
AMC: Advanced Multi-accelerator Controller

1,2,Tassadaq Hussain, 3,Amna Haider, 3Shakaib A. Gursal, and 1Eduard Ayguadé
1 Barcelona Supercomputing Center , 2BSC-Microsoft Research Centre ,

3Unal Center of Engineering Research & Development
Barcelona, Spain

{tassadaq.hussain, eduard.ayguade}@bsc.es
{first name}@ucerd.com

Abstract

The rapid advancement, use of diverse architectural features and introduction of
High Level Synthesis (HLS) tools in FPGA technology have enhanced the ca-
pacity of data-level parallelism on a chip. A generic FPGA based HLS multi-
accelerator system requires a microprocessor (master core) that manages memory
and schedules accelerators. In a real environment, such HLS multi-accelerator sys-
tems do not give a perfect performance due to memory bandwidth issues. Thus, a
system demands a memory manager and a scheduler that improves performance
by managing and scheduling the multi-accelerator’s memory access patterns effi-
ciently. In this article, we propose the integration of an intelligent memory system
and efficient scheduler in the HLS-based multi-accelerator environment called
Advanced Multi-accelerator Controller (AMC). The AMC system is evaluated
with memory intensive accelerators, High Performance Computing (HPC) appli-
cations and implemented and tested on a Xilinx Virtex-5 ML505 evaluation FPGA
board. The performance of the system is compared against the microprocessor-
based systems that have been integrated with the operating system. Results show
that the AMC based HLS multi-accelerator system achieves 10.4x and 7x of
speedup compared to the MicroBlaze and Intel Core based HLS multi-accelerator
systems.

1. Introduction

In the last few years the density of FPGAs [1, 2] and performance per watt [3]
have improved, which allows the High Performance Computing (HPC) industry
to increase and provide more functionalities on a single chip. 3D ICs [4] open

Preprint submitted to Parallel Computing May 7, 2015

another dimension in the HPC industry that emulate three-dimensional stacked
chips by rapidly reconfiguring their two-dimensional fabrics in a third spatial di-
mension of time/space. Such devices have the power to reconfigure their fabric
up-to 1.6 billion times per second [4]. The Stacked Silicon Interconnect (SSI) [5]
technology provides another dimension to high-density FPGAs that satisfies the
needs of on-chip resources for HPC system. SSI combines two or more FPGAs
for larger and complex systems. As the designs grow larger and complex, the
chances of error and complexity increase, thus demands an abstract level design
methodology.

Time is indeed changing the way HPC systems are designed. Now the HPC
industry wants to execute multi-applications for optimal performance. This de-
mands a design environment which has dense and flexible hardware consumes
less power and has abstract-level programming tools. Reducing design time and
the size of the team are crucial. Numerous architectures (RISC, CISC), design
methodologies (SoC, MPSoc), and programming tools (OpenMP, MPI) are avail-
able in the HPC domain. These systems do not give a perfect performance due to
the processor-memory speed gap [6, 7] given by the formula
A T = Prob ∗ OnChipMemory + (1 − Prob) ∗ [On/Offchipbus + DRAM]t .

The Access Time (AT) depends upon the probability (Prob) to access data from dif-
ferent units such as On Chip Memory (On-Chip data arrangement and probabil-
ity of reuse), on/offchipbus (flow control, arbitration, translation, interconnection)
and DRAMt (bank, column and row selection).

Over the past few years, HLS tools have been strengthened and become truly
production-worthy [8] by supporting fundamental technologies such as pipelin-
ing and FSM. Initially confined to data path designs, HLS tools are now com-
menced to address complete systems, including control logic, complex on-chip
and off-chip interconnections. HLS [9] tools provide design modeling, synthesis,
and validation at a higher level of abstraction. This makes computation cheaper,
smaller, and less power hungry, thus enabling more sophisticated system design
for complex HPC applications. HLS-based multi-accelerator systems always re-
quire a master processor core which perform memory management, data transfer
and scheduling of the multi-accelerator. The master core adds overhead of ad-
dress/data management, bus request/grant and external memory access time.

To improve HLS-based multi-accelerator system performance an intelligent
controller is needed that has efficient on-chip Specialized Memory and data man-
agement, an intelligent front-end/back-end scheduler and a fast I/O link and sup-
ports programming model that manages memory accesses in software so that hard-
ware can best utilize them. We implement such a controller in hardware called

2

Advanced Multi-accelerator Controller (AMC), some salient features of the pro-
posed AMC architecture are given below:

• The AMC based system can operate as a stand-alone system, without sup-
port of the master cores and operating system (OS).

• The AMC provides specialized on-chip (1D/2D/3D) memory that improves
system performance by prefetching complete data sets.

• Complex access patterns are described using single or multiple descriptors,
thus reduces the on-chip communication time.

• It handles multiple HLS hardware accelerator IPs using an event-driven
handshaking methodology; this decreases the time-to-market and complex-
ity of hardware.

• The AMC schedules multi-accelerator requests while taking into account
both the processing and memory requirements defined at program-time. At
run-time, the AMC back-end scheduler reorders accelerator’s memory re-
quests considering SDRAM open banks. This removes the overhead from
opening/closing rows/banks and idle cycles on the data bus.

• Standard C/C++ language calls are supported to program multi-accelerator
tasks in software.

Section 2 discusses the HLS-based system. Section 3 describes the AMC sys-
tem and Section 4 explains how it is used. Section 5 introduces the experimental
framework and Section 6 presents the results. Section 7 discusses the related work
and finally Section 8 provides the conclusions.

(a) (b)

Figure 1: (a) Generic High Level Synthesis Multi-Accelerator System (b) High Level Synthesis
Tool Design Flow

3

2. High Level Synthesis Multi-accelerator System

In this section, we discuss High-Level Synthesis (HLS) system design tools
and working operation. The HLS tool takes algorithm level behavioral specifica-
tion of a system and generates a register-transfer level structure that implements
that behaviour. The HLS-based multi-accelerator system is shown in Figure 1 (a).
The HLS system is further categorized into three sections the Master Core, the
HLS tools and the SDRAM controller.

2.1. Master Core
A Master Core (CPU) is capable of initiating data transfer on the bus for

multi-accelerator (slave). The core is responsible for memory management and
scheduling of HLS multi-accelerator system. It decides when an accelerator start
execution and provides a I/O link. All accelerators can communicate with each
other via Master core. The HLS system does not get optimum performance if
accelerators are not tightly scheduled.

2.2. High Level Synthesis Tool
In this section, we explain existing HLS tool and their basic operation. Trans-

lation of HPC algorithms into hardware is difficult and time-consuming. Large
application result in big systems with higher chances of failure and complexity in
the scheduling and reuse of resources. To control the size and complexity of such
applications, system designers are required to perform design modeling, synthe-
sis, and validation at a higher level of abstraction. Ylichron (now PLDA Italia)
provides a source-to-source C to VHDL compiler toolchain targeting system ar-
chitects called HCE (Hardware Compiling Environment) [10]. ROCCC 2.0 [11] is
a free and open source tool that focuses on FPGA-based code acceleration from a
subset of the C language. ROCCC tries to utilize parallelism within the constraints
of the target device, optimize clock cycle time by pipelining, and minimizes area.

A generic HLS toolchain takes ANSI-C language as input, which represents
the hardware architecture with some restrictions and extensions. The design flow
consists of a series of steps (see Figure 1 (b)), with each step transforming the
abstraction level of the algorithm into a lower level description. The HLS tool
first extracts the Control and Data Flow Graph (CDFG) from the application to
be synthesized. The CDFGs describe the computational nodes and edges between
the nodes. Tool provides different methods to explore the CDFG of the input
algorithm and generates the data-path structure. The generated data-path struc-
ture contains the user-defined number of computing resources for each computing

4

node type and the number of storage resources (registers). The Allocation and
Scheduling step maps the CDFG algorithm onto the computing data-path and pro-
duces a Finite State Control Machine. The Refine step uses the appropriate Board
Support Package and performs synthesis for the communication network. Finally,
the VHDL-RTL generation step produces the VHDL files to be supplied to the
proprietary synthesis tools for the targeted FPGA.

