+ c4

p1 = d0+d1+d2+d3+d4, p2 = c0+ c1+ c3

p2 = d0+d1+d3+ e1+ e2+ e3, p3 = c1+ c2+ c4

p3 = d1+d2+d4+ e0+ e2+ e3

p4 = c0+ c3+ c4

p4 = d0+d3+d4+ e0+ e2

p5 = c0+ c1+ c2

p5 = d0+d1+d2+ e2

p6 = c1+ c2+ c3

p6 = d1+d2+d3+ e0+ e3

p7 = c2+ c3+ c4

p7 = d2+d3+d4+ e1

p8 = c0+ c2+ c3

p8 = d0+d2+d3+ e0+ e1+ e3

p9 = c1+ c3+ c4

p9 = d0+d3+d4+ e0+ e2.

Here, the ′d′s and ′e′s are the inner products of the multiplier [29]. In a similar way

all the rows can be encoded using the Hamming codes [37]. However, the BCH codes

have better error detection coverage than the Hamming codes and hence in this design

example, only the BCH encoding based scheme is considered. The columns are en-

coded using the simple parity scheme as this enables us to locate an error in a row,

while keeping the hardware complexity low. Every two bits are protected by a col-

umn parity CP as shown in Fig. 5.2. The column parities of the  rst two columns of
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example marked in gray (Fig. 5.3) are determined as shown in the following:

CP0 = c0⊕ c10 (5.5)

CP1 = c5⊕ c15 (5.6)

CP2 = c1⊕ c11 (5.7)

CP3 = c6⊕ c16. (5.8)

The rest of the column parities, CP4 to CP9, are generated exactly the same way as

CP0 to CP3 are generated.

The set of BCH row parities that is used to encode the row helps to determine the

occurrence of the multiple errors in each row. Similarly, Eq. (5.5) to Eq. (5.8) com-

puted for each column also predict the particular bit that is in error using the properties

of cross parity. The row error information together with the column error information

coupled with a simple AND-XOR decoder helps to correct the erroneous bits. Some

of the error patterns that the proposed technique can correct for the 20-bit example are

given in Fig. 5.3.

Figure 5.3: Example patterns for BCH based cross parity code based correction for a

20-bit multiplier.

An example pattern of a BCH code based cross parity code for 64 bit multiplier is

shown in Fig. 5.4. As in the previous example, a 6-bit error detectable BCH encoder
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is considered for each row. In each column the simple parity codes for column error

information is used for column encoding. Hence this architecture can detect 2-bit

errors in each column and 6 bit errors in each row. This implies that it can correct

up to certain 12 bit errors for the 64-bit example. Some of the example patterns are

highlighted in color in Fig. 5.4. Similar color patterns indicate a single group having

multiple errors.

Figure 5.4: Example patterns for BCH based cross parity code based correction for a

64-bit multiplier.

5.3 The Proposed Decoding Algorithm

In this section, a novel reduced complexity decoding algorithm is proposed for multiple

error correction. The complexity of classical decoders has been bypassed by using the

fairly simple cross parity codes. The decoding circuitry presented in this section uses

a simple AND-XOR logic to perform the correction. For example, let us consider the

pattern in the top left of Fig. 5.3 shaded in grey indicating that bits c0, c1, c5 and c6

are in error. Any error in bits c0 and c1 are detected using the BCH encoding of row 1

and similarly the errors in c5 and c6 are detected by BCH encoding of row 2. But

this detection only shows the error occurrence but not the location. The locations of

the erroneous bits in each row can be determined using the column parties as bit c0

is protected by CP0, and bit c5 is protected by CP1. Similarly, the bits c1 and c6 are

protected by CP2 and CP3 respectively. By using the combination of both row and

column parities, it is possible to locate the bits in error. A detailed diagram of the

cross parity code decoder is shown in Fig. 5.5. The RP and CP inputs represent the

row and column parities and the multiplier output is represented with C in the internal
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architecture of the decoder. The error correction block of the multiplier circuit is shown

in Fig. 5.6.

Correction"Bits

""""O/P
Multiplier

CPRP

Correction"Block

"Xor "Xor "Xor "Xor "Xor "Xor

AND"ARRAY"

OR ARRAY

RP RP RP CP CP CPC C C C C C

OR ARRAY
m

r t

m

s l

Figure 5.5: Detailed block diagram of the cross parity decoder.

C_Correct

XOR XOR XOR

T1 C1 T2 C2 Tm$1 Cm$1

TE

""""Bits
Correcction

O/P
Actual"Mult.

C

m

Figure 5.6: Internal details of the correction logic.

The proposed decoding scheme is presented in Algorithm 1. The steps used to gen-

erate the bit streams considered in the  nal error correction is presented in Algorithm 2.

The algorithm uses the following notations: A(x), B(x) are the multiplier inputs and

C(x) is the multiplier functional block output. P(x) is the primitive polynomial of the

 eld. Let Er[i] and Ec[ j], for 0≤ i < r and 0≤ j < t, be arrays of u≥ 1 and v≥ 1 bits

for storing the row and column encoded bits respectively, and TE represent the output

of the cross parity decoder that has the correction information, and Ccorrect be the  nal

correct output.
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Algorithm 1 Proposed decoding steps for cross parity code.

1: Input : A(x), B(x),C(x), P(x) ∈ GF(2m).

2: Output : Ccorrect(x).

3: for i = 0 to r−1 do

4: ER[i] = BCH encoding of row i;

5: end for

6: for j = 0 to t−1 do

7: EC[ j] = Simple parity of column j.

8: end for

9: TE = Call Algorithm 2;

10: Ccorrect =C⊕TE;

11: returnCcorrect;

Algorithm 2 Proposed steps to generate the bit streams.

1: Inputs ER[i],0≤ i < r, EC[ j],0≤ j < t, C(x) ∈ GF(2m)

2: Output TE.

3: Variables tr : r-bit Array, tc : t-bit array;

4: Initialize tr and tc to all 0s;

5: for i = 0 to r−1 do

6: tr[i] = Logical OR of the syndrome bits in ER[i].

7: end for

8: for j = 0 to t−1 do

9: tc[ j] = Logical OR of the syndrome bits in EC[ j].

10: end for

11: TE = Call Algorithm 3 with tr, tc,TE;

12: return TE.

Algorithm 3, required by Algorithm 2, uses simple bit-wise AND operations on

the corresponding bits in tc and tr, as determined by the for-loops, to locate the bits in

error in C and produces TE. This information is used to correct any error in the  nal

output, as shown in Algorithm 1.

Most of the algorithms are self explanatory, and hence the details are left out for

brevity.

A simple AND-XOR logic is used to correct the detected errors. Some of the
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Algorithm 3 Error location.

1: Parameters tr, tc,TE;

2: Variables i, p,q : integers;

3: Output TE;

4: for i = 0 to m
2
−1 do

5: for p = 0 to m
2k
−1 do

6: for q = 0 to m
2
−1 do

7: TE[i] = tr[p] AND tc[q];

8: q = q+2;

9: end for

10: p = p+1;

11: end for

12: i = i+1;

13: end for

14: for i = m
2
to m−1 do

15: for p = m
2k
to m

k
−1 do

16: for q = 1 to m
2
−1 do

17: TE[i] = tr[p] AND tc[q];

18: q = q+2;

19: end for

20: p = p+1;

21: end for

22: i = i+1;

23: end for

24: return TE;

example patterns of the erroneous bits to be corrected using the cross codes are shown

in Fig. 5.3 and Fig. 5.4. A set of erroneous bits are denoted by the same color. Example

patterns of errors in a 64-bit  nite  eld multiplier over GF(26) with BCH encoding in

each row is shown in Fig. 5.4. In this case, with a BCH(31,16) code, one can detect up

to 6 errors per row thereby increasing the number of bits being corrected, as compared

to the simple Hamming codes.
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5.4 Performance Bounds of the Proposed Scheme

In this section the performance bounds of the proposed technique is presented. For any

n, k, and dmin, the following parameters applies:

Number of detected errors = dmin−1, (5.9)

Number of corrected errors =
dmin−1

2
. (5.10)

where, dmin is the Hamming distance between code words. For a Hamming distance

dmin, the total number of code words possible are 2
n−1. Among these code words, there

are 2k−1 codes, which will be detected but another 2k−1 codes will escape detection.

