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Abstract

We discuss approaches to incrementally construct an ensemble. The first constructs
an ensemble of classifiers choosing a subset from a larger set, and the second con-
structs an ensemble of discriminants, where a classifier is used for some classes
only. We investigate criteria including accuracy, significant improvement, diversity,
correlation, and the role of search direction. For discriminant ensembles, we test
subset selection and trees. Fusion is by voting or a linear model. Using 14 classifiers
on 38 data sets, incremental search finds small, accurate ensembles in polynomial
time. The discriminant ensemble uses a subset of discriminants and is simpler, in-
terpretable, and accurate. We see that an incremental ensemble has higher accuracy
than bagging and random subspace method; has comparable accuracy to AdaBoost,
but fewer classifiers.
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1 Introduction

1.1 Current trends in classifier combination

It is well-known that there is no single classification algorithm that is always
the most accurate and methods have been proposed to combine classifiers
based on different learning algorithms [20,31]. Each algorithm has a different
inductive bias, that is, makes a different assumption about the data and makes
errors on different instances and by suitable combination, the overall error can
be decreased.

There are several methods for model combination: The simple method is to use
voting which corresponds to the sum rule, or another fixed rule, i.e., median,
product, minimum, or maximum [27]. Methods based on resampling from a
single data set, such as bagging [8] and AdaBoost [16], are not used to combine
different learning algorithms. In stacking, fusion is done using a trained, sec-
ond layer classifier which estimates the real output from the outputs of base
classifiers [58]. Ting and Witten [55] propose the MLR (Multiresponse Linear
Regression) algorithm which combines the outputs of base learners linearly.
In a mixture of experts architecture (MoE), models are local and a separate
gating network selects one of the local experts based on the input [24].

Model combination however is no panacea and models in the ensemble should
be carefully chosen for error to decrease. In particular, model combination
through averaging reduces variance [8], and hence error, but only if bias does
not increase in the process, or if the concomitant increase in bias is small with
respect to the decrease in variance. It is therefore essential that only those
models that contribute to accuracy are added and the poorly performing ones
are weeded out.

1.2 Subset selection in classifier combination

Additional to its effect on statistical accuracy, each additional model in-
creases space and computational complexity. A new model may also be sens-
ing/extracting a costly representation which can be saved if the model is con-
sidered redundant. Methods therefore have been proposed to choose a small
subset from a large set of candidate models. Since there are 2L possible sub-
sets of L models one cannot try for all possible subsets unless L is small, and
various methods have been proposed to get a reasonable subset of size m < L
in reasonable time.

Ensemble construction methods also differ in the criterion they optimize. Addi-
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tional to methods which directly optimize ensemble accuracy, heuristics have
also been proposed as measures of “diversity” in pinpointing models which
best complement each other, to allow diverse ones to be added and similar
ones to be deemed redundant and pruned.

Ensemble construction can be viewed as an optimization problem [64,50] and
methods proposed in the literature correspond to different search strategies in
optimization: There are greedy “forward” algorithms which are incremental
and add one model at a time if the addition improves the criterion to be
optimized. There are “backward” search methods which prune from a large
set if the removal is not harmful. There are also “floating” methods which do
both, as well as ones that use genetic algorithms whose operators allow both
addition and deletion. A chronological review of major ensemble construction
methods in more detail is deferred to Section 6.

1.3 Proposed methods for ensemble construction

In this paper, we discuss and evaluate two ensemble construction approaches:

(1) We incrementally construct an ensemble of classifiers as in the methods
discussed above. On 38 data sets using 14 different base classifiers, we
test the effect of (i) The criterion to be optimized (accuracy, statistically
significant improvement and two diversity measures, correlation and Q
statistics), (ii) The search direction (forward, backward, floating), and
(iii) The combiner (fixed voting, trained linear combiner).

(2) We incrementally construct an ensemble of discriminants where a classi-
fier may be used for some of the classes but not for others. For example,
in a three-class problem (C1, C2, C3), C1 may be linearly separable from
C2 and C3 and therefore the first discriminant of the linear classifier is
chosen. If C2 is not linearly separable from C1 and C3, the second dis-
criminant of the linear classifier cannot be used and a more complicated
classifier (e.g., k-nearest neighbor) needs to be incorporated in the en-
semble.

This work has two goals:

(1) First, we investigate the effect of various factors in ensemble construction
using a wide variety of learning algorithms, data sets and evaluation
criteria. We compare this algorithm with bagging, boosting and random
subspace method.

(2) Second, we generalize the idea of subset selection to the level of discrim-
inants, to check if it is applicable not only at the level of classifiers but
also at the level of discriminants which make up a classifier.
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The paper is organized as follows: In Section 2 and 3 we introduce our al-
gorithms. We give the details of our experiments in Section 4 and results in
Section 5. We discuss related work in Section 6 and conclude in Section 7.

2 Constructing an ensemble of classifiers

2.1 The ICON algorithm

Our proposed algorithm Icon to choose m out of L base classifiers is greedy
in that it starts with the empty set and Incrementally CONstructs an en-
semble where at each iteration, it chooses among all possible classifiers the
one that best improves the performance when added to the current ensemble.
The performance is measured using an ensemble evaluation criterion, as we
will discuss next. The algorithm stops when there is no further improvement.
Of course, this does not guarantee finding the best subset but this algorithm
has polynomial complexity, O(L2), whereas exhaustive searching all possible
subsets, O(2L), is of exponential complexity. As we see shortly, despite its
simplicity, this algorithm works very well in practice.

The pseudocode of the algorithm is given in Figure 1. We start with E(0) = ∅.
At iteration t of the algorithm, we have ensemble E(t) containing t models.
Given the set of remaining L − t candidate models, Mk 6∈ E(t), we have new
candidate ensembles for iteration t + 1 as S

(t+1)
k ≡ E(t) ∪Mk, k = 1, . . . , L− t.

Among these we choose the one that is preferred to all other candidates and
is also preferred to the current ensemble (Line 5 of Fig. 1).

Ei ≺ Ej denotes the binary relation of “preference” comparing two ensembles
and holds if Ei is preferred to Ej according to the criterion used (which we
will discuss next). If none of the candidates is preferred to E(t), the algorithm
stops and E(t) is taken as the final ensemble.

The algorithm discussed above implements a forward, incremental, growing
search. It is possible to implement a backward, decremental, pruning version,
where one starts with the whole set and at each step removes one, again using
the same preference relation and optimizing the same criterion. Similarly, a
floating algorithm which tries to prune a previously added base classifier may
also be envisaged.
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2.2 Ensemble evaluation

Given two ensembles Ei and Ej, we need an evaluation method to prefer
one to the other. Note that this evaluation is done on a validation data set
different from the data set on which the base classifiers are trained. To average
over randomness in splits, we also use cross-validation to generate multiple
training/validation set pairs, train and validate multiple times and look at
the paired validation values. We use the following ensemble evaluation criteria
in our experiments:

(1) Accuracy (Acc): We compare the average accuracies of the two ensembles
on the validation sets.

(2) Cross-Validation (Cv): We use a statistical test to check if the difference
in accuracy is statistically significant, and allow only those additions that
cause a statistically significant increase in accuracy. We use the one-sided
5× 2 cv paired t-test [14] and check whether the more costly ensemble is
significantly more accurate than the simpler one.

Note that cross-validation is only one method that can be used for
model selection. One can also use a regularization approach to check
whether a small increase in accuracy is worth an increase in complexity
and use an augmented goodness measure:

goodness(Ei) = accuracy(Ei)− λ|Ei| (1)

where |Ei| measures the complexity of the ensemble which depends on
the size of the ensemble as well as the time/space complexities of the
base classifiers or the cost of sensing/preprocessing the inputs they use
[12]. λ gives the accuracy-complexity trade-off. Examples are AIC, BIC,
and MML [21]. Equally, one can use a Bayesian approach where simpler
models are assigned higher prior probabilities.

(3) Q Statistic (Qstat): As a diversity measure, we use the Q statistic [35].
First, we select the two classifiers which form the most diverse ensemble,
and at each iteration, we add another classifier if diversity increases; else,
we stop. The Q statistic for two classifiers is calculated as:

Qi,j =
N11N00 −N10N01

N11N00 + N10N01

(2)

where N00, N01, N10, and N11 are defined as in Table 1. The average
diversity for an ensemble is calculated as

Qav =
2

m(m− 1)

m−1∑

i=1

m∑

k=i+1

Qi,k (3)

(4) Correlation Coefficient (Corr): As another frequently used diversity

5



measure, we use the average correlation coefficient [35]:

ρi,j =
N11N00 −N10N01√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
(4)

The average correlation for the ensemble is calculated by averaging
over all pairs, as done in Qstat.