2.3. SDRAM Controller
In this section, we describe basic parameters and working operation of Syn-

chronous Dynamic Random Access Memory (SDRAM). SDRAM is dynamic ran-
dom access memory (DRAM) that is synchronized with the processor system bus
(shown in Figure 1 (a)). The parameters nbanks, wmem, fmem, dr, and BL are
used to describe the SDRAM memory architecture. Where nbanks stands for the
number of banks, wmem is the width of the data bus in bytes, fmem represents
the clock frequency of memory in MHz, dr defines the number of data words that
can be transferred during a clock cycle, and BL is the word length of programmed
burst. To control the SDRAM system, specific commands are sent to the memory
port according to the protocol. The SDRAM communications protocol includes
six command signals which are activate (ACT), read (RD), write (WR), precharge
(PRE), refresh (REF), and no-operation (NOP). The activate command is supplied
with a row and a bank as an argument, informs the selected bank to copy the re-
quested row to its row buffer. Once the requested row is opened, column can be
accessed by read and write bursts having burst length (BL) of 4 or 8 words. The
read and write commands include separate bank, row, and column address lines.
The precharge command corresponds the activate command to place the contents
of the row buffer back to its location in the memory. An auto-precharge flag with
a read and write command is inserted to automatically precharge at early possible
moment after the data transfer. This gives the benefits to an upcoming scheduling
row to be opened as quickly as possible without causing contention on shared sys-
tem bus. To prevent the data loss by capacitor leakage, a refresh command must
constantly be issued. For entire memory array, multiple refresh commands are
required.

3. Advanced Multi-Accelerator Controller

In this section, we describe the Advanced Multi-Accelerator Controller (AMC)
system (shown in Figure 2) for HLS tool. The architecture is based on five units:

5

Figure 2: Architecture of Advanced Multi-Accelerator Controller Based System

the Input/Output link, the Memory Architecture, the Memory Manager, the Sched-
uler and the SDRAM Controller.

3.1. Input/Output Link
The Input/Output (I/O) link provides an interface between AMC and HLS

multi-accelerator unit. The I/O link as shown in Figure 2 is used to read/write
high-speed data to/from register memory of HLS multi-accelerator. Transfer of
data is accomplished according to the system clock. The AMC Input/Output (I/O)
link has a peak bandwidth of 1.6 GB/s as it operates at maximum 200 MHz clock
having data bus width of 64-bit. A state controller (Figure 9 (b)) is integrated with
each hardware accelerator to manage multiple buffers. The state controller takes
accelerator data requests and manages multiple buffers using request and grant
signals.

3.2. Memory Architecture
A reliable and efficient memory architecture is required for any application

being programmed for HLS multi-accelerator system. The AMC memory archi-
tecture is divided into two sections the Descriptor Memory and the Data Memory.

3.2.1. Descriptor Memory
The AMC descriptor memory holds the information of multi-accelerator mem-

ory access patterns and scheduling methodology. The descriptor memory is fixed
length data word with a number of attribute fields that describe the access pat-
tern. A single descriptor describes the access pattern of a strided stream, and
multiple descriptors are used to define complex memory patterns. The least set of
parameters for the memory descriptor block, includes command, source address,
destination address, stride, stream and priority. Command specifies whether to

6

r e c e i v e (/∗ Loca l Address ∗ / 0 x00000000 , /∗ E x t e r n a l Address ∗ / 0 x00000100 ,
/∗ P r i o r i t y ∗ / 0x00 , /∗ Stream ∗ / 0x08 , /∗ S t r i d e ∗ / 0x00) ;

Figure 3: AMC Function Call: Single Descriptor Program

read/write a single element or a stream of data. The address parameters specify the
starting addresses of the source and destination locations. Stride indicates the dis-
tance between two consecutive physical memory addresses of a stream. The pri-
ority describes the selection and execution criteria of an accelerator. The program
structure of AMC is stack based where descriptor holds information of complete
memory access pattern. The machine code of AMC consists of just an opcode that
activate/deactivate accelerator kernel. Memory management and optimization for
repeated memory access is done at compile time and are executed in hardware at
runtime. The proposed AMC system provides C and C++ language support that
initializes descriptor blocks. The program example of a single memory access is
presented in Figure 3. The local address and external address parameters hold the
start address of specialized (buffer) memory and main memory (SDRAM) data set
respectively. The Priority defines the order in which memory access is entitled to
be process. The parameters Stream and Stride define the type of memory access.
The value 0x08 and 0x00 of Stream and Stride parameters respectively initial-
izes AMC to access a stream of 8-words with a unit stride. At run-time, the AMC
accesses 32-bit word from the 0x00000100 address location of main memory
and write it to the 0x00000000 address location of Specialized Memory. The
following memory access till the end of a stream, the AMC generates main mem-
ory address by taking the address of main memory from the previous access and
adds stride (0x08) value. The Specialized Memory address is sequential (con-
tiguous) and requires unit increment.

3.2.2. Data Memory
To achieve high performance from any computing unit, analysis of the data

transfer through the algorithm and placement on underlying memory architecture
is required. The AMC underlying data memory structure is shown in Figure 5,
The data memory of AMC system is further subdivided into three sections which
are: the Register Memory, the Specialized Memory and the Main Memory.

7

(a) (b) (c)

Figure 4: AMC: (a) Dataset/Program Code (b) Three Dimension Specialized Memory Architec-
ture (c) (3 x (n x 2) + 1) n-Stencil

Register Memory. The Register Memory is fast and efficient as it provides paral-
lel/patronized data access in a single cycle to the accelerator. The register memory
resides on the same hardware of processing unit and uses FPGA resources/slices
that have multiple small independent memory register arrays. The HLS tools
(such as ROCCC [11] & HCE [10]) can automatically solve memory bottleneck
problems by splitting, interleaving, or reorganizing registers that reuse the portion
of data. The HLS tools interleave and reorganize the register memory that rear-
range sequential data storage into two or more non-contiguous storage blocks and
provide single cycle access.

Specialized Memory. The application’s dataset placed on main memory (SDRAM)
has a linear structure. Hence, it is critical to keep the application’s dataset access
latency much lower than the main memory. The Specialized Memory (Figure 4
(b)) structure is used to reduce SDRAM access latency and provide parallel read-
/write accesses to compute units. The Specialized Memory architecture is an array
of dual port Static RAM cells which are tightly coupled and mapped according to
the accelerator’s access patterns and can be shared between more than one acceler-
ators by the memory management unit 3.3. The Specialized Memory access is fast
as register memory and is physically organized into multi dimension (1D/2D/3D)
architecture. One application kernel can access complete row, column or block of
Specialized Memory. The memory specified for one accelerator can be accessible
to another accelerator if data reuse is required.

The program structure that is used to initializes Specialized Memory into 1D,
2D or 3D structure is shown in Figure 4 (a). The Buffer Width describes the size
of row Nx (1D buffer). The Buffer Dimension explains the dimensions (2D/3D)

8

(Nz and Ny) of the memory block. Nx and Nz define the sizes of each block (Ny).
The size of block (Nx, Nz) is selected to fit in one BRAM of the target device. The
current AMC Specialized Memory architecture is composed of single or multiple
BRAM18 (1x18 Kb) blocks. Depending upon the dimension of Specialized Mem-
ory (Nx, Nz) (rows, column) the memory block can be configured as, 1x16k,
2x8k, 4x4k, 8(9)x2k or 16(18)x1k. A master port (M) is used to trans-
fer streaming data between main memory unit and Specialized Memory.