This is due to the fact that, some erroneous code words may have the same property as

that of a valid code word.

5.4.1 Theoretical Bounds

This section presents the mathematical treatment and closed form expressions for the

proposed technique. First, a closed form expressions for the total number of error

patterns the proposed technique can correct is derived, out of all the possible error

patterns, and then using this the theoretical bounds on its error correction capability is

also formulated.

Without loss of generality, let us assume that the bits are ordered from right to left,

with the MSB being the left most bit. Let m, where m is an even number, represent the

total number of bits under consideration1. The m input bits are grouped into a number

of k-bit chunks for k ∈ {y|(1≤ y≤ m
2
) and (m mod 2 · y = 0)}. For 1≤ i≤ m

2k
, let Pi

represent a pair of k-bit groups under the same parity check circuitry.

Assuming an error detection capability of d = dmin− 1 (1 ≤ d ≤ k) bit errors per

group, the total number of bit errors which the proposed technique can correct is ≤ d ·
m
2k
. The best case bound occurs with d = k, in which case the number of bits corrected

is ≤ k · m
2k
, i.e. ≤ m

2
. However, this is subject to the condition that, for 1 ≤ i ≤ m

2k
,

at most one of the k-bit groups in each pair Pi is in error. Hence, a better picture

of the error correction capability maybe obtained by considering the total number of

1If m is an odd number, then m can be expressed as the sum of a suitable even number and another

odd number.
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error combinations the proposed technique can correct out of all the possible error

combinations.

For the analysis, the presence of 1 in a bit position implies that the corresponding

bit is in error. Hence, there are 2m−1 possible error combinations. Assuming that the

group pairs are adjacent, with P1 being the right most one, let Di be the total number

of correctable error combinations up to Pi. Here, if both of the groups in Pi are in

error, then Pi is undetectable, and hence the whole input pattern is uncorrectable. This

is explained in the following lemmas.

Lemma 1 Considering a single group pair independently and detection capability of

1≤ d ≤ k bit errors in any combination within a group, the total number of corrected

fault combinations in any single group pair is

D1 = 2 ·
d

∑
j=1

(
k

j

)

.1 (5.11)

Proof. Let us consider the k-bit group pair as shown below:

k
︷ ︸︸ ︷

bk−1 · · ·b2b1b0

k
︷ ︸︸ ︷
ak−1 · · ·a2a1a0 .

Clearly the total number of correctable faults in either group is ∑d
j=1

(
k
j

)
. Now, this

group pair is correctable if one of the groups is in error at a time. Hence, the total num-

ber of correctable faults in this group pair is, D1 = ∑d
j=1

(
k
j

)
+∑d

j=1

(
k
j

)
= 2 ·∑d

j=1

(
k
j

)
.

[Q.E.D.]

In general, the number of corrected error combinations up to the pair of groups Pi

is given by the following.

Theorem 1 The total number of corrected fault combinations, with 1≤ d ≤ k bit error

detection capability per group, up to Pi for 1≤ i≤ m
2k

is

Di = (2 ·
d

∑
j=1

(
k

j

)

+1)i−1. (5.12)

1
(
n
r

)
denotes the number of ways of choosing r objects from n objects for 0≤ r ≤ n.

86



5.4 Performance Bounds of the Proposed Scheme

Proof. The proof is done by induction on Di and i≥ 1.

Base Case: Substituting i = 1 in Eq. (5.12) yields D1 = 2 ·∑d
j=1

(
k
j

)
+ 1− 1 =

2 ·∑d
j=1

(
k
j

)
, which proves the base case by Lemma 1.

Induction Hypothesis: The theorem holds for Dr and 1≤ r < m
2k
.

Induction Step: This show that the theorem holds for Dr+1. Let us consider the set

of correctable bit combinations up to Pr: SUr = {a1,a2, . . . ,av}, where v = |SUr|
1 =

(2 ·∑d
j=1

(
k
j

)
+1)r−1, by the hypothesis. Now the set of correctable bit combinations

for Pr+1 is Sr+1 = {b1,b2, . . . ,bw}, where w = |Sr+1| = 2 ·∑d
j=1

(
k
j

)
, by Lemma 1. To

obtain the set of correctable combinations up to Pr+1, i.e. SUr+1,  rstly let us con-

struct two sets: S′r+1 = {Z2k}∪Sr+1 = {Z2k,b1,b2, . . . ,bw}, and SU
′
r = {Z2rk}∪SUr =

{Z2rk,a1,a2, . . . ,av}, where Z2k and Z2rk are all-2k and all-2rk zero combinations re-

spectively. The elements Z2k and Z2rk are added for covering all the correctable combi-

nations up to Pr+1. Then one obtain the set SU
′
r+1 by performing a Cartesian product

of S′r+1 and SU
′
r, i.e.

SU ′r+1 = {XY |X ∈ S′r+1 and Y ∈ SU ′r}

= {Z2kZ2rk,Z2ka1, . . . ,bwav}.

which has

|SU ′r+1| = |S′r+1| · |SU
′
r|

= (2 ·
d

∑
j=1

(
k

j

)

+1) · (2 ·
d

∑
j=1

(
k

j

)

+1)r

= (2 ·
d

∑
j=1

(
k

j

)

+1)r+1.

elements. Clearly, the set SU ′r+1 contains all the correctable combinations up to Pr+1,

however, the combination Z2kZ2rk ∈ SU ′r+1 does not represent any error condition.

Therefore, the set of actual correctable combinations up to Pr+1, SUr+1 = SU ′r+1−

{Z2kZ2rk}. This implies that |SUr+1| = (2 ·∑d
j=1

(
k
j

)
+ 1)r+1− 1 = Dr+1. Hence the

proof follows. [Q.E.D.]

1The notation |S| denotes the number of elements in the set S.
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Corollary If all the k erroneous bits per group are detectable for errors, i.e. d = k,

then we have

D1 = 2k+1−2 (5.13)

and

Di = (2k+1−1)i−1 (5.14)

Proof. Follows from Eq. (5.11) and Eq. (5.12) by substituting d = k, and simplifying

and noting that ∑k
j=0

(
k
j

)
= 2k. [Q.E.D.]

Theorem 2 Given an m input circuit and k bit grouping and an error detection capa-

bility of 1≤ d ≤ k bit errors per group,

• The total number of correctable fault combinations,

Dw = (2 ·
d

∑
j=1

(
k

j

)

+1)w−1. (5.15)

where w = m
2k
.

• The total number of uncorrectable fault combinations,

Uw = 2m− (2 ·
d

∑
j=1

(
k

j

)

+1)w−2. (5.16)

Proof. Follows trivially from Theorem 1 and the fact that the total number of possible

faults is 2m−1. [Q.E.D.]

The following theorem gives the theoretical bounds of the proposed cross parity

scheme.

