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Background: Effectively decoding electroencephalogram (EEG) pattern for

specific mental tasks is a crucial topic in the development of brain-computer

interface (BCI). Extracting common spatial pattern (CSP) features from motor

imagery EEG signals is often highly dependent on the selection of frequency

band and time interval. Therefore, optimizing frequency band and time interval

would contribute to effective feature extraction and accurate EEG decoding.

Objective: This study proposes an approach based on an improved novel

global harmony search (INGHS) to optimize frequency-time parameters for

effective CSP feature extraction.

Methods: The INGHS algorithm is applied to find the optimal frequency band

and temporal interval. The linear discriminant analysis and support vector

machine are used for EEG pattern decoding. Extensive experimental studies

are conducted on three EEG datasets to assess the effectiveness of our

proposed method.

Results: The average test accuracy obtained by the time-frequency

parameters selected by the proposed INGHS method is slightly better than

artificial bee colony (ABC) and particle swarm optimization (PSO) algorithms.

Furthermore, the INGHS algorithm is superior to PSO and ABC in running time.

Conclusion: These superior experimental results demonstrate that the

optimal frequency band and time interval selected by the INGHS algorithm
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could significantly improve the decoding accuracy compared with the

traditional CSP method. This method has a potential to improve the

performance of MI-based BCI systems.

KEYWORDS

brain-computer interface (BCI), common spatial pattern (CSP), frequency band, time
interval, improved novel global harmony search (INGHS), electroencephalogram
(EEG)

Introduction

A brain-computer interface (BCI) system is utilized to sense
and transform the electroencephalogram (EEG) signal from
the scalp into commands to control external devices and help
users to accomplish tasks (Wolpaw, 2002; Cervera et al., 2018;
Lazarou et al., 2018; Xu et al., 2018, 2021; Mudgal et al., 2020;
Rashid et al., 2020). The EEG is commonly used for brain
analysis (Nicolas-Alonso and Gomez-Gil, 2012). A large number
of researchers pay more attention to the research of BCI based
on motor imagery (MI). The mechanism of EEG-based MI-BCI
is that the subject can autonomously regulate the sensorimotor
rhythm (SMR) through performing the MI task (Pfurtscheller
et al., 1993, 2006). The SMR is characterized by power changes
in specific frequency bands (8–30) over the sensorimotor cortex.
The modulation of SMR generates contralateral preponderant
event-related desynchronization (ERD) and synchronization
(ERS), which are short lasting attenuation and enhancements
of SMR. It is generally accepted that ERD/ERS happens in the
different spatial-frequency-temporal domains when different
subjects execute MI task, causing difficulty in extracting effective
features (Hamedi et al., 2016; Li et al., 2019; Jiao et al., 2020).

A standard BCI system comprises a signal acquisition
unit, signal processing unit, controlling unit, and application
or feedback unit. The signal processing unit further includes
three parts, namely, preprocessing, feature extraction, and
feature classification. The effective feature extraction method is
very important for the recognition of MI intention (Rasheed,
2021). Various feature extraction techniques are used for
the feature extraction of EEG-based MI, such as Principal
Component Analysis (PCA) (Mirzaei and Ghasemi, 2021),
Wavelet Transform (WT) (Sreeja et al., 2017), Fast Fourier
Transform (FFT) (Chaudhary et al., 2019), and Common Spatial
Pattern (CSP) (Miao et al., 2017b). Currently, the CSP is one
of the most popular feature extraction methods which can
effectively extract the spatial information of ERD/ERS (Siuly
and Li, 2015). However, due to the influence of nonstationary
in EEG and inherent defects of the CSP objective function,
the spatial filters, and their corresponding features are not
necessarily optimal in the feature space used within CSP. On the
one hand, internal feature selection method of CSP based on L1-
norm and Dempster–Shafer theory was proposed to result in a
significant increase in the performance of MI-based BCI systems

(Jin et al., 2021). On the other hand, the selection of frequency
band and time interval has a great influence on the CSP features.
Under the same experimental paradigm, the most reactive
frequency band and response time interval of different subjects
performing the MI are distinct (Ramoser and Muller-Gerking,
2000). It is demonstrated that the classification performance
of the BCI system could be enhanced through the selection of
the distinguishable frequency band, maximum discriminative
time interval, and high-separability power channels for specific
participants (Ince et al., 2009).

The main study for the select of frequency band and
temporal interval focuses on the following aspects. (1)
Frequency band optimizing: the sub-band common spatial
pattern (SBCSP) was reported (Quadrianto et al., 2007). Mutual
information-based feature selection method was employed
to select distinguishable pairs of frequency bands in filter
bank common spatial pattern (FBCSP) algorithm that yields
superior classification performance compared with CSP and
SBCSP (Kai et al., 2008). Discriminative filter bank common
spatial pattern (DFBCSP) was reported to extract the optimal
frequency band by means of fisher ratio and achieved better
classification accuracy (Thomas et al., 2009). A sparse filter
band common spatial pattern (SFBCSP) was introduced to
optimize the frequency domain (Zhang et al., 2015). (2)
Temporal domain optimizing: the novel correlation-based time
window selection (CTWS) algorithm was applied for MI-based
BCIs, and the results indicate that compared to the classical
CSP method, the CTWS algorithm significantly enhanced
the average classification accuracy of healthy participants and
stroke survivors (Feng et al., 2018). (3) Frequency-temporal
optimizing: the frequency-time synthesis optimizing method
for the MI-based BCI system was reported to adapt to the
individual difference (Tao et al., 2004). The local discriminant
bases algorithm was proposed to find the starting time of the
ERD/ERS in the sub-band of the EEG (Ince et al., 2007). Fisher
discriminant analysis-type F-score approach was developed to
simultaneously optimize the frequency-time domain for multi-
class classification (Yang et al., 2017).

