542 research outputs found

    Equalization-Based Digital Background Calibration Technique for Pipelined ADCs

    Get PDF
    In this paper, we present a digital background calibration technique for pipelined analog-to-digital converters (ADCs). In this scheme, the capacitor mismatch, residue gain error, and amplifier nonlinearity are measured and then corrected in digital domain. It is based on the error estimation with nonprecision calibration signals in foreground mode, and an adaptive linear prediction structure is used to convert the foreground scheme to the background one. The proposed foreground technique utilizes the LMS algorithm to estimate the error coefficients without needing high-accuracy calibration signals. Several simulation results in the context of a 12-b 100-MS/s pipelined ADC are provided to verify the usefulness of the proposed calibration technique. Circuit-level simulation results show that the ADC achieves 28-dB signal-to-noise and distortion ratio and 41-dB spurious-free dynamic range improvement, respectively, compared with the noncalibrated ADC

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    A 12-bit, 40 msamples/s, low-power, low-area pipeline analog-to-digital converter in CMOS 0.18 mum technology.

    Get PDF
    With advancements in digital signal processing in recent years, the need for high-speed, high-resolution analog-to-digital converters (ADCs) which can be used in the analog front-end has been increasing. Some examples of these applications are image and video signal processing, wireless communications and asymmetrical digital subscriber line (ADSL). In CMOS integrated circuit design, it is desirable to integrate the digital circuit and the ADC in one microchip to reduce the cost of fabrication. Consequently the power dissipation and area of the ADCs are important design factors. The original contributions in this thesis are as follows. Since the performance of pipeline ADCs significantly depends on the op-amps and comparators circuits, the performance of various comparators is analyzed and the effect of op-amp topology on the performance of pipeline ADCs is investigated. This thesis also presents a novel architecture for design of low-power and low-area pipelined ADCs which will be more useful for very low voltage applications in the future. At the schematic level, a low-power CMOS implementation of the current-mode MDAC is presented and an improved voltage comparator is designed. With the proposed design and the optimization methodology it is possible to reduce power dissipation and area compared with conventional fully differential schemes.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .M64. Source: Masters Abstracts International, Volume: 43-01, page: 0281. Adviser: C. Chen. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF

    Design of Low Power and Power Scalable Pipelined ADC Using Current Modulated Power Scale

    Get PDF
    This work represents a power scalable pipelined ADC, which achieves low power variation depends upon the sampling rate and enables variation in throughput. The keys to power scalability at high sampling rates were current modulation-based architecture and the development of novel rapid power-on Op-amp, which can completely and quickly power on/off by the feedback approach. The result achieved in this design is as high as 50 Msps and as low as 1 ksps, keeping some important parameters of ADC as ENOB and SNDR are almost constant. Power variation in ADC has a flexible range from 7.5 µW to 17 mW, which is lower power consumption than previous works

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS

    Get PDF
    The pipelined ADC is a popular Nyquist-rate data converter due to its attractive feature of maintaining high accuracy at high conversion rate with low complexity and power consumption. The rapid growth of its application such as mobile system, digital video and high speed data acquisition is driving the pipelined ADC design towards higher speed, higher precision with lower supply voltage and power consumption. This thesis project aims at modeling and implementation of a pipelined ADC with high speed and low power consumption
    corecore