Theorem 3 (Theoretical Bounds) Given an m input circuit, for all permissible values

of k, d, and w, the error correction capability of the proposed technique is bounded by

m≤ Dw ≤ 3
m
2 −1, i.e.,

• the lower bound on the number of errors corrected, Dmin = m, and,

• the upper bound on the number of errors corrected, Dmax = 3
m
2 −1.
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Proof. The lower bound is dictated by the minimum value of Dw in Eq. (5.15). For

Dw to be minimum, w and d need to be minimum. The minimum permissible value of

w is 1 and that of d is also 1. This implies that k = m
2
. Substituting these in Eq. (5.15)

gives us Dmin = D1 = 2 ·
((m

2 )
1

)
= m.

The upper bound is dictated by the maximum value of Dwin Eq. (5.15). Dw is

maximum when w is maximum. The maximum permissible value of w is m
2
. This

implies that k = 1, and also d = 1. Substituting these in Eq. (5.15) gives us Dmax =

Dm
2

= (2 ·1+1)
m
2 −1= 3

m
2 −1.

Hence the proof follows. [Q.E.D.]

The theoretical formulations were coded in C++ and tested with all the permissible

values of k and d for various input sizes. Table 5.1 shows the trend of the number of

corrected error combinations for a typical 16-bit circuit for all permissible values of k

and d. The theoretical upper and lower bounds appear in the top and the bottom rows

respectively. In addition, this was veri ed with a simulation program, also developed

in C++, for generating all the possible error conditions, given m number of bits, and

determining how many of those error conditions were corrected based on the behavior

of the proposed technique for different permissible values of d and k.

Table 5.1 clearly shows that as d approaches k, the variations in the total number

of corrected errors reduces, which is to be expected. Another interesting case arises

with d = k = m
2
. This implies that w = 1. Substituting this in Eq. (5.15) gives us,

D1 = 2 ·∑
m
2
j=1

((m
2 )
j

)
= 2

m
2 +1−2.

In this section, theoretically the capabilities of the proposed technique is analyzed.

In this regard, the theoretical upper bound merely shows the maximum number of

errors the technique can correct, out of 2m−1 possible error combinations. This limit

can be reached with k = d = 1, which implies that the inputs are aligned into a single

column, where each bit is tested for errors separately. In practice, this will depend on

the amount of extra hardware overhead that is desired in the application. Also, the error

detection capability per group d, for 1≤ d≤ k, will depend on the encoding techniques,

and not all values of d maybe practically feasible for a given m. As Table 5.1 indicates,

for a given m the optimum point is calculated in terms of the total errors corrected

by selecting a proper encoding algorithm that satis es the required value of d. In this

regard, performance analysis of the proposed technique under more practical settings

89



5.5 Cross Codes Over Digit Serial Multipliers

Table 5.1: Number of corrected errors for a 16-bit circuit.

Bits per Detection Total detected

group, k capability, d errors, Dw

8 1 16

8 2 72

8 3 184

8 4 324

8 5 436

8 6 492

8 7 508

8 8 510

4 1 80

4 2 440

4 3 840

4 4 960

2 1 624

2 2 2400

1 1 6560

is presented in Section 5.6. The results indicate that the proposed scheme, albeit its

simplicity, can correct far more errors than well established coding algorithms with

acceptable hardware overheads.

5.5 Cross Codes Over Digit Serial Multipliers

In this section the proposed cross parity scheme is applied to more practical multipliers

such as very large scale word level or digit serial multipliers over binary extension

 elds. As a practical test bench design, a FIPS/NIST standard 163-bit digit serial

multiplier suitable for secure ECC operations [73; 74] has been considered.
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5.5.1 Organizing Bits in a 163-bit Multiplier

Till this section, all design example test circuits that were considered had an even

number of output bits. When the number of bits are odd, the can be organized in two

different ways:

1. Zeroes are added to the MSB of the circuit to make them even number of bits, or

2. They are split into a sum of even and odd bits and treat them separately.

In this section, the digit serial 163-bit multiplier is treated using the second ap-

proach. The circuit bits are split into two groups. The  rst group is with 160 bits (bits

0-159) and the second group is with 3 bits. The cross parity code scheme is then ap-

plied to both the groups separately. The  rst group is made fault tolerant in the same

way as explained in the bit parallel circuit design example. In case of the rest 3 bits,

split Hamming codes on the rows and simple parity on the columns are applied so that

any error in these 3 bits (bits 160-162) are detected and corrected. Hamming codes are

used on these 3 bits to keep the area overhead low.

To the best of our knowledge, this is the  rst time such a large scale multiplier has

been made multiple errors correctable based on coding techniques. The reason seems

to be that, most of the existing error correction techniques are suitable for either sin-

gle bit error correction or designed with only bit parallel implementations in mind and

hence are not suitable for large digit serial implementations. In addition, the chip area,

delay, and power requirement of bit parallel implementations of a 163-bit multiplier

over extension  elds is simply too high under current technology to be of any practical

use. This is further complicated by the fact that the error detection, decoding, and cor-

rection blocks of the existing techniques are all designed with parallel combinational

logic, which takes up a signi cant amount of chip area, thus further adding to the over-

head. These blocks are also placed on chip to run in parallel with the functional blocks

for concurrent error detection/correction, thereby incurring signi cant power drains.

Unlike these approaches, the proposed design scheme is suitable for both bit parallel

and digit serial implementations, where appropriate.

In this section an attempt is made to evaluate the complexity of the proposed

scheme over a large scale digit serial multiplier architecture to better understand the
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overall space complexity. The error correction architecture used in the digit serial mul-

tiplier is the same as that in bit-parallel designs despite the fact the bits are divided

into 2 groups and treated separately. It is possible to have a direct mapping of designs

between bit-parallel and digit serial structures due to the low complexity decoding

of the proposed architecture. The digit serial multiplication is designed using a sin-

gle accumulator multiplier architecture. The multiplication algorithm is as shown in

Algorithm 4 [23]. The results of this implementation, along with performance charac-

teristics, appear in Section 5.6.

Algorithm 4 The steps for multiplication [23].

1: Input : A(x) = ∑m−1
i=0 ai · x

i, B(x) = ∑m−1
i=0 bi · x

i, P(x);

2: Output : C(x) = A(x) ·B(x) mod P(x);

3: C = 0;

4: for i = 0 to (⌈m/D⌉−1) do

5: C = Bi ·A+C;

6: A = A ·αD;

7: end for

8: returnC mod P(x);

5.6 Experimental Results

In Section 5.4 the closed form formula for determining the exact number of error pat-

terns the proposed technique can correct, out of all the possible error conditions is

derived. This section also derives the theoretical bounds on the number of corrected

errors. This section further investigates the performance of this technique in terms of

more practical settings. The performance analysis is carried out based on:

• functional veri cation associated with ASIC prototyping;

• hardware performance analysis in terms of area overhead, total required area,

power consumptions, and overall delays�this was done based on available tar-

get technology;
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• comparison of hardware area, power, and delay with existing error correction

hardware;

• recoverability analysis in terms of various numbers of randomly injected faults

for a 163-bit FIPS/NIST multiplier, which was compared with other coding tech-

niques.

As a case study of the design complexities and performance of the proposed tech-

nique, both bit parallel and digit serial multipliers of various complexities over the

binary extension  elds have been subjected to multiple fault tolerance. In particular,

for a realistic measure of the performance, a 163-bit digit serial multiplier, which is

considered to be the standard for Public Key Cryptography (PKC) set by NIST and

FIPS is also made fault tolerant with the proposed technique.

5.6.1 Functional Simulation and ASIC Prototyping

The proposed technique has been applied to bit parallel multipliers over binary exten-

sion  elds to make them fault tolerant. The designs are implemented in VHDL and

simulated for functional correctness using ModelsimTM. The design is then synthe-

sized using the SynopsysTM design compilers. Both 180nm and 90nm technologies

are used for gathering realistic and up to date performance of the circuits. The  nal

synthesized netlist is used for constructing the physical layout with the help of the SoC

EncounterTM tool from CadenceTM.

