
IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 1, MARCH 2002 123

An On-Line BIST RAM Architecture With
Self-Repair Capabilities

Alfredo Benso, Silvia Chiusano, Giorgio Di Natale, and Paolo Prinetto, Member, IEEE

Abstract—The emerging field of Self-Repair Computing is
expected to have a major impact on deployable systems for
space missions and defense applications, where high reliability,
availability, and serviceability are needed. In this context, RAM
(random access memories) are among the most critical compo-
nents. This paper proposes a built-in self-repair (BISR) approach
for RAM cores. The proposed design, introducing minimal
and technology-dependent overheads, can detect and repair
a wide range of memory faults including: stuck-at, coupling,
and address faults. The test and repair capabilities are used
on-line, and are completely transparent to the external user, who
can use the memory without any change in the memory-access
protocol. Using a fault-injection environment that can emulate
the occurrence of faults inside the module, the effectiveness of
the proposed architecture in terms of both fault detection and
repairing capability was verified. Memories of various sizes have
been considered to evaluate the area-overhead introduced by this
proposed architecture.

Index Terms—Built-in self-repair, built-in self-test, on-line
testing.

ACRONYMS1

BIRA built-in redundancy-allocation
BISD built-in self-diagnosis
BISR built-in self-repair
BIST built-in self-test
BISTAR built-in self-test and repair
CAM content addressable memory
CF coupling fault
EOP end of production
FPGA field programmable gate array
RAM random access memory
RISC reduced instruction set computer
SRAM static RAM.

NOTATION

RAM cells
number of spare cells in the RAM
a line of the CAM
RAM data width

Manuscript received November 11, 1999; revised June 16, 2000. This work
was supported in part by the Istituto Superiore Mario Boella under the project
Test D.O.C.: Quality and Reliability of Complex System-on-Chip.

The authors are with the Dipartimento di Automatica e Informatica, Politec-
nico di Torino, I-10129, Torino, Italy (e-mail: {Alfredo.Benso; Silvia.Chiusano;
DiNatale; Paolo.Prinetto}@polito.it).

Publisher Item Identifier S 0018-9529(02)02955-X.

1The singular and plural of an acronym are always spelled the same.

a neighborhood cell of
nominal addressing space
a spare cell in the RAM.

I. INTRODUCTION

T HE EMERGING field of self-repair computing is ex-
pected to have a major impact on deployable systems for

space missions and defense applications that need to survive
and perform at optimal functionality during long duration in
unknown, harsh and/or changing environments. Examples
of such applications include outer solar system exploration,
missions to comets and planets with severe environmental
conditions, long lasting space-borne surveillance platforms,
defffensive counter-measures, long-term nuclear waste, and
other hazardous environment monitoring and control. Self-re-
pair computing is also expected to greatly enrich the area of
commercial applications in which high availability and service-
ability are needed; such applications range from biomedical
devices to automotive applications.

The process of repairing a RAM can be divided into several
steps. In a first phase, a test algorithm is executed on the memory
array. If a fault is detected, it is necessary to locate it (diagnosis)
and to allocate redundant memory space to replace the faulty
cell. When these operations are built-in the RAM architecture,
the steps are named: BIST, BISD, BIRA, BISR.

There are 3 possible solutions to insert redundant space into
a memory array:

1) Row/Column Only: The memory contains spare rows
or spare columns. When a fault must be repaired, the
row/column containing the fault is replaced with one of
the spare row/columns. This solution allows the manu-
facturer to repair faulty cells easily, but it does not allow
optimal use of redundant space because repairing a single
fault requires allocating a whole spare row or column.

2) Row–Column: The memory contains both spare rows and
spare columns. Each fault can be repaired, by using ei-
ther a spare row or a spare column. When multiple faults
are detected, this technique allows for more efficiently
repairing the faults by selecting the best combination of
spare rows/columns.

3) Cell-Only: Instead of repairing an entire row or column,
when a fault is detected, only the address of the faulty cell
is re-mapped on to a new cell; thus allowing an optimal
allocation of the redundant space.