2.3 Model combination

Given an ensemble of base classifiers, the easiest way to calculate the over-
all output is by taking a sum, which corresponds to taking a vote. Our base
classifiers generate posterior probabilities so there is no need for scaling, nor-
malization or transformation [36,25].

There are other fixed rules, i.e., median, product, minimum, or maximum [27],
but the sum rule we use is known to work best in practice. Alkoot and Kittler
[2] investigate fixed rules and see that the sum and median rules are more ro-
bust to noise. Kuncheva [30] discusses six fixed rules for classifier combination
on two-class problems with Gaussian and uniform error. She concludes that
the min/max rule find the best ensemble when uniform error is the case. For
Gaussian distributed errors, the combination rules behave similarly. Cabrera
[9] analyzes average, median and maximum rules when the number of classifiers
becomes large. He finds that average is the best for normal error, maximum
is the best for uniform error and median is the best for Cauchy error. These
studies analyze under the assumption that classifiers are independent, though
in practice they are correlated [57].

Tax et al. [54] show that in multi-class problems, the product rule may be
superior to the sum rule when the independent data representation assumption
is met. On the other hand, the sum rule is more robust to noise. Especially in
cases when one of the classifiers is an outlier, the veto power of the product
rule decreases the combination performance. In two-class problems though,
there is no difference.

The sum rule gives equal weight to all base classifiers, we also try a trained lin-
ear combiner; this is called stacking [58,15,45,46]. We do not constrain weights
to be nonnegative or sum to 1, and there is also a constant intercept. A data
set separate from the one used to train the base classifiers is used to train this
linear combiner.

A trained rule may have lower bias, but fixed rules are generally favored for
a number of reasons: (i) There is not the extra cost of storing/processing the
combiner model (called L1 model in stacking). (ii) We save from the time
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needed to train the combiner model, and (iii) There is no need to leave out
a part of the training set to train the combiner, and all data can be used to
train the base classifiers.

3 Ensemble of discriminants

3.1 Rationale

The Icon algorithm above constructs an ensemble of classifiers, that is, it
aims finding a subset of base classifiers that best complement each other to
maximize the overall accuracy. Now in this section, we consider each classifier
as outputting a set of discriminants, and when we have a set of classifiers, we
think of this as a larger set of discriminants, from which we choose a subset
as before, constructing an ensemble of discriminants.

In the ensemble of classifiers, we choose m classifiers from L candidate clas-
sifiers. In the ensemble of discriminants where k is the number of classes, we
choose p ≥ k discriminants from L · k discriminants. We consider a new in-
termediate L · k dimensional space in which we do feature selection and then
classification. This is a continuation of the idea of subset selection where the
sole difference is that items that are selected are not whole classifiers but
separate discriminants which make up the classifiers.

3.2 Discriminant selection

We use three algorithms for constructing a discriminant ensemble:

(1) Forward subset selection (Fss): This is a greedy, incremental algorithm
that adds one discriminant at a time until there is no further improvement
in accuracy; it is basically Icon adapted to discriminant selection. There
is a linear combiner to calculate the overall output from the discriminants.

(2) Decision tree (Dt): A decision tree is trained to learn the final output
from the L · k dimensional discriminant values. Note that the decision
tree acts both as a feature selector and a classifier (i.e., combiner).

(3) Dt with linear output (Dt.Lin): A decision tree is trained as above but
instead of using it also for decision, it is used for feature selection only.
That is, we first train the tree, take the features it uses, and give them
as input to a linear combiner.

7



3.3 Ensembles of discriminants vs classifiers

The ensemble of discriminants is interesting for a number of reasons:

• A classifier may be accurate for some classes but not all, and it is best to
use it only for classes it is good at. Each classifier has a certain inductive
bias, which may hold for some classes but not all. Take the case of a lin-
ear discriminant: In a multi-class case, one of the classes may be linearly
separable from the others but another class may not be. The output of the
linear classifier may therefore be included in the ensemble of discriminants
for that class, but for some other class, a more complex discriminant should
be included in the ensemble. Certain classes may be handled by a single dis-
criminant, i.e., the output of one classifier suffices, but more discriminants
are combined for more complex classes.

• When we know that a classifier will not be used for some classes, the over-
all complexity can be decreased, both in terms of memory and time. The
parameters for the unused discriminants need not be stored and the un-
used discriminants need not be calculated. For example when we are using
support vector machines, we do not need to store the support vectors of a
discriminant nor do the costly kernel calculations if it is not to be used.

• The base discriminants do not need to be posteriors or normalized in any
manner. Both the linear model and the decision tree can use inputs in any
scale and no transformation or scaling is necessary thereby avoiding the risk
of distorting values [36,25] (Though in practice, normalizing the inputs may
help convergence with linear models in certain situations).

• The ensemble of discriminants by doing feature selection allows knowledge
extraction. We know which base classifiers can be trusted for which classes.
There may be certain base classifiers whose discriminants are not chosen for
any class, there may be ones which are chosen for one or few, and there may
be ones which are chosen for many. Certain classes may be easy in that one
discriminant is enough; a number of discriminants need to be combined to
learn accurately more difficult classes.

4 Experimental details

4.1 Data sets

We use a total of 38 data sets where 35 of them (zoo, iris, tae, hepatitis, wine,
flags, glass, heart, haberman, flare, ecoli, bupa, ionosphere, dermatology, horse,
monks, vote, cylinder, balance, australian, credit, breast, pima, tictactoe, cmc,
yeast, car, segment, thyroid, optdigits, spambase, pageblock, pendigits, mush-
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room, and nursery) are from UCI [4] and 3 (titanic, ringnorm, and twonorm)
are from Delve [44] repositories. The properties of these data sets can be seen
in Table 2.

4.2 Base classifiers

We use fourteen base classifiers which we have chosen to span as much as
possible the wide spectrum of possible machine learning algorithms:

1–3) knn: k-nearest neighbor with k = 1, 3, 5.
4–8) mlp: Multilayer perceptron where with D inputs and K classes, the num-

ber of hidden units is taken as D (ml1), K (ml2), (D+K)/2 (ml3), D+K
(ml4), 2(D + K) (ml5).

9) lnp: Linear perceptron with softmax outputs trained by gradient-descent
to minimize cross-entropy.

10) c45: The most widely-used C4.5 decision tree algorithm.
11) mdt: This is a multivariate decision tree where splits are hyperplanes that

use all inputs as opposed to univariate trees which use a single feature
and implements an axis-orthogonal split [60].

12–14) svm: Support vector machines (SVM) with a a linear kernel (sv1), poly-
nomial kernel of degree 2 (sv2), and a radial (Gaussian) kernel (svr). We
use the LIBSVM 2.82 library that implements pairwise SVMs [11].

4.3 Division of training, validation, and test sets

Our methodology is as follows: A given data set is first divided into two parts,
with 1/3 as the test set, test, and 2/3 as the training set, train-all. The training
set, train-all, is then resampled using 5 × 2 cross-validation (cv) [14] where
2-fold cv is done five times (with stratification) and the roles swapped at each
fold to generate ten training and validation folds, trai, vali, i = 1, . . . , 10. trai

are used to train the base classifiers (discriminants). vali are divided into two
randomly as val-Ai and val-Bi, where val-Ai are used to train the combiner and
val-Bi are used for model selection (in choosing the optimal subset or to choose
the size of generated subsets). These ten trained models (base classifiers and
combiner) are tested on the same test and we have ten testi accuracy results.
This processed data of base classifier outputs is publicly available [61].

To compare the accuracies of different ensemble construction methods for
statistically significant difference, we use two different methodologies. First,
for each data set, we use the 5×2 cv F test [3] (α = 0.05) which is a parametric
test to compare the methods for each data set; we then use the sign test to
check if the numbers of wins/losses over all 38 data sets is significant. Second,
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we use Friedman’s test which is a nonparametric test using the rankings, and
if it rejects, we use the Nemenyi test as a post-hoc test to check for significant
difference between methods [13].

4.4 Compared ensembles

The following ensembles are generated and compared:

• Best: We order the base classifiers in terms of accuracy and use the first
1, 3, 5, 7, 9 of them. This has two variants: Best.Sum uses the fixed sum
rule and Best.Lin uses the trained linear combiner.

• Rnd: We randomly choose 1, 3, 5, 7, 9 base classifiers, with Sum and Lin
options.

• All: All the available base classifiers are combined without selection, with
Sum and Lin options.

• Opt: We try all possible subsets (there are 214) and choose the most accu-
rate. It has Sum and Lin options.