For comparison purposes and gaining a better understanding of the area overhead

complexity of the proposed scheme, various multiplier designs are encoded row wise

using both Hamming and BCH code based encoding. The area complexities of the

various multiplier sizes, the Hamming code based cross parity scheme, and BCH en-

coded scheme are given in Fig. 5.7. Fig. 5.8 shows the area overhead comparison of

the error detection and correction blocks of the cross parity code architecture of both

Hamming and BCH based designs. It is evident from the bar chart that the area over-

head is comparable. This is due to the fact that BCH and Hamming encoders required

the same number of parity bits when they are used in cross parity code arrangements.

However, the more effective the error detection code is for the row coverage, the better

is the overall error pattern and error correction coverage achieved.
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Figure 5.7: Area of various multiplier sizes.
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Figure 5.8: Comparison of error detection and correction block areas of Hamming vs

BCH cross parity code in 90nm technology.

Table 5.2: Comparison of the proposed scheme with other approaches for 32-bit mul-

tiplier.

Property [29] [69] [10] Cross Par. (Ham) Cross Par. (BCH)

#Errors single single 3 Errors up to 6 Errors up to 12 Errors

Technique Hamming LDPC Classic BCH Hamm. + Simple Parity BCH + Simple Parity

Overhead >100% >100% 150.4% 108% 120%
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Table 5.2 compares the proposed cross parity code approach with other error cor-

rection schemes available in open literature. For a fair comparison, 32-bit multipliers

over the binary extension  elds are considered. It is clear from Table 5.2 that the

proposed method can correct a greater number of errors with lesser area overhead as

compared to the other well established schemes.

The area overhead of the proposed cross parity based method is depicted in Ta-

ble 5.3. It is observed for the experimental analysis that the area overhead for both

BCH and Hamming based cross parity schemes are very close. This is due to the

fact that, only the error detection part of the BCH codes is used. The area overhead

for a very simple 10-bit multiplier is only 142%. As the multiplier size grows, the

percentage area overhead due to the parity generation circuit and the correction logic

grow more slowly. For example, in contrast, the area overhead of a 80-bit multiplier

with multiple error correction capability is just 101%. This is noticeably smaller as

compared to the classic multiple error correction schemes based on only single error

correction capability. Even though the design is not correcting all the possible error

patterns, the likely hood of many error patterns occurring is extremely low. This is

because of the standard industrial assumption that the probability of radiation particle

interference resulting in multiple bit !ips can be as low as one in one million clock

cycles. Hence the proposed scheme can provide excellent error masking capability

with area overheads as low as 106% for an 80-bit bit parallel multiplier with BCH row

encoding.

Table 5.3: Area overhead comparison of various multiplier sizes.

No. of bits Hamming BCH

10 142% 160%

15 123% 152%

20 121% 140%

32 108% 120%

48 105% 116%

64 104% 114%

90 101% 106%

The power dissipation of the proposed scheme has been analyzed. Fig. 5.9 com-
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pares the power consumptions of both Hamming and BCH encoding based designs in

90nm technology. As in the case of area, the power pro les of both Hamming and

BCH based schemes are very much comparable. The analysis is done on both 90nm

and 180nm TSMCTM technology libraries. For simplicity, the area and power compar-

ison is mainly done in 90nm technology. As they have comparable area overhead, the

power dissipation is roughly close to each other as well.
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Figure 5.9: Comparison of power consumption of Hamming vs BCH cross parity code

in 90nm technology.

5.6.2 Experimental Analysis of a 163-bit Digit Serial Multiplier

It is known that the bit parallel multipliers are mainly used in applications requiring

very high performance. For more complex computations, the classic bit parallel mul-

tipliers cannot be used as the area complexity simply explodes as the multiplier size

increases. Hence the digit serial multipliers as used as a trade off between the area

complexity and performance. Therefore, the proposed scheme has been veri ed over a

more realistic and practically applicable 163-bit digit serial multiplier. The area over-

head of the 163-bit digit serial multiplier, with both Hamming and BCH encoded cross

parity error correction scheme, has been analyzed. Fig. 5.10 shows the bar chart of the

area overhead for the 163-bit multiplier for different digit sizes. The digit sizes of 2,

4, and 6 are considered. The overhead plot clearly indicates that the space overhead

signi cantly reduces for higher digit sizes of the digit serial multiplier.
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Figure 5.10: Area overhead of error detection and correction block for 163-bit digit

serial multiplier.

To complete the design !ow, the proposed architecture is implemented using RTL

synthesizable VHDL code. Also the design is synthesized with the 0.18µm technology

using the SynopsysTM design compiler tools. The back end process, place and route,

is carried using the Cadence EncounterTM tool set. The  nal layout of the 163-bit

multiplier design is shown in Fig. 5.11. The layout area, based on 6 metal layer, is

1.84mm2. The physical layout of the 163-bit digit serial multiplier design with the

Hamming encoded cross parity scheme using the Cadence SoC EncounterTM tool have

been generated. Fig. 5.11 shows the generated layout of the resulting design.

Fig. 5.12 shows the complexity of cross code parity predictor block of Fig. 5.2 for

various multiplier sizes for both Hamming and BCH encoding schemes.

5.6.3 Recoverability Analysis of the Proposed Design

Recovery analysis is vital in experimentally validating the performance of an error

correcting scheme. In order to validate the proposed technique, a behavioral model of

the error correcting circuit was constructed in C++. The circuit is then subjected to

fault injection based analysis. The fault simulation is mainly carried out in 3 parts. In

the  rst part, errors are randomly injected ranging from 1-bit error up to 13-bit errors

and the simulation is carried out for two million iterations. This is to validate the

performance of the circuit in standard case. In the second and third parts the errors are
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Figure 5.11: Layout of the 163-bit multiplier with cross parity code correction block.
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Figure 5.12: Number of required parity bits for various multiplier size in both Ham-

ming and BCH based schemes.

injected electively between the circuit output bits 0�79 and 80�159 respectively. The

second and third validations are also carried out over two million iterations each.

Owing to the novel decoder design, together with the segmentation of the bit pat-

terns, and the fact that only the encoding features of the classical codes (e.g. BCH and

Hamming) are used, it is observed that the proposed technique can exceed the limit
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of dmin− 1 detected errors. This was also re!ected in the simulation results, which

showed up to 90% error detection with the proposed scheme.

Table 5.4 shows the comparison of the proposed scheme under random fault in-

jection with respect to other multiple error correction schemes. It is evident that most

of the classical approaches fail after 3-bit errors (when a code with dmin = 7 is used)

whereas the range of the proposed technique clearly extends up to 13-bit errors when

the errors appear randomly.

Table 5.4: Fault coverage comparison of proposed technique with other techniques.

No. of faults Hamming Split Hamming BCH Proposed

1 100% 100% 100% 100%

2 0% 48% 100% 90.2%

3 0% 0% 100% 73.5%

4 0% 0% 0% 54.3%

5 0% 0% 0% 41.1%

6 0% 0% 0% 33%

7 0% 0% 0% 26.43%

8 0% 0% 0% 10%

9 0% 0% 0% 7%

10 0% 0% 0% 5.1%

11 0% 0% 0% 4.3%

12 0% 0% 0% 2%

13 0% 0% 0% 1.8%

Table 5.5 shows the results of the proposed scheme�s correction capability when the

random faults are injection into either the group of bits 0�79 or 80�159. The proposed

scheme outperforms all other classical error correcting schemes as its correction range

clearly extends up to 80-bit errors. An example plot that shows the error coverage range

appears in Fig. 5.13. For plotting simplicity, the plot depicts only up to 7 injected errors

though it can correct up to all the 80 bits in reality.