This paper proposes an innovative architecture for SRAM,
characterized by BISR capabilities based on cell-only redundant
space allocation at the user level. The memory is not electrically

0018–9529/02$17.00 © 2002 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11369126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

124 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 1, MARCH 2002

repaired, but spare cells replace faulty ones, using an on-line ad-
dress re-mapping scheme. The repair process is transparent to
the user, and is independent from the memory physical-imple-
mentation.

In this approach, the self-repair architecture is coupled
with an ad-hoc defined on-line transparent BIST algorithm.
The on-line BIST is therefore executed concurrently with the
memory normal behavior, and is able to detect the appearance
of a wide range of faults, including coupling faults, usually
not detectable during end-of-production or power-up tests.
These faults have a higher probability of appearing in very
high-density RAM only when the circuit reaches high temper-
atures. Because this condition can not be guaranteed except
after a long period of use, EOP or power-up tests usually do
not provide a good coverage of coupling faults.

The on-line BIST algorithm also allows implementing a very
efficient BISD and redundancy-allocation strategy.

To assess the quality of the proposed architecture, a simula-
tion-based fault injection environment has been created to emu-
late the appearance of various faults in the memory module. Ex-
periments were performed to validate the detection capability of
the BIST circuitry first, and then the functionality of the BISR
logic.

Section II briefly presents some related research in self-re-
pairing computing. Section III presents the conceptual scheme
of the proposed architecture, focusing on the on-line BIST algo-
rithm and the self-repair architecture. Section IV discusses some
issues raised during the implementation of the approach. Sec-
tion V presents the fault-injection environment set up to validate
the BIST and BISR capabilities. Section VI discusses experi-
mental results concerning the area overhead and the BISR logic
fault coverage. Section VII summarizes the most interesting re-
sults of the proposed approach.

II. STATE OF THE ART

Most of the research activities on self-repair techniques were
focused on FPGA [1]–[5]. BIST and BISR schemes have been
proposed as potential solutions to the problem of repairing
memories, mainly at the manufacturer level (at the EOP)
[6]–[12]. The scheme in [6] limits self-repair to field-failures
only. To remove manufacturing defects, it uses the traditional
row-column repair approach, based on an on-chip micro-pro-
grammed BIST scheme and self-repair logic block, with a
spare memory block. Reference [7] uses an elaborate on-chip
RISC processor to collect and analyze full failure bitmaps
to figure out a repair solution. Besides the complexity of the
RISC processor, the method also requires that a large enough
fault-free block of the RAM under test must be available to
store the failure bitmap. Reference [8] considers ultra-large
capacity single-chip memories. The proposed architecture uses
a hierarchical organization to achieve optimal conditions for
memory access time. References [9]–[12] analyze algorithms
that optimize the repair solution for a given bit-failure pattern
in a redundant RAM.

All these solutions are typically adopted for stand-alone
memories, where it is possible (at the end of production)
to do hardware repairing through anti-fuse/laser techniques.

Fig. 1. BISTAR conceptual architecture.

Nevertheless, in today’s high integrated circuits that embed
large memories as well as other heterogeneous types of cores
(digital logic, analog block), the very low, if not null, physical
accessibility to the cores makes hardware repairing not feasible
or cost effective.

Recently, new techniques have been introduced to perform a
memory repair through self-reconfiguration of the addressing
space [13]–[15]. In [13], [14], BIST and BISR architectures
are inserted into the RAM. The self-test begins at the system
power-up and the information on the faulty cells is stored and
used thereinafter to reconfigure the memory. In the self-repair
circuit, two registers are inserted for each redundant row or
column. The first register stores the address of a faulty row (or
column) whereas the second register stores the address of the
row (or column) that replaces the faulty one. When a faulty cell
is addressed from the external, the circuit reacts by changing
the address value to the correct one. This solution is very ex-
pensive in term of routing overhead. For each redundant row or
column, a set of signals (for addressing the memory) is routed
from the BISR circuits to the memory. Reference [14] considers
a column-only repair strategy to simplify the spare allocation
procedure.

III. T HE CONCEPTUAL ARCHITECTURE

The conceptual idea underlying the proposed approach is to
couple an on-line transparent BIST algorithm with a “functional
self-repair” architecture in the same BISTAR logic.

“Functional self-repair” means that a faulty cell must be re-
placed by a spare one using an address re-mapping scheme. The
BIST part of the logic executes an on-line test, based on a linear
algorithm, to detect single stuck-at, transition, coupling, and ad-
dress faults.

