
2022 58

María Ángelica Dávila Gúzman

FPGA Accelerators on
Heterogeneous Systems:
An Approach Using High

Level Synthesis

Director/es
Villarroya Gaudó, María
Suárez Gracia, Darío



© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606



María Ángelica Dávila Gúzman

FPGA ACCELERATORS ON HETEROGENEOUS
SYSTEMS: AN APPROACH USING HIGH LEVEL

SYNTHESIS

Director/es

Villarroya Gaudó, María
Suárez Gracia, Darío

Tesis Doctoral

Autor

2022

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática



Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



FPGA Accelerators on Heterogeneous Systems:

An Approach Using High Level Synthesis

Maria Angélica Dávila Guzmán

November, 2021
Version: Draft





Departamento de Informática e Ingeniería de sistemas
Instituto de Investigación es Ingeniería de Aragón

Grupo de Arquitectura de Computadores

A thesis submitted in total fulfillment for the degree of Doctor of Philosophy

FPGA Accelerators on Heterogeneous Systems:
An Approach Using High Level Synthesis

Maria Angélica Dávila Guzmán

Supervisors Darío Suárez Gracia
María Villarroya Gaudó

November, 2021



Maria Angélica Dávila Guzmán

FPGA Accelerators on Heterogeneous Systems:

An Approach Using High Level Synthesis

A thesis submitted in total fulfillment for the degree of Doctor of Philosophy , November,

2021

Supervisors: Darío Suárez Gracia and María Villarroya Gaudó

Universidad de Zaragoza

Grupo de Arquitectura de Computadores

Instituto de Investigación es Ingeniería de Aragón

Departamento de Informática e Ingeniería de sistemas

Calle Maria de Luna

50018

Zaragoza



Abstract

The emergence of FPGAs in the High-Performance Computing domain is arising
thanks to their promise of better energy efficiency and low control latency, compared
with other devices such as CPUs or GPUs.

Albeit these benefits, their complete inclusion into HPC systems still faces several
challenges. First, FPGA complexity means its programming more difficult compared
to devices such as CPU and GPU. Second, the development time is longer due to the
required synthesis effort. And third, working with multiple devices increments the
details that should be managed and increase hardware complexity.

This thesis tackles these 3 problems at different stack levels to improve and to make
easier the adoption of FPGAs using High-Level Synthesis on HPC systems. At a
close to the hardware level, this thesis contributes with a new analytical model for
memory-bound applications, an usual situation for HPC applications. The model
for HLS kernels can anticipate application performance before place and route,
reducing the design development time. Our results show a high precision and
adaptable model for external memory technologies such as DDR4 and HBM2, and
kernel frequency changes. This solution potentially increases productivity, reducing
application development time.

Understanding low-level implementation details is difficult for average programmers,
and the development of FPGA applications still requires high proficiency program-
ming skills. For this reason, the second proposal is focused on the extension of a
computer vision library to be portable among two of the main FPGA vendors. The
template-based library allows hardware flexibility and hides design decisions such
as the communication among nodes, the concurrency programming model, and the
application’s integration in the heterogeneous system, to develop complex vision
graphs easily.

Finally, we have transparently integrated the FPGA in a high level framework for
co-execution with other devices. We propose a set of high level abstractions covering
synchronization mechanism and load balancing policies in a highly heterogeneous
system with CPU, GPU, and FPGA devices. We present the main challenges that
inspired this research and the benefits of the FPGA use demonstrating performance
and energy improvements.

v



In summary, this thesis contributes to the adoption of FPGAs in HPC domains by
offering solutions that help reducing development time and improve performance
and energy efficiency.

vi



Resumen

La evolución de las FPGAs como dispositivos para el procesamiento con alta eficiencia
energética y baja latencia de control, comparada con dispositivos como las CPUs y las
GPUs, las han hecho atractivas en el ámbito de la computación de alto rendimiento
(HPC).

A pesar de las inumerables ventajas de las FPGAs, su inclusión en HPC presenta
varios retos. El primero, la complejidad que supone la programación de las FPGAs
comparada con dispositivos como las CPUs y las GPUs. Segundo, el tiempo de
desarrollo es alto debido al proceso de síntesis del hardware. Y tercero, trabajar con
más arquitecturas en HPC requiere el manejo y la sintonización de los detalles de
cada dispositivo, lo que añade complejidad.

Esta tesis aborda estos 3 problemas en diferentes niveles con el objetivo de mejorar
y facilitar la adopción de las FPGAs usando la síntesis de alto nivel(HLS) en sistemas
HPC.

En un nivel próximo al hardware, en esta tesis se desarrolla un modelo analítico
para las aplicaciones limitadas en memoria, que es una situación común en apli-
caciones de HPC. El modelo, desarrollado para kernels programados usando HLS,
puede predecir el tiempo de ejecución con alta precisión y buena adaptabilidad ante
cambios en la tecnología de la memoria, como las DDR4 y HBM2, y en las varia-
ciones en la frecuencia del kernel. Esta solución puede aumentar potencialmente la
productividad de las personas que programan, reduciendo el tiempo de desarrollo y
optimización de las aplicaciones.

Entender los detalles de bajo nivel puede ser complejo para las programadoras
promedio, y el desempeño de la aplicaciones para FPGA aún requiere un alto
nivel en las habilidades de programación. Por ello, nuestra segunda propuesta está
enfocada en la extensión de las bibliotecas con una propuesta para cómputo en visión
artificial que sea portable entre diferentes fabricantes de FPGAs. La biblioteca se ha
diseñado basada en templates, lo que permite una biblioteca que da flexibilidad a la
generación del hardware y oculta decisiones de diseño críticas como la comunicación
entre nodos, el modelo de concurrencia, y la integración de las aplicaciones en el
sistema heterogéneo para facilitar el desarrollo de grafos de visión artificial que
pueden ser complejos.

vii



Finalmente, en el runtime del host del sistema heterogéneo, hemos integrado la
FPGA para usarla de forma trasparente como un dispositivo acelerador para la
co-ejecución en sistemas heterogéneos. Hemos hecho una serie propuestas de alto
nivel de abstracción que abarca los mecanismos de sincronización y políticas de
balanceo en un sistema altamente heterogéneo compuesto por una CPU, una GPU y
una FPGA. Se presentan los principales retos que han inspirado esta investigación y
los beneficios de la inclusión de una FPGA en rendimiento y energía.

En conclusión, esta tesis contribuye a la adopción de las FPGAs para entornos HPC,
aportando soluciones que ayudan a reducir el tiempo de desarrollo y mejoran el
desempeño y la eficiencia energética del sistema.

viii



Contents

1 Introduction 5
1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Objectives and Dissertation Overview . . . . . . . . . . . . . . . . . . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Project Framework . . . . . . . . . . . . . . . . . . . . . . . . 9

2 FPGAs as Accelerator in Heterogeneous System 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Heterogeneous System . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 FPGA Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 FPGA Program Design . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 FPGAs as Accelerator on heterogeneous system . . . . . . . . 21

3 Experimental Framework 25
3.1 Evaluation Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Analytical Time Estimation of Memory-bound Applications for FPGA
Using High-level Synthesis 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 FPGA External Memory and BSP . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Global Memory Interconnect . . . . . . . . . . . . . . . . . . 37
4.4 Performance Estimation for FPGAs . . . . . . . . . . . . . . . . . . . 40
4.5 Memory Model for FPGA accelerators . . . . . . . . . . . . . . . . . . 41

4.5.1 Burst-Coalesced LSU . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Atomic-pipelined LSU . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7.1 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.3 Comparison With Other Models . . . . . . . . . . . . . . . . . 59

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



5 FPGA Frameworks to Improve Design Productivity 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 OpenVX Programming Flow Alternatives on FPGA . . . . . . . . . . . 65

5.4 HiFlipVX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Tuning HiFlipVX for Intel FPGAs . . . . . . . . . . . . . . . . . . . . . 69

5.6.1 Execution model . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.3 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7.1 HiFlipVX Scalability Analysis . . . . . . . . . . . . . . . . . . 75

5.7.2 OpenVX Application Resource Utilization . . . . . . . . . . . . 76

5.7.3 OpenVX Application Analysis . . . . . . . . . . . . . . . . . . 80

5.7.4 Comparison with Existing Approaches . . . . . . . . . . . . . 80

5.7.5 Tiling HiFlipVX for HBM memory . . . . . . . . . . . . . . . . 83

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 FPGAs on Heterogeneous System for Energy Efficiency 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 EngineCL Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Coupling FPGA to EngineCL . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6.1 Scheduler Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6.2 Scheduler comparison . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusions and Future Work 105
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

8 Appendix: Memory aware co-execution in heterogeneous system with
CPU and FPGA with HBM2 memory 123
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x



8.2 FPGA with HBM memory in a Heterogeneous system . . . . . . . . . 124

List of Figures 129

List of Tables 133

Listings 135

xi





Abbreviations

FPGA Field Programmable Gate Array

BSP Board Support Package

GMI Global Memory Interconnect

HBM High Memory Bandwidth

DDR Double Data Array memory

HLS High Level Synthesis

HDL Hardware Design Level

LSU Load Store Unit

IP Intellectual Property core

PCIe Peripheral Component Interconnect express

RTL Register Transfer Level

1





Publications

Part of this dissertation includes previous results of published or under review

papers of my authorship. The works in collaboration are possible thanks to two

tools developed in two universities: 1) a runtime for co-execution in heterogeneous

system (EngineCL) from the University of Cantabria, and 2) a HLS open source

library for Xilinxs FPGAs (HiFlipVX) from the University of Dresden.

The list of publications in chronological order are:

1. Maria Angélica Dávila-Guzmán, Raúl Nozal, Rubén Gran, Maria Villaroya-

Gaudó, Darío Suárez, and José Luis Bosque. First Steps Towards CPU, GPU,

and FPGA Parallel Execution with EngineCL. Proceedings of the 18th Interna-

tional Conference on Computational and Mathematical Method in Science and

Engineering. CMMSE 2018.

2. Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó,

and Darío Suárez Gracia. Caracterización de una FPGA sobre un sistema

heterogéneo usando OpenCL. In Jornadas de la sociedad de Arquitectura y

Tecnología de Computadoras (SARTECO), pages 75–83, 2018.

3. Maria Angelica Davila Guzman, Ruben Gran Tejero, Maria Villarroya Gaudo,

and Dario Suarez Gracia. Towards the inclusion of FPGAs on commodity het-

erogeneous systems. In 2018 International Conference on High Performance

Computing Simulation (HPCS), pages 554–556, 2018.

B CORE 2018

4. María Angélica Dávila Guzmán, Raúl Nozal, Rubén Gran Tejero, María

Villarroya- Gaudó, Darío Suárez Gracia, and Jose Luis Bosque. Cooperative

CPU, GPU, and FPGA heterogeneous execution with EngineCL. The Journal of

Supercomputing, 75(3): 1732–1746, 2019.

Q2 JCR 2019

5. Maria A.Dávila-Guzmán, Rubén Gran Tejero,María Villarroya-Gaudó,and

Darío Suárez Gracia. An analytical model of memory-bound applications

3



compiled with high-level synthesis. In 2020 IEEE 28th Annual International

Symposium on Field- Programmable Custom Computing Machines (FCCM),

pages 218–218, 2020. (Poster).

A CORE 2020. HiPEAC paper award

6. Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, Maria Villaroya-Gaudó,

Darío Suárez, and José Luis Bosque. Memory aware co-execution in hetero-

geneous systems with CPU and FPGA devices. International Conference on

Computational and Mathematical Method in Science and Engineering, CMMSE

2020.

7. Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó,

Darío Suárez Gracia, Lester Kalms, and Diana Göhringer. A cross-platform

OpenVX library for FPGA accelerators. In 2021 29th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP),

pages 75–83, 2021.

C CORE 2021

8. Maria A.Dávila-Guzmán,Rubén GranTejero,María Villarroya-Gaudó,and Darío

Suárez Gracia. Analytical Model for Memory-centric High Level Synthesis-

generated Applications. IEEE Transactions on Computers, 2021.

Q2 JCR 2020

9. Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó,

Darío Suárez Gracia, Lester Kalms, and Diana Göhringer. A Cross-Platform

OpenVX Library for FPGA Accelerators (PDP extension). Journal of Systems

Architecture, 2021.

Q2 JCR 2020 (under minor review)

4



Introduction 1
This chapter presents the reason for including the FPGAs in heterogeneous sys-

tems and the uprising programmability challenges. Also, it lists the objectives, the

achieved contributions and the project framework that has allowed the development

of this thesis.

1.1 Rationale

At the end of Moore’s law [108] and Dennard’s scaling [35], the emergence of

power and temperature constrains in computer system is driving computer hardware

architects to new exciting perspectives. Maintain Moore’s law was a deliberated

choice of chip manufacturers, but in early 2000s, when the transistors size was below

90 nm, the expected benefits of higher computational power with lower energy

consumption achieved only by scaling transistors started to fail.

The physical impossibility of placing more transistors in the same area switching

at high frequency has forced to stop increasing the clock frequency in processors.

To keep moving in the processors Moore’s performance curve, during 2010’s the

number of cores in a processor was increased at lower frequencies, which in turn

stopped the excessive power dissipation [104]. Heterogeneous era started with

the combination of transistor technologies, evolved to many-core processors, and

grew up with the inclusion of specialized processors (accelerators) in the computing

systems such as GPUs, FPGAs, DSPs ...

Computer systems with accelerators have demonstrated high energy efficiency and

compute power to support the market necessities . Some of these systems have even

achieved good positions in the worldwide rankings such as TOP500 [153] of high

performance computing and GREEN500 [152] of best energy efficiency in the last

years [153].

5



More devices and hardware heterogeneity come with a burden in programming

languages, forcing developers to learn unfamiliar tools and increasing the complexity

of software development. One way to reduce heterogeneous system complexity is

software abstractions, that can put away the intricacies with high-level frameworks

and intelligent runtimes. When they succeed, they enable the computing capabilities

of heterogeneous systems without exposing their nuances. The industry is driving

initiatives of programming language standardization for heterogeneous systems with

languages like OpenCL and SyCL, which abstract hardware architecture details in

favor of development productivity. This enables developers to focus on the algorithm

development and not on managing system resources. In these terms, the research

can be concentrated on how to distribute the work load among the available devices

efficiently in a heterogeneous system to improve compute performance and energy

efficiency. Still, this approach is not yet broadly supported by industry but has been

successfully explored with GPU devices [117, 94, 120, 1, 96, 53, 128, 165], FPGAs

devices[53, 5, 160, 141], but it is not fully analyzed with higher heterogeneity

including CPU, GPUs and FPGAs[139]. The last part of this dissertation includes

one of the first proposals to enable co-execution between the three aforementioned

devices.

The FPGAs have recently appeared in the accelerators ecosystem promising high

power efficiency and easier programmability. Besides, new programming paradigms

try to facilitate and promote their broad adoption. For example, the introduction

of High-Level Synthesis has significant importance to improve programmer’s pro-

ductivity using high-level programming languages as C/C++, OpenCL, and recently

SYCL[147]. The High-Level Synthesis in FPGAs is not new and has a long history of

fails [99], the design space could have thousand of solutions, so it took long time to

develop HLS-based tools. The evolution of the transformation from C to RTL was

responsible for the take off of the FPGA market in 2004 [99], and in 2015 with the

Intel announce of Altera’s acquisition, one of the main FPGA manufacturers, the new

technological road map was opened with the idea of FPGA integration with Xeon

processors [62, 56].

The inclusion of an FPGA accelerator in a heterogeneous system ensuring high

programmers productivity is still under development [18]. Although heterogeneous

programming languages promise single-source and functional portable programs,

the performance portability has not achieved the same level of maturity in industrial

framework’s yet. FPGA design development has remarkable differences compared

6



with CPUs and GPUs, even using High-Level Synthesis, since the FPGAs architecture

is very flexible and requires the expression of low level details to achieve optimal

performance. Consequently, the research community has to develop and support

the application frameworks for program optimization and even build the set of

benchmarks for testing, which mismatch among FPGA vendors.

In summary, adding higher heterogeneity with new devices as FPGAs requires more

than a high-level programming framework; the programmers need to understand

the device’s architecture and main bottlenecks in an early compilation stage to

reduce the development time. This approximation to FPGA optimization could

be a long way for custom programs. Relying only on the OpenCL standard is

insufficient, since developers require specifications with sufficient low level and

near the desired task to easily describe the parallelism with specific FPGA-friendly

frameworks, forgetting coarse details as FPGA model features, and focusing on

performance. These approaches are covered in this dissertation, particularly in

Chapters 4 and 5.

1.2 Objectives and Dissertation Overview

The overall goal of this dissertation is to explore the inclusion of a high energy

efficient device as the FPGA in a heterogeneous system. This goal entails their

programmability as the main deterrent to be broadly adopted by programmers in a

productive way.

This dissertation is organized as follow:

Chapter 2 presents the background on heterogeneous systems and the FPGA archi-

tecture, including application design, and FPGA support to be used as an accelerator

device. The following Chapter 3 presents the experimental framework.

Chapter 4 explores performance modeling as an option to improve FPGA applications

using high-level synthesis. We present a new model for memory bound applications

in FPGAs, which estimates the time performance of the applications at an early

compilation stage, without the long time required for full compilation.

Chapter 5 explores the portability of FPGA applications among vendors using a high-

level framework for computer vision acceleration based on the OpenVX standard.

7



We propose an extension to support Intel FPGA devices in an open library originally

designed for Xilinx devices. Also the framework is extended to be used in FPGAs as

a discrete accelerator combining C/C++ and OpenCL programming languages.

Chapter 6 presents the exploration of load balancing algorithms in a system with

three different accelerators: CPU, GPU, and FPGA. We integrate the FPGA to an

existing runtime library that supports the load balancing algorithm and evaluates

the performance in terms of time and energy efficiency.

Finally, with all the contributions to the main objective in previous chapters, in

Chapter 7 we conclude and brief possible future research lines.

1.3 Contributions

This thesis includes the following contributions:

• Analysis of the FPGA architecture as an accelerator for one of the main FPGA

vendors focused in the memory hierarchy. We determine the most time-critical

blocks interacting between kernel memory request and the external memory

controller.

• We develop a memory model for FPGAs using high-level synthesis in memory

bound applications. We validate the model with a set of benchmarks and

comparisons with the state-of-the-art, showing the estimation improvements

of this proposal using a standard DDR4 and novel HBM2 memory.

• We propose a set of memory-oriented hints for programmers to guide opti-

mizations using high level synthesis.

• We integrate two of the major FPGA vendors in a library for computer vision

applications using the OpenVX standard. This library was carefully ported to

Intel FPGA devices and extended to support stream communication among

functions to allow fully graph implementations, and extensions to work in

FPGA accelerators using OpenCL and C++. These results demonstrate porta-

bility and performance improvements.

• We present one of the first results of load balancing in a full heterogeneous

system including three different accelerator devices: CPU, GPU, and FPGA.

8



• We analyze performance results of a heterogeneous system in terms of time

and energy efficiency considering all three devices running at the same time.

We demonstrate the increase in application performance and energy efficiency

with the use of more accelerators.

1.4 Thesis Project Framework

This thesis has been developed at the Computer Architecture Group of Zaragoza

(gaZ) of the University of Zaragoza, in the Department of Computer Science and Sys-

tems Engineering (DIIS) and the Engineering Research Institute of Aragon (I3A).

The Santander - University of Zaragoza collaboration grant for Latin-American

during two years (2017-2019) supported me as PhD Student. I have developed a

research internship at the Technical University of Dresden, in the Adaptive Dynamic

Systems group under the supervision of Diana Goehringer, thanks to a competitive

collaboration grant from HiPEAC.

The research work has been funded by the Spanish National Science Research System,

under the project PID2019-105660RB-C21: Jerarquía de memoria, gestión de tareas

y optimización de aplicaciones, from the Agencia Estatal de Investigación and

TIN2016-76635-C2-1-R: Arquitectura y programación de computadores escalables

de alto rendimiento y bajo consumo, from the Spanish Ministry of Economy and

Competitive. Both projects are in collaboration with the University of Cantabria

which led to a fruitful collaboration in this thesis. Also the Aragón Government

has partially founded the work through the Research group recognition: T58_20R

research group from Aragón Government and European Social Fund, and (3) 2014-

2020 "Construyendo Europa desde Aragón" from European Regional Development

Fund. Part of the FPGA board development kits used in this work and Quartus

software licenses were a donation from Intel, and Nvidia gave away the GPU.

9





FPGAs as Accelerator in

Heterogeneous System
2

This chapter presents an overview of the heterogeneous systems, their programma-

bility, and how they impulse the use of FPGAs. We discuses synthesis challenges

from RTL design to the evolution to high-level synthesize. Finally, we emphasize in

the FPGAs on heterogeneous system using high level languages which is the main

focus of this dissertation.

2.1 Introduction

Hardware heterogeneity as an alternative for high throughput and energy efficient

processing includes accelerators as GPUs and FPGAs. One of the main drawbacks of

a heterogeneous system is how to use the available hardware resources efficiently.

This problem needs to be addressed in two ways: the first one is how to efficiently

distribute the workload among available devices since each architecture performs

differently according to algorithm requirements, and accelerators entail different

sources of overheads as workload dispatch and communication. The second way is

device programmability; the heterogeneous programming languages allow the same

language for different device architectures, but even with the modern languages

as SYCL [138], the code is functionally portable while performance is not. Then,

the implementations and optimizations are different among devices, especially in

FPGAs.

FPGAs offer high energy efficiency and low latency compared with CPU and GPU,

but entails new challenges in its inclusion as an accelerator due to the long design

flow and early support [29]. For this reason, the FPGAs need to be studied in deep

detail.

11



2.2 Heterogeneous System

The Dennard Scaling predictions stopped in early 2000’s since it ignores two effects

on submicron technologies that condition the current processor development. First,

leakage current, which becomes more significant with the reduction of transistor

size; second, also ignored, was the threshold voltage at which the transistor switches.

Combining these effects, a higher number of transistors per Moore’s law [108],

increases the power density. As a result, more power needs complex and expensive

power dissipation. To make things worst, the dynamic current depends on clock

frequency, which was one of the main sources of improvement in the processor in

Moore’s era.

With the ending of Moore’s era in computing, many solutions appear as the multi-

core [89, 156], dark-silicon techniques [40] and, the field of our interest, heteroge-

neous system [78]. The inclusion of accelerators has proven to be a feasible solution;

for example, in the Top500 list of supercomputers of June 2021 [153], seven of

the top ten list are heterogeneous systems, and in terms of power efficiency in the

Green500, the number one is the MN-3 [152]. This heterogeneous architecture

combines Xeon CPUs with MN-Cores for deep learning applications. MN-3 is also

on the TOP500, but falls to 335th position, showing the difference in performance

objectives and power efficiency.

The idea behind a heterogeneous system is the inclusion of accelerators with different

specific architectures, more specialized to an application field. When an application

is suitable for the processor device, an improvement of performance-per-watt is

expected. Multiple devices in a system provide the opportunity to utilize concurrency

and parallelism, offering the benefits of flexible, well known, and strong optimized

tools of CPU devices, with greater energy efficiency from dedicated hardware.

Nowadays, CPUs with multicore processor have high performance supporting out-of-

order execution, branch prediction and improved SIMD instructions with up to 16

operations on 128 bits of data in one clock cycle [7]. When a CPU alone is sufficient

for a target application, the heterogeneous execution would be a waste of power

and performance [52]. Offload processing to an accelerator adds communication

overhead caused by the limited bandwidth available among devices. Also the

CPU acts as a host of the devices, adding control overhead. Choosing the right

combination device-application is a challenge and requires a good understanding of

accelerator features.

12



One of the most popular accelerators are the graphic processing units (GPU).

GPUs are a many-core architecture with several processing units, following the

SIMD(Single Instruction Multiple Data) paradigm. The GPUs were initially oriented

to process computer vision algorithms, however, with the evolution of programming

languages, this devices are widely used in many other applications. The GPUs can

be discrete, connected through a PCIe or NVLink, or it can be embedded with the

CPU. Although a tightly coupled GPU improves the data transfer cost, it has fewer

processing units because it has less available area, limiting performance [175].

Other devices that have become popular in the last decade are the FPGAs, which

were initially used as accelerator in datacenters [14, 134], FPGA offers dedicated

hardware dynamically reconfigured with low latency and present one of the most

relevant characteristics: high energy efficiency. As GPUs are specialized for data-

parallel application, FPGAs fit with streaming data parallelism [67], but they are

less common than GPUs since they are more difficult to program.

Aside from the aforementioned devices, there are many other accelerators such as

the DSP (digital signal processor) and ASIC (application-specific integrated circuit).

Those target specific niches of applications and are less versatile.

Although accelerators are designed for high performance, if they are difficult to

program, there is more risk of programming bugs that slow their adoption by the

programmers’ community. For this reason, programmability is almost as important

as high performance. For GPUs, a set of programming languages are available such

as OpenMP, OpenCL, and CUDA. Specially CUDA (Compute Unified Device Architec-

ture) from NVIDIA transforms the adoption of GPUs as a general purpose processor

easing programming with a set of compilers, tools, libraries, and applications [54].

In FPGAs the programming is more difficult and traditionally uses the RTL design.

Similarly to CUDA, for FPGAs emerges the High-Level Synthesis with languages as

C/C++, OpenCL, and SyCL to speed up the hardware development[138].

Hardware heterogeneity entails diversity in programming languages, forcing develop-

ers to learn unfamiliar tools per each device. Thus, the goal is to hide heterogeneous

system complexity and improve programmability. Software abstraction can put

away the complexities by specifying frameworks and runtimes to more fully ex-

ploit the computing capabilities of each device in the heterogeneous system [52].

Furthermore, the portability of programming languages is one of the most promis-

ing features of programming frameworks, where the idea is defining the compute

13



kernels to be executed on the devices and also the host code that orchestrates the

execution [138].

Industry is one of the main stakeholders in the development of unified programming

languages and standards for heterogeneous systems [36]. One of the initiatives

is OpenCL[110], it is a standard framework that promises writing only a single

kernel, it can run on a wide range of systems, maximizing the portability and with

heterogeneous computing in mind [42]. However, all these features come with

tedious host code, and the burden must be assumed by the programmer and the

runtime. Also, OpenCL cannot mask differences in hardware architectures, as a

consequence, programs do not necessarily run at peak performance, and, hence,

each program has to be tuned for each architecture [148].

Even although OpenCL is an advance in programming, the exposition of many low

level details makes difficult their extended adoption for average programmers [37,

34]. Other high-level frameworks are developed to increase productivity such as

CUDA [13] for Nvidia GPUs and OpenACC [126] a more general standard. OpenACC

follows the OpenMP philosophy, the applications are migrated to heterogeneous sys-

tems inserting compiler directives, reducing the programming migration effort [47,

149]. OpenCL and OpenACC are the independent programming standards to target

accelerators [77]. This was valid until 2014 where the Kronos group, the same that

proposed OpenCL, published SYCL standard [138] and the first implementations

were spread in 2019. SYCL brings OpenCL compute capabilities to C++. It has

grown quickly since SYCL integrates high level libraries and is being broadly adopted

in many architectures. At least every year, the research community contributes

with the framework advances and compilers for heterogeneous platforms such as:

OmpSs [37],Halide [136] , VirtCL [173], SnuCL [87], EngineCL [120], . . . In gen-

eral high level of abstraction provides programmers the ability to orchestrate the

available devices to choose or share the workload among the available ones.

The device orchestration, typically called load balancing, is based on the concept

of use all the compute capabilities available in the computer system to avoid the

waste of compute and power resources. This task is not straightforward since the

performance of each device depends on the program requirements. Conventionally,

the programmer should know the benefits of each architecture and then choose

the right platform to run the application. This problem could have many answers

and depends on the performance target (time, power, ...)[39]. The Table 2.1 shows

14



Table 2.1: CPU, GPU and FPGA characteristics as
accelerators in a heterogeneous sys-
tem, classifying in three categories:
best, worst, and intermediate.

Characteristic CPU GPU FPGA

Programability

Easy optimization

Flexibility

Transfer overhead

Compute latency

Massive Parallel

High Branch Divergence

Energy Efficiency
n =The best; =Medium; =The worst

a summary of the main characteristics of the CPU, GPU, and FPGA to expose the

diversity and the multi-objective optimization problem for programmers. Some

proposals enable CPU and GPU co-execution, [94, 96, 120, 79, 17, 116] others CPU

and FPGA co-execution [133, 10, 37, 53, 141], some others combine GPU and FPGA

[160], but no so many are already prepared to include more heterogeneity with

CPU, GPU and FPGA devices [33, 139].

Current frameworks concentrate their efforts in the promise of single-source pro-

grams to be run on the accelerators and also on the host that orchestrates execu-

tion [138], unfortunately the achievement of this objective is still a long way off,

specially in FPGAs devices which demands more knowledge in architecture design

to get the desired best performance per watt.

In the next section, we describe in detail the FPGA, as it is the most relevant

device used in this dissertation. We discuss its architecture and its integration as an

accelerator conceived to work with heterogeneous languages.

2.3 FPGA Device

The field programmable gate arrays (FPGA) are today a powerful platform tech-

nology thanks to the increase of the number of computational units along with the

15



number of levels in memory and the processor speed that has occurred in recent

years. One of the most significant changes in this time is in the inclusion of the

intellectual property (IPs) for digital signal processing (DSP) with floating point

operations and the inclusion of modern external memory technologies [168]. The

FPGAs are in the middle-ground between general purpose processor(CPU) and

pplication-specific integrated circuits (ASICs), often providing better performance

per watt in comparison with a CPU, but can be 35× larger and 4× slower than an

ASIC implementation [12].

FPGAs are mainly attractive for the programmable routing, which provides a highly

flexible architecture for application-specific customized hardware and also allows

continuous hardware upgrades. They are composed by columns of reconfigurable

logic blocks, DSP blocks, and scalable internal memory [70]. Also, the architecture

includes hardware IP units to support peripheral interfaces as: PCIe bus standard,

general purpose I/O and external memory. As an example, the Figure 2.1 shows the

Intel Stratix FPGA family architecture [71].

The reconfigurable logic core is composed of Logic Array Blocks (LAB) with basic

logic blocks known as Adaptive Logic Modules (ALMs). The ALMs contain Look

Up Tables-bases (LUT) resources that can be divided between two combinational

adaptive lookup tables (ALUTs) and four registers, which can be reconfigured to

build logic functions, arithmetic functions, and register functions [70]. Several LABs

can work cooperatively through the interconnection network to implement large

logic functions.

