363 research outputs found

    Third order CMOS decimator design for sigma delta modulators

    Get PDF
    A third order Cascaded Integrated Comb (CIC) filter has been designed in 0.5μm n-well CMOS process to interface with a second order oversampling sigma-delta ADC modulator. The modulator was designed earlier in 0.5μm technology. The CIC filter is designed to operate with 0 to 5V supply voltages. The modulator is operated with ±2.5V supply voltage and a fixed oversampling ratio of 64. The CIC filter designed includes integrator, differentiator blocks and a dedicated clock divider circuit, which divides the input clock by 64. The CIC filter is designed to work with an ADC that operates at a maximum oversampling clock frequency of up to 25 MHz and with baseband signal bandwidth of up to 800 kHz. The design and performance of the CIC filter fabricated has been discussed

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    Design of a Comparator and an Amplifier in CMOS using standard logic gates

    Get PDF
    Using standard logic gates in CMOS, or standard-cells, has the advantage of full synthe- sizability, as well as the voltage scalability between technologies. In this work a general pur- pose standard-cell-based voltage comparator and amplifier are presented. The objective is to design a general purpose standard-cell-based comparator and ampli- fier in 130 nm CMOS by optimizing the already existing topologies with the aim of improving some of the specifications of the studied topologies. Various simulation testbenches were made to test the studied topologies of comparators and amplifiers, in which the results were compared. The top performing standard-cell com- parator and amplifier were then modified. After successfully designing the comparator, it was used in the design of an opamp-less Sigma-Delta modulator (ΣΔM). The proposed comparator is an OR-AND-Inverter-based comparator with dual inputs and outputs, achieving a delay of 109 ps, static input offset of 591 μV, and random offset of 10.42 μV, while dissipating 890 μW, when clocked at 1.5 GHz. The proposed amplifier is a single-path three-stage inverter-based operational transcon- ductance amplifier (OTA) with active common-mode feedback loop, achieving a DC gain of 63 dB, 1444 MHz of unity-gain bandwidth, 51º of phase margin while dissipating 1098 μW, considering a load of 1 pF. The proposed comparator was employed in the ΣΔM with a standard-cell based edge- triggered flip-flop. The ΣΔM, with a sampling frequency of 2 MHz and a signal bandwidth of 2.5 kHz, achieved a peak SNDR of 69 dB while dissipating only 136.7 μW.Utilizando portas lógicas básicas em CMOS oferece a vantagem de um circuito comple- tamente sintetizável, tal como o escalamento de tensão entre tecnologias. Neste trabalho são apresentados um comparador de tensão e um amplificador utilizando portas lógicas. O objetivo deste trabalho é desenhar um comparador e um amplificador utilizando por- tas lógicas através do estudo e otimização de topologias já existentes com a finalidade de me- lhoramento de algumas das especificações das mesmas. Foram realizados vários bancos de teste para testar as topologias estudadas de compa- radores e amplificadores, em que os resultados foram comparados. As topologias de compa- radores e amplificadores de portas lógicas com melhor performance foram então modificadas. Após o comparador ter sido projetado com sucesso, foi utilizado na projeção de um modula- dor Sigma-Delta (ΣΔM) opamp-less. O comparador proposto é um OR-AND-Inversor com duas entradas e saídas, que apre- senta um atraso de 109 ps, offset estático na entrada de 591 μV, offset aleatório de 10.42 μV, enquanto dissipando 890 μW, utilizando uma frequência de relógio de 1.5 GHz O amplificador proposto é um amplificador operacional de transcondutância single- path three-stage inverter-based com um loop ativo de realimentação do modo-comum, que apresenta um ganho DC de 63 dB, 1444 MHz de ganho-unitário de largura de banda, 51º de margem de fase e dissipando 1098 μW, considerando uma carga de 1 pF. O comparador proposto foi aplicado no ΣΔM com um flip-flop edge-triggered baseado em portas lógicas. O ΣΔM, com uma frequência de amostragem de 2 MHz e uma largura de banda de 2.5 kHz, apresentou um SNDR máximo de 69 dB enquanto dissipando apenas 136.7 μW

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    Switched Current Sigma-Delta Modulator with a New Comparator Structure Designed Based on VHDL-AMS Description

    Get PDF
    The paper presents a VHDL-AMS based approach to the Switched-Current (SI) Sigma-Delta Modulator design. The prototype VHDL-AMS description, with the help of elaborated EDA tools, is automatically translated into the SI realization. Another tool helps the designer to create the layout. The paper also describes a new current mode comparator, which is used in the design. Postlayout simulation results are presented

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    A low-power delta-sigma modulator ADC for sensor system applications

    Get PDF
    This paper discusses a third-order tri-level quantizer delta-sigma modulator analog-digital converter (ADC) for cascaded integrators with distributed feedback (CIFB) and cascaded integrators with distributed feedforward (CIFF) structure for sensor system applications. The signal transfer function (STF) and noise transfer function (NTF) discussed for poles and zeroes. Oversampling ratio (OSR) and different quantizer level presented for the modulator structure to trade-off the targeted bandwidth and complexity of increased quantizer level. NTF zero optimization technique also implemented to further reduce inband quantization noise by shaping at high frequency, which is later filtered by digital low-pass filter. Mismatch simulation results also performed for quantizer levels considering the performance degradation of the modulator. Operational amplifier (op-amp) for the front-end integrator optimized for minimum power consumption by considering low finite DC-gain, limited slew-rate, minimum required gain-bandwidth product (GBW). The proposed model simulations provided and discussed. Non-ideal effect for the proposed complete modulator CIFF structure for switched-capacitor circuit level implementation performed. The non-ideal parameters like thermal noise, sampling jitter, white noise, and switch nonlinearity also discussed. Modeling simulation results for CIFF structure with trilevel quantizer, shows that proposed modulator structure can achieve signal-to-noise ratio (SNR) of 133dB for sensor system bandwidth of 10kHz with OSR = 128

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Low-Power Delta-Sigma Modulators for Medical Applications

    Full text link
    • …
    corecore