1,445 research outputs found

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Empowering parallel computing with field programmable gate arrays

    Get PDF
    After more than 30 years, reconfigurable computing has grown from a concept to a mature field of science and technology. The cornerstone of this evolution is the field programmable gate array, a building block enabling the configuration of a custom hardware architecture. The departure from static von Neumannlike architectures opens the way to eliminate the instruction overhead and to optimize the execution speed and power consumption. FPGAs now live in a growing ecosystem of development tools, enabling software programmers to map algorithms directly onto hardware. Applications abound in many directions, including data centers, IoT, AI, image processing and space exploration. The increasing success of FPGAs is largely due to an improved toolchain with solid high-level synthesis support as well as a better integration with processor and memory systems. On the other hand, long compile times and complex design exploration remain areas for improvement. In this paper we address the evolution of FPGAs towards advanced multi-functional accelerators, discuss different programming models and their HLS language implementations, as well as high-performance tuning of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pitfalls, and identify opportunities for language enhancements and architectural refinements

    FPGA Accelerators on Heterogeneous Systems: An Approach Using High Level Synthesis

    Get PDF
    La evolución de las FPGAs como dispositivos para el procesamiento con alta eficiencia energética y baja latencia de control, comparada con dispositivos como las CPUs y las GPUs, las han hecho atractivas en el ámbito de la computación de alto rendimiento (HPC).A pesar de las inumerables ventajas de las FPGAs, su inclusión en HPC presenta varios retos. El primero, la complejidad que supone la programación de las FPGAs comparada con dispositivos como las CPUs y las GPUs. Segundo, el tiempo de desarrollo es alto debido al proceso de síntesis del hardware. Y tercero, trabajar con más arquitecturas en HPC requiere el manejo y la sintonización de los detalles de cada dispositivo, lo que añade complejidad.Esta tesis aborda estos 3 problemas en diferentes niveles con el objetivo de mejorar y facilitar la adopción de las FPGAs usando la síntesis de alto nivel(HLS) en sistemas HPC.En un nivel próximo al hardware, en esta tesis se desarrolla un modelo analítico para las aplicaciones limitadas en memoria, que es una situación común en aplicaciones de HPC. El modelo, desarrollado para kernels programados usando HLS, puede predecir el tiempo de ejecución con alta precisión y buena adaptabilidad ante cambios en la tecnología de la memoria, como las DDR4 y HBM2, y en las variaciones en la frecuencia del kernel. Esta solución puede aumentar potencialmente la productividad de las personas que programan, reduciendo el tiempo de desarrollo y optimización de las aplicaciones.Entender los detalles de bajo nivel puede ser complejo para las programadoras promedio, y el desempeño de las aplicaciones para FPGA aún requiere un alto nivel en las habilidades de programación. Por ello, nuestra segunda propuesta está enfocada en la extensión de las bibliotecas con una propuesta para cómputo en visión artificial que sea portable entre diferentes fabricantes de FPGAs. La biblioteca se ha diseñado basada en templates, lo que permite una biblioteca que da flexibilidad a la generación del hardware y oculta decisiones de diseño críticas como la comunicación entre nodos, el modelo de concurrencia, y la integración de las aplicaciones en el sistema heterogéneo para facilitar el desarrollo de grafos de visión artificial que pueden ser complejos.Finalmente, en el runtime del host del sistema heterogéneo, hemos integrado la FPGA para usarla de forma trasparente como un dispositivo acelerador para la co-ejecución en sistemas heterogéneos. Hemos hecho una serie propuestas de altonivel de abstracción que abarca los mecanismos de sincronización y políticas de balanceo en un sistema altamente heterogéneo compuesto por una CPU, una GPU y una FPGA. Se presentan los principales retos que han inspirado esta investigación y los beneficios de la inclusión de una FPGA en rendimiento y energía.En conclusión, esta tesis contribuye a la adopción de las FPGAs para entornos HPC, aportando soluciones que ayudan a reducir el tiempo de desarrollo y mejoran el desempeño y la eficiencia energética del sistema.---------------------------------------------The emergence of FPGAs in the High-Performance Computing domain is arising thanks to their promise of better energy efficiency and low control latency, compared with other devices such as CPUs or GPUs.Albeit these benefits, their complete inclusion into HPC systems still faces several challenges. First, FPGA complexity means its programming more difficult compared to devices such as CPU and GPU. Second, the development time is longer due to the required synthesis effort. And third, working with multiple devices increments the details that should be managed and increase hardware complexity.This thesis tackles these 3 problems at different stack levels to improve and to make easier the adoption of FPGAs using High-Level Synthesis on HPC systems. At a close to the hardware level, this thesis contributes with a new analytical model for memory-bound applications, an usual situation for HPC applications. The model for HLS kernels can anticipate application performance before place and route, reducing the design development time. Our results show a high precision and adaptable model for external memory technologies such as DDR4 and HBM2, and kernel frequency changes. This solution potentially increases productivity, reducing application development time.Understanding low-level implementation details is difficult for average programmers, and the development of FPGA applications still requires high proficiency program- ming skills. For this reason, the second proposal is focused on the extension of a computer vision library to be portable among two of the main FPGA vendors. The template-based library allows hardware flexibility and hides design decisions such as the communication among nodes, the concurrency programming model, and the application’s integration in the heterogeneous system, to develop complex vision graphs easily.Finally, we have transparently integrated the FPGA in a high level framework for co-execution with other devices. We propose a set of high level abstractions covering synchronization mechanism and load balancing policies in a highly heterogeneous system with CPU, GPU, and FPGA devices. We present the main challenges that inspired this research and the benefits of the FPGA use demonstrating performance and energy improvements.<br /

    FPGA-accelerated machine learning inference as a service for particle physics computing

    Full text link
    New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms in particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. We demonstrate that the acceleration of machine learning inference as a web service represents a heterogeneous computing solution for particle physics experiments that potentially requires minimal modification to the current computing model. As examples, we retrain the ResNet-50 convolutional neural network to demonstrate state-of-the-art performance for top quark jet tagging at the LHC and apply a ResNet-50 model with transfer learning for neutrino event classification. Using Project Brainwave by Microsoft to accelerate the ResNet-50 image classification model, we achieve average inference times of 60 (10) milliseconds with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service, representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU inference in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600--700 inferences per second using an image batch of one, comparable to large batch-size GPU throughput and significantly better than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model, coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.Comment: 16 pages, 14 figures, 2 table

    AMC: Advanced Multi-accelerator Controller

    Get PDF
    The rapid advancement, use of diverse architectural features and introduction of High Level Synthesis (HLS) tools in FPGA technology have enhanced the capacity of data-level parallelism on a chip. A generic FPGA based HLS multi-accelerator system requires a microprocessor (master core) that manages memory and schedules accelerators. In a real environment, such HLS multi-accelerator systems do not give a perfect performance due to memory bandwidth issues. Thus, a system demands a memory manager and a scheduler that improves performance by managing and scheduling the multi-accelerator’s memory access patterns efficiently. In this article, we propose the integration of an intelligent memory system and efficient scheduler in the HLS-based multi-accelerator environment called Advanced Multi-accelerator Controller (AMC). The AMC system is evaluated with memory intensive accelerators, High Performance Computing (HPC) applications and implemented and tested on a Xilinx Virtex-5 ML505 evaluation FPGA board. The performance of the system is compared against the microprocessor-based systems that have been integrated with the operating system. Results show that the AMC based HLS multi-accelerator system achieves 10.4x and 7x of speedup compared to the MicroBlaze and Intel Core based HLS multi-accelerator systems.Peer ReviewedPostprint (author’s final draft
    corecore