When simulated under the best performance bound, the circuit is iterated over two

million times with random bit errors, ranging from single bit error to 80-bit errors.

These errors are injected into either bits 0�79 or 80�159 to study the probability of
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Table 5.5: Fault coverage comparison of the proposed technique with other techniques.

No. of faults Hamming Split Hamming BCH [Proposed]

1 100% 100% 100% 100%

2 0% 48% 100% 100%

3 0% 0% 100% 100%

4-33 0% 0% 0% 100%

34-79 0% 0% 0% 98%
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Figure 5.13: Range of the proposed scheme with injected errors in bits 0-79 or 80-159.

undetectable bit patterns occurring due to the theoretical performance bounds given in

Section 5.4. The experimental results, given in Fig. 5.14, demonstrates that only 1% of

the cases out of the two million random errors fell outside the correction capability of

the proposed scheme. This is a clear advantage of the proposed technique over other

multiple error correction techniques.

From a theoretical point of view, for the 160-bit part, assuming that any one or more

of the 160 bits can be in error simultaneously, i.e. with m = 160, k = 16, and d = 6,

the proposed technique is able to correct 2.34416× 1022 errors (from Theorem 2),

whereas a complete BCH algorithm, with e= d
2

= 3, can correct ∑e
j=1

(
160
j

)
= 682,800

errors. Hence, for this speci c design the proposed technique can correct 2.34416×10
22

682,800 ≈

3.43×1016 times more errors out of all the possible 2160−1 error conditions compared

to the BCH technique in its entirety. To determine the complexity of the BCH scheme
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Figure 5.14: Undetected errors under best performance bound.

to match the correction capability of the proposed scheme, i.e. to be able to correct

2.34416×1022 error combinations for a 160-bit circuit, a C++ program is developed.

This is used to  nd out how many bits the BCH scheme would need correcting, given

m number of bits and q number of error conditions. A simple algorithm is used as

follows: For 1 ≤ r ≤ m to  nd the maximum value of r such that s = ∑r
j=1

(
m
j

)
is

maximum and s≤ q. The result obtained form= 160 and q= 2.34416×1022 indicated

that the BCH scheme would require 17 bit correction capability, with a 2× 17 = 34

bit detection capability, i.e. the minimum required Hamming distance needs to be

34+1= 35. The hardware complexity of such a scheme for detecting errors in any bit

position simultaneously in a 160-bit circuit could be too high to be of any practical use.

Hence, perhaps it is fair to claim that the proposed technique is capable of correcting

signi cantly more errors, compared to well established multiple error correction codes

for comparable hardware overheads.

5.7 Summary

This chapter proposed a novel multiple error correction scheme based on cross parity

codes in order to address the temporal faults in circuits, mainly occurring due to radia-

tion interferences. The scheme provides with a high degree of multiple error correction

capability, with acceptable hardware overheads. With this technique the m outputs of

101



5.7 Summary

a circuit are broken into k-bit groups and m
2k
group pairs. Each k-bit group is encoded

with classical encoding algorithms, e.g. BCH or Hamming, while the error detection,

location, and correction is done with simple parity per group pair, together with pair-

wise AND operations and bit !ips. This enabled us to bypass the area intensive error

detection, decoding, and correction blocks of the classical codes thus signi cantly re-

duce the area complexity of the extra hardware. The theoretical bounds of the scheme

are derived it has been shown that it can correct up to 3
m
2 − 1 combinations out of all

the possible error combinations, and correct up to m
2
bit errors per input. This is sig-

ni cantly superior to existing approaches with comparable hardware overhead. In this

regard, it was observed by making a 163-bit FIPS/NIST standard digit serial GF mul-

tiplier error tolerant, that to match the proposed error correction capability, the extra

hardware required by classical codes may not be feasible for most practical designs.

As benchmark test cases, 80-bit bit-parallel multipliers and a 163-bit digit serial

FIPS/NIST standard multiplier over GF are considered. The rational behind selecting

these circuits was that the multipliers are the most complex blocks in crypto-cores and

they occupy the largest area on the wafer. As such they are much more susceptible to

radiation particles, and hence to errors and transient attacks. The experimental results

suggested an overhead of 101% and 170% for the 80-bit parallel and the 163-bit digit

serial multiplier, with digit sizes of up to 6 bits and error correction capabilities in ex-

cess of 3-bit errors. This was found to be signi cantly better than existing approaches.

Owing to its high degree of error correction capability, the target applications in-

clude critical areas, e.g. for mitigating fault related attacks in crypto-hardware, in

radiation prone space and nuclear applications, and so on. The proposed technique can

also be an excellent candidate for most practical systems with a high degree of inter-

nal node fanout. In these systems, any single fault at an internal node with multiple

fanouts can manifest as multiple faults at the output. Clearly, single error correction

techniques and techniques with low error correction capabilities will be inadequate for

these applications.
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Chapter 6

GF Circuits Using Emerging

Technologies

6.1 Introduction

Cryptography is a unique area where one needs secure operation at faster computation

rates. In order to achieve faster computation and high integration, the device geometry

needs to be scaled down. The advancements in CMOS technology, driven my Moore�s

law, was a bene t to the crypto-hardware designers until its integrity and reliability

were questioned because of its susceptibility to transient and permanent faults. How-

ever, since the high integration is a much desired factor in digital ICs, its high reliability

should be ensured. According to the ITRS-2009 survey, it is evident that further scaling

in CMOS devices is limited by the adverse performance of the devices beyond 20nm

geometry. Since then, research has been conducted to  nd new technologies, device

structures and materials to overcome the limitations that CMOS technology possesses

for further scaling. According to the survey, the potential candidates for overcoming

the scaling limitation of CMOS are Carbon Nano Tube Field Effect Transistors (CNT-

FETs) and Quantum Cellular Automata (QCA) circuits. Although these schemes may

support dimensionality reduction, small feature size makes them more vulnerable to

the malicious, transient fault based attacks and other permanent faults such as stuck-at

faults. This is an unavoidable aspect in areas such as cryptography where high end

reliability and integrity should be paramount [6].
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As the scaling of devices in CNTFETs and QCAs goes beyond 20nm or less, they

become more and more susceptible to faults and transient attacks. These faults, either

natural or malicious, can result in multiple bit errors at the output of the functional

blocks. In either case, the end result may be catastrophic. Hence the circuits realised

using emerging technologies may also be subjected to malicious attacks as explained

in previous chapters of this thesis.

Thus it is evident that error tolerant schemes are inevitable even in future technolo-

gies. As cryptography and dedicated crypto-hardware is an inevitable part of modern

digital VLSI circuits, crypto-devices using emerging technologies should also be re-

searched for feasible fault tolerant methods to ensure their reliability [17]. This chapter

thus investigates the performance  gures such as power and delay of multiple error de-

tecting schemes over bit parallel Normal Basis (NB) GF multiplier implemented using

emerging technologies such as CNTFET and QCA.

6.2 Effects of Faults on Reliability of Galois Field Cir-

cuits

The effect of faults and their impact on the  nite  eld circuits are investigated in this

section. Normal Basis multipliers over binary extension  eld are considered as test

bench circuits for the case study. The classical bit parallel NB multiplier structures can

be considered as AND-XOR logic structure divided into two main parts. The  rst part

generates them2 product terms realised with AND gates and second stage produces the

multiplication result by performing XOR operations over the product terms. The  nal

result generally has m2 AND gates and (m2−1) XOR gates with product terms shared

between m outputs. Sharing of the AND gates depends on the primitive polynomial

that is used to generate the  eld. Different primitive polynomial chosen for the same

 eld can result in different multiplier structure and hence different AND gates being

shared. Due to the sharing of gates, the shared product term forms a critical node of

fault. A transient fault induced on such a critical node thus propagates the erroneous

calculation to multiple outputs thus providing a wrong computational result. Targeting

such critical nodes for deliberate error injection and observations of the functional
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block�s response can give the attacker a clue about the secret information within the

chip.