For example, a 3D Specialized memory architecture for generic stencil data
access is shown in Figure 4 (b). Each bank of Specialized memory has two ports
(PortA & PortB) which allows the compute unit to perform parallel read/write
data to/from multiple banks. The on-chip encapsulation of data memories with
processing units allows application kernels to access data without extra delay.
The generic stencil structure is shown in Figure 4 (c). When n=4, 25 points are
required to compute one central point. This means, to compute a single element
eight points are required in each of x, y and z directions, as well as one central
point. The 3D-stencil (when n = 4) occupies 9 different banks to place it on
Specialized Memory. The central, x and z points are placed on the same bank(y),
and each y-point needs a separate bank (y+4 to y-4). The Specialized Memory
takes 9 cycles ((2 points/bank)/cycle) to transfer 17 points of bank(y) and 1 point
each from bank(y+4) to bank(y-4). Each bank read/write operation is independent
to other and can be performed in parallel. Therefore, the Specialized Memory
takes nine cycles to transfer 25 points of single stencil. To utilize all bank and
to reduce access time multiple 3D-Stencils are placed on 3D Specialized Memory
(Figure 5 (b).

Global Memory. The slowest type of memory in the AMC system is the global
memory, which is the main memory (SDRAM), and is accessible by the whole
system. Even though, AMC has an efficient way of accessing main memory that
best utilizes the bandwidth, it still has latency with respect to other memory sys-
tems (discussed in section 3.5).

3.3. Memory Manager
To achieve maximum memory bandwidth, the AMC organises complex ac-

cess pattern in single or multiple descriptors at compile-time. At run-time, the
AMC Memory Manager transfers complete pattern to/from the main memory and
Specialized Memory in multiple noncontiguous strided streams. The AMC Mem-
ory Manager has a view of main memory address space that is partitioned into

9

(a) (b)

Figure 5: (a) Memory Hierarchy of AMC System (b) N-Stencil Vector Load & Update Points

segments (shown in Figure 5 (a)). Each segment contains single or multiple de-
scriptors that hold the information of specialized and main memory for each ac-
celerator. The AMC Memory Manager applies protection at the segment level e.g.
a segment can be read/written by the accelerator for which it is allocated. Within
a segment, AMC organizes and rearranges multiple noncontiguous memory ac-
cesses simultaneously that reduces read/write delay due to the control selection of
SDRAM memory. To reduce false sharing, the Specialized Memory is by default
dedicated to a single accelerator unit. In the AMC system, the Specialized Memory
is tightly connected to the accelerator that avoids core stalling due to transfer of
memory content in terms of on-chip communication and SDRAM access latency.
AMC keeps the knowledge of memory as to whether or not a certain memory area
is in the accelerator’s Specialized Memory. This knowledge allows the AMC to
manage the placement of memory as well as reuses and shares already accessed
memory. The Memory Manager is further divided into two sections which are:
the Address Manager and the Data Manager. The Address Manager fetches sin-
gle or multiple descriptors depending on the access pattern, translates/reorders
in hardware, in parallel with AMC Read/Write operations. The Data Manager
improves the (computedpoint / accessedpoint) (c/a) ratio by organizing and manag-
ing the memory accesses. For an accelerator generating single computedpoint, the
maximum achievable (ideal) c/a ratio is 1. To provide efficient data access and
excessive reuse, the Data Manager is further divided into three units: the Load
Unit, the Update Unit and the Reuse Unit. The Load unit accesses all point of an
access pattern, which are required for single Computedpoint. After accessing the
first access pattern (points), the memory manager transfers control to Reuse unit

10

and Update unit. The Reuse unit keeps reusing input points as much as possible.
The Update Unit is responsible to update remaining memory access (points) re-
quired for the application kernels. For example, a generic stencil structure (shown
in Figure 5 (b)) when n=4, requires 25 points to compute one central point. This
means the computedpoint/accesspoints (c/a) ratio is 0.04. To improve the (c/a)
ratio the Data Manager is deployed to increase data reuse by feeding data effi-
ciently to the computation engine. The Data Manager accesses multiple stencils
from the input volume in the form of a stencil vector. This is shown in Figure
5 (b). (N × (1+(n× 4)) + (n × 2)) represents the size of a single 3D-Stencil
vector. Here, N represents the number of planes. Since the 3D-stencil’s output is
generated by processing consecutive neighboring points in 3 dimensions, a large
amount of data can be reused with an efficient data management. The Load unit
accesses the 3D-Stencil vector at the start of each row of the 3D-Memory volume.
For the following vector access, the Load unit transfers control to the Update unit.
For a single 3D-Stencil volume, number of accessed points is dependent on the
number of planes and the stencil size. For example, a 3D-Stencil memory archi-
tecture having 24 base planes and 25 points required to compute one stencil point.
In this case, a single Stencil vector (Figure 4 (d)) needs 600 points. The load unit
reduces these numbers by reusing the points in the y-dimension. These points
(pointy) are reused when they are part of a neighboring plane of the stencil vector.
The number of Load unit points is mentioned in Equation 1, where Ghost pointz
refers to the points of the extended base volume and Pointc indicates the central
point.

Eq = (Planes × (Pointx + Pointz + Pointc)) + Ghost Pointz (1)

After reading the first stencil vector, the Memory Manager shifts the control to
the Update Unit. For each new access, the Update unit slides the stencil vec-
tor towards the x-direction and accesses further points while reusing neighboring
points. The number of points required by the Update Unit for a stencil vector is
presented in Equation 2.

Eq = (Planes × (Pointx + Pointc)) + Ghost Pointsz (2)

After accessing the first row, the Reuse unit accesses the rest of the volume. This
unit accesses only the central point and generates a stencil vector while reusing
the existing rows and columns as mentioned in Equation 3.

Eq = (Planes × Pointc) + Ghost Pointsz (3)

11

(a) (b) (c)

Figure 6: AMC: (a) Front-End Scheduler (b) Front-End Scheduling Process (c) Back-End Sched-
uler Lookup Table

The Memory Manager improves 3D-Stencil (c/a) ratio. Form the 8-point 3D-
Stencil unit, the Memory Manager uses a single input point 25 times before dis-
carding it from the internal memory. In practice, this is not achievable due to the
ghost points (i.e., points belonging to a neighboring tile that are necessary for the
current computation) present on the boundaries of the input volume. The Memory
Manager improves data reuse ratio for large base volumes.

3.4. Scheduler
The AMC scheduler manages read/write memory accesses and controls oper-

ations of multiple accelerators. The scheduler is categorized into two sections, the
Front-End Scheduler and the Back-End Scheduler.

3.4.1. The Front-End Scheduler
The front-end scheduler deals with multi-accelerator execution processes. Each

accelerator requests to access main memory, the front-end scheduler keep placing
incoming requests in the buffer. The selection of an accelerator depends on the
accelerator’s request and priority state. The accelerators are categorized into three
states, busy (accelerator is processing on local buffer), requesting (accelerator is
free), and request & busy. In the request & busy state the accelerator is assumed
to have double or multi buffers. During this state, the accelerator is processing
on one buffer while making requests to fill other. To provide a feature of multi-
buffers support in the current developed platform, a state controller (Figure 9 (b))
is instantiated with each accelerator that handles the states of accelerator using a
double/multi-buffering technique. The state controller manages the accelerator’s
Request & Grant signals and communicates with the scheduler. Each Request in-
cludes a read and write buffer operation. Once the request is accepted, the state
controller provides a path to the AMC read/write buffer.

12

AMC front-end scheduler supports two scheduling policies, symmetric and
asymmetric that execute accelerators efficiently. In Symmetric multi-accelerator
strategy, the AMC scheduler manipulates the available accelerator’s request in
FIFO (First in First out). The Programmed Priority Buffer (Figure 6 (a)) is used
to manage the accelerator’s request in FIFO order. The Asymmetric strategy em-
phasizes on priority and incoming requests of the accelerators. The scheduling
policies are configured statically at program-time and are executed by hardware at
run-time. The number of priority levels can be configured for asymmetric schedul-
ing. Assigned priorities of the accelerators are placed in the programmed priority
buffer (Figure 6 (a)). The comparator picks an accelerator to execute, only if it is
ready to run, and there are no higher priority accelerators that are in a ready state.
If same priorities are assigned for more than one accelerator, AMC scheduler ex-
ecutes them as FIFO method. If no scheduling policy is defined for the front-end
scheduler, AMC transfers control to the back-end scheduler.