Fig. 1 is a conceptual view of the BISTAR architecture.
Section IV presents the actual implementation of the BISTAR
logic aiming at minimizing critical paths. The self-repair logic
is based on a CAM used to re-map the address of the faulty
cells. The BISTAR controller is in charge of executing the test
algorithm and controlling the repair procedures.

To make the approach more general, and to allow the user to
fulfill power budget constraints and to perform diagnosis from
the outside, the core has two possible functional modes, selected
via the input signalBISTAR/SR_only :

BENSOet al.: ON-LINE BIST RAM ARCHITECTURE 125

1) SR_only : the BIST algorithm is disabled, but the self-
repair capability is active. Despite new faults not being
detected, the re-mapping addressing mechanism is still
active for previously detected faulty cells.

2) BISTAR: both self-test and self-repair capabilities are en-
abled. The BISTAR controller continuously executes the
test algorithm and possibly repairs faulty cells.

The self-repair capability is exploited during the self-test of
the memory array in order to guarantee the transparency from
the user point of view. The proposed approach mainly includes
three phases executed sequentially: isolation, test execution, and
repairing or restoring. Each under test is isolated by function-
ally replacing it with one of the available: the content of
is copied into and its address is stored into the CAM. During
the test, any external operation onis actually performed on

. The is then tested on-line by executing the algorithm in
Section III-B. Not to degrade the memory performance, the test
execution is temporary suspended to serve any external memory
access request that could occur during the test itself. At the test
completion, if no fault has been detected, the content ofis
restored and its address erased from the CAM; otherwise,is
thereinafter used as a repair cell for.

A. Memory Built-In Self-Repairing

The proposed BISR strategy aims at keeping constant the
memory storing-capability seen by the user. Faulty cells are
functionally replaced by spare ones via a dynamic on-the-fly
reconfiguration of the memory-addressing space.

From an external user point of view, the memory has a nom-
inal addressing space of cells, of -bits each. The actual
memory module, instead, has an effective storage capacitance
of cells.

To optimize the allocation of the redundant memory space,
the approach is based on a cell-only repair strategy: when a fault
is detected in a cell, instead of repairing an entire row or column,
only the faulty cell is re-mapped on a spare one.

Address re-mapping is achieved by a-lines CAM, each
corresponding to an . In particular, the , , of the
CAM stores the address of a faulty cell, .
In this way is functionally replaced by the . This solution
allows reducing the area and the routing overhead. Instead of
using an additional register into the CAM in which is stored
the address of the redundant cell [13], [14], the association be-
tween the line position and the redundant cell is hardwired. The
repairable memory-array space includes all cells of the
memory, thus allowing repair of spare cells as well.

Whenever a of the memory is accessed, its address is first
looked up in the CAM. Two cases can occur:

• 1) If has been previously detected faulty (or is currently
a cell under test), its address has been stored in the CAM.
Then, when accessed, the CAM reacts with a hit, and out-
puts the address of the replace, and a proper multiplexer
routes it to the memory array. Any operation on the faulty

is thus performed on its replace.
• 2) If a spare cell does not currently replace the target,

its address, not being stored in the CAM, is directly trans-
ferred to the memory array.

Fig. 2. Memory layout.

B. Memory Built-In Self-Testing

The proposed on-line self-test logic implements a custom
transparent memory-test algorithm, which does not therefore af-
fect the memory content.

To achieve high dependability, the memory must be repaired
guaranteeing very low fault-latency. Moreover, an important
variety of faults need to be targeted. A custom test algorithm
has thus been adopted, optimized to exploit the knowledge
of the memory layout. The algorithm has linear complexity
and addresses faults both occurring inside a memory cell and
involving pairs of physically adjacent cells. The assumption of
knowing the memory layout does not limit the applicability of
the method, because foundries usually provide details about
the internal memory structure, and tools are available to extract
this information (e.g., FlexStream™ by LSI Logic™ [16]).
If this were not feasible, it is always possible to implement a
quadratic algorithm targeting the same faults without requiring
the knowledge of the memory internal structure.

Fig. 2 shows that the memory is tiled by a group of nonover-
lapping neighborhoods. As far as the cardinality of the neigh-
borhood set is concerned, the type-2 neighborhood choice of
[17] has been used.

