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Abstract

Many brain–computer interface (BCI) studies overlook the channel optimization

due to its inherent complexity. However, a careful channel selection increases

the performance and users’ comfort while reducing the cost of the system. Evo-

lutionary meta-heuristics, which have demonstrated their usefulness in solving

complex problems, have not been fully exploited yet in this context. The purpose

of the study is two-fold: (1) to propose a novel algorithm to find an optimal chan-

nel set for each user and compare it with other existing meta-heuristics; and (2)

to establish guidelines for adapting these optimization strategies to this frame-

work. A total of 3 single-objective (GA, BDE, BPSO) and 4 multi-objective

(NSGA-II, BMOPSO, SPEA2, PEAIL) existing algorithms have been adapted

and tested with 3 public databases: ‘BCI competition III–dataset II’, ‘Center

Speller’ and ‘RSVP Speller’. Dual-Front Sorting Algorithm (DFGA), a novel

multi-objective discrete method especially designed to the BCI framework, is

proposed as well. Results showed that all meta-heuristics outperformed the full

set and the common 8-channel set for P300-based BCIs. DFGA showed a sig-

nificant improvement of accuracy of 3.9% over the latter using also 8 channels;
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and obtained similar accuracies using a mean of 4.66 channels. A topographic

analysis also reinforced the need to customize a channel set for each user. Thus,

the proposed method computes an optimal set of solutions with different num-

ber of channels, allowing the user to select the most appropriate distribution for

the next BCI sessions.

Keywords: Brain–computer interface (BCI), channel selection, multi-objective

optimization, evolutionary algorithms, P300 event-related potentials.

1. Introduction

Brain–Computer Interfaces (BCIs) are communication systems that allow

users to control devices and applications using their own brain signals. These

systems have been successfully applied in order to improve the quality of life of

people with motor disabilities who suffer from a disease that impairs the neural5

pathways that control muscles or even the muscles themselves [1]. Electroen-

cephalogram (EEG) is commonly used to monitor the brain activity due to its

portability, non-invasiveness and low cost. Therefore, electrical potentials are

recorded by placing electrodes on the user’s scalp [1].

Since decoding users’ intentions from the EEG is not straightforward, BCIs10

rely on control signals to handle the control of the system. In particular, the

P300 evoked potentials, which are positive peaks produced in response to infre-

quent and significant stimuli approximately 300 ms after their onset, are the key

aspect of the most well-known BCI-based spelling system [1]. The ‘P300 Speller’

generates these signals through the odd-ball paradigm in order to spell certain15

words or commands. The application displays a matrix containing characters

or symbols, whose rows and columns are randomly flashing. Users, who have to

focus on a desired command, will generate a P300 potential whenever the row

or the column that contains the command is highlighted. Hence, the selected

command is determined by computing the intersection between the row and the20

column that produced the potential [2].

Due to the low signal-to-noise ratio and high inter-session variability of these
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event-related potentials, several repetitions of the same stimulus are required

to detect a reliable response. Without a proper processing stage, these high

dimensional data can produce over-fitting, resulting in poor performance [3, 4].25

The curse of dimensionality can be addressed by means of feature selection and

extraction methods [4, 5], regularized classifiers [6] or channel selection proce-

dures [3, 7]. Among them, only channel selection methods are able to reduce

the cost of the system, reduce power consumption on EEG caps and increase

user comfort [3]. Nevertheless, the selection of the most relevant sensors is not30

trivial as there are 2N subset combinations for an N -channel cap, making the

exhaustive search intractable in practice [3]. For this reason, most P300-based

studies overlook the optimization of the most relevant subset of channels and

take a predefined 8-channel set as a general rule of thumb [8]. Notwithstanding

its usefulness as a quick solution, an optimization for each user is beneficial35

owing to the intrinsic inter-subject variability of the BCI systems.

Although there are many feature selection methods that could be applied

to this problem, such as step-wise regression [9], fast correlation based fil-

ters [10], elastic neural networks [11], or explainable deep learning [12], meta-

heuristics have demonstrated high performances solving complex optimization40

problems [13]. Heuristics refer to problem-specific strategies that iteratively

improve a candidate solution, whereas meta-heuristics generalize these strate-

gies to problem-independent frameworks [13, 14]. Swarm intelligence techniques

and evolutionary algorithms, families of population-based meta-heuristics, have

been previously applied in EEG signals to solve optimization problems [4, 7, 15–45

19, 19–30]. Despite their popularity, the contribution of meta-heuristics to

P300-based BCIs is still scarce. Most of these previous studies are related

to motor imagery (MI) BCIs [15–23] or biometric-oriented person identifica-

tion systems [24, 25], whose signal processing stage is completely different (e.g.,

neural sources, control signals, paradigms, spatial filtering and feature extrac-50

tion) and thus, results cannot be generalized to P300-based BCIs. Regarding

the P300-based studies, most of them have used single-objective algorithms that

optimized the final classification accuracy of the system [4, 26–28, 30]. However,

3
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we believe that a channel selection procedure should follow a two-fold objective:

(i) to minimize the number of selected channels, and (ii) to maximize the sys-55

tem’s performance. Some recent studies used a weighted aggregation approach

to combine both objectives into a single one, but the simultaneous optimization

was not explored [7, 22, 31].

Traditional multi-objective approaches, which optimize both objectives at

the same time, have been explored in MI-based BCIs, such as multi-objective60

particle swarm optimization (MOPSO) [16–18] or non-sorting genetic algorithm

II (NSGA-II) [20, 23]. By contrast, multi-objective algorithms applied to P300-

based BCIs are more limited. Kee et al. [19] compared the performance between

several single-objective genetic algorithms (GA) and NSGA-II with 2 subjects,

whereas Chaurasiya et al. [29] employed a multi-objective binary differential-65

evolution algorithm with 9 subjects, reaching several subsets of channels that

assured suitable classification performances. Nevertheless, the number of sub-

jects was limited, and both databases were recorded using the row-col paradigm

(RCP). Nowadays, P300-based BCIs offer a wide range of stimulation paradigms

that elicit different event-related responses and thus, the generalization of those70

results to other setups is unclear. Furthermore, despite their scarce application

in P300-based BCI studies, swarm intelligence and evolutionary computation

are growing research fields that integrate a large amount of different algorithms

that could be adapted to the channel selection problem. In fact, the vast ma-

jority of them have yet to be applied to P300-based BCIs. To the best of our75

knowledge, there are no studies that compare their efficacy in selecting the

most appropriate subset of channels or even establishing the key aspects for

their adaptation to BCI systems, which is not trivial. Furthermore, none of the

previous studies tested any meta-heuristic with paradigms other than RCP, re-

stricting their generalization. Lastly, it is noteworthy that there is also no study80

aimed at designing any multi-objective algorithm customized for the P300-based

BCI channel selection problem.

The objective of this study is two-fold: (1) to propose a novel multi-objective

method to find an optimal channel set especially suited for P300-based BCIs and
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compare its usefulness with 7 additional meta-heuristics; and (2) to establish85

guidelines for adapting these optimization strategies to the channel selection

problem. Although there are many meta-heuristics that could be adapted to

this problem, only those that have previously applied in BCIs, that have direct or

explicit contribution to our proposed meta-heuristic or that have been recently

proposed were included in this comparison: GA, BDE and BPSO as single-90

objective; and NSGA-II, SPEA2, BMOPSO and PEAIL as multi-objective. We

have also tried to maintain diversity in the way they deal to the updating of

the population for each iteration. To sum up, the main contributions of this

study are the following: proposal of a novel multi-objective algorithm especially

designed for this problem, comparison of of 7 meta-heuristics to the P300-based95

BCI channel selection problem, enumeration of a detailed set of guidelines to

adapt any meta-heuristic for the channel selection, and evaluation with three

databases that employ different P300-based paradigms.

2. Subjects

In order to improve the generalization of the results, the algorithms have100

been tested with three public P300-based BCI databases that were recorded

using different stimulation paradigms: row-col paradigm (RCP), center speller

(CS) and rapid serial visual presentation (RSVP). Examples of the stimulation

sequences for these paradigms are depicted in the figure 1.

2.1. BCI competition III: dataset II105

The ‘BCI competition III: dataset II’ [32] was recorded from 2 different

healthy subjects (i.e., A and B) that were asked to spell words in 5 RCP sessions.