Lo
gi

c 
In

te
rc

on
ne

ct
D

SP
 B

lo
ck

s
Em

be
dd

ed
 M

em
or

y

Lo
gi

c 
In

te
rc

on
ne

ct

D
SP

 B
lo

ck
s

Em
be

dd
ed

 M
em

or
y

Lo
gi

c 
In

te
rc

on
ne

ct

H
ar

dM
em

or
y 

C
on

tro
el

le
r,I

/0
...

H
ar

dM
em

or
y 

C
on

tro
el

le
r,I

/0
...

D
SP

 B
lo

ck
s

Em
be

dd
ed

 M
em

or
y

Lo
gi

c 
In

te
rc

on
ne

ctPC
Ie

 
H

ar
d 

IP
PC

Ie
 

H
ar

d 
IP PC

Ie 
H

ard IP
PC

Ie 
H

ard IP

Figure 2.1: Intel Stratix 10 internal block diagram architecture.

16



Table 2.2: Intel FPGAs used in board accelerators.

Device Launch Transistor Logic DSP Embedded External

Date size Elements blocks memory memory

Stratix IV 530 2008 40nm 531200 1024 27,3 Mb DDR2

Stratix V 5SGXA7 2010 28nm 622000 256 57.2 Mb DDR3

Arria GX 1150 2013 28nm 427200 1518 67.2 Mb DDR4

Stratix 10 GX 2800 2013 14nm 2753000 5760 244 Mb DDR4

Stratix 10 MX 2100 2017 14nm 1073000 3960 239.5 Mb HBM2

Agilex F014 2019 10nm 1437240 4510 190 Mb DDR4

The performance and energy efficiency capabilities of FPGAs accompanied by pro-

grammability changed around the year 2004 with the improvements in High-Level

Synthesis had attracted the attention of the programmer’s community. This impulsed

FPGA adoption from embedded fields using the FPGA like a programmable inter-

connection technology, to high performance or power-efficient applications, making

it part of the system as a hardware accelerator. As an accelerator, the FPGA can be

embedded in the SoC tightly coupled to the CPU, or can be a discrete device with

PCIe communication and external memory for more data storage.

Discrete FPGAs offer higher compute performance per chip area than embedded ones,

fitting better in the HPC domain applications. The evolution of FPGAs acceleration

cards started with the Stratix IV from Altera manufacturer. This board is part of

Stratix series for high-end performance at low cost. In this devices, one of the

first implementations using OpenCL was reported [31, 6, 109], and comparing the

performance per watt rations with CPU and GPU, the Stratix IV was around 5×
better [15]. The Stratix V FPGA emerged with transistor size reduction and partial

reconfiguration features in 2010 with a 28nm technology [72]. Until 2012, Stratix V

was the largest device platform with OpenCL support and evidenced the difference

of kernel optimization with other devices, centering the efforts in models and

optimization methodologies [50, 162, 53] and acceleration of specific applications

[163, 164, 183, 113]. A low end FPGA from Arria family was introduced for discrete

boards in 2011 with 20nm technology, it was the first FPGA with hardwired floating

point capabilities [12]. Arria family was oriented to data structures applications [86],

image processing[151], and artificial intelligence [8, 177]. As in other platforms,

the main worries in the application development was the methodology to achieve

17



a good performance with OpenCL in specific applications [183, 185, 75, 160, 184,

143, 48]

A modern FPGA from the Intel Stratix series is the Stratix 10 with 14nm transistors.

Its main novelty was the introduction of the hyper register architecture for high-speed

designs [69], achieving a maximum frequency of 500MHz for HLS designs. Also,

Stratix 10 MX model was the first FPGA with the modern High Memory Bandwidth

(HBM2). The HBM2 is tightly coupled to the die and their interface is composed of

multiple banks as Figure 2.2 shows, each HBM bank is completely independent with

a 128-bit data bus, operating at DDR data rates. The inclusion of HBM2 memory

suppose an increasing of bandwidth and memory I/O interfaces with more power

efficiency compared with DDR3/DDR4 memory [61, 107]. Theoretically, in terms

of performance Stratix 10 can offer up to 9.2 TFLOPs being this technology near

to GPU devices in deep neural applications, compared with the Titan X Pascal with

a peak of 11 TFLOPSs, meanwhile Arria 10 offers 1.36 TFLOPSs [123]. The main

application focus, as in other areas, is neural networks and stencil computations [23,

41, 185].

As mentioned in the previous section, one of the greatest limitations of accelerators

is the communication with the host. As a solution, accelerators should increase the

bandwidth among devices. One alternative in discrete FPGAs is to increase the PCIe

bandwidth as in Intel Agilex (2019), supporting 16× PCIe 4.0, Agilex FPGAs are

designed to provide efficiency in AI applications supporting Bfloat operations in

DSPs [63]. On another side, the integrated FPGAs into heterogeneous SoCs can solve

FPGA

HBM TOP DRAM DIE 0

HBM TOP DRAM DIE 1

HBM TOP DRAM DIE 2

HBM TOP DRAM DIE 3

HBM BOTTOM DRAM DIE 0

HBM BOTTOM DRAM DIE 1

Pseudo Channel 0     Pseudo Channel 1

HBM BOTTOM DRAM DIE 2

HBM BOTTOM DRAM DIE 3

Pseudo Channel 2     Pseudo Channel 3

Pseudo Channel 4     Pseudo Channel 5

Pseudo Channel 6     Pseudo Channel 7

Pseudo Channel 0     Pseudo Channel 1

Pseudo Channel 2     Pseudo Channel 3

Pseudo Channel 4     Pseudo Channel 5

Pseudo Channel 6     Pseudo Channel 7

HBM (4 GB)

Figure 2.2: FPGA with an HBM memory as Intel Stratix 10 MX with 32 pseudo-channels
and 8 GB of memory across top and bottom interfaces.

18



bandwidth issues [20]. Such FPGAs have a processor (ARM Cortex or Intel Xeon)

tightly coupled to the FPGA in families such as Stratix 10 and Agilex. A resume of

the main FPGA models used in acceleration boards is listed in Table 2.1.

The other main FPGA vendor, Xilinx, uses the same concept of partial reconfiguration

for kernel and a static region to implement the communication structure with the

host for OpenCL. It offers threes device families with the SDAccel tool to use OpenCL:

Virtex-7, Kintex-7, and Kintex-Ultrascale [145]. Virtex architecture. Similarly to

Intel, the Kintex is a low end FPGA with a focus on price/performance, instead the

Virtex family is HPC oriented, it was the industry’s first with 18 × 18 hard multiplier

blocks [12]. Furthermore, both vendors share the need of performance models [21,

94] and specific optimizations per application field [83, 137].

2.3.1 FPGA Program Design

As the architecture features, the programmability in FPGAs is crucial and is consid-

ered one of their main drawbacks. FPGA design flow is large and complex compared

with another processor because of the architecture flexibility.

The main steps of FPGA design comprise [90]:

1. Functional design, traditionally with programming models centered on register-

transfer level (RTL) or more recently with High level languages.

2. Synthesis, the design is translated into circuit elements as a netlist.

3. Place and route, this is the implementation performed by the FPGA vendors

where the design is mapped on the available resources following the clock and

pin assignment conditions.

4. Implementation, the generated bitstream is programmed on the device.

At the end of each step of the design flow, verification and simulation should be

done.

From a programmer’s perspective, the design creation of the microarchitecture is the

most time demanding. Programming with hardware description languages (HDL)

such as Verilog and VHDL provides programmers the flexibility to make low-level

design decisions that can produce high-quality results, however, they are extremely

time consuming [26]. In the programming flow, the functional verification needs

19



a software model and a hardware test bench to simulate and compare with the

software model.

The increasing complexity and hardware resources on FPGA have encouraged the

evolution of design abstractions to improve the programmers productivity [99, 95].

The introduction of High-Level Synthesis for FPGAs in commercial tools started in

early 2000’s. It can often reduce the design effort with more friendly high level

languages, from C-extended languages to more high level abstractions to support

heterogeneous systems with frameworks as OpenCL, and more recently, over OpenCL,

the SyCL framework. The main source of gain using the HLS design flow is the

capacity to make faster functional verification compared with the traditional RTL

design methodology. With High-Level Synthesis the same program for FPGA is the

software test bench, then the verification time could be reduced as the tool design

flow for Intel FPGAs in the bottom of Figure 2.3 shows. The compilation details for

HLS are part of the section 2.3.2.

HLS IP

Desing Creation Functional
Verification RTL Synthesis Place and Route Gate Level

Verification

Design Creation Functional Verification

Traditional RTL Design Methodology

HLS Design Methodology

AOC
Compiler

Clang OPT LLC

Verilog FileSoftware
Emulation

FPGA BSP
+ SPIRV

CPU FPGA

FPGA

GPU

Heterogeneous

RTL Synthesis Place and Route Gate Level
Verification

Reports

Time

Figure 2.3: HLS synthesis tool flow for Intel FPGAs. The lower part compares the timing
effort between HLS and traditional RTL design methodologies.

With High-Level Synthesis tools, the programmers can save development time

around an order of magnitude because the implementations are more compact,

less error prone, and require less hardware expertise. For hardware engineers,

High-Level Synthesis tools allow to quickly explore the design space, crucial in the

design of complex systems, reducing the time to market [114]. For this reason

High-Level Synthesis has been embraced in the programmers community of High

20



Performance Computing (HPC) to develop applications with high performance and

power efficiency with FPGAs devices as accelerators.

2.3.2 FPGAs as Accelerator on heterogeneous system

Discrete FPGAs offer high compute performance and match the HPC compute

necessities evolving to accelerators. Three parts are identified to couple the FPGA to

a host CPU:

1. A layer to support and control the communication with host, and external data

storage to increase memory capacity typically required in HPC applications.

2. The application algorithm.

3. The host drivers to support the FPGA transactions.

The partial reconfiguration in FPGAs is an important feature that contributed to the

communication and driver support of the FPGA and CPU. Different vendors such

as Intel, Bittware, Terasic, and others, provide to programmers a Board Support

Package(BSP) which is partially reconfigured on the device in logicLock region in

the floorplan for host support with heterogeneous languages as OpenCL and SYCL,

including drivers and protocols for communication and programming. The logic

region reserved on the chip for the BSP, as for example, in an Stratix 10 FPGA in

the Figure 2.1 covers the left side of the FPGA, in gray, for PCIe2 x8 support, and

part of the memory controllers, in white. In FPGAs with HBM support, the memory

controllers are allocated at the top and bottom of the chip. The free area of the chip

is free for programming kernel applications and BSP interconnection.

With the lower hardware layer supporting High-Level Synthesis, the application

design requires compilation tools as the developed by the Intel FPGA SDK. The AOC

compiler, as in other High-Level Synthesis frameworks, rely on LLVM. It uses CLANG

front-end to parse the high level code extensions to produce un-optimized LLVM

IR, the middle-end performs optimizations with compiler passes. Finally, on the

back-end, the compiler instantiates Verilog IPs [166]. In this step, the designer can

analyze the hardware blocks to be generated during placement and routing stages.

After Verilog transformation, two ways are possible, as Figure 2.3 shows. The first is

to generate hardware IP Blocks from C/C++ code that can then be interfaced to the

BSP later, as in the OpenVX proposal in Chapter 5. The second path is to generate

21



User OpenCL host
Application

HAL

OpenCL Lib

Kernel
Pipeline

Host Interface
External Memory

Controller
DRAM

Global Memory Interconnect

On Chip
Memory

Kernel
Pipeline

Local Memory Interconnect

FPGA

FPGA Driver
MMD

Host Software
CPU

PCIe

Avalon Bus

OpenCL Kernel

HLS
Toolchain

3

21

Figure 2.4: Main elements of OpenCL BSP for FPGAs. � and � represent the BSP, and �
the kernel logic.

kernels directly coupled to the BSP to use the FPGA as an accelerator, such as the

kernels synthesized with OpenCL and SyCL.

The BSP and the kernel pipeline composed an FPGA accelerator, and internally

they have their own architecture and components described in detail in the next

subsection 2.3.2.

Kernel pipeline and Board Support Package

The kernel pipeline is part of the total architecture of the FPGA as accelerator, since

OpenCL was the first heterogeneous language used for programming FPGA and

it is the most extensively used. In this section, as in the Figure 2.4, we present

the main components of an OpenCL application using the Intel FPGA SDK for

OpenCL as a reference. Without loss of generality, this flow also represents other

toolchains (e.g., SYCL). On the host side, �, the application communicates with

the FPGA device through the board support package 1 (BSP, in blue on the figure).

A BSP implements the lower layers of the application stack such as the memory-

mapped device (MMD) library, performing the basic I/O with the board, and the PCI

express (PCIe) communications. On the FPGA side, the BSP, �, provides support to

communicate back with the host, and with the device memory, DRAM and external

devices.

1Manufacturers often provide BSP, but advanced users can tune and re-implement them.

22



From a programmer’s perspective, the most important component in a BSP is the

kernel logic, �, which corresponds mainly to the compiled OpenCL kernel. In

fact, programmers seldom need to generate a new BSP2. The compilation process

consists of two main steps (without lost of generality, OpenCL is used as example).

First, a translator generates HDL code from the OpenCL, and second, a synthesis

tool generates the bitstream. The translator creates four blocks from the code:

local memory interconnect (LMI), on-chip memory, the kernel pipeline, and global

memory interconnect (GMI). The last two blocks are the ones that most critically

affect performance, and therefore, they are described as part of the study of this

dissertation in Chapter 4.

The major vendors of FPGAs, Xilinx and Intel, have developed their HLS compilers to

generate pipeline architectures. The main advantage of this strategy is the amount

of parallel operations that are executed per clock cycle, splitting the operating

with registers, avoiding computation stalls. Splitting up the processing into small

pipeline stages also helps to reach higher frequencies, improving kernel and memory

performance [138].

In terms of parallelism, the deeper the pipeline is, the greater the number of items

that can simultaneously advance. As a result, the FPGA performance mainly depends

on two pipeline characteristics: initiation interval and frequency. Initiation interval

is the number of clock cycles between two consecutive kernel work-items start, and

frequency is the cycle time of the longest pipeline stage.

Although with HLS the programmers uses common languages for CPU and GPU

devices the optimization and programming patterns [162, 106] are different. FPGA

kernels require detailed annotations to guide the hardware generation, and since

the synthesis process is time expensive, the optimization should be done in an

intermediate stage, after Verilog generation, called “intermediate compilation”. In

this phase the designer can analyze the hardware blocks to be generated during

place and route stage. Depending of the compiler heuristic and together with the

fact that the vast majority of software is not designed for FPGA synthesis [95], makes

HLS difficult to adopt. For this reason, the "intermediate compilation" based on

reports, is one of the noticeable advances in HLS helping to improve productivity

allowing to analyze the generated IP blocks.

2Also note that HLS tools would always require a BSP to compile an OpenCL kernel for supporting
the aforementioned low-level tasks.

23





Experimental Framework 3
This thesis comprises several studies that were carried out with multiple hetero-

geneous systems using several programming models, such as OpenCL or OpenVX,

running on a host CPU with accelerators, mainly FPGAs and, in some cases, in

combination with a GPU.

This chapter presents a general overview of the software and hardware frameworks

together with the general methodology used for modeling, running the experiments,

and computing relevant metrics such as throughput, portability, and load balancing.

Since the results are extracted from different compilation stages in the FPGA compi-

lation flow and high level frameworks, specific details change and are detailed in

each Chapter’s methodology section.

3.1 Evaluation Hardware

The heterogeneous systems used in this work consist of a host CPU connected to one

FPGA, or one FPGA plus a GPU device as Figure 3.1 shows. In these systems, the

devices are connected to the CPU through an external PCI-express (PCIe) bus, and

they are common in HPC computing systems.

Four heterogeneous systems have been set up to carry on all the experiments.

Table 3.1 shows their configurations based on three host CPUs, listed in Table 3.2,

PC
Ie

CPU

FPGA Board

External
Memory

Host

Host Memory External
Memory

GPU Board
GPU

FPGA

Figure 3.1: Heterogeneous system with an FPGA board and a CPU.

25



Table 3.1: Device combinations used as heterogeneous system in this thesis. The host, FPGA
and GPU capabilities are described in Tables 3.2, 3.4, and 3.3.

FPGA Board GPU Board In Chapter

Host 1 DE5-net TITAN X 6

Host 3 Stratix 10 GX - 4 and 5

Host 2 Stratix 10 MX - 4

Host 3 Stratix 10 MX - 5

combined with three FPGA boards in Table 3.4, and one GPU in Table 3.3. The

CPU only acts as a host in Chapters 4 and 5, while in Chapter 6, it is considered as

another device.

Communication is a key factor in heterogeneous systems’ design, and it is the main

reason for the multiple combinations used in this work. The PCIe bus allows to

connect diverse device architectures through a high-speed serial bus commonly used

in motherboard interfaces. Although CPUs and motherboards offer many PCIe port

expansions, not all are available to match the maximum bandwidth capabilities of

each device. In fact, the first combination used for load balancing with three devices

(Host 1, Table 3.1), connects both the FPGA and GPU with 8 lanes, even if the GPU

supports 16 lanes, because of the CPU-chipset-motherboard ensemble limitations.

Upgrading the FPGA or the host may not always be enough to overcome these

communication issues, and two factors can still prevent to reach the maximum

bandwidth. First, as FPGA board increase dimensions, they require a larger space in

the motherboard, and depending on the board layout, they can block required PCIe

ports to connect other accelerators. Second, the BSP and OpenCL drivers support is

limited in some devices. For example, in order to improve device communication

performance, the Host 2 was configured with an AMD processor, but this processor

had incompatibilities with Intel FPGA PCI drivers and the PCIe OS support should be

emulated, reducing the PCIe throughput. Also AMD processors are not yet officially

supported by Intel OpenCL SDK.

Host 3 aims for full compatibility with Intel FPGA devices using a CPU manufactured

by Intel. This system has more PCIe capabilities with 4 PCIe ports with 16 lanes,

but since motherboard implements switch/multiplexation of CPU PCIe lanes, the

26



Table 3.2: Main characteristics of the three host systems.

Feature Host 1 Host 2 Host 3

CPU

Manufacturer Intel AMD Intel

Model i7-6700k Ryzen 1920X Xeon Bronze 3204

Cores 8 12 6

Launch date 2015 2017 2019

Frequency 4 GHz 3.4 GHz 1.9 MHz

Mother- Manufacturer ASUS Micro-Star Supermicro

board Model Z170-PRO X399 SLI PLUS X11SPA-TF

Type DDR4 DDR4 DDR4

External Bw. per bank 17.1 GB/s 17.1 GB/s 17.1 GB/s

Memory Capacity 64 GB 96 GB 96 GB

Banks 4 6 3

Connector DIMM DIMM DIMM

OpenCL Version 2.0 - 2.0

OS Distro CentOS 7 CentoOS 7 CentoOS 7

Kernel 3.1 3.1 3.1

OpenCL FPGA driver does not work 1. The driver needs direct interconnection to

the CPU processor and only one slot position is directly connected, the rest has a

switching chip, leaving available one slot for FPGA, limiting the addition of more

heterogeneity with more FPGA devices.

On the device side of the heterogeneous system, we used a TITAN X GPU from

NVIDIA. This GPU has a Maxwell architecture manufactured with 28 nm technology,

and Table 3.3 shows its main features. Compared with the rest of used devices used,

this GPU is the most powerful in terms of raw floating-point compute power with

6.6 TFLOPS in single precision given by this equation Frequency × Cores × 2 where

2 are the multiply-add operations effectively support for floating point unit (FPU)

in each CUDA core. The reported bandwidth is limited by host PCIe lanes and was

measured with CUDA bandwidth test. The driver support is highly reliable since its

a high end product that has been in the market for a while. It provides CUDA and

OpenCL support with runtime compilation of kernel programs.

1A personal communication with Intel engineers confirms the PCIe driver limitations

27



Table 3.3: Characteristic of NVIDIA GeForce GTX TITAN X GPU board.

Feature GeForce Titan X

GPU

Manufacturer NVIDIA

Cores 3072

Frequency 1.1 GHz

Peak Floating Point 6.6 TFLOPS

External Memory

Type GDDR5X

Bandwidth 480 GB/s

Capacity 12 GB

PCIe

Bandwidth 6500 MB/s (8 lanes)

Lanes 16

Gen. 3

Board Dimension 2-slots

OpenCL OpenCL Version 3.0

The other device coupled to the host has been several different FPGAs. Namely,

in this work, we have worked with three FPGA board models that were upgraded

during the development of this thesis. All of them belong to the Intel Stratix family:

Stratix V, Stratix 10 GX and MX. The details of each board are shown in the Table 3.4.

The PCIe bandwidth was measured with the board test of each BSP board. The

FPGA models evidence the evolution of the FPGA boards, increasing PCIe bandwidth

4 ×, the amount of DSP resources 22 ×, and memory bandwidth 16 ×, comparing

the best and worst FPGA features. The FPGA peak FLOPS in single precision are

calculated as DSP_Frequency × DSP_blocks × 2 where 2 is the amount of FLOPS

per clock cycle in each DSP block at a rated speed of 450 MHz [101].

FPGA boards and BSPs to support FPGA OpenCL SDK are development kits designed

for evaluation proposes provided by Terasic for the Stratix V board and directly from

Intel for the two Stratix 10. For most experiments the BSP wasn’t recompiled, but an

in-house BSP was compiled for the Stratix 10 GX to boost the DDR4 memory data

rate from 1866 to 2666 MT/s, the maximum supported by the hardware. This change

required to update timing settings of the memory controller in the static part of the

BSP based on the memory speed-bin table in data-sheet [102]. Timing adjustments

in BSP required a two-step compilation for custom board design [64]. First, a

28



Table 3.4: Characteristic of Terasic DE5-net, Intel Stratix 10 GX, and Intel Stratix 10 MX
(early version) board development kits.

Feature DE5-net Stratix 10 GX Stratix 10 MX

FPGA

Family Stratix V Stratix 10 GX Stratix 10 MX

Model 5SGXA7 2800 2100

Logic Elements 622000 2753000 1073000

Embeded Memory 57.2 Mb 244 Mb 239.5 Mb

DSP 256 5760 3960

Peak Floating Point 0.2 TFLOPS 5.1 TFLOPS 3.6 TFLOPS

Launch date 2010 2013 2017

Type DDR3 DDR4 HBM2

External Bandwidth 22.3 GB/s 14.9 GB/s 350 GB/s

Memory Capacity 4 GB 2 GB 8 GB

Banks 2 1 32

Connector SO DIMM HiLo Embedded

PCIe

Bandwidth 2880 MB/s 6112 MB/s 6191 MB/s

Lanes 8 8 8

Gen. 2 3 3

Board Dimension 1-slot 2-slot 2-slot

OpenCL OpenCL Version 1.0 1.0 1.0

Support Quartus Version 17.1 18.1/19.4 19.3

flat compilation is performed of the entire design with the aocl -bsp-flow=flat
command to get a timing clean revision with a frequency near to 450 MHz and

full-filing PCIe and memory timing constrains. The second step is performed a

base compilation of the adjusted static BSP with the LogicLock restrictions using

the aocl -bsp-flow=base command to get the base.qar file, which is the static

region. Finally, the resulting file is imported in future kernel compilations within

the standard compilation flow. The new BSP with a DDR4-2666 support was used

to evaluate and compare the model in Section 4.7.3. Besides, the new BSP reaches

a maximum frequency of 441 MHz, enough for the memory controller and PCIe

communication. Comparing the original Intel BSP and our modified version with

the board_test kernel provided by Intel for BSP tunning shows an speed-up of 48 %

in memory transactions.

29



To finish, we describe the employed methods to measure power in CPU, GPU and

FPGA devices. For CPU we used Intel RALP counter [74] to measure CPU package

and RAM power with a default sample rate of 1000 samples per second. Nvidia

provides the nvidia-smi tool that supports power measurement with a sampling

period of 1 second. Finally, in FPGA, two power measurement techniques were used

in this thesis: First, internal chip measurements using the power monitor provided

by Intel for each FPGA board as Figure 3.2a shows. This tool measures the chip

current and voltage at the power supply, including for the FPGA logic core rail (with

power supply of 0.9 V) and the others ports (with power supply of 3.3 V) and I/O

interconnection. The sample rate is of 1 second, and we ensure at least 5 samples

with multiple kernel executions. This is the method used in Chapter 5. The second

measurement method, used in Chapter 6, is invasive in the two power sources. First

one is the voltage and current supply of the FPGA board from PCIe port, with a

PCI-raiser board. And second one is the external power supply, through the 6-molex

pin connector. Both are connected to a Newtons4th PPA520 power analyzer as

Figure 3.2b shows. The sample rate with this method is 106 samples per second.

(a) FPGA power monitor. (b) FPGA invasive power measurement.

Figure 3.2: FPGA power measurement methods.

3.2 Software Framework

OpenCL is the base programming model that can glue the GPU, FPGA, and CPU

in a heterogeneous system and it is the underlying driver and runtime for recent

frameworks as Intel DPCPP(SyCL) and the frameworks developed in this thesis.

For the sake of simplicity, we only discuss the hardware and kernel programs in

the devices which correspond to the Kernel programming model of the OpenCL

30



specification. This model allows the management of the physical resources available,

expressing the parallelism to map programs efficiently in a variety of devices such as

out-of-order superscalar pipeline, a massive parallel or re-configurable architectures

represented by a CPU, GPU, and FPGA respectively [57]. The OpenCL kernels are

syntactically similar to C syntax and can be compiled at runtime in the CPU and GPU

cases or offline as is the FPGA case.

FPGA compilation is performed with the Intel OpenCL SDK which creates the FPGA

programming file (.aocx) and Intel high level synthesis SDK to create IP/RTL files.

OpenCL is the default driver to couple the FPGA with the host, and the programs are

linked as binary objects using offline compilation. Figure 3.3 describes the general

multi-step compilation for the FPGA [65]. The FPGA report generated in interme-

diate compilation stages provides the metrics used in this work to evaluate kernel

performance in early stages. Html reports show kernel performance parameters

such as initiation interval, expected maximum frequency, and latency in each loop

of the kernel. The report also contains the system viewer analysis which includes a

view of all the kernel program as a graph, organizing the pipeline into the blocks

identified by the compiler and also shows memory type (Register, RAM, DRAM) and

memory load/store units interconnection with Avalon ports. These reports are the

main source of data for the proposed model in Chapter 4 and the OpenVX high-level

framework in Chapter 5. Also, the kernel profiling allows tuning and verification of

the proposed analytical model.

<my_kernel.cl>

aoc -march=emulator  
<my_kernel.cl>

Kernel
Execution

No

Yes

Estimated kernel
performance is

acceptable?

Seconds of compilation Hours of compilation

Yes

No

Emulation
Successful?

Emulation

<my_kernel>/reports 
/reports.html

Review reports

aoc 
<my_kernel.cl>

Full Deployment

<my_kernel>.aocx

aoc -profile 
<my_kernel.cl>

Yes

No

Kernel  
performance is

acceptable?

Seconds to minutes of compilation

aoc -rtl 
<my_kernel.cl>

Intermediate Compilation Profiling
Hours of compilation

<my_kernel>.aocx

Kernel
Execution

Figure 3.3: OpenCL compilation flow for Intel FPGA board. The box in yellow correspond
to generated files, in blue are FPGA execution stages and the rest are the
aoc compilation commands in each design stage: Emulation, Intermediate
compilation and Full deployment.

OpenCL kernels for CPU and GPU can be compiled at runtime using just-in-time

compilation. Kernels execution and device management require a host coordination

31



for interacting with multiple driver vendors. This task is defined in the platform model

and in the execution model of the standard. The first model is important for program

portability, and the second one defines the communication mechanism through

command-queues associated with each device, and the events of the execution.

The last OpenCL model is the memory model which abstracts the memory hierarchy

providing memory ordering guarantees in the parallel execution [78]. In our system,

GPU and FPGA devices have separated memories from host devices, and consistency

is enforced by synchronization events (barriers, in order queues, and events). The

OpenCL execution in this work is always implemented in-order command queue

and synchronization events are with blocking commands, this means, the device

command queue waits until the kernel is finished. This synchronization behavior is

imposed by manufacturer driver limitations.

OpenCL requires the management of many details in each model, but provides

enough support for single device execution as done in the proposed model. However,

the complexity increases with the addition of more devices in multi-device heteroge-

neous systems as in the load balancing example in Chapter 6. Increasing the level

of abstraction with higher level frameworks helps to alleviate the complexities for

programmers facilitating the adoption of less common devices as FPGAs. Due to the

implementation of the Intel tools, all the high level frameworks used in this thesis

rely on OpenCL to communicate the host with the FPGA.

Host source code
<.c/.cpp>

System host
compiler

Host binary

Kernel Source code 
<my_kernel.cl>

Intel SDK offline
Compiler

FPGA bitstream
<my_kernel.aocx>

Execute host
application

Tool-generated File 
 

User code

Host FPGA

OpenCL

Kernel Source code 
<my_kernel.cl>

GPU

GPU Binary

OpenCL kernel
compiler

High Level
Framework

OpenCL

High Level
Framework

Tool/Framework

Figure 3.4: OpenCL Flow for a heterogeneous system with a host CPU, GPU and FPGA
devices. The host program in this thesis uses two host programming frameworks:
OpenCL and EngineCL with less code lines.

32



Analytical Time Estimation of

Memory-bound Applications

for FPGA Using High-level

Synthesis

4

The memory hierarchy organization is one of the physical elements that can limit

the performance of an application, and, for many, the memory bandwidth represents

an upper bound on achievable performance. In FPGA applications, the performance

is limited by the main memory unless the number of available FPGA resources is

exceeded [170, 162]. In this chapter, we analyze and propose an analytical model

of the memory access behavior based on memory access patterns HLS-generated by

applications because they act as a proxy for application performance conditioning

memory behavior from kernel memory request to external memory.

Since placement and routing is the slowest stage generating a bitstream, our model

improves programmer’s productivity giving a deeper understanding of the memory

units and access patterns at early compilation stages that allows to optimize applica-

tions. For the sake of generality, we validate the model on DDR4 and HBM memory

technologies.

4.1 Introduction

Besides using parallelism, many HPC applications exceed the available memory

bandwidth. Although external memory on FPGAs is evolving from external DRAM to

3D-stacked high bandwidth memory (HBM), which has increased bandwidth from

25 to 409 GB/s, the performance of each individual memory bank has only grown

up at a 7% annual rate. Comparing this with FPGA resources that have grown at

48% per year [154], the memory wall problem in FPGA applications is evident.

33



HLS
 application

Reports. 
 

Intermedite
compilation

Performance
estimation

Compute model Memory Model *This work

Bitstream
generation

Estimated kernel
performance is

acceptable?