• Icon: The classifier ensembles generated by Icon variants (Acc, Cv, Qs-
tat, and Corr) are used. They all have Sum and Lin options.

• Fss: This is the discriminant ensemble which uses forward subset selection
and a linear combiner.

• Dt: This is the discriminant ensemble which uses a decision tree.
• Dt.Lin: This is the discriminant ensemble which uses a decision tree for

feature selection and a linear combiner.

Accuracies of these algorithms on each data set can be seen in Table 3. The
entries marked with ? means that Acc is significantly more accurate than
that algorithm using 5× 2 F test, ◦ means Acc is significantly less accurate.

5 Experimental results

First, we check for the effect of search direction in Icon. In the next subsection,
we discuss and compare the results of our proposed methods on two data sets
in detail, before moving on to an overall comparison on all data sets.

5.1 Comparison of search methods

As we have mentioned in the Introduction, it is possible to search in the for-
ward direction adding one at a time, backward direction removing one at a
time, or a floating search where we try to remove a previously added base
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classifier before adding another one. We can hence consider three Icon vari-
ants implementing forward (.F), backward (.B) or floating (.L) search. The
comparison of the accuracies of the three search directions according to the
four criteria used by Icon variants can be seen in Table 4. These entries are
the number of data sets on which there is a statistically significant win/loss of
the method in the row over the method in the column (using 5× 2 cv F test);
38 − wins − losses gives the number of ties; the entry is bold if the number
of wins/losses is significant in 38 trials (using the sign test). The average and
standard deviation of the number of base classifiers in the found ensemble and
the number of visited states during search are given respectively in Tables 5
and 6.

We see that in all four criteria of Acc, Cv, Qstat, and Corr, .F and .L give
similar results; this is because most of the time small ensembles are enough and
there is not much to prune back after few additions. We also see that in terms
of the ensemble sizes and search time, .L and .F stand out as the best. With
the diversity measure Corr, backward search is significantly more accurate
and faster because Corr needs larger ensembles, and that is why with the
diversity-based measures, forward and floating search takes more steps.

We can see that .B and .L increase both the number of search steps and the
ensemble size for Acc and Cv. We believe that it is not beneficial to use
floating search because it finds the same ensembles as forward search does
but takes more steps. In diversity-based measures, backward search is more
accurate but this increases the ensemble size and we have no benefit over using
the whole ensemble. Aiming high accuracy and small ensembles, we therefore
adopt forward search in the rest of the paper.

5.2 Initial results

We start by discussing in detail our results on two data sets, optdigits and
nursery, as two example cases. We present our overall results on all data sets
in the next subsection.

5.2.1 Optdigits data set

The accuracies of base classifiers (sorted in increasing accuracy) are shown in
Table 7 and the ensembles on test data are given in Table 8, together with the
number of classifiers, the number of discriminants, and the chosen ensembles.
The plot of accuracies vs the number of base classifiers is shown in Figure 2.
On this data set (as many others), using a linear combiner .Lin does not
increase the accuracy significantly, and therefore only .Sum results are given
to keep the table and figures simpler.
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We see that the optimal subset Opt chooses only three out of fourteen and is
significantly as accurate as All that uses all fourteen. Ordering base classifiers
in terms of accuracy and choosing the best m, Best, is also significantly better
than All. Note that the accuracy of Best starts to decrease when too many
base classifiers are added; in such a case the increase in bias is higher than the
decrease in variance. Choosing a random subset, Rnd, does not work as well
and requires more base classifiers.

In terms of the ensembles of classifiers generated by Icon, we see that Acc
also finds the optimal subset. The optimal subset generally contains a few base
classifiers and searching in the forward direction, as Icon variant Acc does,
greedily returns a quite good subset in polynomial time.

The Icon variants that use diversity measures, Qstat and Corr, use too
many base classifiers, showing that it is best to use accuracy as the ensemble
evaluation criterion directly rather than an intermediate diversity measure; or
that diversity should not be used alone but in some combination with accuracy
[28,29].

Cv uses only one base classifier as it finds that adding a second does not
increase accuracy significantly. The behavior of Cv depends on the statistical
test and the confidence level. We show in Figure 3 how the ensemble changes
at different confidence levels. When the confidence level is lower than 0.95,
the test uses a smaller confidence interval, is more likely to reject and gener-
ates larger ensembles: Cv tends to behave similar to Acc as the confidence
level decreases. As the confidence level increases, the test gets more and more
conservative and generates smaller ensembles, until it chooses only one.

As for the ensembles of discriminants, we see that Fss uses more discriminants
than Dt, but is significantly more accurate than all other methods. On the
average, Dt chooses 11.8 discriminants (the smallest possible with ten classes
is 9) from 6.6 classifiers. Example tree (one of ten) learned by Dt is given
in Figure 4 and its discriminants are given in Table 8: It starts by looking
at the output of sv1 for class ‘7’ and chooses ‘7’ if this value is higher than
0.46. Note that we only evaluate the discriminants in our path; for example we
see here that the complex 5nn is only evaluated to distinguish ‘0’, ’1’ and ‘6’
from others. Dt.Lin improves over Dt, but not significantly (p = 0.90). Most
classes are identifiable by looking at a single discriminant; only ‘1’ requires two
(sv2 and 1nn). The example tree Dt chooses only ten discriminants, choosing
discriminants from six base classifiers; this set includes the optimal subset
found by Opt (which has 3 · 10 = 30 discriminants), and uses three more
discriminants from three classifiers (5nn, 1nn and lnp).
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5.2.2 Nursery data set

The results on nursery is similar except that .Lin improves accuracy over
.Sum, for some ensemble methods. The results for the single base classifiers
are given in Table 9 and the combination methods are given in Table 10. In
Figure 5, we compare the .Sum and .Lin variants.

On this data set, the accuracies of the base classifiers range from 76.85 to
99.41 and we see that using .Sum (Fig. 5(a)), All has low accuracy and the
accuracy of Best decreases as more classifiers are added; we do not see this
as strongly with .Lin (Fig. 5(b)). That is, a trained combiner is more robust
to addition of erroneous classifiers. The trained combiner is able to weight
the accurate ones more and effectively ignores those that are not as accurate.
We also see that Icon, as a subset selection method shows the same robust
behavior; that is, because it does not add and use the inaccurate classifiers,
its accuracy is not degraded. Note that this is valid even if .Sum is used
(Fig. 5(a)). We therefore see that in the presence of inaccurate base classifiers
in the ensemble, either one should use a trained combiner which learns to
ignore them or use a subset selection method which does not include them.

This is a data set with four classes and the tree learned by Dt for this fold
(Fig. 6) has only three decision nodes, is very simple, and has 100.00 test
accuracy (accuracy of Dt.Lin is 99.31), which is higher than what we get
when we use all outputs of all base classifiers for that fold (99.81). Fss uses
more discriminants and is as accurate. On this data set, Acc, Opt, Fss and
Best are significantly more accurate than All and Rnd.

5.3 General results

We compare accuracies of all ensemble methods in a pairwise manner on test in
Table 11. These are the number of significant wins and losses of method in the
row over the method in the column. The sum of wins and losses subtracted
from 38 gives the number of ties. If the entry is bold, this means that the
number of wins/losses over 38 is statistically significant using the sign test.
We do further statistical analysis with nonparametric tests using the average
ranks of the six ensemble methods on 38 data sets (Table 12). Friedman’s test
rejects the hypothesis that the six methods have equal ranks. Doing Nemenyi’s
post-hoc test for pairwise comparison, we get the results in Figure 7.

Table 13 shows the average number of base classifiers (/discriminants) that en-
sembles constructed using different methods contain. The discriminant values
are normalized by dividing with the number of classes.

Additional to their accuracies and complexities, we also check how similar are
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the ensembles found by different methods. Given two ensembles Ei and Ej,
we define the similarity between them as the number of shared base classifiers
(or discriminants):

Sim(Ei, Ej) =
|Ei ∩ Ej|
|Ei ∪ Ej| (5)

If the two ensembles share the same base classifiers (discriminants), the simi-
larity is 1; if there is no intersection, the similarity is 0. The average similarity
between ensembles found by different methods is given in Table 14.

Analyzing these tables, our general results are as follows:

• Overall, using a trained linear combiner does not increase the ensemble
accuracy significantly. In Table 15, we report a comparison of accuracies
using the fixed sum rule .Sum vs the trained linear combiner .Lin; we see
that except with Cv, there is no significant difference between them, and
on Cv, it is .Sum which is more accurate.

