658 research outputs found

    Superregeneration revisited: from principles to current applications

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless communications play a central role in our modern connected lives; at the same time, they constitute a very broad and deep area of research. The elements that make wireless communications possible are a transmitter, which sends information through electromagnetic waves; a medium that is able to transport these waves; and, finally, a receiver, which extracts the information from the-usually very small-amount of energy it is able to collect from the medium.Peer ReviewedPostprint (author's final draft

    RADIO FREQUENCY IDENTIFICATION OF PERSONNEL IN PLANT DURING EMERGENCY CONDITIONS

    Get PDF
    Nowadays, nearly every industrial plant throughout the nation are taking concern on the emerging safety issues that is seemed to be more apparent - compared to just taking serious attention to the production line. It's been said that if you think safety is expensive, try an accident. Safety of each personnel is deeply linked on the psychological part that contributes to the well being of an industrial plant andtherefore the workers are part of the valuable assets to the company. Parallel to the development of industrial competency and complexity, the safety issues have becoming more technologically related. RFID (Radio Frequency Identification), already known for its agility and reliability in supply chain management, has now being diverging in areas regarding safety. RFID is not just a label that tags for certain equipments / goods, but now able to detect location of moving object, especially human, in an enclosed area. From simulation upto practical application, RFID had shown significant improvement for a faster and precise detection of personnel compared to other traditional barcode detection or manual head count to ensure safety evacuation of all personnel during emergency

    A high efficiency low noise rf-to-dc converter employing gm-boosting envelope detector and offset canceled latch comparator

    Get PDF
    This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wakeup receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 µW from a 1.2 V supply voltage. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Ultra-Low Power Circuit Design for Miniaturized IoT Platform

    Full text link
    This thesis examines the ultra-low power circuit techniques for mm-scale Internet of Things (IoT) platforms. The IoT devices are known for their small form factors and limited battery capacity and lifespan. So, ultra-low power consumption of always-on blocks is required for the IoT devices that adopt aggressive duty-cycling for high power efficiency and long lifespan. Several problems need to be addressed regarding IoT device designs, such as ultra-low power circuit design techniques for sleep mode and energy-efficient and fast data rate transmission for active mode communication. Therefore, this thesis highlights the ultra-low power always-on systems, focusing on energy efficient optical transmission in order to miniaturize the IoT systems. First, this thesis presents a battery-less sub-nW micro-controller for an always-operating system implemented with a newly proposed logic family. Second, it proposes an always-operating sub-nW light-to-digital converter to measure instant light intensity and cumulative light exposure, which employs the characteristics of this proposed logic family. Third, it presents an ultra-low standby power optical wake-up receiver with ambient light canceling using dual-mode operation. Finally, an energy-efficient low power optical transmitter for an implantable IoT device is suggested. Implications for future research are also provided.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145862/1/imhotep_1.pd

    Energy-Efficient Wake-up Receivers for 915-MHz ISM Band Applications

    Get PDF
    Wake-up receiver (WuRx) is a well-known approach for optimizing the latency and power consumption of ultra-low power transceivers in wireless sensor nodes. Tuned RF (TRF) or Envelope Detection architecture is an appropriate topology for short-range Wireless Body Area Network (WBAN) applications, where achieving a very high sensitivity is not a priority. However, the demand for an improved sensitivity gets emphasized for longer transmission ranges. Regardless of the application, considering the existing trade-off between the power and sensitivity, design techniques and novel architectures are usually employed to optimize the power-sensitivity product. Moreover, considering the negative impact of higher data rate on the sensitivity, the energy-sensitivity product can be a more reasonable figure of merit when comparing WuRx designs. In this thesis, the RF-subsampling architecture has been combined with the TRF receiver architecture as a first approach for improving the power-sensitivity product. The overall power consumption is reduced as a result of employing the subsampling topology with a low-frequency local oscillator (LO). Post layout simulations show that the proposed WuRx draws only 56 μA from a 0.5 V supply and exhibits an input sensitivity of -70 dBm for a data rate of 100 kbps. The chip occupies an area of 0.15 mm2 and is fabricated with TSMC 90nm CMOS technology. Another major contribution of this work is to propose and implement a novel dual-mode ultra-low-power WuRx based on the subsampling topology, which not only reduces the overall power consumption but also optimizes the energy-sensitivity product of the receiver. During the typical mode of operation known as the Monitoring (MO) mode, the start frame bits are received at a rate of as low as 10 kbps. Having received the true preamble bits in the MO mode, the remaining wake-up pattern bits are received at a higher rate of 200 kbps during the Identifier (ID) mode. By lowering the gain of the front-end amplifier in the MO mode, the power dissipation is reduced, which in turn causes an increase in the overall noise figure of the receiver. However, adequate sensitivity and hence an optimized energy-sensitivity product is maintained by intentionally lowering the data rate as well as the detection bandwidth of the receiver in the MO mode. The proposed wake-up receiver has been designed and fabricated in IBM 130 nm technology with a core size of about 0.2 mm2 for the target frequency range of 902-928 MHz. The measured results show that the proposed dual-mode receiver achieves a sensitivity of -78.5 dBm and -75 dBm while dissipating an average power of 16.4 µW and 22.9 µW during MO and ID modes, respectively

    RF TRANSCEIVER DESIGN FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Computer control of an HF chirp radar

    Get PDF
    This thesis describes the interfacing of an IBM compatible microcomputer to a BR Communications chirp sounder. The need for this is twofold: Firstly for control of the sounder including automatic scheduling of operations, and secondly for data capture. A signal processing card inside the computer performs a Fast Fourier Transform on the sampled data from two phase matched receivers. The transformed data is then transferred to the host computer for further processing, display and storage on hard disk or magnetic tape, all in real time. Critical timing functions are provided by another card in the microcomputer, the timing controller. Built by the author, the design and operation of this sub-system is discussed in detail. Additional circuitry is required to perform antenna and filter switching, and a possible design thereof is also presented by the author. The completed system, comprising the chirp sounder, the PC environment, and the signal switching circuitry, has a dual purpose. It can operate as either a meteor radar, using a fixed frequency (currently 27,99 MHz), or as an advanced chirp ionosonde allowing frequency sweeps from 1,6 to 30 MHz. In the latter case fixed frequency doppler soundings are also possible. Examples of data recorded in the various modes are given
    corecore