86 research outputs found

    Multi-objective particle swarm optimization for channel selection in brain-computer interfaces

    Get PDF
    This paper presents a novel application of a multi-objective particle swarm optimization (MOPSO) method to solve the problem of effective channel selection for Brain-Computer Interface (BCI) systems. The proposed method is tested on 6 subjects and compared to another search based method, Sequential Floating Forward Search (SFFS). The results demonstrate the effectiveness of MOPSO in selecting a fewer number of channels with insignificant sacrifice in accuracy, which is very important to build robust online BCI systems

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Improved Motor Imagery Classification Using Adaptive Spatial Filters Based on Particle Swarm Optimization Algorithm

    Full text link
    As a typical self-paced brain-computer interface (BCI) system, the motor imagery (MI) BCI has been widely applied in fields such as robot control, stroke rehabilitation, and assistance for patients with stroke or spinal cord injury. Many studies have focused on the traditional spatial filters obtained through the common spatial pattern (CSP) method. However, the CSP method can only obtain fixed spatial filters for specific input signals. Besides, CSP method only focuses on the variance difference of two types of electroencephalogram (EEG) signals, so the decoding ability of EEG signals is limited. To obtain more effective spatial filters for better extraction of spatial features that can improve classification to MI-EEG, this paper proposes an adaptive spatial filter solving method based on particle swarm optimization algorithm (PSO). A training and testing framework based on filter bank and spatial filters (FBCSP-ASP) is designed for MI EEG signal classification. Comparative experiments are conducted on two public datasets (2a and 2b) from BCI competition IV, which show the outstanding average recognition accuracy of FBCSP-ASP. The proposed method has achieved significant performance improvement on MI-BCI. The classification accuracy of the proposed method has reached 74.61% and 81.19% on datasets 2a and 2b, respectively. Compared with the baseline algorithm (FBCSP), the proposed algorithm improves 11.44% and 7.11% on two datasets respectively. Furthermore, the analysis based on mutual information, t-SNE and Shapley values further proves that ASP features have excellent decoding ability for MI-EEG signals, and explains the improvement of classification performance by the introduction of ASP features.Comment: 25 pages, 8 figure

    Brain-computer interface channel selection optimization using meta-heuristics and evolutionary algorithms

    Get PDF
    Producción CientíficaMany brain–computer interface (BCI) studies overlook the channel optimization due to its inherent complexity. However, a careful channel selection increases the performance and users’ comfort while reducing the cost of the system. Evolutionary meta-heuristics, which have demonstrated their usefulness in solving complex problems, have not been fully exploited yet in this context. The purpose of the study is two-fold: (1) to propose a novel algorithm to find an optimal channel set for each user and compare it with other existing meta-heuristics; and (2) to establish guidelines for adapting these optimization strategies to this framework. A total of 3 single-objective (GA, BDE, BPSO) and 4 multi-objective (NSGA-II, BMOPSO, SPEA2, PEAIL) existing algorithms have been adapted and tested with 3 public databases: ‘BCI competition III–dataset II’, ‘Center Speller’ and ‘RSVP Speller’. Dual-Front Sorting Algorithm (DFGA), a novel multi-objective discrete method especially designed to the BCI framework, is proposed as well. Results showed that all meta-heuristics outperformed the full set and the common 8-channel set for P300-based BCIs. DFGA showed a significant improvement of accuracy of 3.9% over the latter using also 8 channels; and obtained similar accuracies using a mean of 4.66 channels. A topographic analysis also reinforced the need to customize a channel set for each user. Thus, the proposed method computes an optimal set of solutions with different number of channels, allowing the user to select the most appropriate distribution for the next BCI sessions.Ministerio de Ciencia, Innovación y Universidades (project RTC2019-007350-1)Comisión Europea (project 0702_MIGRAINEE_2_E

    A motor imagery based brain-computer interface system via swarm-optimized fuzzy integral and its application

