20,263 research outputs found

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Distributed situation awareness in dynamic systems: Theoretical development and application of an ergonomics methodology

    Get PDF
    The purpose of this paper is to propose foundations for a theory of situation awareness based on the analysis of interactions between agents (i.e., both human and non-human) in subsystems. This approach may help promote a better understanding of technology-mediated interaction in systems, as well as helping in the formulation of hypotheses and predictions concerning distributed situation awareness. It is proposed that agents within a system each hold their own situation awareness which may be very different from (although compatible with) other agents. It is argued that we should not always hope for, or indeed want, sharing of this awareness, as different system agents have different purposes. This view marks situation awareness as a 1 dynamic and collaborative process that binds agents together on tasks on a moment-by-moment basis. Implications of this viewpoint for development of a new theory of, and accompanying methodology for, distributed situation awareness are offered

    Development of a Model for Mitigating Fire Spread in Multi-Storey Buildings

    Get PDF
    In the developing nations that are located in the tropical region; there is a growing trend of fire incidence in buildings without adequate development of fire prevention and/or reduction protocol. Thus, this study addresses the growth and spread of fire in multi-storey buildings. The rooms are structured as cells in order to reduce the flame spread from a single fuel item, by heat release, to other neighbouring items or rooms (otherwise known as cells). The philosophy is to reduce the advent of vertical and horizontal fire spread. Thus, the mathematical model for the spread of fire in buildings over a solid fuel surface is therefore developed using the adaptation, development and simulation of cellular automata (CA) discrete model. The von Neumann neighbourhood cell configuration is adopted. Hence, the surface of the fuel is analysed using a regular square array (i.e. cells), while the flame spread is depicted as a series of ignitions of surface elements. In which case, ignition of an element is evaluated by a combination of critical surface ignition temperature and cellular automata discrete techniques. The work displays the movement of fire, from its origin of ignition to other fuel igniting elements around it. Consequently, this spread to other parts of the building. However, the technique presented in this work attempts to reduce the rate of growth of the fire spread using the predictive fire growth probability approach. In other words, the application of the cellular automata, using a multi-storey building, is herein presented. The study has potential to advance knowledge of technical approach to stop fire spread in multi-storey building. Thus it improves fire risk management as well as reducing magnitude of fire disaster and losses in the multi-storey buildings

    Collected notes from the Benchmarks and Metrics Workshop

    Get PDF
    In recent years there has been a proliferation of proposals in the artificial intelligence (AI) literature for integrated agent architectures. Each architecture offers an approach to the general problem of constructing an integrated agent. Unfortunately, the ways in which one architecture might be considered better than another are not always clear. There has been a growing realization that many of the positive and negative aspects of an architecture become apparent only when experimental evaluation is performed and that to progress as a discipline, we must develop rigorous experimental methods. In addition to the intrinsic intellectual interest of experimentation, rigorous performance evaluation of systems is also a crucial practical concern to our research sponsors. DARPA, NASA, and AFOSR (among others) are actively searching for better ways of experimentally evaluating alternative approaches to building intelligent agents. One tool for experimental evaluation involves testing systems on benchmark tasks in order to assess their relative performance. As part of a joint DARPA and NASA funded project, NASA-Ames and Teleos Research are carrying out a research effort to establish a set of benchmark tasks and evaluation metrics by which the performance of agent architectures may be determined. As part of this project, we held a workshop on Benchmarks and Metrics at the NASA Ames Research Center on June 25, 1990. The objective of the workshop was to foster early discussion on this important topic. We did not achieve a consensus, nor did we expect to. Collected here is some of the information that was exchanged at the workshop. Given here is an outline of the workshop, a list of the participants, notes taken on the white-board during open discussions, position papers/notes from some participants, and copies of slides used in the presentations

    Fuselage ventilation due to wind flow about a postcrash aircraft

    Get PDF
    Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates

    A Simple Cellular Automaton Model for Influenza A Viral Infections

    Full text link
    Viral kinetics have been extensively studied in the past through the use of spatially homogeneous ordinary differential equations describing the time evolution of the diseased state. However, spatial characteristics such as localized populations of dead cells might adversely affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In order to investigate the influence of spatial heterogeneities on viral spread, a simple 2-D cellular automaton (CA) model of a viral infection has been developed. In this initial phase of the investigation, the CA model is validated against clinical immunological data for uncomplicated influenza A infections. Our results will be shown and discussed.Comment: LaTeX, 12 pages, 18 EPS figures, uses document class ReTeX4, and packages amsmath and SIunit
    • …
    corecore