Signals were recorded using a 64-channel EEG cap with a sampling frequency

of 240 Hz and band-pass filtered from 0.1 Hz to 60 Hz. Training and testing

sets were composed of 85 and 100 trials, respectively [32]. RCP is the most110

common P300-based spelling paradigm, which consists of displaying a matrix

that contains characters or symbols. Users have to stare at the target command
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Figure 1: Examples of stimuli intensification sequences for the paradigms: (a) row-col
paradigm, (b) center speller, (c) rapid serial visual presentation.

while the matrix’s rows and columns are randomly flashing. Whenever the row

or column that contains the target is flickered, a P300 potential is generated.

Hence, the desired command can be identified by computing the intersection115

between the row and the column that produced these P300 responses [2]. In

this dataset, there are 12 different classes (i.e., rows and columns), and 15

sequences (i.e., repetitions) were used. Therefore, a trial is composed by 180

observations [32].

2.2. Center Speller database120

The ‘Center Speller (008-2015)’ database [33] was recorded from 13 healthy

subjects (i.e., C01-C13) that were asked to perform spelling tasks using the CS

paradigm. Signals were recorded using a 63-channel EEG cap with a sampling

frequency of 250 Hz and band-pass filtered from 0.016 Hz to 250 Hz. Training

data was composed of 17 trials, whereas testing data varied between 32-49 trials,125

depending on the subject [33]. CS was originally designed to avoid eye move-

ments. The paradigm displays groups of commands in the center of the screen,

overlaid with colored geometric shapes. The groups are randomly flickered until

6
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the user selects one of them. Then, the commands that were included inside

the selected group are displayed in the same way, allowing the user to select130

the final command [33]. In practice, there are 12 different classes (6 groups in

2 levels), and 10 sequences were used. A trial is composed by 120 observations

[33].

2.3. RSVP Speller database

The ‘RSVP Speller (010-2015)’ database [34] was recorded from 12 healthy135

subjects (i.e., R01-R12) that were asked to perform spelling tasks using the

RSVP paradigm. Signals were recorded using a 63-channel EEG cap with a

sampling frequency of 1000 Hz, and then down-sampled to 200 Hz [34]. However,

since the fifth subject only used 61 channels, electrodes P8 and O2 were excluded

from the database for the sake of homogeneity. Training data was composed140

of 24 trials, whereas testing data (copy and free spelling) varied between 37-50

trials, depending on the subject [34]. RSVP was also developed to exploit the

foveal visual field and avoid eye movements by depicting symbols in the center

of the screen in a serial manner. The database includes a vocabulary of 30

characters (26 letters and 4 symbols). In order to favor the identification of the145

shapes, half of the letters were uppercase and the other half lowercase, using

5 different colors. Therefore, there are 30 classes, and 10 sequences were used,

resulting in 300 observations per trial [34].

3. Methods

3.1. Pre-processing and feature extraction150

Before applying any optimization procedure, relevant features of the EEG

signals should be extracted for each epoch (i.e., stimulus) and channel. In fact,

pre-processing, as well as feature extraction and selection procedures influence

the final accuracy in a high extent. Due to the purpose of the study, signal pro-

cessing stages were composed of a standardized framework, intended to isolate155

the channel selection procedure. We did not apply any further pre-processing
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step besides the aforementioned band-pass filtering embedded in each database

[32–34]. Epochs were extracted using windows in the range [0, 800] ms from the

stimuli onsets, and normalized via z-score over a [−200, 0] ms baseline. As stated

in BCI literature, this range is large enough to capture relevant event-related160

potentials, including the P300 wave [1]. These epochs were then decimated to

25 Hz, keeping a total of 20 features per stimulus and channel. It is noteworthy

that the decimation process encompasses a low-pass filtering (to avoid aliasing),

followed by a down-sampling procedure [7, 35]. Hereafter, epochs from different

databases and sampling rates have the same number of features. Note that,165

from the point of view of a subsequent classifier, epochs are input observations.

3.2. Defining the optimization problem

The goal of an optimization algorithm is to provide a suitable solution that

satisfies the problem constraints and optimizes (either maximizing or minimiz-

ing) one or more objective functions to the greatest extent [14]. Since we are170

considering an N -channel selection problem, a possible solution may be defined

as x = [x1, x2, . . . , xN ], xi ∈ {0, 1}, where 1 and 0 represent the selection and

rejection of a channel i, respectively. Hence, this combinatorial problem is con-

strained to a discrete N -dimensional space, whose solutions are restricted to

binary positions. When a solution x is evaluated, features associated with the175

channels that satisfy xi = 1 are concatenated as an input feature vector.

In a BCI channel selection problem, two main objectives must be pursued: (i)

maximize system performance, and (ii) minimize the number of channels. Even

though the modeling of the latter is straightforward (see equation 1), the system

performance can be estimated following several approaches. The most intuitive180

solution is to use the output training accuracy of the classifier using a certain

solution x [19, 26, 29]. However, due to the limited number of trials, this method

usually provides a low-resolution score [36]. The resolution can be improved by

using stimuli-based, rather than character trial-based. Previous studies used

approaches derived from the confusion matrix of the stimuli classification [4, 27,185

28]. Nevertheless, the area under ROC curve (AUC) is recommended because

8
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it is able to successfully estimate the discriminative ability of a binary classifier

using only training data [3, 36]. Therefore, the objectives are modeled as follows:

minF (x) =





f1(x) = 1−AUC(x)

f2(x) =
N∑

n=1
xn

, (1)

where f1(x) belongs to the first objective (i.e., minimize the system error) and

f2(x) to the second objective (i.e., minimize the number of channels). In this190

study, AUC has been derived from a 5-fold cross-validated linear discriminant

analysis (LDA) that is applied to the solution x using the training dataset

[7, 35, 37]. That is, the features whose channels satisfy xi = 0 are removed from

the observations matrix, which is the input of the LDA classifier. Training set

is then divided into 5 subsets and a cross-validation procedure is applied (i.e.,195

4 subsets are used for training and the remaining one for testing), returning a

total of 5 AUCs. Finally, AUC is computed as the average of all of them. LDA

was used as classifier due to its well-known excellent performances in P300-based

BCIs and the lack of hyperparameters to optimize [5–7, 19, 20, 29, 33, 38].

3.3. Single-objective meta-heuristics200

Meta-heuristics produce acceptable solutions to complex problems in a rea-

sonable computation time [13]. In particular, single-objective meta-heuristics

iteratively produce these solutions following a certain objective. However, a

BCI channel selection problem should have a two-fold purpose. Thus, the multi-

objective problem stated in equation (1) is then combined into a single-objective205

one [39]:

minF (x) = ω1f1(x) + ω2

(
f2(x)− 1

N − 1

)3

, (2)

where ω1 + ω2 = 1, and ω1 and ω2 are constants that weigh the importance

of each objective. Since we consider that reaching suitable accuracies is more

important than drastically reducing the number of required channels, coefficients

have been heuristically set to ω1 = 0.7 and ω2 = 0.3 [7, 31, 35]. In addition, after210

mapping the f2(x) from [1, N ] → [0, 1], its output is raised to the third power

9
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to empathize the search of lightweight solutions. Note that the polynomial

function punishes the search for solutions with a high number of channels more

than a simple linear function. This function was heuristically chosen after a

preliminary testing [7, 31, 35]. The three single-objective meta-heuristics that215

have been adapted to BCI framework are described below.

3.3.1. Genetic Algorithm

One of the most well-known meta-heuristics is the genetic algorithm (GA),

originally developed by Holland [40]. GAs have been modified to improve their

ability to find the global optimum of complex optimization problems in many220

ways. In short, GAs apply the Darwinian principle of survival of the fittest

individuals in a population using recombination, selection and mutation oper-

ators [13, 14]. In this study, a GA with elitism, binary tournament selection,

single-point crossover and bit string mutation has been employed [13, 14].

3.3.2. Binary Differential Evolution225

The differential evolution (DE) algorithm, originally developed by Storn and

Price [41] for continuous functions, has some similarities to GAs in terms of its

structure, composed by mutation, crossover and selection operator. However,

instead of making random mutation and crossover schemes, DE combines the

information of three randomly chosen individuals. Binary DE (BDE) applies a230

discretization of the mutation formula in order to adapt it to binary problems

[42]. The mutation of the i-th channel of an individual x is performed as follows:

x′i =




ui, if rand ≤ pc or i = r

xi, otherwise
, (3)

where rand ∼ U(0, 1), r is a random integer between [1, N ], pc is the crossover

rate, and ui is the mutated channel, computed as:

ui =





1, if rand ≤ (1 + e
−2b(vi+F ·(yi−zi)−1/2)

1+2F )−1

0, otherwise
, (4)

10
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where rand ∼ U(0, 1); v, y and z are randomly selected individuals of the235

current population; F is the weighting factor; and b > 0 is the bandwidth

factor.

