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On the functional test of the BTB logic in pipelined 

and superscalar processors 
D. Changdao, M. Graziano, E. Sanchez, M. Sonza Reorda, M. Zamboni, N. Zhifan 

Politecnico di Torino 
Torino, Italy 

Abstract-Electronic systems are increasingly used for safety
critical applications, where the effects of faults must be taken 
under control and hopefully avoided. For this purpose, test of 
manufactured devices is particularly important, both at the end 
of the production line and during the operational phase. This 
paper describes a method to test the logic implementing the 
Branch Prediction Unit in pipelined and superscalar processors 
when this follows the Branch Target Buffer (BTB) architecture; 
the proposed approach is functional, i.e., it is based on forcing the 
processor to execute a suitably devised test program and 
observing the produced results. Experimental results are 
provided on the DLX processor, showing that the method can 
achieve a high value of stuck-at fault coverage while also testing 
the memory in the BTB. 

Keywords: SBST, Branch Prediction Unit, Branch Target 

Buffer, Test Program Generation. 

I .  INTRODUCTION 

Branch Prediction Units (BPUs) are crucial components in 
pipelined processors, since they allow reducing the 
performance penalty stemming from branches .  Among the 
several architectures, Branch Target Buffers (BTBs) offer the 
advantage that they not only provide a prediction on the 
branch result (i.e . ,  Taken or Not Taken), but also give a 
prediction on the address of the target instruction. Hence, the 
correct behavior of the BPU (which may be impaired by 
possible faults) significantly impacts the processor 
performance, and this situation may not be acceptable when 
the processor is used in a real-time safety-critical application. 
Examples of these situations may easily be found in several 
domains, such as automotive, factory automation, avionics, 
space. 

For the above reasons, several regulations (e.g. ,  ISO 26262 
in automotive, or 00-254 in avionics) define strict constraints 
(e.g. ,  in terms of achieved fault coverage) for the tests to be 
performed during the manufacturing process and the 
operational phase in order to detect possible faults . 

In order to implement an effective on-line test for 
processor-based systems, different approaches can be 
exploited. Most of them are based on suitable Design for 
Testability (OfT) solutions (e.g. ,  BIST). As an alternative, the 
functional approach is increasingly used, especially when 
processor-based systems are considered. In this case it is also 
called Software-Based Self-Test (SBST) [ I ]  and requires the 
development of a suitable test program that exercises the 
processor components and makes possible faults observable 
by looking at the produced results. Although already proposed 
and largely investigated in the past decades, the functional 
approach suffered from a period of lower popularity due to the 

wide adoption of Design for Testability techniques, such as 
scan and BIST, that can guarantee high fault coverage with 
low cost (in terms of area, performance, and development 
time). More recently, there is a clear trend for a new interest in 
functional test, due to a number of reasons : 

• the System on Chip (SoC) design paradigm often 
mandates the usage of existing IP cores, which not 
always support OfT, and that can often not be modified 
to include it 

• OfT solutions generally test the system after 
performing some reconfiguration; hence, the Unit 
Under Test may be tested under different operating 
conditions than in the normal mode; this may cause 
overtesting in some cases, while in others may prevent 
from achieving a sufficiently high defect coverage 
(e.g. ,  with respect to delay testing) 

• OfT solutions are not always usable during the 
operational phase, either because they have not be 
designed for this purpose, or because the device 
designer and/or manufacturer does not disclose enough 
information on it to the system company, or because 
they are too invasive with respect to the operational 
constraints of the system (e .g . ,  in terms of memory 
content). 

On the other side, the functional approach has a major 
drawback: it requires the development of a suitable test 
program. This task is currently not automated, and often it also 
lacks any guideline or test algorithm to be followed during the 
test program development. Hence, it may involve a high cost, 
especially if high fault coverage figures must be achieved. 