The Front-End Scheduler accumulates requests from the multi-accelerator sys-
tem and maintains them in the task buffer (Figure 6 (a)) as per predefined schedul-
ing policy. For example, different requests are generated in concurrent order from
multiple sources (Shown in Figure 6 (b)). The Front-End Scheduler takes first
request as it is, remaining requests are executed on the priority level defined in
Programmed Priority Buffer. When currently running accelerator process fin-
ishes, the AMC does a context switch. Depending upon the scheduling policies
and programme priority buffer, the AMC selects the new accelerator.

3.4.2. The Back-End Scheduler
The AMC Back-End Scheduler employs a strategy that gathers multiple mem-

ory requests, manages them with respect to physical addresses (SDRAM) and
maximizes the reuse of open SDRAM banks that decrease the overhead of open-
ing and closing of rows. This strategy imposes conditions on the arrangement
of the memory accesses and affects the worst-case latency and gross/net band-
width of external memory. The back-end scheduler uses two scheduling rules for
memory patterns:

• Patterns are scheduled in a non-blocking manner, which means that a pattern
that has been issued cannot be stopped until it has finished access.

• A read or a written pattern scheduled immediately after itself, when the
memory is idle. This makes consecutive read and writes accesses indepen-
dent of each other, further simplifying back-end scheduling operation.

13

The scheduling of memory accesses is dependent upon the physical address of
current and next transfer. For example, at run-time the Back-End Scheduler gath-
ers memory requests from multi-accelerator and place them in Address Look-up
Table (shown in Figure 6 (c)). The Address Look-up Table contains unordered
memory access requests. Each memory access is categorized into four parts i.e.
ID, Bank, Row and Column. The ID holds the information of an accelerator and
its local memory. The Bank, Row and Column belongs to the physical memory ad-
dress space. At run-tome, the Back-End Scheduler schedules memory accesses of
multiple accelerators by giving highest priority to the bank and row address. The
lookup table executes the AMC policy called bank/row address management pol-
icy. The policy manages addresses in a lookup table so that it accesses SDRAM
memory that is available in the row buffer or have the same bank without con-
flicting the pattern. Accessing memory from the same row buffer is the fastest
memory access and only requires column access. The longest memory access
(when Bank conflicts) requires a pre-charge signal, followed by row and column
accesses.

The Memory Manager (Section 3.3) of AMC has particular descriptor mem-
ory (register set) for each accelerator unit, shown in Figure 5 (a). These descrip-
tors are masked with interrupt and request signal. Once a request is generated
the Memory Manager starts memory operation for the requested accelerator us-
ing its descriptors. After completion of memory read/write operation, the AMC
scheduler receives an interrupt (ack) signal from the Memory Manager unit. This
signal informs the scheduler about the selection of next accelerator to execute.
The scheduler captures the ack signal from the Memory Manager and assigns the
grant signal to the appropriate accelerator unit.

3.5. SDRAM Controller
In current AMC design, the SDRAM device uses four banks of memory per

device therefore four address bits are used to select the memory bank. For the
selection of the appropriate row and column within that row of memory 13 and
10 address lines are used respectively that completes the address mapping from
physical address to the memory address. The memory controller has a peak band-
width of 3.2 GB/s since it has a clock frequency of 200 MHz, a data rate of
2 words per clock cycle, and a data bus width of 64 bits. The memory con-
troller [12] consumes 30 cycles for single load/store memory access. Out of which
1-3 clocks are used to communicate the memory controller with requesting unit.
The PRECHARGE command is used to read/write row from a bank. To acti-
vate row of given bank, ACTIVATE command is inserted. Once the Read/Write

14

API Function Description
send (accelerator id, Vectorizing Data Access
stream, stride) Stride defines type of vector for the acclerator
receive (accelerator id, stride = 1 transfers a row vector
stream, stride) stride = row, transfers a column vector

stride = row + 1, transfer diagonal vector
AMC MEMCPY (command, Block/Tiled Data Access
accelerator buffer, dataset) command defines access type read or write

accelerator buffer indicate
specialized memory buffer
dataset indicates main memory block of data

Table 1: C/C++ Device Drivers to Program/Operate PPMC System

commands are given to SDRAM with credible data, it takes ten empty clocks to
precharge using PRECHARGE command. The PRECHARGE to ACTIVE com-
mand takes four cycles and ACTIVE to READ command also takes four cycles.
READ/WRITE command to read/write valid assertion takes ten cycles. Reads and
writes occur in bursts.

4. Use Case Example

To explain the working principle of the AMC system, in this section we briefly
describe its supported access patterns and programming.

The current AMC system provides comprehensive support for the C and C++
languages to control the HLS multi-accelerator system and data accesses (Vector-
izing/Tiling). The functionality of the AMC is managed by C based device drivers
shown in Table 1. The device driver aligns and arranges multiple data stream in
single/multiple descriptor/s at compile time, this reduces on-chip communication
and address request/grant time. The AMC programming interface allows the pro-
grammer to describe complex access patterns using C/C++ APIs and align data
structures at program-time; during compilation AMC realigns application kernels
that demand a selective layout of Specialized Memory. AMC device drivers al-
low the programmer to describe Specialized Memory. To manage a number of
accelerators, each accelerator is assigned a fixed id. Data transfer is done us-
ing explicit event (message passing) between different accelerators controlled by
AMC scheduler. If an accelerator needs data from on-chip or off-chip memory,
it sends a request signal to AMC Front-End Scheduler which manages the data

15

movement. If zero priority is assigned to an accelerator (at compile-time) then
AMC scheduler transfers control to Back-End Scheduler. The Back-End sched-
uler executes input request with respect to open SDRAM banks and rows. The
highest priority is assigned to accelerate’s addresses with open bank and row. An
AMC MEMCPY instruction is created which reads/writes a block of data from main
memory to the accelerator’s Specialized Memory.

Figure 7 shows the programming of AMC based multi-accelerator system.
The program initializes two hardware accelerators and their 2D and 3D tiled data
pattern. Part I & II of defines the specialized memory and data set. Part III of the
program structure specifies the scheduling policies that include the accelerator id
and its priority. Part lV shows AMC MEMCPY instructions that copy 2D/3D blocks
of data from the main memory to the specialized memory of accelerator. The
AMC scheduler supports the scheduling policies similar to the Portable Operating
System Interface (POSIX) Threads. If the same priority is assigned to multiple
accelerators, the AMC scheduler processes the accelerators in symmetric mode.

/ / AMC: S p e c i l i z e d Memory
t y p e d e f s t r u c t DATA MEMORY
{

/ / On−Chip S p e c i l i z e d Memory D e s c r i p t i o n
i n t BUFF WID ; / / WIDTH
i n t BUFF DIM ; / / DIMENSION
}AMC Specilized Memory ;

/ / AMC: D a t a S e t
t y p e d e f s t r u c t DATASET MEMORY
{

/ / On−Chip S p e c i l i z e d Memory D e s c r i p t i o n
i n t DataSet ADD ; / / BASE ADDRESS
i n t DataSet WID ; / / WIDTH
i n t DataSet DIM ; / / DIMENSION
}AMC DataSet ;

t y p e d e f s t r u c t A c c e l e r a t o r
{

/ / A c c e l e r a t o r D e s c r i p t i o n
i n t A c c e l e r a t o r ;
i n t P r i o r i t y ;
}AMC Acclerator ;

i n t main (){
AMC Specilized Memory Buff 2D ;
AMC Specilized Memory Buff 3D ;
AMC Acclerator A c c e l e r a t o r 0 ;
AMC Acclerator A c c e l e r a t o r 1 ;
AMC DataSet D a t a S e t 0 ;
AMC DataSet D a t a S e t 1 ;

/ / P a r t I
/ / I n i t i l i z e s 2D (128 x128) S p e c i l i z e d Memory

Buff 2D . BUFF WID=128;
Buff 2D . BUFF DIM=2;

/ / I n i t i l i z e s 3D (32 x32x32) S p e c i l i z e d Memory
Buff 3D . BUFF WID=32;
Buff 3D . BUFF DIM=3;