All these mentioned works have demonstrated that
optimizing frequency band or time interval could contribute to
yield better classification results. However, most of the studies
aim to find the optimal time-frequency parameters in multiple
sub-bands and time intervals based on the same bandwidth and
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time window length. The fixed bandwidth and time window
length is not individual variability. Furthermore, although most
of the proposed algorithms can automatically optimize the
frequency band and time interval, they are independent of each
other in the selection process. Since the optimal CSP features
are determined by the mutual influence of both frequency
and time parameters, the above sequential select procedure
method is not the optimal solution in terms of finding the
optimal frequency band and time interval. In essence, it might
be the best choice to select simultaneously frequency-temporal
parameters in the optimization process so that the CSP
features obtained by the optimal frequency-time parameters
can enhance the classification performance for MI-based
BCI systems. Recently, some meta-heuristic algorithms were
introduced to optimize frequency-temporal parameters. The
particle swarm optimization (PSO) algorithm was utilized to
select the optimal frequency and time parameters to extract the
effective CSP features (Xu et al., 2014). The artificial bee colony
(ABC) algorithm was proposed to solve the frequency-temporal
optimization problem (Miao et al., 2017a). However, most of
these algorithms require complex operations when creating an
offspring. Moreover, these algorithms have many options for
parameters and need a relatively long run time to find the global
optimal solution.

Harmony search (HS) algorithm was firstly proposed in
2001 (Geem et al., 2001). Since then, HS and its variants
have been reported and widely applied to various optimization
problems (Mahdavi et al., 2007; Omran and Mahdavi, 2008;
Zou et al., 2010). An improved novel global harmony search
algorithm (INGHS) was proposed (Ouyang et al., 2015) and the
results indicate that the INGHS algorithm performs better than
PSO and ABC algorithms in solving the reliability optimization
problem. INGHS algorithm has been successfully applied to
data clustering and engineering design optimization problems
(Ouyang et al., 2018; Talaei et al., 2020). To sum up, the iterative
updating principle of INGHS is simpler than PSO and ABC,
with faster convergence and better performance. The PSO and
ABC algorithms can find good time-frequency parameters in the
application of BCI system, but the time cost is high. Therefore,
in our work, the INGHS algorithm is introduced in this article
to solve the combined frequency-time optimization problem for
more accurate MI-related EEG classification. Extracting CSP
features from MI EEG signals is often highly dependent on
the selection of frequency band and time interval. The CSP
features obtained with fixed frequency band and time interval
might affect the classification performance of MI-based BCI
systems. To address the above drawbacks, the contribution of
this work is:

1. Propose an approach based on an INGHS to
optimize frequency-time parameters for effective CSP
feature extraction.

2. Conduct a set of experiments validating the effectiveness of
the proposed method.

3. Compared with PSO and ABC, INGHS algorithm can
converge to the global optimal solution faster, so it
is helpful for specific subjects to find the optimal
time interval and frequency band in the actual offline
experiment in a shorter time, thus shortening the offline
calibration time.

Therefore, the rest of the article is organized as follows.
The applied datasets and methods are described in section
“Methods and materials.” Then, in the section “Results and
discussion,” we describe the results of channel selection,
test classification comparison, analysis of frequency-temporal
parameters optimization, and computational time comparison.
Finally, this study is summarized in section “Conclusion.”

Methods and materials

Electroencephalogram data
description

(1) Data 1: The first dataset was from the BCI Competition
IV dataset 1. The EEG signals of seven subjects (“a” to
“g”) at 59 EEG electrodes were recorded. The calibration
data consisting of 200 trials for each subject was utilized
in this study. In each trial, cue show a duration of 4 s,
during which each subject performed the corresponding
MI (right hand and left hand or foot) tasks. The original
data are downsampled to 100 Hz. The timeline of a trial is
illustrated in Figure 1A. More details can be found in the
following website: http://www.bbci.de/competition/iv/.

(2) Data 2: We used the BCI Competition III dataset IVa
for the experimental study. Five healthy participants (“aa”
to “ay”) from 118 EEG electrodes were recorded in this
dataset. The data are downsampled to 100 Hz. In each trial,
cues show a duration of 3.5 s, during which each subject
performed the corresponding MI (right hand and right
foot) tasks. The timeline of a trial is shown in Figure 1B.
More details can be found in the following website: http:
//www.bbci.de/competition/iii/.