3.3.3. Binary Particle Swarm Optimization

Kennedy and Eberhart [43] developed the Particle Swarm Optimization

(PSO) algorithm, a nature-inspired meta-heuristic based on the social schooling240

and flocking behavior of fishes and birds. The optimization relies on adjusting

the trajectories and positions of a set of particles (i.e., solutions) that “fly”

over the search space, whose movement have both deterministic and stochastic

components [13, 14, 43]. In this study, the standard constraint of Clerc and

Kennedy [44] is used, leading to:245

v′ = χ[v + ε1C1(l− x) + ε2C2(g − x)], (5)

χ =
2

φ− 2 +
√
φ2 − 4φ

, with φ = C1 + C2; (6)

where v′ is the updated velocity of a particle x; v is the last velocity; ε1, ε2 ∼
U(0, 1); χ is the constraint multiplier; C1 and C2 are the personal and global

confidence constants, respectively; l is the best position found by the particle

x; and g is the best global position found so far. It is worthy to note that the250

standard constraint requires that φ > 4 [44, 45]. Since the velocities are contin-

uous, the algorithm should be adapted to binary spaces. Binary PSO (BSPO) is

usually achieved using a position transformation via transfer functions [46, 47].

In this study, the adaptation has been performed following the expression:

x′i =




¬xi, if rand < T (v′i)

xi, if rand ≥ T (v′i)
, (7)

where rand ∼ U(0, 1), and T (t) = |t/
√

1 + t2| is a v -shaped transfer function255

[47].

11
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3.4. Multi-objective meta-heuristics

In contrast to the single-objective strategies, multi-objective meta-heuristics

involve the simultaneous optimization of two or three objectives [48]. Since these

objectives are usually conflicting among themselves, the concept of dominance260

is introduced for determining the quality of each solution [49]. It is said that

a solution y dominates a solution z (i.e., y � z) if ∀i : fi(y) ≤ fi(z) and

∃j : fj(y) < fj(z). The Pareto-front, a curve that contains optimal solutions

(i.e., those that are not dominated by any other solutions), is estimated by the

multi-objective algorithms and depicts the trade-off among the objectives [49].265

Regarding the BCI channel selection problem, the Pareto-front returns a set of

solutions that have different number of channels, allowing the user to select one

of them.

3.4.1. Non-Sorting Genetic Algorithm II

The most popular approach for extending GAs to multi-objective optimiza-270

tion problems is the Non-Sorting Genetic Algorithm II (NSGA-II), proposed by

Deb et al. [48]. Crossover and mutation operators are the same as GAs, whereas

the selection operator is more complex. Firstly, in order to estimate the quality

of each chromosome, the algorithm establishes a hierarchy of Pareto-fronts ac-

cording to its dominance. The first Pareto-front (i.e., rank = 1) is composed by275

the non-dominated chromosomes of the current population. Then, the second

Pareto-front (i.e., rank = 2) is computed in the same way, but ignoring the

chromosomes of the first front. This process is repeated sequentially until there

are no chromosomes left [48]. However, the selection of a parent population

is not only based on the rank of the chromosomes, but also on their crowding280

distances. These metrics are included to spread the solutions along the Pareto-

front and avoid getting trapped in local minima. The crowding distance of a

chromosome is computed as the average distance between its two adjacent solu-

tions with the same rank. Boundary solutions are assigned an infinite distance

value. Considering two chromosomes, the solution with lower rank is preferred.285

Whether both have the same rank, the less crowded solution is preferred (i.e.,

12
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higher distance value). The parent population is sequentially filled with the

firsts Pareto-fronts until the number of included solutions is greater or equal

than m/2. Then, parent solutions are truncated based on the crowding distances

until the number of solutions is exactly m/2. Further information can be found290

in Deb et al. [48].

3.4.2. Binary Multi-Objective PSO

Due to its usefulness to solve complex optimization problems, many authors

have tried to adapt the PSO algorithm to multi-objective environments [39].

Here, a Binary Multi-Objective PSO (BMOPSO) approach is applied. Since295

the conflicting objectives do not allow the establishing of an optimal global so-

lution g, the major adaptation must reside in the way to select the leader of

each particle. In this study, a repository approach is employed. Non-dominated

solutions are stored in an external repository with “unlimited” size. Note that

its maximum size would be the maximum number of channels (i.e., the reso-300

lution of the BCI problem). A particle’s leader is randomly selected from the

repository, and it is attached to the particle until the leader is no longer part

of the repository. In that case, the leader is substituted by another randomly

selected one. In addition, a three-fold bit string mutation is also used, which

consists on dividing the swarm in three parts and apply: (1) no mutation; (2)305

uniform mutation with probability pm; (3) non-uniform mutation with proba-

bility pn = (1− gen/ngen)5N [50].

3.4.3. Strength Pareto Evolutionary Algorithm 2

Zitzler et al. [51] proposed the Strength Pareto Evolutionary Algorithm 2

(SPEA2), a multi-objective algorithm that integrates the concepts of dominance310

and crowding density in a single metric: the strength. The strength Si is com-

puted as the number of solutions that the i-th particle dominates. Then, the

unified fitness is calculated as follows:

Fi = Ri +
1

σk
i + 2

, (8)

13
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where Ri is the sum of the strengths of the particles that dominates i, and σk
i

is the distance sought of the particle (i.e., distance to the k-nearest neighbor),315

where k = b√me. Note that non-dominated individuals would have R = 0

and thus, F < 1. SPEA2 also uses a repository with fixed size that is updated

following an environmental selection procedure. Solutions are sorted according

to their F values, and the repository is filled with them. If the number of

solutions of the repository is higher than the maximum size Nr, a truncation320

process is applied. Then, the algorithm removes solutions from the repository

according to their σk (i.e., high σk values are preferred), in order to preserve

Pareto-front spreading [51].

3.4.4. Pareto Evolutionary Algorithm based on Incremental Learning

Recently, Rong-Juan et al. [52] proposed a discrete multi-objective algo-325

rithm that introduces the concept of incremental learning to update solutions

by exploring probability distributions of promising search regions. The algo-

rithm, known as Pareto Evolutionary Algorithm based on Incremental Learning

(PEAIL), also uses non-dominated sorting to keep track of hierarchical Pareto

fronts, as NSGA-II does [48]. The incremental learning stage selects an excel-330

lent individual, then estimates a probability model and predicts a new children

population using that information:

xi ← (xi + xe · L)/(L+ 1), (9)

where xi is the solution being updated, xe is a randomly selected solution from

the first Pareto front, and L is the learning rate parameter. Check [52] for

further information.335

3.5. Our proposal: Dual-Front Genetic Algorithm

Even though there is a great variety of meta-heuristics from single to multi-

objective algorithms, all of them should be adapted to the channel selection

problem. The BCI framework forces the algorithms to work with binary so-

lutions, involving the use of transfer functions in some cases. These functions340
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convert a solution alteration into a probability of change, increasing the stochas-

ticity of the algorithm. Moreover, the conversion can be addressed as a multi-

valued function of the type f : IR→ {0, 1}, which means that there are infinite

input values that produce exactly the same output, hindering the local exploita-

tion of new solutions. By extension, there is no point in using operators based345

on continuous distances. Since f2(x) already restricts the size of multi-objective

repositories to N , limitation strategies (e.g., crowding, distance sought) also en-

tail an unnecessary computational cost. In order to overcome these restraints, a

novel multi-objective algorithm is proposed: the Dual-Front Genetic Algorithm

(DFGA). DFGA is specially designed to the BCI framework by means of five350

key aspects: (i) deterministic initialization, (ii) dual-front sorting, (iii) genetic

operators, (iv) synthetic solutions, and (v) elitism. A detailed flowchart is de-

picted in the figure 2(a), while the pseudo-code and a complexity analysis are

included in the supplementary material.

