
Politecnico di Torino

Porto Institutional Repository

[Proceeding] On the functional test of the BTB logic in pipelined and
superscalar processors

Original Citation:
Changdao D.; Graziano M.; Sanchez E.; Reorda M.S.; Zamboni M.; Zhifan N. (2013). On the
functional test of the BTB logic in pipelined and superscalar processors. In: Test Workshop (LATW),
2013 14th Latin American, Cordoba, Argentina, 2013. pp. 1-6

Availability:
This version is available at : http://porto.polito.it/2510685/ since: July 2013

Publisher:
IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published version:
DOI:10.1109/LATW.2013.6562677

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/16382803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/2510685/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1109/LATW.2013.6562677
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2510685

On the functional test of the BTB logic in pipelined

and superscalar processors
D. Changdao, M. Graziano, E. Sanchez, M. Sonza Reorda, M. Zamboni, N. Zhifan

Politecnico di Torino
Torino, Italy

Abstract-Electronic systems are increasingly used for safety­
critical applications, where the effects of faults must be taken
under control and hopefully avoided. For this purpose, test of
manufactured devices is particularly important, both at the end
of the production line and during the operational phase. This
paper describes a method to test the logic implementing the
Branch Prediction Unit in pipelined and superscalar processors
when this follows the Branch Target Buffer (BTB) architecture;
the proposed approach is functional, i.e., it is based on forcing the
processor to execute a suitably devised test program and
observing the produced results. Experimental results are
provided on the DLX processor, showing that the method can
achieve a high value of stuck-at fault coverage while also testing
the memory in the BTB.

Keywords: SBST, Branch Prediction Unit, Branch Target

Buffer, Test Program Generation.

I . INTRODUCTION

Branch Prediction Units (BPUs) are crucial components in
pipelined processors, since they allow reducing the
performance penalty stemming from branches . Among the
several architectures, Branch Target Buffers (BTBs) offer the
advantage that they not only provide a prediction on the
branch result (i.e . , Taken or Not Taken), but also give a
prediction on the address of the target instruction. Hence, the
correct behavior of the BPU (which may be impaired by
possible faults) significantly impacts the processor
performance, and this situation may not be acceptable when
the processor is used in a real-time safety-critical application.
Examples of these situations may easily be found in several
domains, such as automotive, factory automation, avionics,
space.

For the above reasons, several regulations (e.g. , ISO 26262
in automotive, or 00-254 in avionics) define strict constraints
(e.g. , in terms of achieved fault coverage) for the tests to be
performed during the manufacturing process and the
operational phase in order to detect possible faults .

In order to implement an effective on-line test for
processor-based systems, different approaches can be
exploited. Most of them are based on suitable Design for
Testability (OfT) solutions (e.g. , BIST). As an alternative, the
functional approach is increasingly used, especially when
processor-based systems are considered. In this case it is also
called Software-Based Self-Test (SBST) [I] and requires the
development of a suitable test program that exercises the
processor components and makes possible faults observable
by looking at the produced results. Although already proposed
and largely investigated in the past decades, the functional
approach suffered from a period of lower popularity due to the

wide adoption of Design for Testability techniques, such as
scan and BIST, that can guarantee high fault coverage with
low cost (in terms of area, performance, and development
time). More recently, there is a clear trend for a new interest in
functional test, due to a number of reasons :

• the System on Chip (SoC) design paradigm often
mandates the usage of existing IP cores, which not
always support OfT, and that can often not be modified
to include it

• OfT solutions generally test the system after
performing some reconfiguration; hence, the Unit
Under Test may be tested under different operating
conditions than in the normal mode; this may cause
overtesting in some cases, while in others may prevent
from achieving a sufficiently high defect coverage
(e.g. , with respect to delay testing)

• OfT solutions are not always usable during the
operational phase, either because they have not be
designed for this purpose, or because the device
designer and/or manufacturer does not disclose enough
information on it to the system company, or because
they are too invasive with respect to the operational
constraints of the system (e .g . , in terms of memory
content).

On the other side, the functional approach has a major
drawback: it requires the development of a suitable test
program. This task is currently not automated, and often it also
lacks any guideline or test algorithm to be followed during the
test program development. Hence, it may involve a high cost,
especially if high fault coverage figures must be achieved.

For this reason, several research efforts have been made in
the recent years to develop effective techniques able to guide
the test engineer in the development of functional test
programs, or even to develop automatic techniques for their
generation.