/ / P a r t I I
/ / DATA SET : Golab Memory

D a t a S e t 0 . DataSet ADD=0X00000000 ;
D a t a S e t 0 . DataSet WID =128;
D a t a S e t 0 . DataSet DIM =2;
D a t a S e t 1 . DataSet ADD=0X00010000 ;
D a t a S e t 1 . DataSet WID =32;
D a t a S e t 1 . DataSet DIM =32;

/ / P a r t I I I
/ / A c c e l e r a t o r I n i t i l i z a t i o n

A c c e l e r a t o r 0 . A c c e l e r a t o r =0;
A c c e l e r a t o r 0 . P r i o r i t y =1;
A c c e l e r a t o r 1 . A c c e l e r a t o r =1;
A c c e l e r a t o r 1 . P r i o r i t y =2;

/ / P a r t IV
/ / D a t a T r a n s f e r

AMC MEMCPY{A c c e l e r a t o r 0 ,
Buff 2D ,
D a t a S e t 0) ;
AMC MEMCPY{A c c e l e r a t o r 1 , Buff 3D ,
D a t a S e t 1) ; }

Figure 7: AMC Multi-Accelerator System: Programming Example

16

5. Experimental Framework

In this section, we describe and evaluate the AMC based HLS multi-accelerator
system. In order to evaluate the performance of the AMC system, the results are
compared with a MicroBlaze and Intel core based HLS multi-accelerator systems.
The Xilinx Integrated Software Environment and Xilinx Platform Studio are used
to design the HLS multi-accelerator system. Xilinx Power Estimator does the
power analysis. A Xilinx Virtex-5 ML505 evaluation FPGA board is used to
test the multi-accelerator systems. The section is divided into four sub-sections
the Intel based HLS Multi-Accelerator System, the MicroBlaze based HLS Multi-
Accelerator System, the AMC based HLS Multi-Accelerator System and the HLS
Multi-Accelerator Kernels.

5.1. Intel based HLS Multi-Accelerator System
The Intel system with HLS multi-accelerator is shown in Figure 8 (a). The

system architecture is further divided into three sections the Master Core, the
Programming API, and the Bus Unit.

5.1.1. The Master Core
The Intel Core i7 CPU is used to manage the memory system and schedules

the HLS multi-accelerator. To achieve the maximum performance the HLS multi-
accelerator system is executed on an optimized multi-threaded reference imple-
mentation, written in C++, compiled with g++ with optimization -O3, and exe-
cuted on system having a quad-core Intel Core i7-2600, 3.4 GHz, with 16 GB
RAM, 1333 MHz bus. The system uses Ubuntu 11.04 OS with Linux kernel ver-
sion 2.6.3. These higher memory baselines are required to enable sufficient mem-
ory for the HLS multi-accelerator kernels. In the current system, Performance
Application Programming Interface (PAPI) hardware performance counter used
to collect execution clock cycles for each accelerator kernel.

5.1.2. The Programming API
OpenMP (Open Multiprocessing) is an API that caters multi-platform shared

memory systems and extend it beyond real HPC systems that contain embedded
systems, real-time systems, and accelerators. Tasks execution is the most signifi-
cant feature of OpenMP 3.0. OpenMP 3.0 task pragmas make it compatible with
the idea of using one HLS multi-accelerator. The shared memory parallelism is
specified by C/C++ program using a set of compiler directives, runtime routines
and environment variables that power the run-time performance of the system. In

17

(a) (b) (c)

Figure 8: HLS Multi-Accelerator Systems: (a) Intel Core System (b) MicroBlaze System (c) AMC
System

current multi-accelerator system, each accelerator is defined in a separate task.
OpenMP executes them independently ensures that all defined accelerators and
data transfer tasks are completed at some point.

5.1.3. The PCI Bus Unit
Intel core manages data movement between On Chip Memory Controller (OCMC)

and multi-accelerator by using PCI bus. The PCI bus has multiple DMA channels
which manages the data transfer requests. The data transfer requests issued to PCI
DMA channels are according to available completion resources (Send/Receive in-
terfaces) which forward them to the appropriate DMA channel. The XpressLite2
IP [13] is used in the design to manage eight separate data flows using DMA
channels. The PCI Express XpressLite2 IP transfers the data sets from the host
machine to multi-accelerator. The PCI Express IP is programmed to work at 1 G
Byte/s using a 125 MHz clock speed and a 64-bit data bus.

5.2. MicroBlaze based HLS Multi-Accelerator System
The FPGA based MicroBlaze system is proposed (Figure 8 (b)) to execute

HLS multi-accelerator kernels. The design (excluding hardware accelerators) uses
7225 flip-flops, 6142 LUTs and 15 BRAMs. The system architecture is further
divided into four sections the Master Core, the Bus Unit, the Memory Unit and
the Programming API.

5.2.1. The Master Core
A MicroBlaze softcore is used in the HLS multi-accelerator system that sched-

ules the memory requests of HLS multi-accelerator kernels. The MicroBlaze pro-
cessor [14] has Harvard memory architecture where instruction and data accesses

18

have separate 32-bit each address spaces. MicroBlaze instruction prefetcher im-
proves the system performance by using the instruction prefetch buffer and in-
struction cache streams. The accelerators scheduling and data memory manage-
ment are controlled by MicroBlaze (RISC) soft-core processor. The data access
to Input/Output memory is memory mapped. The MicroBlaze system has two
interfaces for memory and I/O accesses; the Local Memory Bus (LMB), the Pro-
cessor Local Bus (PLB). The MicroBlaze uses a dedicated Local Memory Bus
(LMB) [15] to link with local-memory (FPGA BRAM) that offers single clock
cycle access to the local BRAM.

5.2.2. The Bus Unit
In the design, a Processor Local Bus (PLB) [16] provides connection between

hardware accelerators and microprocessor. The PLB has 128 bit-width and con-
nected to a bus control unit, a watchdog timer, separate address/read/write data
path units, and an optional DCR (Device Control Register) slave interface that
provides access to a bus error status registers. Bus is configured for single masters
(MicroBlaze) and multi slaves (HLS multi-accelerators). An arbiter is used that
grants the data access to multi-accelerator. The Input/Output (I/O) Module [17]
is a light-weight implementation of a set of standard (I/O) functions commonly
used in a MicroBlaze processor sub-system. The (I/O) bus provides access to ex-
ternal modules using MicroBlaze Load/Store instructions. The Input/Output Bus
is mapped in the MicroBlaze memory space, with the I/O bus address directly re-
flecting the byte address used by MicroBlaze Load/Store instructions. The PLB
provides maximum of 2 GByte of bandwidth while operating at 125MHz and
128-bit width, with byte enables to write byte and half-word data.

5.2.3. The Memory Unit
Local memory is used for data and program storage and is implemented using

Block RAM. The local memory is connected to MicroBlaze through the Local
Memory Bus (LMB) and the LMB BRAM Interface Controllers. The target ar-
chitecture has 16 KB of each instruction and data cache. To access data from
main memory, a parameterizable Multi-Port Memory Controller (MPMC) [18] is
employed. (MPMC) provides an efficient interfacing between the processor and
SDRAM. The MPMC connects SDRAM with MicroBlaze processors using IBM
CoreConnect Processor Local Bus (PLB). A DDR2 controller is used with MPMC
to access data from DDR2 SDRAM memory. The supported DDR2 memory has
a peak bandwidth of 1 GByte/s as it has a clock frequency of 125MHz, and a data
bus width of 64 bits.

19

5.2.4. The Programming API
A small light-weight easy to use Real-Time Operating System (RTOS) Xilker-

nel [19] is experienced on the MicroBlaze soft processor. Xilkernel is highly inte-
grated into the design tools of Xilinx that makes it possible to configure and build
an embedded system using MicroBlaze and Xilkernel. Xilkernel API performs
scheduling, inter-process communication and synchronization with a Portable Op-
erating System Interface POSIX interface. The Xilkernel POSIX support statically
declares threads that start with the kernel. From the main, application is spawn
into multiple parallel threads using pthread library. Each thread controls a sin-
gle HLS accelerator and its memory access. The software application consists of
Xilkernel and application kernel threads executing on top of the main program.