NO

Yes 

Minutes of compilation Hours of compilation

Figure 4.1: Memory model proposal(in blue) in the optimization process of FPGA kernels
using HLS.

Exploiting the potential benefits of FPGA technology is a challenge for programmers,

even with the development of high level design with languages such as C, C++, or

OpenCL [144, 44, 94]. Generating highly tuned code is time consuming, and CPU

or GPU optimization techniques are not always suitable for FPGAs. Programmers

have two options for easy coding. Either they write well-known code patterns from

previous explorations [157, 65], or they rely on pre-synthesis analytical models for

estimating performance [183, 162, 21, 94]. These models analyze the RTL code

from High-level synthesis (HLS) compiler tools, the high-level code, or both.

Model-based optimization seeking to better exploit FPGA resources and simplify

hardware generation focuses mainly on the compute part, or kernel pipeline. Pre-

vious studies have oversimplified the organization of global memory interconnect

(GMI), which manages memory request between the kernel-pipeline and the off-chip

DRAM memory. The lack of detail in the models results in the error seen in two

state-of-the-art analytical models [162, 21]. The error is multiplied by 3 when the

DRAM specification changes and can be larger than 50% for accesses with data

dependencies since those models ignore the differences in memory access and DRAM

technologies. Such errors could become more common in future systems because of

technological advances to high-memory bandwidth devices.

In this chapter, we analyze the GMI and their interaction with the external memory

compiled with HLS tools, which affect the effective memory bandwidth and can

significantly impact execution time. Combining information from the analysis of

the GMI an their main components, such as load-store units (LSUs), plus the DRAM

organizations, enables us to build an analytical model to accurately estimate the

execution time. The model mainly requires static information from pre-synthesis

reports, Verilog hardware instances, and DRAM memory timing parameters. The

Figure 4.1 shows in blue our model and how it contributes in an intermediate

compilation stage of the HLS generation. In this stage, the model can potentially

reduce the application development time.

34



4.2 Related Work

Performance modeling of FPGAs using HLS has attracted the attention of many

researchers to ease kernel optimizations. The standard tools from the two main

FPGA vendors, Xilinx and Intel, help to address optimizations with analytical reports.

In Intel case, tools focus only on three performance metrics: Initiation interval,

latency, and frequency without execution time estimations.

Existing performance models target one of two different domains: embedded FP-

GAs [181, 178, 179], usually using C/C++ as the high-level language, or HPC

discrete FPGAs with external components such as DRAM memories and PCIe ports.

In the latter case, the models are mainly oriented to OpenCL codes [162, 94, 75]

and C/C++ [21]. While embedded and HPC models have similarities in the pipeline

model, the key difference is the memory system, where the throughput of an internal

memory may be 380 × better than an external one.

In HPC, the memory wall is one of the main limitations of FPGAs for applications.

The memory requires a controller to reorder requests to minimize row conflicts, and

as a consequence the throughput depends on memory controller implementation

[184, 30]. The behaviour of memory controllers is often overlooked [113, 32] or

simplified as in the performance model proposed by Wang et al. [162] for Intel

OpenCL SDK. It uses a coarse grain model which shows inaccuracies in the memory

estimation and requires the extraction of LLVM-IR information that is not provided by

the vendor’s compiler. In a similar way, the Boyi framework [75] limits the memory

estimation to sequential or random accesses with fixed weights, and although this

framework is mainly based on memory access optimization, it only evaluates how

the OpenCL execution model changes accesses.

Coarse-grained memory models reduce the optimization capabilities on HLS for

FPGAs, this problem being detected by the FlexCL framework [94] for Xilinx FPGAs.

FlexCL improves models covering memory access patterns with a short CPU/GPU

execution, but it continues being the main source of error of the model. As some

comparisons show, the memory controller makes differences in the access pattern

and hence performance [184, 176, 27, 112]; moreover, CPU/GPU devices have a

more sophisticated memory hierarchy that can hide DRAM latency. As well as the

memory controller, the memory standard or technology changes the interaction with

the FPGA pipeline. For this reason, the inclusion of memory parameters to cover

35



these technology differences is necessary, DRAM technology being the most widely

used. Approaches such as FlexCL obtain latency parameters from modeling the

memory latency [21] as HLSCope+ does [19]. Other performance estimators for

Xilinx FPGAs include physical DRAM specifications, but these limit access patterns

to sequential and random, as a result of their platform experiments; also, HLScope+

includes a correction factor given the lack of knowledge about the Xilinx DRAM

controller.

The most feasible source of memory controller behavior is the analysis of Verilog

units used by the compiler to generate the hardware controller, as in this study,

but often this approach is rejected because of its tediousness [162]. A more user-

friendly source is the use of RTL reports, which shows the type of LSUs to assemble

a command request to DRAM [65].

The knowledge of LSUs plus DRAM specifications is combined in this proposal to

achieve an accurate memory model that can adjust to changes in memory technology

from DDR4 to HBM.

4.3 FPGA External Memory and BSP

As it was mentioned Section 2.3.2, host communicates with the FPGA through

the board support package performing the basic I/O with the board, and the PCI

express (PCIe) communications. On the FPGA side, the BSP, provides support to

communicate back with the host, and with the device memory, DRAM and external

devices.

The BSP on the FPGA side differs for each FPGA model and each type of external

memory, requiring specific intellectual property (IP) controllers and interfaces. For

example, for a DDR4 memory with multiple banks, in Figure 4.2a, the BSP uses

the Avalon-MM interface and it has a memory bank divider which can support the

interleaving of memory banks for one variable, or uses each bank separately. For

HBM memory, Figure 4.2b, the interface with the BSP is the Advanced extensi-

ble Interface (AXI), and the 32 HBM pseudo-channels have a separate GMI and

controller because each pseudo-channel works as independent memory using the

“heterogeneous memory” feature of the OpenCL compiler although the technology is

the same as DRAM [58].

36



DDR4
DDR4 Memory

Controller

LSU

LSU
Arbiter

Global
Access

Memory Bank
Divider

GMI

Avalon

BSP

Kernel
Pipeline

(a) DDR4

HBM0HBM AXI
controller

Avalon to
AXI

Burst
Splitter

HBM AXI
controller

Avalon to
AXI

Burst
Splitter

HBM0HBMnBurst
Splitter

HBM AXI
controller

Avalon to
AXI

Avalon
Kernel

Pipeline

LSU

LSU

Arbiter
Global
Access

GMI BSP

AXI

HBM2

HBM0

HBMn

(b) HBM

Figure 4.2: FPGA block units for Intel OpenCL SDK with a) DDR4 and b) HBM memory.

The Global Memory Interconnect, from here GMI, is between the kernel pipeline

request and the BSP, before to the memory controller. GMI is identified as a critically

kernel performance block. Therefore it is described in detail.

4.3.1 Global Memory Interconnect

The GMI manages the kernel-pipeline request to the external memory. In any

OpenCL program, each access to a variable in the external memory constitutes a

global access(GA). Since global accesses are the main source of kernel stalls, the

GMI implements several strategies to maximize external memory throughput and

kernel pipeline flow. Architecturally, like other hardware memory interfaces from

Intel [59], the GMI has two main components: LSUs, which track in-flight memory

operations, and arbiters, which decide on the order of access. Specifically, there are

two independent round-robin arbiters one for read and one for write accesses. ¡

Intel FPGA SDK [65, 67] has defined three LSU types for the GMI: burst-coalesced

LSU, prefetching, and atomic-pipelined. To understand the access pattern of each

LSU, Listing 4.1 and Table 4.1 show the code that generates the third column.

1 # define N 1024
2 int random_vector [N]={5 ,1023 , 450, 100, ...}
3 __kernel void test_patterns ( __global int * restrict x, __global

int * restrict z, const int *cn )
4 { int i = get_global_id (0);
5 int out = 0;
6 local int lmem [1024];
7 // Code Snippet form Table I

37



Table 4.1: LSU types and their modifiers in global memory interconnect. The code
snippets are from Intel FPGA SDK [65].

LSU Type Description Code Snippetsa

Burst-Coalescedb Requests are grouped into a set of DRAM bursts

Aligned Index is contiguous and aligned to page size out = x[i];
Non_Aligned Index has a modifier not aligned to page size out = x[3*i+1];
Write_ACK Index to access has dependencies out = x[k]; // k is random
Cache Index has repetitive dependencies for (uint j=0; j<N; j++)

z[N*i+j] = x[j];
Prefetching Compiled as Aligned Burst-Coalesced out = x[i];
Atomic-Pipelined Unique LSU for atomic operations atomic_add(&x[0], 1);
a Each code snippet corresponds to a define in listing 4.1.
b The burst-coalesced type has four modifiers affecting its organization.

8 #if defined ( Bust_Coalesced_Aligned ) || defined ( Prefetching )
9 out = x[i];

10 #elif Bust_Coalesced_Non_Aligned
11 out = x[3*i +1];
12 #elif Bust_Coalesced_WriteACK
13 int k = random_vector [i];
14 out = x[k];
15 #elif Bust_Coalesced_Cache
16 for (uint j=0; j<N; j++){
17 z[N*i+j] = x[j];}
18 #elif Bust_Coalesced_Non_Aligned
19 #elif Atomic
20 atomic_add (&x[0], 1);
21 #endif
22 z[0] = out;
23 }

Listing 4.1: OpenCL Code for access patterns in Table 4.1

The LSUs with burst characteristics groups request before being sent to external

memory and requires greater hardware complexity. In Atomic type, contrary to burst,

serializes the operation and guarantees atomicity. Note that Each global access in

the source code may translate to one or several LSUs, as Section 4 describes.

Each LSU type provides a different maximum bandwidth, the burst-coalesced LSU

with an aligned modifier being the most efficient type on DRAM technology because

it maximizes effective bandwidth utilization. Figure 4.3 shows a read operation

generated by a burst-coalesced LSU. Each LSU has a coalescer unit that tries to group

continuous memory addresses into a single burst DRAM operation. Next, the read

38



Row hit!

P
R
E

Time Line Command

R
D

D
0

D
1

D
2

D
3

D
4

D
7

...

TRCDTRP

R
D

Row

Bank 0

Memory
Controller

IP

dq[0..63]

Clk
Cross

avm to read [..]

burst_cnt[..]Avalon Read FIFO

avm to write [..]

burst_cnt[..]Avalon Write FIFO

Kernel
Pipeline

A
C
T

A[0..15]

To
ke

n

GMI

...

ls_width

Bank 1

Burst
Coalesced Aligned

Burst
Coalesced Aligned

Burst
Coalesced LSU

Arbiter Write/Read

DRAM

AVALON INTERCONNECT

fmax f_dram

Avalon MM buses

Reconfigurable Kernel Logic BSP

Figure 4.3: Simplified model of a read operation in a single DRAM bank with an Burst-
Coalesced Aligned LSU. The parameter names in blue are used in the model in
Table 4.2.

arbiter dispatches this operation to the Avalon Interconnect FIFO in order to issue a

DRAM access to the Memory Controller IP through the Avalon Bus. The benefits of

bursting come from the DRAM organization [180] because during a read operation

at least three commands are required: precharge (PRE), activate (ACT), and read

out (RD). PRE opens a row in every bank; ACT then opens a row in a particular

bank; and RD reads the burst out back to the controller.

When an LSU receives a requested address, it attempts to group consecutive ad-

dresses into a burst, the burst_cnt bus size defining the maximum number of burst

requests at compilation time, because contiguous access to memory enables the

overhead of PRE/ACT commands to be hidden.

In a burst-coalesced LSU, three counters trigger a request to the DRAM: 1) the

Burst_cnt bus, that usually corresponds to memory page size, 2) the maximum

number of threads allowed to be coalesced, and 3) the time out to minimize stalls in

the kernel pipeline when consecutive requests cannot be coalesced. The compiler

can modify this LSU depending on the memory access pattern and other attributes

[65]; e.g., in the case of data dependencies, the compiler infers a write-acknowledge

LSU (ACK) with a work-item level coalescer.

In a Prefetching LSU, the behavior is similar to that of a burst-coalesced LSU since it

has a continuous access to external memory, but loading data to a register or RAM

anticipating a large amount of data. For write operations, it uses a burst-coalesced

non-aligned LSU. In high-end FPGAs, such as Stratix 10, the prefetching LSU is not

available; then, the compiler generates a burst-coalesced LSU even with exactly the

same code as that the Intel SDK provides for the Prefetching LSU 1.

The last type of LSU is the Atomic-pipeline; Intel provides limited support for 32-

bit integers and it does not fully conform with the OpenCL specification version
1Our assumption is that this behaviour likely depends on the OpenCL SDK version.

39



1.0. Atomic-pipeline is considered one of the most expensive functions which might

reduce kernel performance and increase the amount of hardware resources, but its

usage can simplify a kernel design [76]. In FPGAs with “heterogeneous memories",

this LSU is not available.

4.4 Performance Estimation for FPGAs

The kernel pipeline and the external memory accesses directly impact application

performance. Kernel pipelines have already been modeled to predict the execution

time aiming at the automatization of the compilation process [94, 162, 21]. For

pipelines, one key challenge is the selection of the right execution model, choosing

between task and ND-Range, because an incorrect choice may increase the execution

time by as much as two orders of magnitude [75, 183].

Existing models have simplified the memory component, especially the GMI, losing

details that might provide good opportunities for optimization of kernel implemen-

tation. Substantial simplification may be valid for old FPGA devices with simple

memory organization but does not apply for current models because kernel resources

have grown faster than external memory resources; e.g., an Intel Stratix 10 delivers

9 TFLOPS and the newer Intel Agilex delivers 20 TFLOPS, while DRAM has only

improved from DDR4 @ 1333 MHz / 2666 Mbps to DDR4 @ 1600 MHz / 3200 Mbps

or DDR5 @ 2100 MHz / 4400 Mbps. In terms of performance, these traditional

memory technologies are growing slowly compared with FPGA compute resources,

which double every generation [71, 68].

Although external memory technologies are evolving, compared with on-chip me-

mory, the throughput of external DRAM banks is still 380× worse than on-chip, and

it is 80× larger in size [71]. Hence, the prediction of FPGA kernel execution time

focuses on kernel pipeline and external memory, ignoring the local memory because,

in most situations, its impact is negligible.

A novel memory such as HBM, composed of multi-channel DRAM memory, increases

the memory bandwidth and concurrency to maintain sufficient parallelism to support

kernel requests. FPGA models such as Stratix 10 MX can reach 450 Gbps with an

HBM2 composed of 32 pseudo-channels. The main challenge with HBM for FPGA

programmers is application design because the Stratix 10 MX was not designed with

40



a hardware interconnect to enable communication with HBM. That flexibility implies

the HLD programmers have to decide how to manage parallel requests in each HBM

pseudo-channel [93, 84].

In Intel FPGAs with HLS, as shown in Figure 2.4, the external memory controller

has independent units separate from the kernel logic, where the LSUs have the same

behavior on all DRAM models, this making it possible to analyze different memories

with the same model.

4.5 Memory Model for FPGA accelerators

Based on the fact that the GMI and its interaction with the DRAM have a large

impact in kernel execution time, therefore, the modeling of both can provide an

accurate analytical model. As the timing of external DRAM memories has been

described in the past [21], the proposed model integrates that DRAM analysis to

guarantee the accuracy of the estimations.

For programs limited by memory, especially bandwidth, the execution time can

be estimated accurately by modeling two key components: the GMI, which is

the interface between the kernel pipeline and the DRAM memory; and the DRAM

memory timing models themselves. The latter has already been modeled by Cho [19],

while the modeling of the former, GMI, can be broken down into models of the

different LSUs.

Fortunately, the information available after the translation phase, including datasheet

and user input, provides enough detail to estimate both GMI and DRAM delays,

without the long delays of the full compilation process. During the translation from

OpenCL to Verilog, each global access from the kernel source code generates one or

several LSUs in the GMI. For each global access, the HLS compiler determines the

proper type of LSU according to a static analysis, as described in Section 4.3.

Table 4.2 summarizes the model input parameters with their corresponding sources,

which are described below:

1. Report: html file which shows the kernel’s basic blocks and the LSU types for

each global access. It is generated in an intermediate compilation stages using

aocl -rtl.

41



Table 4.2: Description of model parameters. The param label for
the Verilog source refers to a variable name in a Verilog
instance.

Source Variable Definition

Report
#lsu

Number of load-store units

units per bank

ls_widthi Memory width of i LSU [bytes]

fmax Estimated kernel frequency [Hz]

Verilog

burst_cnti Size of Avalon burst_count port

param:BURSTCOUNT_WIDTH

max_thi Maximum threads in a burst

param:MAX_THREADS

User

δ Address stride of memory access

ls_acci Number of access of i LSU

ls_bytesi Bytes of a single ls_acc

v Kernel vectorization

Datasheet

#banks Number of banks in parallel

dq Memory data width [bytes]

bl Memory burst length

f_dram Memory frequency [Hz]

TRCD Row activation time [s]

TRP Precharge row miss time [s]

TW R Time to recovery from Write [s]

2. Verilog: These files contain the description of the LSU IPs, including key

thresholds such as max_thi. They are generated with aocl -rtl command.

3. User: Users need to provide the iteration limit for dynamic loops to estimate

the number of memory accesses, since it is not usually available at compile

time. Note that a compiler pass could automatically infer the user information.

4. Datasheets: The DRAM datasheets provide the timing and the organization of

DRAM memory chips.

42



To begin with, let Test be the estimated execution time of memory intensive applica-

tions. With multiple DRAM banks accessed in parallel, the slowest bank time access

Tbankn determines the total execution time, such that:

Test = max
n=1,...,#banks

Tbankn (4.1)

where Tbankn represents the total delay of the n-th DRAM bank estimated as the sum

of the minimum time, T i
ideal, plus the overhead time, T i

ovh, from every transaction

from every LSU, as shown in (4.2). While T i
ideal only depends on maximum memory

data transfer capacity and hence is the same for all LSU types, T i
ovh varies with the

type of LSU, as the next subsections describe.

Tbankn =
#lsu∑
i=1

δi · (T i
ideal + T i

ovh) (4.2)

where the δi factor represents the stride of an access. Regardless of the stride, LSUs

always request to DRAM a whole burst of consecutive data, and upon reception, the

LSUs discard part of the data burst, increasing the number of memory transactions;

e.g., a stride of two discards half of each data burst and doubles the number of

accesses.

Assuming a minimum time for fetching all data for the i LSU, T i
ideal, this time can

be estimated as the size in bytes , ls_bytesi multiplied by the number of accesses,

ls_acci, divided by the kernel memory bandwidth, bw_memi, as shown in (4.3).

T i
ideal = ls_bytesi · ls_acci

bw_memi
(4.3)

All these equations are valid for memory-intensive applications that can saturate

the available memory bandwidth. At this point, the addition of more compute

resources does not provide any benefit because execution time is already dominated

by the DRAM bank access delay. When the kernel-pipeline clock frequency, fmax, is

higher than the required minimum frequency for each LSU, f i
min, then the memory

43



bandwidth is saturated. In that case, the bw_memi reaches the maximum bandwidth.

Otherwise, the memory bandwidth is non-saturated bwi
nsat as (4.4) shows.

bw_memi =

⎧⎪⎨
⎪⎩

bw_dram fmax ≥ f i
min

bwi
nsat otherwise

(4.4)

To satisfy the memory bandwidth saturation condition, the kernel needs a minimum

DRAM memory data request size of ls_widthi, for each i LSU, noting that ls_widthi

cannot be greater than DRAM burst dq · bl. The memory bandwidth saturation

for double data rate DRAM is bw_dram = dq · 2 · f_dram, where f_dram is the

DRAM frequency. The ratio of bw_dram to ls_widthi describes the relation between

kernel-pipeline requests and external memory capacity, defined as f i
min, in (4.5).

f i
min = bw_dram

ls_widthi
· δi (4.5)

The modifier δi increases the memory burst requests, and therefore, the kernel-

pipeline requirements for memory bandwidth.

Although fmax is estimated in the intermediate compilation, it could be inaccurate

as the wire delay is not considered [144]. The increase in kernel-pipeline resource

usage and algorithm complexity could reduce the reported fmax after synthesis.

When f i
min is less than fmax, the memory bandwidth is non-saturated, and two cases

are possible: first, the number of LSUs, #lsu, per memory bank is equal to one, and

second, #lsu is greater than one, in this case, the kernel fully exploiting the double

rate memory frequency, multiplying the f_max by two. Finally, bwi
nsat is a portion

of the relation between fmax and f i
min defined in (4.6).

bw_nsati =

⎧⎪⎨
⎪⎩

bw_dram · fmax

f i
min

#lsu = 1

bw_dram · 2fmax

f i
min

#lsu > 1
(4.6)

The relation between fmax and f i
min shows the “clock crosser" influence on two

different clock frequency domains between kernel-pipeline and memory controller,

as shown in gray and white boxes on Figure 4.3. This is evidence that the effective

44



DRAM memory bandwidth in a FPGA could be modified after the compilation process

if the f i
min condition is not satisfied.

While this work is focused on bandwidth saturated programs, the non-saturated

memory bandwidth includes compute cycles, and these have already been cov-

ered [162, 21]. Given bw_mem, the model can predict whether this new model

should be used to estimate the execution time or previous compute-oriented models

would be preferable, as set out in (4.7).

Kernel

Bound
⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Memory saturated bw_memi = bw_dram

Memory

non-saturated
otherwise

(4.7)

Finally, once a kernel is defined as memory saturated, Test can be calculated

with (4.1).

4.5.1 Burst-Coalesced LSU

The burst-coalesced LSU is one of the main types of GMI, as listed in Table 4.1 in

Section 4.3. In this LSU type, in order to saturate memory bandwidth, the Avalon

FIFO needs to be filled with requests. When the kernel pipeline does not make

enough requests to fill the memory burst before time out, the memory bandwidth is

non-saturated.

It is possible to achieve Tideal for contiguous memory accesses, this type of access hid-

ing PRE/ACT latencies, as was shown in Figure 4.3. Furthermore, bank-interleaving

memory controllers can completely hide the opening of new memory banks [60]

while the #lsu remains below two. When the #lsu increases, this forces the DRAM

to open a new row, adding Tovh.

The T i
ovh is proportional to DRAM latency of opening a new page, given by row miss

commands (Trow). These can be calculated based on the number of times that an i

LSU has to open a new row, which depends of the number of burst transactions, with

a given burst_size, required to request the total number of bytes (ls_acc · ls_bytes),

formulated as in Equation (4.8). It should be noted that LSU latency and the amount

45



of data in the Avalon FIFO would hide the kernel latency, and for this reason, only

the DRAM latency is considered.

T i
ovh =

⎧⎪⎨
⎪⎩

0 #lsu ≤ 2
ls_acci·ls_bytesi

burst_sizei · Trow otherwise
(4.8)

The estimation of burst_size and Trow for each LSU modifier are analyzed in Sub-

sections 4.5.1 to 4.5.1.

Burst-Coalesced Aligned LSU

This modifier is generated when all the kernel requests are memory addresses

aligned to page size, buffering contiguous memory requests until the largest possible

burst, or DRAM page size, can be made [67]. Where multiple load/store requests

are consecutive words to memory, the burst-coalesced aligned LSU burst-coalesced

aligned LSU maximizes the memory throughput. The complete architecture of this

LSU for a load and store request is shown in Figure 4.3

Here, to estimate Trow, the DRAM burst_size is defined as the size of burst trans-

action, which can overlap DRAM commands. DRAM sets the minimum burst trans-

action size to dq · bl, but it can transfer multiple consecutive burst for the same

open row yielding (4.9), where burst_cnti represents the bus size of the transaction

counter, as shown in Figure 4.3.

burst_sizei = 2burst_cnti · dq · bl (4.9)

The estimation of Trow is not trivial because the controller can overlap commands due

to reordering strategies and the page policy [161]. This model takes into account the

inter-command delay for row buffer misses [21] using ACT/PRE latencies, as (4.10)

shows. The command sequence PRE and ACT, for read and write, is considered

with the same minimum timing as the FPGA profile shows a minimal bandwidth

difference between operations.

Trow = TRCD + TRP (4.10)

46



In a kernel, each global access variable reduces the memory bandwidth with in-

creases in Tovh. The overhead is only zero if the accesses to DRAM banks are

consecutive. But if global accesses are to different addresses, as in the case of a

multiple global access pointer, the accesses are not consecutive and therefore Tovh

appears. Based on this model, we can make a first observation:

Observation 1

Each variable in the same DRAM bank adds an overhead of Trow. This time

is null using one bank per global access; for example, with multiple DDR4

banks, manually distributing the data buffers and disabling the interleaving

with the compilation flag -no-interleaving; and with HBM using one variable

per pseudo-channel.

Burst-Coalesced Non-Aligned LSU

Both aligned and non-aligned LSUs try to coalesce requests from multiple threads

in a single burst command; however, the δ stride of non-aligned access adds a

new trigger for a memory request, the number of threads, max_th, that have been

launched and coalesced in one memory request.

Equation (4.11) calculates this constraint, called max_reqs, representing the max-

imum size of a DRAM request. When a coalescer assembles a request, either the

request occurs when the amount of data requested is equal to a DRAM page or when

the number of coalesced requests have reached max_th, defined as a constant in

the LSU Verilog source code. This limit is affected by δ, it reducing the effective

burst request. In the other case, the δ fraction of ls_width is the effective burst size,

as (4.12) shows. Note that ls_width should be bounded by DRAM page size.

max_reqsi = max_th · ls_widthi

δ + 1
(4.11)

burst_sizei =

⎧⎪⎨
⎪⎩

max_reqsi

δ max_reqsi ≤ 2burst_cnti · dq · bl

ls_widthi

δ otherwise
(4.12)

Based on this model, we can make a second observation:

47



Observation 2

The stride value δ multiplies the number of memory accesses required, it

being able to saturate DRAM bandwidth with discarded data.

Burst-Coalesced Write-Acknowledge LSU

When the global access includes data dependencies in its indexation, the compiler

generates a write acknowledgement signal to guarantee the correct ordering of

accesses [65]. Therefore, the burst size equals the aligned case from Equation (4.9),

and most important, each burst only consumes ls_bytes increasing the total time by
dq·bl

ls_bytes . The write-ack signal adds a write command to the DRAM access, increasing

the Trow delay as (4.13) shows. Based on the write-acknowledge LSU model, we

can make a third observation:

Trow = TRCD + TRP + TW R (4.13)

Observation 3

Although the compiler detects access dependencies, the logic tries to generate

a burst request to DRAM, because each FPGA cycle at a minimum frequency

of 2×Fmem
bq is equivalent to 1 burst request to DRAM.

4.5.2 Atomic-pipelined LSU

The atomic-pipelined LSU executes a read and a write DRAM command. It only

supports integer data types without bursting (therefore, in (4.2), δ = 1). For

example, atomic_add from Listing 4.2 atomically sums val to p, which is atomically

read and written. When val is constant within a loop or for multiple work items,

then the compiler performs v operations atomically.

Atomic operations cannot be used with multiple memory interfaces as is the case of

HBM2 because BSP does not provide support for them.

1 int atomic_add ( volatile __global int *p, int val);

Listing 4.2: Atomic-pipelined add prototype function

48



Equation (4.14) shows the resulting T i
row, including the two accesses, and T i

ovh,

depending on the vectorization factor v. Note that memory saturation in atomic

should include the LSU as a unique operation (sum of ls_width) of two LSUs. Based

on atomic, we can make a fourth observation:

T i
row = 2 · (TRCD + TRP ) + TW R

T i
ovh =

⎧⎪⎨
⎪⎩

T i
row
v val is constant

T i
row otherwise.

(4.14)

Observation 4

The atomic LSU is the most time expensive LSU because one FPGA cycle

performs only one atomic operation. Atomics are limited to int data types.

4.6 Methodology

The experiments have been run on two FPGAs with different memory technologies:

an Intel Stratix 10 GX Development Kit with 2 GB of DDR4 DRAM HiLo running

at 1866 MHz [102] and an Intel Stratix 10 MX Development kit with a HBM2

memory with 32 pseudo-channels, each one with 256 MB of capacity running at 800

MHz [93, 107]. For details of FPGA models, please reefer to Table 2.2. The Table 4.3

shows the parameters required for the model on each FPGA. The other parameters

come from the intermediate compilation of the Intel FPGA SDK for OpenCL 18.1 for

Stratix10 GX and 19.3 for Stratix 10 MX. The OpenCL versions are different because

the manufacturers designed the BSPs with different Quartus IP versions.

To validate the model, two types of benchmarks are analyzed: first, a set of mi-

crobenchmarks, targeting each LSU type from Table 4.1 inside Listing 4.3, where

user parameters such as v and the number of global access (#ga) vary. For DDR4

memory on Stratix 10 GX, only one bank is available, and in the Stratix 10 MX

with HBM memory, the “heterogeneous memory" feature is used, this assigning each

global access to an HBM bank. For burst-coalesced aligned and non-aligned LSUs, δ

variations are validated scaling the array accesses by δ. In the non-aligned case, an

offset argument is added to the scaled index forcing the compiler to this LSU.

49



Table 4.3: Fixed variable value to evaluate the LSU model on Stratix 10 GX and Stratix
10 MX with a DDR4 1866 and HBM2 memory respectively. All variables are
defined in Table 4.2.

Memory Variable Value Variable Value Variable Value

DDR4-1866 [102]
f_dram 933.3 MHz dq 8 B bl 8

TRCD 13.5 ns TRP 13.5 ns TW R 15.0 ns

HBM2 [93, 107]
f_dram 800.0 MHz dq 8 B bl 4

TRCD 14.0 ns TRP 14.0 ns TW R 15.0 ns

1 #ifdef HBM // for HBM with multiple banks
2 # define g_bank ( global_mem_label ) \
3 __attribute (( buffer_location ( global_mem_label )))
4 #else // for DDR4 memory
5 # define g_bank ( global_mem_label )
6 #endif
7 __attribute (( num_simd_work_items (SIMD)))
8 __kernel void test_coalesced (
9 __global g_bank (HBM1) const int * restrict x0 ,

10 ..
11 __global g_bank (HBMn) const int * restrict xn ,
12 __global g_bank (HBM0) const int * restrict z)
13 {
14 int id = get_global_id (0);
15 #ifdef Burst_Coalesced_Aligned
16 z[id] = x1[id] + ... + xn[id];
17 #elif Burst_Coalesced_Non - Aligned
18 z[3* id +1] = x1 [3* id +1] + ... + xn [3* id +1];
19 #elif Burst_Coalesced_Write - Acknowledge
20 int idr = rand[i]; // work item index
21 z[idr] = x1[idr] + ... + xn[idr ];
22 #elif Atomic
23 atomic_add (&z[0], x[id]);
24 ...
25 atomic_add (&z[n], xn[id]);
26 #endif
27 }

Listing 4.3: OpenCL template microbenchmark to vary global access number.