For this reason, several research efforts have been made in 
the recent years to develop effective techniques able to guide 
the test engineer in the development of functional test 
programs, or even to develop automatic techniques for their 
generation. 

When addressing complex processors, a common approach 
is based on addressing separately specific units within the 
processor, such as the basic pipeline [3 ] ,  the cache [5] [6] , or 
the BPU [7] . Some of the addressed units (e.g. ,  the caches) 
include relatively large memories [6] : for this reason the test 
often addresses first the memory, and the proposed algorithms 
have been shown to test them well. In a second step, the 
surrounding logic is also addressed, and the proposed 
algorithms are possibly improved to test it as well [5] . 

The same approach is followed in this paper for BPUs : 
following the idea in [7] , we first extend it to BTB-based 
BPU s addressing the memory. Then, we evaluate the coverage 
(in terms of stuck-at faults) that can be achieved in the logic 
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surrounding the BTB memory using the test program 
addressing the BTB memory. Moreover, we identify the main 
sources of untested faults . Finally, we devise some extensions 
to the test program that allows to further increase the fault 
coverage. The proposed algorithm is characterized by the fact 
that it does not require any specific information about the 
architecture of the BPU, but only relies on the function 
performed by this unit. Hence, it can be easily adapted to 
BTB-based BPUs whose structure and function are different 
than the ones adopted by the paper. 

The proposed approach is hardly suitable for being adopted 
by processor manufacturers for end-of-production testing: for 
these situations, DfT solutions are typically more suitable. On 
the other side, the proposed approach may turn out to be 
effective for SoC testing, or for the on-line test of processor
based systems.  

This paper extends the solutions and results presented in 
[8] ,  where BTBs characterized by a small number of entries 
and by a FIFO-based entry selection mechanism are 
considered. 

Experimental results gathered on a modified version of the 
DLX processor [2] show the effectiveness of the proposed 
approach and allow the reader to evaluate the duration and 
size of the test program. The method can be easily extended to 
other processors, and only requires the knowledge about the 
key parameters of the BTB (e.g. ,  number of entries and fields). 

The paper is organized as follows. Section II briefly 
overviews the behavior and architecture of BTB-based BPU s .  
Section III describes the algorithm for functionally testing the 
BTB memory, while Section IV explains how to extend the 
algorithm to better cover the stuck-at faults in the surrounding 
logic . Experimental results on the selected case study and their 
analysis are presented in Section V. Finally, conclusions and 
future works are described in Section VI. 

II. BTB-BASED BPUs 

Several kinds of BTB-based BPUs have been proposed and 
adopted in practice. The solution we considered in this paper 
is basically the one described in [2] , whose behavior and 
architecture are briefly summarized in the following. 

When a processor embeds a BTB-based BPU, it accesses it 
each time an instruction (not necessarily a branch one) is 
fetched. The BTB receives the instruction address and answers 
in two possible ways (depending on the previous history) : 
• If the instruction is a branch and its result was a branch at 

its last execution, it returns the target address, which is 
used by the processor to execute the fetch of the following 
instruction 

• Otherwise, the prediction is for not performing any 
branch, and the processor continues to fetch instructions 
sequentially from memory. 

When the result of a branch instruction is known (which 
normally happens in the Execute stage), the prediction is 
checked and, if incorrect, the BTB is accessed to store the 
updated information about the instruction. 

From an implementation point of view, a BTB is built 
around a memory composed of different entries ;  each of them 

stores the key information concerning a single branch 
instruction: 

• its address 
• its target address .  

In more complex implementations, other fields are also used, 
which are not considered in this paper for sake of simplicity. 

The BTB entry storing the information about a given 
branch instruction is normally selected using the least 
significant bits in the instruction address .  