We believe this is because we have sufficiently well-trained, capable base
classifiers which are able to approximate posterior probabilities quite well
that no further bias correction (which the linear combiner effectively is there
for) is required. It may also be the case that on small data sets, there is not
enough data to train the linear combiner sufficiently. It is possible to increase
the number of folds and for example use 20× 1 cross-validation which will
have the effect of increasing the training set both for base classifiers and the
combiner at the expense of doubling the running time. In the extreme case,
one can use leave-one-out where the number of folds is equal to the training
set size (as proposed in the original stacking paper of Wolpert [58]) but this
cannot be afforded (nor is it necessary) unless the data set is small.

Using a fixed rule decreases time/space complexity of training/testing,
does not require data to train the combiner allowing more data to train
base classifiers, and is simpler to interpret. Therefore throughout the rest
of this section, we consider .Sum results only.

• According to Nemenyi’s test given in Figure 7, there is no significant differ-
ence in accuracy between Best, Opt, Rnd, Acc, Fss. Among those, as
we see in Table 13, Acc uses the least number of classifiers, and Fss uses
the least number of discriminants. These results show that our proposed
methods for ensembles of classifiers and discriminants construct ensembles
which are simple and as accurate as optimal subset or the whole.

• Among Icon variants, Acc is the most accurate. It is also more accurate
than All on six data sets out of 38 on test (which is significant using the
sign test). Acc does not lose to Opt on any data set. The similarity of the
ensembles they find is 0.48; this is the fourth highest value in the table—the
highest similarity is between Qstat and Corr with 0.66. This shows that a
greedy, forward, incremental accuracy-based ensemble construction method
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works quite well. Cv rarely uses more than a single base classifier and the
diversity based Icon variants are significantly less accurate than Acc.

• Best is also as accurate as Opt but needs more base classifiers than Acc
does. The similarity between Acc and Best ensembles is 0.61 (which is
the second highest value in the table.), showing that the greedy algorithm
selects from the best m but sometimes it chooses differently. Acc ensembles
contain fewer base classifiers than those of Best, indicating that instead of
choosing the best m classifiers it is better to do some choosing for those
which complement each other and then we can do with less.

• Even Rnd works quite well but needs a larger ensemble, requiring more
than two times more base classifiers than Acc does.

• According to the average number of base classifiers they choose to include
in their ensembles, we have the following ordering: Cv < Acc < Best <
Opt < Fss < Rnd < Dt < Corr < Qstat < All.

• Acc and Cv use different base classifiers because Acc selects the classi-
fier with the highest accuracy, whereas Cv also takes complexity into ac-
count and chooses the classifier which is the least complex among the most
accurate. Because Cv ensembles contain a single base classifier, they are
generally less accurate than other ensembles.

• In 32 of the 38 data sets, Opt contains Best.1, which means that an
incremental algorithm beginning with the best individual algorithm has
higher probability of finding Opt than an incremental algorithm beginning
with a random classifier. On the remaining six data sets, Opt contains the
second best algorithm (and on five of them Opt contains the same algorithm
as Best.1 with a different hyperparameter.).

• Cv requires statistically significant difference for a classifier to be added
and rarely adds more than one classifier (average number of base classifiers
found by this method is 1.05), but Acc, which looks at accuracy only, may
achieve statistically significant improvement after more than one step of
classifier addition.

• Diversity based methods, Qstat and Corr, do not work well. Most of the
other methods are significantly more accurate than them. The similarity
between the ensembles found by these two is 0.66, indicating that they tend
to find similar (but not very similar) ensembles, but their similarity to Opt
is around 0.20−0.25, showing that they do not choose good base classifiers.
Their similarity to other accuracy based methods (other than ALL) is also
around 0.2. These results indicate that rather than using such diversity
measures alone, it is best to combine them with accuracy in some general
goodness measure.

• Among the three discriminant ensembles, Fss is significantly more accurate
than Dt.Lin and more accurate than Dt (with seven wins to one losses; this
is significant at p = 0.93). Fss on the average chooses fewer discriminants
than Dt variants, and the similarity of discriminants selected by them is
only 0.26. We believe this is because Fss chooses a feature that decreases the
error over the whole training set, while Dt tries to minimize error over the
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data arriving to the current node (subtree) by choosing a different feature,
and when we take a union over such features we get a larger set.

• Dt.Lin seems to be more accurate than Dt (with four wins to one loss,
but it is not significant: p = 0.62) and has less variance, but using an
additional linear combiner has disadvantages we cited above. Dt also has
the advantages of being a tree: It is interpretable and during test, we only
need to evaluate the nodes (discriminants) in our path, implying faster test
performance.

• All discriminant ensembles are as accurate as All (Fss has nine wins,
six losses compared to All). This implies that a discriminant ensemble is
simple, interpretable and accurate.

• Acc uses fewer classifiers but Fss uses fewer discriminants. Acc uses all
the discriminants of the chosen classifiers which makes it costly but robust
to noise due to redundancy; Fss and Dt use a subset of the discriminants,
are less noise-tolerant, but are simpler and faster.

• The similarity between the classifiers used by Fss and Acc is 0.29, whereas
the similarity between Acc and Dt is 0.19. Both being incremental forward
methods, Acc and Fss tend to choose more similar classifiers, slightly dif-
ferent from those selected by a decision tree.

• Although the classifier and discriminant ensembles seem to contain a com-
parable number of base classifiers, in terms of the discriminants, the dis-
criminant ensembles tend to need around half as many base discriminants,
cutting by half the space and time complexity of training/testing. On some
data sets, this can be as low as one-fifth.

5.4 Comparison with ensemble techniques

We also compared our proposed algorithms with the most frequently used
ensemble techniques AdaBoost [16], bagging [8] and a variant of the random
subspace [22] ensemble proposed by Bertoni et al [7]. Theory of bagging has
been analyzed by Fumera et al [17]. The accuracy of these ensemble methods
can be increased by combining with other methods (Zhang and Zhang [62]
combined AdaBoost with rotation forests to come up with a new ensemble
technique called RotBoost) or changing the order of aggregation [38]. We
compare Acc and Dt.Lin with the following algorithms:

• Ada: Standard AdaBoost implemented as proposed in [16]. We make a
slight change and instead of stopping at 100 per cent accuracy, we reset the
instance weights and continue. We train decision tree ensembles of size 5,
10, 15, 20, 25, 30 and choose the one with the best val-B accuracy.

• Bag: The original bagging algorithm proposed in [8]. We train decision tree
ensembles of size 5, 10, 15, 20, 25, 30 and choose the one with the best val-B
accuracy.
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• Kne: We train k-nn ensembles (k = 1, 3, 5, 7, 9) using random subspace
method (we choose a different set of attributes for each fold) and combine
them using voting.

We compare accuracies of these methods in a pairwise manner on test in
Table 16. These are the number of significant wins and losses of method in the
row over the method in the column. The sum of wins and losses subtracted
from 38 gives the number of ties. If the entry is bold, this means that the
number of wins/losses over 38 is statistically significant using the sign test.
We do further statistical analysis with nonparametric tests using the average
ranks of the five ensemble methods on 38 data sets (Table 18). Friedman’s test
rejects the hypothesis that the five methods have equal ranks. Doing Nemenyi’s
post-hoc test for pairwise comparison, we get the results in Figure 8. Looking
at these tables, we see that, if we use the parametric sign test, we see that
Acc is better than all the other ensemble methods, there is no statistically
significant difference between Ada and Dt.Lin, and they are significantly
more accurate than Bag and Kne. If we use the non parametric Friedman’s
test, and its post-hoc Nemenyi’s test, we see that we get the same results as
the sign test, with the only difference that Ada and Acc have no significant
difference.

In Table 17, we can see the average and standard deviation of number of
classifiers used by the compared ensemble methods. We can see that, though
Acc and Ada have comparable accuracies, Acc uses fewer classifiers. This
is because Ada uses the same base classifier, and to create diversity, needs
more classifiers, whereas Acc uses different base classifiers and benefits from
the diversity of those.

5.5 Recipe for constructing an ensemble

In this section, we will discuss how to best choose algorithms and construct
ensembles for best performance 1 . Different learning algorithms have different
inductive biases which make them better for different data sets. There are
parametric or nonparametric methods, those which work in the original space
and those which map to a new space and work there, etc. Furthermore, some
algorithms are advantageous in terms of memory, some in terms of classifica-
tion speed. The linear perceptron for example is cheap and fast but assumes
linear separability; k-nearest neighbor is more flexible but expensive. Support
vector machines and multilayer perceptrons may be slow to train on large data
sets. The best classifier hence depends on the constraints of the application,
availability of data and how much memory and computation can be afforded.