The implemented test algorithm targets the following faults:

• Stuck-at faults on the base cell;
• Transition faults on the base cell;
• Intra-word CF on the base cell for word oriented RAM;
• Inter-word CF between the base cell and its eight neigh-

borhoods.
In particular, for both intra-word CF and inter-word CF, idem-
potent CF (CF) and inversion CF (CF) are covered [17].

The intra-word CF is detected by resorting to the “Walking
1/0” intermixed complement Data Background Sequence [18].

To detect inter-word CF, the following test is executed on each
pair of adjacent cells , :

• represents read operations;
• represents write operations;

126 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 1, MARCH 2002

• represents any background pattern;
• represents complement of.

The operation, which reads/writes on the base cell both a
value and its , covers stuck-at faults, whereas the transition
fault on the base cell are covered by the sequences:

To minimize the test time, intra-word and inter-word testing
are properly interleaved. For any pair of adjacent cells, ,
a different background pattern is used. Whenever the number
of needed patterns and the number of neighborhoods differ, the
background patterns or the test of neighborhood pairs are re-
peated accordingly, to fill the gap.

The adopted algorithm does not specifically target “address
decoder faults”; nevertheless, the following “address faults” are
covered:

• is not addressable because there is no link between the
address decoder and the enable signal of the cell;

• is not addressable, and address() accesses ;
• is not addressed by address(), and both and are

reached by address();
• is addressed by address(), but both and are

reached by address().
According to the FlexStream tool, a memory is considered

organized by columns: cells that are adjacent inside a column
have consecutive address into the memory. The functional ad-
dress of the neighborhoods can be easily computed based on
the address of :

address

address Rows

address

address Rows .

To reduce the complexity of the BIST controller, the memory
is conceptually considered as a toroid, thus assuming:

• the left-hand-most and right-hand-most columns are adja-
cent;

• the top and bottom rows are adjacent.

This way, the test length is slightly increased (coupling faults
with a very low occurrence-probability are tested), but the con-
troller size is appreciably reduced.

The proposed algorithm has a complexity of
; the number of memory cells, the number of

memory accesses performed on each pair of neighborhood cells.
During testing, the cell-under-test, and one of its neigh-

borhood cells, are isolated by replacing them with two spare
cells: their original content is copied into the spare cells and the
CAM content updated for address re-mapping. The test algo-
rithm is then executed on the pair . If no faults are de-
tected, the original content of is restored and its re-mapping
address in the CAM removed. Then, the next neighborhood cell
is considered. If the test is successful for all 8 pairs of ,
then is restored and the next cell of the memory is put under

Fig. 3. Minimization of the address critical-path.

test. Otherwise, if is faulty, then the test is repeated on the
same pair of cells to distinguish between permanent and tran-
sient faults. If the repeated test fails as well, thenis consid-
ered as a permanent faulty cell and its functional replacement by
the spare cell is not removed. Thus is no longer accessible,
and the memory is functionally repaired.

IV. A CTUAL IMPLEMENTATION

To minimize the address critical-path of Fig. 1, the CAM
structure has been implemented using a register array and a
proper encoding logic, thus allowing the implementation of
Fig. 3. There is noa priori constraint about the type of CAM
one can use. Using a nonvolatile memory would keep the
addressing-space reconfiguration status when the system is
powered-down. The only performance degradation introduced
with respect to the original memory protocol is a constant
increase of the set-up time of the memory corresponding to the
time required to propagate the address.

Three output signals (Faulty_data, Stop_repairing, and Re-
paired) are provided to increase further the dependability prop-
erties of the core:

• Faulty_data shows that the data read by the user are po-
tentially corrupted. After a permanent repair, the signal is
asserted whenever the user reads the content of a spare
cell without having written it previously. In such a case,
the content of the cell can be faulty. The signal is reset by
the first writing operation on the replacing cell.

• Stop_repairing is asserted whenever no additional spare
cells are available to execute the test. Thereinafter the
SR_only functional mode (see Section II) is entered.