(3) Data 3: The third dataset was from the BCI Competition
III dataset IIIa. The EEG signals of three subjects
were recorded in this dataset at 64 electrodes but the
competition received data of only 60 electrodes. Only the
EEG data of left-hand and right-hand are employed in this
study due to the binary classification. During each run, the
first 2 s were quiet and a cross was displayed at t = 2 s.
Then from t = 3–7 s, the subject executed the imagery task.
The sampling rate is 250 Hz and have different numbers of
trials for each subject in this study. The subjects are “k3b”
(90), “k6b” (60), and “l1b” (60). The timeline of a trial is

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004301
http://www.bbci.de/competition/iv/
http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1004301 December 16, 2022 Time: 9:14 # 4

Shi et al. 10.3389/fncom.2022.1004301

FIGURE 1

(A–C) Timeline of a trial of three datasets.

illustrated in Figure 1C. More details can be found in the
following website: http://www.bbci.de/competition/iii/.

Data preprocessing and channel
selection

At first, the continuous EEG data from three datasets
are divided into single-trial data and then common average
reference (CAR) is applied for the spatial filter to enhance the
signal-to-noise ratio (Mcfarland et al., 1997). Moreover, the EEG
data are filtered by using a fifth-order Butterworth band-pass
filter from 5 to 40 Hz (Miao et al., 2017a).

The channel selection method could not only remove
the irrelevant and redundant channels but also reduce the
calculation cost for the subsequent time-frequency parameter
optimization to obtain better classification performance (He
et al., 2013). The discriminative power of each channel
is calculated by Fisher’s discriminative criteria (FDC) value
between the two classes. First of all, time segmentation is
conducted by using rectangular time windows (100 points) and
the length of signal (250 points) for datasets 1 (100 Hz × 4 s)

and dataset IVa (100 Hz × 3.5 s), and dataset IIIa
(250 Hz × 4 s), respectively. The 50% overlapping is used in
neighboring t-segments for three datasets. For single-channel,
Pch,t = log(var(xch,t)) is calculated as the feature of each
segment, where xch,t is signal data of t-segment of channel ch,
and Pch,t denotes log-power. Then, the FDC value between two
classes is φch,t = (m1 −m2)

2/(var(P1
ch,t)+ var(P2

ch,t)), where
m1 and m2 are means of Pch,t of all trials in two classes. P1

ch,t
and P2

ch,t denote log-power of two classes, respectively. Finally,
the maximum FDC of all t-segments is taken as the FDC value
of each channel. The FDC values of all channels are arranged
in descending order. In the set of FDC values, the first K
corresponding channels are taken as the optimal channels in this
study. K denotes the number of the selected channels.

Feature extraction and classification
The CSP is a feature extraction method that projects

multichannel EEG signals from the two classes into a subspace
and decomposes them into different spatial patterns (He et al.,
2010; Alvarez-Meza et al., 2015; Nicolas-Alonso et al., 2015;
Wang et al., 2020; Mladenović et al., 2022). The CSP algorithm
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maximizes the difference between classes by simultaneously
diagonalizing the covariance matrix and is described as follows:

The e-th MI EEG data could be represented as
Xe
= [x1(t), x2(t), ..., xn(t)]T t = t0, ..., T, where n is the

number of electrodes. Xd, d ∈ {1, 2} denotes the EEG data of
class 1 or class 2. The normalized average covariance matrix of
class 1 and class 2 are calculated as:

C̄d =
1
N

∑ (XdXT
d )

trace(XdXT
d )

(1)

where N is the number of trials for EEG data in a class. Then,
the covariance space Cc = C1 + C2 consists of mean covariance
matrices of the two classes. The eigendecomposition of Cc

can be expressed as Cc = UcλcUT
c . P is the whitening matrix:

P =
√

λ−1
c UT

c . Define R1 = PC1PT andR2 = PC2PT. Then, R1
is calculated by Rd = BλdBT. B is the orthogonal matrix and
λd is a diagonal matrix. If R1 = Bλ1BT, thenR2 = Bλ2BT, and
λ1 + λ2 = I. When the λ1 is closer to I, the λ2 is closer to
0. Thus, the difference between the two classes is the largest.
The projection matrix W is calculated as: W = BTP. The Xe is
projected onto Z =WXe. The number of features is 2m and
m = 1 in this study. The features fp, could be calculated as
follows:

fp = log

(
Var(Zp)∑2m
i=1 Var(Zi)

)
, p = 1, ..., 2m (2)

In this article, linear discriminant analysis (LDA) and a Radial
Basis Function (RBF) kernel-based support vector machine
(SVM) are used as classification methods (Jin et al., 2019; Jin
et al., 2020; Mladenović et al., 2022). The MATLAB Toolbox
(LIBSVM) is used in this study for classification (Chang and Lin,
2011).

Improved novel global harmony search
algorithm

Inspired by the music improvisation process, Geem
proposed a new meta-heuristic optimization algorithm called
harmony search (HS) (Geem et al., 2001). The novel global
harmony search algorithm (NGHS) was proposed based on
the idea of swarm intelligence of particle swarm (Zou et al.,
2010). The NGHS algorithm first initializes the problem
and parameters including genetic mutation probability (Pm),
maximum iteration number, and harmony memory size (HMS).
Then position updates and low-probability genetic mutations
are used to produce a new harmony. Finally, no matter
whether the new harmony is better than the worst harmony
in the harmony memory (HM), the new harmony would
replace the worst harmony. If the predetermined termination
criterion is not met, the above process is repeated. However,
the purpose of the position update operation is to move the
worst harmony in the HM to the best harmony in each iteration

in the NGHS algorithm, which can easily result in premature
convergence. Moreover, the algorithm has never considered
that other harmony solutions except for the worst harmony
can improvise better harmony in each iteration. Therefore, an
INGHS algorithm was proposed to boost the quality of the
solution and keep the NGHS algorithm from falling into local
optimal solution (Ouyang et al., 2015). The INGHS algorithm
proposed a coefficient of optimization opportunity, which can
dynamically adjust to keep a balance between the exploitation
and exploration to enhance the local search ability and accelerate
the convergence rate of algorithm. Figure 2 presents the flow
chart of the INGHS algorithm.