Deterministic initialization. Heuristics generally initialize the population355

by generating random solutions. However, the use of deterministic initializa-

tion can reduce the inter-run variability due to stochastic effects and a large

amount of computation time. Although deterministic algorithms are unlikely

to provide a global optimum, DFGA considers their outputs as intermediate

solutions. Regardless of their qualities, we hypothesize that these solutions are360

equivalent to those that will be eventually reached after several generations of

a randomly-initialized algorithm. In this study, backward elimination (BE) is

used to initialize the repository. The algorithm begins with the full set of chan-

nels and sequentially removes the most irrelevant one [9]. The rejected channel

in each step is the one that returns the minimum f1(x) value if removed from365

the model x (i.e., its inclusion does not contribute to improve the system’s per-

formance). The algorithm continues removing channels until the set is empty.

Note that this operation will fill the repository R up with N solutions.

Dual-front sorting. Due to the deterministic initialization, the repository

should have a well-defined curve from the very beginning of the algorithm.370
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Figure 2: Summary of DFGA with visual aids to clarify operations. (a) Flowchart of the
algorithm. Note that the backward elimination step is only performed as an initialization.
BT: binary tournament, F: fitness evaluation. (b) Dual-front sorting. (c) Parent selection.
(d) Single-point crossover. (e) Bit-string mutation. (f) Elitist repository updating.

This aspect leads to a Pareto-front that is supposed to include solutions with

few number of channels. Traditionally, only the Pareto-optimal solutions are

considered in the selection stage. Despite their convenience over dominated so-

lutions, considering only the Pareto-front would lead to a local exploitation of

solutions with few channels. However, because of the intrinsic fixed size of the375

repository in BCI problems (i.e., limited to N), the exploitation of solutions

with a greater number of channels is no longer an issue, instead it may favor

the spreading of the Pareto-front and the global search of DFGA. According to

this rationale, DFGA subdivides the repository into two sets: O (i.e., optimal

set), which includes the non-dominated solutions; and S (i.e., sub-optimal set),380

which includes the dominated solutions. Dual-front sorting operation is shown

in figure 2(b). Then, binary tournament selection is applied in both sets, se-
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lecting 2N/3 solutions from O, and N/3 solutions from S. Note that a solution

may be selected more than once in the new population. Finally, these solu-

tions are combined in the population to suffer recombination (i.e., crossover)385

and mutation, as shown in the figure 2(c).

Genetic operators. Owing to the binary nature of the search space, we con-

sider that traditional genetic operators are the most convenient approach for

generating new solutions from a parent population. First, for each solution xi,

single-point crossover is applied with probability pc. That is, xi and another ran-390

domly picked solution xj (i 6= j) are combined into x′i ← xi[1 : u]∪xj [u+1 : N ],

where u ∼ rand ∈ [1, N ]. For each solution, bit-string mutation is also computed

with probability pm. In other words, if the n-th bit of a solution x′i has to be

mutated, its value is flipped (i.e., x′′i [n]← ¬x′i[n]). The procedure is illustrated

in the figure 2(d–e).395

Synthetic solutions. When the values of pc or pm are too high, the mutated

population tends to exploit the middle part of the repository. In other words,

solutions with few channels tend to add more channels, whereas crowded solu-

tions tend to decrease their number of channels. In order to maintain a similar

exploitation across the entire repository spectrum, synthetic solutions are gen-400

erated apart from the mutated population. However, a random generation of

solutions across this spectrum will unnecessarily increase the number of evalua-

tions, slowing down the algorithm. DFGA generates synthetic solutions trying

maintain the most relevant channels of the current repository. The rank of the

i-th channel is defined as the number of times that the channel i is present in405

the repository (i.e., ri = |i ∈ R|). DFGA iteratively creates solutions that have

from 1 to N − 1 channels by means of a roulette wheel selection (i.e., fitness

proportionate selection) based on the rank values. It is worthy to mention that

DFGA generates a total of N−1 solutions, since the N -th solution that contains

all the channels is already part of the repository.410

Elitism. In each generation, the repository is updated following an elitist ap-

proach. As depicted in the figure 2(f), for each unique value of f2(x) (i.e.,
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Table 1: Method-specific hyperparameters.

Prm. Value Description Algorithm

m 20 No. individuals All

pm 1/N aMutation rate
GA, NSGA-II,
BMOPSO, SPEA2,
PEAIL, DFGA

pc 0.90 aCrossover rate
GA, NSGA-II,
SPEA2, PEAIL
DFGA

F 0.80 bWeighting factor BDE
b N bBandwidth factor BDE
pde 0.20 bBDE crossover rate BDE
C1 2.05 cPersonal confidence BPSO, BMOPSO
C2 2.05 cGlobal confidence BPSO, BMOPSO
Vmax 1.00 cMaximum velocity BPSO, BMOPSO
L 0.06 d Learning rate PEAIL

aDeb et al. [48], bWang et al. [42], cClerc and Kennedy [44], c Rong-Juan et al. [52].

for each number of channels), the repository solution that minimizes f1(x) is

selected. Note that this operation is applied in the repository, which includes

both non-dominated and dominated solutions, creating a balance between local415

and global exploitation.

4. Results

Hyperparameters, detailed in table 1, were set following the recommenda-

tions of the literature [42, 44, 48, 52]. In order to assure a fair comparison among

the algorithms, the number of generations varied in function of the amount of420

evaluations that were performed in a single iteration, while the number of indi-

viduals of every single meta-heuristic was fixed to m = 20 [4, 7, 25, 30]. Table 2

details the computational cost, including the number of evaluations per genera-

tion and the number of generations for each method. In total, 4000 evaluations

were performed. Furthermore, all the algorithms were computed 20 times in425

order to avoid local minima. The experiments were executed in an Intel Core

i7-7700 CPU @ 3.60 GHz, 32GB RAM, Windows 10 Pro, using MATLAB®

2018b.

A convergence analysis for single-objective meta-heuristics is depicted in

the figure 3. These averaged convergence curves show the evolution of the430
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Table 2: Approximate computational costs of single and multi-objective meta-heuristics.

Mtd. No. eval. Eval. time No. gen.

S
in

g
le GA 20 eval./gen. 785 ms/eval. 200 gen.

BDE 20 eval./gen. 810 ms/eval. 200 gen.
BPSO 20 eval./gen. 858 ms/eval. 200 gen.

M
u
lt
i NSGA-II 40 eval./gen. 331 ms/eval. 100 gen.

SPEA2 20 eval./gen. 835 ms/eval. 200 gen.
BMOPSO 20 eval./gen. 852 ms/eval. 200 gen.
PEAIL 40 eval./gen. 415 ms/eval. 100 gen.
DFGA 123 eval./gen. 591 ms/eval. 32 gen.

Mtd.: method, gen.: generation, eval.: evaluation.

Figure 3: Averaged convergence curves of single-objective meta-heuristics (GA, BDE and
BPSO) for each database in function of the F (x) aggregated function. Mean values are
displayed with solid lines, whereas the 95% confidence interval of the subjects’ repetitions is
indicated by the shaded area.

aggregated objective function F (x) across the generations. Thus, they estimate

the ability of each method to find an optimal solution in the training phase. The

detailed convergence curves for each subject can be found in the supplementary

material. Concerning the multi-objective meta-heuristics, the evolution of the

computed Pareto-fronts over the generations of the algorithms is depicted in the435

figure 4, also in training phase.

Ranks of selected channels for both single and multi-objective meta-heuristics

are displayed in the figure 5, including the common Krusienski’s 8-channel set.

The rank of a channel is defined as the normalized number of times that the

channel was selected in the algorithm repetitions. For multi-objective algo-440

rithms, only the ranks of channels that belongs to the repository are included.

Scalp distributions of the averaged rank values over the meta-heuristics are de-

picted for each subject as well.

In order to evaluate the actual performance of the single-objective algorithms
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Figure 4: Evolution of Pareto-optimal solutions of the multi-objective meta-heuristics for each
subject across all the repetitions: DFGA (red), NSGA-II (blue), SPEA2 (yellow), BMOPSO
(green) and PEAIL (purple).

using testing datasets, it is required to select a single solution among the repeti-445

tions. Therefore, the solution that reached the minimal F (x) value was selected

for each single-objective method. Table 3 summarizes the averaged testing ac-

curacies and number of channels of the selected solutions for each subject, in

function of the employed method, using the maximum number of sequences

available in each database. Regarding the multi-objective algorithms, the final450
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Figure 5: Channel ranks of the selected and the Pareto-optimal solutions for single-objective
(GA, BDE, BPSO) and multi-objective (NSGA-II, BMOPSO, SPEA2, PEAIL, DFGA) meta-
heuristics, respectively. Krusienski’s 8-channel set (KRU) is also included. Averaged scalp
distributions over the algorithms are depicted as well.
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Table 3: Averaged testing accuracies and number of channels across users of the selected run
for each single-objective method.