• Repaired shows that the addressed cell has been previously
found faulty and replaced by a spare one. The signal can
be helpful, e.g., for diagnosis purposes. To diagnose the
memory, the user can:

• force the module to enter the SR_only mode;
• perform a read operation on any cell of the module;
• for each address, check whether the Repaired is as-

serted or not. If asserted, the target cell is faulty.

V. BISTAR VALIDATION

To validate the proposed BISTAR architecture, it is necessary
to demonstrate that faults appearing in the memory are detected

BENSOet al.: ON-LINE BIST RAM ARCHITECTURE 127

TABLE I
FRACTION OFAREA-OVERHEAD INTRODUCED BY THEBISTAR ARCHITECTURE

by the BIST circuitry, and that the BISR logic adequately recon-
figures the memory address space. There are three steps:

1) One or more faults are injected into both the memory cells
and addressing logic;

2) An interval of time is waited, until the BISTAR architec-
ture localizes and repairs the fault;

3) The memory is exercised to verify its correct behavior
after the repairing process.

To emulate a faulty memory, anad hocmemory wrapper
has been designed that can intercept data and address flows
coming in and out of the memory, and then modify them ac-
cording to a predefined fault model. The proposed approach is
extremely flexible: the wrapper functionality is customizable to
each specific experiment, defining, at simulation time, the type
and number of faults to be injected into the memory.

The Fault Injector is described in VHDL as a set of modular
blocks, each allowing the insertion of a particular fault. In per-
forming the experiments, all the faults covered by the proposed
test algorithm were injected.

To verify the correct memory behavior after each fault injec-
tion and the consequent repair process, a MATSMarch Test
algorithm [17] is performed.

VI. EXPERIMENTAL RESULTS

The experimental results presented in this section were gath-
ered on several implementations of various-sized BISTAR ar-
chitectures built around a static RAM m10p111hab, included in
the LSI Logic™ G10 library [19]. In particular, to deeply-ana-
lyze the impact in terms of area overhead, all possible combi-
nations of the following cores were synthesized by Synopsys™
[20] using the G10 library:

• 8, 16, and 32 bits word;
• 1k, 2k, 4k, and 8k words;
• 16, 32, 64 spare cells.

A. Area Overhead

Table I shows the synthesis results concerning the area over-
head, expressed as fraction of the area added to achieve BISR
and BIST functionality with respect to the area of the original
memory module. Spare cells are considered as part of the BISR
logic and therefore contribute to the area overhead.

TABLE II
BISR LOGIC FAULT COVERAGE

To provide the designer with a quick, approximate estimation
of the area overhead, consider a memory ofwords, spare
cells, and bits word. The fraction of area overhead introduced
by the BISR and BIST circuitry is

AreaOverhead
Area

Area
(1)

Area Area Area Area

Area

Area

Area

Area for .

(2)

Considering (2), the (1) reduces to:

AreaOverhead (3)

For a given memory, the term in parentheses (3) is a constant be-
cause, and are fixed. As anticipated, (3) states that the area
overhead is proportional to . The constant in (3) strongly de-
pends on the target synthesis library. When dealing with the LSI
Logic G10 library, has been experimentally proved to be about
22.

B. BISR Logic Fault Coverage

To evaluate the repair capabilities of the BISR logic, set up
the following experiment with three steps:

1) Inject one fault in the BISR logic using the Sunrise tool;
2) Wait an interval time, to allow the BISR architecture to lo-

calize the fault and consequently reconfigure the memory;
3) Test the memory using a March test, to verify its correct

behavior after the reconfiguration.
Although the RAM core has not been explicitly designed to

cover faults located in the BISR logic, the module was able to
repair

• 92.7% of the faults inserted in the BISR Controller, and
• 89.16% of the faults inserted in the remaining part of the

BISR logic; see Table II.

REFERENCES

[1] W. Mangione-Smith and B. Hutchings, “Configurable computing: The
road ahead,” inReconfigurable Architectures Workshop, 1997.

[2] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Efficiently supporting
fault-tolerance in FPGAs,” inACM/SIGDA Sixth Int. Symp. Field-Pro-
grammable Gate Arrays, 1998.

[3] M. J. Wirthlin and B. L. Hutchings, “A dynamic instruction set com-
puter,” inProc. IEEE Symp. FPGA’s for Custom Computing Machines,
1995.