The behavior of a BTB and its interaction with the stages of 
a typical pipelined processor are summarized in Fig. 1 .  

ion I n struct 
a d d res s 

-

Fetch Dec Exe 
-

Next instruction 
a d d ress 

I nstruction 
a d d ress 

BTB 

a d d ress I ta rget 

.---- -

Mem WB 
'---- -

I nstruction 
ta rget 

Fig. I .  Interaction of a BTB with the stages of a pipelined 
processor 

III. TEST ALGORITHM FOR THE BTB MEMORY 

By suitably extending the concepts introduced in [7] , it is 
possible to transform whichever March algorithm into a 
corresponding test program executing the same sequence of 
read/write operations on the BTB memory. 

In particular, a read operation on the generic x-th BTB 
entry can be performed by executing a branch instruction 
whose address in memory is chosen so that the x-th entry is 
accessed, i .e . ,  whose least significant bits correspond to the 
address of the entry. The result of this read operation 
(performed while the instruction is in the Fetch stage) is the 
predicted target address .  

A write operation on the generic x-th BTB entry can be 
performed by executing a branch instruction which is located 
in memory in such a way that it refers to the x-th BTB entry 
and which produces a misprediction, so that the entry is 
updated when the instruction reached the Execute stage. 

By checking whether the expected prediction is given by 
the BTB when a branch instruction is executed, possible faults 
affecting the BTB memory can be detected. Notably, these 
faults typically belong to the category of performance faults 
[9] , i .e . ,  they do not produce wrong results, but rather cause a 
change in the time required to execute a given sequence of 
instructions . Hence, their detection requires suitable 
techniques to measure the program performance, or to count 
the number of predictions/mispredictions provided by the BPU 
[ 1 0] .  



Transforming a March algorithm for testing the BTB 
memory into a test program raises two major issues :  

• How to execute a sequence of branch instructions 
suitably placed in memory, so that the BTB memory 
can be accessed in one order, or in the opposite ; this 
result is difficult to achieve since no other branch 
instructions that modify the BTB have to be executed, 
apart from those required by the algorithm. This issue 
can be solved by resorting to procedures, since CALL 
and RETURN instructions typically do not affect the 
BTB [7] . 

• The resulting test program requires the branch 
instructions to be distributed widely over the all 
memory space accessible by the processor; while this 
constraint can be easily matched when the device is 
tested by itself, it is really hard to fulfill when the 
device is already deployed in the field, and the other 
constraints related to the application also have to be 
considered. This issue can only be solved by adopting 
hybrid solutions involving some hardware support, 
such as the one proposed in [ I  I ] ,  or by resorting to 
some Memory Management Unit . 

Let us now make some assumptions and introduce some 
notations : 

• the processor code memory is composed of M=2ffi 
words 

• the BTB is composed ofN=2n words 

• each BTB entry includes an address and a target field; 
the values of these two fields in the BTB i-th entry are 
denoted by ai and ti, respectively. 

In order to access the BTB x-th line we can force the 
processor to execute an instruction whose n least significant 
address bits hold the value x. We obviously neglect the k least 
significant bits in the instruction address, being 2k the byte size 
of each instruction, since the least significant k bits of the 
instruction address always hold the value 0 for sake of 
alignment. 

Hence, by denoting as <ax,tx> the content of the BTB x-th 
line at a given time, we can read it by executing a branch 
instruction stored at the address ax:x:zerok (corresponding to 
the concatenation of three fields, whose length in bits is m-n-k, 
n, and k, respectively, and zerok is a sequence of k Os) and 
performing a branch to the address tx' [f the BTB is fault-free it 
correctly predicts the branch result and target. 

[f we want to write into the x-th line of the BTB we can 
execute a branch instruction located at the address bx:x:zerok, 
where bx is different than the value ax currently stored in the 
BTB line; hence, the instruction outcome cannot be correctly 
predicted when the BTB is accessed and this causes an update 
in the BTB content. If we denote by rx the target address of the 
instruction, the considered instruction writes the value <bx, rx> 
in the x-th line of the BTB.  

