2,100 research outputs found

    Skill-Based Teaching For Undergraduate STEM Majors

    Get PDF
    This article presents a case study that illustrates the paradigmatic shift in higher education from content-centered teaching to learning-centered academic programs. This pragmatic change, triggered by the STEM movement, calls for the introduction of success measures in the course development process. The course described in this paper illustrates such a goal-driven approach to the development of an entire multidisciplinary curriculum in mechanical engineering and mechatronics. The effectiveness of this new curriculum was confirmed by findings of a survey of graduates of the first six graduating classes who studied on the basis of this curriculum.

    Development of mechatronics engineering degree program: challenges and prospects

    Get PDF
    It is now becoming common practice to include some courses in mechatronics in the traditional electrical and mechanical engineering programs. Whilst many engineering faculties have realized the need for a full-fledged multidisciplinary mechatronics engineering program, only in very few places have such programs been developed along the lines of other engineering programs. The justification for the mechatronics engineering program becomes evident, as today's engineers must be acquainted with subjects that are not taught or given much emphasis in the traditional engineering curriculum. A good knowledge in those subjects, is however required if our graduate engineers are to be relevant to industry with time. The challenges in developing such program in terms of curriculum planning, laboratory facility needs and staff requirements are discussed in this paper. Whilst there are immense advantages of such a discipline, its success depends on a balanced curriculum with good laboratory facilities and appropriate industrial links, positive attitudes and well-oriented academic staff as well as students having the ability to cope with diversified subjects

    International Conference on Mechatronics, System Engineering And Robotics & Informations System And Engineering

    Get PDF
    UBT Annual International Conference is the 9th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: Art and Digital Media Agriculture, Food Science and Technology Architecture and Spatial Planning Civil Engineering, Infrastructure and Environment Computer Science and Communication Engineering Dental Sciences Education and Development Energy Efficiency Engineering Integrated Design Information Systems and Security Journalism, Media and Communication Law Language and Culture Management, Business and Economics Modern Music, Digital Production and Management Medicine and Nursing Mechatronics, System Engineering and Robotics Pharmaceutical and Natural Sciences Political Science Psychology Sport, Health and Society Security Studies This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBT UBT – Higher Education Institutio

    Industry 4.0 Competencies as the Core of Online Engineering Laboratories

    Get PDF
    Online laboratories are widely used in higher engineering education and due to the COVID-19 pandemic, they have taken on an even greater relevance. At Tecnologico de Monterrey, Mexico, well-established techniques such as Problem-Based Learning (PBL), Project-Oriented Learning (POL) and Research-Based Learning (RBL) have been implemented over the years, and over the past year, have been successfully incorporated into the students’ learning process within online and remote laboratories. Nevertheless, these learning techniques do not include an element which is crucial in today’s industrialized world: Industry 4.0 competencies. Therefore, this work aims to describe a pedagogical approach in which the development of Industry based competencies complements the aforementioned learning techniques. The use and creation of virtual environments and products is merged with the understanding of fundamental engineering concepts. Further, a measurement of the students’ perceived self-efficacy related to this pedagogical approach is carried out, focusing on the physiological states and mastery experiences of the students. An analysis of its results is presented as well as a discussion on these findings, coupled with the perspectives from different key stakeholders on the importance of the educational institutions’ involvement in developing Industry 4.0 competencies in engineering students. Finally, comments regarding additional factors which play a role in the educational process, but were not studied at this time, as well as additional areas of interest are given

    THE DEVELOPMENT OF A MECHATRONICS AND MATERIAL HANDLING COURSE: LABORATORY EXPERIMENTS AND PROJECTS

    Get PDF
    Mechatronic systems integrate technologies from a variety of engineering disciplines to create solutions to challenging industrial problems. The material handling industry utilizes mechatronics to move, track, and manipulate items in factories and distribution centers. Material handling systems, because of their use of programmable logic controllers (PLC), PLC networks, industrial robotics, and other mechatronic elements, are a natural choice for a college instructional environment. This thesis offers insight and guidance for mechatronic activities introduced in a laboratory setting. A series of eight laboratory experiments have been created to introduce PLCs, robotics, electric circuits, and data acquisition fundamentals. In-depth case studies synthesize the technologies and interpersonal skills together to create a flexible material handling system. Student response to the course and laboratory material was exceptional. A pre and post course questionnaire was administered which covered topics such as teamwork, human factors, business methods, and various engineering related questions. Quantitative scores resulting from these questionnaires showed a marked improvement by students, especially in regards to technical/engineering questions. The responses from students generally indicated an excitement about course material and a thorough understanding of the various syllabus topics. In this thesis, the multi-disciplinary mechatronics (and material handling systems) laboratory will be presented. An in-depth examination of each laboratory will be offered as well as the discussion of two material handling case studies. The Appendixes contain the PLC and robot code for a order fulfillment case study