[4] E. Tau, D. Chen, and I. Eslicket al., “A first generation DPGA imple-
mentation,” inProc. Third Canadian Workshop on Field-Programmable
Devices, 1995, pp. 138–143.

128 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 1, MARCH 2002

[5] R. Bittner and P. Athanas, “Wormhole run-time reconfiguration,” in
ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 1997.

[6] H. Koile et al., “A 30nsec 64Mb DRAM with built-in self-test and repair
function,” in Int. Solid State Circuits Conf., 1992, pp. 150–151.

[7] R. Trueuer and V. K. Agarwal, “Built-in self-diagnosis for repairable em-
bedded RAMs,”IEEE Design and Test of Computers, pp. 24–33, 1993.

[8] T. Chen and G. Sunada, “Design of a self-testing and self-repairing struc-
ture for highly hierarchical ultra large capacity memory chips,”IEEE
Trans. VLSI Syst., vol. 1, pp. 88–97, June 1993.

[9] J. R. Day, “A fault-driven, comprehensive redundancy algorithm,”IEEE
Design & Test of Computers, pp. 35–44, June 1985.

[10] R. W. Haddad, A. T. Dahbura, and A. B. Sharma, “Increased throughput
for the testing and repair of RAM’s with redundancy,”IEEE Trans. Com-
puters, vol. 40, pp. 154–166, Feb. 1991.

[11] N. Hasan and C. L. Liu, “Minimum fault coverage in reconfigurable
arrays,” inDigest of Papers, vol. FTCS-18, June 1988, pp. 348–353.

[12] D. K. Bhavsar, “An algorithm for row-column self-repair of RAM’s and
its implementation in the alpha 21 264,” inIEEE Int. Test Conf., 1999,
pp. 311–318.

[13] O. S. Bairet al., “Method and apparatus for configurable build-in self-
repairing of Asic memories design,” US Patent 5 577 050, Nov. 19, 1996.

[14] A. Kablanianet al., “Built-in self repair system for embedded memo-
ries,” US Patent 5 764 878, Jun. 9, 1998.

[15] I. Kim, Y. Zorian, and G. Komoriyaet al., “Built-in self repair for
embedded high density SRAM,” inIEEE Int. Test Conf., 1998, pp.
1112–1119.

[16] LSI Logic, FlexStream Reference Manual, 1999.
[17] A. J. Van de Goor,Testing Semiconductor Memories: Theory and Prac-

tice. New York: Wiley, 1991.
[18] A. J. van de Goor and I. B. S. Tlili, “March tests for word-oriented mem-

ories,”IEEE Design, Automation and Test in Europe, pp. 501–508, 1998.
[19] [Online]. Available: http://www.lsil.com
[20] Synopsys Inc.,VHDL Compiler Reference Manual, 1994.

Alfredo Bensowas born in Torino, Italy, in 1970. He received the M.S. degree
in 1995 in computer engineering, and the Ph.D. degree in 1998 from the Po-
litecnico di Torino, Italy.

He is a research assistant at the same university, where his research interests
include design-for-testability techniques, BIST for complex digital systems, and
dependability analysis of computer-based systems.

Silvia Chiusanowas born in Torino, Italy, in 1970. He received the M.S. degree
in 1996 in computer engineering from the Politecnico di Torino, Italy, and the
Ph.D. degree in 2000.

Her research interests include high-level testable synthesis, high-level testing,
design-for-testability techniques, and built-in self-test.

Giorgio Di Natale was born in Torino, Italy, in 1975. He received the M.S.
degree in 1999 in computer engineering from the Politecnico di Torino, Italy,
and is pursuing the Ph.D. degree at the same university.

His research interests include design-for-testability techniques, built-in self-
repair, and FPGA testing.

Paolo Prinetto was born in Gassino Torinese, Italy, in 1953. He received the
M.S. degree in 1976 in electronic engineering from the Politecnico di Torino,
Italy.

Since 1990 he has been Full Professor of Computer Engineering at the same
university, and since 1998 has also been joint professor at the University of Illi-
nois at Chicago. His research interests cover testing, testable synthesis, BIST,
and dependability.

He is a Golden Core Member of the IEEE Computer Society and is currently
the elected Chair’n of the Test Technology Technical Council of the IEEE Com-
puter Society.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