When addressing complex processors, a common approach
is based on addressing separately specific units within the
processor, such as the basic pipeline [3] , the cache [5] [6] , or
the BPU [7] . Some of the addressed units (e.g. , the caches)
include relatively large memories [6] : for this reason the test
often addresses first the memory, and the proposed algorithms
have been shown to test them well. In a second step, the
surrounding logic is also addressed, and the proposed
algorithms are possibly improved to test it as well [5] .

The same approach is followed in this paper for BPUs :
following the idea in [7] , we first extend it to BTB-based
BPU s addressing the memory. Then, we evaluate the coverage
(in terms of stuck-at faults) that can be achieved in the logic

978-1-4799-0597-3/13/$31.00 ©2013 IEEE

surrounding the BTB memory using the test program
addressing the BTB memory. Moreover, we identify the main
sources of untested faults . Finally, we devise some extensions
to the test program that allows to further increase the fault
coverage. The proposed algorithm is characterized by the fact
that it does not require any specific information about the
architecture of the BPU, but only relies on the function
performed by this unit. Hence, it can be easily adapted to
BTB-based BPUs whose structure and function are different
than the ones adopted by the paper.

The proposed approach is hardly suitable for being adopted
by processor manufacturers for end-of-production testing: for
these situations, DfT solutions are typically more suitable. On
the other side, the proposed approach may turn out to be
effective for SoC testing, or for the on-line test of processor­
based systems.

This paper extends the solutions and results presented in
[8] , where BTBs characterized by a small number of entries
and by a FIFO-based entry selection mechanism are
considered.

Experimental results gathered on a modified version of the
DLX processor [2] show the effectiveness of the proposed
approach and allow the reader to evaluate the duration and
size of the test program. The method can be easily extended to
other processors, and only requires the knowledge about the
key parameters of the BTB (e.g. , number of entries and fields).

The paper is organized as follows. Section II briefly
overviews the behavior and architecture of BTB-based BPU s .
Section III describes the algorithm for functionally testing the
BTB memory, while Section IV explains how to extend the
algorithm to better cover the stuck-at faults in the surrounding
logic . Experimental results on the selected case study and their
analysis are presented in Section V. Finally, conclusions and
future works are described in Section VI.

II. BTB-BASED BPUs

Several kinds of BTB-based BPUs have been proposed and
adopted in practice. The solution we considered in this paper
is basically the one described in [2] , whose behavior and
architecture are briefly summarized in the following.

When a processor embeds a BTB-based BPU, it accesses it
each time an instruction (not necessarily a branch one) is
fetched. The BTB receives the instruction address and answers
in two possible ways (depending on the previous history) :
• If the instruction is a branch and its result was a branch at

its last execution, it returns the target address, which is
used by the processor to execute the fetch of the following
instruction

• Otherwise, the prediction is for not performing any
branch, and the processor continues to fetch instructions
sequentially from memory.

When the result of a branch instruction is known (which
normally happens in the Execute stage), the prediction is
checked and, if incorrect, the BTB is accessed to store the
updated information about the instruction.

From an implementation point of view, a BTB is built
around a memory composed of different entries ; each of them

stores the key information concerning a single branch
instruction:

• its address
• its target address .

In more complex implementations, other fields are also used,
which are not considered in this paper for sake of simplicity.

The BTB entry storing the information about a given
branch instruction is normally selected using the least
significant bits in the instruction address .

The behavior of a BTB and its interaction with the stages of
a typical pipelined processor are summarized in Fig. 1 .

ion I n struct
a d d res s

-

Fetch Dec Exe
-

Next instruction
a d d ress

I nstruction
a d d ress

BTB

a d d ress I ta rget

.---- -

Mem WB
'---- -

I nstruction
ta rget

Fig. I . Interaction of a BTB with the stages of a pipelined
processor

III. TEST ALGORITHM FOR THE BTB MEMORY

By suitably extending the concepts introduced in [7] , it is
possible to transform whichever March algorithm into a
corresponding test program executing the same sequence of
read/write operations on the BTB memory.

In particular, a read operation on the generic x-th BTB
entry can be performed by executing a branch instruction
whose address in memory is chosen so that the x-th entry is
accessed, i .e . , whose least significant bits correspond to the
address of the entry. The result of this read operation
(performed while the instruction is in the Fetch stage) is the
predicted target address .