Mtd.
Competition Center RSVP

Acc. N Acc. N Acc. N

GA 92.0% 14.0 97.4% 12.4 84.6% 13.4
BDE 92.0% 14.5 97.9% 12.5 85.5% 13.4
BPSO 92.0% 14.0 96.8% 12.5 85.0% 13.7

ALL 92.0% 64.0 86.5% 63.0 80.3% 61.0
KRU 86.5% 8.0 95.2% 8.0 78.6% 8.0

Mtd.: method, Acc.: accuracy, N : no. of sequences. Results obtained using the maximum

number of sequences available for each database (competition: 15, center: 10, RSVP: 10).

Figure 6: Testing character accuracies of the final Pareto-fronts returned by multi-objective
meta-heuristics (DFGA, NSGA-II, SPEA2, BMOPSO, PEAIL) for the averaged subjects of
each database. For comparison purposes, Krusienski’s set (KRU) is also depicted.

Pareto-front for each subject is composed of the non-dominated solutions of all

repetitions. Testing accuracies (i.e., ratio of correctly predicted characters) of

the solutions that belongs to the final Pareto-fronts are shown in the figure 6,

again using the maximum number of sequences available. Finally, computation

costs of all algorithms are detailed in the table 2.455

5. Discussion

5.1. Convergence analysis

Regarding the single-objective meta-heuristics, results showed that the in-

herently discrete algorithms (i.e., GA and BDE) converge to optimal solutions

faster than BPSO, and were able to reach the minimal objective value for every460

single subject. Inherent discrete algorithms are understood as meta-heuristics

22



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

that employs binary methodologies to improve their solutions (i.e., mutation,

crossover). Even though BPSO showed a slower convergence than GA or BDE,

the reached F (x) values are almost analogous, suggesting that BPSO, GA and

BDE would show similar performances in testing phase. It is also noteworthy465

that, even though the averaged convergence of GA was faster than BDE, the

curve reached a standstill over the 100th generation, being overcame by BDE

thereafter.

Multi-objective meta-heuristics results showed that DFGA, NSGA-II, SPEA2

and PEAIL algorithms were able to reach similar Pareto-fronts, outperforming470

BMOPSO. Besides the proper performance of DFGA, NSGA-II, SPEA2 and

PEAIL in training phase, they did not converge to their optimal solutions in

the same amount of time. DFGA converged faster than the rest, likely due to its

deterministic initialization, which allows the algorithm to avoid evaluating solu-

tions that are far from reaching the optimal value. Among the others, NSGA-II475

converged faster than PEAIL and SPEA2, whose trails spread across higher

non-optimal f2(x) values. In contrast to the training performance of these al-

gorithms, BMOPSO did not show a suitable convergence. In fact, their final

values were far from matching the Pareto-fronts of DFGA, NSGA-II, SPEA2 and

PEAIL. It is noteworthy that BMOPSO fronts keep high f2(x) values, which480

demonstrates that the algorithm was not able to improve solutions with a few

channels. Owing to this behavior, it is not possible to assure that BMOPSO

would reach proper performances in testing phase.

Considering these convergence results, it might be argued that meta-heuristics

that work with discrete solutions (i.e., GA, BDE, DFGA, NSGA-II, SPEA2,485

PEAIL) present superior convergence results, which could be somewhat ex-

pected due to the nature of the problem. On the one hand, it can be said

that local search strategies that rely on mutation, crossover and strength oper-

ators favor the convergence in the P300-based BCI channel selection problem

[13, 14, 51]. On the other hand, the behavior of BPSO and BMOPSO could490

imply that the discretization of continuous solutions cannot follow small value

changes, hindering the local exploitation of the continuous-based algorithms if
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their hyperparameters have not been properly fixed.

5.2. Channel distributions

Averaged channel ranks of the figure 5 show that meta-heuristics in gen-495

eral had a slight tendency to mainly select electrodes over the occipital lobe.

However, the optimal channel set was clearly different for each subject. This

behavior confirms the fact that a customized channel selection procedure prior

to the BCI session benefits the subsequent performance. Despite the Krusien-

ski’s [8] common 8-channel set is suitable as a general rule of thumb, results500

did not considered that combination optimal for any subject or database. This

fact is reinforced in the testing phase, where both single-objective and multi-

objective algorithm solutions outperformed the 8-channel set, as can be noticed

in the table 3 and the figure 6. Moreover, the computed Pareto-fronts did not

generally kept solutions with more than ∼ 20 channels. This fact suggests that505

a set with few channels is able to reach similar or even better performances than

the full set, reducing the dimensionality and the computational cost of the BCI

processing framework.

According to the previous analysis, meta-heuristics that converged faster

for this optimization problem have also succeeded in finding the most relevant510

channels for each subject. As can be seen in the figure 5, GA, BDE, BPSO,

DFGA, NSGA-II, SPEA2 and PEAIL reiteratively selected a specific combina-

tion of channels, which is different for each subject. By contrast, BMOPSO did

not show clear differences between channel ranks, which once again indicates a

lack of convergence to a global optimum.515

From the well-defined electrodes that were repeatedly selected for each sub-

ject, algorithms showed a special focus on the occipital cortex. From a biological

point of view, this tendency is sound. As aforementioned, the f1(x) objective is

aimed to maximize the classification performance between target and non-target

event-related stimuli, elicited through a visual odd-ball task. The response is520

therefore modeled as an event-related potential (ERP) composed by several

components, such as P1, N1, P2, N2 or P3; which are taken into account when
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extracting and classifying the features. Among them, P3 (i.e., P300) should be

the most prominent one in the RCP [1, 53]. The primary visual cortex, highly

specialized in processing information about visual stimuli, static and moving525

objects; is located at the posterior part of the occipital lobe [54]. Hence, it is

expected that occipital electrodes contain relevant discriminative information

about target (i.e., ERP is present) and non-target signals (i.e., no ERP should

be present) and thus, that they would likely be selected in the channel selec-

tion process. Nevertheless, the optimal channel sets are clearly different among530

subjects, which is relative common in the literature [19, 26, 27, 29]. This fact

should not be surprising, since classifiers are frequently optimized for each sub-

ject because of the inter-subject and inter-session variability of the EEG signals

[38]. Even though the rationale behind the fact that optimal channel sets dif-

fer among subjects is not clear, it is believed that EEG is highly sensitive to535

external factors, such as inter-subject variations in cap positions [55]. In fact,

it is common that EEG caps does not correctly fit some users, making some

electrodes wobbly and producing noise. Furthermore, it should be taken into

account that EEG channels cannot pinpoint neural sources owing to attenuation

and volume conduction effects, being limited to a spatial resolution about 5-10540

cm and hindering the location of these sources in certain brain areas [1].

In short, we believe that most relevant channels for classification may not

necessarily be the same among different users. Like feature selection and clas-

sification, results have shown the need to optimize the channel selection stage

for each user. Notwithstanding its usefulness as a preliminary approach, the545

common Kruskienski’s set [8], which mainly locates channels over the parietal

and occipital cortex, appears to be a suboptimal solution. Note that our study

is not intended to propose a general distribution of electrodes for any user, but

to emphasize the need to customize the channel set for each subject.

5.3. Testing assessment550

Single-objective approaches return a single solution with a certain number of

channels, which minimizes the general objective F (x). For this reason, averaged
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testing accuracies of table 3 should be taken into consideration together with

the number of channels of each solution. According to the results, even though

all the single-objective meta-heuristics reached higher accuracies in comparison555

to the full set and the Krusienski’s 8-channel set, BDE stood out considering the

channel-performance trade-off. BDE (competition: 92.0% with 14.5ch, center:

97.9% with 12.5ch, RSVP: 85.5% with 13.4ch) reached the highest average accu-

racy with a scarce channel set, followed by GA (competition: 92.0% with 14.0ch,

center: 97.4% with 12.4ch, RSVP: 84.6% with 13.4ch) and BPSO (competition:560

92.0% with 14.0ch, center: 96.8% with 12.5ch, RSVP: 85.0% with 13.7ch). Nev-

ertheless, all methods reached similar or even higher accuracies than the full

set of channels, probably due to the drastic increase in dimensionality; outper-

forming as well the accuracy obtained by the typical 8-channel set. It is worthy

to mention, however, that Krusienski’s set also used less number of channels.565

In fact, the increase in testing accuracy of the three methods in comparison

with the full set (i.e., ALL) and the Krusienski’s set (i.e., KRU) is statistically

significant for almost all subjects (i.e., p–value< 0.05, Wilcoxon signed-rank

test, false discovery rate corrected by the Benjamini-Hochberg procedure). In

particular, the number of subjects (out of 27) that yielded significant differences570

were: 23 (ALL vs. GA), 27 (ALL vs. BDE), 22 (ALL vs. BPSO), 21 (KRU vs.

