1,439 research outputs found

    Millimeter-Wave Concurrent Dual-Band Sige Bicmos Rfic Phased-Array Transmitter and Components

    Get PDF
    A concurrent dual-band phased-array transmitter (TX) and its constituent components are studied in this dissertation. The TX and components are designed for the unlicensed bands, 22–29 and 57–64 GHz, using a 0.18-μm BiCMOS technology. Various studies have been done to design the components, which are suitable for the concurrent dual-band phased-array TX. The designed and developed components in this study are an attenuator, switch, phase shifter, power amplifier and power divider. Attenuators play a key role in tailoring main beam and side-lobe patterns in a phased-array TX. To perform the function in the concurrent dual-band phased-array TX, a 22–29 and 57–64 GHz concurrent dual-band attenuator with low phase variations is designed. Signal detection paths are employed at the output of the phased-array TX to monitor the phase and amplitude deviations/errors, which are larger in the high-frequency design. The detected information enables the TX to have an accurate beam tailoring and steering. A 10–67 GHz wide-band attenuator, covering the dual bands, is designed to manipulate the amplitude of the detected signal. New design techniques for an attenuator with a wide attenuation range and improved flatness are proposed. Also, a topology of dual-function circuit, attenuation and switching, is proposed. The switching turns on and off the detection path to minimize the leakages while the path is not used. Switches are used to minimize the number of components in the phased-array transceiver. With the switches, some of the bi-directional components in the transceiver such as an attenuator, phase shifter, filter, and antenna can be shared by the TX and receiver (RX) parts. In this dissertation, a high-isolation switch with a band-pass filtering response is proposed. The band-pass filtering response suppresses the undesired harmonics and intermodulation products of the TX. Phase shifters are used in phased-array TXs to steer the direction of the beam. A 24-GHz phase shifter with low insertion loss variation is designed using a transistor-body-floating technique for our phased-array TX. The low insertion loss variation minimizes the interference in the amplitude control operation (by attenuator or variable gain amplifier) in phased-array systems. BJTs in a BiCMOS process are characterized across dc to 67 GHz. A novel characterization technique, using on-wafer calibration and EM-based de-embedding both, is proposed and its accuracy at high frequencies is verified. The characterized BJT is used in designing the amplifiers in the phased-array TX. A concurrent dual-band power amplifier (PA) centered at 24 and 60 GHz is proposed and designed for the dual-band phased-array TX. Since the PA is operating in the dual frequency bands simultaneously, significant linearity issues occur. To resolve the problems, a study to find significant intermodulation (IM) products, which increase the third intermodulation (IM3) products most, has been done. Also, an advanced simulation and measurement methodology using three fundamental tones is proposed. An 8-way power divider with dual-band frequency response of 22–29 and 57–64 GHz is designed as a constituent component of the phased-array TX

    Enhancing Digital Controllability in Wideband RF Transceiver Front-Ends for FTTx Applications

    Get PDF
    Enhancing the digital controllability of wideband RF transceiver front-ends helps in widening the range of operating conditions and applications in which such systems can be employed. Technology limitations and design challenges often constrain the extensive adoption of digital controllability in RF front-ends. This work focuses on three major aspects associated with the design and implementation of a digitally controllable RF transceiver front-end for enhanced digital control. Firstly, the influence of the choice of semiconductor technology for a system-on-chip integration of digital gain control circuits are investigated. The digital control of gain is achieved by utilizing step attenuators that consist of cascaded switched attenuation stages. A design methodology is presented to evaluate the influence of the chosen technology on the performance of the three conventionally used switched attenuator topologies for desired attenuation levels, and the constraints that the technology suitable for high amplification places on the attenuator performance are examined. Secondly, a novel approach to the integrated implementation of gain slope equalization is presented, and the suitability of the proposed approach for integration within the RF front-end is verified. Thirdly, a sensitivity-aware implementation of a peak power detector is presented. The increased employment of digital gain control also increases the requirements on the sensitivity of the power detector employed for adaptive power and gain control. The design, implementation, and measurement results of a state-of-the-art wideband power detector with high sensitivity and large dynamic range are presented. The design is optimized to provide a large offset cancellation range, and the influence of offset cancellation circuits on the sensitivity of the power detector is studied. Moreover, design considerations for high sensitivity performance of the power detector are investigated, and the noise contributions from individual sub-circuits are evaluated. Finally, a wideband RF transceiver front-end is realized using a commercially available SiGe BiCMOS technology to demonstrate the enhancements in the digital controllability of the system. The RF front-end has a bandwidth of 500 MHz to 2.5 GHz, an input dynamic range of 20 dB, a digital gain control range larger than 30 dB, a digital gain slope equalization range from 1.49 dB/GHz to 3.78 dB/GHz, and employs a power detector with a sensitivity of -56 dBm and dynamic range of 64 dB. The digital control in the RF front-end is implemented using an on-chip serial-parallel-interface (SPI) that is controlled by an external micro-controller. A prototype implementation of the RF front-end system is presented as part of an RFIC intended for use in optical transceiver modules for fiber-to-the-x applications

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    A 7-bit reverse-saturated SiGe HBT discrete gain step attenuator