A second validation is performed with 18 different HPC benchmarks, all memory

bound, covering mainly three scientific fields: 1) Physics, 2) Dense linear algebra,

and 3)Computer vision. The benchmark are selected from the following sources:

50



Intel FPGA SDK, Xilinx SDAccel, NVIDIA OpenCL, Rodinia FPGA [183], Chai [46],

and FBLAS [100], in which input channels were modified to fit the DRAM inputs.

The execution time is measured with aocl -report enabled with profiler compilation,

this setting up the hardware counter in the LSU. The atomic cases are measured

with OpenCL events since this type of LSU does not have dynamic counters imple-

mented.

4.7 Results

The model validation comprises two sets of experiments. The first, microbenchmarks,

includes small programs with multiple configurations of kernel v, δ, and #lsu,

enabling us to understand how each parameters affects performance in isolation.

The second set is made of complete benchmarks to test the model with well-known

applications. A third set of experiments are conducted to compare our proposals

with previous ones [162, 21].

The model assumes that in memory saturated applications, the execution time

depends more on memory delay than on kernel frequency; this is valid provided

that the kernel frequency is high enough for the memory controller to fully exploit

bandwidth, namely, fmin. The programmers are able to estimate how well the

memory bandwidth is exploited based on ls_width and fmax from reports since the

results show the dependency on these parameters .

4.7.1 Microbenchmarks

For the sake of completeness, each LSU modifier is evaluated separately. The

evaluation comprises the microbenchmark from Listing 4.3 with their body tuned

to the LSU type and modifier. Every loop body is based on vector addition to easily

change #ga.

Note that in HBM2 memory each global access has a single pseudo-channel to

parallelize bank access, while in DDR4, multiple global accesses must be arbitrated

by a controller.

51



(a) DDR4 1866

(b) HBM2, one global access per pseudo-channel

Figure 4.4: Measured (Tmeas) and estimated (Tideal + Tovh) time for the burst-coalesced
aligned LSU varying the vectorization factor (v) and global access (#ga) in two
types of external memory: a) DDR4 1866 and b) HBM2. The bars with dots
and stripes represent Tideal and Tovh, respectively. Kernels with non-saturated
memory bandwidth (NS) are detected (empty bars) and not estimated.

Burst-Coalesced Aligned LSU

Investigating each LSU type in more detail, Figure 4.4 compares the measured,

Tmeas, and analytically estimated, Test, execution times for a burst-coalesced aligned

LSU. For Test, each bar corresponds to the sum of Tideal (dotted) and Tovh (striped).

For HBM2, the slowest bank from Equation (4.1) is shown, while DDR4-1866 has

only one bank. With this LSU type, each global access generates one LSU (#ga is

equal to #lsu).

For all cases, errors remain below 15%, the simplification of the DRAM commands

in the model and the refresh time being among the main sources of error, which can

reduce memory efficiency, e.g., the DDR4 IP controller reduces efficiency by around

3.5% [60]. The experiment also evidences that the higher the #lsu, the higher the

Tovh; e.g., DDR4 bandwidth reduces by 26%, from 14.2 to 10.5 GB/s with five LSUs.

Hence, in this case, Struct of Array is a good option for reducing #lsu. In the case of

HBM2 memory, the time remains the same with the increase in #lsu because they

run in parallel with one LSU per pseudo-channel.

Figure 4.5 shows the times, normalized to Tmeas with δ = 1, for multiple stride

values. Execution time shows a linear dependency on δ because of the data discarded

in each DRAM burst.

Notice that burst-coalesced aligned LSU cannot be generated with all δ values

because the compiler does not detect DRAM page alignment. With HBM2 memory,

52



(a) DDR4 1866 (b) HBM2

Figure 4.5: Measured (Tmeas) and estimated (Test) time are normalized to Tmeas for δ = 1.
The experiment varies δ with #lsu = 3 and v = 16 for burst-coalesced aligned
LSUs in two types of external memory: a) DDR4 1866 and b) HBM2, adjusting
for special cases.

strided write operations need a correction factor of 4 because they do not detect

coalescing, and the burst splitter divides the request into bl = 4 words inside a burst

taking bl cycles to transfer it, while a read request only needs one clock cycle for bl

words. Comparing HBM2 stride request with DDR4, the performance of HBM2 is

lower, by 2 × in the worst case, starting from δ = 2 due to bursts splitting in store

for HBM, in spite of parallels between the three LSUs used in this test.

Burst-Coalesced Non-Aligned LSU

The burst-coalesced non-aligned LSU is depicted in line 17 of Listing 4.3 for a δ = 3.

Similar to the aligned modifier, in this case, the global access is also supported by

just one LSU. burst-coalesced non-aligned LSU, in Figure 4.6, shows a 22% larger

error than burst-coalesced aligned LSU, this being attributable to the latency of the

coalescer having a large variance; e.g., the number of required address comparisons

depends on the coalescer state. The largest errors, as with burst-coalesced aligned

LSU, are related to small vectorization factors; in the case of DDR4 with v=4,

the calculated fmin=349 MHz compared with fmax after compilation which is in

the range of 301 to 418 MHz placing the kernel near to a non-saturated memory

state and increasing the minimum error by 13%. Also note that neither v nor #ga

correlates with the error.

Further, for v and #ga larger than 4 and 3, respectively, the number of threads in

a burst, max_th of Equation (4.12), significantly impacts execution time, which

increases linearly and not exponentially like v. This “max_th effect” can also be seen

varying δ as Figure 4.7 shows for v = 16 and #lsu = 3, with times normalized to

δ = 1. For δ = 7, the max_th restriction appears optimizing the access that increases

with strides. Compared to an aligned LSU, the performance is 60% lower on average

53



(a) DDR4 1866

(b) HBM2, one global access per pseudo-channel

Figure 4.6: Measured (TMeas) and Estimated (Tideal + Tovh) time for the burst-coalesced
non-aligned LSU varying the vectorization factor v and global access (#ga)
in two types of external memory: a)DDR4 1866 and b) HBM2. Kernels with
non-saturated memory bandwidth (NS) are detected (empty bars) and not
estimated.

(a) DDR4 1866 (b) HBM2

Figure 4.7: Measured (Tmeas) and estimated (Test) time are normalized to TMeas in δ = 1.
The experiment varies δ with fixed values of #lsu = 3 and v = 16 for burst-
coalesced non-aligned LSU in two types of external memory: a) DDR4 1866
and b) HBM2.

due to address comparison increases and the burst window being reduced to avoid

long kernel stalls.

Unlike in DDR4, in HBM2, the execution time does not have Tovh, as in the burst-

coalesced aligned LSU case, due to the use of just one LSU per pseudo-channel. It

should be noted that #ga does not vary the estimation results, showing indepen-

dence between HBM channels.

Burst-Coalesced Write-Acknowledge LSU

The evaluation of this LSU type uses the microbenchmark in Listing 4.3, with the

code snippet from lines 20 to 21 of.

An array of constant values is generated by software with random values between

0 and 2048, reducing the probabilities of coalescing (2048 over 64 and 32 floats

coalesced in DDR4 and HBM2 respectively).

54



(a) DDR4 1866

(b) HBM2, one global access per pseudo-channel

Figure 4.8: Measured (Tmeas) and estimated (Tideal + Tovh) time for burst-coalesced write-
acknowledge LSU varying the vectorization factor v and global access (#ga)
in two types of external memory: a) DDR4 1866 and b) HBM2. Kernels with
non-saturated memory bandwidth (NS) are detected (empty bars) and not
estimated.

In the previously analyzed LSU types (burst-coalesced aligned LSU and burst-

coalesced non-aligned LSU), v affected the lsu_width; by contrast, with write-

acknowledge LSU, the lsu_width remains constant. To increase the vectorization,

the compiler generates as many LSUs as the desired v for each global access. The

assumption is that every thread is accessing a different memory location, controlling

the memory consistency with the ACK signal. Figure 4.8 shows the comparison

between the measured and estimated execution times.

Among all burst-coalesced LSU modifiers, write-acknowledge LSU is the one that

penalizes performance the most, growing 24 × more than with burst-coalesced

aligned LSU. The read operations show a stall on read until 98% with two LSUs. To

optimize these cases, the programmer should evaluate a balance between the data

dependency with writes vs. the use of on-chip memory with a tiling strategy.

For HBM2, the assumption of this LSU type is replaced by a burst-coalesced aligned

LSU tree, but as write-acknowledge LSU uses a signal to control pipeline flow. Here,

the estimation has a maximum error of 12% for all v = 2 values, as with burst-

coalesced non-aligned LSU, kernel-pipeline is near to memory saturation with a

fmin = 400 MHz and a minimum kernel frequency after compilation of 367 MHz,

compared with expected value of 450 MHz.

55



(a) DDR4 1866

Figure 4.9: Measured (Tmeas) and estimated (Tideal + Tovh) time for Atomic-pipelined LSU
varying the vectorization factor (v) and global access (#ga) in a DDR4 1866
memory. Non-saturated memory bandwidth (NS) are detected (empty bars)
and not estimated. The time axis is in seconds and logarithmic.

Atomic-pipelined LSU

The evaluation of this LSU type uses the microbenchmark in line 23 of Listing 4.3.

In this code, to generate a single global access (#ga = 1), the global access xn[id]
is replaced by a local variable id. Otherwise, each atomic operation generates one

global access per v to avoid coalescing. Only DRAM results are shown, because the

atomic LSU is not supported with HBM2 memory.

In general, the atomic-pipelined LSU does not change the lsu_width, unlike the

burst-coalesced LSU, making Tovh the most significant component in the case of

this LSU. Figure 4.9 shows that execution time increases linearly with #ga, the

maximum error of 16% corresponds to unaccounted 5 ns per atomic operation. The

hypothesis is that this delay is close to the time between the beginning of the internal

write transaction and that of the following read command in the same group and

same bank (TW T R).

Overall, analyzing read stalls quantifies the impact of the LSU on kernel performance.

For burst-coalesced aligned and non-aligned LSUs, the read stall percentages are

under 20% because the coalescer partially hides the δ-induced delay. Meanwhile,

write-acknowledge LSU has a stall percentage of over 50% as the extra signalling

serializes the requests. The atomic-pipelined modifier cannot be measured because

profiling is unsupported, but it is safe to assume that stalls will be high due to

atomicity requirements.

4.7.2 Applications

To cover a large set of possible scenarios, this section evaluates the model with 18

bandwidth bound applications, mixing single task and NDRange kernels with and

56



Figure 4.10: Frequencies Histogram for 18 kernel applications; the red dotted line shows
the required minimum frequency for maximizing bw_dram.

Figure 4.11: Estimation error of the execution time and frequency error from pre-synthesis
report and after place-and-route in kernels that are limited by a frequency
under 400MHz after synthesis in HBM cases.

without channels. Table 4.4 reports the measured and estimated times with the

corresponding errors for all of them.

For all the applications with a DDR4-1866, the relative error remains below 9.2%

with an average value of 7.6%. With HBM2 memory, the error is higher, with a

maximum of 55%.

The main source of error in HBM is the frequency requirements from the controller,

which needs fmin = 400 MHz to maximize bandwidth. Such an fmin is difficult to

achieve with high resource usage that increases the pressure on the place-and-route

compilation phase and reduces the achievable target frequency fmax [138]. For

example, in MatrixMult with v = 128, the kernel requires the highest (53%) DSP

resource allocation among benchmarks, the compilation time is around 9 h, and

the kernel only achieves a fmax = 177 MHz, 55% lower than the expected fmin.

Further, MatrixMult with v = 64 uses 26% of DSP blocks, takes 5 h to compile, and

yields an fmax = 268 MHz, 33% lower than fmin. If future HLS tools improved

place-and-route capabilities, errors would certainly decrease.

To illustrate the frequency differences in DDR4 and HBM2 between applications, the

histogram in Figure 4.10 shows the applications distribution in terms of frequency

and marks the minimum frequency required to maximize memory bandwidth. On

HBM2, 8 applications are critically bounded by the frequency after place-and-route

because they do not reach the pre-synthesis reported fmax. Figure 4.11 analyzes

57



Table
4.4:

K
ernelapplications

and
estim

ated
tim

e
in

tw
o

m
em

ories:
D

D
R

4
1866

and
H

B
M

2.G
M

I-
globalm

em
ory

interconnect
B

C
A

-
burst-coalesced

aligned
LSU

.
B

C
N

A
-

burst-coalesced
non-aligned

LSU
.

A
C

K-
burst-coalesced

w
rite-acknow

ledge
LSU

.
M

-
M

easured.
E-Estim

ated.

D
D

R
4

1866
H

B
M

2

Kernel
G

M
I

#
lsu

BW
M

.Tim
e

E.Tim
e

Error
BW

M
.Tim

e
E.Tim

e
Error

[G
B

/s]
[m

s]
[m

s]
[%

].
[G

B
/s]

[m
s]

[m
s]

[%
]

axpy[100]
B

C
A

3
11.8

31.9
31

.5
1.2

34.5
11.2

10
.2

8.6

D
ot[124]

B
C

A
3

13.3
29.4

31
.5

7.3
23.4

11.2
10

.2
8.5

FFT-1D
D

irect
[65]

B
C

A
2

13.8
9.5

8
.8

7.3
19.8

6
.6

5
.1

22.4

FFT-1D
Inverse[65]

B
C

A
2

13.8
9.5

8
.8

7.4
19.6

6
.6

5
.1

23.4

iam
ax[100]

B
C

A
2

14.3
9.2

8
.8

4.6
11.7

11.2
10

.2
8.6

nn[183]
B

C
A

2
13.9

11.0
10

.3
6.5

17.6
8
.7

8
.0

8.8

PrefixSum
[75]

B
C

A
2

12.7
10.0

9
.0

10.1
23.1

5
.2

5
.8

9.6

R
O

T[100]
B

C
A

4
11.6

35.7
39

.5
10.6

47.9
11.5

10
.5

8.7

SobelFilter
H

D
[38]

B
C

A
3

13.2
1.9

2
.0

6.2
14.1

1
.7

C
B

-

VectorA
dd

[65]
B

C
A

3
12.1

33.3
33

.2
5.1

35.9
11.2

10
.2

8.6

VectorA
dd

δ
=

2
B

C
A

3
5.9

67.9
63

.0
6.5

4.7
82.6

81
.9

0.8

H
istogram

[46]
B

C
A

2
14.3

8.9
8
.4

5.8
9.2

13.4
9
.8

26.6

H
otspot[183]

B
C

N
A

3
7.5

9.7
8
.8

8.7
16.9

12.8
C

B
-

M
atrixM

ult
(v=

64)
[65]

B
C

N
A

3
8.9

31.2
27

.9
10.3

17.6
15.7

10
.4

33.3

M
atrixM

ult
(v=

128)
[65]

B
C

N
A

3
9.1

121.2
107

.8
11.0

11.6
94.4

41
.9

55.6

Pathfinder[183]
B

C
N

A
3

7.6
27.6

25
.4

7.9
11.6

13.8
16

.5
20.2

W
M

[171]
B

C
N

A
2

13.9
59.8

55
.8

6.6
12.6

0
.2

0
.2

6.2

N
W

[183]
B

C
N

A
/A

C
K

4
0.3

1.4
1
.4

4.0
0.3

0
.2

0
.2

25.7

58



these 8 applications and shows the post-synthesis time and frequency error compared

to the estimated pre-synthesis values. There is a strong correlation between time

and frequency error, suggesting that compiler accuracy estimating the frequency

can limits the model’s accuracy. As a especial case, the Stratix 10 MX with HBM2

memory requires higher frequency to saturate memory. In this device, the frequency

estimation worsens compared to that of the GX because the MX BSP uses 32 separate

global memory interfaces connecting to the physical pseudo-channels with 256-bits

buses. In fact, the worst estimation time and the worst frequency estimation from

the tool comes from MatrixMult in where the routing tool reports routing congestion

warning.

4.7.3 Comparison With Other Models

This subsection compares the proposed model with two state-of-the-art models:

Wang and HLScope+ [162, 21], reproducing the mathematical models for the

microbenchmarks, with f = 16, and for the vectorAdd application. Unfortunately,

comparison with other applications is unfeasible because the dynamic profiling tools

feeding Wang and HLScope+ are not available. The tests are run with two BSPs for

Stratix 10 GX with different DRAM frequencies, 1866 and 2666 MHz.

In all but one case, μb burst-coalesced aligned LSU, the error found in this study

is lower than that of Wang and HLScope+ as Table 4.5 shows. Comparing the

maximum error of each model, this proposal is up to 400 and 5 × more accurate

than Wang and HLScope+, respectively.

In Wang’s case, the errors come from an incomplete support of all LSU modifiers and

not fully including the memory features (bandwidth, frequency, row misses, . . . ),

unlike in this study.

On the other hand, the HLScope+ model for Xilinx devices considers memory

bound applications where the estimation is primary affected by DRAM bandwidth.

HLScope+ requires a board characterization to compute the controller overhead

(Tco) [125]; this parameter is different for each benchmark because Tco varies

with access type; this study uses Tco =2.5 ns for #lsu > 3, and Tco =0 ns in other

cases.

59



Table 4.5: Execution time estimated error; μb, BCA, BCNA, and ACK refer to
microbenchmark, burst-coalesced aligned, burst-coalesced non-aligned,
and burst-coalesced write-acknowledge LSUs, respectively.

Memory Benchmark #lsu Wang[%] HLScope+[%] This work[%]

DDR4-1866

μb BCA 1 17.3 12.7 5.6
μb BCA 4 0.3 10.6 4.4
μb BCNA 3 - 71.1 4.0
μb ACK 32 8049.9 63.2 27.9
VectorAdd 3 19.3 21.0 5.1

DDR4-2666

μb BCA 1 69.6 57.8 4.7
μb BCA 4 37.8 19.6 5.8
μb BCNA 3 - 137.9 8.7
μb ACK 32 11 279.4 47.6 8.8
VectorAdd 3 67.9 63.3 1.0

HBM2

μb BCA 1 145.5 83.7 8.4
μb BCA 4 151.2 83.7 8.6
μb BCNA 3 - 118.8 13.9
μb ACK 32 4910.8 78.1 14.7
VectorAdd 3 9.8 83.7 8.7

The two state-of-art models compared only support aligned and random access,

but as this study shows, the memory strategies go one step further using HLS tools

combining and modeling GMI and DRAM behavior.

In addition, note that Wang and HLScope+ do not adapt well to memory changes

and only cover DRAM, unlike the proposal in this study that supports both.

4.8 Conclusions

As in other HPC processors, memory in FPGAs is one of the most critical aspects

of system performance. This work proposes an analytical model that identifies the

main parameters that control the total execution time when the kernel-pipeline

saturates memory bandwidth, a common situation for HPC applications. Specifically,

the model determines the memory saturation through the relationship with memory

occupation and kernel frequency and accurately estimates the kernel execution time

without a time-consuming synthesis process, helping programmers and HLS tools to

60



design and anticipate performance without extensive exploration processes, as used

in other studies.

The model stems from a detailed study of the generated RTL code, instantiated

IPs, and FPGA architecture without loss in flexibility that is demonstrated with two

DRAM technologies: DDR4-1866 and 3D-stacked HBM2.

The results show the model has an average error of 11.4% for DDR4 and 10.4%

for HBM2. Errors above average are directly associated with kernel frequency

limitations in the compilation process. Compared with two state-of-the-art models,

mainly focused on computing, the proposed model at least halves the error and

shows adaptability to two technologies and memory frequency variations, unlike

other proposals. Our future work aims to integrate this type of model into scheduling

policies of heterogeneous systems, where predicting performance before launching

a kernel can make a difference, helping to achieve higher performance and energy

efficiency.

4.9 Contributions

• We provided a detailed description of the global memory interconnect for HLS

in FPGAs.

• We proposed, to the best of our knowledge, the first analytical model that

estimates the execution time of HLS-compiled memory intensive applications.

This work has been published in 28 th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2020.

• We introduced a novel classification of the FPGA kernel-pipeline state based

on memory bandwidth and a set of hints derived from observations of the

analytical model to identify bottlenecks and guide programmers for optimizing

kernels in two memory technologies: DDR4 and HBM. This work has been

published in IEEE Transactions on Computers, 2021. The repository with the

memory model and collected data is open in the repository IEEE DataPort

61





FPGA Frameworks to

Improve Design Productivity
5

In this chapter, we take program portability as one of the pillars to improve pro-

grammability in FPGAs, exploring the implementation of a high level framework for

computer vision applications as OpenVX. Previous proposals for FPGAs are vendor

restricted to either Xilinx or Intel FPGA, and in this chapter, we ported a Xilinx

proposal of OpenVX to Intel FPGA devices. The proposed tool is templated-based,

enabling programmers to keep a platform-independent code, hides design decisions

such as the type of communication among function nodes in a graph (streams), the

concurrency programming model(system of task), and how to integrate the design

in an FPGA accelerator coupled to a host(OpenCL libraries). All the new features in

the library are evaluated with complete graph applications.

5.1 Introduction

Developing applications for FPGAs has the main drawback the low programmability

since the freedom in the design space of FPGAs needs to handle a large amount

of details. Although HLS helps in the design processes and verification, the design

needs to be FPGA-friendly being this tricky, furthermore, since the programming

tools are vendor specific, the code portability is another important problem in

FPGAs.

The development of libraries using open programming standards can increase the

programmers productivity, even more if the libraries promises portability among

vendors. With this aim, in this chapter is explored an open programming standard

as OpenVX for computer vision applications, since these applications tend to offer a

high level of parallelism with many data-independent operations.

OpenVX presents an open, royalty-free standard for cross-platform acceleration [45]

where applications are expressed as graphs to maximize optimization potential

63



because all dependencies are known before the graph is processed. On FPGAs,

the acceleration of OpenVX applications remains a challenge because their effi-

cient implementation requires per-device specific optimizations on primitives and

communication. Some High-Level Synthesis libraries address these requirements;

e.g., HiFlipVX, an optimized library of OpenVX functions that exploits streaming

capabilities and parametrization for Xilinx FPGAs [83].

However, HiFlipVX highly-tuned implementation is neither portable nor efficient on

other FPGA platforms such as Intel. Implementing a portable OpenVX API for FPGA

requires to maintain a user-facing API as close as possible to the OpenVX standard,

in this cases the support is extended for Intel FPGA devices with different external

memories as DDR4 and HBM.

5.2 Related Work

Computer vision and image processing algorithms require high performance and

energy efficiency that can be achieved with FPGAs [48]. Unluckily, the big ef-

fort required for programming FPGA is a huge drawback that makes its adoption

difficult.

Image processing on a FPGA can be implemented with Domain Specific Languages

(DSL). For example, the newly HeteroHalide [92] extends the Halide DSL, formerly

used on CPU and GPU, to support Intel and Xilinx devices. Hipacc [137] developed

another DSL to support multiple back-ends from different vendors and devices such

as FPGA, GPU, and CPU. Also, a Hipacc extension provides support for the OpenVX

API [127], but they do not include results for whole application graphs, as this work

does. PoliMage [22] and Pu’s [132] are two proposals that support Xilinx FPGAs.

Despite DSLs are facilitating FPGAs adoption, the steep learning process and the

difficulties to enlarge their functionalities remain a challenge.

A more suitable option to ease FPGA implementation is the adoption of a library

approach or standard based library. For example, implementing functions from the

OpenCV library, Xilinx provides the xfOpenCV library [169]. Other libraries target

specific FPGAs vendors, e.g., HiFlipVX and AFFIX are OpenVX libraries for Xilinx

and Intel, respectively [83, 151, 150].

64



Standard libraries together with the adoption of vision standards such as Open-

VX could ensure adequate cross-platform portability and performance. Moreover,

applications require intensive tuning for each FPGA vendor, even with HDLs. In

the case of computer vision applications, as other ones, each type of FPGA requires

specific coding style to achieve optimal performance [48, 159]. Among the available

options, HiFlipVX and AFFIX are the ones that could offer a more general computer

vision library.

Nevertheless, AFFIX is based on OpenCL, which limits the OpenVX functions and

graphs implementation. On the other hand, HiFlipVX, through the use of standard

C++ language simplifies the graph’s implementation, and it focused on portability

including explicit data type management to generate optimized hardware. Moreover,

HiFlipVX was validated out in numerous embedded applications for Xilinx [142, 131,

2]. This previous analysis recommends to extend HiFlipVX as an standard OpenVX

based library to be compatible also with Intel FPGAs.

5.3 OpenVX Programming Flow Alternatives on FPGA

One of the most successful approaches in heterogeneous systems is OpenCL, because

it unifies the programming language across devices such as CPU and GPU. As an

High-Level Synthesis language for FPGA, OpenCL still suffers from a limitation:

optimization strategies differ from those from other devices and require choosing

the appropriate OpenCL execution model [75, 185]. Furthermore, code written

with only the OpenCL standard does not perform well on FPGAs as it requires

manufacturer defined extensions.

Programming the OpenVX standard using OpenCL for FPGAs is a challenge since

OpenVX applications use a graph-based programming model where nodes, instances

of kernels, contain the function code; and edges represent the data movements [45].

This data flow programming model has two main design alternatives in OpenCL:

• Standard OpenCL: each OpenVX node is an OpenCL kernel, as shown in

Figure 5.1a. This alternative is portable between manufacturers; but the main

disadvantage is the lack of guarantees to generate a deep pipeline connecting

the function nodes, because each kernel requires control and communication

65



__kernel void exm1(){
     OVX1();
     OVX2();
     OVX3();
     OVX4();
}

OVX1()

OVX2()

OVX3()

pipeline1

pipeline2

pipeline3

OVX4() pipeline4

OpenVX as FPGA OpenCL Function 

exm1()OpenCL Host
Command Queue Q1

(a) Standard OpenCL

__kernel void OVX1(){
     Channel/Pipe R/W();
}
...
}__kernel void OVX4(){
     Channel/Pipe R/W();
}

OVX1() OVX2()

OVX3()

OVX4()

Channel/Pipe

OpenVX as FPGA OpenCL Kernel

OVX1OpenCL Host
Command Queue Q1 OVX2Q2 OVX3Q3 OVX4Q4

(b) OpenCL Channels

__kernel void exm1(){
     OpenVXGraph();
 }

HiFlipVX pipeline1

exm1()OpenCL Host
Command Queue Q1

OVX1()

OVX2() OVX3()

OVX4()

(c) HiFlipVX proposed flow

Figure 5.1: Programming flow alternatives for OpenVX using HLS for FPGA devices. The
yellow boxes show OpenVX functions implemented as OpenCL functions and
the green ones the OpenVX functions implemented as kernels. The bottom
boxes show host command queues, Qn, that manage the kernels.

with the host. Outside of the standard, Xilinx defined their own pragmas and

streaming interfaces to generate deep pipelines.

• OpenCL channels: each node is an OpenCL kernel, and channels/pipes connect

them all. This option allows deep pipelines by the use of streaming com-

munication among kernels, as shown in Figure 5.1b. In this case, multiple

command queues are required to launch every kernel from host to get a con-

current execution of the graph. This approach is implemented and named

differently by each FPGA vendor; e.g., Intel and Xilinx adopt channels and

pipes, respectively.

These two approaches evidence the portability problem between manufacturers

and the limitations of standard OpenCL API, whereby each FPGA manufacturer

extensions help to optimize and guide the compilers through bitstream generation.

Even, sometimes, these extensions are different per FPGA device family limiting

portability [159].

In terms of performance, the use of the aforementioned channel approach allows

higher throughput and lower latency, but due to restrictions of the OpenCL standard,

generating portable and easy to use libraries is a challenge. For example, AFFIX im-

plements OpenVX graphs with single-input single-output host pipes [151] curtailing

the OpenVX specification, which defines multiple-input multiple-output edges.

Besides OpenCL, a more flexible HLS language is C/ C++. Although C/C++ suffers

the portability restrictions between manufacturers, the programming details can be

hidden to the programmer under wrapper layers.

For Xilinx devices, HiFlipVX implements OpenVX using C/C++, enabling a highly

parameterizable library. However, to complete an efficient and portable OpenVX

66



Table 5.1: Programming flow alternatives to implement the OpenVX standard.

Programming flow Manufacturer portable Deep pipeline Host dependency

Standard OpenCL � � LOW

OpenCL Channels � � HIGH

HiFlipVX � � -

This Work � � LOW

specification, it is necessary to port the library to Intel devices. The differences

between C/C++ standards and compiler, such as OpenCL, are not trivial, showing

differences between manufacturers. Also, FPGA families present a wide variety of

designs, from simple embedded devices to high-performance ones with external

memory and ports, specially oriented to HPC applications.

This work overcomes those limitations. Specifically, HiFlipVX achieves both porta-

bility, supporting two of the main FPGAs manufacturers, and performance, by

coalescing OpenVX nodes in a single OpenCL/RTL element maximizing pipeline

deep for Intel FPGAs as shown in Figure 5.1c. With this strategy, OpenVX applica-

tions overcome the pipeline depth limitations in Standard OpenCL (Figure 5.1a) and

reduces the host dependency on OpenCL Channels implementation (Figure 5.1a).

This property is specially crucial for Intel FPGA devices as Table 5.1 shows.

5.4 HiFlipVX

HiFlipVX is an open source HLS FPGA library for image processing applications [83,

82, 81]. HiFlipVX is a C++ based library containing 53 functions, which are highly

optimized and parametrizable using templates. Most of its functions, or object

kernels, are based on the OpenVX standard. They are implemented to be streaming

capable with stream data objects, on edges, to link kernel instances as nodes in a

graph. It extends the OpenVX based functions by additional parameters, such as

vectorization, or more options, such as additional data types.

The functions in HiFlipVX can be categorized in pixelwise, filter, analysis, and

conversion functions as Figure 5.2 shows. Pixelwise functions process the input

images pixel by pixel, like adding two images together. Filter functions work in

a window on the input image, like in a Gaussian filter. The conversion functions

67



change the image by scaling it or changing the image format. The analysis functions

usually have to perform a complete analysis of the input image, such as creating a

histogram.

Operator

+
&

Pixel-wise Filter Conversion/analisisPixel-wise                        Filter               Conversion/analysisPixel-wise Filter

Figure 5.2: Image functions categories implemented in HiFlipVX.

The library outperforms a vendor-specific library, xfOpenCV, for Xilinx FPGAs in

terms of resources and execution time [83]. The functions of HiFlipVX were used

for various applications [142] [131], and even shows that the use of vectorization

increases not only performance but energy efficiency as well [2].