A B

C

m - bit m - bit

m - bit

m2 - bit

AND Array

XOR Array

C
0

C
m-1

Transient Error

Figure 6.1: Effect of transient fault in a bit-parallel NB multiplier.

For better understanding of the critical nodes and the propagation of the faults in

NB multipliers, a generic NB multiplier example is shown in Fig. 6.1. This diagram

shows the AND array and XOR array that performs the NB multiplication. Due to the

modular reduction operation performed with the primitive polynomial, one or more

AND gates may be shared and these in turn are part of multiple output terms. Thus by

inducing fault in one of such critical shared gate can cause errors in multiple output

bits. The red highlighted path in Fig. 6.1 shows the erroneous critical AND gate and
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the multiple error caused by inducing an error at that node.

The general NB multiplication can be represented as,

C(x) = a(x) ·b(x) mod P(x) (6.1)

where, a(x) and b(x) are the multiplication inputs over GF(2m) and P(x) is the

primitive polynomial that de nes structure of the Galois  eld under consideration.

The multiplicands a(x) and b(x) are represented in NB as [75],

a(x) =
m−1

∑
i=0

aiα
2i (6.2)

b(x) =
m−1

∑
i=0

biα
2i (6.3)

There has been little research done on faults and fault tolerant designs for QCA.

The technique of [76; 77; 78] reports some of the causes of faults and fault tolerance

in QCA based circuits. The primary cause of faults and errors in QCA seems to be

due to the cell displacements and unwanted inversion during propagation. But to the

best of our knowledge, this is the  rst effort that has been made to analyse the classical

Hamming code based CED schemes in both CNTFET and QCA based designs.

In this chapter, a bit-parallel NB multiplier de ned over binary extended  eld by a

trinomial primitive polynomials of the form P(x) = xm + xk + 1 has been considered.

In general a bit parallel NB multiplier has m2 two input AND gates and (m2 − 1)

two input XOR gates. Due to their ease of implementation, they are widely used in

Elliptic Curve Cryptography (ECC) processors which are well known for ensuring high

security with lesser key-lengths. The interesting property of the NB multiplication is

that the squaring operation is very simple in NB as it is just the shift operation [79]. As

the shift operation is almost cost free in hardware, it is highly useful in more complex

inversion circuits.

Fig. 6.2 shows the basic block diagram of the Hamming CED scheme that is used

to detect multiple errors in the test bench NB multiplier circuits. In this design, an
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m m m m 

A B A B 

NB GF Multiplier Parity Predictor 

Error Detector

Error

Figure 6.2: Block diagram of parity based CED

additional parity bit is used in order to increase the Hamming distance to detect up to

3-bit errors.

Due to the limitations of the available present day EDA tools for synthesis of CNT-

FET and QCA circuits, the implementation results have been limited to circuits of

smaller sizes and complexities. However, theoretically, the designs can be extended to

more complex and effective multiple error correcting architectures, e.g. in [10].

6.3 Emerging Technologies

This section explores the two potential technologies that are considered to be the future

replacement for the CMOS technology. The primary candidates seem to be CNTFETs

and QCA. They are predominantly considered over other technologies due to their
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capabilities of maintaining high integration density, lower power consumptions, and

lower chip area requirements.

6.3.1 CNTFETs

The CNTFET based circuits are reported to be high performance alternatives to the ex-

isting CMOS technology in terms of area, power and speed. The  rst CNTFET device

was manufactured in 1998 and has been widely researched to check its adaptability to

replace the CMOS circuits. The CNTFET devices are preferred over CMOS devices

due to many reasons. One of the reasons is that CNTFET imposes only a slight in-

crease in the NRE cost of its fabrication. This is because of the fact that, CNTFETs

are similar to that of MOSFETs in physical structure except the conducting channel

material. In CNTFETs, the bulk silicon channel material of the MOSFET is replaced

by a single carbon nano-tube or by array of tubes. The in depth details of CNTFET

device properties are not discussed in this chapter. The physical properties and fea-

tures of CNTFETs are explained in [80]. The cross section of a CNTFET is as shown

in Fig. 6.3, wherein the channel material is a carbon nano tube having semiconducting

properties.

Figure 6.3: Cross Section of a CNTFET
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The fundamental idea of CNTFET based circuits is to continue with the aggressive

scaling in order to achieve high integration density. Typically the technology nodes for

these devices are expected to be 30nm or less, potentially making the logic circuits us-

ing the CNTFETs far more error prone as compared to their CMOS equivalent. Hence,

this makes the fault mitigating methods inevitable in such nano-scale arithmetic logic

circuits realised with CNTFET.

6.3.2 Quantum Dot Cellular Automata

Quantum Dot Cellular Automata (QCA) is another emerging technology that uses

quantum cells (with cell size less than 20nm) to propagate and process information.

In QCA the interconnection between the QCA logic gates is done by quantum wires

that are again realised using QCA cells as compared to the metallic wires in CNTFET

and CMOS technologies.

In QCA the logic is propagated because of the Coulombic interaction between the

driver QCA cell and its neighbouring cells. The binary logic representation and logic

propagation in QCA is shown in Fig. 6.4. Here the black thick dots represent the

electrons and void circles represent the holes or quantum dots. In Fig. 6.4, the thick

dots on the left diagonal of the quantum cell represents logical �0� (Polarity =−1) and

the thick dots on the right diagonal represents logical �1� (Polarity = 1).

Information flow in a QCA wireLogic �0� Logic �1�

Figure 6.4: QCA binary logic and QCA wire.

As shown in the information !ow part of Fig. 6.4, the electrons will try to settle

down as far as possible w.r.t to its neighbouring cell as a result of the electrostatic

repulsion of the same polarity charge carriers. In QCA, the data !ow in a circuit

is controlled by QCA clocking. The QCA clocking generally has 4 stages, namely,

release, relax, switch, and hold respectively. These four stages are shown in Fig. 6.5.

In the release stage, the tunnelling barrier begins to increase. In the relax stage the
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tunnelling barrier will be high; in the switch stage the barrier starts to reduce and it

will be low in the hold stage so that the logic information will be retained by the QCA

cell in that particular zone.

Clocking zones of a QCA cell

1

2

3

4

Release

Relax

Switch

Hold

Figure 6.5: QCA clocking.

The AND-XOR-OR logic gates using QCA are realised using QCAmajority gates.

The majority gate in principle acts as a voter that gives output as the majority of the

input logic. The majority with one input set to  xed polarity P = 1 acts as an OR

gate and as an AND gate if P = 0. A Majority OR-AND gate in QCA is as shown in

Fig. 6.6.

The XOR gate in QCA can be realised using three QCA AND gates and two in-

verters as shown in Fig. 6.7.

6.4 Concurrent Error Detection in Emerging Technolo-

gies

From the discussion so far, it is evident that critical applications in hardware such as a

crypto-processor are prone to transient error based attacks. Fig. 6.1 depicts a generic
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OR gate

P = 1 P = !1

In 1

In 2 

Out

In 1

In 2 

Out

In 1

In 2 

Out

In 3

Majority Gate AND gate

Figure 6.6: QCA Gates.