The INGHS works as follows:
Step 1: Initialize the problem and parameters
The optimization problem is defined as minimize (or

maximize) f (x) such that xiL ≤ xi ≤ xiU(i = 1, 2, ..., n), where
the objective function denotes f (x), and x is a candidate solution
composing of n decision variables (xi). This step also needs
to determine the parameters which include the HMS, genetic
mutation probability Pm, and the number of iterations (Ni).

Step 2: Initialize the harmony memory (HM)
The initial HM is yielded from a uniform distribution

in the variable interval [xiL xiU], where xiL and xiU are the
lower and upper bounds for xi, respectively. This is done as
follows: xj

i = xiL + r× (xiU − xiL), j =1, 2, ..., HMS. Where
r ∼ U(0, 1), and f (x) is the objective function values of each
harmony vectors, as shown in Equation 3.

HM =


x1

1 x1
2 · · · x1

n

x2
1 x2

2 · · · x2
n

...
... · · ·

...

xHMS
1 xHMS

1 · · · xHMS
n

∣∣∣∣∣∣∣∣∣∣∣

f (x1)

f (x2)
...

f (xHMS)

 (3)

Step 3: Improvise a new harmony
Generating a new harmony is called improvisation.

x′ = (x
′

1, x
′

2, ..., x
′

n) is the new harmony vector. O(u) is defined
as the coefficient of optimization opportunity and its expression
is O(u) = 1−

√
1− (u/Ni) (u is the current iteration). xbest

i
represents the i-th components of the best harmony (minimum
fitness value) in HM, and xworst

i represents the i-th components
of the worst harmony (maximum fitness value) in HM. xs

i is the
i-th components of stochastic harmony in HM. r is uniformly
generated random number in the region of [0 1]. The objective
of the new harmony vector f(x

′

) is calculated. The specific
procedure is as follows:

For each i ∈ [1, n] do
If r < O(u)

xR = 2× xbest
i − xworst

i

Else

xR = (1+ r)× xbest
i − (1− r)× xs

i , s ∈ (1, 2, ..., HMS)

End if
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If xR < xiL
xR = xiL

Else If xR > xiU
xR = xiU

End if
x
′

i = xs
i + r× (xR − xs

i) /∗position updating∗/
If r < Pm then

x
′

i = xiL + r× (xiU − xiL) /∗genetic mutation∗/
End if
End for
Step 4: Update HM
If the objective value of the improvised harmony vector x

′

is
better than that of the stochastic selected harmony xs, we replace
the stochastic selected harmony in the HM with x

′

.
Step 5: Check the stopping criterion
The iteration is terminated when the maximum Ni is

reached. Otherwise, Steps 3 and 4 are repeated.

An improved novel global harmony
search-based frequency-temporal
parameter optimization scheme

Firstly, the original EEG data sets were preprocessed by
CAR and band-pass filter. Then, the FDC-based method is used
for the raw EEG data to select the optimal channel sets. The
10-fold cross-validation is employed to verify the effectiveness
of the proposed INGHS method. Specifically, the raw EEG
data with channel selection were randomly divided into 10

FIGURE 2

The flow chart of the INGHS algorithm.

parts, 9 parts of which were used as training data and the
remaining one as test data. Figure 3 presents the flow chart of
the INGHS-based frequency-temporal parameter optimization.
The proposed method mainly includes training phase and test
phase. For the training phase, the INGHS algorithm was used
for the training data sets to search the optimal frequency band
and time interval. Thereafter, the projection matrix is obtained
by CSP algorithm to applied training data extracted with the
optimal frequency-temporal parameter. The CSP features is
applied to train the SVM model. For test phase, the optimal
frequency-temporal parameter is employed for testing samples
to extract the EEG segment. Then, the projection matrix is used
to extract the CSP features which is putted into SVM model to
classification.

It should be noted that the objective function in INGHS
algorithm was defined to calculate the fitness value for
evaluating the quality of a solution. The objective functions are
the mean error rate of fivefold cross-validation.

The INGHS-based approach works as follows:
(1) Initialize the problem and algorithm parameters.
The optimization problem is defined as minimize H (f,

t) subject to hiL ≤ hi ≤ hiU(i = 1− 4). h1 and h2 denote the
start frequency (fstart) and bandwidth (fwidth), while h3 and h4

denote the starting of time interval (tstart) and the length of
time interval (tlength). Therefore, the solution is expressed as
{fstart , fwidth, tstart , tlength}. In this study, the introduced INGHS
algorithm was applied for the training data sets to find the
globally optimal solution. The searching ranges for each variable
of feasible solution are listed in Table 1. For all subjects, if fstart +

fwidth ≥ 40, then fwidth = 40− fstart . For datasets 1, if tlength +

tstart ≥ 4× 100, then tlength = 4× 100− tstart . For dataset IVa,
if tlength + tstart ≥ 3.5× 100, then tlength = 3.5× 100− tstart .
For dataset IIIa, if tlength + tstart ≥ 4× 250, then tlength = 4×
250− tstart . The INGHS algorithm parameters (HMS, Pm, and
Ni) are also determined in this step.