5.5 Methodology

All experiments have been run on two high-end FPGAs: an Intel Stratix 10 GX

Development Kit and an Intel Stratix 10 MX. Both boards use the PCIe Gen3 x8 to

connect with the host CPU. For more details about FPGAs resources please refer to

Table 2.2.

This work evaluates the performance portability of HiFlipVX with parameters such

as latency, initiation interval (II), and resource estimation from RTL compilation

using i++ HLS compiler V. 19.4. The FPGA core power measurements use the Board

Test System application provided by Intel, with a 1 second sampling rate. To ensure

power accuracy, kernels run at least 1 minute to obtain measurements. For most

experiments, the Stratix 10 GX was selected as the reference board, since the only

difference with the MX is the memory technology: DRAM vs. HBM banks.

Our benchmark suite comprises four representative OpenVX graphs, including all

the categories of Figure 5.2, from the Intel OpenVX and Khronos samples:

• Canny edge detector: Popular multi-stage algorithm for edge detection and

suppressing noise.

68



• Auto-contrast: Algorithm to improve contrast in images, adjusting the image

intensity.

• Census transform: A common algorithm for correspondence problem used in

stereo image processing for disparity calculations [174].

• Skin tone detection: Algorithm to detect human white skin tone.

Finally, these benchmarks are also used to compare with existing state-of-the-art

approaches running them on the same FPGA, except the skin tone which is not

implemented by other works.

5.6 Tuning HiFlipVX for Intel FPGAs

The OpenVX specification provides a high level abstraction to easily implement

computer vision applications on multiple devices. The OpenVX objects are designed

for dynamic applications, so the runtime provides support to manage objects during

execution. However, since bitstream generation takes a long time, on FPGAs, the

verification and optimization of OpenVX graphs has to be statically performed at

compile time.

The OpenVX standard leaves the optimization process to vendors. In the case of

HiFlipVX, the new implementation supports programmer’s optimizations through

specialized versions of its template-based API for each vendor. So, programmers can

tune the OpenVX applications according to the FPGA platform with minimal changes

in the user-facing code. Such portability from Xilinx to Intel implementation has

required changes in the implementation of three OpenVX components: execution

model, kernels, and edges. Kernel nodes are the compute part of the graphs,

while edges have the memory management with virtual and image objects which

potentially improves speed up.

5.6.1 Execution model

For Intel FPGAs, HiFlipVX synthesizes every graph as a single kernel (Figure 5.1c).

The system of task, a proprietary Intel API, enables task-level pipelining, allowing

69



asynchronous nodes to create a graph for Intel FPGAs. On the contrary, the Xilinx spe-

cialization uses the HLS dataflow pragma for function or loop level parallelism.

5.6.2 Kernels

HiFlipVX kernel nodes are implemented with C++ functions, so the first step to

maintain kernel performance and properly guide the compilation process is to add

specific translations of Xilinx’s pragmas to their Intel counterparts. Specifically, the

next two pragmas and component attributes are used:

• HLS array_partition/hls_register: forces the compiler to generate vari-

ables as registers.

• Loop pragmas: the difference is the location in the code. These pragmas are

inserted after and before the loop, for Xilinx and Intel, respectively.

The resource utilization comparison of the HiFlipVX for Xilinx [83] and Intel devices

shows that the ALUTs resource usage is similar, less than 15% variation for 6

representative OpenVX functions (all running at the same 100MHz frequency),

except Sobel Filter, 27% difference, as depicted in Figure 5.3a.

Since the core programmable unit in Intel Stratix architecture packs four-input LUTs

and registers (FFs), the FFs usage in Figure 5.3b shows a similar tendency as ALUTs.

The RAM usage in Figure 5.3c, shows the same number of blocks although the RAM

sizes are different, 18K in Xilinx and 20K in Intel; the similarities are attributed to

SIMD vectorization of 1 which synthesizes arrays and variables as registers. These

results evidence the differences between architectures and HLS tools; e.g., Xilinx

LUTs are capable of self-split to implement two separated logic functions, unlike

Intel that has dedicated ALUTs to improve routing time in complex designs [49].

5.6.3 Edges

For Xilinx, HiFlipVX implements optimized communications through streaming with

HLS STREAM pragma. The pragma creates FIFOs or double buffers to transfer data

between functions or loops in a data flow area and it uses pass-by-pointers for kernel

70



(a) ALUTs

(b) FFs

(c) RAM

Figure 5.3: Resource comparison between Intel and Xilinx [83] FPGA at 100MHz and
vectorization equal to 1, for 6 sample OpenVX functions.

node parameters. In general, these choices guarantee an Initiation Interval, II, equal

to 1 cycle and low latency for filter-type kernels [83].

The lack of equivalent pragmas for streaming communications in Intel API and

the pass-by-pointer as parameters can result in kernels with poor performance,

constraining the II up to 114 cycles, because the HLS tool generates a single Avalon

Memory-Mapped (MM) Master interface with a single arbiter for all variables [38].

When function parameters are passed-by-reference, which are more suitable for

Intel [73], the II reduces to 1 cycle, substantially improving the pipeline performance.

The first two groups of bars in Figure 5.4 show a 114× cycle difference between the

pass-by-pointer and pass-by-reference for a 3x3 filter.

Reference parameters do not support concurrency requirements of nodes in OpenVX

graphs. To support them, the Intel system of task with stream as function parameters

allows nodes to run asynchronously. Streams reach an II of 1 cycle and, in practice,

resulting in Avalon streaming interfaces which provides high-bandwidth and low

latency communication.

71



Figure 5.4: Latency and Initiation Interval for interface optimizations on edges in a 3x3
filter function (lower is better).

Comparing the streams with reference, streams latency is up to 2 × higher because

system of task adds control logic in kernel pipeline to communicate among graph

nodes. Figure 5.4 shows the impact on both II and latency of all the interface changes:

passing arguments by reference and stream communication among kernels.

In terms of code implementation, Intel stream interface has 3 specific data types:

stream_in for inputs, stream_out, for outputs, and stream for general interconnect

between kernel nodes. To achieve the portability, the Listing 5.1 shows the data type

redefinition of the vx_image based on templates which allows to adapt the hardware

with the vectorization factor (V) and the capacity of stream buffers (buff_cap). This

implementation hides the hardware interface details to programmers.

1

2 template <class T, const size_t V,
3 int stream_type , uint buff_cap =256 >
4

5 using vx_image =
6 typename conditional < stream_type == vx_streamIn_e ,
7 ihc :: stream_in <vx_image_t <T, V>>,
8 typename conditional < stream_type == vx_streamOut_e ,
9 ihc :: stream_out <vx_image_t <T,V>>,

10 typename conditional < stream_type == vx_stream_e ,
11 ihc :: stream <vx_image_t <T,V>, ihc :: buffer <buff_cap >>, vx_image_t

<T,V> > ::type >:: type >:: type;

Listing 5.1: vx_image for virtual image implementation with Intel streams support

Virtual image objects implemented with streams are limited to access by reference,

and the use of arrays of streams are not allowed. Also, multiple reads from a stream

by different nodes require to duplicate the number of edges in the FPGA. For this

reason, a custom internal kernel vxSplit is needed to concurrently feed multiple

kernels with a single copy of the data-stream references.

72



Contrary to virtual image objects, images references allow direct user access, which

creates an opaque reference to an image buffer [45]. In Intel FPGA, the user can

access data through external ports using the Avalon MM buses.

In embedded FPGAs, stream interfaces with input and output qualifiers are enough

to control I/O ports. However, discrete devices with an external memory, as DRAM,

require memory IP controllers. To manage external DRAM memories, HiFlipVX

takes advantages on existing host drivers for OpenCL/SYCL to perform the required

transactions. Also, those transfers are transparently instantiated with two custom

kernels.

The DRAM interfaces are created with the ihc::mm_master to specify the external

Avalon MM data bus interconnection to the OpenCL/SYCL drivers. Listing 5.2 shows

the vx_image to create images for FPGAs with DRAM support. The data bus size

(WIDTH_MEM) is parametrized with the specification of DRAM memory controller

from the BSP (Board Support Package), and PORT enumerates the bus interface.

The last template parameter, emb_x, advises the compiler whether the interface is

embedded or not, for Xilinx devices it is always true.

1 template <class T, const uint WIDTH_MEM , uint V=1, uint PORT =1, uint
emb_x =1>

2

3 using vxCreateImage =
4 typename conditional < emb_x == 0,
5 ihc :: mm_master <vx_image <T, V>,
6 ihc :: aspace <PORT >, ihc :: awidth <WIDTH_MEM >,
7 ihc :: dwidth <32>, ihc :: latency <0>,:: maxburst <16>,
8 ihc :: align <64>, ihc :: waitrequest <true >>,
9 vx_image <T, V>>:: type;

Listing 5.2: vx_image for image implementation with Intel DRAM support

Image objects for DRAM generates load/store units for continuous and aligned me-

mory accesses, user defined parameters as burst size with the coalescence parameter

are available for user optimizations. Furthermore, the load/store controller allows

to adjust technology differences between FPGA boards and maximizes DRAM band-

width. Figure 5.5 shows the interfaces and load/store units required to interconnect

a DRAM memory to HiflipVX graph.

To evaluate Load/Store units, Figure 5.6 plots the performance of Canny edge

detector as a representative graph. It shows that high coalescence factors with very

73



Figure 5.5: DRAM memory interconnection to a HiFlipVX graph.

OpenCL
BSP

D
R

AM

Load Unit and
Coalescer

Store Unit and
Coalescer

Av
al

on
 M

M
Avalon Stream

HiFlipVX graph

OpenVX
Nodes

vxCreateImage + DRAM  control

Figure 5.6: Efficiency (Frames Per Second) for canny edge detector with a HD image varying
coalescing to read DRAM memory (LSU width), higher is better.

wide LSUs, > 512 bits, can reduce performance up to 7 ×, because the compiler

heuristic generates a non-aligned controller access. In load/store units with a bus

width smaller than 512 bits, the maximum DRAM burst is underused, except in 64

bits which is the same bus width as DRAM (dq).

Once an OpenVX graph has been programmed in C/C++ with HiFlipVX, the com-

pilation flow depends on the target FPGA. For an embedded FPGA, the bitstream

can be generated after the RTL generation, and for an Intel discrete FPGA, it must

be coupled to a BSP, which is part of the OpenCL and SyCL drivers, to enable

communication with a host CPU.

OpenCL and SyCL Library feature allows including RTL modules into function

kernels packaged into an library object (.lib). However, the system of tasks used

in HiFlipVX is not supported yet. To overcome this problem, the compilation flow

has an additional step, supported with a tool extension in HiFlipVX that takes two

inputs: 1) an XML file with the BSP memory port descriptions, and the RTL from

HiFlipVX, both of them compatible with the target FPGA.

The tool extension output enables the library generation with Intel standard aoc

tools. As result, the HiFlipVX libraries objects are ready to be used in OpenCL/SyCL

kernels. Since OpenCL backend implementation is more mature than SyCL, it has

74



Cpp
HiFlipVX

OpenCL lib sycl lib

FPGA + BSP Bitstream

Xilinx Intel

Tool
extension

Kernel

FPGA IP
RTLRTL

AOC
 library

AOC

Vendor

rtl_spec.xml
Opencl model.clboard_spec

Figure 5.7: HiFlipVX programming and compilation flow for Xilinx and Intel FPGAs.

been chosen to be evaluated in this work. Figure 5.7 shows the compilation flow to

couple the Intel HiFlipVX graph to a heterogeneous system (right path) and how the

Xilinx flow is unaffected (left path).

5.7 Results

This section starts analyzing how the new HiFlipVX implementation behaves when

the graph complexity changes. Then, it evaluates HiFlipVX running 4 representative

OpenVX graphs and, finally, compares this work with two state-of-the-art proposal.

5.7.1 HiFlipVX Scalability Analysis

To assert how system of tasks and deep pipelines impact on graph scalability, the first

stage of the SIFT feature detector is used as a synthetic graph benchmark. This multi-

Gaussian graph applies multiple times a Gaussian filter to an image stream [97]. The

75



(a) Execution time (b) Kernel frequency

(c) Resource usage (d) Kernel Power

Figure 5.8: Impact of node scalability on a) execution time; b) frequency; c) resource uti-
lization; and d) power consumption for the Multi-Gaussian synthetic benchmark
using the Stratix 10 GX.

benchmarks allow us to tune the depth of the resulting kernel pipeline by adding

Gaussian filtering steps, one after the other.

Figure 5.8a plots the impact of the number of filter nodes for the multi-Gaussian

graph (kernel pipeline depth) on execution time and FPGA frequency. From 2 to

16 filters, memory latency hides computation which flattens the execution time.

After that point, 16, execution time increases almost linearly with the number of

filters, showing good scalability. Please note the slight frequency reduction for large

number of filters also contributes to the larger execution time.

Resource usage is shown in Figure 5.8c, which increases linearly, with a growing

rate of 0.33, 0.17, and 0.13 for ALUTs, FFs, and RAMs resources, respectively. As

a consequence, FPGA power raises with a growing rate of 74mW per additional

Gaussian filter stage as is shown in Figure 5.8d. In summary, HiFlipVX with the

system of task scales well without adding any extra overhead increasing the graph

complexity.

5.7.2 OpenVX Application Resource Utilization

This section analyzes resource usage (per-kernel) of four representative applications:

Canny edge, Autocontrast, Census transform, and Skin tone detection. Figure 5.9

shows the graph diagram for all of them. For the sake of clarity, the custom internals

76



vxSobel()vxGauss
Filter()

vxMagnitude
()

vxPhase()

VxNonMax
Suppression

()

(a) Canny Edge

vxSobel() vxMagnitud
()

vxHistogram
()

vxCensus()

(b) Census Transform
vxColor

Convert()
NV12

vxChannel
Extract()

Y
VxEqualize

Hist ()

vxChannel
Extract()

U

vxChannel
Extract()

V

vxChannel
Combine()

vxColor
Convert()

RGB

(c) Autocontrast

vxChannel
Extract()

R

vxChannel
Extract()

G

vxChannel
Extract()

B

vxThreshold()

vxAnd()

vxThreshold()

vxThreshold()

vxThreshold()

vxThreshold()

vxSubtract()

vxSubtract()

vxAnd()

vxAnd()

vxAnd()

(d) Skin Tone Detection

Figure 5.9: OpenVX application graph diagrams. a) Canny edge detector, b) Census trans-
form, c)Autocontrast image, d) Skin tone detection.

kernels, enabling DRAM and splitting data streams (vxSplit) described in Sec. 5.6,

are not depicted in the graphs.

Canny Edge

The Canny edge detector, Figure 5.9a, is a multi-node graph algorithm that extracts

the edge information from images. In HiFlipVX, its implementation consists of 5

nodes. Table 5.2 shows the estimated resource usage from the Intel HLS compiler

report for all Canny edge nodes1.

The image objects are the most resource demanding function since it track multiple

external memory request at a time, trying to group access before being send to the

memory controller.

1Since all FPGAs used in this work are from the same family, Stratix 10, the resource estimation on
HiFlipVX graph are equal, and from here on, all results corresponds to the Stratix 10 GX FPGA,
except when noted.

77



Table 5.2: Estimated resource usage for each OpenVX function in Canny edge graph
using HiFlipVX with a 4K image and vectorization factor of 8 on a Stratix
10 GX.

Function ALUTs FFs RAMs DSP

Load Image Object 10553 39508 17 0

vxGauss 3627 5620 18 0

vxSobel 5907 8854 19 0

vxSplit 221 117 2 0

vxMagnitud 5907 8966 4 8

vxPhase2 165 133 1 0

vxNonMaxSuppression 4605 5842 18 0

Store Image Object 4177 11949 18 0

Table 5.3: Estimated resource usage for each OpenVX function in Autocontrast graph
using HiFlipVX, with a HD image and vectorization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 934 3025 16 0

vxColorConvert(NV12) 1273 1744 0 1

vxSplit 130 103 0 0

vxChannelExtract 143 119 0 0

vxEqualizeHist 2584 3874 1029 0

vxChannelCombine 173 143 0 0

vxColorConvert(RGB) 1037 1268 0 0

Store Image Object 1102 3605 18 0

Autocontrast

Autocontrast, requiring to extend HiFlipVX to support the graph from Figure 5.9c

with two new kernels for color conversions: NV12 to RGB and RGB to NV12, and

EqualizeHist.

Autocontrast requires more RAM resources than other graphs because the intensity

channel (Y) is stored in RAM memory until histogram is calculated. This strategy

avoids stalls in streams at expense of higher resource usage that mainly depends

on the input image size; e.g., if the image size changes from HD to 4K, RAM usage

increases by 4 ×. HiFlipVX enables the user to provide FPGA tuning parameters.

For example, in this case, the code includes a hint to implement the DRAM access

coalescence with a LSU width of 64 bits to save resources and compensate the extra

78



Table 5.4: Estimated resource usage for each function in Census transform using
HiFlipVX, with a 4K Image and vectorization factor of 8.

Function ALUTs FFs RAMs DSP

Load Image Object 10569 39520 17 0

vxCensus 179 208 0 0

vxHistogram 960 16924 2 0

Store Image Object 2095 5501 18 0

Table 5.5: Estimated resource usage for each OpenVX function in Skin tone graph
using HiFlipVX, with an HD image and vectorization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 3675 17257 16 0

vxAndNode 152 119 0 0

vxSubtract 230 153 0 0

vxThresholdNode 154 120 0 0

Store Image Object 2380 6936 18 0

DRAM usage. The Table 5.3 shows the resource for each function in the Autocontrast

graph.

Census Transform

Census transform is not part of the OpenVX standard, so we added it to the Hi-

FlipVX library. The implementation concatenates several filters as Canny does.

Table 5.4 shows the estimated resource usage for Census transform functions, while

Table 5.2 shows the usage for shared functions between Census transform and,

above explained, Canny.

Skin Tone Detection

The last evaluated graph is Skin tone detection, which requires threshold objects

to produce output Boolean images. The graph is composed by 14 nodes of four

different OpenVX kernels that process 8 bit data. Table 5.5 shows the resources for

each function in the Skin tone graph.

79



5.7.3 OpenVX Application Analysis

The new HiFlipVX implementation simplifies the adoption of different FPGAs. For

example, this section evaluates execution time, frequency, power, and energy on

two FPGA devices: Stratix 10 GX (S10GX) and Stratix 10 MX (S10MX). The main

difference between the boards is the global memory. While the S10GX has one DRAM

bank with a data port width of 512 bits, the S10MX has a HBM multi-banked memory

composed by 32 DRAM banks and a data port width of 256 bits per bank. Running

on both boards only required to change the vxCreateImage port declaration.

Table 5.6 shows the execution time, frequency, power and energy of the four graphs.

For all of them, the S10GX has higher frequencies and lower execution times, with

time gains between 1.4 and 6,8%. Since all graphs are compute bound; e.g., in

Canny edge and Census transform the maximum memory bandwidth used is 2.4GBs

for S10GX and S10MX, the HBM memory does not provide any advantage in spite of

using one memory bank per variable. Most probably, the same Stratix 10 architecture

explains the close results. For power and energy, in all but Autocontrast, the S10GX

consumes more energy and with the lower execution time increases average power,

up to 18%. The higher energy consumption in Autocontrast by the S10MX may

be due to the BSP differences and the required extra RAM that increases routing

complexity.

Figure 5.10: Latency of canny edge for HiFlipVX and AFFIX using an Stratix 10 GX FPGA.

5.7.4 Comparison with Existing Approaches

AFFIX [151] is a previous proposal that implements OpenVX graphs. It relies on

OpenCL channels to offer an implementation based on OpenVX standard, as shown

in Figure 5.1b. The use of OpenCL limits the programmability of AFFIX. Comparing

the graph codes from Figure 5.11, AFFIX, lower left, relies on OpenCL macros that

are error-prone, difficult to maintain, and moves away from the clarity of OpenVX,

80



Table 5.6: HiFlipVX results on a Intel Stratix 10 GX and Intel Stratix 10 MX using a 4K
image.

OpenVX Stratix 10 GX Stratix 10 MX

Application Time Frq Power Energy Time Frq Power Energy

[ms] [MHz] [W] [mJ] [ms] [MHz] [W] [mJ]

Canny edge 6.8 310 13.2 89.8 7.3 293 11.3 76.5

Census 6.8 331 12.9 87.7 6.9 326 10.9 74.6

Autocontrast 23.1 301 13.1 302.6 23.9 294 13.8 318.1

Skin tone 33.2 343 12.8 424.9 35.7 315 10.9 361.5

//AFFIX Edges
CHANNEL(images_0, uchar , SIMD_SIZE, CH_DEPTH)    
CHANNEL(images_1, uchar , SIMD_SIZE, CH_DEPTH)

SRC_KERNEL(uchar, SIMD_SIZE, images_0) 
STENCIL_KERNEL(kernel_gblur3x3, TILE_DIM, SIMD_SIZE, 5, 
                                 uchar,  uchar, gaussian3x3, images_0, images_1)
SINK_KERNEL(uchar, SIMD_SIZE, images_1) 

#define INTEL
//#define XILINX
//HIFLIPVX edges
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPHT> images_0; 
 vx_image<vx_uint8, SIMD_SIZE, vx_stream_e, CH_DEPTH> images_1; 
template<...>
void graph(){
    vxGaussian3x3Node<vx_uint8, SIMD_SIZE  WIDTH, HEIGHT, KERN_SIZE, 
                  BORDER_TYPE, SEPARABLE_FILTER, images_0, images_1>  
    vxGaussian3x3Node0;       
} 

CPP_HiFlipVX.h

#include OpenCl_model.h // CPP function definition for OpenCL
__kernel void vxProcessGraph(__global vx_image* restrict Img_in,
                                       __global vx_image* restrict Img_outx) {
    graph(Img_in, Img_outx);
}

OpenCL_with_HiFlipVX_graph.clNon-standard
OpenCL or OpenVX
definitions

Standard OpenCL

Macro definitions:
difficult to extend
library, error prone

Easy to duplicate
kernels to multiply
compute units

Based on OpenVX
data types 

VXXXVXX

Based on OpenVX
nodes 

VXVXX

Parametrization to be optimized on FPGA.
 Channel depth (CH_DEPTH) is optional on
HiFlipVX

FPGA Vendor

//Edges
vx_image images[]={
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8),
vxCreateImage(context, WIDTH, HEIGHT, VX_DF_IMAGE_U8)};
//Nodes
vxGaussian3x3Node(graph, images[0], images[1]);
//Process
vxProcessGraph(&graph);

OpenVX  Reduced example

AFFIX.cl

Figure 5.11: Code comparison between a reduced version of OpenVX, AFFIX, and HiFlipVX.
OpenVX definitions and FPGA optimization parameters are marked in orange
and grey, respectively.

upper left. In contrast, our work allows to use a well-formed C++ code, the same

language as OpenVX API, to program graphs using OpenVX standard with templates

to optimize hardware generation. In any case, in order to integrate HiFlipVX graphs

to a host CPU, HiFlipVX can have a simple OpenCL interface called from a single

queue command to execute the graph.

In order to comparatively analyse performance against our proposal, we modified

AFFIX to communicate host and FPGA kernels through the on-board DRAM instead

of using the Intel host pipe extension to directly communicate between the host

and FPGA kernels. Although host pipes reduce latency overhead, they have two

limitations: they are only supported on a few Arria 10GX development kits [66],

and also, each pipe can only have one input and one output port. This second fact

limits graph implementations; e.g., the Census transform was reduced to one output

as shown in Figure 5.9b where the AFFIX implementation follows the dotted line

and ignores the solid one. To compare with this work, it is mandatory to replace the

pipes with equivalent DRAM input/output to run benchmarks on Stratix10 GX and

Stratix 10 MX boards.

81



Table 5.7: Comparison between HiFlipVX and AFFIX on a Intel Stratix 10 GX and Intel
Stratix 10 MX using a 4K image.

OpenVX Stratix 10 GX Stratix 10 MX

Application T ime_HiF lipV X
T ime_AF F IX

Energy_AF F IX
Energy_HiF lipV X

T ime_HiF lipV X
T ime_AF F IX

Energy_AF F IX
Energy_HiF lipV X

Canny edge 3.2 2.4 3.6 1.9

Census 3.6 1.7 3.4 1.8

Autocontrast 0.8 0.9 0.8 0.7

In Table 5.7, it can be observed that HiFlipVX reaches a speed-up of 3.4× and 3.6 ×
for Canny Edge and Census. In case of Autocontrast, it was not possible to use the

same implementation for both AFFIX and ours, so that, they are hardly comparable.

Our approach is behaving a 20% worse since synthesized frequency is lower in

comparison to AFFIX (Figure 5.12). This penalization on frequency is due to a

higher consumption of resources (RAM) in the HiFlipVX implementation.

Comparing the energy of the proposals, HiFlipVX dissipates 23% less power than

AFFIX in Census transform case, our assumption is that, in HiFlipVX, the dispatch

circuits to connect nodes with host are minimized3, also, in Canny edge and Census

transform the HiFlipVX frequency is lower than AFFIX, at least 50% in Canny. In

Autoconstrast, with the worst performance, it is only 10% less energy efficient.

Comparing the latency between both implementations in Figure 5.10, HiFlipVX

shows a 10% of improvement on average. One of the pipeline speed-up sources

comes from the hyper-optimized loop structure which is enabled by default in the

HLS compiler. The use of hyper-registers on an application has demonstrated a

performance gain of 1.4 × on Stratix10 devices compared with previous FPGAs

generation [168]. Although the compiler tries to apply this technique in both

AFFIX and HiFlipVX, in case of AFFIX, the use of OpenCL channels is inhibiting this

optimization.

Figure 5.12 shows the resource consumption: ALUT, RAM, FF, and DSP; of AFFIX

and HiFlipVX. In case of Canny edge, Census transform, and Autocontrast, AFFIX

has a higher utilization of ALUTs and FFs resources than HiFlipVX. In opposition to

HiFlipVX, in AFFIX, OpenCL generates a “kernel dispatch logic” for each OpenVX

kernel to communicate with the host, which is responsible for an increase of 1463

ALUTs and 1467 FFs per kernel node. In the case of HiFlipVX, kernel nodes are

3Compilation reports state this difference in the dispatch logic between AFFIX and HiFlipVX

82



(a) Stratix 10 GX (b) Stratix 10 MX

Figure 5.12: Resource usage per logic unit relative the total units on Stratix 10 GX and
Stratix 10 MX for AFFIX and HiFlipVX implementations.

collapsed in a single kernel with a single dispatch logic with saves from 4 to 24% of

resources per kernel in the evaluated graphs on the Stratix 10 GX. On the Stratix 10

MX, the difference is less than 5% between implementations.

In Autocontrast, the amount of RAM resources in HiFlipVX is 4 × bigger as it is

sensitive to image size. In contrast, AFFIX implementation prefers to split the

pipeline and read twice from external memory instead of using RAM resources.

Concerning to DSPs resources, in HiFlipVX the color conversion is implemented

with a 8-bit approximation [103] that does not require DSPs for float operations in

contrast to AFFIX.

At last, we compare our proposal against the traditional OpenCL model, depicted

in Figure 5.1a, used by the Chai benchmark [53] for Canny edge. Our approach,

HiFlipVX reaches a speedup of 9 × in comparison to Chai’s. There are two limiting

factors that justify this results in Chai’s: communication between nodes through

external memory is slower and shallow kernels (short pipelines) do not fully exploit

FPGA paralelism.

5.7.5 Tiling HiFlipVX for HBM memory

The previous results of S10MX with HBM2 memory shows it has low speed up than

S10GX since each memory bank has less bandwidth with the same vectorization

factor. The performance can increase because each variable can be assigned to a

different memory bank in S10MX, removing memory bank overhead.

In the case of memory-bound applications, as the 3x3 filters, maximizing the memory

bandwidth with HBM2 technology requires increasing the vectorization two times

until 128. Bit width is limited to 64 bits by data type supported in C/C++. For this

reason, the kernel calculations and stream buffers are duplicated to execute all the

83



(a) Execution time (b) Bandwidth and Fre-
quency efficiency

(c) Resource performance

Figure 5.13: HiflipVX tiling with HBM2 memory bandwidth. A) Measured time and esti-
mated ideal time. B) Memory bandwidth efficiency is the relation between
measured and maximum expected memory bandwidth; and frequency ef-
ficiency is the relation between kernel frequency and minimum required
frequency (400MHz). C)Resource performance is the relation between total
memory bandwidth vs. logic resources usage (ALM).

pixels in one cycle; this increases the memory bandwidth from 2.4GB/s to 11.8GB/s

per pseudo-channel.

The next optimization step is to increase resource usage, where the limit is the 32

pseudo-channels that can be exploited with a tiling strategy, dividing the image into

rows to increase the total memory bandwidth. For example, in Sobel filter with 1

image input and 2 outputs, the hardware is multiplied 10× in steps of 2 to show the

kernel performance in Figure 5.13. With the increase of the memory bank usage,

the routing congestion appears and produces a frequency degradation of up to 24%.

If the locations of memory bank ports are far from the PCIe port, the frequency is

degraded 15% as maximum. Despite this, more than 4 tiles reduced frequency under

400MHz and with it the effective memory bandwidth as Figure 5.13b shows. With

more than 8 tiles the performance benefits measured with the relation of memory

bandwidth over resource usage stars to decrease as Figure 5.13c shows. The speed-

up improvement from 8 to 10 tiles is only 9%, and the maximum speed-up with 10

tiles is 7×, 30% less than expected, instead of with 8 tiles, the speed-up is 6.4×, 20%

less than expected. These results show bank distribution’s performance dependency

and the necessity of metrics for choosing the best trade-off among resource usage,

floorplan distribution, and performance.

5.8 Conclusions

One of the main features of OpenVX is the portability among devices. However, on

FPGA devices, providing cross-platform support remains a challenge. This chapter

84



presents a cross-platform OpenVX library for FPGAs based on HiFlipVX library, which

originally only targeted Xilinx devices. This new version efficiently supports Intel

FPGAs exploiting the novel Intel’s system of tasks to coalesce OpenVX nodes into

accelerated graphs on Intel FPGAs.

The new implementation introduces a novel compilation flow that integrates the

expressiveness of OpenVX graphs in C/C++ with the performance of OpenCL

kernels. Also, applications can interoperate with OpenCL and SyCL code. With these

3 aspects, the library gains flexibility to support multiple FPGA architectures and

devices with conventional and High Bandwidth Memories.

In terms of resource utilization, on Intel devices, the enabled optimizations save

around 1.5% of ALUTs usage per node in graphs versus the standard OpenCL

approach with one kernel per node, since the host hardware control communication

is only generated for the complete HiFlipVX graph application. Compared with the

state-of-art, HiFlipVX performs up to 3.6 and 9.6 × faster than AFFIX and Chai,

respectively. Energy results also reflects the successful implementations with savings

up to 2.4 ×.