Figure 6.7: QCA XOR and simple NOT gate.

example to show how error or fault at one critical node may cause multiple bit errors

at the output. Owing to these facts, this chapter investigates the performance of the

error detection schemes in the potential emerging technologies. Since the emerging

technologies are still under research level, there are hardly any EDA tools available

for constructing complex designs. Hence this chapter is limited to investigation over

smaller design examples. However these may be extended to large circuits in the near

future with the availability of more capable CAD tools.
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6.4.1 Error Source in CNTFET Design

In CNTFET based designs, the main expected source of faulty operation can be sim-

ilar to its CMOS counterpart. They are, stuck-at faults due to minute particle deposi-

tion during manufacturing, stuck-open faults due to the electron migration, or ageing.

There can also be faults that result from the party intrusion using highly energised par-

ticles [77; 78]. Possibilities of such attacks are mainly reported in digital circuits used

in critical applications such as cryptography where an intruder is keen on leaking out

the hidden information such as a secret key.

The fabrication of carbon nano-tubes on silicon surfaces using controlled labora-

tory atmosphere can be dif cult due to the unpredictable behaviour of the resulting

CNT wires. The CNT grown on the silicon surfaces can either be metallic or semicon-

ducting in nature. The metallic CNT can produce a permanent short circuit between

drain and source of the transistor device and hence faulty device feature and high leak-

age current. This behavior of the CNT is the main cause for stuck-at or stuck open

faults. Hence, for CNTFET manufacturing, one prefers semiconducting CNTs, rather

than metallic ones.

6.4.2 Faults in Quantun Cellular Automata Designs

Even though there are designs and logic circuits that have been done using the QCA,

it is not always easy and straightforward to realize all digital circuits in QCA due to

unwanted cross talks and other faults in QCA cells.

As discussed in previous sections, the information carriers in QCA design are wires

that are realised using QCA cells themselves. It is observed in prior research that the

polarization of a QCA cell not only depends on just its adjacent cells but also on its

surrounding cells. This often gives rise to unwanted data manipulation while propaga-

tion especially in wire cross overs in complex designs. The other sources of faults can

be be due to the QCA cell displacement while manufacturing. A slight movement to a

cell from its intended position can give rise to incorrect data. These fault sources are

in addition to the error sources those are discussed in case of CNTFETs. The highly

energetic radiation can also introduce transient errors in quantum dot designs [81].
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Due to the minute device size in QCA, the circuit structures realised using QCA

technology may be easily vulnerable to radiation and other energized particle strikes.

The trend of reliability versus device miniaturisation shows an inverse dependability.

These investigations hence prove that fault tolerant techniques are inevitable in cur-

rent and emerging technologies. The following section explores the simple Hamming

code based CED technique and its implementation in emerging technologies.

6.4.3 CED using Predicted Parity

The Hamming codes are well known and easy to implement error detecting codes gen-

erally known as single error correcting and double error detecting codes (SEC/DED).

However, Hamming codes can also detect an extra bit error if the Hamming distance

is increased by adding an extra parity bit to the code. In this chapter 4-bit error de-

tecting Hamming codes are considered. In practice, to detect multiple bit errors, check

bits (parity) are generated from the primary input to compute the checksum for the

functional block (NB multiplier) as shown in Fig. 5.1.

The 4 bit Hamming parity for a 4-bit multiplier circuit is calculated in the follow-

ing:

P1 = C0⊕C2⊕C3 (6.4)

P2 = C0⊕C1⊕C3⊕C4 (6.5)

P3 = C0⊕C1⊕C4 (6.6)

P4 = C0⊕C1⊕C2⊕C4 (6.7)

The generated parities and the multiplier functional block outputs are then passed

on to the decoder to generate syndromes that detect the occurrence of an error. This

scheme can however be easily scaled to a single error correctable scheme by adding

the Hamming decoding part.

6.5 Experimental Results

This section presents the experimental results of the performance of CED in emerging

technologies as compared to their CMOS equivalent. For fair comparison, the CED
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schemes are implemented over NB multipliers of various sizes namely 1, 2, 3 and 4-bit

multipliers. The circuits are modeled at gate level using 45nm CNTFET library from

Stanford University and simulated for power and delay using the HSPICE simulator.

For comparison, the equivalent CMOS version has been implemented.

The QCA based circuits are designed using QCADesigner tool from the Walus

group of British Columbia University. However the tool is still under development and

only functional simulation is possible with the current version of the tool. A 2-bit NB

multiplier has been designed using the QCADesigner tool and CED scheme has been

embedded with it as shown in Fig. 6.10 and Fig. 6.12 respectively.
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Figure 6.8: Average power dissipation comparison of NB multipliers in CMOS and

CNTFET with or without CED.

The power dissipation comparison of the multiplier with and without CED of the

NB GF multiplier is shown in Fig. 6.8. The  gure shows the power dissipation pro le

of CMOS circuits with CNTFET equivalent. It clearly shows that the CNTFET based

technology is signi cantly superior to the CMOS based implementation with lower

power requirements.

Fig. 6.9 shows the variation of complexity of the parity prediction block as the

multiplier size increases. The trend shows a considerable increase in the parity bits
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required as the multiplier size increases. This diagram shows the number of parity bits

required for each multiplier size for a 3-bit error detection.
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Figure 6.9: Parity prediction block complexity w.r.t multiplier size.

For analysis, a QCA version of the 2-bit NB GF multiplier has been designed as

shown in Fig. 6.10. The implementation is achieved using AND-XOR logic based on

the QCA majority gates. The inverters used in the layout are the simple inverter logic

as shown in Fig. 6.7.

Fig. 6.12 shows the extended error detectable version of the Fig. 6.10. The var-

ious colors in the layout represent the various clocking zones of the QCA. Fig. 6.11

shows the functional simulation result for the 2-bit NB multiplier for one of the 4 input

combination.

Table 6.1: Delay information of various NB multipliers.

No. of bits CNTFET (sec) CMOS (sec)

2 1.33∗10−11 5.5∗10−10

3 1.4∗10−11 5.6∗10−10

4 1.4∗10−11 6.7∗10−10

5 1.41∗10−11 7∗10−10
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Figure 6.10: 2-bit NB multiplier using QCA.

Figure 6.11: Example Simulation of a NB QCA Multiplier.

Table 6.2: Delay information of NB multipliers with CED.

No. of bits CNTFET (sec) CMOS (sec)

2 3.2∗10−11 1.7∗10−9

3 3.65∗10−11 1.81∗10−9

4 4.15∗10−11 2.33∗10−9

5 5.1∗10−11 2.73∗10−9
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Figure 6.12: 2-bit NB multiplier with CED using QCA.
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6.6 Summary

The critical path delay comparison of the NB multipliers implemented in both

CMOS and CNTFETs are presented in Table 6.1 and Table 6.2. In general the hard-

ware complexity remains the same for any bit parallel GF multiplier circuit as they

have m2 AND gates and (m2−1) XOR gates in general.

6.6 Summary

Owing to the substantial scaling of devices, it is evident that the future technologies

under the 20nm technology may be more vulnerable to transient faults than it is to-

day. VLSI circuits for critical applications such as crypto hardware realised over the

emerging miniature devices in CNTFETs� and QCA cells hence need to be made fault

tolerant. Hence this chapter investigates the performance of well known concurrent

error detection approach in both CNTFET and WCA based NB GF circuits. To this

end the chapter explored error detection with CED in NB GF multipliers. The mul-

tiplier circuits were chosen for the experiments as they can be the vital and critical

components for malicious attacks. As a start up phase, simple NB multiplier structures

were designed over 45nm CMOS and CNTFET technologies for a fair comparison.