1 We would like to thank the anonymous reviewer for suggesting us to write this
section
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In constructing ensembles, the most critical factor is to have classifiers that
are accurate and diverse. Our experiments have shown that the best way for
this is to use different algorithms. We have seen that this is more effective in
generating a candidate set than using different feature subsets (for example,
by the random space method), different samples of the data (for example,
by bootstrapping), or different hyperparameters (for example, by combining
multilayer perceptrons with different number of hidden units). Only if we are
determined to use a single algorithm (for example, a decision tree), then we
can play with features/training sets/hyperparameters to generate a diverse
and accurate set of versions of the single algorithm (a decision forest).

As the training set gets larger, different bootstraps will be more and more sim-
ilar, there will be more positive correlation between classifiers and there will
be less gain through bagging. Similarly, when there are few features, different
feature subsets will generate more correlated classifiers. Furthermore, different
algorithms may imply different constraints: For example, with k-nearest neigh-
bor, different samples or different k will not have a large effect on diversity,
one should use different feature sets (or better still, k-nn should be combined
with a completely different algorithm, for example, a linear perceptron).

In all this, we see the advantage of Icon where we do not need to worry about
how best to choose the classifiers in the ensemble; we train them all and let
Icon pick the best subset.

We have also seen that it is better to combine classifiers with soft outputs (for
example, posterior probabilities) rather than 0/1 decisions. In this work, we
do not see a difference because we have well-trained classifiers with softmax
outputs and the soft outputs are close to 0/1 anyway; but in general, soft
outputs allow representing confidence and provides more information to the
combiner.

If the base classifiers are all equally accurate and if there is no great difference
among them in terms of accuracy, a fixed rule (for example, the sum rule) is
cheap and accurate. In cases where there is difference, a trained rule works
better as it allows assigning a small weight to bad classifiers. An ensemble
construction method like Icon also allows pruning inaccurate classifiers (which
is equal to giving them zero weight). Note that a trained combiner needs its
own training data which should be distinct from the data used to train the
classifiers. If a model selection is to be done for the combiner, it also needs its
own validation data; that is why, we have both val-A and val-B in this study.

If in a data set, we expect to have all classes with similar distributions then a
classifier can be trusted for all classes. But this may not be true in a data set
where certain classes are easily separated from others and some classes may
be more difficult. In such a case, we would recommend using an ensemble of
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discriminants where a classifier is used for some classes but not all.

To summarize, classifier combination is not some magical tool which is always
guaranteed to increase accuracy; it does increase memory and computational
needs because there is the extra cost of training/storing/using many classifiers
instead of one. Care should be taken that classifiers to be combined are both
accurate and diverse and that they are combined appropriately; otherwise we
will just pay without any significant gain.

6 Related work

Since choosing from a subset of classifiers is of exponential complexity, heuris-
tic methods have been developed which are similar to the ones we have evalu-
ated in our study. Below, we divide work into categories, and give a chronolog-
ical survey of literature for each category (Table 19 gives a summary). Since
these categories have overlaps, we mention related work in the most appropri-
ate subsection.

6.1 Subset selection algorithms

Besides the complexity and performance of evaluation of the ensemble, a sub-
set of the given classifiers may outperform the whole set. So, methods which
construct an ensemble using a subset of the available classifiers have been
developed.

Partridge and Yates [41] use the concept of “methodological diversity” to come
up with diverse classifiers and use three different methods for combining RBF
or MLP neural networks. They use a subset selection technique which first
trains multiple base classifiers and chooses amongst them. The evaluations
are carried out on three data sets, and no cross-validation is mentioned.

Ueda [56] combines multiple neural networks linearly to come up with an en-
semble, similar to the work of Ting and Witten [55]. The approach is to first
find best neural networks for each class and combine them linearly using opti-
mal weights. Only neural network classifiers are used in the study and weight
decay regularization is used. The method is compared with voting, bagging
and majority voting. Leave-one-out cross-validation is used for evaluating the
results on one artificial and two real data sets; no statistical testing is provided.

Zhou et al. [65] show that choosing a subset of classifiers may be more accurate
than combining all, and propose a genetic algorithm based method to find the
subset and evaluate their results on ten regression and ten classification data
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sets. Their base classifiers are neural networks with one hidden layer. They
compare their results with bagging and AdaBoost and show that their method
finds ensembles which are smaller and which have better generalization ability.
They use ten-fold cross validation in their experiments and statistical tests are
used to assess the performance.

Caruana et al. [10] propose an incremental algorithm which adds classifiers to
the ensemble one at a time, as in Icon. The stopping conditions are different:
They stop after a predefined number of steps or when all of the classifiers are
chosen. Their work uses thousands of models trained with different hyperpa-
rameters using six base algorithms, and they use seven data sets (which are
binary or binarized) for evaluation purposes using ten performance metrics
which are normalized to [0, 1].

Ruta and Gabrys [49] evaluate various methods for combining classifiers and
compare error-based and diversity-based selection criteria. They make exper-
iments on 27 data sets using 15 classifiers (different algorithms) using crisp
(0/1) outputs. They evaluate various search methodology including forward
and backward search, single best and m-best, and evolutionary algorithms.
They use 16 measures (based on accuracy, diversity or both) to assess the
performance of constructed systems and their conclusion is the “inappropri-
ateness of diversity measures used as selection criteria in favor of the direct
combiner error based search.” They also conclude that “greedy algorithms are
the best resistant to bad selection criteria.” After the selection process they
use majority voting for the combination of the classifiers. They divide the data
set into 100 different train/test splits (half of test set is used for validation
and the other half is used for evaluation). Their empirical results support our
findings: It is best to use accuracy as the search criteria; using diversity alone
as the selection criteria gives very bad results because it chooses most diverse
but inaccurate classifiers. They use crisp (0/1) outputs whereas using posterior
probabilities as we do is more informative.

Kuncheva and Rodriguez [33] propose a hybrid selection-fusion approach to
classifier combination. For each classifier, a random linear oracle is created as
a hyperplane and the data residing in each half is trained using the ensemble
approach. They test their method on 35 data sets from UCI and 7 other
medical data sets. 10-fold cross validation was carried out with decision trees
used as base classifiers. They see that all of the ensemble methods benefit
from this approach, with bagging and the random subspace methods having
the highest benefits.

Sohn and Shin [52] compare bagging and combination using linear regression
and see that on large data sets, they work equally well and bagging is better
on small data sets (where probably a trained combiner overfits). They find
that a trained combiner is suitable when there is strong correlation between
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input variables.

Yang et al. [59] combine Bayesian network classifiers and compare subset selec-
tion (in forward/backward direction using various criteria) vs trained weighted
combiner. They make their experiments on 58 benchmark data sets and use
four different statistical testing methods for comparison. They conclude that
there is no clear winner and that the choice between model selection and model
weighing depends on the problem at hand.

6.2 Pruning algorithms

Some methods, instead of selecting a subset, begins with the whole set of
classifiers, and prunes the unnecessary (according to an evaluation criterion)
classifiers from the set to form the ensemble. Backward and tabu search in
[48] and backward search in [49] are examples of this method.

Margineantu and Dietterich [37] use the idea that combining diverse classifiers
leads to better ensembles: They first use boosting to form an ensemble of 50
decision trees from which they then prune (i.e., using backward search) non-
diverse classifiers using five different diversity criteria. They use decision trees
as base classifiers and they compare their results on ten data sets with 10-fold
cross-validation.

Sharkey et al. [51] propose the “test and select” approach to ensemble con-
struction. The focus is on selecting a subset from a larger set. If the number
of classifiers is small, they use exhaustive search; else they generate and test
a number of candidates. One method is to generate random subsets, espe-
cially when there are too many base classifiers. They compare their results
on two data sets and use neural networks for the first data set and self orga-
nizing maps for the second data set. The data sets are divided into training,
validation and testing sets but statistical comparison is not mentioned.

Roli et al. [48] define the “overproduce and choose” paradigm where they ini-
tially construct a set of candidate classifiers and then select a subset amongst
them. Their forward and backward search is the same as ours, using accuracy
and diversity criterion; they also implement a forward version which does not
start with the best classifier but a random one. They use only one data set
and compare their results with All and Best, with three different sets of
base classifiers. No statistical evaluation is presented in the study and they
combine using majority voting.

Tamon and Xiang [53] use a method called “weight shifting” to prune ensem-
bles of decision trees constructed using AdaBoost. They evaluate this method
by using 10-fold cross-validation on eight data sets, but no statistical testing
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is mentioned. They also show that subset selection problem is intractable and
propose a solution using integer programming.