GA, BDE or BPSO). As expected, the differences among GA, BDE and BPSO

results are not significant. A detailed table with the p–values of each subject

and comparison is included in the supplementary material. Therefore, it can be

assured that GA, BDE and PSO outperformed ALL and KRU; and that their575

solutions were similar in terms of reached accuracies.

The main advantage of the multi-objective meta-heuristics in comparison

with the single-objective ones is that they return a set of optimal solutions

for each number of channels, allowing the user to select the most appropriate

configuration. In fact, not only these solutions indicate the number of channels580

that already reaches the maximum performance, but also their scarce solutions

overcame the Krusienski’s set. According to the figure 6, the typical 8-channel

set is outperformed using only 5 channels by DFGA, NSGA-II, SPEA2 and
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PEAIL. By contrast, BMOPSO needed 13 channels to outperform it. These

results are similar or even better than the individual solutions reached by single-585

objective algorithms. As can be noticed, DFGA, NSGA-II, SPEA2 and PEAIL

reached similar performance results, which improved as the number of channels

increased. Those results also outperformed BMOPSO, whose solutions, in spite

of using more channels, generally obtained lower accuracies. Results also showed

that there is a point for each subject where accuracies come to a standstill. In590

particular, using more than 15 channels in the competition or RSVP databases

could be counter-productive; as well as using more than 20 channels in the

center database. This fact reinforces the usefulness of dimensionality reduction

techniques, such as channel and feature selection or classifier regularization, to

assure a suitable testing performance in BCI systems.595

5.4. Related work

Regarding related previous studies, we consider that MI-based [15–23] and

auditory potential [28] BCI studies are not comparable in terms of performance,

since those control signals are generally less reliable than P300 potentials and

thus, obtain significantly lower accuracies. From the P300-based BCI studies,600

the reached accuracies of our work are similar or even higher than those re-

ported previously, as shown in table 4. The most straightforward comparison

comes from the ‘III BCI Competition 2005 (dataset II)’ (2 subjects), used by

[4, 19, 27, 30]. Kee et al. [19] reached an average accuracy of 93.6% with 22.3

channels using GA; and 94.9% with 25.7 channels using NSGA-II. Arican and605

Polat [30] reached an averaged accuracy of 89.90% with 8 channels using BPSO

and a boosted tree classifier. All of them used 15 sequences. A combination of

wavelets and BPSO was also used by Perseh and Sharafat [4], obtaining 85%

with 31 channels; and Gonzalez et al. [27], 67.5% with 33.5 channels using only

5 sequences. As can be seen, it is hard to compare the accuracies provided each610

study reported solutions with different number of channels or sequences. In

our study, GA, BDE and BPSO yielded an averaged accuracy of 92% with 14

channels. The multi-objective metrics reached 90% of accuracy using 7 (DFGA,
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SPEA2), 8 (NSGA-II) and 11 (PEAIL) channels, which increased until a maxi-

mum of 97% with 23 channels using 15 sequences. There are also studies with615

custom databases, such as Chaurasiya et al. [29] (9 subjects, 15 sequences), who

obtained a mean of 92.8% with 26.1 channels using MOBDE; or Jin et al. [26]

(11 subjects, 15 sequences), who tested a RCP-based Chinese speller using PSO

and LDA, reaching a mean of 71.09% with 7.63 channels. Besides the III BCI

Competition database (2 subjects), our study also comprises the results with620

two additional databases: Center Speller (13 subjects, 10 sequences), and RSVP

Speller (12 subjects, 10 sequences). However, no direct comparison can be made

since there are no previous studies that have tested any meta-heuristic for se-

lecting channels with any paradigm apart from RCP. In terms of accuracy, our

results for single-objective (center: 97.36% with 12.46 channels, RSVP: 85.03%625

with 13.5 channels) and averaged multi-objective (center: 97.64% with 8 chan-

nels, RSVP: 84.87% with 8 channels) algorithms are similar to the performances

reported in the literature [33, 34]. In this context, we would also like to encour-

age researchers to use our results and these public databases as a benchmark

for favoring quantitative comparisons in the BCI channel selection problem.630

Recently, deep learning has started to make a breakthrough in the P300-

based BCI field due to its ability to achieve superior performances, especially

in the decoding stage [12, 56–61]. In the era of deep learning, one may wonder

whether a channel selection based on classical machine learning methodologies

is still relevant. In that respect, many of the deep learning approaches for P300-635

based BCIs do not get rid of pre-processing and channel selection stages, but are

applied as a direct substitute of the feature extraction and classification stages.

However, there is a possibility in which the interpretation of the deep neural

network (DNN) may lead to channel and feature selection alternatives.

For instance, Cecotti and Gräser [12] addressed the channel selection opti-640

mization by rejecting the smallest weights from the first hidden layer. However,

a direct analysis of weights has disadvantages that should not be overlooked, as

it is completely dependent on the DNN architecture used to classify P300 poten-

tials. Today, it is generally accepted by the academia that bringing understand-
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Table 4: Comparison between channel selection meta-heuristics applied in P300-based BCIs.

Study Database Ns Method Accuracy Nc

Kee et al. [19] Comp. 15 GA 93.60% 22.3
NSGA-II 94.90% 25.7

Arican and Polat [30] Comp. 15 BPSO 89.90% 8.0
Perseh and Sharafat
[4]

Comp. 15 BPSO 85.00% 31.0

Gonzalez et al. [27] Comp. 5 BPSO 67.50% 33.5
Chaurasiya et al. [29] Custom,

9HS
15 MOBDE 92.80% 26.1

Jin et al. [26] Custom,
11HS

15 BPSO 71.09% 7.6

Our study Comp. 15 GA 92.00% 14.0
BDE 92.00% 14.5
BPSO 92.00% 14.0
DFGA∗ 94.50% 20.0
NSGA-II∗ 94.50% 20.0
SPEA2∗ 94.00% 16.0
BMOPSO∗ 92.50% 20.0
PEAIL∗ 94.00% 14.0

Center 10 GA 97.40% 12.4
BDE 97.90% 12.5
BPSO 96.80% 12.5
DFGA∗ 97.88% 7.0
NSGA-II∗ 98.46% 8.0
SPEA2∗ 97.72% 9.0
BMOPSO∗ 97.82% 16.0
PEAIL∗ 100.0% 19.0

RSVP 10 GA 84.60% 13.4
BDE 85.50% 13.4
BPSO 85.00% 13.7
DFGA∗ 85.73% 14.0
NSGA-II∗ 86.05% 7.0
SPEA2∗ 85.73% 8.0
BMOPSO∗ 84.80% 18.0
PEAIL∗ 85.82% 15.0

Ns: number of sequences, Nc: averaged number of channels, Comp.: III BCI Competition

2005 (dataset II), HS: healthy subjects, GA: genetic algorithm, NSGA-II: non-sorting genetic

algorithm 2, BPSO: binary particle swarm optimization, BA: bees algorithm, ABC: artificial

bee colony, BAS: binary ant system, FA: firefly algorithm, MOBDE: multi-objective binary

differential evolution, BDE: binary differential evolution, DFGA: dual-front sorting algorithm,

SPEA2: strength pareto evolutionary algorithm 2, BMOPSO: binary multi-objective particle

swarm optimization, PEAIL: Pareto Evolutionary Algorithm based on Incremental Learning.
∗ The selected solution for the multi-objective approaches was the one that maximized the

accuracy in the range Nc ∈ [5, 20]. The rest of the accuracies can be checked in Figure 6.

ing to DNN models is still a very challenging issue. While single-layer linear645

transformations can be easily interpreted by looking at the learned weights,

multiple layers with non-linear interactions on each layer involve disentangling
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a complicated nested structure [62]. In general, the more interpretable the

model, the simpler and less accurate [62, 63]. Although this approach would be

feasible in simple convolutional neural networks (CNN) where spatial informa-650

tion is processed in a single layer [12], it would be a serious challenge in more

complex and recent architectures (e.g., CNN-BLSTM, DeepConvNet, EEGNet,

EEG-Inception [56–61]). Since the complexity of DNN architectures is increas-

ing rapidly, it is expected that the spatial information from the EEG is likely

to be processed multiple times in different layers [61]. Thus, the difficulty of655

evaluating the importance of each channel and its contribution to the final result

could increase exponentially.