(2) Initialize the HM and calculate the fitness value.
The initial HM is generated from a uniform distribution in

the ranges [hiL, hiU], as shown in Figure 4. Each harmony vector
(solution) is applied on the training data. At the same time,
the features are extracted by the CSP algorithm based on the
training data sets. Frequently, the obtained features is inputted
into the LDA (or SVM) classification algorithm to calculate the
fitness value H(f, t), and then sort by fitness values.

(3) Improvise a new harmony.
According to Step 3 of the INGHS algorithm to improvise a

new harmony and calculate the fitness value.
(4) Update HM and (5) Stopping criterion are the same as the

INGHS algorithm. Finally, the optimal frequency band and time
interval are derived. Meanwhile, the test data sets are processed
by the optimal frequency band {fstart, fstart + fwidth} and time
interval {tstart, tstart + tlength}. Features are extracted by the CSP
filters from the INGHS algorithm. Furthermore, the LDA (or
SVM) classifier is utilized to recognize the MI task.
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FIGURE 3

The flow chart of the proposed INGHS-based method.

To remove the irrelevant and redundant channels
and enhance the classification accuracy and reduce the
computational complexity, channel selection methods for MI-
based BCI have been widely studied (Miao et al., 2017a; Jin et al.,
2019, 2020). Compared with other channel selection methods,
the FDC method is widely used and has low complexity, the
FDC is selected for channel selection. We investigated the
effect of the change of the number of selected channels (K)
on the test accuracy. The CSP algorithm is used as feature
extract method and is not executed frequency-time parameters
optimization. The frequency band is 5–40 Hz and time interval
is MI time (paradigm setting). The LDA method is utilized to
the classification. K is tuned from 8 to 59 for Data 1. For Data 2,
K is tuned from 8 to 118. Figure 5 presents the test classification
accuracies of subjects from Data 1 and Data 2 with the change
of K. The test accuracy obtained by each K is the average of
10-fold cross validation. According to the results in Figure 5,
the test accuracies are different for subjects of Data 1 and Data 2
with the increasing of the K. However, we note that the average

TABLE 1 The range of four variables for each feasible solution.

Variable Datasets

IV-1 III-IVa III-IIIa

fstart (Hz) 5–30 5–30 5–30

fwidth (Hz) 5–30 5–30 5–30

tstart (sample points) 1–350 1–300 1–3.5× 250

tlength (sample points) 100–350 100–300 250–3.5× 250

test accuracies are higher when K is 16. Therefore, we choose K
to be 16 in this study.

Parameter analysis of improved novel
global harmony search

The selection of HMS depends on the specific problem.
The bigger HMS cause that the search space of the algorithm
is larger, which is easier to find the global optimal solution.
However, a larger HMS will inevitably bring about an increase
in the running time of the algorithm. Therefore, considering
the efficiency and diversity of the algorithm, an appropriate
HMS value for the INGHS algorithm is very vital. Mutation in
INGHS is an auxiliary search operation whose main purpose is
to preserve the diversity of group. Generally, a small Pm value
may lead to rapid convergence of the algorithm, which will
easily generate local optimization solutions. However, a higher
Pm value will make INGHS algorithm tend to be purely random

FIGURE 4

Initialize the harmony memory.
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FIGURE 5

Test classification accuracies of subjects from Data 1 and Data 2 with the change of K.

search, resulting in slow convergence of the algorithm and
greatly affecting the efficiency of problem solving. Therefore, an
appropriate Pm value can not only prevent the algorithm from
falling into local optimum and keep the diversity of solutions,
but also make the algorithm timely converge. To select the
optimal HMS and Pm, this study analyzed the effects of different
HMS and Pm on three data sets, and HMS values are set as 5,
10, 20, and 30. If the total number of variables 1 ≤ xn ≤ 4, Pm is
reasonably selected from the range region of [0.2 × (1 − 50%),
0.2 × (1 + 50%)]. Otherwise, Pm is selected from the region of
[(1− 50%) / xn, (1 + 50%) / xn] (Zou et al., 2010). The Pm value
in this study is most reasonable between 0.1 and 0.3, so the Pm

value is set to 0.1, 0.15, 0.2, 0.25, and 0.3. Set the number of
channels to K = 16. The classifier uses LDA.