[f  intra-word coupling faults are not an issue, the 
conventional 0 and 1 values used by the generic March 

algorithm can be modified to support the test of an m-bit 
memory, provided that 0 = s (s being any value on m bits), and 
1 =not(s). Hence, we can assume that the 0 value corresponds to 
the concatenation of two values ao and to : the sequence of 
operations mandated by a March Element such as -twO can 
now be obtained through a sequence of branch instructions 
stored at consecutive addresses in memory (starting from the 
address ao :zeron:zerok), and all jumping to the same address to . 
The value of ao depends on the location of the memory area 
storing the sequence. 

To provide the reader with a clarifying example, Fig. 2 
reports the sequence of instructions executing the -twO March 
Element on a N-entries BTB. [n the following we will adopt 
the assembly language of the DLX processor, which has been 
used to experimentally evaluate the proposed approach. The 
CALL instruction is j a l r, which jumps to the procedure 
whose starting address is stored in the operand register (in our 
case r2 ) , saving in the r3 1 register the return address .  The 
procedure code includes a jump instruction (beqz) whose 
result is a jump or not, depending on the value in rl .  The 
RETURN instruction is JR, whose operand is the register 
storing the return address (i.e . ,  r3 1) .  A suitably allocated 
memory vector (pointed to by rO)  is used to store the addresses 
of the procedures, which are placed in memory in suitable 
locations, so that the beqz instruction existing in each of them 
refers to a different BTB line . By suitably adjusting the value 
of r2 ,  one can activate the procedures in one order or in the 
reverse one . 

Using the above techniques one can easily write the test 
program corresponding to whichever March algorithm. 

[v. THE PROPOSED ALGORITHM 

In Section V we experimentally show that a significant 
percentage of the stuck-at faults existing in the logic 
surrounding the BTB memory are not detected by the test 
program corresponding to a generic March algorithm for the 
test of the memory. This experimentally demonstrates the 
importance of developing a more focused test algorithm 
specifically addressing the logic in the BTB .  

The size of  this logic i s  not negligible, and may easily 
account for some thousands of equivalent gates ;  hence, it is 
desirable to devise solutions able to improve the related fault 
coverage. 

Most of the hardware existing in the addressed chunk of 
logic implements multiplexers (MUXs) and comparators 
(CMPs). We will address these two types of components 
separately. Please note that the decoders required to 
implement the memory are already properly tested by any 
March algorithm [ 12 ] .  

A. Test a/the MUXs 

When the size of the BTB memory is not too large, the data 
output is connected to the selected word through a MUX. 

In [ 1 3 ]  the authors address the test of MUXs from a 
functional point of view, and show that independently on its 
implementation, a MUX can fully be tested with respect to 



stuck-at faults if a given set of vectors is applied to its inputs. 
As an example, we report in Table I the set of test vectors 
required to test an 8-to- l MUX with 1 bit parallelism. Si 
denotes a selection signal, Di an input data signal, while Z is 
the output. The approach can be easily extended to MUXs of 
any size . 

Address 

a o : O : zero' 

ao : 1 :zero' 

ao : N-2 :zero' 

ao :  N-1  :zero' 