A write operation on the generic x-th BTB entry can be
performed by executing a branch instruction which is located
in memory in such a way that it refers to the x-th BTB entry
and which produces a misprediction, so that the entry is
updated when the instruction reached the Execute stage.

By checking whether the expected prediction is given by
the BTB when a branch instruction is executed, possible faults
affecting the BTB memory can be detected. Notably, these
faults typically belong to the category of performance faults
[9] , i .e . , they do not produce wrong results, but rather cause a
change in the time required to execute a given sequence of
instructions . Hence, their detection requires suitable
techniques to measure the program performance, or to count
the number of predictions/mispredictions provided by the BPU
[1 0] .

Transforming a March algorithm for testing the BTB
memory into a test program raises two major issues :

• How to execute a sequence of branch instructions
suitably placed in memory, so that the BTB memory
can be accessed in one order, or in the opposite ; this
result is difficult to achieve since no other branch
instructions that modify the BTB have to be executed,
apart from those required by the algorithm. This issue
can be solved by resorting to procedures, since CALL
and RETURN instructions typically do not affect the
BTB [7] .

• The resulting test program requires the branch
instructions to be distributed widely over the all
memory space accessible by the processor; while this
constraint can be easily matched when the device is
tested by itself, it is really hard to fulfill when the
device is already deployed in the field, and the other
constraints related to the application also have to be
considered. This issue can only be solved by adopting
hybrid solutions involving some hardware support,
such as the one proposed in [I I] , or by resorting to
some Memory Management Unit .

Let us now make some assumptions and introduce some
notations :

• the processor code memory is composed of M=2ffi
words

• the BTB is composed ofN=2n words

• each BTB entry includes an address and a target field;
the values of these two fields in the BTB i-th entry are
denoted by ai and ti, respectively.

In order to access the BTB x-th line we can force the
processor to execute an instruction whose n least significant
address bits hold the value x. We obviously neglect the k least
significant bits in the instruction address, being 2k the byte size
of each instruction, since the least significant k bits of the
instruction address always hold the value 0 for sake of
alignment.

Hence, by denoting as <ax,tx> the content of the BTB x-th
line at a given time, we can read it by executing a branch
instruction stored at the address ax:x:zerok (corresponding to
the concatenation of three fields, whose length in bits is m-n-k,
n, and k, respectively, and zerok is a sequence of k Os) and
performing a branch to the address tx' [f the BTB is fault-free it
correctly predicts the branch result and target.

[f we want to write into the x-th line of the BTB we can
execute a branch instruction located at the address bx:x:zerok,
where bx is different than the value ax currently stored in the
BTB line; hence, the instruction outcome cannot be correctly
predicted when the BTB is accessed and this causes an update
in the BTB content. If we denote by rx the target address of the
instruction, the considered instruction writes the value <bx, rx>
in the x-th line of the BTB.

[f intra-word coupling faults are not an issue, the
conventional 0 and 1 values used by the generic March

algorithm can be modified to support the test of an m-bit
memory, provided that 0 = s (s being any value on m bits), and
1 =not(s). Hence, we can assume that the 0 value corresponds to
the concatenation of two values ao and to : the sequence of
operations mandated by a March Element such as -twO can
now be obtained through a sequence of branch instructions
stored at consecutive addresses in memory (starting from the
address ao :zeron:zerok), and all jumping to the same address to .
The value of ao depends on the location of the memory area
storing the sequence.

To provide the reader with a clarifying example, Fig. 2
reports the sequence of instructions executing the -twO March
Element on a N-entries BTB. [n the following we will adopt
the assembly language of the DLX processor, which has been
used to experimentally evaluate the proposed approach. The
CALL instruction is j a l r, which jumps to the procedure
whose starting address is stored in the operand register (in our
case r2) , saving in the r3 1 register the return address . The
procedure code includes a jump instruction (beqz) whose
result is a jump or not, depending on the value in rl . The
RETURN instruction is JR, whose operand is the register
storing the return address (i.e . , r3 1) . A suitably allocated
memory vector (pointed to by rO) is used to store the addresses
of the procedures, which are placed in memory in suitable
locations, so that the beqz instruction existing in each of them
refers to a different BTB line . By suitably adjusting the value
of r2 , one can activate the procedures in one order or in the
reverse one .

Using the above techniques one can easily write the test
program corresponding to whichever March algorithm.