5.9 Contributions

• We porposed a new portable implementation of OpenVX for FPGAs using

HiFlipVX, originally designed for Xilinx devices, providing compatibility with

Intel devices. This work has been developed in collaboration with the Uni-

versity of Dresden, and it has been published in 29th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019.

The repository is available in GitHub

• We extended the interoperation of HiFlipVX applications as OpenCL/ SyCL

libraries to support discrete FPGA devices with either DRAM or HBM memories.

This work has been submitted and is under minor review in Journal of Systems

Architecture (JSA), 2021

• We analysed the performance and energy efficiency of different graph applica-

tions. Compared with previous OpenVX for Intel FPGA implementations, this

work improves the performance 2.6 × and saves 1.6 × of energy on average.

85





FPGAs on Heterogeneous

System for Energy Efficiency
6

One of the main objectives in a heterogeneous system is how to use the available

devices efficiently. In the previous chapter, the focus was the FPGA as a power-

efficient processor itself. In this chapter, the FPGA interacts with other devices as

CPU and GPU, sharing the workload with the help of EngineCL runtime and our

extended support. We present the main changes in EngineCL runtime to support the

FPGA to make the cooperative execution transparent. Finally, we explore three load

balancing algorithms using the CPU, GPU, and FPGA devices, evaluating performance

and energy efficiency as metrics.

6.1 Introduction

The flourishing of heterogeneous systems promises better performance and energy

efficiency [51]. Such heterogeneous systems are often comprised of a CPU and an

accelerator, with GPU being the most widely used accelerator. GPUs have delivered

an excellent performance for multiple application domains, combined with a rich

software ecosystem, enables programmers to adopt them without suffering a high

entry barrier. However, GPUs require substantial power dissipation that can be

unaffordable in many environments. As a result, other devices such as FPGAs have

emerged as complementary accelerators.

In comparison to other accelerators, FPGAs can provide a better performance to

power ratio. The downside, however, is that application development on FPGAs

requires knowledge of digital design, which often is the main obstacle preventing

their broad adoption by programmers. To mitigate this problem, high-level synthesis

frameworks with languages like C, C++, or OpenCL have emerged to improve

programmer’s productivity [111].

87



OpenCL enables parallel execution between accelerator devices without masking the

hardware architecture and allows portability across devices [43]. But it does not

provide any support for load balancing between them. Load balancing is critical in

order to minimize execution time in heterogeneous systems. This problem has been

extensively studied, specifically in the context of two device systems; CPU coupled

with either a GPU, a Xeon Phi, or an FPGA [128, 105, 91, 11, 98, 121].

EngineCL is a high-level framework that provides scheduling and data manage-

ment primitives on top of OpenCL, easing the programmability of heterogeneous

systems [120]. While EngineCL has been successful in systems coupling a CPU with

either a GPU or Xeon Phi device, it requires extentions to support FPGAs. As FPGAs

have already been deployed in HPC systems, and furthermore, future systems will

probably integrate more and more accelerators on a single die [24], it is important

for high level frameworks to provide efficient support for FPGAs.

This chapter shows the EngineCL extension to provide FPGA support, and load bal-

ance parallel_for constructs among both CPU, GPU, and FPGA, so that programmers

can improve performance and energy efficiency without dealing the complexities

of cooperative execution and device management. Such transparent cooperative

execution has entailed a substantial number of modifications in the design and

implementation of EngineCL. These include the communication mechanism between

the host and the FPGA, how arguments are passed to the kernel, support for differ-

ent kernels for each device, and the queuing system to overlap computation and

communication.

The experimental results show that heterogeneous systems deliver significant per-

formance over using the fastest available device for all the scenarios under consid-

eration. This conclusion even holds when the heterogeneous system is comprised

of unbalanced devices. This is crucial in presence of FPGAs for kernel performance

can dramatically vary depending on the kernel implementation [162]. The average

improvement using the best balancing algorithm is 53.5%. On the other hand, it

should be noted that the improvements in performance are not always followed by

a reduction in energy consumption, for energy efficiency strongly depends on both

the devices and the benchmark.

88



6.2 Related Work

High-level synthesis has enabled to widen the programmers audience for FPGA and

its inclusion in heterogeneous systems [88, 115].

Many different applications have benefited from heterogeneous execution in a

plethora of systems; e.g., DNA/RNA alignment on a CPU+GPU system [16], graph an-

alytics on a CPU+FPGA system [182]. Even a fully heterogeneous system, CPU+GPU

+FPGA, has been proposed for accelerating a real-time location problem and a

pipeline HPC application [3, 139].

Load balancing is a challenging aspect of heterogeneous computing that has been

widely addressed. When benchmark behavior is defined and/or remains constant,

static scheduling tuned for the application tends to provide the best results. Tsoi et al.

divide the problem between devices with an analytic model [155]. However, static

load balancers require an exploration phase, and they do not adapt to unexpected

changes on application throughput, which can lead to load unbalance inefficiencies.

Dynamic balancers face the imbalance problem, but at the cost of potential penalties

due to load balancer activity. Pandit and Govindarajan presented FluidiCL where

a CPU and GPU work on a shared iteration space, and each device starts from the

beginning and end of the iteration space, respectively [128]. In order to avoid load

balancer penalties, Qilin, HDSS, and Concord propose to calculate the computational

speed of each accelerator at runtime and then assign a single chunk of work to

each accelerator [98, 9, 80]. While Qilin relies on a trained-database that provides

execution-time projection for all the programs it has ever executed, HDSS and

Concord rely on a brief exploration phase that computes the relative computational

speed of each device. The weakness of these proposals is that they cannot be adapted

to irregular applications that are addressed by the adaptive schedulers like LogFit

and H-guided [158, 122, 129, 121].

MKMD maps multiple kernel into multiple devices in a two-phase approach, the first

phase assigns kernels to devices and the second enables work-group level partitioning

to keep all devices busy [91]. Industry solutions include Intel TBB, supporting

GPU offloading with OpenCL [85], or Qualcomm Heterogeneous Compute SDK,

supporting GPU and DSP offloading [135]. For an ample overview of load balancing

techniques, please refer to Mittal and Vetter [105].

89



The most recent advances in heterogeneous systems are focused in tightly couple

processor with CPU+FPGA, in this cases the scheduling polices should be careful in

the selection of the chunk size to align CPU and FPGA caches [140]. Other advances

are focused on modern programming frameworks as OneApi which is an alternative

for single-source programming paradigm [138, 172], it is used in co-execution using

CPU+GPU SoC [28] and some proposals added load balancing algorithms extending

the oneAPI runtime [119, 118]

In comparison to previous works, to the best of our knowledge, ours was the first to

face the load balancing problem for the parallel_for paradigm on a heterogeneous

platform composed by three accelerators: CPU+GPU+FPGA.

6.3 EngineCL Runtime

EngineCL is a runtime that relies on OpenCL C++ back-end to communicate and

program accelerators, simplifying devices programming and squeeze their perfor-

mance out [120]. EngineCL provides three load balancing algorithms. It divides

a single task among devices in a heterogeneous system; Also, EngineCL hides the

underlying hardware details by considering different devices as a single virtual

device.

Features as portability, usability, and performance are the main design pillars of

EngineCL. While code portability on different devices is enable with the use of

OpenCL as back-end, the programmer is responsible for managing device architecture

and host communication using concepts such as platforms, devices, contexts, buffers,

queues, kernels and arguments, data transfers and error control sections. As the

number of devices and operations increases, the code grows quickly making it

difficult to maintain, decreasing programmers’ productivity. EngineCL solves these

issues by providing a runtime with a higher-level API that manages all the OpenCL

resources of the underlying system independently.

The runtime follows Architectural Principles with well-known Design Patterns to

strengthen its flexibility. EngineCL is layered in three tiers (see Fig. 6.1): Tier-1 and

Tier-2 are accessible by the programmer. The lower the Tier, the more functionalities

and advanced features can be manipulated. Most programs can be implemented

in EngineCL with just the Tier-1. The Tier-2 should be accessed if the programmer

90



Figure 6.1: EngineCL architecture: tiers, modules and applied patterns. The highlighted
modules are extended to support FPGAs.

wants to select a specific device and provide a specialized kernel or use more specific

options. The Tier-3 consists of the hidden inner parts that allow a flexible system

regarding memory management, pluggable schedulers, work distribution, high

concurrency, and OpenCL encapsulation.

EngineCL provides high external usability and internal adaptability to support

new runtime features, such as new schedulers, device types or communication-

computation overlapping strategies. This is accomplished through a layered archi-

tecture and a set of core modules well profiled and encapsulated.

A set of well-known load balancing algorithms [25], described below, are provided

[130]. The programmer should decide which one to use in each case, depending on

the characteristics of the application and the architecture.

• Static This algorithm splits the data-set in as many packages as devices are

in the system, proportionally to their computing capabilities. This division

relies on knowing the percentage of workload assigned to each device in

advance, and therefore the execution time between the devices is equalized. It

minimizes the number of synchronization points, therefore, it performs well

when facing regular loads. However, it is not adaptable, so its performance

might not be as good with irregular loads.

• Dynamic It divides the data-set in packages of equal size, much more than the

number of devices. A master thread in the host assigns packages to the different

devices, including the CPU. This algorithm adapts to the irregular behavior

of some applications. However, each package represents a synchronization

point between the device and the host, where data are exchanged and a new

package is launched.

91



Figure 6.2: Three different alternatives of schedulers to alleviated the differences among
applications and devices [25].

• HGuided The Heterogeneous Guided algorithm is an attempt to reduce the

synchronization points of the Dynamic, while retaining its adaptiveness. It

makes larger packages at the beginning and reduces the size of the subsequent

ones as the execution progresses, until the minimum package size, given as

a parameter, is reached. Furthermore, the size of the packet is weighted by

the computing power of each device, defined as the amount of work that this

device can complete in a time span. This adjusts the number of packets to

achieve a more accurate load balancing than with all other algorithms.

The size of the package for device i is calculated as follows:

packet_size_H = min
(
Min_package_size, � GrPi

k
∑n

j=1 Pj
�
)

(6.1)

Where Gr is the number of pending work-groups in each launch, Pi is the

computing power of the device i. Finally, k is a constant, between 2 and 3,

and the smaller k, the faster decreases the packet size. This avoids too big

package sizes when there are few devices.

These three alternative schedulers, tries to achieve as goal a minimum load imbal-

ance among devices with the minimum overhead from the runtime. The Static,

Dynamic and HGuided schudulers evidence the difficulties to achieve these goals at

the same time as Figure 6.2 shows.

6.4 Coupling FPGA to EngineCL

Compared to other accelerators, FPGAs require a special work-flow for its integration

into EngineCL. The main difference among FPGAs and the rest of accelerators (GPU,

92



Xeon Phi, ...) is the compilation process which is ahead-of-time (AOT) with an HLS

tool, such as Xilinx SDSoC or Intel/Altera OpenCL SDK [146, 4]. AOT is used to

reduce runtime overhead since the process takes between hours to days.

By using OpenCL, most of the boilerplate code (platform, device, context, buffers)

can be shared among accelerators, which simplifies the FPGA integration into

EngineCL.

EngineCL provides support for heterogeneous environments composed by CPU, GPU,

and Xeon-Phi devices. The inclusion of FPGAs in EngineCL is not straightforward

and requires modifications in several key points of the runtime: host device syn-

chronization, kernel arguments management, and command queues management.

Besides, to launch a kernel, EngineCL has to load the bitstream from a file to the

FPGA.

Originally, EngineCL relied on asynchronous callbacks to notify kernel completion

to the scheduler. Unfortunately, Intel’s FPGA OpenCL runtime v17.1 requires a

subsequent OpenCL function invocation to evaluate event status and call pending

registered callbacks, which could not always be guaranteed in EngineCL. To operate

with FPGA, callbacks are replaced with synchronous OpenCL commands managed

by multiple host threads and command queues for each device.

To use the schedulers, we extend the EngineCL arguments in workers of Tier-2 and

change data management of Tier-3, Fig. 6.1. In workers of Tier-2, we add iterations

argument, which are the amount of work, because task-based kernels have statically

defined just one work-item per execution. Originally, EngineCL copied every input

data into memory of all devices, limiting the maximum problem size to the size of

the smallest memory device, in our case the FPGA. To support any problem size, we

have performed two modifications: 1) replacement of the offset argument with two

item range (begin, end) arguments at each kernel invocation, 2) support for sending

input data as required. Since each device has its own memory, the runtime keeps

track of each size and sends chunks small enough to fit into the device memory.

Finally, to improve performance, we add a second command queue and two output

device buffers (A and B in Fig. 6.3) to overlap memory read and computation

commands as depicted in Fig. 6.3.

Each kernel invocation alternates output buffers, A and B, to avoid write-after-write

hazard. Since the FPGA driver only allows one transaction over PCI-e at a time, there

93



Figure 6.3: Overview of command queue overlapping with the two command queues and
the two buffer sets (A and B).

is no opportunity to overlap read and write commands. To ensure overlapping with

the single transaction requirement, we enqueue the write and compute of chunk

i on queue 0 before enqueue the read command of chunk i − 1 on queue 1, and

then wait for both to complete with a finish barrier and a blocking read command,

respectively. This change improves performance up to 30% (PCIe write speed is

lower than the read one) for communication-bound problems and has little effect in

performance-bound ones. Figure 6.4 shows the compute and communication-bound

problems as references in a FPGA varying the number of chunks.

(a) Watermarking

(b) Matrix Multiplication

Figure 6.4: overlapping time performance varying the number of work load parti-
tions(chunks) of the problem in the case of communication-bound and
computation-bound problems in an FPGA.

Please note that all these changes do not entail any modification in the apps built on

top of EngineCL because user-facing APIs remain the same.

94



6.5 Methodology

The experiments have been conducted in a heterogeneous system composed by an

Intel core i7-6700k CPU (64 GB of RAM), a NVIDIA GeForce GTX TITAN X GPU

(12GB of RAM), and an Altera DE5NET Stratix V GX FPGA (4GB of RAM); each

device runs OpenCL version 2.0 (LINUX), 1.2 (CUDA 9.1.83), and 1.0 (Intel SDK

v17.1) for the CPU, GPU, and FGPA, respectively.

Six benchmarks from different domains have been considered: Matrix Multiplica-

tion, Mersenne Twister, and Sobel Filter from the Intel Altera OpenCL repository,

Watermarking and AES decrypt from the Xilinx SDAccel repository, and Nearest

Neighbor from Rodinia optimized for FPGA [183]. Each benchmark has a different

kernel implementation, tuned for each device. For example, FPGA devices work

better with task-based kernels and very long shift register loops, while CPU and

GPU perform better with NDRange kernels and smaller shift registers. But there are

two exceptions, Matrix Multiplication and Nearest Neighbor that obtain the best

results with an NDRange-based kernel on the FPGA. Table 6.1 shows the benchmark

size (measured in work-items), main parameters, and FPGA resource utilization. In

general, lower FPGA resource utilization translates into higher frequency.

Since the OpenCL FPGA runtime has a higher latency of initialization than that of

the other two devices, a work-item kernel command is launched before starting the

heterogeneous execution. Otherwise, the scheduler penalizes the FPGA for splitting

the work.

Table 6.1: Work-items and FPGA characteristics: Clock frequency(CF), initial-
ization interval (II), and FPGA kernel resources: adaptive logic
module (AL), logic registers (LR), memory blocks (MB), and DSP.

Benchmark Work items CF II AL LR MB DSP

(MHz) % % % %

Matrix Multiplication 16×103 238.9 n/a 79 28 47 100

Mersenne Twister 22×107 274.4 ∼ 1 40 5 19 88

Watermarking 11×108 226.8 ∼ 1 16 10 15 3

Sobel filter 12× 109 295.3 ∼ 1 13 8 18 0

AES 11×108 299.9 2 20 9 18 0

Nearest-Neighbor 40×108 210.8 n/a 54 19 31 94

95



In order to evaluate energy consumption, we rely on reading hardware counters

with Intel RALP and NVIDIA system manager for the CPU and the GPU, respectively.

Since the FPGA does not provide power counters, it is measured on board with the

Newtons4th PPA520 power analyzer, sampling at 106 samples per second, and a

PCIe riser card [55]. FPGA power is the sum of the power drained from the PCIe

edge connector and the auxiliary 6-pin Molex connector.

6.6 Results

This section analyzes the inclusion of the FPGA inside EngineCL by exploring its 3

load balancing algorithms on a CPU+GPU+FPGA heterogeneous system. First of all,

it explains how the parameters of each algorithm have been optimized. Then, the

results obtained in terms of both performance and energy are analyzed.

% FPGA0 10 20 30 40% CPU 010203040N
or

m
al

iz
ed

 T
im

e 

0.4

0.6

0.8

1.0

Matrix Multiplication 

Figure 6.5: Normalized execution time to the worst for the Static scheduler. Work propor-
tions go up to 50% for two devices, and the third device performs the remainder
work.

6.6.1 Scheduler Tuning

Static

With static scheduling, the user has to choose the amount of work each device

performs before starting execution. This distribution should be tuned for achieving

96



Figure 6.6: Dynamic scheduler throughput (GB/s) of CPU, GPU and FPGA with chunk size
variation.

good load balancing and unfortunately, it is required an exhaustive exploration to

find out the fine tuned distribution. To make matters worse, an static distribution is

specific for each problem, input data and, computing device.

For instance, in this work, 100 executions per benchmark have been performed

to achieve these values. Figure 6.5 shows the normalized execution time to the

CPU with a workload percentage sweep in steps of 10% for two devices, while

the third device takes the remainder work (100 − (percentage1 + percentage2)).

Overall, setting the optimal percentages improves performance between 15 and

58%.

Dynamic

With this scheduler, each device fetches and executes chunks of work (equally-sized

for all devices) until there is no work left. Figure 6.6 shows how chunk size has

a significant impact on throughput, measured in gigabytes per second. In general,

all benchmarks benefit from larger chunks except Matrix Multiplication. In Matrix

Multiplication, the number of iterations to split is smaller than in other benchmarks,

and the computational intensity is higher, so that the lower runtime overhead of

smaller chunks does not pay off for the imbalance increment.

97



Table 6.2: Median performance improvement (PI) relative to the fastest single device
execution, imbalance (IM), and average number of chunks (#C) for Static,
Dynamic, and HGuided policies per benchmark.

Benchmark Static Dynamic HGuided

PI % IM % #C PI % IM % #C PI % IM % #C

Matrix Multiplication 37.8 4.2 3 31.6 5.5 128 38.2 39.1 18.0

Mersenne Twister 43.1 2.0 20 52.5 6.4 60 45.1 8.8 25.0

Watermarking 31.3 1.4 28 70.3 0.8 280 66.6 0.0 36.4

Sobel Filter 14.9 1.1 23 13.9 0.0 11930 19.1 0.6 118.0

Nearest Neighbor 46.8 2.7 13 60.3 0.3 960 40.3 9.2 16.0

AES decrypt 58.6 4.1 23 92.7 0.0 280 96.1 0.0 94.6

Mean 38.7 2.6 53.5 2.2 50.9 9.6

HGuided

Starts with large chunks that are automatically reduced. Two parameters tune the

chunk size: computing power and minimum packet size. The computing power

ratios were tuned in the static scheduler, but the sensitivity of HGuided to this

parameter is small because when the minimum packet size is large enough, overall

throughput remains high. This condition is relatively easy to fulfill because most

benchmarks reach good performance with small chunks, as Figure 6.6 shows.

6.6.2 Scheduler comparison

Performance

From here on, all results use the best found parameters for the three schedulers.

First, Table 6.2 compares them in terms of three metrics: (a) the percentage of

improvement of the heterogeneous system with respect to the best single device

(PI), (b) the imbalance percentage (IM), TLD−TF D
TLD

· 100, where TF D and TLD are the

execution times of the first and last devices to finish, respectively, and, (c) the total

number of chunks (#C).

To begin with, heterogeneous execution achieves a substantial performance improve-

ment in every benchmark over the best single-device execution. Comparing the

three schedulers, Static obtains the worst results, even with the 100 exploratory

98



Figure 6.7: Overall median performance of cooperative execution CPU+GPU+FPGA with
three load balancers for each benchmark. Times are normalized to CPU in every
benchmark.

executions per benchmarks, suggesting that dynamic scheduling policies should

be preferred in systems with GPU and FPGA accelerators. In fact, Dynamic and

HGuided reach an almost perfect balance (imbalance lower than 1%) in 4 and

3 benchmarks, respectively. Between Dynamic and HGuided, the former obtains

an average better performance improvement, 53.5 vs. 50.9%, thanks to its gain

in Nearest Neighbor, 60.3 vs. 40.3%. In this benchmark, the chunk size, larger

than 107, selected by HGuided for the first chunks penalizes the overall throughput.

Also, Dynamic executes many more chunks than HGuided without a big penalty in

performance thanks in part to the compute and communication overlapping of the

dual command queue implementation.

Finally, Figure 6.7 shows that EngineCL reduces execution time for all benchmarks,

with improvements ranging between 13.9 and 96.1% for Dynamic-Sobel Filter and

HGuided-AES, respectively. The reason behind those numbers is that EngineCL is

able to assign the right amount of work to each device regardless its computing

power for each benchmark.

Energy Consumption

Table 6.3 shows the average power for single devices running all benchmarks and

analyzing four power metrics: Idle (I), which corresponds to the device sitting idle;

Programmed (P), which corresponds to the power of the FPGA after it has been

programmed, so P does not apply for CPU and GPU devices; and Device and Host

Running (DR and HR), which corresponds to the power when a kernel is running

99



Table 6.3: Average power (W) for single device configurations. I, P, DR, HR represents Idle,
Programmed, Device Running, and Host Running power, respectively.

Average Power (W)

CPU GPU FPGA

I DR+HR I DR HR I P DR HR

Matrix Multiplication

13.6

77.7

15.8

132.1 29.2

14.3

25.1 28.8 27.7

Mersenne Twister 33.0 88.5 25.8 23.3 23.6 17.2

Watermarking 45.2 88.4 29.6 20.8 21.2 19.7

Sobel Filter 76.2 87.4 31.1 20.8 21.4 14.4

Nearest Neighbor 32.1 82.3 32.1 23.3 23.6 22.5

AES Decrypt 80.2 112.1 27.3 21.2 21.7 30.2

split between device and host, when possible (GPU and FPGA). Therefore, HR

represents the power dissipated by EngineCL, the OpenCL runtime and driver.

Comparing the values, idle power keeps on the same range for the 3 devices, and

both the CPU and GPU reach much higher DR values, 80.2 and 132.1W for the

CPU and GPU, respectively. On the contrary, the FPGA has a lower DR of 28.8

W, but a high programming power (P), from 20.8 to 25.1W, suggesting that once

programmed, running at least a small proportion of compute in FPGA could be

beneficial compared to “waste” the device in programmed state. The only caveat is

that HR impacts on FPGA energy efficiency because its value is on par with DR.

Figure 6.8 shows the normalized total energy compared to CPU-only energy. While

in terms of performance, all three schedulers improve execution time compared

to the best single-device, for energy they do not. Heterogeneous execution only

improves energy consumption in Sobel Filter for HGuided.

Within the groups of benchmarks that degrade/improve energy, behavior is similar,

so, for the sake of brevity, we only comment on a representative benchmark per

group: Mersenne Twister and Sobel Filter. The former experiences an energy

degradation around 2.5× for the heterogeneous configurations with regards to

CPU because of the high GPU consumption; e.g., for the dynamic scheduler, GPU

only processes 6% of the work-items and consumes 70W DR1. In terms of energy

efficiency (work-items/joule), the GPU is around 23× worse than the CPU and the

FPGA. The later, Sobel Filter, presents an opposite behavior compared with Mersenne

1This value corresponds to the cooperative execution and is lower than GPU-only DR, see Table 6.3,
because there is less continuous work on the device.

100



Figure 6.8: Overall energy of cooperative execution CPU(C)+GPU(G)+FPGA(F) with
Static(St), Dynamic (Dy) and HGuided (HG) load balancers for each benchmark.
Energy are normalized to the CPU device in every benchmark.

Figure 6.9: Overall normalized energy-delay product of cooperative execution
CPU+GPU+FPGA with three load balancers for each benchmark. The
lower the better, and Matrix Multiplication results have been zoomed for clarity.

Twister. In HGuided, normalized energy improves by 60 and 11% compared with

CPU and GPU only, respectively. In this case, the GPU and FPGA DR consume 80 and

21.4W and computes 65 and 17% of the work-items, respectively. For both devices,

their energy-efficiency is 3× better than CPU’s.

Another energy performance metric used in heterogeneous systems is the energy-

delay product (EDP), as shown in Figure 6.9. The cooperative execution in Matrix

Multiplication, Watermark, Sobel Filter, Nearest Neighbor and AES Decrypt improves

EDP over the best single device, with a maximum improvement of 37% for HGuided

in Watermarking compared to CPU. In those cases, the performance gains of multiple

devices pays off for the extra energy consumption.

101



6.7 Conclusions

FPGAs can provide excellent performance with limited energy consumption, present-

ing an improvement opportunity for supercomputing systems. Nevertheless, FPGA

programming with hardware description languages requires more expertise than

programming other accelerators such as GPUs. Therefore, FPGA adoption requires

high-level programming tools to facilitate this task.

EngineCL is an OpenCL-based framework allowing the automatic heterogeneous

execution of parallel loops in multiple devices thanks to its load balancing algo-

rithms. This article proposes an EngineCL extension to support FPGAs, so that

users can cooperatively execute parallel loops in CPU+GPU+FGPA systems. To

boost performance, the extension overlaps data transfer and compute operations by

implementing multiple command queues and allows to execute per-device tuned

kernels. And, to ease the adoption of the FPGAs, the extension does not change any

user-facing APIs of EngineCL.

The results show that in CPU+GPU+FPGA systems, dynamic scheduling policies

obtain better results than static ones. In fact, EngineCL provides performance

improvements for all tested benchmarks, and gains range between 14.9 and 96.1%

on a system with computationally unbalanced devices.

Load balancing policies do not manage to perform so well in the case of total energy

consumed and energy efficiency. For energy consumption, the cooperative approach

never beats the best single device except for HGuided in Sobel Filter. On the other

hand, the cooperative approach is more energy efficient in 5 out of 6 benchmarks.

These results indicate that it would be interesting study energy-aware load balancing

policies.

Although current advances in FPGA devices could provide improved performance

and energy efficiency in a heterogeneous system, driver support and FPGA-CPU

compatibility limits the exploration of this proposal as Appendix 8 shows.

102



6.8 Contributions

• We extended EngineCL to add FPGA support without changing user-facing

APIs, so that FPGAs can effectively cooperate with other hardware accelerators

in the co-execution of a single massive data-parallel kernel.

• We improved the implementation in several aspects via addition of: (a) host-

device synchronization, (b) command queues management, (c) mechanisms

to better overlap computation with communication, and (d) runtime workers

to allow task kernels. This work has been developed in collaboration with

the University of Cantabria and it has been published in Proceedings of the

18th International Conference on Computational and Mathematical Method in

Science and Engineering, CMMSE2018 and International Conference on High

Performance Computing Simu-lation (HPCS), 2018.

• We carried out an exhaustive evaluation of both co-execution and the load-

balancing algorithms on a 3-device heterogeneous platform. In these exper-

iments three different metrics have been evaluated: performance, energy

consumption, and energy-delay product. This work has been published in The

Journal of Supercomputing, 2019.

103





Conclusions and Future Work 7
This final chapter resumes the main findings of this dissertation and sums up the

open future research.

7.1 Conclusions

The FPGAs as accelerator devices are becoming widely used in HPC due to their flex-

ibility, low latency, high performance, and energy efficiency. But their fully adoption

in the HPC domain still presents some challenges mainly in the programmability

area.

Although in this thesis we presented our contributions from FPGA hardware to

FPGA inclusion in the heterogeneous system, the chronological order of the research

was the opposite. We started including the FPGA in a heterogeneous system as co-

executor with CPU and GPU devices. This analysis showed that the FPGA inclusion

is not straightforward since the FPGA programming flow is more complex than

other well-known devices such as CPU and GPU. Even with high-level synthesis,

which promises an increase in productivity, programming, and optimizing, kernels is

complex, time expensive, and has limited driver support. After, this thesis focused on

reducing the gap among programmers and FPGA devices with multiple contributions

such as predictive models and high-level frameworks that ease the adoption of

FPGAs by improving their productivity, necessary to face the post-Moore era.

For improving the FPGA programming flow, we analyzed multiple FPGA applications

from a set of representative benchmark suites and existing analytical models. From

the analysis, we observed that around 52 % of them are memory bound. Also, many

tools overlook the performance effects of external memory and their interaction

with HLS generated components as the Global Memory Interconnect. We performed

a qualitative analysis of the FPGA architecture used for the Intel OpenCL SDK and

extracted an analytical model from each type of memory access to accurately predict

kernel performance. The advantage of the new model lies in the fact that it only

105



requires information of an early FPGA compilation stage before the time expensive

place and route process, potentially increasing the kernel optimization process.

Also, our analytical model extracts main hints to guide programmers during the

optimization process, focusing their efforts to memory optimizations where the

FPGA has enough resources.

Designing applications for FPGAs requires their seamless integration with standards

that programmers already use for cross-platform acceleration. Higher abstraction

levels provided by these standards help to improve the programmability, but, for

FPGA, there is a gap between them and the bitstream generation process. High-level

Synthesis provides a way to raise the abstraction and hide HDL nuances. Unfortu-

nately, FPGA basic blocks and compiler translations from high-level languages to

RTL are different among the main vendors such as Xilinx and Intel.

With the objective to standardize and achieve portability among FPGA devices, our

proposal is based on the OpenVX standard for computer vision applications. Libraries

developed for Xilinx devices are not efficient in Intel devices. For this reason, we

extended the support to Intel FPGA devices based on the system of tasks to abstract

the synchronization and hardware customization. Also, it is coupled to OpenCL,

enabling a portable and flexible library. The proposal improves logic usage since it

integrates the complete graphs with a single kernel call, and performs up to 3.6×
better, and saves energy up to 2.4× compared with the state-of-art.

The final contribution of this dissertation raises the abstraction level further, in-

cluding the FPGA support as a co-executor in a heterogeneous system with a CPU

and GPU devices. In this part, the FPGA is coupled to a high-level runtime for load

balancing, EngineCL. Also, the inclusion of double buffering strategies improves one

of the main bottlenecks of accelerators, as is the host-device communication. As a

result, we have presented one of the first heterogeneous systems with three devices:

CPU, GPU, and FPGA.

