1,968 research outputs found

    An On-line BIST RAM Architecture with Self Repair Capabilities

    Get PDF
    The emerging field of self-repair computing is expected to have a major impact on deployable systems for space missions and defense applications, where high reliability, availability, and serviceability are needed. In this context, RAM (random access memories) are among the most critical components. This paper proposes a built-in self-repair (BISR) approach for RAM cores. The proposed design, introducing minimal and technology-dependent overheads, can detect and repair a wide range of memory faults including: stuck-at, coupling, and address faults. The test and repair capabilities are used on-line, and are completely transparent to the external user, who can use the memory without any change in the memory-access protocol. Using a fault-injection environment that can emulate the occurrence of faults inside the module, the effectiveness of the proposed architecture in terms of both fault detection and repairing capability was verified. Memories of various sizes have been considered to evaluate the area-overhead introduced by this proposed architectur

    Memory Networks

    Full text link
    We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs

    The Role of Consciousness in Memory

    Get PDF
    Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated

    Reliable Low-Power High Performance Spintronic Memories

    Get PDF
    Moores Gesetz folgend, ist es der Chipindustrie in den letzten fünf Jahrzehnten gelungen, ein explosionsartiges Wachstum zu erreichen. Dies hatte ebenso einen exponentiellen Anstieg der Nachfrage von Speicherkomponenten zur Folge, was wiederum zu speicherlastigen Chips in den heutigen Computersystemen führt. Allerdings stellen traditionelle on-Chip Speichertech- nologien wie Static Random Access Memories (SRAMs), Dynamic Random Access Memories (DRAMs) und Flip-Flops eine Herausforderung in Bezug auf Skalierbarkeit, Verlustleistung und Zuverlässigkeit dar. Eben jene Herausforderungen und die überwältigende Nachfrage nach höherer Performanz und Integrationsdichte des on-Chip Speichers motivieren Forscher, nach neuen nichtflüchtigen Speichertechnologien zu suchen. Aufkommende spintronische Spe- ichertechnologien wie Spin Orbit Torque (SOT) und Spin Transfer Torque (STT) erhielten in den letzten Jahren eine hohe Aufmerksamkeit, da sie eine Reihe an Vorteilen bieten. Dazu gehören Nichtflüchtigkeit, Skalierbarkeit, hohe Beständigkeit, CMOS Kompatibilität und Unan- fälligkeit gegenüber Soft-Errors. In der Spintronik repräsentiert der Spin eines Elektrons dessen Information. Das Datum wird durch die Höhe des Widerstandes gespeichert, welche sich durch das Anlegen eines polarisierten Stroms an das Speichermedium verändern lässt. Das Prob- lem der statischen Leistung gehen die Speichergeräte sowohl durch deren verlustleistungsfreie Eigenschaft, als auch durch ihr Standard- Aus/Sofort-Ein Verhalten an. Nichtsdestotrotz sind noch andere Probleme, wie die hohe Zugriffslatenz und die Energieaufnahme zu lösen, bevor sie eine verbreitete Anwendung finden können. Um diesen Problemen gerecht zu werden, sind neue Computerparadigmen, -architekturen und -entwurfsphilosophien notwendig. Die hohe Zugriffslatenz der Spintroniktechnologie ist auf eine vergleichsweise lange Schalt- dauer zurückzuführen, welche die von konventionellem SRAM übersteigt. Des Weiteren ist auf Grund des stochastischen Schaltvorgangs der Speicherzelle und des Einflusses der Prozessvari- ation ein nicht zu vernachlässigender Zeitraum dafür erforderlich. In diesem Zeitraum wird ein konstanter Schreibstrom durch die Bitzelle geleitet, um den Schaltvorgang zu gewährleisten. Dieser Vorgang verursacht eine hohe Energieaufnahme. Für die Leseoperation wird gleicher- maßen ein beachtliches Zeitfenster benötigt, ebenfalls bedingt durch den Einfluss der Prozess- variation. Dem gegenüber stehen diverse Zuverlässigkeitsprobleme. Dazu gehören unter An- derem die Leseintereferenz und andere Degenerationspobleme, wie das des Time Dependent Di- electric Breakdowns (TDDB). Diese Zuverlässigkeitsprobleme sind wiederum auf die benötigten längeren Schaltzeiten zurückzuführen, welche in der Folge auch einen über längere Zeit an- liegenden Lese- bzw. Schreibstrom implizieren. Es ist daher notwendig, sowohl die Energie, als auch die Latenz zur Steigerung der Zuverlässigkeit zu reduzieren, um daraus einen potenziellen Kandidaten für ein on-Chip Speichersystem zu machen. In dieser Dissertation werden wir Entwurfsstrategien vorstellen, welche das Ziel verfolgen, die Herausforderungen des Cache-, Register- und Flip-Flop-Entwurfs anzugehen. Dies erre- ichen wir unter Zuhilfenahme eines Cross-Layer Ansatzes. Für Caches entwickelten wir ver- schiedene Ansätze auf Schaltkreisebene, welche sowohl auf der Speicherarchitekturebene, als auch auf der Systemebene in Bezug auf Energieaufnahme, Performanzsteigerung und Zuver- lässigkeitverbesserung evaluiert werden. Wir entwickeln eine Selbstabschalttechnik, sowohl für die Lese-, als auch die Schreiboperation von Caches. Diese ist in der Lage, den Abschluss der entsprechenden Operation dynamisch zu ermitteln. Nachdem der Abschluss erkannt wurde, wird die Lese- bzw. Schreiboperation sofort gestoppt, um Energie zu sparen. Zusätzlich limitiert die Selbstabschalttechnik die Dauer des Stromflusses durch die Speicherzelle, was wiederum das Auftreten von TDDB und Leseinterferenz bei Schreib- bzw. Leseoperationen re- duziert. Zur Verbesserung der Schreiblatenz heben wir den Schreibstrom an der Bitzelle an, um den magnetischen Schaltprozess zu beschleunigen. Um registerbankspezifische Anforderungen zu berücksichtigen, haben wir zusätzlich eine Multiport-Speicherarchitektur entworfen, welche eine einzigartige Eigenschaft der SOT-Zelle ausnutzt, um simultan Lese- und Schreiboperatio- nen auszuführen. Es ist daher möglich Lese/Schreib- Konfilkte auf Bitzellen-Ebene zu lösen, was sich wiederum in einer sehr viel einfacheren Multiport- Registerbankarchitektur nieder- schlägt. Zusätzlich zu den Speicheransätzen haben wir ebenfalls zwei Flip-Flop-Architekturen vorgestellt. Die erste ist eine nichtflüchtige non-Shadow Flip-Flop-Architektur, welche die Speicherzelle als aktive Komponente nutzt. Dies ermöglicht das sofortige An- und Ausschalten der Versorgungss- pannung und ist daher besonders gut für aggressives Powergating geeignet. Alles in Allem zeigt der vorgestellte Flip-Flop-Entwurf eine ähnliche Timing-Charakteristik wie die konventioneller CMOS Flip-Flops auf. Jedoch erlaubt er zur selben Zeit eine signifikante Reduktion der statis- chen Leistungsaufnahme im Vergleich zu nichtflüchtigen Shadow- Flip-Flops. Die zweite ist eine fehlertolerante Flip-Flop-Architektur, welche sich unanfällig gegenüber diversen Defekten und Fehlern verhält. Die Leistungsfähigkeit aller vorgestellten Techniken wird durch ausführliche Simulationen auf Schaltkreisebene verdeutlicht, welche weiter durch detaillierte Evaluationen auf Systemebene untermauert werden. Im Allgemeinen konnten wir verschiedene Techniken en- twickeln, die erhebliche Verbesserungen in Bezug auf Performanz, Energie und Zuverlässigkeit von spintronischen on-Chip Speichern, wie Caches, Register und Flip-Flops erreichen