Their power and delay are compared for the understanding of the performance of CED

scheme in the emerging technologies. The scheme has also been implemented over

the QCA technology to evaluate the logic performance. Due to the limitations of the

available present day EDA tools for synthesis of CNTFET and QCA circuits, the im-

plementations over CNTFET and QCA have been limited to circuits of smaller sizes

and complexities. In addition, only the error detection capabilities were implemented

owing to these limitations. However from the investigation presented in this chapter,

it is very much clear that the minute emerging technologies will be prone to faults

and thus errors. Hence fault tolerant techniques will be inevitable to improve their

yield. There by this chapter provides a starting point to investigated the state of the

art fault tolerant methods in the emerging technology devices. Our future work in-

clude extension of the reported circuits into more complex circuits and  nally towards

a fault tolerant crypto processor. This also includes investigation of other fault tolerant

technologies such as LDPC, multiple error correcting schemes such as BCH codes,

etc.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The increase in demand for secure communication in various applications leaves the

secure computing devices such as crypto-hardware as a subject of malicious attacks.

Along with well known naturally occurring faults, such attacks with the help of ma-

liciously inject faults, may severely interrupt the normal operations of these devices.

Hence the focus of this thesis is to investigate novel multiple error correcting schemes

in  nite  eld arithmetic circuits as a mitigation technique from such events. As the

 nite  eld multipliers constitute the complex and important building blocks in the

crypto-arithmetic hardware circuits, making these multipliers fault tolerant will even-

tually increase the reliability of the crypto-hardware circuits. Hence this thesis mainly

focuses on the multiple error correction architectures together with  nite  eld multi-

plier circuits as test bench circuits.

For completeness, a through literature survey of the underlying weaknesses of the

 nite  eld arithmetic structures, various attacks on these circuits and other sources of

faults that affects their normal operation, has been carried out in Chapter 2. However

the primary contribution of this thesis is to mitigate those faults or attacks that can

be used to manipulate the internals of the circuits in an attempt to gain access to the

sensitive information within a digital system. In Chapter 3, a literature survey has been

undertaken to understand previous research to address naturally occurring faults and

malicious transient attacks on the logic circuits. The most important researches that are

related to this thesis such as CED and single error correction schemes are investigated.
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A baseline research based on block wise multiple bit error correction using RS codes

has also been reported. This acts as a stepping stone towards the other novel multiple

error correction techniques proposed in this thesis. Based on these observations, novel

techniques have been proposed in this thesis to ef ciently mitigate the in!uence and

the effect of a fault or to make such attacks harder.

A novel multiple error correcting scheme based on the BCH codes is proposed

in Chapter 4. This proposed technique is scalable and optimized for multiple error

correction in  nite  eld arithmetic circuits and other compliant digital logic circuits in

general. A highly parallel and optimized circuit has been proposed to save area while

ensuring improved performance. The proposed architecture is useful in applications

where high security is the prime concern. The proposed scheme is also scalable to

increase the number of errors that it can cope with by making them easy to integrate

with any circuit size. Later in this chapter an extended dynamically error correctable

version is presented to compensate the extra delay of the decoder when the actual

functional unit is error free. This extension includes a dynamic activation of the error

correction block only when the error is present and thus saving delay penalty. The

proposed technique proved to be capable of correcting multiple random errors with

less area overhead than that of TMR and comparable overhead as that of single error

correcting schemes.

The multiple error correction scheme has been taken to the next level with the help

of a novel cross parity based low complexity, low area overhead technique in Chap-

ter 5. The main idea of the cross parity based technique is to ensure high reliability

while ensuring the area overhead as minimum as possible. However like any error

correction schemes, this approach makes a compromise between the number of errors

corrected and the additional area, delay and power overhead compared to the actual

design. The reliability and the number of bit error correction capability is evaluated

both theoretically and experimentally using cutting edge EDA tools. To the best of

our knowledge, this is the  rst reported scheme that has implemented multiple bit er-

ror correction in practically used 163-bit digit serial  nite  eld multipliers. The area,

power and delay performance of the proposed cross parity scheme proved to be im-

pressive and better than the existing error mitigation schemes by a large factor. Also,

the fault simulation performed on the test designs of cross parity scheme proves that it

has wider range of error correction capability as compared to the existing SEC/DED,
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LDPC schemes. This scheme also has comparable area overhead to that of single error

correction schemes, which was shown to be approximately 120% for a 80-bit parallel

multiplier and 180% for a 163-bit digit serial multiplier. The multiple bit error correc-

tion architecture proposed in this chapter  nd useful applications in areas where low

area overhead and power consumption is required along with increased fault tolerance.

This includes applications such as RFIDs, smart cards, and sensor networks.

Increasing demand for higher levels of performance and miniaturization of CMOS

devices has made researchers think about replacement technologies such as CNTFETs

and QCA based circuits. Their extreme shrinkage in sizes these devices have made

them perfect candidates for faults and errors. Chapter 6 investigated the feasibility of

 nite  eld circuits and a classic CED scheme based on Hamming codes in such emerg-

ing technologies. The detailed experimental results and comparisons with CMOS tech-

nology are presented in this chapter. The experimental results indicated that the emerg-

ing technologies perform better in terms of reduced area overhead, power and delay

while maintaining error detection capabilities with the proposed techniques. However

due to their feature sizes spanning from 20nm CNTFETs down to 2nm QCA dots, en-

suring their fault free (fault resilient) operations under erroneous circumstances may

be a requirement. Hence this investigation could be a stepping stone towards achieving

this goal.

7.2 Future Work

For simplicity of experimental validation, the proposed schemes are implemented in

integration with only functional units such as  nite  eld multipliers. The fundamen-

tal building blocks of a stand alone crypto-processor include adders, inversion circuits

along with multipliers. Hence to achieve a fault tolerant processor, fault mitigation

techniques must be incorporated with all other design blocks of the processor. How-

ever, a straight forward implementation of the techniques proposed in this chapter to

a whole processor may induce a high area overhead. Hence other techniques such

as sharing the fault tolerant blocks among various arithmetic units within a proces-

sor needs to be considered. Future research may include extension of the proposed

techniques to achieve fault tolerance in an entire processor.
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Another important extension of the proposed techniques is to incorporate them in

the design !ow of the available commercial EDA tools. At present, the ASIC de-

velopment tools do not have the capacity to include the error correction features by

designer�s choice into the actual design automatically. On the other hand the FPGA

development tools support the inclusion of fault tolerant IP blocks such as TMR in to

the actual design to make them fault tolerant. This can be investigated to help the inte-

gration of the proposed techniques to the standard EDA tool !ow to reduce the design

complexity.

The multiple error correction techniques proposed in this thesis are mainly based

on space redundant scheme. Though the area overhead has been optimized to reduce

the underlying power and delay, it is impossible to completely neglect the contribution

of the additional error correction block that is being added to the actual design. How-

ever techniques such as operand isolation and power gating along with the proposed

techniques can be investigated to reduce dynamic and static power consumption hence

improving the over all cost of the resulting fault tolerant designs.

Also, due to the limitations of the available present day EDA tools for synthesis of

CNTFET and QCA circuits, the implementations over CNTFET and QCA have been

limited to circuits of smaller sizes and complexities. Further research is also required

in the development of device modeling and the EDA tools themselves. Once those are

achieved, much more complex circuits can be investigated based on the fault tolerant

schemes presented in this thesis. Due to the differences in properties of the devices, it

is also possible that the emerging technologies can face many more challenging error

sources than considered in the existing literature. Future research in this area also

includes investigation of other fault sources and their mitigation other than the ones

reported in this thesis.

Last not but least, the test bench circuits considered in this thesis are all de ned

over the  nite  elds. However the proposed methods can be easily extended to other

circuits whose output can be predicted in advance from the primary inputs. Compati-

bility of the proposed techniques for developing a generic fault tolerant IP for multiple

application areas such as other generic digital circuits can be investigated as a future

extension to this proposed research.
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