Our proposals suppose a significant benefit in FPGA programmability promising a

better adoption of the FPGA devices, also demonstrating by the analysis of energy and

speed-up gains in a heterogeneous system. This makes FPGAs a promising options

that still need research efforts to be a broadly included in the HPC computation.

106



7.2 Future Work

The research effort of this dissertation can be continued by the hand of technological

advances and demands of nearby computing:

• The next step for the proposed analytical model for memory bound applications

is the integration with the intermediate reports and the possibility to add the

prediction to load balancing techniques to reduce unbalancing and runtime

overhead.

• HiFlipVX library was integrated as a portable library for FPGAs and since

computer vision graphs can be enabled to share the work load, two approaches

can be followed: use the library for sharing data work load or task node graph

compute distribution for balancing with another devices. This is especially

interesting for a GPU finding the trade-off among energy and performance

efficiency.

• With the inclusion of FPGA support in EngineCL and with the upgrades of

FPGA with memory improvements such as HBM2 memory, logic resources

and improvements in driver support, opens the door for future load balancing

policies research not only looking for performance balance, but also to power,

looking energy improvements in the heterogeneous system with co-execution.

The FPGAs are evolving, providing even more capabilities to enhance systems. How-

ever, features such as HBM memory or high-speed interfaces require more modular

designs, which abstract the hardware complexities and ease the programming with

designs oriented to be increasingly cooperative with other devices to fully exploit

their capabilities.

From host-interconnection to on-chip FPGA-interconnection is identified as a poten-

tial feature to be improved in the FPGAs. For example, PCIe interconnection with

the host limits the maximum performance of FPGA with HPC workloads. Although

double buffering strategies help improve this, faster interconnections should be

researched as well as novel CPU-FPGA coherent communications.

Besides, the advances in silicon technologies such as HBM2 memories force the

rethought of the internal FPGA-interconnection. The current support demands

programmers’ knowledge of the physical HBM banks distribution in the FPGA die

to optimize interconnections since they have strong routing and resource usage

107



dependencies, limiting the maximum bandwidth, and, then, kernel performance.

Implementing strategies as fixed interconnection with memory controllers unifying

memory space can improve memory performance and simplify the programming

decisions about data buffer assignation.

While FPGA programmability progress has undoubtedly been done in the recent

years, there is still a long way to go. The software improvements should be go

hand-in-hand with hardware. FPGA programs require to advance in a way that

the hardware adapts to the software, and not as it currently occurs, where the pro-

grammers have to adapt software to the FPGA architecture. The use of frameworks

eliminates the barrier, but still requires specialized programming knowledge. This

thesis contributes with an small step towards the adoption of FPGAs with multiple

programability improvements.

108



Bibliography

[1]Ashwin M. Aji, Antonio J. Peña, Pavan Balaji, and Wu chun Feng. “MultiCL: Enabling
automatic scheduling for task-parallel workloads in OpenCL”. In: Parallel Computing
58 (2016), pp. 37–55 (cit. on p. 6).

[2]G. Akgün, L. Kalms, and D. Göhringer. “Resource Efficient Dynamic Voltage and
Frequency Scaling on Xilinx FPGAs”. In: International Symposium on Applied Reconfig-
urable Computing (ARC). Springer, Apr. 2020, pp. 178–192 (cit. on pp. 65, 68).

[3]Mohammad Alawieh, Maximilian Kasparek, Norbert Franke, and Jochen Hupfer. “A
high performance FPGA-GPU-CPU platform for a real-time locating system”. In: 2015
23rd European Signal Processing Conference (EUSIPCO). 2015, pp. 1576–1580 (cit. on
p. 89).

[4]Altera SDK for OpenCL Programming Guide. 2017 (cit. on p. 93).

[5]Sam Amiri, Mohammad Hosseinabady, Andres Rodriguez, et al. “Workload Partitioning
Strategy for Improved Parallelism on FPGA-CPU Heterogeneous Chips”. In: 2018 28th
International Conference on Field Programmable Logic and Applications (FPL). 2018,
pp. 376–3764 (cit. on p. 6).

[6]Andrey Andreev, Evgueni Doukhnitch, Vitaly Egunov, et al. “Evaluation of Hardware
Implementations of CORDIC-Like Algorithms in FPGA Using OpenCL Kernels”. In:
Knowledge-Based Software Engineering. Ed. by Alla Kravets, Maxim Shcherbakov,
Marina Kultsova, and Tadashi Iijima. Cham: Springer International Publishing, 2014,
pp. 228–242 (cit. on p. 17).

[7]Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. “Performance comparison
of FPGA, GPU and CPU in image processing”. In: 2009 International Conference on
Field Programmable Logic and Applications. 2009, pp. 126–131 (cit. on p. 12).

[8]Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gordon R. Chiu.
“An OpenCL™ Deep Learning Accelerator on Arria 10”. In: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. FPGA ’17.
Monterey, California, USA: Association for Computing Machinery, 2017, 55–64 (cit. on
p. 17).

[9]Belviranli, M. E. et al. “A Dynamic Self-scheduling Scheme for Heterogeneous Multi-
processor Architectures”. In: ACM Transactions on Architecture and Code Optimization
9.4 (Jan. 2013), 57:1–57:20 (cit. on p. 89).

[10]Meena Belwal, Madhura Purnaprajna, and Sudarshan TSB. “Enabling seamless ex-
ecution on hybrid CPU/FPGA systems: Challenges amp; directions”. In: 2015 25th
International Conference on Field Programmable Logic and Applications (FPL). 2015,
pp. 1–8 (cit. on p. 15).

109



[11]Alécio P. D. Binotto, Carlos E. Pereira, and Dieter W. Fellner. “Towards dynamic
reconfigurable load-balancing for hybrid desktop platforms”. In: (2010), pp. 1–4
(cit. on p. 88).

[12]Andrew Boutros and Vaughn Betz. “FPGA Architecture: Principles and Progression”.
In: IEEE Circuits and Systems Magazine 21.2 (2021), pp. 4–29 (cit. on pp. 16, 17, 19).

[13]I. Buck. “GPU computing with NVIDIA CUDA”. In: ACM SIGGRAPH 2007 Papers -
International Conference on Computer Graphics and Interactive Techniques (2007) (cit.
on p. 14).

[14]Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, et al. “A Cloud-Scale Accel-
eration Architecture”. In: The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO-49. Taipei, Taiwan: IEEE Press, 2016 (cit. on p. 13).

[15]Doris Chen and Deshanand Singh. “Invited paper: Using OpenCL to evaluate the
efficiency of CPUS, GPUS and FPGAs for information filtering”. In: Proceedings - 22nd
International Conference on Field Programmable Logic and Applications, FPL 2012
(2012), pp. 5–12 (cit. on p. 17).

[16]Chen X. et al. “CMSA: a heterogeneous CPU/GPU computing system for multiple
similar RNA/DNA sequence alignment”. In: BMC Bioinformatics. 2017 (cit. on p. 89).

[17]Artem Chikin, Jose Nelson Amaral, Karim Ali, and Ettore Tiotto. “Toward an analytical
performance model to select between GPU and CPU Execution”. In: Proceedings -
2019 IEEE 33rd International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2019 (2019), pp. 353–362 (cit. on p. 15).

[18]Derek Chiou. “The microsoft catapult project”. In: 2017 IEEE International Symposium
on Workload Characterization (IISWC). 2017, pp. 124–124 (cit. on p. 6).

[19]Hyojin Choi, Jongbok Lee, and Wonyong Sung. “Memory access pattern-aware DRAM
performance model for multi-core systems”. In: (IEEE ISPASS) IEEE International
Symposium on Performance Analysis of Systems and Software. 2011, pp. 66–75 (cit. on
pp. 36, 41).

[20]Young-kyu Choi, Jason Cong, Zhenman Fang, et al. “A quantitative analysis on mi-
croarchitectures of modern CPU-FPGA platforms”. In: 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 2016, pp. 1–6 (cit. on p. 19).

[21]Young Kyu Choi, Peng Zhang, Peng Li, and Jason Cong. “HLScope+,: Fast and accurate
performance estimation for FPGA HLS”. In: 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 2017 (cit. on pp. 19, 34–36, 40, 41, 45, 46, 51,
59).

[22]Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. A DSL Compiler for
Accelerating Image Processing Pipelines on FPGAS. 2016 (cit. on p. 64).

[23]E. Chung, J. Fowers, K. Ovtcharov, et al. “Serving DNNs in Real Time at Datacenter
Scale with Project Brainwave”. In: IEEE Micro 38.2 (2018), pp. 8–20 (cit. on p. 18).

110



[24]Chung, E. S. et al. “Single-Chip Heterogeneous Computing: Does the Future Include
Custom Logic, FPGAs, and GPGPUs?” In: Proc. of the 43rd Ann. Int. Symp. on Mi-
croarchitecture. MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 225–236 (cit. on p. 88).

[25]Florina M. Ciorba, Christian Iwainsky, and Patrick Buder. OpenMP Loop Scheduling
Revisited: Making a Case for More Schedules. 2018. arXiv: 1809.03188 [cs.DC] (cit. on
pp. 91, 92).

[26]J. Cong, B. Liu, S. Neuendorffer, et al. “High-Level Synthesis for FPGAs: From Proto-
typing to Deployment”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 30.4 (2011), pp. 473–491 (cit. on p. 19).

[27]Jason Cong, Zhenman Fang, Michael Lo, et al. “Understanding Performance Differ-
ences of FPGAs and GPUs”. In: 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 2018, pp. 93–96 (cit. on
p. 35).

[28]Denisa-Andreea Constantinescu, Angeles Navarro, Francisco Corbera, Juan-Antonio
Fernández-Madrigal, and Rafael Asenjo. “Efficiency and productivity for decision mak-
ing on low-power heterogeneous CPU+GPU SoCs”. In: The Journal of Supercomputing
77.1 (2021), pp. 44–65 (cit. on p. 90).

[29]Stephen Craven and Peter Athanas. “Examining the viability of FPGA supercomputing”.
In: Eurasip Journal on Embedded Systems 2007 (2007) (cit. on p. 11).

[30]Gabor Csordas, Mikhail Asiatici, and Paolo Ienne. “In search of lost bandwidth:
Extensive reordering of DRAM accesses on FPGA”. In: 2019 International Conference
on Field-Programmable Technology, ICFPT (2019) (cit. on p. 35).

[31]Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, et al. “From OpenCL to high-
performance hardware on FPGAs”. In: Proceedings - 22nd International Conference on
Field Programmable Logic and Applications, FPL 2012 (2012), pp. 531–534 (cit. on
p. 17).

[32]Bruno Da Silva, An Braeken, Erik H. D’Hollander, and Abdellah Touhafi. “Performance
and resource modeling for FPGAs using high-level synthesis tools”. In: Advances in
Parallel Computing. 2014 (cit. on p. 35).

[33]Maria Angélica Dávila-Guzmán, Raúl Nozal, Rubén Gran, et al. “First Steps Towards
CPU, GPU, and FPGA Parallel Execution with EngineCL”. In: Proceedings of the 18th
International Conference on Computational and Mathematical Method in Science and
Engineering, CMMSE 2018 (2018) (cit. on p. 15).

[34]María Angélica Dávila Guzmán, Raúl Nozal, Rubén Gran Tejero, et al. “Cooperative
CPU, GPU, and FPGA heterogeneous execution with EngineCL”. In: The Journal of
Supercomputing 75.3 (2019), pp. 1732–1746 (cit. on p. 14).

[35]R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, et al. “Design of ion-implanted MOSFET’s
with very small physical dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974),
pp. 256–268 (cit. on p. 5).

111



[36]Javier Diaz, Camelia Muñoz-Caro, and Alfonso Niño. “A Survey of Parallel Program-
ming Models and Tools in the Multi and Many-Core Era”. In: IEEE Transactions on
Parallel and Distributed Systems 23.8 (2012), pp. 1369–1386 (cit. on p. 14).

[37]A. Duran, E. Ayguadé, R. M. Badia, et al. “OmpSs: A proposal for programming
heterogeneous multi-core architectures”. In: Parallel Processing Letters 21.2 (2011),
pp. 173–193 (cit. on pp. 14, 15).

[38]Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó, et al.
“A Cross-Platform OpenVX Library for FPGA Accelerators”. In: 2021 29th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP).
2021, pp. 75–83 (cit. on pp. 58, 71).

[39]Fernando A Escobar, Xin Chang, and Carlos Valderrama. “Suitability Analysis of FPGAs
for Heterogeneous Platforms in HPC”. In: IEEE Transactions On Parallel And Distributed
Systems 9219.c (2015), pp. 1–18 (cit. on p. 14).

[40]Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. “Dark Silicon and the End of Multicore Scaling”. In: SIGARCH Comput.
Archit. News 39.3 (June 2011), 365–376 (cit. on p. 12).

[41]Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, et al. “A Configurable Cloud-
Scale DNN Processor for Real-Time AI”. In: 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 2018, pp. 1–14 (cit. on p. 18).

[42]B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Computing With
OpenCL. Heterogeneous Computing with OpenCL. Morgan Kaufmann, 2012 (cit. on
p. 14).

[43]Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana Schaa. Het-
erogeneous Computing with OpenCL. 1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011 (cit. on p. 88).

[44]Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner. “Spector: An OpenCL FPGA
benchmark suite”. In: 2016 International Conference on Field-Programmable Technology
(FPT). 2016, pp. 141–148 (cit. on p. 34).

[45]R. Giduthuri and K. Pulli. “OpenVX: A Framework for Accelerating Computer Vision”.
In: SIGGRAPH ASIA 2016 Courses. 2016, 14:1–14:50 (cit. on pp. 63, 65, 73).

[46]Juan Gómez-Luna, Izzat El Hajj, Victor Chang Li-Wen Garcia-Flores, et al. “Chai:
Collaborative Heterogeneous Applications for Integrated-architectures”. In: ISPASS.
IEEE. 2017 (cit. on pp. 51, 58).

[47]V. Grover. Parallel programming with OpenACC. 2012, pp. 315–337 (cit. on p. 14).

[48]Amir HajiRassouliha, Andrew J. Taberner, Martyn P. Nash, and Poul M.F. Nielsen.
“Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for computer
vision and image processing algorithms”. In: Signal Processing: Image Communication
68.June (2018), pp. 101–119 (cit. on pp. 18, 64, 65).

[49]HardwareBee. Xilinx vs. Intel High-End FPGA Series Comparison. 2020 (cit. on p. 70).

112



[50]Kenneth Hill, Stefan Craciun, Alan George, and Herman Lam. “Comparative analysis of
OpenCL vs. HDL with image-processing kernels on Stratix-V FPGA”. In: 2015 IEEE 26th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP). 2015, pp. 189–193 (cit. on p. 17).

[51]Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”.
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 2014, pp. 10–14 (cit. on p. 87).

[52]HSA Fundation. Heterogeneous System Architecture. 2021 (cit. on pp. 12, 13).

[53]Sitao Huang, Li-Wen Chang, Izzat El Hajj, et al. “Analysis and Modeling of Collabora-
tive Execution Strategies for Heterogeneous CPU-FPGA Architectures”. In: ICPE ’19.
2019, 79––90 (cit. on pp. 6, 15, 17, 83).

[54]Hwu Wen-mei. Programming Massively Parallel Processors: A Hands-on Approachl.
Morgan Kaufmann, 2010 (cit. on p. 13).

[55]Francisco D. Igual, Luis M. Jara, José Ignacio Gómez Pérez, Luis Piñuel, and Manuel
Prieto-Matías. “A power measurement environment for PCIe accelerators”. In: Com-
puter Science - R&D 30.2 (2015), pp. 115–124 (cit. on p. 96).

[56]Intel. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface. 2018
(cit. on p. 6).

[57]Intel. Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPI Compute Work-
loads. 2021 (cit. on p. 31).

[58]Intel. Detecting Memory Bandwidth Saturation in Threaded Applications. 2010 (cit. on
p. 36).

[59]Intel. External Memory Interface Handbook Volume 3: Reference Material. 2017 (cit. on
p. 37).

[60]Intel. External Memory Interfaces Intel ® Stratix ® 10 FPGA IP User Guide. 2019 (cit. on
pp. 45, 52).

[61]Intel. High Bandwidth Memory (HBM2) Interface Intel FPGA IP User Guide. 2019 (cit. on
p. 18).

[62]Intel. Intel Acquisiton of Altera. 2015 (cit. on p. 6).

[63]Intel. Intel Agilex FPGA and SoC. 2021 (cit. on p. 18).

[64]Intel. Intel FPGA SDK for OpenCL: Intel Stratix 10 GX FPGA Development Kit Reference
Platform Porting Guide. 2019 (cit. on p. 28).

[65]Intel. Intel FPGA SDK for OpenCL Pro Edition: Getting Started Guide 19.1. 2019 (cit. on
pp. 31, 34, 36–39, 48, 58).

[66]Intel. Intel FPGA SDK for OpenCL Pro Edition: Programming Guide 19.4. 2020 (cit. on
p. 81).

[67]Intel. Intel High Level Synthesis Compiler Pro Edition: Reference Manual. 2019 (cit. on
pp. 13, 37, 46).

113



[68]Intel. Intel® Agilex® I-Series SoC FPGA Product Table. 2019 (cit. on p. 40).

[69]Intel. Intel® Hyperlflex Architecture High-Performance Design Handbook. 2019 (cit. on
p. 18).

[70]Intel. Intel® Stratix® 10 Logic Array Blocks and Adaptive Logic Modules User Guide.
2020 (cit. on p. 16).

[71]Intel. Intel® Stratix® 10 TX Product Table. 2019 (cit. on pp. 16, 40).

[72]Intel. Intel® StratixV Device Overview. 2019 (cit. on p. 17).

[73]Intel. Intel® High Level Synthesis Compiler Pro Edition 19.4, Best Practice Guide. 2020
(cit. on p. 71).

[74]Intel. Running Average Power Limit Energy Reporting. 2019 (cit. on p. 30).

[75]Jiantong Jiang, Zeke Wang, Xue Liu, et al. “Boyi: A systematic framework for auto-
matically deciding the right execution model of OpenCL applications on FPGAs”. In:
FPGA 2020 (2020) (cit. on pp. 18, 35, 40, 58, 65).

[76]Z. Jin and H. Finkel. “Optimizing an Atomics-Based Reduction Kernel on OpenCL
FPGA Platform”. In: IPDPSW. 2018, pp. 532–539 (cit. on p. 40).

[77]G. Juckeland, W. Brantley, S. Chandrasekaran, et al. SPEC ACCEL: A standard applica-
tion suite for measuring hardware accelerator performance. Vol. 8966. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Springer, 2015, pp. 46–67 (cit. on p. 14).

[78]David Kaeli, Perhaad Mistry, Dana Schaa, and Dong Zhang Ping. Heterogeneous
computing with OpenCL 2.0. Vol. 148. Morgan Kaufmann, 2015, pp. 148–162 (cit. on
pp. 12, 32).

[79]Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, et al. “Adaptive heterogeneous
scheduling for integrated GPUs”. In: Proceedings of the 23rd international conference on
Parallel architectures and compilation - PACT ’14 (2014), pp. 151–162 (cit. on p. 15).

[80]Kaleem,R. et al. “Adaptive Heterogeneous Scheduling for Integrated GPUs”. In: PACT.
New York, NY, USA: ACM, 2014, pp. 151–162 (cit. on p. 89).

[81]L. Kalms, P. Amini Rad, M. Ali, and A. Iskander D. Göhringer. “A Parametrizable
High-Level Synthesis Library for Accelerating Neural Networks on FPGAs”. In: Journal
of Signal Processing Systems (Feb. 2021), pp. 1–27 (cit. on p. 67).

[82]L. Kalms and D. Göhringer. “Accelerated High-level Synthesis Feature Detection for
FPGAs using HiFlipVX”. In: Towards Ubiquitous Low-power Image Processing Platforms.
Springer International Publishing, Jan. 2021, pp. 115–135 (cit. on p. 67).

[83]L. Kalms, A. Podlubne, and D. Göhringer. “HiFlipVX: an Open Source High-Level
Synthesis FPGA Library for Image Processing”. In: International Symposium on Applied
Reconfigurable Computing (ARC). Springer, Apr. 2019, pp. 149–164 (cit. on pp. 19, 64,
67, 68, 70, 71).

114



[84]Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and
Gustavo Alonso. “High Bandwidth Memory on FPGAs: A Data Analytics Perspective”.
In: FPL (2020). eprint: 2004.01635 (cit. on p. 41).

[85]Katranovet, A. et al. “Intel Threading Building Block (TBB) Flow Graph As a Soft-
ware Infrastructure Layer for OpenCL-based Computations”. In: ACM IWOCL. Vienna,
Austria, 2016, 9:1–9:3 (cit. on p. 89).

[86]T. Kenter, G. Mahale, S. Alhaddad, et al. “OpenCL-Based FPGA Design to Accelerate the
Nodal Discontinuous Galerkin Method for Unstructured Meshes”. In: Proceedings - 26th
IEEE International Symposium on Field-Programmable Custom Computing Machines,
FCCM 2018. 2018, pp. 186–196 (cit. on p. 17).

[87]Jungwon Kim, Sangmin Seo, Jun Lee, et al. “SnuCL: an OpenCL framework for
heterogeneous CPU/GPU clusters”. In: Proceedings of the 26th ACM international
conference on Supercomputing - ICS ’12 (2012), p. 341 (cit. on p. 14).

[88]Dirk Koch and et al., eds. FPGAs for Software Programmers. Springer, Cham, 2016
(cit. on p. 89).

[89]J. Kuskin, D. Ofelt, M. Heinrich, et al. “The Stanford FLASH Multiprocessor”. In:
SIGARCH Comput. Archit. News 22.2 (Apr. 1994), 302–313 (cit. on p. 12).

[90]Brock J. LaMeres. Quick Start Guide to Verilog. Springer, 2019 (cit. on p. 19).

[91]Janghaeng Lee and et al. “Orchestrating Multiple Data-Parallel Kernels on Multiple
Devices”. In: Intl. Conf. on Parallel Architectures and Compilation Techniques. 2016,
pp. 355–366 (cit. on pp. 88, 89).

[92]Jiajie Li, Yuze Chi, and Jason Cong. “HeteroHalide: From image processing DSL
to efficient FPGA acceleration”. In: FPGA 2020 - 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (2020), pp. 51–57 (cit. on p. 64).

[93]Shang Li, Dhiraj Reddy, and Bruce Jacob. “A Performance And Power Comparison
of Modern High-Speed DRAM Architectures”. In: Proceedings of the International
Symposium on Memory Systems. MEMSYS ’18. Association for Computing Machinery,
2018, 341–353 (cit. on pp. 41, 49, 50).

[94]Y. Liang, S. Wang, and W. Zhang. “FlexCL: A Model of Performance and Power for
OpenCL Workloads on FPGAs”. In: IEEE Transactions on Computers 67.12 (2018),
pp. 1750–1764 (cit. on pp. 6, 15, 19, 34, 35, 40).

[95]Yun Liang, Kyle Rupnow, Yinan Li, et al. “High-level synthesis: Productivity, perfor-
mance, and software constraints”. In: Journal of Electrical and Computer Engineering
2012 (2012) (cit. on pp. 20, 23).

[96]S.-W. Liao, S.-Y. Kuang, C.-L. Kao, and C.-H. Tu. “A Halide-based Synergistic Computing
Framework for Heterogeneous Systems”. In: Journal of Signal Processing Systems
(2017) (cit. on pp. 6, 15).

[97]David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Int. J.
Comput. Vision 60.2 (Nov. 2004), 91–110 (cit. on p. 75).

115



[98]Luk, C.-K. et al. “Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with
Adaptive Mapping”. In: IEEE/ACM Micro-42 (2009), p. 45 (cit. on pp. 88, 89).

[99]Grant Martin and Gary Smith. “High-Level Synthesis: Past, Present, and Future”. In:
IEEE Design Test of Computers 26.4 (2009), pp. 18–25 (cit. on pp. 6, 20).

[100]Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. “FBLAS: Streaming
Linear Algebra on FPGA”. In: CoRR (2019) (cit. on pp. 51, 58).

[101]Michael Parker. Understanding Peak Floating-Point Performance Claims. Intel White
Paper. 2017 (cit. on p. 28).

[102]Micron-Technology. DDRA SDRAM MT40A2G4. 2015 (cit. on pp. 28, 49, 50).

[103]Microsoft. Recommended 8-Bit YUV Formats for Video Rendering. 2018 (cit. on p. 83).

[104]Waldrop Mitchell. “More Than Moore”. In: Nature 530 (2016), p. 145 (cit. on p. 5).

[105]Sparsh and Mittal. “A Survey of CPU-GPU Heterogeneous Computing Techniques”. In:
ACM Computing Surveys 47.4 (2015), pp. 1–35 (cit. on pp. 88, 89).

[106]Momeni, A. et al. “Hardware thread reordering to boost OpenCL throughput on
FPGAs”. In: ICCD. Oct. 2016, pp. 257–264 (cit. on p. 23).

[107]"Monitor Insider". HBM2 Deep Dive. 2016 (cit. on pp. 18, 49, 50).

[108]Gordon E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-State
Circuits Society Newsletter 11.3 (1965), pp. 33–35 (cit. on pp. 5, 12).

[109]Valentin Mena Morales, Pierre-Henri Horrein, Amer Baghdadi, Erik Hochapfel, and
Sandrine Vaton. “Energy-efficient FPGA implementation for binomial option pricing
using OpenCL”. In: 2014 Design, Automation Test in Europe Conference Exhibition
(DATE). 2014, pp. 1–6 (cit. on p. 17).

[110]Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, and Dan Ginsburg.
OpenCL Programming Guide. Addison-Wesley, 2011, pp. 1–83 (cit. on p. 14).

[111]Muslim, F. B. et al. “Efficient FPGA Implementation of OpenCL High-Performance
Computing Applications via High-Level Synthesis”. In: IEEE Access 5 (2017) (cit. on
p. 87).

[112]S. W. Nabi and W. Vanderbauwhede. “MP-STREAM: A Memory Performance Bench-
mark for Design Space Exploration on Heterogeneous HPC Devices”. In: IPDPSW. May
2018 (cit. on p. 35).

[113]Syed Waqar Nabi and Wim Vanderbauwhede. “FPGA design space exploration for
scientific HPC applications using a fast and accurate cost model based on roofline
analysis”. In: Journal of Parallel and Distributed Computing (2016) (cit. on pp. 17, 35).

[114]Razvan Nane, Vlad Mihai Sima, Christian Pilato, et al. “A Survey and Evaluation of
FPGA High-Level Synthesis Tools”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35.10 (2016), pp. 1591–1604 (cit. on p. 20).

116



[115]Nane, R, et al. “A Survey and Evaluation of FPGA High-Level Synthesis Tools”. In:
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 35.10 (Oct.
2016), pp. 1591–1604 (cit. on p. 89).

[116]Angeles Navarro, Francisco Corbera, Andres Rodriguez, Antonio Vilches, and Rafael
Asenjo. “Heterogeneous parallel_for Template for CPU–GPU Chips”. In: International
Journal of Parallel Programming 47.2 (2019), pp. 213–233 (cit. on p. 15).

[117]Angeles Navarro, Antonio Vilches, Francisco Corbera, and Rafael Asenjo. “Strategies
for maximizing utilization on multi-CPU and multi-GPU heterogeneous architectures”.
In: The Journal of Supercomputing 70.2 (2014), pp. 756–771 (cit. on p. 6).

[118]Raúl Nozal and Jose Luis Bosque. “Exploiting Co-execution with OneAPI: Heterogene-
ity from a Modern Perspective”. In: Euro-Par 2021: Parallel Processing. Ed. by Leonel
Sousa, Nuno Roma, and Pedro Tomás. Cham: Springer International Publishing, 2021,
pp. 501–516 (cit. on p. 90).

[119]Raúl Nozal and Jose Luis Bosque. “Straightforward Heterogeneous Computing with
the oneAPI Coexecutor Runtime”. In: Electronics 10.19 (2021) (cit. on p. 90).

[120]Nozal, R. et al. “EngineCL: Usability and Performance in Heterogeneous Computing”.
In: arXiv (May 2018). arXiv: 1805.02755 (cit. on pp. 6, 14, 15, 88, 90).

[121]Nozal, R. et al. “Load balancing in a heterogeneous world: CPU-Xeon Phi co-execution
of data-parallel kernels”. In: The Journal of Supercomputing (Mar. 2018) (cit. on pp. 88,
89).

[122]Jose et. al. Nunez-Yanez. “Simultaneous multiprocessing in a software-defined hetero-
geneous FPGA”. In: The Journal of Supercomputing (Apr. 2018) (cit. on p. 89).

[123]Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, et al. “Can FPGAs Beat GPUs in
Accelerating Next-Generation Deep Neural Networks?” In: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. FPGA ’17.
Monterey, California, USA: Association for Computing Machinery, 2017, 5–14 (cit. on
p. 18).

[124]NVIDIA. NVIDIA OpenCL SDK Code Samples. 2020 (cit. on p. 58).

[125]K. O’Neal and P. Brisk. “Predictive Modeling for CPU, GPU, and FPGA Performance and
Power Consumption: A Survey”. In: 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). 2018 (cit. on p. 59).

[126]OpenACC. OpenACC. More Science. Less Programming. 2021 (cit. on p. 14).

[127]M. Akif Özkan, Burak Ok, Bo Qiao, Jürgen Teich, and Frank Hannig. “HipaccVX:
wedding of OpenVX and DSL-based code generation”. In: Journal of Real-Time Image
Processing (2020) (cit. on p. 64).

[128]Pandit, P. et al. “Fluidic kernels: Cooperative execution of OpenCL programs on
multiple heterogeneous devices”. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization (2014) (cit. on pp. 6, 88, 89).

117



[129]Borja et. al. Pérez. “Energy efficiency of load balancing for data-parallel applications in
heterogeneous systems”. In: The Journal of Supercomputing 73.1 (Jan. 2017), pp. 330–
342 (cit. on p. 89).

[130]Pérez, B. et al. “Simplifying Programming and Load Balancing of Data Parallel Ap-
plications on Heterogeneous Systems”. In: GPGPU. New York, NY, USA: ACM, 2016,
pp. 42–51 (cit. on p. 91).

[131]A. Podlubne, J. Haase, L. Kalms, et al. “Low power image processing applications on
FPGAs using dynamic voltage scaling and partial reconfiguration”. In: International
Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE,
Oct. 2018, pp. 64–69 (cit. on pp. 65, 68).

[132]Jing Pu, Steven Bell, Xuan Yang, et al. “Programming heterogeneous systems from an
image processing DSL”. In: ACM Transactions on Architecture and Code Optimization
14.3 (2017), pp. 1–25. arXiv: 1610.09405 (cit. on p. 64).