[v. THE PROPOSED ALGORITHM

In Section V we experimentally show that a significant
percentage of the stuck-at faults existing in the logic
surrounding the BTB memory are not detected by the test
program corresponding to a generic March algorithm for the
test of the memory. This experimentally demonstrates the
importance of developing a more focused test algorithm
specifically addressing the logic in the BTB .

The size of this logic i s not negligible, and may easily
account for some thousands of equivalent gates ; hence, it is
desirable to devise solutions able to improve the related fault
coverage.

Most of the hardware existing in the addressed chunk of
logic implements multiplexers (MUXs) and comparators
(CMPs). We will address these two types of components
separately. Please note that the decoders required to
implement the memory are already properly tested by any
March algorithm [12] .

A. Test a/the MUXs

When the size of the BTB memory is not too large, the data
output is connected to the selected word through a MUX.

In [1 3] the authors address the test of MUXs from a
functional point of view, and show that independently on its
implementation, a MUX can fully be tested with respect to

stuck-at faults if a given set of vectors is applied to its inputs.
As an example, we report in Table I the set of test vectors
required to test an 8-to- l MUX with 1 bit parallelism. Si
denotes a selection signal, Di an input data signal, while Z is
the output. The approach can be easily extended to MUXs of
any size .

Address

a o : O : zero'

ao : 1 :zero'

ao : N-2 :zero'

ao : N-1 :zero'

I n struct ions

Id r2 , O(rO)
j a l r r2
j a l r r2
j a l r r2

j a l r r2
j a l r r2

beqz r1 , #8
a d d r2 , r2 , 4
jr 3 1

beqz r1 , #8
a d d r2 , r2 , 4
jr 3 1

beqz r1 , #8
a d d r2 , r2 , 4
jr 3 1

beqz r1 , #8
a d d r2 , r2 , 4
jr 3 1

Fig. 2. Sequence of instructions implementing the March
Element .twO

Vector
S2 S l s o DO 01 D2 D3 04 OS 06 D7

No.
0 0 0 0 0 I I I I I I I
I 0 0 I 0 I 0 0 0 0 0 0
2 0 I I I I I 0 I I I I
3 0 I 0 0 0 I 0 0 0 0 0
4 I I 0 I I I I I I 0 I
5 1 1 1 0 0 0 0 0 0 0 1
6 1 0 1 1 1 1 1 1 0 1 1
7 1 0 0 0 0 0 0 1 0 0 0
8 1 0 0 1 1 1 1 0 1 1 1
9 1 0 1 0 0 0 0 0 1 0 0
1 0 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0 0 0 0 1 0
12 0 1 0 1 1 0 1 1 1 1 1
1 3 0 1 1 0 0 0 1 0 0 0 0
14 0 0 I I 0 I I I I I I
1 5 0 0 0 I 0 0 0 0 0 0 0

Table I: input vectors for testing an 8-to- 1 MUX

Z

0
I
0
I
0
1
0
1
0
1
0
1
0
1
0

I

The set of patterns reported in Table I corresponds first to a
marching "0" and then to a marching " I " . Hence, testing this
MUX requires executing on the BTB memory the following
four March elements : t wo, t (wI , r l , wO), t w I , t (wO, rO,
wI) . In order to combine the requirements for testing this
MUX with those for testing the memory faults, one can adopt
for example the March M algorithm [14] , whose complexity is

1 6n, and which guarantees the detection of all linked multiple
faults related to the Address Decoder, Single Cells, and
Coupling Faults.

For testing both the MUX connected to the address and the
one connected to the target field, the March M algorithm can
be easily transformed into a sequence of branches executing
the required read/write operations, following the transformation
rules reported in the previous section.

B. Test a/the CMPs

The logic surrounding the BTB memory includes some large
comparators that are used to compare the values stored in the
address and target fields of a selected BTB entry with the value
of the current PC (in the Fetch stage) and with the computed
target address (in the Execute stage), respectively.

Theoretically, these comparators can be tested independently
on their implementation by resorting to the algorithm proposed
in [4] , which requires 2m+2 vectors, being m the parallelism of
each comparator, as shown in Fig. 3.

This test can be translated into a test program composed of
suitably located branches. However, in order to match the
required test vectors, these branches should be stored in
memory in locations that are highly unlikely to be available
(such as the two having the all Os or all I s address,
respectively), or in locations that are spread over the whole
memory space: this would mean that the test program size
would practically equal the addressable memory space. While
this constraint could be acceptable for manufacturing test
(which is performed while the processor is on the ATE), it can
hardly be matched for on-line test, where severe constraints on
the memory requirements for the test typically exist [I S] .