Table 2 shows the mean test accuracy of all subjects for Data
1 under different HMS and Pm. It can be seen from the table that
when HMS = 10 and Pm = 0.15, the average test accuracy is up to
78.43%. Therefore, for Data 1, the HMS and Pm are set to 10 and
0.15, respectively. Table 3 shows the mean test accuracy of all
subjects for Data 2 under different HMS and Pm. It can be seen
that when HMS = 10 and Pm = 0.2, the average test accuracy is
the highest, reaching 87.78%. Therefore, for Data 2, parameters
HMS and Pm are selected as 10 and 0.2, respectively. Table 4
shows the mean test accuracy of all subjects for Data 3 under
different HMS and Pm values. It can be seen that the average test
accuracy is up to 81.76%. Therefore, for Data 3, HMS and Pm

were selected as 20 and 0.25, respectively.
In this study, all experimental simulations are implemented

by using MATLABR2019b on a Windows personal computer
with Core i5-9500H 3.00 GHz CPU and RAM 8.00 GB.
For fair comparisons, PSO (Xu et al., 2014), and the ABC
(Miao et al., 2017a) with the recommended parameter setting
were also employed to find the optimal frequency-temporal
parameters. Moreover, the training data, test data, and the
prepossessing methods are consistent. The parameter values of

all the algorithms are listed in Table 5. Similarly, the number of
iterations (Ni) for the all of algorithm is 100.

Results and discussion

Channel selection

Figure 6 depicts channels’ discriminative power
distributions and the selected channels for all subjects.
The darker yellow indicates the greater the FDC value of this

TABLE 2 Mean test accuracy (%) of HMS and Pm changes of INGHS of
all subjects for Data 1.

Pm HMS

5 10 20 30

0.1 76.57 75.71 77.43 76.50

0.15 75.07 78.43 76.64 76.07

0.2 72.64 74.07 75.86 75.00

0.25 74.07 73.14 74.93 73.07

0.3 74.36 74.93 73.71 76.14

The bold value indicates the highest average accuracy.

TABLE 3 Mean test accuracy (%) of HMS and Pm changes of INGHS of
all subjects for Data 2.

Pm HMS

5 10 20 30

0.1 85.43 86.07 86.57 85.21

0.15 84.00 85.57 85.86 85.57

0.2 85.71 87.78 86.21 87.77

0.25 85.79 85.50 84.86 85.50

0.3 85.00 87.28 86.33 86.36

The bold value indicates the highest average accuracy.
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TABLE 4 Test accuracy (%) of HMS and Pm changes of INGHS of all
subjects for Data 3.

Pm HMS

5 10 20 30

0.1 72.69 77.87 78.79 74.35

0.15 77.41 78.34 79.71 76.02

0.2 77.78 74.91 78.24 79.63

0.25 78.98 81.67 81.76 75.47

0.3 76.57 79.91 78.24 80.00

The bold value indicates the highest average accuracy.

channel, on the contrary, the lighter blue indicates the smaller
the FDC value of corresponding channel. As shown in Figure 6,
for subjects of Data 2, the selected channel sets distributed in
the left motor cortex area. Moreover, for subjects b, c, d, e, and
g, the selected channels mainly located in right and left motor
cortex area, which corresponds to MI of left hand and right
hand. For subjects a and f, selected channels tend to locate in
the right and central motor cortex area. It is consistent with the
neurophysiological principle which is MI of the left hand and
foot corresponding to the right and central motor cortex area.
Furthermore, for subjects k3b to l1b, the channels correspond to
higher FDC values are distributed in the adjacent area at C3 and
C4 positions. However, the selected channels for each subject
are distinguishing each other due to individual differences.

Test classification comparison

Aiming to evaluate the effectiveness of the proposed INGHS
method for optimizing frequency-time selection, we compared
the test classification between the proposed INGHS method and
ABC, PSO, and the traditional CSP method in Table 6. For PSO,
ABC, and INGHS feature optimization methods, the number
of channels K is 16. Furthermore, the CSP method with 16-
channels employed the fixed time windows (0–4 s for data set
1 and IIIa, and 0–3.5 s for data set IVa) and the frequency
band selected 5–40 Hz. Note that all the methods in Table 6
are evaluated by standard competition procedure. Each value
in Table 6 is the 10-fold cross-validation mean test accuracy.
Table 6 shows that for LDA and SVM classifiers, the average

accuracy rate improvement achieved by INGHS was 12.9 and
11.6% in comparison with the classical CSP method. Thus, the
proposed INGHS method achieved higher average classification
accuracies compared to the traditional CSP method. In addition,
the average accuracy rate improvements achieved by INGHS
based on LDA were 1.6 and 4.1% in comparison with the
ABC and PSO methods. Meanwhile, for the SVM classifier,
the average classification accuracy obtained by the proposed
INGHS method is higher than 0.1% (ABC) and 3.9% (PSO). The
average test accuracy for INGHS is found to be slightly higher
as compared to the accuracy achieved by ABC and PSO based
on two classifiers. Furthermore, the Wilcoxon signed-rank test
was used to analyze the statistical differences between the CSP
method and the proposed INGHS method. The classification
result of INGHS was significantly better than that of the CSP
method (p < 0.001).

For the swarm intelligence optimization algorithm,
PSO adjusts all variables of each solution during each
iteration and the ABC algorithm adjusts one variable of
each solution, whereas the INGHS algorithm adjusts each
variable independently based on all of the existing vectors.
This feature could increase the flexibility of the algorithm and
produce better solutions. In addition, the steps and the structure
of the INGHS algorithm are relatively simple. In summary, on
the one hand, the proposed INGHS method could effectively
optimize the time and frequency parameters and achieve better
test accuracy compared with the CSP method. On the other
hand, the test accuracy that is obtained by the time-frequency
parameters selected by the proposed INGHS algorithm is
slightly better than that obtained by ABC and PSO.