I n struct ions 

Id  r2 , O(rO) 
j a l r  r2 
j a l r  r2 
j a l r  r2 

j a l r  r2 
j a l r  r2 

beqz r1 , #8 
a d d  r2 , r2 , 4 
jr 3 1 

beqz r1 , #8 
a d d  r2 , r2 , 4 
jr 3 1 

beqz r1 , #8 
a d d  r2 , r2 , 4 
jr 3 1 

beqz r1 , #8 
a d d  r2 , r2 , 4 
jr 3 1 

Fig. 2. Sequence of instructions implementing the March 
Element .twO 

Vector 
S2 S l  s o  DO 01 D2 D3 04 OS 06 D7 

No. 
0 0 0 0 0 I I I I I I I 
I 0 0 I 0 I 0 0 0 0 0 0 
2 0 I I I I I 0 I I I I 
3 0 I 0 0 0 I 0 0 0 0 0 
4 I I 0 I I I I I I 0 I 
5 1 1 1 0 0 0 0 0 0 0 1 
6 1 0 1 1 1 1 1 1 0 1 1 
7 1 0 0 0 0 0 0 1 0 0 0 
8 1 0 0 1 1 1 1 0 1 1 1 
9 1 0 1 0 0 0 0 0 1 0 0 
1 0  1 1 1 1 1 1 1 1 1 1 0 
1 1  1 1 0 0 0 0 0 0 0 1 0 
12  0 1 0 1 1 0 1 1 1 1 1 
1 3  0 1 1 0 0 0 1 0 0 0 0 
14  0 0 I I 0 I I I I I I 
1 5  0 0 0 I 0 0 0 0 0 0 0 

Table I: input vectors for testing an 8-to- 1 MUX 

Z 

0 
I 
0 
I 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

I 

The set of patterns reported in Table I corresponds first to a 
marching "0" and then to a marching " I " .  Hence, testing this 
MUX requires executing on the BTB memory the following 
four March elements : t wo, t (wI ,  r l ,  wO), t w I ,  t (wO, rO, 
wI) .  In order to combine the requirements for testing this 
MUX with those for testing the memory faults, one can adopt 
for example the March M algorithm [ 14] ,  whose complexity is 

1 6n, and which guarantees the detection of all linked multiple 
faults related to the Address Decoder, Single Cells, and 
Coupling Faults. 

For testing both the MUX connected to the address and the 
one connected to the target field, the March M algorithm can 
be easily transformed into a sequence of branches executing 
the required read/write operations, following the transformation 
rules reported in the previous section. 

B. Test a/the CMPs 

The logic surrounding the BTB memory includes some large 
comparators that are used to compare the values stored in the 
address and target fields of a selected BTB entry with the value 
of the current PC (in the Fetch stage) and with the computed 
target address (in the Execute stage), respectively. 

Theoretically, these comparators can be tested independently 
on their implementation by resorting to the algorithm proposed 
in [4] , which requires 2m+2 vectors, being m the parallelism of 
each comparator, as shown in Fig. 3. 

This test can be translated into a test program composed of 
suitably located branches. However, in order to match the 
required test vectors, these branches should be stored in 
memory in locations that are highly unlikely to be available 
(such as the two having the all Os or all I s  address, 
respectively), or in locations that are spread over the whole 
memory space: this would mean that the test program size 
would practically equal the addressable memory space. While 
this constraint could be acceptable for manufacturing test 
(which is performed while the processor is on the ATE), it can 
hardly be matched for on-line test, where severe constraints on 
the memory requirements for the test typically exist [ I S] .  

# A B 

pa ttern 
1 1 0  . . .  0 0  0 0  OO } 
2 0 1 ._ . _00 0 0  .... 0 0  

m p a tte r n s  �d:0 F m- 1 00 . .  1 0  0 0  00 
m 00 . .  0 1  0 0  . .  00 
m+ 1 00 . .  0 0  1 0  . .  00 

m m+ 2 00 .... 0 0  0 1  00 

2m -1 00 . .  0 0  0 0  . .  1 0  
2m 00 0 0  0 0  . .  01  
2m +1 1 1  . . .  1 1  1 1  . .  1 1  
2m +2 00 . .  0 0  0 0  . .  00 

Fig. 3 .  Test patterns for a CMP. 

Unless a Memory Management Unit can freely be exploited 
during on-line test, the test will only be able to partially test the 
addressed comparators .  In particular, a reduced version of the 
above algorithm can be proposed, in which the following test 
vectors are applied: 

• X ,  X ,  being X whichever value, freely chosen on the 
basis of the memory area available to store the test 
program 

• X, X, being X the bit-by-bit complement of X 
• A set of vectors including a walking ° and a walking I 

within the memory area which can be used to store the 
test program. 