Moreover, the efficacy of this approach when using simple DNN architectures

compared to the proposed meta-heuristics is not clear, as they reported an

average accuracy of 87.0% (8 ch.) in the ‘III BCI Competition 2005 (dataset660

II)’. As shown in the figure 6, the Krusienski’s set already achieved a mean

accuracy of 86.5% (8 ch.), i.e., without performing channel selection. Similarly,

the solutions achieved by most of the multi-objective meta-heuristics using only

8 channels clearly outperformed the accuracy of Cecotti and Gräser [12]: 90.5%

(DFGA, NSGA-II, SPEA2) and 89.0% (PEAIL); even being obtained by an665

LDA, a machine learning method much simpler than a CNN.

To the best of our knowledge, none of the DNN-based approaches applied

in P300-based BCIs performed a different channel selection approach [56–61],

instead they used the full set of channels available. By contrast, Zhang et al.

[64] recently published a channel selection method based on adding sparse reg-670

ularization to squeeze-and-excitation blocks in a CNN and applied it to MI

decoding. However, whether this method is feasible for P300-based BCIs is an

open question yet.

Noteworthy, a DNN-based channel selection procedure would presumably

require using the initial number of electrodes (e.g., 64) whenever the model675

is tested with new observations. This problem could be solved by retraining

the DNN with the “relevant” channels. However, if this taxonomy is done

using explainable DNNs without a wrapper test of the solution, it cannot be
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claimed that the performance would be maximized. In this case, we believe deep

learning does not provide enough incentives to be a substitute for the proposed680

meta-heuristics. In this context, the proposed meta-heuristics can be applied

in an initial channel selection stage for P300-based BCIs, as they are totally

independent of the DNN architecture. It should be also noted that there are

still many BCI applications that use classical machine learning methods (e.g.,

LDA, SVM), either due to limited computational power, few training examples685

or even preference, which would also clearly benefit from our proposal.

5.5. Hyperparameters

The main drawback of most meta-heuristics is the need to fix hyperparame-

ters, which usually depend on the context of the problem. Poorly chosen values

may cause convergence issues, limiting the performance of the algorithm [13].690

Since all algorithms were able to converge before reaching their own limit of gen-

erations, the number of individuals and generations were appropriate. In this

context, the quality of a meta-heuristic must not be only assessed according to

the performance results, but also taking into account the number of required

hyperparameters. The less hyperparameters, the more likely it is to assure reli-695

able and generalizable results. GA, DFGA, NSGA-II and SPEA2 only require

mutation and crossover rates to be fixed. Fortunately, these parameters are

widely studied in the literature, where often are 1/N for the mutation rate, and

0.90–0.95 for the crossover rate [13, 48, 49]. A similar approach is followed in

BDE, whose extra parameters are intended to perform a mutation procedure700

[42]. PEAIL also requires an additional parameter: the learning rate, which

controls the confidence on the best individual [52]. BPSO and BMOPSO add

three hyperparameters more (i.e., personal and global confidences and maximum

velocity). Although there are several studies that tried to find global relations

among their values, further endeavors should be made in order to make PSO705

algorithms problem-independent [13, 44]. Since these hyperparameters directly

weigh the velocity of the particles, which is then used as an input of a transfer

function, care must be taken in order to limit their values in the range [0, 1].
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Otherwise, particles will not tend to improve their solutions, restricting global

and local exploitation. In this study, we fixed the hyperparameters according710

to the recommendations of the literature, as indicated in the table 1. These

values yielded suitable performances, but could have been improved by means

of a hyperparameter optimization or following an adaptive approach. It is also

worthy to mention that the weights ω1 and ω2 of F (x) were heuristically set to

0.7 and 0.3, respectively, in view of preliminary results [7, 31, 35]. Note that715

the value difference between ω1 and ω2 would cause a strengthen of solutions in

a certain f2(x) range, while avoiding the search in other spaces. The supervisor

could vary the ω1/ω2 ratio to obtain different optimal solutions, simulating the

search over the f2(x) spectrum as multi-objective approaches do.

5.6. Computational cost720

A comparison between computational costs of different meta-heuristics is

tricky, forcing to consider several aspects at the same time. On the one hand,

the table 2 details the approximate duration of a generation and the number

of evaluations that comprised a generation. Note that the number of evalua-

tions per generation differs depending on the meta-heuristic strategy and thus,725

algorithms can only be compared in terms of the duration of a single evalua-

tion. For this reason, the number of generations of each algorithm has been

adapted in order to assure a fair comparison among them, so that every single

method performs a total of 4000 evaluations. On the other hand, it is also

essential to consider additional aspects, such as the convergence of the algo-730

rithms, their search depth and the programming approach. When abstracting

a meta-heuristic as a black box, the total time of the execution varies according

to the required number of generations to reach a suitable convergence. These

differences usually affect the computational cost in a higher extent than the

individual duration of a evaluation, making it essential to be taken into con-735

sideration. Moreover, a correct implementation of these meta-heuristics should

employ a hash table to match the previously computed solutions with their

fitnesses. Note that an intense search depth will inevitable generate repeated
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solutions. The hash map acts as a remainder and allows avoiding unnecessary

evaluations. Noteworthy, the computation time of a generation should decline740

exponentially when the algorithm goes on. Note that table 2 measurements

were made without considering any hash table (i.e., an initial generation).

The overall complexity of DFGA in asymptotic notation behaves asO(NoN
2),

where No is the number of objectives. An analysis of the complexity of each

DFGA step is detailed in the supplementary material, which demonstrates that745

the exponential increase in operations is mainly due to the dual-front sort-

ing procedure. However, this trend is similar to other recent multi-objective

algorithms, such as NSGA-II, SPEA2, PEAIL and BMOPSO, whose complex-

ity behaves as O(Nom
2) [65, 66]. Note that m indicates the population size

which, in case of DFGA, equals to N (the no. channels) due to the deter-750

ministic initialization. This fact partly explains why DFGA performs a higher

number of evaluations in a single generation. It is also noteworthy that the

presented asymptotic complexity analysis involves only the advancing of a sin-

gle generation, allowing the comparison among different algorithms, since their

convergences are not deterministic [66]. Moreover, note that these complexities755

indicate the worst cases, which usually decrease as generations increase due to

the hash table implementation.

According to the table 2, NSGA-II, PEAIL and DFGA were the least time-

consuming, spending less than 600 ms per evaluation with the selected hyperpa-

rameters. In addition, they demonstrated excellent convergence abilities, mak-760

ing them excellent multi-objective approaches to address this problem. By con-

trast, BPSO and BMOPSO not only were the most time-consuming algorithms,

but also their performances were inferior. For the single-objective approaches, it

is worthwhile to use GA or BDE, whose convergence abilities balanced out their

evaluation costs. In any case, the overall duration of these algorithms restrict765

their application to the calibration session, where the weights of the classifier

are optimized for each subject. Then, the selected channels should be further

applied in the testing sessions.
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5.7. Guidelines

A series of guidelines or practical recommendations for the application of770

meta-heuristics to BCI systems are derived from the discussed results:

1. Multi-objective algorithms should be used instead of single-objective meta-

heuristics if computation time is not an issue. Otherwise, it is preferable

even using deterministic algorithms, such as BE, to provide sub-optimal

but acceptable solutions.775

2. Discrete algorithms that use mutation, crossover or strength operators

should be preferred (e.g., single-objective: GA, BDE; multi-objective:

DFGA, NSGA-II, SPEA2, PEAIL).

3. Whether discretization is required to adapt a continuous-based meta-

heuristic to the BCI framework, avoid using transfer functions and attempt780

to redefine the equations (section 3.5). Still, if conversion via transfer

functions is used, care should be taken with the hyperparameters values.

