6,643 research outputs found

    Node harvest

    Full text link
    When choosing a suitable technique for regression and classification with multivariate predictor variables, one is often faced with a tradeoff between interpretability and high predictive accuracy. To give a classical example, classification and regression trees are easy to understand and interpret. Tree ensembles like Random Forests provide usually more accurate predictions. Yet tree ensembles are also more difficult to analyze than single trees and are often criticized, perhaps unfairly, as `black box' predictors. Node harvest is trying to reconcile the two aims of interpretability and predictive accuracy by combining positive aspects of trees and tree ensembles. Results are very sparse and interpretable and predictive accuracy is extremely competitive, especially for low signal-to-noise data. The procedure is simple: an initial set of a few thousand nodes is generated randomly. If a new observation falls into just a single node, its prediction is the mean response of all training observation within this node, identical to a tree-like prediction. A new observation falls typically into several nodes and its prediction is then the weighted average of the mean responses across all these nodes. The only role of node harvest is to `pick' the right nodes from the initial large ensemble of nodes by choosing node weights, which amounts in the proposed algorithm to a quadratic programming problem with linear inequality constraints. The solution is sparse in the sense that only very few nodes are selected with a nonzero weight. This sparsity is not explicitly enforced. Maybe surprisingly, it is not necessary to select a tuning parameter for optimal predictive accuracy. Node harvest can handle mixed data and missing values and is shown to be simple to interpret and competitive in predictive accuracy on a variety of data sets.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS367 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fitting Prediction Rule Ensembles with R Package pre

    Get PDF
    Prediction rule ensembles (PREs) are sparse collections of rules, offering highly interpretable regression and classification models. This paper presents the R package pre, which derives PREs through the methodology of Friedman and Popescu (2008). The implementation and functionality of package pre is described and illustrated through application on a dataset on the prediction of depression. Furthermore, accuracy and sparsity of PREs is compared with that of single trees, random forest and lasso regression in four benchmark datasets. Results indicate that pre derives ensembles with predictive accuracy comparable to that of random forests, while using a smaller number of variables for prediction

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table

    Incremental construction of classifier and discriminant ensembles

    Get PDF
    We discuss approaches to incrementally construct an ensemble. The first constructs an ensemble of classifiers choosing a subset from a larger set, and the second constructs an ensemble of discriminants, where a classifier is used for some classes only. We investigate criteria including accuracy, significant improvement, diversity, correlation, and the role of search direction. For discriminant ensembles, we test subset selection and trees. Fusion is by voting or by a linear model. Using 14 classifiers on 38 data sets. incremental search finds small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of discriminants and is simpler, interpretable, and accurate. We see that an incremental ensemble has higher accuracy than bagging and random subspace method; and it has a comparable accuracy to AdaBoost. but fewer classifiers.We would like to thank the three anonymous referees and the editor for their constructive comments, pointers to related literature, and pertinent questions which allowed us to better situate our work as well as organize the ms and improve the presentation. This work has been supported by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), Bogazici University Scientific Research Project 05HA101 and Turkish Scientific Technical Research Council TUBITAK EEEAG 104EO79Publisher's VersionAuthor Pre-Prin

    Building Combined Classifiers

    Get PDF
    This chapter covers different approaches that may be taken when building an ensemble method, through studying specific examples of each approach from research conducted by the authors. A method called Negative Correlation Learning illustrates a decision level combination approach with individual classifiers trained co-operatively. The Model level combination paradigm is illustrated via a tree combination method. Finally, another variant of the decision level paradigm, with individuals trained independently instead of co-operatively, is discussed as applied to churn prediction in the telecommunications industry

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type
    corecore