5,015 research outputs found

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Mining High Utility Patterns Over Data Streams

    Get PDF
    Mining useful patterns from sequential data is a challenging topic in data mining. An important task for mining sequential data is sequential pattern mining, which discovers sequences of itemsets that frequently appear in a sequence database. In sequential pattern mining, the selection of sequences is generally based on the frequency/support framework. However, most of the patterns returned by sequential pattern mining may not be informative enough to business people and are not particularly related to a business objective. In view of this, high utility sequential pattern (HUSP) mining has emerged as a novel research topic in data mining recently. The main objective of HUSP mining is to extract valuable and useful sequential patterns from data by considering the utility of a pattern that captures a business objective (e.g., profit, users interest). In HUSP mining, the goal is to find sequences whose utility in the database is no less than a user-specified minimum utility threshold. Nowadays, many applications generate a huge volume of data in the form of data streams. A number of studies have been conducted on mining HUSPs, but they are mainly intended for non-streaming data and thus do not take data stream characteristics into consideration. Mining HUSP from such data poses many challenges. First, it is infeasible to keep all streaming data in the memory due to the high volume of data accumulated over time. Second, mining algorithms need to process the arriving data in real time with one scan of data. Third, depending on the minimum utility threshold value, the number of patterns returned by a HUSP mining algorithm can be large and overwhelms the user. In general, it is hard for the user to determine the value for the threshold. Thus, algorithms that can find the most valuable patterns (i.e., top-k high utility patterns) are more desirable. Mining the most valuable patterns is interesting in both static data and data streams. To address these research limitations and challenges, this dissertation proposes techniques and algorithms for mining high utility sequential patterns over data streams. We work on mining HUSPs over both a long portion of a data stream and a short period of time. We also work on how to efficiently identify the most significant high utility patterns (namely, the top-k high utility patterns) over data streams. In the first part, we explore a fundamental problem that is how the limited memory space can be well utilized to produce high quality HUSPs over the entire data stream. An approximation algorithm, called MAHUSP, is designed which employs memory adaptive mechanisms to use a bounded portion of memory, to efficiently discover HUSPs over the entire data streams. The second part of the dissertation presents a new sliding window-based algorithm to discover recent high utility sequential patterns over data streams. A novel data structure named HUSP-Tree is proposed to maintain the essential information for mining recenT HUSPs. An efficient and single-pass algorithm named HUSP-Stream is proposed to generate recent HUSPs from HUSP-Tree. The third part addresses the problem of top-k high utility pattern mining over data streams. Two novel methods, named T-HUDS and T-HUSP, for finding top-k high utility patterns over a data stream are proposed. T-HUDS discovers top-k high utility itemsets and T-HUSP discovers top-k high utility sequential patterns over a data stream. T-HUDS is based on a compressed tree structure, called HUDS-Tree, that can be used to efficiently find potential top-k high utility itemsets over data streams. T-HUSP incrementally maintains the content of top-k HUSPs in a data stream in a summary data structure, named TKList, and discovers top-k HUSPs efficiently. All of the algorithms are evaluated using both synthetic and real datasets. The performances, including the running time, memory consumption, precision, recall and Fmeasure, are compared. In order to show the effectiveness and efficiency of the proposed methods in reallife applications, the fourth part of this dissertation presents applications of one of the proposed methods (i.e., MAHUSP) to extract meaningful patterns from a real web clickstream dataset and a real biosequence dataset. The utility-based sequential patterns are compared with the patterns in the frequency/support framework. The results show that high utility sequential pattern mining provides meaningful patterns in real-life applications

    Feature Extraction and Duplicate Detection for Text Mining: A Survey

    Get PDF
    Text mining, also known as Intelligent Text Analysis is an important research area. It is very difficult to focus on the most appropriate information due to the high dimensionality of data. Feature Extraction is one of the important techniques in data reduction to discover the most important features. Proce- ssing massive amount of data stored in a unstructured form is a challenging task. Several pre-processing methods and algo- rithms are needed to extract useful features from huge amount of data. The survey covers different text summarization, classi- fication, clustering methods to discover useful features and also discovering query facets which are multiple groups of words or phrases that explain and summarize the content covered by a query thereby reducing time taken by the user. Dealing with collection of text documents, it is also very important to filter out duplicate data. Once duplicates are deleted, it is recommended to replace the removed duplicates. Hence we also review the literature on duplicate detection and data fusion (remove and replace duplicates).The survey provides existing text mining techniques to extract relevant features, detect duplicates and to replace the duplicate data to get fine grained knowledge to the user

    Knowledge discovery in data streams

    Full text link
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works

    Efficient Frequent Subtree Mining Beyond Forests

    Get PDF
    A common paradigm in distance-based learning is to embed the instance space into some appropriately chosen feature space equipped with a metric and to define the dissimilarity between instances by the distance of their images in the feature space. If the instances are graphs, then frequent connected subgraphs are a well-suited pattern language to define such feature spaces. Identifying the set of frequent connected subgraphs and subsequently computing embeddings for graph instances, however, is computationally intractable. As a result, existing frequent subgraph mining algorithms either restrict the structural complexity of the instance graphs or require exponential delay between the output of subsequent patterns. Hence distance-based learners lack an efficient way to operate on arbitrary graph data. To resolve this problem, in this thesis we present a mining system that gives up the demand on the completeness of the pattern set to instead guarantee a polynomial delay between subsequent patterns. Complementing this, we devise efficient methods to compute the embedding of arbitrary graphs into the Hamming space spanned by our pattern set. As a result, we present a system that allows to efficiently apply distance-based learning methods to arbitrary graph databases. To overcome the computational intractability of the mining step, we consider only frequent subtrees for arbitrary graph databases. This restriction alone, however, does not suffice to make the problem tractable. We reduce the mining problem from arbitrary graphs to forests by replacing each graph by a polynomially sized forest obtained from a random sample of its spanning trees. This results in an incomplete mining algorithm. However, we prove that the probability of missing a frequent subtree pattern is low. We show empirically that this is true in practice even for very small sized forests. As a result, our algorithm is able to mine frequent subtrees in a range of graph databases where state-of-the-art exact frequent subgraph mining systems fail to produce patterns in reasonable time or even at all. Furthermore, the predictive performance of our patterns is comparable to that of exact frequent connected subgraphs, where available. The above method considers polynomially many spanning trees for the forest, while many graphs have exponentially many spanning trees. The number of patterns found by our mining algorithm can be negatively influenced by this exponential gap. We hence propose a method that can (implicitly) consider forests of exponential size, while remaining computationally tractable. This results in a higher recall for our incomplete mining algorithm. Furthermore, the methods extend the known positive results on the tractability of exact frequent subtree mining to a novel class of transaction graphs. We conjecture that the next natural extension of our results to a larger transaction graph class is at least as difficult as proving whether P = NP, or not. Regarding the graph embedding step, we apply a similar strategy as in the mining step. We represent a novel graph by a forest of its spanning trees and decide whether the frequent trees from the mining step are subgraph isomorphic to this forest. As a result, the embedding computation has one-sided error with respect to the exact subgraph isomorphism test but is computationally tractable. Furthermore, we show that we can leverage a partial order on the pattern set. This structure can be used to reduce the runtime of the embedding computation dramatically. For the special case of Jaccard-similarity between graph embeddings, a further substantial reduction of runtime can be achieved using min-hashing. The Jaccard-distance can be approximated using small sketch vectors that can be computed fast, again using the partial order on the tree patterns

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE
    • …
    corecore