Prodromidis and Stolfo [43] form a meta decision tree for the classifiers in
an ensemble and use cost-complexity based pruning to prune the tree. They
first model the ensemble (constructed by any method) into a decision tree
which mimics the behavior of the original ensemble. They then prune this
constructed tree, which results in deletion of some of the classifiers in the
original ensemble. The remaining classifiers are used to construct the final
ensemble with the same method used to construct the original ensemble. The
methods used for constructing the initial ensemble are weighted voting, ma-
jority voting, SCANN [40], and stacking, and five base classifiers were used in
the study.

Bakker and Heskes [5] use clustering to reduce the size of bootstrap ensembles.
They use cluster centers as representatives of each cluster and use a measure of
methodological diversity to make the cluster centers optimally diverse. Islam
et al. [23] use incremental algorithms based on negative correlation learning
to come up with neural network ensembles, taking into account both accu-
racy and diversity. They evaluate their proposed method on eight data sets.
The diversity measure is added to the error function so that networks try to
maximize diversity during training.

Mart́ınez-Munoz and Suárez [39] train L classifiers using bagging, and then
use AdaBoost to prune the ensemble (i.e. change the random order of bagging
and early stop). They use 18 data sets in their experiments and use decision
trees as base classifiers; they also check for statistical improvement. Their con-
clusion is that, by selecting a subset of base classifiers, one can achieve better
accuracy, with less complex ensembles. Their method outperforms bagging and
is comparable to AdaBoost, though when the noise level is high, their method
outperforms AdaBoost, which makes it a better alternative ensemble method
when the noise level is not known. In their recent work, Mart́ınez-Munoz et al.
[38] compare methods for selecting a subset of classifiers constructed with bag-
ging. They compare different methods for changing the order of aggregation
in bagging.

In a recent work, Dos Santos et al. [50] propose a dynamic overproduce and
choose strategy which outperforms and is more efficient than a static “overpro-
duce and select” strategy and a dynamic classifier selection method. They use
random subspaces and bagging for overproduction phase, four different meth-
ods as search criteria, and use single and multiobjective genetic algorithms
for optimization. The selection phase is divided into two phases: optimization
and dynamic selection. For each test instance, a subset of classifiers is selected
according to some confidence measure and they are combined.
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6.3 Diversity based algorithms

Kuncheva et al. [34] use nine different diversity measures and eight different
combination techniques for bagging and boosting. The results indicate that
there is no clear distinction between the diversity measures, and no clear rela-
tion between diversity and accuracy, but there are some interesting patterns.

Kuncheva and Whitaker [35] define ten different diversity measures and their
relationship with classifier ensemble accuracy. They define ten different diver-
sity measures used in the literature, some of which are closely related with
each other, and classify them into groups such as pairwise and non-pairwise.
At the end they conclude that there is no clear relationship between the en-
semble accuracy and the diversity measures used.

Roli et al. [48] use diversity measures for evaluating the search algorithms
used in subset selection. Goebel and Yan [18] use ρ-correlation based diversity
measure with an incremental learning algorithm to find an ensemble. They
express the fact that ρ-correlation is a better indicator of contribution to
overall accuracy than that of the individual accuracy of the base classifier
to be added. They use neural network classifiers as base classifiers and they
evaluate their results on one data set. No statistical testing is done.

A recent special journal issue edited by Kuncheva [32] contains papers on
diversity measures and their role in ensemble construction: Banfield et al.
[6] propose another diversity measure called the percentage correct diversity
measure and use it for thinning (pruning).

Though most studies show that the the relation between accuracy and diver-
sity is unclear, Ko et al. [28,29] propose compound diversity measures, which
combine accuracy and diversity, and show that these measures have high cor-
relation with the ensemble accuracy.

6.4 Genetic and optimization algorithms

Kim et al. [26] train multiple ensembles using genetic algorithms. They eval-
uate their algorithm on 17 data sets using cross-validation and using neural
networks as base classifiers. The diversity of the ensembles is achieved us-
ing multiple feature subsets. The difference of their method from most of the
methods in the literature is that, they build multiple ensembles at the same
time. The genetic algorithm determines the membership of classifiers for the
ensembles and the selected feature subsets of each classifier.

Zhang and Bhattacharyya [63] propose genetic programming (GP) to create
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ensembles particularly when there is much data at hand. A GP classifier con-
sists of nodes which are any possible mathematical operators and leaves which
are any features of the data. They create and compare mean combiners of ge-
netic programming, decision tree and logistic regression classifiers and report
that the GP classifiers are more accurate than the other two. The possible rea-
sons for this is the diversity created due to recombination processes (crossover
and mutation) and the fitness function. They also note that since their GP
classifiers evolve to contain only the features containing much information,
there is also feature selection.

The fuzzy linguistic quantifiers can be used to represent the opinions of the
individual decision makers [42]. There are two proposed methods to fuse the
decisions. In one method, the ordered weighted averaging is used for obtaining
a scalar value where the quantifiers help to determine the weights. In the other
method, the majority opinion is represented as a vague concept, a fuzzy subset.

Zhang et al. [64] define the problem of pruning an ensemble as a quadratic
integer programming problem and use semi-definite programming to get a
better approximate solution.

6.5 Combining different representations

Perhaps the best way to form independent base classifiers is to have them
use different representations of the same object or event. Different represen-
tations make different characteristics apparent and an object ambiguous in
one representation may be clearly recognizable in another [1]. Demir and
Alpaydın [12] generate multiple feature sets from different representations,
feed them to separate base classifiers and incrementally find the best subset
of classifier/representation pairs; different representations may have different
costs associated with them and the chosen “cost conscious” ensemble best
trades off accuracy and cost. They perform their experiments on a handwrit-
ten digit data set with multiple representations using multilayer perceptrons
as base classifiers, and compare the accuracy with voting over all and boosting.
Gökberk et al. [19] use different face representations.

7 Conclusions

We discuss two ensemble construction methods. In an ensemble of classifiers,
we choose a subset from a larger set of base classifiers. In an ensemble of
discriminants, we choose a subset of base discriminants, where a discriminant
output of a base classifier by itself is assessed for inclusion in the ensemble.
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A greedy, forward, incremental classifier ensemble finds ensembles that are
small, as accurate as the optimal ensemble, and does this in polynomial time.
It is best to maximize the final overall ensemble accuracy, rather than some
intermediate diversity criterion; one may also envisage some combination of
accuracy and diversity to be able to get the best of both worlds. We see
that the incremental ensemble has statistically significantly higher accuracy
than bagging and random subspace method; and when compared to AdaBoost
no statistical difference can be found. On the other hand, Acc uses fewer
classifiers than bagging and AdaBoost.

When the base classifiers are trained with enough data and are accurate, there
is no need for a trained linear combiner, and the fixed sum rule works as well,
in a cheaper manner. Our experience in this and other studies is that stacking
works better than voting when there is disparity between the accuracies of the
base classifiers. When all base classifiers are accurate and equally trustworthy,
voting works fine; stacking is needed when we need to weight some, those that
are more accurate, higher and some, the erroneous ones, less.

The discriminant ensemble is interesting in the sense that not all discriminants
of chosen classifiers are used. In many real-world data mining applications,
training is typically done much less frequently than testing and decreasing
test complexity at the expense of more training is preferred. The idea is the
same as a classifier ensemble: just as not all base classifiers may not be needed
and it is better to weed out those not needed to keep complexity in check,
it may not be necessary to use a base classifier for all classes. Considering a
classifier not as a single entity but as a collection of discriminants, one for each
class, we can choose a subset of the discriminants thereby using a base classifier
for some classes but not all. The corresponding discriminant is included, when
the inductive bias of that classifier matches for a class, otherwise it is not
used. This makes the whole ensemble much simpler, faster, and interpretable.
In large scale data mining applications where both accuracy and time/space
complexity are important, such improvements in efficiency may be critical.
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1 function icon(P )
2 E0 ← ∅
3 for t = 0 to L− 1

4 S
(t+1)
k ← E(t) ∪Mk,∀Mk ∈ P where Mk 6∈ E(t)

5 if ∃S(t+1)
j such that S

(t+1)
j ≺ S

(t+1)
k ,∀k 6= j

and S
(t+1)
j ≺ E(t)

6 then E(t+1) ← S
(t+1)
j , t ← t + 1

7 else break
8 end for
9 return E(t)

Fig. 1. Pseudocode of the forward searching Icon algorithm.
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Table 1
Contingency table used by the measures of diversity.

Ej correct Ej wrong

Ei correct N11 N10

Ei wrong N01 N00
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Table 3
Accuracies of compared methods. ? means Acc is significantly more accurate, ◦
means Acc is significantly less accurate.