    Full text link
    © 2016 IEEE. A brain-computer interface (BCI) system provides a convenient means of communication between the human brain and a computer, which is applied not only to healthy people but also for people that suffer from motor neuron diseases (MNDs). Motor imagery (MI) is one well-known basis for designing Electroencephalography (EEG)-based real-life BCI systems. However, EEG signals are often contaminated with severe noise and various uncertainties, imprecise and incomplete information streams. Therefore, this study proposes spectrum ensemble based on swam-optimized fuzzy integral for integrating decisions from sub-band classifiers that are established by a sub-band common spatial pattern (SBCSP) method. Firstly, the SBCSP effectively extracts features from EEG signals, and thereby the multiple linear discriminant analysis (MLDA) is employed during a MI classification task. Subsequently, particle swarm optimization (PSO) is used to regulate the subject-specific parameters for assigning optimal confidence levels for classifiers used in the fuzzy integral during the fuzzy fusion stage of the proposed system. Moreover, BCI systems usually tend to have complex architectures, be bulky in size, and require time-consuming processing. To overcome this drawback, a wireless and wearable EEG measurement system is investigated in this study. Finally, in our experimental result, the proposed system is found to produce significant improvement in terms of the receiver operating characteristic (ROC) curve. Furthermore, we demonstrate that a robotic arm can be reliably controlled using the proposed BCI system. This paper presents novel insights regarding the possibility of using the proposed MI-based BCI system in real-life applications

    Fuzzy Integral with Particle Swarm Optimization for a Motor-Imagery-Based Brain-Computer Interface

    Full text link
    © 2016 IEEE. A brain-computer interface (BCI) system using electroencephalography signals provides a convenient means of communication between the human brain and a computer. Motor imagery (MI), in which motor actions are mentally rehearsed without engaging in actual physical execution, has been widely used as a major BCI approach. One robust algorithm that can successfully cope with the individual differences in MI-related rhythmic patterns is to create diverse ensemble classifiers using the subband common spatial pattern (SBCSP) method. To aggregate outputs of ensemble members, this study uses fuzzy integral with particle swarm optimization (PSO), which can regulate subject-specific parameters for the assignment of optimal confidence levels for classifiers. The proposed system combining SBCSP, fuzzy integral, and PSO exhibits robust performance for offline single-trial classification of MI and real-time control of a robotic arm using MI. This paper represents the first attempt to utilize fuzzy fusion technique to attack the individual differences problem of MI applications in real-world noisy environments. The results of this study demonstrate the practical feasibility of implementing the proposed method for real-world applications

    Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification

    Get PDF
    BackgroundEffectively decoding electroencephalogram (EEG) pattern for specific mental tasks is a crucial topic in the development of brain-computer interface (BCI). Extracting common spatial pattern (CSP) features from motor imagery EEG signals is often highly dependent on the selection of frequency band and time interval. Therefore, optimizing frequency band and time interval would contribute to effective feature extraction and accurate EEG decoding.ObjectiveThis study proposes an approach based on an improved novel global harmony search (INGHS) to optimize frequency-time parameters for effective CSP feature extraction.MethodsThe INGHS algorithm is applied to find the optimal frequency band and temporal interval. The linear discriminant analysis and support vector machine are used for EEG pattern decoding. Extensive experimental studies are conducted on three EEG datasets to assess the effectiveness of our proposed method.ResultsThe average test accuracy obtained by the time-frequency parameters selected by the proposed INGHS method is slightly better than artificial bee colony (ABC) and particle swarm optimization (PSO) algorithms. Furthermore, the INGHS algorithm is superior to PSO and ABC in running time.ConclusionThese superior experimental results demonstrate that the optimal frequency band and time interval selected by the INGHS algorithm could significantly improve the decoding accuracy compared with the traditional CSP method. This method has a potential to improve the performance of MI-based BCI systems

    A bacterial foraging optimization and learning automata based feature selection for motor imagery EEG classification

    Get PDF
    Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs
    corecore