    Arduino Controlled Filling Yarn Presenter of Modern Rapier Loom

    Get PDF
    This paper is concerned with the application of filling yarn presenter with the help of Arduino mega controlled by various analog and digital inputs. Modern Rapier looms are more advanced in every aspect of production than conventional power looms. Quickstep mechanism is used in multicolored weft insertion. In the current project we introduce a prototype of servo-motor-controlled filling yarn presenter as well as a hypothesis has been shown in order to maximizing the number of filling yarn presenter. We took advantage of Arduino-based programmable circuit board (PCB) along with necessary components such as keypads, potentiometers, breadboards, servo motors, LCD, metal wires and plastic pipes. The integration of all these parts results in a prototype based on this redefined mechanism which is able to manually control 4 individual colored weft yarns according to their sequence that also can be inputted manually

    A Hands-on Robotics Concentration Curricula in Engineering Technology Programs

    Full text link
    This paper discusses the creation of a robotic concentration with four courses to meet the industry demands for qualified graduates in product design and services. Advances in computer technology and electronics have created a new field called mechatronics. Nowadays almost all high tech products are mechatronics in nature. Products such as automotive subsystems (such as anti-lock braking systems and automatic steering systems), medical devices, environmental monitoring systems, service and surgical robots are all mechatronic products. The robotic concentration focus on one of the most popular and visible area of mechatronics: robotics. The creation of the four courses: Embedded Systems Fundamentals, Actuators and Sensors, Control Systems, and Robotic Design and Applications is aimed at addressing the important issues of proper scaffolding for the engineering technology students in three engineering technology departments so that students will be able to engage in product design and development using integrated concurrent engineering and multidisciplinary approach

    Human-Robot Collaborative Force-Controlled Micro-Drilling for Advanced Manufacturing and Medical Applications

    Get PDF
    Robotic drilling finds applications in diverse fields ranging from advanced manufacturing to the medical industry. Recent advances in low-cost, and human-safe, collaborative robots (e.g., Sawyer) are enabling us to rethink the possibilities in which robots can be deployed for such tedious and time-consuming tasks. This thesis presents a robotic drilling methodology with features of force-control enabled micro-drilling and human-robot collaboration to reduce programming efforts and enhance drilling performance. A Sawyer robot from Rethink Robotics, which offers safe physical interactions with a human co-worker, kinesthetic teaching, and force control, is used as the test bed. The robot’s end-effector was equipped with a Dremel drill fit into a housing, which was custom designed and 3D-printed using an Object Prime 3D-printer. The proposed approach applies human-robot collaboration in two cases. First, a human kinesthetically teaches a set of drill coordinates by physically holding the robot and guiding it to those locations. The robot then executes the drilling task by moving to these recorded locations. This thereby avoids the need to specify the drill coordinates with respect to a fixed reference frame, leading to reduction in programming effort and setup time while transitioning between different drilling jobs. Second, drilled hole quality is shown to be enhanced when a human provides nominal physical support to the robot during certain drilling tasks. An experimental analysis of the impact of force control on micro-drilling revealed that the proposed robotic system is capable of successfully drilling holes with a drill bit of 0.5 mm diameter with an error of +/- 0.05 mm, without breaking it for more than 100 holes. The proposed robotic drilling was validated in the following application domain: micro-drilling for composite repairs based on the through-thickness reinforcement (TTR) technique. For this purpose, sandwich beam samples were prepared by using pre-preg unidirectional carbon fabric face sheets with a honeycomb core, and they were subjected to four-point static loading until de-bonding occurred between the face sheet and the core. The samples were then repaired using the TTR technique, where the proposed robotic drilling was used to drill holes of 0.75 mm diameter in the damaged area of the sample and carbon fiber rods and with low-viscosity epoxy, were manually inserted into these drilled holes. The results revealed that the sandwich beam regained effective compressive strength after going through the TTR technique. Experiments also reveal the potential of the proposed robotic drilling technique in aerospace and automotive manufacturing involving drilling in complex postures and micro-drilling for orthopedic applications
    • …
    corecore