Data set Acc Dt Dt.Lin Fss Opt Best All Rnd

australian 85.2±0.6 78.2±4.6 82.8±0.5? 86.5±0.6 85.2±1.1 84.8±0.5 85.0±1.2 85.7±1.3

balance 92.3±2.0 94.5±2.6 91.7±0.2 91.4±0.2 92.3±2.0 91.1±1.7 90.0±0.6 90.5±0.8

breast 94.4±0.1 90.9±6.7 93.6±1.3 94.4±0.1 94.4±0.3 94.4±0.3 94.6±0.4 94.4±0.3

bupa 70.8±3.2 57.7±10.4 61.2±0.0? 64.4±5.4 69.8±2.6 68.7±2.9 66.1±3.6 66.2±2.5

car 96.5±0.9 96.0±3.4 96.9±1.7 92.2±0.1? 96.5±0.9 96.7±0.9 93.4±1.1? 94.8±1.5

cmc 51.3±1.3 44.0±2.0? 44.3±1.1? 49.0±1.1? 51.2±0.9 52.1±1.4 50.9±1.6 51.5±0.9

credit 84.1±1.6 76.1±6.8 82.5±0.6 85.6±0.7 85.7±0.8 83.6±1.0 85.1±1.2 85.5±1.3

cylinder 70.2±4.3 73.7±3.7 80.5±1.7◦ 77.1±0.8 72.1±2.6 71.7±3.5 72.1±2.6 72.6±2.8

dermatology 96.4±0.6 95.3±1.1 85.5±5.4? 91.2±0.0? 96.4±0.6 96.0±1.1 95.8±1.1 96.4±0.6

ecoli 85.0±2.6 68.5±10.6 73.0±6.3 79.7±2.0 83.1±3.7 84.0±2.6 83.6±3.7 81.3±3.8

flags 59.6±1.6 40.9±10.2 43.7±9.6? 47.6±3.2? 59.6±1.6 58.1±2.6 56.7±2.2? 56.4±2.4?

flare 88.1±0.0 73.0±24.0 88.2±0.3 88.1±0.0? 88.1±0.0 88.1±0.0 88.1±0.0 88.1±0.0

glass 59.3±3.6 49.6±10.2 56.9±3.5 51.6±2.1? 55.5±2.8 56.5±2.6 54.1±2.8 56.4±2.3

haberman 74.5±1.1 55.9±12.1? 71.0±1.3? 73.5±0.0 73.7±1.5 73.7±1.0 73.7±1.1 73.6±1.0

heart 84.7±1.1 69.2±8.9 81.1±3.9 87.2±2.3 84.9±1.8 84.7±1.1 86.0±2.0 85.0±2.2

hepatitis 81.0±2.5 80.2±2.2 79.2±1.2 78.8±0.0 81.5±1.6 81.0±2.5 81.2±1.5 81.0±2.5

horse 85.4±1.5 77.1±12.1 85.2±0.9 87.7±1.1 84.4±2.1 85.4±1.5 85.6±1.8 84.0±1.9

ionosphere 91.5±1.1 89.5±5.2 87.4±3.3 90.7±0.6 89.8±1.9 89.8±1.9 86.4±2.4 86.9±1.7?

iris 96.7±1.9 89.4±7.8 82.2±14.3 92.2±0.0? 96.7±2.5 96.7±1.9 95.1±1.9 94.3±3.1

monks 89.7±7.3 94.4±5.5 96.0±3.5 97.7±1.3 89.7±7.3 83.6±8.9 76.7±2.9 82.4±6.6?

mushroom 100.0±0.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.1 100.0±0.1 99.9±0.1 99.9±0.1

nursery 99.8±0.1 99.9±0.1 98.9±1.1 100.0±0.0 99.8±0.1 99.8±0.2 99.2±0.2? 99.3±0.3?

optdigits 98.2±0.2 97.7±0.4 98.2±0.3 98.8±0.1◦ 98.2±0.2 98.2±0.2 97.8±0.2 97.6±0.2

pageblock 96.2±0.3 93.7±1.4 96.4±0.2 96.3±0.2 96.1±0.3 96.2±0.2 95.8±0.3 95.6±0.3

pendigits 99.2±0.1 98.5±0.9 99.2±0.2 99.4±0.0 99.1±0.1 99.2±0.1 99.0±0.1? 98.9±0.1?

pima 74.0±1.0 68.2±2.3? 70.7±0.9? 74.7±0.3 74.8±1.0 74.8±0.9 74.2±1.3 74.2±0.9

ringnorm 98.4±0.1 98.0±0.2 98.5±0.1 98.5±0.0 98.4±0.1 98.4±0.1 93.2±0.4? 92.0±0.8?

segment 95.0±0.4 86.1±8.4 96.4±0.5 96.1±0.1◦ 94.8±0.4 94.8±0.7 93.9±0.6 95.2±0.7

spambase 93.7±0.4 89.2±3.7 93.7±0.4 94.0±0.2 93.7±0.3 93.1±0.6? 93.3±0.4 93.4±0.4

tae 48.5±7.7 46.7±12.8 53.5±8.7 44.4±6.0 47.3±7.1 48.5±7.7 50.6±7.3 42.7±6.0

thyroid 98.1±0.2 97.1±1.4 97.8±0.4 97.1±0.0? 98.1±0.2 98.3±0.2 98.0±0.2 98.1±0.2

tictactoe 99.4±0.0 96.7±4.3? 99.1±0.8 99.4±0.0 99.2±0.2 99.3±0.1 98.9±0.6? 99.3±0.3

titanic 80.7±0.1 80.7±0.0 80.6±0.3 80.7±0.0 80.7±0.1 80.2±0.6 79.0±2.2 80.2±0.1?

twonorm 97.4±0.1 95.5±1.2 96.9±0.1? 97.5±0.0 97.3±0.1 97.4±0.1 97.4±0.1 97.3±0.1

vote 94.4±0.9 93.8±2.1 94.0±2.3 96.8±0.7◦ 94.9±1.2 94.4±0.9 94.8±0.8 96.4±0.3◦
wine 99.2±1.4 93.7±6.1 86.5±10.6 96.5±1.7 98.0±1.1 97.3±1.4 98.3±1.1 98.3±1.1

yeast 58.4±1.1 40.3±3.0? 51.1±0.3? 53.7±0.6? 59.7±1.3 59.0±0.5 60.0±1.3 60.3±1.2

zoo 94.1±3.8 59.2±7.3? 56.8±0.0? 56.8±0.0? 94.1±3.8 94.1±3.8 87.8±3.9 96.2±2.3
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Table 4
The number of statistically significant accuracy wins/losses of .F (Forward), .B
(Backward), and .L (Floating) over 38 data sets according to the criterion used by
Icon. The bold face entries show statistically significantly difference using sign test.

Acc .F .B .L Cv .F .B .L

.F 0/0 1/0 1/0 .F 0/0 1/5 0/0

.B 0/1 0/0 0/1 .B 5/1 0/0 5/1

.L 0/1 1/0 0/0 .L 0/0 1/5 0/0

Qstat .F .B .L Corr .F .B .L

.F 0/0 2/5 2/0 .F 0/0 1/8 4/0

.B 5/2 0/0 8/2 .B 8/1 0/0 11/1

.L 0/2 2/8 0/0 .L 0/4 1/11 0/0

Table 5
Average ± standard deviation of the number of classifiers in ensembles found by
each search direction and optimization criterion.

Acc Cv Qstat Corr

.F 2.39±1.5 1.05±0.2 8.16±4.9 5.74±5.1

.B 7.79±3.2 2.08±2.1 11.55±3.7 11.39±3.7

.L 2.26±1.3 1.05±0.2 6.29±4.4 3.32±2.3

Table 6
Average ± standard deviation of the number of search steps visited by each search
direction and optimization criterion.

Acc Cv Qstat Corr

.F 42.37±15.1 27.63±2.7 143.05±28.6 125.84±30.6

.B 73.47±22.9 101.68±8.0 37.26±29.0 38.95±29.0

.L 712.47±345.4 415.58±40.6 172.13±61.2 131.68±40.6
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Table 7
Single classifier accuracies on optdigits.

Alg test

c45 81.76±1.3

mdt 92.98±1.0

lnp 94.28±0.8

ml2 94.86±0.5

ml4 96.03±0.9

ml5 96.21±0.4

ml1 96.02±0.6

3nn 95.99±0.4

1nn 96.67±0.4

5nn 95.86±0.3

ml3 96.34±0.3

sv1 97.48±0.2

svr 97.67±0.2

sv2 97.49±0.3
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Table 8
Combination results on optdigits.