A B

pa ttern
1 1 0 . . . 0 0 0 0 OO }
2 0 1 ._ . _00 0 0 0 0

m p a tte r n s �d:0 F m- 1 00 . . 1 0 0 0 00
m 00 . . 0 1 0 0 . . 00
m+ 1 00 . . 0 0 1 0 . . 00

m m+ 2 00 0 0 0 1 00

2m -1 00 . . 0 0 0 0 . . 1 0
2m 00 0 0 0 0 . . 01
2m +1 1 1 . . . 1 1 1 1 . . 1 1
2m +2 00 . . 0 0 0 0 . . 00

Fig. 3 . Test patterns for a CMP.

Unless a Memory Management Unit can freely be exploited
during on-line test, the test will only be able to partially test the
addressed comparators . In particular, a reduced version of the
above algorithm can be proposed, in which the following test
vectors are applied:

• X , X , being X whichever value, freely chosen on the
basis of the memory area available to store the test
program

• X, X, being X the bit-by-bit complement of X
• A set of vectors including a walking ° and a walking I

within the memory area which can be used to store the
test program.

In this way, a suitable trade-off between the achievable Fault
Coverage and the requirements in terms of code area can be
chosen.
The above vectors can be easily translated into the
corresponding branch instructions . Once more, the existence
of possible faults is detected by looking at the time required by
the test program to execute .

V. EXPERIMENTAL RESULTS

In order to validate the proposed approach and to evaluate
its cost and effectiveness, we developed a modified version of
the DLX processor [2] , in which a parametric BTB-based
BPU is implemented. The processor model, originally
developed at the RT level, is then synthesized with Design
Vision V. B-2008 .09-SP3 by Synopsys using a generic library.

When implemented with a 1 6 entries BTB, the total size of
the logic surrounding the BTB memory accounts for about
5,000 equivalent gates .

We then implemented different test programs addressing
the BTB :

• Version 1 implements the MATS+ algorithm, thus
guaranteeing a 1 00% fault coverage of the single cell
stuck-at faults in the BTB memory, as well as \ 00%
stuck-at fault coverage of the address decoder

• Version 2 implements the March M algorithm, which
guarantees a higher fault coverage with respect to the
memory faults, as well as the coverage of the output
MUX

• Version 3 is an improved version of the previous one,
which also implements the algorithm for testing the
comparators .

Table II reports the main characteristics of the 3 test programs
in terms of size and duration. The correctness of Versions 1
and 2 (i.e . , their ability to execute exactly the same sequence
of read and write operations on the BTB memory mandated by
the March algorithm) has been checked by simulation.

Table II also reports the percent stuck-at fault coverage
achieved by each of them on the logic surrounding the BTB
memory, as computed by Synopsys Tetramax (V. B-2008 .09-
SP3) . When computing the fault coverage, we preliminarily
identified the faults that cannot be tested in a functional
manner (e.g. , those requiring activating the reset signal) and
removed them from the fault list, using the technique proposed
in [\ 6] .

Test program Size Duration FC
[#instructions] [#ccs] %

Version 1 402 642 94 .34
Version 2 930 2,050 97 .86
Version 3 1 ,278 2,746 98 .42

Table II: characteristics of the original and improved test programs

As the figures in Table II show, the proposed method is
effective in increasing from about 94% to about 98% the
stuck-at fault coverage that can be reached on the logic
circuitry surrounding the BTB, which is nearly completely
tested when Version 3 is applied.

We are currently investigating the few remaining faults that
appear to be connected to the limitations in the memory area
that can be used for storing the test program in the
implementation of the processor that we are using.

We also verified experimentally that both the test program
size and its duration scale linearly with the BTB size .

VI. CONCLUSIONS AND FUTURE WORKS

This paper focuses on the functional test of a Branch
Prediction Unit based on the Branch Target Buffer
architecture . An algorithm for writing a test program for the
BTB memory is first provided. The algorithm allows
transforming whichever March algorithm into a test program
executing the same sequence of read/write operations on the
memory, thus achieving the same defect coverage. Secondly,
since the previous algorithm can hardly achieve a high stuck­
at fault coverage on the surrounding logic, a new one is
proposed, which complements the former and improves the
final resu It.

The proposed test algorithm can be effectively adopted for
both end-of-production test and on-line test of pipelined and
superscalar processors .