In this way, a suitable trade-off between the achievable Fault 
Coverage and the requirements in terms of code area can be 
chosen. 
The above vectors can be easily translated into the 
corresponding branch instructions . Once more, the existence 
of possible faults is detected by looking at the time required by 
the test program to execute . 

V. EXPERIMENTAL RESULTS 

In order to validate the proposed approach and to evaluate 
its cost and effectiveness, we developed a modified version of 
the DLX processor [2] ,  in which a parametric BTB-based 
BPU is implemented. The processor model, originally 
developed at the RT level, is then synthesized with Design 
Vision V. B-2008 .09-SP3 by Synopsys using a generic library. 

When implemented with a 1 6  entries BTB, the total size of 
the logic surrounding the BTB memory accounts for about 
5,000 equivalent gates .  

We then implemented different test programs addressing 
the BTB :  

• Version 1 implements the MATS+ algorithm, thus 
guaranteeing a 1 00% fault coverage of the single cell 
stuck-at faults in the BTB memory, as well as \ 00% 
stuck-at fault coverage of the address decoder 

• Version 2 implements the March M algorithm, which 
guarantees a higher fault coverage with respect to the 
memory faults, as well as the coverage of the output 
MUX 

• Version 3 is an improved version of the previous one, 
which also implements the algorithm for testing the 
comparators .  

Table II  reports the main characteristics of the 3 test programs 
in terms of size and duration. The correctness of Versions 1 
and 2 (i.e . ,  their ability to execute exactly the same sequence 
of read and write operations on the BTB memory mandated by 
the March algorithm) has been checked by simulation. 

Table II also reports the percent stuck-at fault coverage 
achieved by each of them on the logic surrounding the BTB 
memory, as computed by Synopsys Tetramax (V. B-2008 .09-
SP3) .  When computing the fault coverage, we preliminarily 
identified the faults that cannot be tested in a functional 
manner (e.g. ,  those requiring activating the reset signal) and 
removed them from the fault list, using the technique proposed 
in [ \ 6] .  

Test program Size Duration FC 
[#instructions] [#ccs] % 

Version 1 402 642 94 .34 
Version 2 930 2,050 97 .86 
Version 3 1 ,278 2,746 98 .42 

Table II: characteristics of the original and improved test programs 

As the figures in Table II show, the proposed method is 
effective in increasing from about 94% to about 98% the 
stuck-at fault coverage that can be reached on the logic 
circuitry surrounding the BTB, which is nearly completely 
tested when Version 3 is applied. 

We are currently investigating the few remaining faults that 
appear to be connected to the limitations in the memory area 
that can be used for storing the test program in the 
implementation of the processor that we are using. 

We also verified experimentally that both the test program 
size and its duration scale linearly with the BTB size . 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper focuses on the functional test of a Branch 
Prediction Unit based on the Branch Target Buffer 
architecture . An algorithm for writing a test program for the 
BTB memory is first provided. The algorithm allows 
transforming whichever March algorithm into a test program 
executing the same sequence of read/write operations on the 
memory, thus achieving the same defect coverage. Secondly, 
since the previous algorithm can hardly achieve a high stuck
at fault coverage on the surrounding logic, a new one is 
proposed, which complements the former and improves the 
final resu It. 

The proposed test algorithm can be effectively adopted for 
both end-of-production test and on-line test of pipelined and 
superscalar processors . 

Experimental results are provided resorting to the DLX 
processor model, which has been purposely extended to 
include a BTB-based BPU. The gathered data allow evaluating 
the cost (in terms of test code memory area and test duration) 
of the proposed approach, which grow linearly with the 
number of entries in the BTB .  

Work i s  currently being performed to  explore the 
possibility of extending the proposed test program to the test 
of different fault models (e.g. ,  transition delay faults) . 
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