Alg test # cla # disc Chosen

Best.1.Sum 97.49±0.3 1 10 sv2

Best.3.Sum 98.22±0.2 3 30 sv2 svr sv1

Best.5.Sum 98.19±0.2 5 50 sv2 svr sv1 ml3 5nn

Best.7.Sum 97.90±0.2 7 70 sv2 svr sv1 ml3 5nn 1nn 3nn

Best.9.Sum 98.01±0.3 9 90 sv2 svr sv1 ml3 5nn 1nn 3nn ml1 ml5

Rnd.1.Sum 97.67±0.2 1 10 svr

Rnd.3.Sum 97.60±0.3 3 30 c45 sv1 1nn

Rnd.5.Sum 97.67±0.2 5 50 ml3 ml1 ml5 sv2 1nn

Rnd.7.Sum 97.82±0.2 7 70 ml3 ml4 mdt ml5 svr sv1 1nn

Rnd.9.Sum 97.61±0.2 9 90 ml2 c45 ml3 lnp mdt ml5 svr sv2 3nn

All.Sum 97.85±0.2 14 140

Opt.Sum 98.22±0.2 3 30 svr sv2 sv1

Acc.Sum 98.22±0.2 3 30 sv2 svr sv1

Cv.Sum 96.02±0.6 1 10 ml1

QStat.Sum 97.85±0.2 14 140 All

Corr.Sum 97.85±0.2 14 140 All

Fss 98.83±0.1 10 25 c45(1,4) 1nn(3) 3nn(3,5) 5nn(7) ml1(9) ml2(4)

ml3(1) sv1(2,3,5,6,7) sv2(1,2,4,7,8,9) svr(0,3,4,6,8)

Dt 97.65±0.4 6.6 11.8 1nn(6) 5nn(5) lnp(0) sv1(7) sv2(1,2,3,4) svr(8,9)

Dt.Lin 98.22±0.3 6.6 11.8 1nn(6) 5nn(5) lnp(0) sv1(7) sv2(1,2,3,4) svr(8,9)

40



Table 9
Single classifier accuracies on nursery data set.

Alg test

1nn 76.86±0.5

3nn 85.18±0.5

5nn 89.93±0.4

lnp 90.86±0.7

sv1 92.43±0.3

mdt 92.74±0.4

c45 92.72±0.5

ml2 94.97±0.9

svr 95.50±0.4

sv2 98.70±0.6

ml3 99.13±0.4

ml5 99.38±0.3

ml4 99.42±0.3

ml1 99.41±0.2
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Table 10
Combination results on nursery data set.

Alg test # cla # disc Chosen

Best.1.Lin 99.41±0.2 1 4 ml1

Best.3.Lin 99.58±0.2 3 12 ml1 ml4 ml3

Best.5.Lin 99.81±0.1 5 20 ml1 ml4 ml3 ml5 sv2

Best.7.Lin 99.78±0.1 7 28 ml1 ml4 ml3 ml5 sv2 svr ml2

Best.9.Lin 99.77±0.1 9 36 ml1 ml4 ml3 ml5 sv2 svr ml2 c45 mdt

Rnd.1.Lin 91.48±0.3 1 4 5nn

Rnd.3.Lin 99.40±0.2 3 12 ml1 3nn svr

Rnd.5.Lin 99.51±0.3 5 20 lnp ml4 ml5 1nn svr

Rnd.7.Lin 99.60±0.2 7 28 ml2 ml3 ml1 ml4 mdt ml5 1nn

Rnd.9.Lin 99.75±0.1 9 36 ml2 ml3 lnp ml1 ml4 c45 5nn sv1 sv2

All.Lin 99.76±0.1 14 56

Opt.Lin 99.81±0.1 5 20 ml3 ml1 ml5 5nn sv2

Acc.Lin 99.82±0.1 4 16 ml1 sv2 ml4 3nn

Cv.Lin 99.83±0.1 2 8 ml1 sv2

QStat.Lin 93.13±0.5 2 8 c45 1nn

Corr.Lin 98.91±0.4 2 8 ml3 1nn

Fss 99.95±0.0 5 8 ml1(0) ml3(0) ml4(0,3) mdt(0) sv2(0,2,3)

Dt 99.95±0.1 2.7 3 c45(1) sv2(2,3)

Dt.Lin 98.85±1.1 2 3 c45(1) sv2(2,3)
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Table 11
Pairwise comparison of accuracies (wins/losses over 38) of all methods using 5× 2
cv F -test.

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt Dt.Lin

Best 0/0 3/1 6/0 0/0 0/1 9/1 7/0 8/0 10/4 6/1 9/1

Rnd 1/3 0/0 4/2 0/7 1/7 9/1 8/2 10/1 7/6 7/3 10/4

All 0/6 2/4 0/0 0/6 0/6 9/3 5/2 8/2 6/9 6/3 8/6

Opt 0/0 7/0 6/0 0/0 0/0 12/0 9/0 9/0 9/6 6/0 9/2

Acc 1/0 7/1 6/0 0/0 0/0 14/2 10/1 9/1 10/3 6/0 10/1

Cv 1/9 1/9 3/9 0/12 2/14 0/0 6/7 6/7 3/9 4/1 5/6

Qstat 0/7 2/8 2/5 0/9 1/10 7/6 0/0 5/1 5/12 5/5 8/8

Corr 0/8 1/10 2/8 0/9 1/9 7/6 1/5 0/0 7/12 5/5 5/8

Fss 4/10 6/7 9/6 6/9 3/10 9/3 12/5 12/7 0/0 7/1 12/3

Dt 1/6 3/7 3/6 0/6 0/6 1/4 5/5 5/5 1/7 0/0 1/4

Dt.Lin 1/9 4/10 6/8 2/9 1/10 6/5 8/8 8/5 3/12 4/1 0/0

Table 12
Average ranks of compared methods

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt Dt.Lin

4.55 5.68 5.76 3.89 4.08 8.01 6.97 7.17 4.82 8.62 6.43

Table 13
Average number of base classifiers (/discriminants) contained in different ensembles.

Best Rnd All Opt Acc Cv Qstat Corr Fss Dt

Sum 2.79 4.89 14.00 4.53 2.39 1.05 8.16 5.74 4.58/1.83 5.60/2.76

Lin 5.84 6.58 14.00 6.08 3.95 1.08 8.16 5.74 5.60/2.76
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Table 14
Average similarity of base classifiers (discriminants) between ensembles found by
different methods.

Best All Opt Acc Cv Qstat Corr Fss Dt

Best 1.00 0.20 0.44 0.61 0.11 0.13 0.14 0.32 0.20

0.20 0.13

All 0.20 1.00 0.32 0.17 0.08 0.58 0.41 0.33 0.40

0.13 0.20

Opt 0.44 0.32 1.00 0.48 0.14 0.23 0.20 0.37 0.28

0.21 0.17

Acc 0.61 0.17 0.48 1.00 0.09 0.13 0.15 0.29 0.19

0.19 0.14

Cv 0.11 0.08 0.14 0.09 1.00 0.06 0.09 0.16 0.07

0.12 0.05

Qstat 0.13 0.58 0.23 0.13 0.06 1.00 0.66 0.23 0.32

0.11 0.17

Corr 0.14 0.41 0.20 0.15 0.09 0.66 1.00 0.24 0.24

0.14 0.14

Fss 0.32 0.33 0.37 0.29 0.16 0.23 0.24 1.00 0.26

0.20 0.13 0.21 0.19 0.12 0.11 0.14 1.00 0.12

Dt 0.20 0.40 0.28 0.19 0.07 0.32 0.24 0.26 1.00

0.13 0.20 0.17 0.14 0.05 0.17 0.14 0.12 1.00

Table 15
Comparison of accuracies (wins/losses over 38) of .Sum vs .Lin.

Best Rnd All Opt Acc Cv Qstat Corr

test 2/1 2/3 0/5 0/0 1/0 6/0 3/6 5/5
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Table 16
Pairwise comparison of accuracies (wins/losses over 38) of ensemble methods using
5× 2 cv F -test.

Acc Dt.Lin Ada Bag Kne

Acc 0 10 11 14 19

Dt.Lin 1 0 9 10 17

Ada 0 7 0 10 16

Bag 0 2 0 0 5

Kne 0 1 0 1 0

Table 17
Average and standard deviation of number of base classifiers contained in different
ensemble methods.
Acc Ada Bag

2.39 ∓ 1.50 22.10 ∓ 8.11 10.13 ∓ 8.01

Table 18
Average ranks of ensemble methods

Acc Dt.Lin Ada Bag Kne

1.55 2.61 2.42 3.84 4.58
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