Assure that the input of the function always lies within the range [0, 1].

Otherwise, the probability of change of the solutions would increase dras-

tically, hindering the convergence of the algorithm. Furthermore, distance785

metrics should not be employed after applying the discrete transformation

unless it is a Hamming distance.

4. For single-objective algorithms, use an aggregation approach to minimize

two objectives at one: number of channels and performance error (sec-

tion 3.2). AUC-based modeling of the performance should be preferred790

instead of accuracies in order to increment the resolution of the objective

values.

5. Multi-objective repository limitation strategies, such as crowding distances

or distance sought, are not necessary in the BCI channel selection prob-

lem and should be avoided to prevent worthless computational costs (sec-795

tion 3.5).
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6. A hybrid meta-heuristic that also employs deterministic methods, such

as DFGA, should be preferred. DFGA reached similar accuracies than

NSGA-II, SPEA2, or PEAIL, but converged faster (section 4).

7. A convergence detection method to stop the iterations is recommended800

rather than using a maximum generation limit for practical purposes (e.g.,

none or petty changes along the n last generations).

8. Repeated solutions across generations are unavoidable. It is required to

implement a hash map (e.g., dictionary) for matching previously computed

solutions with their fitnesses, in order to avoid unnecessary evaluations.805

5.8. Contributions, limitations and future work

According to the experimental outcomes, it has been demonstrated the util-

ity of meta-heuristics to find an optimal combination of channels in P300-based

BCI systems. The importance of selecting an optimal channel set for each user

has been highlighted as well. Moreover, to the best of our knowledge, this810

is the first study that provides a comprehensive comparison of different meta-

heuristics that can be applied to the BCI channel selection problem. Previous

studies have isolated the application of BPSO, BDE, GA and NSGA-II, but

no comparison has been performed; whereas this manuscript has included a

total of 3 single-objective (i.e., GA, BDE, BPSO) and 5 multi-objective (i.e.,815

DFGA, NSGA-II, SPEA2, PEAIL, BMOPSO) algorithms. As a result, GA,

BDE, BPSO, DFGA, NSGA-II, SPEA2 and PEAIL have reached high perfor-

mances in testing phase, outperforming the full set and the common Krusien-

ski’s 8-channel set in three databases with different paradigms. Due to the

characteristics of the BCI framework, none of the well-known methods can be820

applied in a productive way without a proper modification. For that reason,

DFGA, a new multi-objective meta-heuristic, has been especially designed to

optimize channel or feature sets in BCI systems. Moreover, results have shown

that the meta-heuristics that exhibited better convergences repeatedly selected

the same distribution of channels, which clearly depended on the subject. It is825
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thus suggested that Krusienski’s set (or any set that covers the occipital lobe)

is a general rule of thumb solution that could led to acceptable performances,

but definitely suboptimal. This fact reinforces the importance of performing

a channel optimization for each user to maximize the performance of the sys-

tem. In fact, due to the high inter-session and inter-subject variability of the830

EEG, the optimization of signal processing stages such as feature selection and

classification for each user are a common practice. Hence, we would want to

encourage researchers to integrate channel selection procedures to those opti-

mization pipelines. In this context, the supervisor could apply DFGA in the

first session, select an appropriate channel set and avoid placing extra elec-835

trodes for the next BCI sessions. Noteworthy, in order to ease the application

of meta-heuristics in these systems, a series of guidelines have been detailed.

Despite the aforementioned strengths, several limitations can be pointed out.

Firstly, since the purpose of the manuscript was focused on the channel selection

procedure, only basic feature extraction (i.e., down-sampling) and classification840

(i.e., LDA) methods have been applied. Testing accuracies, especially those

than belong to crowded channel sets, could have been improved by using regu-

larization techniques [4–6] or deep learning approaches [58, 67]. Moreover, the

algorithms entail high computational costs. Further endeavors should be aimed

at assigning stopping criteria that could avoid the computation of worthless gen-845

erations, allowing a better estimation of the total duration for each model. The

computational cost is mainly caused by the wrapper nature of the algorithms,

which evaluate the quality of a solution by training and testing different LDA

models [68]. Embedded techniques (e.g., heuristic search methods), which look

for optimal sets inside the classifier constructor, are less intensive than wrap-850

pers [68, 69]. A future endeavor could be aimed at developing new embedded

techniques that could reduce the computational cost by modifying the training

procedures of certain classifiers. It is worth mentioning that Deb and Jain [70]

proposed an extension of NSGA-II, called NSGA-III, to handle many-objective

(i.e., four or more objectives) optimization problems. Although its application855

to this problem could be also interesting as a further research line, we applied
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NSGA-II as it is oriented to solve multi-objective optimization problems. Care

should be also taken when using transfer functions, such as those used in BPSO

or BMOPSO, since they could be fruitless to the proper exploitation of the

discrete space. Another research line could be focused on providing a compre-860

hensive comparison of alternative genetic operators and strategies to maximize

the performance of DFGA. Hyperparameters were fixed according to the recom-

mendations of the literature. However, an optimization of these values would

be beneficial to the final performance of the algorithms. Adaptive approaches

that vary the hyperparameters in function of the generation could also enhance865

the results. It should be also mentioned that the competition database contains

more training trials than those that are commonly in practice. It would be also

interesting to explore the usefulness of interpretable deep learning approaches

to infer the significance of the selected channels in the classification stage [63].

Another future research line could be focused on assessing the performance of870

these methods with less training trials. Finally, although it has not been ex-

plored in study, results suggest that the proposed meta-heuristics could be also

applied to feature selection problems.

6. Conclusions

A comprehensive comparison among 8 different meta-heuristics applied to875

the P300-based BCI channel selection problem has been performed in this study.

In particular, 3 single-objective and 5 multi-objective algorithms have been in-

cluded. Due to the discrete characteristics of the BCI framework, the majority

of them have been modified in different ways in order to adapt them to the

aforementioned problem. For this reason, a series of guidelines or practical rec-880

ommendations have been detailed as an aid for further adaptations. A novel

multi-objective algorithm, DFGA, has been especially developed for BCI sys-

tems. Methods have been tested with three public databases that used different

stimulation paradigms: competition (2 users with 64ch., RCP), center speller

(13 users with 63ch., CS paradigm) and RSVP speller (12 users with 61ch.,885
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RSVP). Results showed that meta-heuristics are able to provide solutions that

simultaneously use few number of channels and reach high accuracies. In fact,

the full set of channels and the common Krusienki’s 8-channel set have been

outperformed by all methods, demonstrating their usefulness to provide an op-

timized channel set for each user.890

The main findings of the study can be summarized as follows:

1. Optimal channel sets show a high inter-subject variability, which makes

essential the optimization for each individual, instead of using a common

set for all of them.

2. Inherently discrete algorithms (i.e., GA, BDE, DFGA, NSGA-II, SPEA2,895

PEAIL) usually reach higher performances due to the dichotomous nature

of the problem.

3. Among single-objective meta-heuristics, GA, and BDE provide suitable

convergences and high accuracies. Regarding multi-objective algorithms,

DFGA, NSGA-II, SPEA2 and PEAIL provided competitive results.900

4. A balanced combination of deterministic and stochastic techniques is ben-

eficial. DFGA reaches an excellent performance, as well as NSGA-II,

SPEA2 and PEAIL, but converges considerably faster to their optimal

solutions.

5. Hyperparameter tuning is crucial. BMOPSO could not converge to an905

optimal solution, whereas it is possible to guarantee the convergence of

the rest in a single run.
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A. Schlögl, G. Pfurtscheller, J. D. R. Millán, M. Schröder, N. Birbaumer,
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[67] E. Santamaŕıa-Vázquez, V. Mart́ınez-Cagigal, J. Gomez-Pilar, R. Hornero,

Deep Learning Architecture Based on the Combination of Convolutional1125

and Recurrent Layers for ERP-Based Brain-Computer Interfaces, in:

46



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Mediterranean Conference on Medical and Biological Engineering and

Computing, Springer, 2019, pp. 1844–1852.
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HIGHLIGHTS
 Meta-heuristics can find an optimal channel set in P300-based BCI systems.

 Six single- and four multi-objective algorithms are compared for the first time.

 Dual-Front Sorting Algorithm (DFGA) demonstrated an excellent performance.

 Discrete approaches performed better due to the dichotomous nature of the problem.

 Meta-heuristics cannot be used in their common form and should be carefully adapted.
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