MicroBlaze system uses Xilinx Software Development Kit (SDK) [20] that
compiles the application kernels using library generator (libgen) [21] and a platform-
specific gcc/g++ compiler and generate the final executable object file. The Xilinx
library generator (libgen) is used to produce libraries and header files necessary
to build an executable file that controls HLS multi-accelerator. Libgen parses the
system hardware and sets up drivers, interrupt handling, etc. and creates libraries
for the system. The libraries are then used by the MicroBlaze GCC compiler
to link the program code for the MicroBlaze based HLS multi-accelerator system.
The object files from the application and the Software Platform are linked together
to generate the final executable object file.

5.3. AMC based HLS Multi-Accelerator System
The AMC system is shown in Figure 6 (c). AMC controls the HLS Multi-

Accelerator and performs scheduling and memory management without interven-
tion of microprocessor or operating system (OS). In the current implementation of

(a) (b)

Figure 9: HLS: (a) Hardware Accelerator (b) State Controller

20

Table 2: Brief description of application kernels

AMC, a modular DDR2 SDRAM [22] controller is integrated that accesses data
from physical memory and to perform the address mapping from physical address
to the memory address. The DDR2 SDRAM controller provides a high-speed
source-synchronous interface and transfers data on both edges of the clock cycle.
The DDR2 memory has a peak bandwidth of 1 G Byte/s since it has a clock fre-
quency of 125MHz, a data rate of 2 words per clock cycle, and a data bus width
of 32 bits. A 256 MByte (32M x 16) of DDR2 memory having SODIMM I/O
module is connected with AMC memory controller. The system (excluding HLS
accelerators units) consumes 4986 flip-flops, 4030 LUTs, 24 BRAMs.

21

5.4. HLS Multi-Accelerator Kernels
The application kernels that are used in the design are shown in Table 2. The

hardware accelerator (shown in 9 (a)) is generated by the HLS ROCCC[11] com-
piler for the evaluated application kernel. A wrapper module and a state controller
(Figure 9 (b)) is integrated with each hardware accelerator to manage multiple
buffers and makes it feasible to be integrated in the AMC, MicroBlaze and Intel
core based systems. Column Access pattern of Table 2 presents memory access
patterns of the application kernels. Each color represents a septate memory access
pattern. The column Reg, LUT describes the slices (Registers, LUTs) utilized by
HLS-based hardware accelerators. The column Points shows a number of inputs
(accesspoint) required to generate a single output.

6. Results and Discussion

This section analyzes the results of different experiments conducted on AMC,
MicroBlaze and Intel based systems. The experiments are characterized into four
subsections: Application’s Performance, System’s Performance, Memory Access
Unit, and Area & Power.

6.1. Application’s Performance
The application kernels (Table 2) are executed individually on AMC, MicroB-

laze and Intel based systems. The section is further divided into two subsections
that are: Applications Performance without On-Chip Memory and Applications
Performance with On-Chip Memory.

Figure 10: Application Kernels Execution Time Without On-chip Memory Support

22

6.1.1. Applications Performance without On-Chip Memory
This section presents execution time (clock cycles) of each application ker-

nel by disabling on-chip (specialized/cache) memories of the systems (shown in
Figure 10). Each bar represents the application kernel’s computation time and
memory access time. The application kernel computation time contains the HLS
accelerator processing time for 4KByte of data. Memory access time holds ad-
dress/data management and request/grant time from main memory unit. X and Y
axis represent application kernels and number of clock cycles, respectively. The
vertical axis has logarithmic scale in the Figure 10. By using AMC system, the re-
sults show that Radian converter achieves 3.94x and 1.75x of speed-up compared
to the MicroBlaze and Intel based systems respectively. The Thresholding appli-
cation achieves 7.1x and 1.89x of speed-up. These applications have load/store
memory access pattern. The FIR application has streaming data access pattern
with 43.2x and 32x of speed-up. The AMC system requires only one descriptor
block to access data pattern thus reduces address generation/management and on-
chip communication time. The FFT application kernel reads a 1D block of data,
processes it and writes it back to physical memory. This application achieves 22x
and 20x speed-ups. The Matrix Multiplication kernel accesses row and column
vectors. The AMC system manages complex data patterns of the application in
hardware and attains 29x and 19.9x of speed-up. The Smith-Waterman applica-
tion achieves 10.4x and 8.7x of speed-up. The Laplacian filter achieves 6.15 and
14.83 of speed-up. Both Laplacian and Smith-Waterman applications have 2D
Tiled (block) access pattern. The 3D-Stencil data decomposition achieves 3.6x
and 3.3 of speed-up.

6.1.2. Applications Performance with On-Chip Memory
In this section, we calculate computedpoint/accesspoint (c/a) ratio of AMC sys-

tem for each application kernel and compared the performance with MicroBlaze
and Intel systems. The column c/a without memory manager of Table 6.1.1 rep-
resents data elements required to generate a single output. Radian Convertor &
Thresholding kernels has load/store access pattern with one c/a ratio, it means
only a single element from main memory is required to the computing unit. Due
to irregular data access pattern both applications are unable to get the benefit from
on-chip memory. As shown in Table 6.1.1 & Figure 11 the application FIR, FFT,
Matrix Multiplication, Smith-Waterman, 2D Laplacian, and 3D-Stencil need more
than a single data elements for next computations. A 128-Tap FIR filter requires
128 number of inputs to generate a single output. The AMC Data Manager im-
proves c/a ratio of FIR and 2D Laplacian Kernel to one by reusing accessed points.

23

Figure 11: Application Kernels Execution Time with On-chip Memory Support

FFT and Smith-Waterman kernel’s data elements are not reused by AMC system
due to complex access pattern. Matrix Multiplication application kernel takes 32
element wide row and column vector to generate a single element. The AMC sys-
tem reused row vector and accesses only column vector for each multiplication.
For generic stencil (n=4) application kernel, 25 points are required to compute
one central point. This means the computedpoint/accesspoint (c/a) ratio is 0.04.
The AMC memory system improves the (c/a) ratio by reusing and feeding data
efficiently to the computation engine. The AMC Memory system keeps updat-
ing/using all memories, so that memory accesses do not affect the performance
of the system. When executing application on the system by enabling on-chip

Table 3: AMC: On-Chip Memory System

Application Load Reuse Update c/a without Achieved c/a with
Kernel Value Value Value Memory Manager Memory Manager
Radian Convertor 1 0 1 1 1
Thresholding 1 0 1 1 1
FIR 128 127 1 0.0078 1
FFT 64 0 64 0.015 0.015
Matrix Multiplication 64 32 32 0.015 0.031
32x32 (Row x Column)
Smith Waterman 3 0 3 0.33 0.33
2D Laplacian (3x3) 9 8 1 0.1 1
3D Stencil (8x9x8) 25 24 1 0.04 0.125

24

(cache/specialized) memory units results show that Radian converter and Thresh-
olding applications do not improve performance due to their irregular memory
pattern and having no temporal data locality. While executing FIR application, the
results show that AMC system achieves 26.5x and 14.4x of speed-up compared
to MicroBlaze and Intel systems respectively. The FIR application has streaming
data access pattern with maximum sequential data locality. The FFT applica-
tion kernel reads a 1D block of data, processes it and writes it back to the main
memory. This application has achieves 11x and 8.5x speed-ups. The Matrix Mul-
tiplication kernel accesses row and column vectors. The application attains 14x
and 9.6x of speed-up. The Smith-Waterman and Laplacian application have 2D
block/tiled data access pattern. The Smith-Waterman application has no data lo-
cality and achieves 36.3x and 14.3x of speed-up. The Laplacian filter has temporal
data locality and achieves 38.8 and 18.73 of speed-up. The 3D-Stencil application
kernel has 3D tiled memory access pattern with complex data locality. The AMC
system’s 3D data and descriptor memory manages/reuses 3D-Stencil data and 3D
tiled access pattern respectively and achieves 58x and 53.7 of speed-up.