    On the functional test of the BTB logic in pipelined and superscalar processors

    Get PDF
    Electronic systems are increasingly used for safety-critical applications, where the effects of faults must be taken under control and hopefully avoided. For this purpose, test of manufactured devices is particularly important, both at the end of the production line and during the operational phase. This paper describes a method to test the logic implementing the Branch Prediction Unit in pipelined and superscalar processors when this follows the Branch Target Buffer (BTB) architecture; the proposed approach is functional, i.e., it is based on forcing the processor to execute a suitably devised test program and observing the produced results. Experimental results are provided on the DLX processor, showing that the method can achieve a high value of stuck-at fault coverage while also testing the memory in the BT

    Memory built-in self-repair and correction for improving yield: a review

    Get PDF
    Nanometer memories are highly prone to defects due to dense structure, necessitating memory built-in self-repair as a must-have feature to improve yield. Today’s system-on-chips contain memories occupying an area as high as 90% of the chip area. Shrinking technology uses stricter design rules for memories, making them more prone to manufacturing defects. Further, using 3D-stacked memories makes the system vulnerable to newer defects such as those coming from through-silicon-vias (TSV) and micro bumps. The increased memory size is also resulting in an increase in soft errors during system operation. Multiple memory repair techniques based on redundancy and correction codes have been presented to recover from such defects and prevent system failures. This paper reviews recently published memory repair methodologies, including various built-in self-repair (BISR) architectures, repair analysis algorithms, in-system repair, and soft repair handling using error correcting codes (ECC). It provides a classification of these techniques based on method and usage. Finally, it reviews evaluation methods used to determine the effectiveness of the repair algorithms. The paper aims to present a survey of these methodologies and prepare a platform for developing repair methods for upcoming-generation memories

    Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip

    Get PDF
    Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips. To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability. Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield. With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle. To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired. In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements
    • …
    corecore