Frequency-time analysis

The optimal frequency-time zone optimized by the INGHS
method based on LDA for Data 1 is shown in Figure 7.
The figure shows the optimal frequency-time parameters
corresponding to the highest test accuracy in the 10-fold cross-
validation for each subject. It should be noted that, for all
subjects, the optimal frequency band covers the µ (8–12 Hz)
and β rhythms (13–30 Hz). However, they still vary a lot.
Furthermore, we observe that the starting time are different in a
small range for all the subjects and the optimal time lengths are

TABLE 5 The parameters of PSO, ABC, and INGHS.

Data sets Parameters

INGHS PSO ABC

Data 1 HMS = 10, Pm = 0.15 Population size = 10, c1 = c2 = 2.0, w = 0.9−(0.4 / Ni)× u Colony size = 10, number limit = 5

Data 2 HMS = 10, Pm = 0.2 Population size = 10, c1 = c2 = 2.0, w = 0.9−(0.4 / Ni)× u Colony size = 10, number limit = 5

Data 3 HMS = 20, Pm = 0.25 Population size = 20, c1 = c2 = 2.0, w = 0.9−(0.4 / Ni)× u Colony size = 20, number limit = 5

× u is the current iteration, Ni is the number of iterations, c1 and c2 are acceleration weight, and w is inertia weight.
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FIGURE 6

The topographic map of channels’ discriminative power distributions of each subject.

different. Meanwhile, the optimal time segment of most subjects
starts at 0.5 s after the visual cue which is consistent with the
starting time point used in most literature (Thomas et al., 2009).

For brain signal analysis, some common frequency bands
including 8–30 Hz, µ (8–12 Hz), and β (13–30 Hz) have been
popularly used in various EEG studies. Here, we also investigate
the classification performance between the commonly used
frequency band configuration and the frequency band and
time configuration optimized by the INGHS method. The time
segment was 0–4 s, and the classifier was LDA. It should be

emphasized that all the comparisons were made when the
number of channels K was 16. Figure 8 presents the comparison
of classification accuracies obtained by standard competition
procedure with INGHS and common frequency settings for
Data 1. The results show that the optimal frequency-time
parameter based on INGHS achieved a better average test
accuracy in comparison with the common frequency band
setting. Specifically, the average test accuracy of INGHS is
78.43%, which is higher than 10.79, 10.43, 10.72, and 12.72%
of the CSP method with 5–40, 8–30, 8–12, and 13–30 Hz,

Frontiers in Computational Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004301
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1004301 December 16, 2022 Time: 9:14 # 11

Shi et al. 10.3389/fncom.2022.1004301

TABLE 6 Test classification accuracy (%) of different methods applied on datasets 1–3.

Participants CSP PSO ABC INGHS

LDA SVM LDA SVM LDA SVM LDA SVM

a 60.0 62.0 66.0 74.0 66.0 70.0 74.0 71.3

b 61.5 61.5 58.5 65.5 57.0 68.0 69.0 62.5

c 71.5 72.0 68.5 71.5 68.0 78.5 80.5 80.0

d 68.0 66.0 79.0 86.0 85.0 87.5 82.0 81.0

e 81.0 80.0 91.0 88.5 93.5 91.5 91.5 90.5

f 71.0 71.5 63.0 75.0 80.5 75.5 71.5 80.0

g 60.5 64.5 76.5 88.5 83.5 83.5 80.5 83.5

aa 67.1 66.4 84.3 70.0 87.1 73.2 81.8 75.0

al 79.3 73.6 97.5 98.2 97.5 90.5 96.1 92.0

av 57.1 62.9 71.4 55.4 64.6 66.4 71.8 69.3

aw 71.8 81.4 91.8 78.6 93.2 84.3 93.9 90.0

ay 75.4 62.9 92.9 77.1 92.9 91.5 95.4 94.3

k3b 80.0 77.2 90.0 84.4 92.6 93.2 92.8 91.1

k6b 60.8 62.5 53.3 55.0 63.3 65.5 60.8 60.5

l1b 74.2 71.7 86.7 84.17 84.0 89.2 91.7 90.2

Mean± SD 69.3± 7.9 69.1± 6.8 78.1± 13.9 76.8± 12.2 80.6± 13.3 80.6± 10.1 82.2± 11.1 80.7± 10.9

FIGURE 7

The optimal frequency-time region found by the INGHS approach based on LDA for subject (A–G).

respectively. Therefore, it is suggested that INGHS could
adaptively select the optimal time-frequency parameters and
achieve the better classification performance.