6.2. System’s Performance
The system performance is measured by executing HLS multi-accelerator ker-

nels all together on AMC, MicroBlaze and Intel based systems. All application
kernels are executed simultaneously with the different set of priorities. At run
time, AMC system and baseline systems manage executions and pipeline/over-
lap data transfer where possible. Figure 12 illustrates the execution time of the
system and categorizes execution time into three factors: computation (applica-
tion processing) time, arbitration (request/grant) time among the scheduling, and
the memory management (bus delay and memory access) time. The computation
time of application kernels in all systems is overlapped under the scheduling, and
memory access time (shown in Figure 10), therefore, it is not shown in Figure 12.
The Intel-based system holds PCI bus communication which takes extra time to
access data from the Main Memory. In the AMC system, memory management
time is dominant, and the AMC overlaps scheduling and computation under mem-
ory access time. While running all HLS accelerator kernels together, the results
show that the AMC based system achieves 10.4x and 7x of speed-up compared to
MicroBlaze and Intel Core based systems. The AMC system efficiently schedules
HLS multi-accelerator and manages memory access patterns.

25

Figure 12: HLS multi-accelerator Systems Execution Time

6.3. Memory Access Unit
In this section we compare AMC system’s data access time with Vector and

MicroBlaze based FPGA systems, Intel Core i7 CPU and GPU Nvidia C2050
Fermi-based simulation environments by executing the image thresholding appli-
cation with irregular memory access pattern. Figure 13 shows a plot with Read-
/Write data accesses for AMC, MicroBlaze, Pentium, Vector and GPU core sys-
tems. The X-axis presents data sets that are read/written by the image threshold-
ing application from/to the main memory. The Y-axis has logarithmic scale and
presents the number of clock cycles consumed while accessing the data set. The
main memory single access latency on a MicroBlaze system with 125MHz DDR
SDRAM is measured to be almost 50 cycles. The SDRAM memory latency on In-
tel Core i7 CPU with a memory clock 1.33 GHz, SDRAM DDR3 Controller with
capacity of 2x4 GB, SODIMM module and 128 bit bus-width is measured almost
150 cycles using SiSoftware Sandra 2013 [23]. While executing on FPGA, the
VESPA vector processor core [24] consumes almost 300 clock cycles for a sin-
gle load/store memory access. Streaming Architectural Simulator (SArcs) trace-
based architectural simulator targeting real GPU device (Tesla C2050) based on
the NVIDIA Fermi generation is used to evaluate GPU systems. A GPU Fermi
architecture (C2050) having 3 GB SDRAM capacity and 144 GB/s bandwidth
gets a penalty of approximately 600 clock cycles [25, 26] while accessing main
memory. The results show that AMC irregular memory access is 2, 14, 26 and 20
times faster than MPMC, Intel core i7, vector and GPU systems respectively. The
AMC system has higher speed-up for regular access patterns (such as Tiled) than
for irregular patterns.

6.4. Area & Power
Studies [27] have shown that on a GPU system, applications are easily imple-

mented and processed significantly faster than on FPGA and multi-core systems.

26

Figure 13: Memory Read/Write Access Time of Different Systems

However, a compute-capable discrete GPU can draw more than 200 watts [27] by
itself. In this section, we measure the idle power of AMC, MicroBlaze and Intel
systems without having HLS multi-accelerator system. The Intel Core i7 CPU
(4 Cores) with a system clock of 2.4 GHz and 8 GByte of global memory con-
sumes 15.80 watts static power [23]. The MicroBlaze and AMC systems without
having HLS multi-accelerator consume 2.75 and 2.1 watts respectively on Xilinx
V5-Lx110T FPGA device. Both systems have a system clock of 125 MHz and
256 MByte of global memory. Due to the light weight of AMC, the system con-
sumes 32% fewer slices and 23% less on-chip power than the MicroBlaze based
system.

7. Related Work

A programming model is significant for multi-core architectures as it auto-
mates the exploitation of parallelism of a sequential software and make it portable
between different architectures. The Cell Superscalar (CellSs) [28] programming
model permits programmers to write sequential application and the programming
model utilizes the offered concurrency and uses the dissimilar components of the
Cell/BE (PPE and SPEs) for automatic parallelization at run time. CellSs frame-
work manages data transfer using task interface. The main memory is accessed
by DMA routines. A DMA transfer or a group of DMA transfers is recognized by
a tag. Number of transfers can be grouped by using the similar tag. After starting
an asynchronous transfer, the completion can be assured via the DMA tag. An
interface is provided to scatter/gather memory access patterns for one, two and
three-dimensional arrays. Using the combination of different DMAs (DMA list)
CellSs implements Scatter/Gather operations. Intel brings a suite of programming

27

models, the Intel Array Building Blocks [29].
A number of scheduling and memory management approaches exist for multi-

accelerator, but to the best of our knowledge a challenge is still there to find mech-
anisms that can schedule dynamic operations while taking both the processing
and memory requirements into account. Marchand et al. [30] developed soft-
ware and hardware implementations of the Priority Ceiling Protocol that control
the multiple-unit resources in a uniprocessor environment. A multi-accelerator
having 16 AMD dual-core CPU computing nodes with 4 NVIDIA GPUS and a
Xilinx FPGA is presented by Showerman et al. [31]. The cluster nodes are in-
terconnected with both InfiniBand and Ethernet networks. The software stack
consists of standard cluster tools, the accelerator-specific software package and
enhancement of the resource allocation and branch subsystem. Ferrante [32] de-
veloped a scheduling algorithm which allows for distributing IPSec – a suite of
protocols that provides security to communications at IP level – packet process-
ing over the CPU and multiple accelerators and to support soft QoS. He provides
some high-level simulations to prove that the algorithm works as desired and that
it can provide a performance enhancement especially when the system is over-
loaded. Anderson [33] proposed and implemented a scheduling method for real-
time systems for multicore platforms that encourage certain groups of tasks to
be scheduled together while ensuring real-time constraints. This method can be
applied to encourage tasks that shares a common working set to be executed in
parallel, which makes more effective use of shared caches. Wolf et al. [34] Pro-
vides a real-time capable thread scheduling interface to the two-level hardware
scheduler of MERASA multi-core processor. A time-bounded synchronization
mechanism for the concurrent threads execution is proposed for multi-core archi-
tecture. The architecture is capable of executing hard real-time threads. Yan et
al. [35] designed a hardware scheduler to assist the SPC task scheduling on het-
erogeneous multi-core architecture. The scheduler supports first come first service
(FCFS) and dynamic priority scheduling strategies. Ganusov et al. [36] proposed
the Efficient Emulation of Hardware Prefetchers via Event Driven Helper Thread-
ing (EDHT). EDHT gives the idea of using accessible general purpose cores in
a chip multiprocessor environment. It acts as helper engine for separate threads
working on the active cores. Wen et al. [37] present an FT64 based on chip mem-
ory subsystem that combines software/hardware managed memory structure. The
stream accelerator is HPC application-specific coprocessor. It combines caching
and software-managed memory structures, capturing locality exhibited in regu-
lar/irregular stream access without data transfer between stream register file and
caches. Chai et al. [38] presented a configurable stream unit for providing stream-

28

ing data to hardware accelerators. The stream unit is situated in the system bus,
and it prefetches and align data based on streams descriptors.

Hussain et al. [39] [40] discussed the architecture of a pattern based memory
controller for application specific single accelerator. He also provides a memory
controller [41] and [42] [43] for single core vector processor and graphics system
respectively. The design is appropriate only for single core, whereas in AMC
we present a mechanism both for multi-hardware accelerator. Moreover, features
of AMC like the Scheduler and Memory Manager enable higher performance of
HLS multi-hardware accelerators.