    Get PDF
    In this study, the analysis, design and measured results of a fully integrated 7-Bit step attenuator implemented in a 0.25-μm Silicon-Germanium (SiGe) BiCMOS process technology, are described. The attenuator is designed based on delicately ordered and cascaded Π/T type attenuation blocks, which are comprised of series/shunt switches employing SiGe hetero-junction bipolar transistors (HBTs) with peak fT/fmax of 110/180 GHz. HBTs are employed as a series switch to decrease the insertion-loss of the attenuator. Moreover, to authors’ best knowledge, this is the first study presenting the effect of employing reverse-saturated HBTs as a shunt switch for each attenuation blocks. Thanks to this advancement, the highest input-referred 1-dB compression point (IP1dB) is reported for Si-based similar studies. This method also decreases the insertion-loss of the proposed attenuator. The measurements result in the state-of-the-art performance with 28.575 dB attenuation range by 0.225 dB gain steps while maintaining 7-bit amplitude resolution across 6.6 GHz to 12.8 GHz frequency band, where RMS phase error remains below 3.3∘ and insertion loss (IL) is less than 12.4 dB. The measured IP1dB of the attenuator is 13.5 dBm while drawing 8 mA from 3.3 V supply. The die occupies an area of 1.37 mm x 0.56 mm excluding pads

    Design of Programmable Phase Shifters and Attenuators in 130nm CMOS Technology

    Get PDF
    This thesis proposes the analysis and design of a phase shifter and a programmable attenuator for Doherty Power Amplifier (DPA) application, using the Infineon 130nm CMOS technology. The DPA is an architecture often used in nowadays cellular base-stations and the control of phase and amplitude in this system allows to optimize its efficienc

    Bidirectional common-path for 8-to-24 gHz low noise SiGe BiCMOS T/R module core-chip

    Get PDF
    This thesis is based on the design of an 8-to-24 GHz low noise SiGe BiCMOS Transmitter/Receiver (T/R) Module core-chip in a small area by bidirectional common-path. The next-generation phased array systems require multi-functionality and multi-band operation to form multi-purpose integrated circuits. Wide bandwidth becomes a requirement for the system in various applications, such as electronic warfare, due to leading cheaper and lighter system solutions. Although III-V technologies can satisfy the high-frequency specifications, they are expensive and have a large area. The silicon-based technologies promise high integration capability with low cost, but they sacrifice from the performance to result in desired bandwidth. The presented dissertation targets system and circuit level solutions on the described content. The wideband core-chip utilized a bidirectional common path to surpass the bandwidth limitations. The bidirectionality enhances the bandwidth, noise, gain and area of the transceiver by the removal of the repetitive blocks in the unidirectional common chain. This approach allows succeeding desired bandwidth and compactness without sacrificing from the other high-frequency parameters. The realized core-chip has 31.5 and 32 dB midband gain for the receiver and transmitter respectively, with a + 2.1 dB /GHz of positive slope. Its RMS phase and amplitude errors are lower than 5.60 and 0.8 dB, respectively for 4-bit of resolution. The receiver noise figure is lower than 5 dB for the defined bandwidth while dissipating 112 mW of power in a 5.5 mm2 area. The presented results verify the advantage of the favored architecture and might replace the III-V based counterparts

    Design and analysis of an attenuator-based, four-channel, differential, 150 MHz, linear-in-dB VGA with sub-nanosecond delay dispersion for PET applications

    Get PDF
    Positron Emission Tomography (PET) is a medical imaging methodology based on the measurement of the concentrations of a positron-emitting radioisotope inside a three dimensional object. PET systems require hundreds of channels of high perfonnance detector readout electronics. The Phase I ASIC was developed in 1992 to reduce the cost, power consumption and complexity of PET systems and to improve reliability. The Phase I ASIC has been very successful and is a key component in thousands of commercial PET units currently in use

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Low-Overhead Built-In Self-Test for Advanced RF Transceiver Architectures

    Get PDF
    abstract: Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope and phase signals and the finite envelope bandwidth can create intermodulation distortion (IMD) that leads to violation of spectral mask requirements. Characterization and calibration of these parameters with analytical model would reduce the test time and cost considerably. Hence, a technique to measure and calibrate impairments of the polar transceiver in the loop-back mode is proposed. Secondly, robust amplitude measurement technique for RF BIST application and BIST circuits for loop-back connection are discussed. Test techniques using analytical model are explained and BIST circuits are introduced. Next, a self-compensating built-in self-test solution for RF Phased Array Mismatch is proposed. In the proposed method, a sinusoidal test signal with unknown amplitude is applied to the inputs of two adjacent phased array elements and measure the baseband output signal after down-conversion. Mathematical modeling of the circuit impairments and phased array behavior indicates that by using two distinct input amplitudes, both of which can remain unknown, it is possible to measure the important parameters of the phased array, such as gain and phase mismatch. In addition, proposed BIST system is designed and fabricated using IBM 180nm process and a prototype four-element phased-array PCB is also designed and fabricated for verifying the proposed method. Finally, process independent gain measurement via BIST/DUT co-design is explained. Design methodology how to reduce performance impact significantly is discussed. Simulation and hardware measurements results for the proposed techniques show that the proposed technique can characterize the targeted impairments accurately.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore