149 research outputs found

    A service-oriented approach to embedded component-based manufacturing automation

    Get PDF
    This thesis is focused on the application of Component-Based (CB) technology to shop oor devices using a Service Oriented Architecture (SOA) and Web Services (WS) for the purpose of realising future generation agile manufacturing systems. The environment of manufacturing enterprises is now characterised by frequently changing market demands, time-to-market pressure, continuously emerging new technologies and global competition. Under these circumstances, manufacturing systems need to be agile and automation systems need to support this agility. More speci cally, an open, exible automation environment with plug and play connectivity is needed. Technically, this requires the easy connectivity of hardware devices and software components from di erent vendors. Functionally, there is a need of interoperability and integration of control functions on di erent hierarchical levels ranging from eld level to various higher level applications such as process control and operations management services. [Continues.

    Coalition based approach for shop floor agility – a multiagent approach

    Get PDF
    Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThis thesis addresses the problem of shop floor agility. In order to cope with the disturbances and uncertainties that characterise the current business scenarios faced by manufacturing companies, the capability of their shop floors needs to be improved quickly, such that these shop floors may be adapted, changed or become easily modifiable (shop floor reengineering). One of the critical elements in any shop floor reengineering process is the way the control/supervision architecture is changed or modified to accommodate for the new processes and equipment. This thesis, therefore, proposes an architecture to support the fast adaptation or changes in the control/supervision architecture. This architecture postulates that manufacturing systems are no more than compositions of modularised manufacturing components whose interactions when aggregated are governed by contractual mechanisms that favour configuration over reprogramming. A multiagent based reference architecture called Coalition Based Approach for Shop floor Agility – CoBASA, was created to support fast adaptation and changes of shop floor control architectures with minimal effort. The coalitions are composed of agentified manufacturing components (modules), whose relationships within the coalitions are governed by contracts that are configured whenever a coalition is established. Creating and changing a coalition do not involve programming effort because it only requires changes to the contract that regulates it

    Component-based control system development for agile manufacturing machine systems

    Get PDF
    It is now a common sense that manufactures including machine suppliers and system integrators of the 21 st century will need to compete on global marketplaces, which are frequently shifting and fragmenting, with new technologies continuously emerging. Future production machines and manufacturing systems need to offer the "agility" required in providing responsiveness to product changes and the ability to reconfigure. The primary aim for this research is to advance studies in machine control system design, in the context of the European project VIR-ENG - "Integrated Design, Simulation and Distributed Control of Agile Modular Machinery"

    Web-based strategies in the manufacturing industry

    Get PDF
    The explosive growth of Internet-based architectures is allowing an efficient access to information resources over geographically dispersed areas. This fact is exerting a major influence on current manufacturing practices. Business activities involving customers, partners, employees and suppliers are being rapidly and efficiently integrated through networked information management environments. Therefore, efforts are required to take advantage of distributed infrastructures that can satisfy information integration and collaborative work strategies in corporate environments. In this research, Internet-based distributed solutions focused on the manufacturing industry are proposed. Three different systems have been developed for the tooling sector, specifically for the company Seco Tools UK Ltd (industrial collaborator). They are summarised as follows. SELTOOL is a Web-based open tool selection system involving the analysis of technical criteria to establish appropriate selection of inserts, toolholders and cutting data for turning, threading and grooving operations. It has been oriented to world-wide Seco customers. SELTOOL provides an interactive and crossed-way of searching for tooling parameters, rather than conventional representation schemes provided by catalogues. Mechanisms were developed to filter, convert and migrate data from different formats to the database (SQL-based) used by SELTOOL.TTS (Tool Trials System) is a Web-based system developed by the author and two other researchers to support Seco sales engineers and technical staff, who would perform tooling trials in geographically dispersed machining centres and benefit from sharing data and results generated by these tests. Through TTS tooling engineers (authorised users) can submit and retrieve highly specific technical tooling data for both milling and turning operations. Moreover, it is possible for tooling engineers to avoid the execution of new tool trials knowing the results of trials carried out in physically distant places, when another engineer had previously executed these trials. The system incorporates encrypted security features suitable for restricted use on the World Wide Web. An urgent need exists for tools to make sense of raw data, extracting useful knowledge from increasingly large collections of data now being constructed and made available from networked information environments. This explosive growth in the availability of information is overwhelming the capabilities of traditional information management systems, to provide efficient ways of detecting anomalies and significant patterns in large sets of data. Inexorably, the tooling industry is generating valuable experimental data. It is a potential and unexplored sector regarding the application of knowledge capturing systems. Hence, to address this issue, a knowledge discovery system called DISKOVER was developed. DISKOVER is an integrated Java-application consisting of five data mining modules, able to be operated through the Internet. Kluster and Q-Fast are two of these modules, entirely developed by the author. Fuzzy-K has been developed by the author in collaboration with another research student in the group at Durham. The final two modules (R-Set and MQG) have been developed by another member of the Durham group. To develop Kluster, a complete clustering methodology was proposed. Kluster is a clustering application able to combine the analysis of quantitative as well as categorical data (conceptual clustering) to establish data classification processes. This module incorporates two original contributions. Specifically, consistent indicators to measure the quality of the final classification and application of optimisation methods to the final groups obtained. Kluster provides the possibility, to users, of introducing case-studies to generate cutting parameters for particular Input requirements. Fuzzy-K is an application having the advantages of hierarchical clustering, while applying fuzzy membership functions to support the generation of similarity measures. The implementation of fuzzy membership functions helped to optimise the grouping of categorical data containing missing or imprecise values. As the tooling database is accessed through the Internet, which is a relatively slow access platform, it was decided to rely on faster Information retrieval mechanisms. Q-fast is an SQL-based exploratory data analysis (EDA) application, Implemented for this purpose

    Service-oriented architecture for device lifecycle support in industrial automation

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores Especialidade: Robótica e Manufactura IntegradaThis thesis addresses the device lifecycle support thematic in the scope of service oriented industrial automation domain. This domain is known for its plethora of heterogeneous equipment encompassing distinct functions, form factors, network interfaces, or I/O specifications supported by dissimilar software and hardware platforms. There is then an evident and crescent need to take every device into account and improve the agility performance during setup, control, management, monitoring and diagnosis phases. Service-oriented Architecture (SOA) paradigm is currently a widely endorsed approach for both business and enterprise systems integration. SOA concepts and technology are continuously spreading along the layers of the enterprise organization envisioning a unified interoperability solution. SOA promotes discoverability, loose coupling, abstraction, autonomy and composition of services relying on open web standards – features that can provide an important contribution to the industrial automation domain. The present work seized industrial automation device level requirements, constraints and needs to determine how and where can SOA be employed to solve some of the existent difficulties. Supported by these outcomes, a reference architecture shaped by distributed, adaptive and composable modules is proposed. This architecture will assist and ease the role of systems integrators during reengineering-related interventions throughout system lifecycle. In a converging direction, the present work also proposes a serviceoriented device model to support previous architecture vision and goals by including embedded added-value in terms of service-oriented peer-to-peer discovery and identification, configuration, management, as well as agile customization of device resources. In this context, the implementation and validation work proved not simply the feasibility and fitness of the proposed solution to two distinct test-benches but also its relevance to the expanding domain of SOA applications to support device lifecycle in the industrial automation domain

    Intelligent Agents and Their Potential for Future Design and Synthesis Environment

    Get PDF
    This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the workshop were to assess the status of intelligent agents technology and to identify the potential of software agents for use in future design and synthesis environment. The presentations covered the current status of agent technology and several applications of intelligent software agents. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results

    Internet-based solutions to support distributed manufacturing

    Get PDF
    With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture

    Service-oriented infrastructure to support the control, monitoring and management of a shop floor system

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresService-oriented Architecture (SOA) paradigm is becoming a broadly deployed standard for business and enterprise integration. It continuously spreads across the distinct layers of the enterprise organization and disparate domains of application, envisioning a unified communication solution. Service-oriented approaches are also entering the industrial automation domain in a top-down way. The recent application at device level has a direct impact on how industrial automation deployments will evolve. Similarly to other domains, the crescent ubiquity of smart devices is raising important lifecycle concerns related to device control, monitoring and management. From initial setup and deployment to system lifecycle monitoring and evolution, each device needs to be taken into account and to be easily reachable. The current work includes the specification and development of a modular, adaptive and open infrastructure to support the control, monitoring and management of devices and services in an industrial automation environment, such as a shop floor system. A collection of tools and services to be comprised in this same infrastructure will also be researched and implemented. Moreover, the main implementation focuses on a SOA-based infrastructure comprising SemanticWeb concepts to enhance the process of exchanging a device in an industrial automation environment. This is done by assisting (and even automate)this task supported by service and device semantic matching whenever a device has a problem. The infrastructure was implemented and tested in an educational shop floor setup composed by a set of distributed entities each one controlled by its own SOAready PLC. The performed tests revealed that the tasks of discovering and identifying new devices, as well as providing assistance when a device is down offered a valuable contribution and can increase the agility of the overall system when dealing with operation disruptions or modifications at device level

    Adapter module for self-learning production systems

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica, Sistemas e ComputadoresThe dissertation presents the work done under the scope of the NP7 Self-Learning project regarding the design and development of the Adapter component as a foundation for the Self-Learning Production Systems (SLPS). This component is responsible to confer additional proprieties to production systems such as lifecycle learning, optimization of process parameters and, above all, adaptation to different production contexts. Therefore, the SLPS will be an evolvable system capable to self-adapt and learn in response to dynamic contextual changes in manufacturing production process in which it operates. The key assumption is that a deeper use of data mining and machine learning techniques to process the huge amount of data generated during the production activities will allow adaptation and enhancement of control and other manufacturing production activities such as energy use optimization and maintenance. In this scenario, the SLPS Adapter acts as a doer and is responsible for dynamically adapting the manufacturing production system parameters according to changing manufacturing production contexts and, most important, according to the history of the manufacturing production process acquired during SLPS run time.To do this, a Learning Module has been also developed and embedded into the SLPS Adapter. The SLPS Learning Module represents the processing unit of the SLPS Adapter and is responsible to deliver Self-learning capabilities relying on data mining and operator’s feedback to up-date the execution of adaptation and context extraction at run time. The designed and implemented SLPS Adapter architecture is assessed and validated into several application scenario provided by three industrial partners to assure industrial relevant self-learning production systems. Experimental results derived by the application of the SLPS prototype into real industrial environment are also presented
    • …
    corecore