8. Conclusion

HLS-based multi-accelerator systems suffer from poor performance on FPGA
architectures due to the processor-memory speed gap. A generic HLS multi-
accelerator system requires a microprocessor (CPU) that controls the multi-accelerator
and manages the memory system. In this work, we have proposed an efficient and
intelligent controller in hardware (AMC) for a HLS multi-accelerator environ-
ment. The AMC improves the system performance by reducing accelerator/pro-
cessor and memory speed gap, and schedule/manage complex memory patterns
without the support of the processor and operating system. The AMC system pro-
vides strided, scatter/gather and tiled memory access support that eliminates the
overhead of arranging and gathering address/data by the master core (micropro-
cessor). The proposed environment can be programmed by the microprocessor
using a High Level Language (HLL) API or directly from an accelerator using a
specific command interface. The experimental evaluations based on the MicroB-
laze and Intel-based HLS multi-accelerator systems with Xilkernel (RTOS) and
Linux kernel respectively demonstrates that AMC system best utilizes hardware
resources and efficiently accesses physical data. In the future, we are intend-
ing to insert a selective static/dynamic set of data access pattern inside AMC for
multi-accelerator (vector accelerator) design that would definitely reduce the re-
quirement of programming AMC by the user for a range of applications.

9. Acknowledgments

This work has been supported by the Ministry of Science and Innovation
of Spain (CICYT) under contract TIN–2007–60625 and by the European Union
Framework Program 7 HiPEAC2 Network of Excellence. The authors would like
to thank the Barcelona Supercomputing Center, Microsoft’s Barcelona Research

29

Center, Unal Center of Education Research and Development (UCERD) and the
Universitat Politecnica de Catalunya (UPC) for their support. The authors also
wish to thank the reviewers for their insightful comments.

References

[1] Xilinx Virtex-7. Leading FPGA System Performance and Capacity, 2012.

[2] Altera Stratix IV. Stratix IV FPGA: High Density, High Performance AND
Low Power, 2012.

[3] Xilinx Artix-7. Leading System Performance per Watt for Cost Sensitive
Applications, 2012.

[4] Halfhill, T.R. Tabula’s time machine. Microprocessor Report, 2010.

[5] Kirk Saban. Xilinx Stacked Silicon Interconnect Technology Delivers
Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency. In White
Paper: Virtex-7 FPGAs, 2011.

[6] Wulf, Wm. A. and McKee, Sally A. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 1995.

[7] McKee, Sally A. Reflections on the memory wall. ACM: Proceedings of the
1st conference on Computing frontiers, 2004.

[8] T. Hussain, M. Pericas, N. Nacho and E. Ayguade. Implementation of a
Reverse Time Migration Kernel using the HCE High Level Synthesis Tool.
FPT 2012.

[9] M.C.McFarland, A.C.Parker, and R.Camposano. The high-level synthesis of
digital systems. Proc. IEEE, vol. 78, no. 2, 1990.

[10] Alessandro Marongiu and Paolo Palazzari. The HARWEST Compiling En-
vironment: Accessing the FPGA World through ANSI-C Programs. CUG
2008 Proceedings, 2008.

[11] Villarreal, Jason, and others. Designing modular hardware accelerators in C
with ROCCC 2.0. In FCCM 2010.

[12] Xilinx. Channelized Direct Memory Access and Scatter Gather, February
25, 2010.

30

[13] PLDA. PCI Express XpressLite2 Reference Manual, February 2010.

[14] Embedded Development Kit EDK 10.1i. MicroBlaze Processor Reference
Guide.

[15] Xilinx LogiCORE IP. Local Memory Bus (LMB), December, 2009.

[16] Embedded Development KitEDK 10.1i. MicroBlaze Processor Reference
Guide.

[17] Xilinx. LogiCORE IP I/O Module, October, 2012.

[18] Xilinx LogiCORE IP. Multi-Port Memory Controller (MPMC), March 2011.

[19] Xilinx . Xilkernel, December , 2006.

[20] Xilinx Software Development Kit (SDK).

[21] Embedded System Tools Reference Manual EDK 13.1.

[22] Xilinx LogiCORE IP. Multi-Port Memory Controller (MPMC), March 2011.

[23] SiSoftware Sandra 2013.

[24] Yiannacouras, and others. VESPA: portable, scalable, and flexible FPGA-
based vector processors. In CASES 2008, Proceedings of international con-
ference.

[25] D. Haugen. Seismic data compression and gpu memory latency. Dept. of
Computer and Information. Science, Norwegian University of Science and
Technology, 2009.

[26] Gulati, Kanupriya and Khatri, Sunil P. Hardware Acceleration of EDA Al-
gorithms: Custom ICs, FPGAs and GPUs. Springer Publishing Company,
Incorporated, 2010.

[27] Scogland, and others. A first look at integrated GPUs for green high-
performance computing. Computer Science - Research and Development.

[28] Cell Superscalar (CellSs) Users Manual (Barcelona Supercomputing Cen-
ter), May 2009.

31

[29] A. Ghuloum, A. Sharp, N. Clemons, S. Du Toit, R. Malladi, M. Gangad-
har, M. McCool. Array Building Blocks: A Flexible Parallel Programming
Model for Multicore and Many-Core Architectures, Sept, 2010 .

[30] P. Marchand and P. Sinha. A hardware accelerator for controlling access
to multiple-unit resources in safety/time-critical systems. Inderscience Pub-
lishers, April 2007.

[31] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington
and W. Hwu . QP: A Heterogeneous Multi-Accelerator Cluster. In 10th
LCI International Conference on High-Performance Clustered Computing,
March 2009.

[32] A. Ferrante, V. Piuri and F. Castanier. A QoS-enabled packet scheduling
algorithm for IPSec multi-accelerator based systems. In Proceedings of the
2nd conference on Computing frontiers, 2005.

[33] James H. Anderson and John M. Calandrino. Parallel task scheduling on
multicore platforms. ACM, January 2006.

[34] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, C. Rochange,
H. Cassé”, P. Sainrat, T. Ungerer. RTOS Support for Parallel Execution of
Hard Real-Time Applications on the MERASA Multi-core Processor. In
Proceedings of the 2010 13th IEEE International Symposium.

[35] L. Yan, W. Hu, T. Chen, Z. Huang. Hardware Assistant Scheduling for
Synergistic Core Tasks on Embedded Heterogeneous Multi-core System. In
Journal of Information & Computational Science (2008).

[36] Ganusov, Ilya and Burtscher, Martin. Efficient emulation of hardware
prefetchers via event-driven helper threading. In Proceedings of the 15th in-
ternational conference on Parallel architectures and compilation techniques,
2006.

[37] M Wen, N Wu, C Zhang, Q Yang, J Ren, Y He, W Wu, J Chai, M Guan, C
Xun. On-Chip Memory System Optimization Design for the FT64 Scientific
Stream Accelerator. Micro IEEE 2008.

[38] Sek M. Chai, N. Bellas, M. Dwyer and D. Linzmeier. Stream Memory Sub-
system in Reconfigurable Platforms. 2nd Workshop on Architecture Re-
search using FPGA Platforms, 2006.

32

[39] Tassadaq Hussain, M. Pericas, N. Nacho and E. Ayguade. Reconfigurable
Memory Controller with Programmable Pattern Support. HiPEAC Workshop
on Reconfigurable Computing, Jan, 2011.

[40] Tassadaq Hussain, M. Shafiq, M. Pericas, N. Nacho and E. Ayguade. PPMC:
A Programmable Pattern based Memory Controller. In ARC 2012.

[41] Tassadaq Hussain, Oscar Palomar, Adriyn Cristal, Osman Unsal, Eduard
Ayguady and Mateo Valero. PVMC: Programmable Vector Memory Con-
troller. In The 25th IEEE International Conference on Application-specific
Systems, Architectures and Processors. IEEE ASAP 2014 Conference, 2014.

[42] Tassadaq Hussain, Oscar Palomar, Adriyn Cristal, Osman Unsal, Eduard
Ayguady, Mateo Valero and Amna Haider. Stand-alone Memory Controller
for Graphics System. In The 10th International Symposium on Applied Re-
configurable Computing (ARC 2014). ACM, 2014.

[43] Tassadaq Hussain and Amna Haider. PGC: A Pattern-Based Graphics Con-
troller. Int. J. Circuits and Architecture Design, 2014.

33