[133]Andrew Putnam, Dave Bennett, Eric Dellinger, et al. “CHiMPS: A C-level compilation
flow for hybrid CPU-FPGA architectures”. In: 2008 International Conference on Field
Programmable Logic and Applications. 2008, pp. 173–178 (cit. on p. 15).

[134]Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, et al. “A Reconfigurable Fabric for
Accelerating Large-Scale Datacenter Services”. In: IEEE Micro 35.3 (2015), pp. 10–22
(cit. on p. 13).

[135]Qualcomm Snapdragon Heterogeneous Compute SDK. 2018 (cit. on p. 89).

[136]J. Ragan-Kelley, C. Barnes, A. Adams, et al. “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines”. In:
ACM SIGPLAN Notices 48.6 (2013), pp. 519–530 (cit. on p. 14).

[137]Oliver Reiche, M. Akif Ozkan, Richard Membarth, Jurgen Teich, and Frank Hannig.
“Generating FPGA-based image processing accelerators with Hipacc: (Invited paper)”.
In: ICCAD (2017) (cit. on pp. 19, 64).

[138]James Reinders, Ben Ashbaugh, Alexey Bader, et al. Data Parallel C++: Mastering
DPC++ for Programming of Heterogeneous Systems using C++ and SYCL James. Apress
open, 2020, pp. 1–2 (cit. on pp. 11, 13–15, 23, 57, 90).

[139]Santhosh Kumar Rethinagiri, Oscar Palomar, Javier Arias Moreno, Osman Unsal,
and Adrian Cristal. “Trigeneous Platforms for Energy Efficient Computing of HPC
Applications”. In: International Conference on High Performance Computing Trigeneous.
IEEE, 2015 (cit. on pp. 6, 15, 89).

[140]Andrés Rodríguez, Angeles Navarro, Rafael Asenjo, et al. “Parallel multiprocessing
and scheduling on the heterogeneous Xeon+FPGA platform”. In: The Journal of
Supercomputing 76.6 (2020), pp. 4645–4665 (cit. on p. 90).

[141]Jose Carlos Romero, Angeles Navarro, Antonio Vilches, et al. “Efficient heterogeneous
matrix profile on a CPU + High Performance FPGA with integrated HBM”. In: Future
Generation Computer Systems 125 (2021), pp. 10–23 (cit. on pp. 6, 15).

118



[142]A. Sadek, A. Muddukrishna, L. Kalms, et al. “Supporting utilities for heterogeneous
embedded image processing platforms (sthem)): An overview”. In: International
Symposium on Applied Reconfigurable Computing (ARC). Springer, May 2018, pp. 737–
749 (cit. on pp. 65, 68).

[143]A. Sanaullah and M. C. Herbordt. “Unlocking Performance-Programmability by Pen-
etrating the Intel FPGA OpenCL Toolflow”. In: 2018 IEEE High Performance extreme
Computing Conference (HPEC). 2018, pp. 1–8 (cit. on p. 18).

[144]B. C. Schafer and Z. Wang. “High-Level Synthesis Design Space Exploration: Past,
Present, and Future”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39 (2020) (cit. on pp. 34, 44).

[145]Xilinx SDACCEL. OpenCL Devices and FPGAs. 2021 (cit. on p. 19).

[146]SDSoC Environment User Guide (cit. on p. 93).

[147]Hércules Cardoso da Silva, Flávia Pisani, and Edson Borin. “A Comparative Study
of SYCL, OpenCL, and OpenMP”. In: 2016 International Symposium on Computer
Architecture and High Performance Computing Workshops (SBAC-PADW). 2016, pp. 61–
66 (cit. on p. 6).

[148]John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems”. In: Computing in Science Engineering
12.3 (2010), pp. 66–73 (cit. on p. 14).

[149]Makoto Sugawara, Shoichi Hirasawa, Kazuhiko Komatsu, Hiroyuki Takizawa, and
Hiroaki Kobayashi. “A Comparison of Performance Tunabilities between OpenCL and
OpenACC”. In: 2013 IEEE 7th International Symposium on Embedded Multicore Socs.
2013, pp. 147–152 (cit. on p. 14).

[150]S. Taheri, J. Heo, P. Behnam, et al. “Acceleration Framework for FPGA Implementation
of OpenVX Graph Pipelines”. In: 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 2018, pp. 227–227 (cit. on
p. 64).

[151]Sajjad Taheri, Payman Behnam, Eli Bozorgzadeh, Alexander Veidenbaum, and Alexan-
dru Nicolau. “AFFIX: Automatic acceleration framework for FPGA implementation of
OpenVX vision algorithms”. In: FPGA’19. 2019, 252–261 (cit. on pp. 17, 64, 66, 80).

[152]TOP500. GREEN500, The list. 2021 (cit. on pp. 5, 12).

[153]TOP500. TOP500, The list. 2021 (cit. on pp. 5, 12).

[154]S. M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty Years of
FPGA Technology”. In: Proceedings of the IEEE (2015) (cit. on p. 33).

[155]Tsoi, K. H. et al. “Axel: A Heterogeneous Cluster with FPGAs and GPUs”. In: ACM/SIGDA
FPGA. Monterey, California, USA: ACM, 2010, pp. 115–124 (cit. on p. 89).

[156]Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. “Simultaneous Multithreading:
Maximizing on-Chip Parallelism”. In: Proceedings of the 22nd Annual International
Symposium on Computer Architecture. ISCA ’95. S. Margherita Ligure, Italy: Association
for Computing Machinery, 1995, 392–403 (cit. on p. 12).

119



[157]Anshuman Verma, Ahmed E. Helal, Konstantinos Krommydas, and Wu-chun Feng.
“Accelerating Workloads on FPGAs via OpenCL: A Case Study with OpenDwarfs”. In:
Computer Science Technical Reports (2016) (cit. on p. 34).

[158]Vilches, A. et al. “Adaptive Partitioning for Irregular Applications on Heterogeneous
CPU-GPU Chips”. In: Procedia Computer Science, ICCS 51 (2015), pp. 140 –149 (cit. on
p. 89).

[159]Nils Voss, Tobias Becker, Simon Tilbury, et al. “Performance Portable FPGA Design”. In:
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 2020, p. 324 (cit. on pp. 65, 66).

[160]Shuo Wang, Yun Liang, and Wei Zhang. “Poly: Efficient heterogeneous system and
application management for interactive applications”. In: Proceedings - 25th IEEE
International Symposium on High Performance Computer Architecture, HPCA 2019
(2019), pp. 199–210 (cit. on pp. 6, 15, 18).

[161]W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa. “DraMon: Predicting memory
bandwidth usage of multi-threaded programs with high accuracy and low overhead”.
In: HPCA. 2014, pp. 380–391 (cit. on p. 46).

[162]Z. Wang, B. He, W. Zhang, and S. Jiang. “A performance analysis framework for
optimizing OpenCL applications on FPGAs”. In: HPCA. 2016, pp. 114–125 (cit. on
pp. 17, 23, 33–36, 40, 45, 51, 59, 88).

[163]Zeke Wang, Bingsheng He, and Wei Zhang. “A study of data partitioning on OpenCL-
based FPGAs”. In: 2015 25th International Conference on Field Programmable Logic
and Applications (FPL). 2015, pp. 1–8 (cit. on p. 17).

[164]Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. “Melia: A MapReduce
Framework on FPGAs, OpenCL-based FPGAs”. In: IEEE Transactions on Parallel and
Distributed Systems 9219.c (2016), pp. 1–14 (cit. on p. 17).

[165]Yuan Wen, Zheng Wang, and Michael F. P. O’Boyle. “Smart multi-task scheduling for
OpenCL programs on CPU/GPU heterogeneous platforms”. In: 2014 21st International
Conference on High Performance Computing (HiPC). 2014 (cit. on p. 6).

[166]Skyler Windh, Xiaoyin Ma, Robert J. Halstead, et al. “High-level language tools for
reconfigurable computing”. In: Proceedings of the IEEE 103.3 (2015), pp. 390–408
(cit. on p. 21).

[167]Mike Wissolik, Anthony Torza, and Brandon Day. Virtex UltraScale+ HBM FPGA:A
Revolutionary Increase in Memory Performance. 2019 (cit. on pp. 123, 124).

[168]Roger Woods, John McAllister, Gaye Lightbody, and Ying Yi. FPGA-based implementa-
tion of signal processing systems. Wiley Online Library, 2017 (cit. on pp. 16, 82).

[169]Xilinx. Xilinx OpenCV User Guide. 2019 (cit. on p. 64).

[170]Xilinx Vivado. Introduction to FPGA Design with Vivado High-Level Synthesis. 2019
(cit. on p. 33).

[171]Xilinx Vivado. Vivado Design Suite User Guide: High-Level Synthesis. 2017 (cit. on
p. 58).

120



[172]Wang Yong, Zhou Yongfa, Wang Scott, et al. “Developing Medical Ultrasound Imaging
Application across GPU, FPGA, and CPU Using OneAPI”. In: International Workshop on
OpenCL. IWOCL’21. Munich, Germany: Association for Computing Machinery, 2021
(cit. on p. 90).

[173]Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. “VirtCL: A Framework
for OpenCL Device Abstraction and Management”. In: SIGPLAN Not. 50.8 (Jan. 2015),
161–172 (cit. on p. 14).

[174]Ramin Zabih and John Woodfill. “Non-parametric local transforms for computing
visual correspondence”. In: Computer Vision — ECCV ’94. Springer, 1994, pp. 151–158
(cit. on p. 69).

[175]Mohamed Zahran. Heterogeneous Computing: Hardware and Software Perspectives. New
York, NY, USA: Association for Computing Machinery, 2019 (cit. on p. 13).

[176]C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. “Caffeine:
Towards uniformed representation and acceleration for deep convolutional neural
networks”. In: 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 2016 (cit. on p. 35).

[177]Jialiang Zhang and Jing Li. “Improving the Performance of OpenCL-Based FPGA Ac-
celerator for Convolutional Neural Network”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. FPGA ’17. Monterey,
California, USA: Association for Computing Machinery, 2017, 25–34 (cit. on p. 17).

[178]J. Zhao., L. Feng, S. Sinha, et al. “COMBA: A comprehensive model-based analysis
framework for high level synthesis of real applications”. In: 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD) (2017), pp. 430–437 (cit. on
p. 35).

[179]Jieru Zhao, Liang Feng, Sharad Sinha, et al. “Performance Modeling and Directives
Optimization for High-Level Synthesis on FPGA”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39.7 (2020) (cit. on p. 35).

[180]H. Zheng and Z. Zhu. “Power and Performance Trade-Offs in Contemporary DRAM
System Designs for Multicore Processors”. In: IEEE Transactions on Computers 59.8
(2010), pp. 1033–1046 (cit. on p. 39).

[181]G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar. “Lin-Analyzer: A high-level
performance analysis tool for FPGA-based accelerators”. In: DAC. 2016, pp. 1–6 (cit.
on p. 35).

[182]Shijie Zhou and Viktor K. Prasanna. “Accelerating Graph Analytics on CPU-FPGA
Heterogeneous Platform”. In: 2017 29th International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD). 2017, pp. 137–144 (cit. on
p. 89).

[183]Hamid Reza Zohouri, Naoya Maruyamay, Aaron Smith, Satoshi Matsuoka, and Mo-
tohiko Matsuda. “Evaluating and optimizing OpenCL kernels for high performance
computing with FPGAs”. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016.November (2016), p. 35 (cit. on pp. 17,
18, 34, 40, 51, 58, 95).

121



[184]Hamid Reza Zohouri and Satoshi Matsuoka. “The Memory Controller Wall: Bench-
marking the Intel FPGA SDK for OpenCL Memory Interface”. In: 2019 IEEE/ACM
International Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC) (2019), pp. 11–18 (cit. on pp. 18, 35).

[185]Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. “Combined Spatial
and Temporal Blocking for High-Performance Stencil Computation on FPGAs Using
OpenCL”. In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’18. Monterey, CALIFORNIA, USA: Association for
Computing Machinery, 2018, 153–162 (cit. on pp. 18, 65).

122



Appendix: Memory aware

co-execution in

heterogeneous system with

CPU and FPGA with HBM2

memory

8

The advances in FPGA accelerators with the inclusion of High Memory Bandwidth

(HBM) in 3D-based FPGA chips extend the opportunities with its massive bandwidth

that can fuel the large number of functional units of the FPGAs. The novelty devices

introduce additional dimensions to the system, expanding the exploration space,

which in turn increases the complexity required to achieve an efficient collaborative

execution, fulfilling the performance and energy consumption constraints.

In this Appendix, we introduce an FPGA + HBM technology, in co-execution with a

CPU, showing the main findings and challenges.

8.1 Introduction

For FPGAs, the memory bandwidth capabilities have increased slowly compared

with the number of computational units, and even Ethernet interfaces have out-

paced DDR4 memory technologies. For example, for video broadcasting the industry

has increased the resolution and a significant gap is evident among the band-

width application requirements and those provided by a DDR4 DIMM as Figure 8.1

shows [167].

In Chapter 4, we showed that many FPGA applications are memory-bound. The

introduction of HBM2 memories is an alternative to reduce the bandwidth gap,

increasing memory bandwidth with more DRAM banks and package integration.

123



Figure 8.1: Relative memory bandwidth requirements [167].

The package integration can increase the power efficiency 3.8× compared with a

DDR4 DIMM memory.

An FPGA with HBM2 memory can potentially exploit better the FPGA architecture,

theoretically increasing the bandwidth, requiring more compute capabilities of the

FPGA device, that is one of the limits detected in Chapter 6 to achieved a better

energy efficiency balance when the work load is shared among different devices in a

heterogeneous system.

In this appendix we explore the integration of the FPGA with an HBM2 memory in a

heterogeneous system and discuss the main problems of this approach.

8.2 FPGA with HBM memory in a Heterogeneous
system

The FPGA model with HBM2 support is the Stratix 10 MX. One of the major problems

of this board is the early support offered by Intel manufacturer and the lack of

support of the programming frameworks. The management of the HBM2 pseudo-

channels is the programmer’s responsibility, increasing the complexity of application

development which should be aware of the memory resource assignment.

124



For this reason, we have introduced new features to EngineCL to allow a better

explotation of the memory banks in Stratix 10 MX. The applications are designed

in OpenCL using kernel replication to increase both the memory bandwidth and

compute demand. Each variable in a kernel could be assigned to a different HBM2

pseudo-channel bank; no arbitration is required compared with a DDR4 with a single

bank. Listing 8.1 shows an example of kernel replication on a kernel with three

global variables in different HBM2 pseudo-channels. The kernel replication limit

is the amount of FPGA resources and a maximum of 32 HBM2 pseudo-channels.

In host side, in EngineCL framework, we created a command queue per replicated

kernel to allow them work in parallel. In the load balancers policies, each FPGA

chunk is divided among kernel replicas.

1 // device code
2 void kernel0 (
3 __global __attribute (( buffer_location ( "HBM0")) uint A,
4 __global __attribute (( buffer_location ( "HBM1")) uint B,
5 __global __attribute (( buffer_location ( "HBM2")) uint C){
6 // compute
7 }
8 ...
9 void kerneln (

10 __global __attribute (( buffer_location ( "HBM28")) uint A,
11 __global __attribute (( buffer_location ( "HBM29")) uint B,
12 __global __attribute (( buffer_location ( "HBM30")) uint C){
13 // compute
14 }
15

16 // Host with EngineCL framework
17 // replicated kernels in main host program
18 FPGA. setKernel ( binary_file ," kernel0 ");
19 ...
20 FPGA. setKernel ( binary_file ," kerneln ");

Listing 8.1: OpenCL kernel replication for FPGA + HBM2 memory, in Line 1 is the device

code and in the Line 16 is the host code with EngineCL framework

To evaluate the performance we used the Host 3 in Table 3.2 with a Intel Xeon

Bronce 3204 and a Stratix 10 MX, the OpenCL driver version in this case is only

compatible with Intel processors. The first results, using a vector add kernel to tune

the framework show a communication bandwidth problem in the OpenCL driver for

CPU device with only 1350 MB/s, 6× worst than FPGA communication through a

PCIe. This performance difference among devices are compensated applying kernel

125



replication in CPU device. Figure 8.2 shows the result for the kernel replication

in CPU and FPGA devices, in CPU the performances increases up 1.8×, where the

number of kernel copies are equals to the number of cores. Instead in FPGA the the

speed-up gains is minimal with 16% since the vector-add kernel is bound by PCIe

communication.

Ti
m

e 
[m

s]

0

75

150

225

300

Number of Kernel copies
1 2 4 6 8

CPU FPGA

Figure 8.2: Performance impact of Kernel replication in CPU and FPGA devices for the
vector add kernel application.

The performance differences with kernel replication increase the complexity in the

load balancing algorithms, and evidence the necessity of awareness load balancers.

Exploring the kernel replication with a static strategy in Figure 8.3 shows that the

best performance is achieved with a 92% of the load in the FPGA, which is the best

device. In the overall, the maximum speed-up of the heterogeneous execution is 22%.

Although with kernel replication the CPU and FPGA have a similar performance, the

interaction between device drivers limits the CPU, losing the kernel replication gains.

In terms of energy efficiency, FPGA is the most efficient closely followed by the best

heterogeneous combination with one kernel FPGA replication. Please note that this

results could be replicated on memory bound kernels because PCIe communication

dominates the FPGA execution time.

In opposition to vector add benchmark, we evaluated a irregular Mandelbrot ap-

plication which is compute bound. In this case, the FPGA kernel is no replicated

since just one kernel replica exhausts DSPs available in the entire FPGA. In CPU,

even leveraging the available cores, the performance is 15 × worst than FPGA.

The heterogeneous execution with a 95% of workload for FPGA achieves a 5 % of

speed-up compared with the FPGA alone. In terms of energy, FPGA alone is the

best configuration, and the best heterogeneous execution is 32% worsse with a

measurement of 230 J.

126



Figure 8.3: Static load balancing exploration for a CPU and FPGA+HBM2 varying the
workload distribution and the number of kernel copies in FPGA. The bar in red
shows the best heterogeneous execution in time and energy.

In conclusion, the co-execution in heterogeneous systems requires a performance

balance between the devices, otherwise distributing workload among them is useless.

Although the advances in specialized processors could achieve more performance

and energy efficiency, it continuously requires expensive time design and program-

mers with advances skills from FPGA hardware to host drivers to achieve a high

performance heterogeneous system. In the FPGA hardware, the kernel replica-

tion reduce kernel performance since the frequency is reduced with more HBM2

banks and newer interconnection networks are necessary to fully exploit the HBM2

bandwidth.

127





List of Figures

2.1 Intel Stratix 10 internal block diagram architecture. . . . . . . . . . . . 16

2.2 FPGA with an HBM memory as Intel Stratix 10 MX with 32 pseudo-

channels and 8 GB of memory across top and bottom interfaces. . . . . 18

2.3 HLS synthesis tool flow for Intel FPGAs. The lower part compares the

timing effort between HLS and traditional RTL design methodologies. . 20

2.4 Main elements of OpenCL BSP for FPGAs. � and � represent the BSP,

and � the kernel logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Heterogeneous system with an FPGA board and a CPU. . . . . . . . . . . 25

3.2 FPGA power measurement methods. . . . . . . . . . . . . . . . . . . . . 30

3.3 OpenCL compilation flow for Intel FPGA board. The box in yellow

correspond to generated files, in blue are FPGA execution stages and the

rest are the aoc compilation commands in each design stage: Emulation,

Intermediate compilation and Full deployment. . . . . . . . . . . . . . . 31

3.4 OpenCL Flow for a heterogeneous system with a host CPU, GPU and

FPGA devices. The host program in this thesis uses two host program-

ming frameworks: OpenCL and EngineCL with less code lines. . . . . . 32

4.1 Memory model proposal(in blue) in the optimization process of FPGA

kernels using HLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 FPGA block units for Intel OpenCL SDK with a) DDR4 and b) HBM memory. 37

4.3 Simplified model of a read operation in a single DRAM bank with an

Burst-Coalesced Aligned LSU. The parameter names in blue are used in

the model in Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Measured (Tmeas) and estimated (Tideal + Tovh) time for the burst-

coalesced aligned LSU varying the vectorization factor (v) and global

access (#ga) in two types of external memory: a) DDR4 1866 and b)

HBM2. The bars with dots and stripes represent Tideal and Tovh, respec-

tively. Kernels with non-saturated memory bandwidth (NS) are detected

(empty bars) and not estimated. . . . . . . . . . . . . . . . . . . . . . . 52

129



4.5 Measured (Tmeas) and estimated (Test) time are normalized to Tmeas for

δ = 1. The experiment varies δ with #lsu = 3 and v = 16 for burst-

coalesced aligned LSUs in two types of external memory: a) DDR4 1866

and b) HBM2, adjusting for special cases. . . . . . . . . . . . . . . . . . 53

4.6 Measured (TMeas) and Estimated (Tideal + Tovh) time for the burst-

coalesced non-aligned LSU varying the vectorization factor v and global

access (#ga) in two types of external memory: a)DDR4 1866 and b)

HBM2. Kernels with non-saturated memory bandwidth (NS) are de-

tected (empty bars) and not estimated. . . . . . . . . . . . . . . . . . . 54

4.7 Measured (Tmeas) and estimated (Test) time are normalized to TMeas in

δ = 1. The experiment varies δ with fixed values of #lsu = 3 and v = 16
for burst-coalesced non-aligned LSU in two types of external memory:

a) DDR4 1866 and b) HBM2. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Measured (Tmeas) and estimated (Tideal + Tovh) time for burst-coalesced

write-acknowledge LSU varying the vectorization factor v and global

access (#ga) in two types of external memory: a) DDR4 1866 and

b) HBM2. Kernels with non-saturated memory bandwidth (NS) are

detected (empty bars) and not estimated. . . . . . . . . . . . . . . . . . 55

4.9 Measured (Tmeas) and estimated (Tideal+Tovh) time for Atomic-pipelined

LSU varying the vectorization factor (v) and global access (#ga) in

a DDR4 1866 memory. Non-saturated memory bandwidth (NS) are

detected (empty bars) and not estimated. The time axis is in seconds

and logarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Frequencies Histogram for 18 kernel applications; the red dotted line

shows the required minimum frequency for maximizing bw_dram. . . . 57

4.11 Estimation error of the execution time and frequency error from pre-

synthesis report and after place-and-route in kernels that are limited by

a frequency under 400MHz after synthesis in HBM cases. . . . . . . . . 57

5.1 Programming flow alternatives for OpenVX using HLS for FPGA devices.

The yellow boxes show OpenVX functions implemented as OpenCL

functions and the green ones the OpenVX functions implemented as

kernels. The bottom boxes show host command queues, Qn, that manage

the kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Image functions categories implemented in HiFlipVX. . . . . . . . . . . 68

130



5.3 Resource comparison between Intel and Xilinx [83] FPGA at 100MHz

and vectorization equal to 1, for 6 sample OpenVX functions. . . . . . . 71

5.4 Latency and Initiation Interval for interface optimizations on edges in a

3x3 filter function (lower is better). . . . . . . . . . . . . . . . . . . . . 72

5.5 DRAM memory interconnection to a HiFlipVX graph. . . . . . . . . . . . 74

5.6 Efficiency (Frames Per Second) for canny edge detector with a HD image

varying coalescing to read DRAM memory (LSU width), higher is better. 74

5.7 HiFlipVX programming and compilation flow for Xilinx and Intel FPGAs. 75

5.8 Impact of node scalability on a) execution time; b) frequency; c) resource

utilization; and d) power consumption for the Multi-Gaussian synthetic

benchmark using the Stratix 10 GX. . . . . . . . . . . . . . . . . . . . . 76

5.9 OpenVX application graph diagrams. a) Canny edge detector, b) Census

transform, c)Autocontrast image, d) Skin tone detection. . . . . . . . . . 77

5.10 Latency of canny edge for HiFlipVX and AFFIX using an Stratix 10 GX

FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.11 Code comparison between a reduced version of OpenVX, AFFIX, and

HiFlipVX. OpenVX definitions and FPGA optimization parameters are

marked in orange and grey, respectively. . . . . . . . . . . . . . . . . . . 81

5.12 Resource usage per logic unit relative the total units on Stratix 10 GX

and Stratix 10 MX for AFFIX and HiFlipVX implementations. . . . . . . . 83

5.13 HiflipVX tiling with HBM2 memory bandwidth. A) Measured time and

estimated ideal time. B) Memory bandwidth efficiency is the relation

between measured and maximum expected memory bandwidth; and fre-

quency efficiency is the relation between kernel frequency and minimum

required frequency (400MHz). C)Resource performance is the relation

between total memory bandwidth vs. logic resources usage (ALM). . . . 84

6.1 EngineCL architecture: tiers, modules and applied patterns. The high-

lighted modules are extended to support FPGAs. . . . . . . . . . . . . . 91

6.2 Three different alternatives of schedulers to alleviated the differences

among applications and devices [25]. . . . . . . . . . . . . . . . . . . . 92

6.3 Overview of command queue overlapping with the two command queues

and the two buffer sets (A and B). . . . . . . . . . . . . . . . . . . . . . 94

6.4 overlapping time performance varying the number of work load parti-

tions(chunks) of the problem in the case of communication-bound and

computation-bound problems in an FPGA. . . . . . . . . . . . . . . . . . 94

131



6.5 Normalized execution time to the worst for the Static scheduler. Work

proportions go up to 50% for two devices, and the third device performs

the remainder work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Dynamic scheduler throughput (GB/s) of CPU, GPU and FPGA with

chunk size variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Overall median performance of cooperative execution CPU+GPU+FPGA

with three load balancers for each benchmark. Times are normalized to

CPU in every benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Overall energy of cooperative execution CPU(C)+GPU(G)+FPGA(F)

with Static(St), Dynamic (Dy) and HGuided (HG) load balancers for

each benchmark. Energy are normalized to the CPU device in every

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Overall normalized energy-delay product of cooperative execution CPU+GPU+FPGA

with three load balancers for each benchmark. The lower the better, and

Matrix Multiplication results have been zoomed for clarity. . . . . . . . . 101

8.1 Relative memory bandwidth requirements [167]. . . . . . . . . . . . . 124

8.2 Performance impact of Kernel replication in CPU and FPGA devices for

the vector add kernel application. . . . . . . . . . . . . . . . . . . . . . 126

8.3 Static load balancing exploration for a CPU and FPGA+HBM2 varying

the workload distribution and the number of kernel copies in FPGA. The

bar in red shows the best heterogeneous execution in time and energy. . 127

132



List of Tables

2.1 CPU, GPU and FPGA characteristics as accelerators in a heterogeneous

system, classifying in three categories: best, worst, and intermediate. . . 15

2.2 Intel FPGAs used in board accelerators. . . . . . . . . . . . . . . . . . . . 17

3.1 Device combinations used as heterogeneous system in this thesis. The

host, FPGA and GPU capabilities are described in Tables 3.2, 3.4, and 3.3. 26

3.2 Main characteristics of the three host systems. . . . . . . . . . . . . . . . 27

3.3 Characteristic of NVIDIA GeForce GTX TITAN X GPU board. . . . . . . . 28

3.4 Characteristic of Terasic DE5-net, Intel Stratix 10 GX, and Intel Stratix 10

MX (early version) board development kits. . . . . . . . . . . . . . . . . 29

4.1 LSU types and their modifiers in global memory interconnect. The code

snippets are from Intel FPGA SDK [65]. . . . . . . . . . . . . . . . . . . . 38

4.2 Description of model parameters. The param label for the Verilog source

refers to a variable name in a Verilog instance. . . . . . . . . . . . . . . . 42

4.3 Fixed variable value to evaluate the LSU model on Stratix 10 GX and

Stratix 10 MX with a DDR4 1866 and HBM2 memory respectively. All

variables are defined in Table 4.2. . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Kernel applications and estimated time in two memories: DDR4 1866 and

HBM2.GMI- global memory interconnect BCA- burst-coalesced aligned

LSU. BCNA- burst-coalesced non-aligned LSU. ACK- burst-coalesced write-

acknowledge LSU. M- Measured. E- Estimated. . . . . . . . . . . . . . . . 58

4.5 Execution time estimated error; μb, BCA, BCNA, and ACK refer to mi-

crobenchmark, burst-coalesced aligned, burst-coalesced non-aligned, and

burst-coalesced write-acknowledge LSUs, respectively. . . . . . . . . . . . 60

5.1 Programming flow alternatives to implement the OpenVX standard. . . . 67

5.2 Estimated resource usage for each OpenVX function in Canny edge graph

using HiFlipVX with a 4K image and vectorization factor of 8 on a Stratix

10 GX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

133



5.3 Estimated resource usage for each OpenVX function in Autocontrast graph

using HiFlipVX, with a HD image and vectorization factor of 1. . . . . . . 78

5.4 Estimated resource usage for each function in Census transform using

HiFlipVX, with a 4K Image and vectorization factor of 8. . . . . . . . . . . 79

5.5 Estimated resource usage for each OpenVX function in Skin tone graph

using HiFlipVX, with an HD image and vectorization factor of 1. . . . . . 79

5.6 HiFlipVX results on a Intel Stratix 10 GX and Intel Stratix 10 MX using a

4K image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Comparison between HiFlipVX and AFFIX on a Intel Stratix 10 GX and

Intel Stratix 10 MX using a 4K image. . . . . . . . . . . . . . . . . . . . . 82

6.1 Work-items and FPGA characteristics: Clock frequency(CF), initialization

interval (II), and FPGA kernel resources: adaptive logic module (AL),

logic registers (LR), memory blocks (MB), and DSP. . . . . . . . . . . . . 95

6.2 Median performance improvement (PI) relative to the fastest single device

execution, imbalance (IM), and average number of chunks (#C) for Static,

Dynamic, and HGuided policies per benchmark. . . . . . . . . . . . . . . 98

6.3 Average power (W) for single device configurations. I, P, DR, HR rep-

resents Idle, Programmed, Device Running, and Host Running power,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

134



Listings

4.1 OpenCL Code for access patterns in Table 4.1 . . . . . . . . . . . . . . . . 37

4.2 Atomic-pipelined add prototype function . . . . . . . . . . . . . . . . . . 48

4.3 OpenCL template microbenchmark to vary global access number. . . . . . 50

5.1 vx_image for virtual image implementation with Intel streams support . . 72

5.2 vx_image for image implementation with Intel DRAM support . . . . . . 73

8.1 OpenCL kernel replication for FPGA + HBM2 memory, in Line 1 is the

device code and in the Line 16 is the host code with EngineCL framework 125

135





137