Comparison of spatial patterns

To better interpret the experimental results, we visualized
the spatial pattern derived by the traditional CSP method
and the INGHS-based method. A pair of spatial patterns is

composed of the first and last columns of W−1 (W is the
spatial filter as in section “Feature extraction and classification”).
For the traditional CSP method, the fixed frequency band (5–
40 Hz) and time segment (0–4 s) are applied to the training
data to obtain the spatial filter W. Meanwhile, the based-
INGHS method applies the optimized frequency band and time
period to the training data to obtain the spatial filter W. The
channel used by INGHS and CSP method is the optimal 16-
channel mode after channel selection approach. It should be
noted that the training data used by CSP and INGHS are
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FIGURE 8

Comparison of classification accuracies obtained by INGHS and common frequency settings for Data 1.

consistent. In Figure 9, a comparison of spatial patterns between
the traditional CSP method with 16-channels and the INGHS-
based method for “l1b” are displayed. The results indicated that
compared with the traditional CSP method, the spatial pattern
based on the INGHS method had significant ERD, which is
concentrated around C3 and C4. When the unilateral MI, there
was significant ERD in SMR at the contralateral hemisphere
(Pfurtscheller et al., 2006). Moreover, the information features
of sensorimotor areas are closely related to ERD, which provides
important discriminant information for the decoding of motor
imagination tasks (Blankertz et al., 2007). The obvious ERD
in SMR derived by the INGHS-based method leads to better
decoding accuracy in Table 6. Additionally, these analyses
provide explicit evidence for the superior decoding performance
of our proposed INGHS method over the traditional CSP
method.

Computational cost comparison

The computational time of the different methods for three
data sets is shown in Table 7. The running time mainly refers to
the iteration time of the algorithm, excluding preprocessing and
channel selection. The computational time denotes the average
running time of all subjects in a single data set. As shown
in Table 7, compared with PSO and ABC, the average time
spent by the LDA-based INGHS method for all of the data
was reduced by 78.2 and 85.2%, respectively. The results show

that the proposed method in our study takes less time than
PSO and ABC. The main reason is that in contrast to INGHS
algorithms in which a unique solution is generated at each
iteration, population-based meta-heuristic algorithms (PSO and
ABC) take more time to maintain a set of solutions that evolve
at each iteration. Although our proposed INGHS method takes
less time than other methods, we expect to dramatically reduce
the computational cost to speed up the training phase.

Comparison of the existed methods

Table 8 shows the test classification accuracy between the
proposed INGHS method and the existed methods (FBCSP
and SFBCSP). The time length was 0–3.5 s for Data 2 on the
FBCSP and SFBCSP. For the FBCSP, the sub-frequency bands
are divided into 4–8, 6–10, 8–12..., 36–40 Hz. CSP features are
extracted for the whole time window in each sub-frequency
band, and then the Mutual Information based Best Individual
Feature (MIBIF) selection algorithm is used. CSP features of the
frequency band are automatically selected. Based on the mutual
information value of a single feature, the features corresponding
to the first four sub-frequency bands are selected for subsequent
training and testing. For SFBCSP method, sub-band division are
the same as FBCSP, the LASSO is used for feature optimization.
The 16-channel mode for the FBCSP and SFBCSP is the
same as INGHS. Each value in Table 8 is the fivefold cross-
validation mean test accuracy. The LDA is used as classification
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FIGURE 9

Comparison of spatial patterns for the subject “l1b.”

method. The proposed INGHS method achieved higher average
classification accuracies compared to the FBCSP and SFBCSP
methods. In addition, the average accuracy rate improvements
achieved by INGHS were 3.5 and 2.5% in comparison with the
FBCSP and SFBCSP methods.

Limitations and extensions

The proposed frequency-temporal parameters optimization
method based on INGHS could yield better test accuracy
compared with the traditional CSP method. Furthermore,
compared with PSO and ABC, the proposed method takes

TABLE 7 Computational time (s) comparisons of different methods
for three data sets.

Datasets PSO ABC INGHS

Data 1 1,064.4 1,974.5 245.9

Data 2 1,410.7 1,393.2 311.4

Data 3 890.8 1,575.5 177.5

Mean 1,121.9 1,647.7 244.9

less computation time because of the simple iterative principle
of the INGHS algorithm which can quickly converge to
the global optimal value. However, the channel selection
step precedes time-frequency optimization, and we will
further explore the impact of spatial-frequency-time domain
simultaneous optimization on classification performance in
the future. Moreover, the proposed INGHS method only
validates the binary classification performance of MI-BCI
systems, and further research is needed to apply the proposed
time-frequency parameter optimization algorithm to multi-
classification problems.

TABLE 8 Test classification accuracy (%) of the INGHS and
existed methods.

Participants FBCSP SFBCSP INGHS

aa 76.8 77.9 82.9

al 94.3 96.1 96.4

av 67.5 66.1 67.9

aw 89.3 90.7 92.1

ay 86.8 88.6 92.5

Mean± SD 82.9± 10.7 83.9± 11.9 86.4± 11.5
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Conclusion

In this study, an approach of frequency-time feature
optimization based on the INGHS is proposed for MI EEG
decoding. Three EEG datasets are used to verify the effectiveness
of proposed INGHS method. The proposed method could
improve classification accuracy in comparison to the classical
CSP method. Moreover, the average test accuracy achieved
by the INGHS is slightly better than that obtained by ABC
and PSO based on LDA and SVM. Furthermore, the INGHS
algorithm is superior to PSO and ABC in running time.
The results demonstrate that the optimal frequency band
and time interval provided by the INGHS algorithm could
indeed improve the classification accuracy. Future studies will
investigate the performance of our proposed INGHS method on
other types of BCI systems.
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