Experimental results are provided resorting to the DLX
processor model, which has been purposely extended to
include a BTB-based BPU. The gathered data allow evaluating
the cost (in terms of test code memory area and test duration)
of the proposed approach, which grow linearly with the
number of entries in the BTB .

Work i s currently being performed to explore the
possibility of extending the proposed test program to the test
of different fault models (e.g. , transition delay faults) .

REFERENCES

[I] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza
Reorda,"Microprocessor software-based self-testing," IEEE Design &
Test of Computers, vol. 2, no. 3, pp. 4- 1 9, May-June 2010 .

[2] J. L. Hennessy and D. A . Patterson,"Computer Architecture: A
Quantitative Approach". Morgan Kaufinann Publishers, 2006.

[3] D. Gizopoulos et aI . , "Systematic Software-Based Self: Test for
Pipelined Processors," IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 1 6, no. I I , pp. 1441 - 1453, November 2008 .

[4] H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, Y.
Zorian, "Generic BIST Architecture for Testing of Content Addressable
Memories" , Proc. of IEEE Int. On-Line Testing Symp. , 201 1 , pp . 86-9 1

[5] W. 1. Perez et aI . , "A Hybrid Approach to the Test of Cache Memory
Controllers Embedded in SoCs", Proc. IEEE Int. On-Line Testing
Symposium, 2008, pp. 143 - 148

[6] S. Di Carlo, P. Prinetto, A. Savino, "Software-Based Self-Test of Set­
Associative Cache Memories", IEEE Transactions on Computers, vol.
60, n. 7, pp. 1 030 - 1 044 , 20 1 1

[7] E. Sanchez, M. Sonza Reorda, A. Tonda, "On the Functional Test of
Branch Prediction Units Based on the Branch History Table
Architecture", VLSI-SoC: Advanced Research for Systems on Chip 1 9th
IFIP WG 10 . 5/IEEE International Conference on Very Large Scale

Integration, VLSI-SoC 201 1 , Revised Selected Papers . Springer, pp.
1 1 0- 123 . ISBN 9783642327704

[8] P. Bernardi, L. Ciganda, M. Grosso, E. Sanchez, M. Sonza Reorda,
"A SBST strategy to test microprocessors' branch target buffer", Proc.
IEEE 1 5th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, 2012 . pp. 306-3 1 1

[9] T. -Y. Hsieh, M.A. Breuer, M . Annavaram, S.K. Gupta, K. -J. Lee,
'Tolerance of Performance Degrading Faults for Effective Yield
Improvement", Proc. IEEE International Test Conference, 2009, Lecture
3 . 1

[1 0] M . Hatzimihail, M . Psarakis, D . Gizopoulos, A Paschalis, "A
Methodology for Detecting Performance Faults in Microprocessors via
Performance Monitoring Hardware", Proc. IEEE International Test
Conference, 2007, paper 29 .3

[1 1] L. Ciganda, P. Bernardi, E. Sanchez, M. Sonza Reorda, "An Eflective
Methodology for On-line Testing of Embedded Microprocessors ," in
Proc. IEEE International On-Line Testing Symposium, 201 1 , pp. 270-
275 .

[1 2] A 1. Van de Goor, "Testing Semiconductor Memories, Theory and
Practice", John Wiley & Sons, 1 99 1

[13] S .R. Makar, E . J . McCluskey, "On the Testing of Multiplexers" , Proc.
IEEE International Test Conference, 1 988 , pp. 669-679

[14] V.G. Mikitjuk, V.N. Yarmolik, AJ. van de Goor, "RAM Testing
Algorithms for Detection Multiple Linked Faults", Proc. IEEE ED&T
Conference, 1 996, pp. 435-439

[1 5] P. Bernardi, 1. Ciganda, M. De Carvalho, M. Grosso, J. Lagos-Benites,
E . Sanchez, M. Sonza Reorda, o. Ballan,
"On-Line Software-Based Self-Test of the Address Calculation Unit in
RISC Processors", Proc. IEEE European Test Symposium, 2012 , pp. 1 -6

[1 6] P. Bernardi, E. Sanchez, M. Sonza Reorda, 0. Ballan, M. Bonazza, "On­
Line Functionally Untestable Faults Pruning from Embedded Processor
Cores", accepted for publication at the IEEE/ACM Design, Automation
and Test in Europe Conference (DATE), 2013

